RAMP - DEVELOPMENT OF A RISK ASSESSMENT TOOL

Lind, C¹, Rose, L¹, and Franzon, H²

¹Division of Ergonomics, School of Technology and Health, Royal Institute of Technology (KTH), Alfred Nobels Allé 10, SE-141 52 Huddinge, Sweden, E-mail: carl.lind@sth.kth.se
²Arla Foods, Lindhagensgatan 126, 105 46 Stockholm, Sweden.

Introduction
Manual Materials Handling (MMH) and working in awkward postures are still important causes of MSDs. Proper ergonomic conditions can contribute to reduce absence from work, and are important prerequisites to ensure high quality and productivity. Risk assessment can be used to improve the working conditions by identifying important risk factors and support communication between key stakeholders in order to improve the working conditions.

This paper presents an ongoing project called RAMP (Risk management Assessment tool for Manual handling Proactively), reported e.g. at NES 2011. The aim of the project is to develop a freely accessible load ergonomic risk assessment tool and to gain knowledge of contributing factors for implementation and usability of such a tool. The RAMP-tool is developed for assessing risk of MSDs, support communication of the main risk factors among stakeholders and support effective interventions. The project, mainly financed by AFA Insurance, is conducted in collaboration between KTH and companies in the manufacturing industry, mainly Arla Foods and Scania CV.

Methods
This far an overview of risk assessment tools which can be used to assess MMH activities and potentially be used by companies or OSH personnel has been performed including e.g. KIM, QEC, ART Tool, SES and Washington State Checklist. Interviews with companies in the manufacturing industry have been performed to gain insight of the companies’ use of risk assessment tools and their perception of their usability.

Results
The tool consists of two levels, RAMP I and RAMP II. The first level is intended for quick screening of work stations of occurrence (or not) of risk factors. If the screening indicates an occurrence of a risk factor, a more thorough analysis with the second level could be performed. RAMP II can be used for a more detailed analysis of the exposure to risk factors and point out the direction of possible improvements in order to reduce the exposure.

A first prototype of the RAMP I has been evaluated by users, including managers, health and safety representatives, OSH personnel and workers. The tool will be further evaluated and refined after feedback from users. A preliminary version of the RAMP I will be presented at the conference and also preliminary results from the user tests.