
Evolutionary Tuning of Chess Playing Software

JONAH SCHREIBER AND PHILIP BRAMSTÅNG

Degree Project in Engineering Physics, First Level at CSC
Supervisor: Johan Boye

Examiner: Mårten Olsson

Abstract
In the ambition to create intelligent computer players, the game of chess
is probably the most well-studied game. Much work has already been
done on producing good methods to search a chess game tree and to stat-
ically evaluate chess positions. However, there is little consensus on how
to tune the parameters of a chess program’s search and evaluation func-
tions. What set of parameters makes the program play its strongest?
This paper attempts to answer this question by observing the results
of tuning a custom chess-playing implementation, called Agent, using
genetic algorithms and evolutionary programming. We show not only
how such algorithms improve the program’s playing strength overall,
but we also compare the improved program’s strength to other versions
of Agent.

Contents

1 Introduction 1
1.1 Problem description . 2
1.2 Genetic algorithms . 3
1.3 Background of chess programs . 5

2 Methodology 7
2.1 Chess program implementation . 7

2.1.1 Chess profiles . 8
2.1.2 Search . 8
2.1.3 Evaluation . 9
2.1.4 Miscellaneous . 14

2.2 Simulation setup . 14
2.2.1 Simulating a game . 16
2.2.2 Scoring & natural selection 17
2.2.3 Reproduction & variation . 17
2.2.4 Distributed computing setup 17

2.3 Performing the simulations . 18
2.3.1 Free-for-all and rock-paper-scissors strategies 19
2.3.2 Simulation runs . 19
2.3.3 Testing the simulation results 20

3 Results 21
3.1 First FFA run . 22
3.2 RPS run . 24
3.3 Second FFA run . 26
3.4 Statistics . 28

4 Discussion 29
4.1 Analysis . 29

4.1.1 Parameter analysis . 30
4.1.2 Performance analysis . 30

4.2 Error & stability analysis . 32
4.3 Conclusions . 32

Appendices 33

A Access to Agent & surrounding software 35
A.1 Agent program for Windows . 35
A.2 Agent source code . 35
A.3 Simulation client . 35
A.4 Simulation server . 35

B Acknowledgements 37

Bibliography 39

Glossary 41

Chapter 1

Introduction

In artificial intelligence, the famous Turing Test is often used as a platform to
designate whether a machine or computer is "intelligent" or not. The test expresses
a central motivation of the field: creating machines that can imitate or even surpass
the actions of a human expert. As stated, this motivation is misleading, however,
because it imposes no requirements on how the machine actually works. A machine
that also imitates the processes by which humans acquire some particular behavior is
much more useful in software applications than one without this capability, because
such a machine can solve problems that were not considered in its design. The
hope to achieve such machine learning is a fundamental motivation of artificial
intelligence.

Unfortunately, despite extensive study, designing such machines or programs
has proven difficult, primarily because the exact processes by which learning can
happen are not well understood. While a program can learn in ways unlike those
of humans, human learning usually has more apparent computative approaches.1
One such commonly cited approach is to let a program "learn from its mistakes",
like humans tend to do, but this approach is not only vaguely formulated, it is
inherently problematic. In particular, for a game like chess, it can be infeasible to
let a computer program learn from its mistakes, because computing the mistakes
(or at least when they took place) would be equivalent to finding the best move in
the first place. In fact, the way most chess programs work today is by actually
doing this computation (that is, finding the best move), making any learning seem
unnecessary (see Figure 1.1). The problem is analogous to a parent giving a child
a job, and, in having to teach the child how to do it, the parent ends up having to
do the job herself.

Machine learning is, of course, still very desirable because there are often inputs
on which such mistake calculations are incomplete, incorrect or inaccurate. For
example, if a chess program is somehow punished for making a move that was
incorrectly labeled as a mistake, it would be taught a false lesson. Hence, in order
to attain any useful mistake-based machine learning, mistakes must be very clearly

1Such approaches are still complicated since human learning is not well understood, either.

1

CHAPTER 1. INTRODUCTION

?!
A B

1
2 3 4

Figure 1.1. If the machine A can already readily identify the mistakes of the learning
machine B, it might seem unnecessary for B to exist. In most cases, however, the
machine A is incomplete, justifying the existence of machine B, since it could learn
to generalize from and surpass A’s capabilities.

classified. In most cases, this means the mistake feedback mechanism cannot be too
complicated. However, such a decrease in complexity means there is less information
for the program to learn from. The problem is therefore to reduce the complexity
of the feedback mechanism, while at the same time increasing the sophistication of
the learning mechanism. Regrettably, the former is often much easier to achieve
than the latter.

Fortunately, various generalized learning methods have been proposed over the
years to complement a more simple feedback system. One such method, called
genetic algorithms (studied in detail by Fraser and Burnell, 1970), is the focus of
this paper and its description follows in the next sections. In fact, as this paper will
prove, the method is so powerful that an extremely simple feedback system proves
to be sufficient. Specifically, this paper shows, among other things, that designating
mistakes based only on losing or winning a game of chess is sufficient for a chess
program to learn and improve its playing strength, even though one might normally
expect such information to be insufficient.

1.1 Problem description
Chess has long been a quintessential showcase of the intelligence of computers.
While hopes have historically been high to produce a self-learned chess program,
most programs today still use a heavily improved type of brute-force search coupled
with an evaluation strategy. This observation leads one to ask if machine learning of
chess is an intractable problem. Can a chess program teach itself anything inside the
programmer’s framework, or must the programmer define all its routines explicitly?

Fortunately, while most chess programs use very conventional search techniques
which leave little room for automatic learning, the best way to compute a strategic

2

1.2. GENETIC ALGORITHMS

evaluation of a chess position is more of a mystery. There is great disagreement on
what game elements to evaluate strategically, and by how much. In fact, evaluation
strategies are some of the most well-kept industry secrets. Because of this method’s
evasive nature, we might ask instead: "Given basic rules for searching for the best
move, can a chess program teach itself to play better by learning what makes a
chess position advantageous?"

This question marks the foundation of our research. With so many elements
contributing to strategy in chess, what selection and emphasis of such elements
makes a program play its strongest? Can the program be made to answer this
question itself? Understanding the learning capabilities a chess program has in this
area is the driving force of this research, and is what motivated this project to use
genetic algorithms as a program’s learning basis.

This paper will answer the question on how much a chess program can learn
and improve its evaluation through genetic algorithms by letting our own chess
program Agent evolve in a simulated ecological environment. This paper shows
how the program has improved in various simulation cycles by letting the different
generations play games against other versions (such as earlier generations, "greedy"
versions, etc.), and observing the win rate. It also shows an unsuccessful attempt
at producing triangular specialization, which will be described later.

1.2 Genetic algorithms

The purpose of this paper is not only to show how genetic algorithms can be em-
ployed to optimize a chess-playing program, but also how they embody a flexible
learning environment in a broader context. In other words, the intent is to illus-
trate the versatility of genetic algorithms by highlighting the learning obstacles it
manages to overcome in a rather complex game such as chess. To achieve this end,
we will first establish precisely what we mean with genetic algorithms.

Genetic algorithms fall under the category of evolutionary programming, and are
designed specifically to imitate the evolutionary processes found in nature. Strictly
speaking, they are actually a form of search heuristic. The goal is to search for some
problem-specific maximum - as such, they aim to optimize some set of parameters to
this end. They are heuristic because parameter candidates are selected through an
algorithmic process that mimics natural selection, which acts as a kind of educated
guess. Genetic algorithm applications also usually have a method for mimicking
reproduction with variation, the other core component for evolution in nature.

Genetic algorithms usually work on a population (or "pool") of virtual organ-
isms. Each such organism has an associated genome: an information string which
expresses features of the organism. For example, the importance a chess program
assigns to castling might be part of its genome. Through this genome, mating two
individual organisms to produce an offspring is then possible, by crossing over the
respective genomes with a chance of mutation. This crossover then produces an
offspring which inherits half its genome from one parent, and half from the other.

3

CHAPTER 1. INTRODUCTION

These crossover and mutation processes are usually simulated during the "repro-
duction with variation" phase of a genetic algorithm. The genome is important to
define because it forms the basis by which an organism’s fitness can be measured.

In the case of chess, we usually want to maximize the win rate, so that the
program wins as often as possible. A chess program which wins often could be called
more fit than others which win less. Measuring such fitness is done by evaluating a
fitness function and these are central to a genetic algorithm. Their input is usually
an organism’s genome and their output is a measure of the organism’s fitness. Hence,
a fitness function directly corresponds to whatever quantity the application wants
to maximize. In short, a fitness function measures how "good" an organism is.2

Once these simulation elements have been decided, they can be combined into
a genetic algorithm. A common algorithm is illustrated in Figure 1.2. First, three
organisms are sampled from the organism pool. They are then ranked after fitness
using the fitness function, and the weakest is eliminated. Finally, the remaining
organisms reproduce, recombining and possibly mutating their genomes into a third
organism which is reinserted into the pool.

Organism Pool

1. Sampling
2. Fitness

3. Selection
4. Reproduction

5. Insertion

Figure 1.2. Common approach for a genetic algorithm.

This algorithm is simple to implement but has a disadvantage in that organisms
are only given one chance to survive. If the fitness function has significant statistical
variance, potentially fit individuals may be eliminated too hastily. For example, in
chess, the outcome of a single game does not certainly decide which player is best.
Hence, a sum of averages may be required. Algorithms which remedy this problem
exist, and our own implementation is described in detail in Section 2.2.

A genetic algorithm usually defines borders between generations. They are anal-
ogous to "family" generations found in nature, in that they approximately delimit
a population’s parents from their children. In practice, what constitutes a genera-
tion varies between genetic algorithms, but they generally separate populations into
categories where one might expect a significant genome change from a previous gen-

2In practice, the fitness function is also the most computationally intensive part of any genetic
algorithm, because it is usually a very complicated non-linear function.

4

1.3. BACKGROUND OF CHESS PROGRAMS

eration. For example, if the algorithm described above is repeated as many times
as there are organisms in the pool, we may call this new pool the "next" generation.
It is useful to speak of generations because they provide a standardized measure of
how much a population has advanced.

By exercising the steps described above, a genetic algorithm should in theory
maximize the fitness of a population. The time taken for this to happen may,
however, be very long. Nevertheless, genetic algorithms are very useful because
they will almost always find partial solutions (optimizations) along the way, and
will sometimes find unexpected (but very fit) solutions to a problem, unlike many
other optimization algorithms.

1.3 Background of chess programs
In 1997, the chess computer Deep Blue defeated grandmaster Garry Kasparov in
a very famous match. It was the first time in history that a machine had won a
game of chess against a reigning world champion. Naturally, a great deal of public
interest arose as to why Deep Blue was such a powerful chess player, and it was
revealed that a key component to its success was the way its play parameters were
tuned. By letting Deep Blue analyze many thousand grandmaster games ahead of
time, its parameters could be adjusted so as to match results in these games.

Since then, however, chess program strength has improved even further. For
example, the chess program Rybka won four consecutive World Computer Chess
Championships between 2007 and 2010 and is considered one of the strongest pro-
grams today. In addition, unlike Deep Blue, Rybka could also be run on ordinary
hardware and still play very well. This was also the case for Deep Fritz, which even
managed to defeat Classical World Chess Champion Vladimir Kramnik in 2006
while running on relatively ordinary hardware. Like Deep Blue, both programs use
very carefully designed evaluation.

However, while Deep Blue’s tuning indeed helped it play very strong moves,
there is no clear consensus on what tuning method is truly best. Moreover, while
many of the techniques to search a chess game tree for the best move have been
well established and conventional for decades, the best way to compute a strategic
evaluation of a chess position is more of a mystery. Indeed, it can be argued that
this task of static evaluation, first described in 1950 by Shannon, defines a program’s
style of play and even identity in some sense.

Having learned of the significance of static evaluation, our interest was sparked
as to how evolutionary programming influences it. Previous work by David B. Fogel
et al on the possibility to improve a chess program with evolutionarily programmed
neural networks was particularly inspiring. We already had some experience in how
useful genetic algorithms could be to find unexpected solutions or optimal ratios to
some problems. Hence, to apply these algorithms to a game like chess seemed to be
a very lucrative experiment.

5

Chapter 2

Methodology

The following section describes the methods used to answer the questions given
in Section 1.1. Firstly, this section expands on how our custom chess program
Agent works and how it can be used to simulate chess games with custom "profiles".
Next, this section describes how the genetic algorithm was constructed and how the
simulation was set up. Finally, it describes the actual simulations that took place
and how their results were measured. Many of the terms used in this chapter are
defined in greater detail in this paper’s glossary section.

2.1 Chess program implementation

Agent is our custom chess program, written entirely in C. Its main structure is fairly
traditional; its search mechanism and evaluation mechanism being the most impor-
tant modules. Figure 2.1 shows its standalone Microsoft Windows user interface
when launched without any options. In total, Agent consists of 7,000 lines of C
code.

As the predominant focus in this paper is how Agent was made to improve itself,
we will not comment extensively on all its modules, although much project time
was devoted to them. Instead, we refer to external literature for more traditional
information, of which there is a comprehensive list of in this paper’s Bibliography
section. However, Agent’s more novel features will be expanded on.

The general design philosophy of Agent was to fully exploit any speed gains by
using precomputation, function inlining and bitwise operations wherever possible.
As speed is essential to a chess program, optimization was a high priority throughout
most of the program.

Agent’s internal data representation of a chess position is somewhat novel. It is
reminiscent of a traditional mailbox approach (first described by Spracklen, 1978a),
but uses two mutually corresponding arrays instead of one. One array maps a piece
to its square on the board, and the other does the opposite. The advantage of
this approach is that it makes move generation (a function chess programs use to
generate all legal moves from a position) very fast, at the cost of more memory.

7

CHAPTER 2. METHODOLOGY

Figure 2.1. The default Microsoft Windows appearance of Agent.

Ultimately, this structure was designed to be more informational than a more tra-
ditional mailbox system, yet as fast but less awkward as a bitboard (named and
described by Adelson-Velsky et al, 1970) system. Along with piece positions, the
structure also contains information on whose turn it is to move, castling rights, en
passant states, a half-move clock and also a 64-bit hash signature.

2.1.1 Chess profiles
A central structure in Agent supports different chess profiles. These are structures
containing variable information on how the program should play a move. They
contain information pertaining to (mostly numerical) expressions in its search and,
in particular, its evaluation. For example, the material value of having a pawn,
the importance of having knights close to the center, and the threshold at which
bad captures should be discarded or re-ordered can be changed within such a chess
profile. This enables Agent to simulate two different opponents playing against each
other, along with other interesting uses. One important use is their role as genomes
during simulation, which is described more in Section 2.2.

2.1.2 Search
Agent uses, like many chess programs, a search function based on negascout (Reine-
feld, 1983), which in turn uses alpha-beta pruning (improved by Knuth, 1975) to
reduce the search space. Like any algorithm based on minimax, the main idea is to
assume both players always play optimally. Through negascout, the search space is
reduced through an implicit principal variation search (described by Marsland and

8

2.1. CHESS PROGRAM IMPLEMENTATION

Campbell, 1982) and null window searches. To improve the performance of these,
Agent uses heuristics to improve move ordering, of which the chief ordering of prin-
cipal variation nodes is accomplished through iterative deepening (described by de
Groot, 1965). Through the iterative deepening framework, Agent automatically
stops deepening once its time limit is (approximately) exceeded.

While killer heuristics (Akl, 1977) were a priority to implement, Agent con-
spicuously lack them because of time constraints. In place, Agent orders moves
at each search tree node by first checking good captures, then regular moves, and
finally bad captures. Captures are ordered in this fashion through a custom static
exchange evaluation (SEE) (Spracklen, 1978b) implementation which uses a rather
fast and novel approach. This move ordering was found to increase the search speed
significantly.

The SEE implementation is also (traditionally) used in Agent’s quiescence search
(first described by Harris, 1975), which is a reduced "dramatic-moves-only" alpha-
beta search done at the search tree’s leaf nodes to avoid the horizon effect. These
dramatic moves include captures and promotions. Checking moves that evaded
check was planned, but never implemented. Agent uses SEE to order the captures
and also discard bad ones according to a defined profile threshold. This means for
instance that if this profile threshold is set to 0 (default), the quiescence search will
not look at any capture sequences in which it loses more material than it takes. If
this parameter is instead set to -2000 however, net material losses of up to 2000
points (the worth of two pawns) will be considered.

Agent is also conspicuously devoid of transposition table lookups (Warnock and
Wendroff, 1988), despite having functionality implemented to support them (such as
Zobrist hashing, Zobrist, 1969). This is unfortunate because in theory, such tables
dramatically improve search speed, particularly in the endgame. For this project’s
simulations, they were disabled because during testing, they produced odd results
and bad moves while quiescence search was also on. Despite prolonged debugging,
the problem was never found and their usage during search was simply omitted.1
The functionality remains, however, to implement the three-fold repetition rule in
chess, for which the tables work without problems.

2.1.3 Evaluation
The second major module, evaluation (or static evaluation, first described by Shan-
non, 1950) is in some sense the heart of the program and is responsible for statically
(without looking ahead at further moves) evaluating a chess position and returning
a numerical score based on how good the position looks. It observes that chess is a
zero-sum game in that a loss for one side is exactly equal to the gain for the other.
In this instance, this results in positive scores for white, and negative for black.

Almost all of the factors considered during evaluation are also represented in
chess profiles. This enables all such factors to be tuned independently of each

1The most likely explanation we have for the moment is that some form of search instability
appears with the tables.

9

CHAPTER 2. METHODOLOGY

other. They determine how much emphasis the evaluation puts on different aspects
of the position. The following is a comprehensive list of the considered factors:

• Material strength

• Knight outposts, rook outposts

• Connected pawns

• Doubled or tripled pawns

• Principal diagonals for bishops

• Knights in the board’s center

• Castling and removal of opponent’s castling rights

• Value of bishops/knights in open/closed games

• Centralization of the king in the endgame

• Rooks on open files

When Agent evaluates a position each chess piece receives an individual score,
which are then summed up to determine which player the position favors. An
example of how such evaluation functions are implemented is presented below in
Figure 2.2:

A B C D E F G H

1

2

3

4

5

6

7

8

A B C D E F G H

1

2

3

4

5

6

7

8

Figure 2.2. Example position.

Consider the board position and specifically the white knight on E6 as an ex-
ample. First, the knight’s material value is considered. This is set to 3000 in the
default profile (three times as much as a pawn, which is the standard material value
of a knight in chess).

Secondly, the knight is given a bonus based on its proximity to the center of the
board (knights are generally stronger in the center, where they can threaten many

10

2.1. CHESS PROGRAM IMPLEMENTATION

squares at once). This is done by using a precomputed array, which has 64 entries
corresponding to the 64 squares on a chessboard. The entries representing squares
closer to the center contain greater values than those on the edges (see Figure 2.3).
These values are then multiplied by a profile factor (default 9) which corresponds
to the emphasis that profile places on having knights in the center. In the case of
the knight on E6, this calculation becomes 29 × 9 = 261.

Knights Bishops Outposts

Figure 2.3. Visualisation of bonus arrays. Red indicates higher values.

To gain more opportunities for tuning, a common convention in Agent is for
each such precomputed array to be given several versions of itself. For example,
consider the "Knights" array in Figure 2.3. At what rate should the values increase
towards the center? It is tempting to only have, say, a linear growth, but this
leaves fewer opportunities for tuning. Instead, Agent often has several versions of
arrays that grow with different rates. Conventionally, there are six versions for each
array, named after in which manner they grow towards their maximal value: linear,
quadratic, cubic, square root, sigmoid and inverse sigmoid (see figure 2.4). This
allows a profile to have even more opportunities to fine-tune its evaluation.

Figure 2.4. The different "growth" paradigms Agent uses in evaluation. They are
in order linear, quadratic, cubic, square root, sigmoid and inverse sigmoid.

Let us return to the knight on E6. This knight is also an outpost, meaning
it is standing on a square that is protected by one’s own pawns while it cannot

11

CHAPTER 2. METHODOLOGY

be attacked by an opponent’s pawn. This is a tactical advantage, and as such
merits an evaluation bonus. The procedure is much like the previous one, where
the "outposts" array in Figure 2.3 is used instead to emphasize outposts closer to
the enemy. As before, there is also a profile factor which decides what emphasis a
profile places on outposts (default is 10). Hence, similarly, the outpost calculation
becomes 24 × 10 = 240.2

Knights also receive a bonus in closed games because of their ability to jump over
other pieces (meaning they are not as restricted in their movements as other pieces
when the center is crowded). A measure of openness is governed by a "metagame"
variable (described in greater detail in the next section) which is based on the
number of pieces currently in the 6 × 4 center squares on the board as well as the
number of pawns that are locked. The considered position however (Figure 2.2), is
very open and thus warrants no such bonus.

Finally, the evaluation scores are summed up for a total of 3000 + 261 + 240 =
3501 for the white knight on E6, which is the value that Agent will consider it
worth. In contrast, the same calculations for the black knight on A5 (which is not
an outpost and is very restricted by its position at the edge of the board), would
result in the value 3081. The fairly large difference between these two values is a
prime example of how different the evaluation module can consider two pieces to be.
In theory, two knights are equal and should have the same worth, but in practice
one has to take strategical considerations into account.

Another, more complex example of an evaluation function is the way Agent han-
dles pawn structures. This calculation is inherently more complicated than those of
all the individual piece evaluations, since it not only involves several pieces but also
their positions relative to each other. Therefore, the main challenge comprises find-
ing a sufficiently quick and efficient way to compute an accurate bonus or penalty.

A B C D E F G H

1

2

3

4

5

6

7

8

A B C D E F G H

1

2

3

4

5

6

7

8

Figure 2.5. Example pawn structure position.

2The outpost array is, of course, reversed when evaluating black pieces.

12

2.1. CHESS PROGRAM IMPLEMENTATION

The implementation uses the fact that a lot of information is contained in each
sequence of only two rows. If two rows of pawns is represented as a number, with bit
1 for "pawn here" and bit 0 for "pawn not here", then there are 28×2 = 216 = 65536
arrangements.3 These numbers can be treated as indices in a large (65536 indices)
array containing a precomputed structure factor for each arrangement, which can
then be used for evaluating the whole structure.4 Consider the position in Figure
2.5.

Agent would then, for the the position in this figure, evaluate the pawn structure
according to the procedure given in Figure 2.6 below. Each "2-row" receives a bonus
based on how well-structured it is. In this example, the first 2-row receives no
bonus. The second receives a penalty because it looks like an isolated pawn. The
third receives a bonus for having two connected pawns, and the fourth for having
connected pawns (but penalized for having two isolated pawns). The fifth receives
a large penalty for doubled pawns, and the sixth for having a single isolated pawn.

00000000
00000000
00100000
01010000
10000100
00000100
00000000

00000000
00000000

00000000
00100000

00100000
01010000

01010000
10000100

10000100
00000100

00000100
00000000

0

-2

10

1

-10

-2

= -3

Figure 2.6. The procedure by which a pawn structure score can be extracted.

The scores are added up resulting in −2 + 5 + 5 + 5 − 4 − 10 − 2 + 0 = −3 which
is then multiplied by a profile factor (5 by default) resulting in a pawn structure
evaluation for white of −3 × 5 = −15. This is a small number (compared to the
value of a pawn 1000) which means that white’s pawn structure is considered to be
fairly neutral (some connected pawns, but also doubled pawns on an isolated file).

Part of the idea is that the 2-rows overlap, allowing quite a lot of information to
be guessed and extracted like the above illustrates. While the precomputed array
only considers elementary structure factors, it leaves much room for improving the
strategic accuracy of the array. In addition, the calculated 64-bit number can also
be used to simplify other important strategic calculations, such as passed pawns.
This approximation method, coupled with the fact that all of the calculations use
extremely fast bitwise operations, allows for a very efficient overarching evaluation
of the pawn structure.

3Somewhat less actually since there can only be 8 pawns (the highest number would be
1111111100000000 = 65280).

4Agent also uses three such versions for more tuning: unbiased, hates doubled and loves con-
nected.

13

CHAPTER 2. METHODOLOGY

Overall, Agent’s evaluation is comparatively simple but manages computer pro-
cessing power well by being very fast. It was also designed to be easy to expand on,
using established paradigms.

2.1.4 Miscellaneous

Chess programs tend to play poorly in the opening, because humans are very fa-
miliar with what strategies and openings work best. Therefore, an opening book,
which is a data structure containing common opening lines, is often deployed so as
to mitigate this problem. Agent has a custom opening book which includes a 10
megabyte text file containing 180,000 recorded high level chess games to a depth
of 8 moves by each side. Agent also has a function that reads the file and chooses
a suitable move, including somewhat complex rules on how and when to leave the
book. (In short, the program attempts to stay in the book for as long as possible).5
The move is chosen randomly among the available moves but each move is weighted
with its frequency of occurrence in the recorded games.

Each position is also supplied with metagame information, which includes an
estimation of how far progressed the current game is (opening, mid-game, end-
game) and of how open or closed the center of the board is. Since these variables
change slowly during a game, their progress is only approximately updated during
the search. Instead, after each move is made, a more thorough calculation of these
factors are made. These factors are useful not only for evaluation, but changing the
search slightly as a game approaches the end.

2.2 Simulation setup
The different profile parameters which Agent uses in its evaluation of a position are
largely based on guesswork. For instance, how much value should the evaluation
put into castling? Is it worth being down a pawn for that added king safety? Half
a pawn? And what is the relative value of taking away your opponent’s castling
rights?

The tuning of these parameters is a complex optimization problem. As stated
in Chapter 1, it is one this project intended to solve using genetic algorithms. In
this specific case, the base concept is to create a base population of random profiles,
letting them play against each other and then using the top performers as parents
for a new generation of profiles. This way each generation is stronger than the
previous, until finally the algorithm stabilizes (for some time) because a part-way
optimal configuration of the parameters has been reached.

The genetic algorithm is fairly straightforward and is illustrated in Figure 2.7.
The organisms it treats are virtual chess players whose playing style is defined
by a chess profile. Hence, the chess profile acts as the organism’s genome. The
algorithm’s fitness function, then, is simply a simulation of a chess game between

5As a result, the program will always play out all 16 moves if played against itself.

14

2.2. SIMULATION SETUP

two players (which acts as competition between two organisms). This way, better
fitness corresponds to winning more often, which is, of course, the quantity we wish
to maximize - we wish to find the optimal chess player.

...

1. Game
Simulation

2. Scoring

3. Selection

4. Reproduction

...

Figure 2.7. Flowchart illustrating the different phases of the genetic algorithm.

The first step in the algorithm is to create a base population. The base popula-
tion was created using randomization (within certain reasonable bounds) of Agent’s
default profile, creating very diverse profiles. During a simulation cycle, the algo-
rithm first computes "matchups" for the current generation. Each profile (organism)
gets to play against a number of opponent profiles chosen randomly from the same
(or a different population, depending on the simulation mode; see section 2.3.1).
This way, a single game does not decide an organism’s fate.

After matchups have been computed, the algorithm simulates each matchup by
using calls to Agent. The results of each game are collected and each matchup gives
points or penalties to both opponents. This phase is equivalent to evaluating the
fitness of each organism. After scoring each organism based on the results of the
games it played, the organisms are ranked after fitness and only a percentage of the
best are kept. Finally, pairs of these survivors are randomly selected to produce
recombined, possibly mutated offspring, until the population has become as large
as it originally was, resulting in a new generation.

15

CHAPTER 2. METHODOLOGY

2.2.1 Simulating a game

By calling Agent with some command-line options, it simulates a game between two
profiles (or organisms). Specifically, passing a random seed (used for the opening
book and Zobrist hash keys), a maximum memory parameter, a time factor param-
eter and a minimum depth parameter along with values corresponding to the two
profiles to simulate makes Agent simulate a game between these two profiles (the
first profile given plays as white). Importantly, the value of a pawn is always fixed
to 1000, to provide a frame of reference.

The time factor is a number used to determine how long Agent may spend cal-
culating each move. Agent maintains time by using a precomputed array containing
how much time most high-level games tend to be spent on each move versus the
number of moves into the game (see Figure 2.8). This number is then multiplied by
the time factor to get the maximum time allowed for each move. A time factor of
45 ms leads to a game of length usually less than one minute. The minimum depth
is a number to which Agent will always search for the current move, which overrides
any time settings. This is used to make Agent search to a reasonable depth even
when the time factor is small.

3 7 11 15 19 23 27 31 35 39 43 47 51 55
0

2

4

6

8

10

12

14

16

18

Movesuplayed

G
ra

nd
m

as
te

ru
th

in
ki

n
gu

tim
eu

[m
in

u
te

s]

Figure 2.8. An approximation of grandmaster thinking time versus moves played
(reproduced from Hyatt, 1984)

After a simulation is complete, Agent will output four numbers corresponding to
scores given to the involved profiles, along with the entire game in a textual format
(the latter is only of interest for debugging purposes). The scores can then be used
to determine fitness.

16

2.2. SIMULATION SETUP

2.2.2 Scoring & natural selection
Agent returns a number of scores for a simulated game. A win gives more than a
draw, which gives more than a loss. To minimize randomness in the results, the first
two scores are adjusted based on how quickly the game was won/lost (a quick win
for instance would indicate a stronger winning player than a drawn out win after a
long endgame). The two other scores are equivalent to traditional chess scores, but
doubled as to avoid using floating point numbers: 2 points for a win, 1 point for
a draw, and 0 points for a loss. Each profile (or organism) maintains a sum of its
scores to which each individual game result is added.

After all computed matchups and games has been played out, the population is
sorted according to this sum of scores, and a percentage of the worst are eliminated,
leaving the top percentage of profiles as survivors which become parents for the new
generation.

2.2.3 Reproduction & variation
During reproduction, two parents are chosen randomly from among the survivors
for each child. Each child is produced by letting it inherit half of its profile param-
eters from each parent. Which parameter comes from which parent is random, but
the child always gets precisely half from each. The process is repeated until the
population becomes a desired size (usually the size of the previous population).

Finally there is a chance for each parameter to mutate (change randomly). This
is a core mechanism in genetic algorithms, since it maintains diversity in a popu-
lation that could otherwise become too homogeneous to yield any new solutions.
Each child has a chance to mutate: if it does, two events take place with equal
probability. Half of the time, each parameter of the child gets this same chance
to mutate. The other half of the time, only one parameter of the child mutates.
A mutation means that a parameter is changed by a random term, which is never
larger than a certain factor times the parameter’s maximum interval. In addition,
the result never exceeds this maximum interval.

This whole process is repeated until a full new generation has been created, at
which point the the simulation step is repeated, this time with a new (and most
likely stronger) generation.

2.2.4 Distributed computing setup
As mentioned in Chapter 1, evaluating the fitness function of a genetic algorithm
is typically a simulation’s most time-consuming part. The simulation of a chess
game is no different. Naturally, this means pursuing opportunities to parallelize the
simulation process becomes a high priority.

Since much of the simulation process (Section 2.1.1) could be parallelized, a
simulation client was developed in Java that could simulate a chess game on behalf
of a single server (which was also written in Java) that distributes simulation jobs.
It is the server that executes the genetic algorithm described above, but its clients

17

CHAPTER 2. METHODOLOGY

are the ones evaluating the fitness function (simulating the games). These jobs
precisely correspond to the matchups the genetic algorithm computes (see Section
2.2).

The client uses calls to Agent to perform the simulations. By using threads,
multiple calls in parallel are possible. The client includes functionality to update
the Agent program, report simulation results, adjust simulation timing variables
per request as well throttle as the number of cores and memory it may use, along
with other miscellaneous features. Much effort went into properly synchronizing the
code. Communication happens via the TCP/IP protocol. The client totals 4,200
lines of code, and its interface may be seen in Figure 2.9.

Figure 2.9. The interface for the server (left) and client (right) which mutually run
the genetic algorithm.

During the simulation stage, the server distributes calculated matchup jobs to
any clients connected over a network. It also collects statistics and carefully notes
results of its many tasks. Its interface includes controls to adjust some of the
simulation parameters described above. Like the client, much work was put into
properly synchronizing the server’s code, in particular to ensure correctness at all
times. The server totals 3,400 lines of code, and its interface may be seen in Figure
2.9.

2.3 Performing the simulations

Once the simulations were set up, they could be carried out proper. The details are
specified below.

18

2.3. PERFORMING THE SIMULATIONS

2.3.1 Free-for-all and rock-paper-scissors strategies

Two simulation strategies were used. In free-for-all (FFA), the genetic algorithm
described above was run on a single population, and competition was restricted to
taking place inside the population alone.

In rock-paper-scissors (RPS), three (appropriately-named) populations were used.
These were designed in mind to try to specialize each in defeating its neighbour
(hence the name). Points were only awarded for succeeding to defeat a population,
and not for losing; after all, scissors should not learn to defend against rock, but
rather how to defeat paper. The hope was to see if what may be called triangular
specialization would occur.

To help RPS along, a mechanism was designed by which populations could be
"locked," which restricted their development. At the start, for instance, both rock
and scissors were locked. This was thought so that paper could properly specialize
against rock. Next, only rock was locked, so that scissors would specialize against
paper. Finally, none were locked to stabilize the development.

2.3.2 Simulation runs

Excluding debugging cycles, three simulation cycles were run, whereof two were of
type FFA and one was of type RPS.

The first FFA cycle was run with a total population of 102,6 and 90% of profiles
were eliminated before reproduction in each cycle. There were 10 matchups per
profile, meaning that each profile was matched with 10 other profiles (for a grand
total of 1020 matchups to simulate per generation). The mutation chance was
20%, and the mutation range (described above) was ±50%. Each move had a
"minimum depth" of 5 ply, and a time factor of 45. The run was terminated after
124 generations.

The second run was of type RPS with a population of 102, elimination ratio of
90%, 10 matchups per profile, 20% mutation chance and 50% mutation range. Both
rock and scissors were "locked" until generation 20, after which scissors was locked
until generation 40, after which none were locked. The run was terminated after 57
generations.

The third run was of type FFA and was changed so that the fitness was only
dependent on the traditional chess score (that is, unlike the first FFA run, winning
the game faster had no impact on fitness evaluation). It had the same parameters
as the first, except that after 28 generations, the mutation chance was increased
to 60% for about 17 generations, and then further to 80% for 45 generations, then
back to 20%.7 The run also had a slightly different profile setup: in particular, the
maximum intervals were extended and always positive. Finally, because of these new

6This strange number was chosen because it was close to 100 (a reasonable population) as well
as being divisible with 3 and 2, for later running with RPS.

7By taking a somewhat questionable divine role, this was done in hope to resolve what was
seen as an abnormally high queen material value.

19

CHAPTER 2. METHODOLOGY

intervals, the mutation range was also decreased to 35%. The run was terminated
after 108 generations.

2.3.3 Testing the simulation results
To test the end results (that is, the final generations), a modified version of the
server was used to compute matchups for a target versus all generations (approxi-
mately 100 matchups versus random profiles from a generation), and summing up
the scores for an approximate win rate. In order to get the dominant parameters in
a generation, an archetype could be created by taking the most common parame-
ters (the median) for some generation. For the FFA runs, matchups were performed
against all previous generations, as well as matching each generation against spe-
cific pre-designed profiles. These included a "random" profile (one with random
parameters), a "greedy" profile (one that only considers material), and our default
profile.

For the RPS run, instead, the latest rock/paper/scissors populations were matched
against their neighbours in matchups and summed their scores, to see if they had a
strong win rate against their neighbours.

20

Chapter 3

Results

Below follows the results from the testing and from the actual simulations. Recall
that each profile always evaluates pawns as being worth 1000 points, to provide a
frame of reference.

The meaning of the headers of the tables can be inferred by the list of considered
factors in Section 2.1, save for "exchanges", whose use was disabled in each run (so
its value is irrelevant). The values may be compared to Agent’s default profile,
which is presented in Table 3.1. A "greedy" profile was also created, whose material
values match that of the default profile, but which is otherwise 0. (This emulates a
player who only cares about material).

The vertical axis of each diagram (win rate) is actually the sum of scores of all
matchups divided by the highest possible score. This means draws also influence this
rate. The curve which profiles the data points has been "smoothed" using B-spline
interpolation with a data point range of 10.

Knight value Bishop value Rook value Queen value
3000 3200 5000 9000
Knight center Knight growth Has castled Castle penalty
9 linear 700 350
Knight outpost Rook outpost Outpost growth Bishop principals
10 6 linear 7
Bishop growth Rook open file Exchanges Capture threshold
linear 53 14 0
Pawn structure Pawn growth Closed knight Open bishop
5 unbiased 10 10
King center King growth
3 linear

Table 3.1. Parameter values for the default profile.

21

CHAPTER 3. RESULTS

3.1 First FFA run
Table 3.2 presents the parameter values for the archetype of the last (124th) gener-
ation.

Knight value Bishop value Rook value Queen value
3194 3204 5738 10714
Knight center Knight growth Has castled Castle penalty
6 linear 1197 627
Knight outpost Rook outpost Outpost growth Bishop principals
-10 -10 cubic 28
Bishop growth Rook open file Exchanges Capture threshold
quadratic 53 0 -1938
Pawn structure Pawn growth Closed knight Open bishop
5 loves connected -10 -10
King center King growth
15 quadratic

Table 3.2. Parameter values for the archetype of generation 124 for the first FFA
run.

The performance of this archetype versus previous generations is shown in Figure
3.1. This win rate was based on 100 matchups. Similarly, shown in Figure 3.2, 3.3
and 3.4 are the win rates versus the greedy profile, Agent’s default profile, and a
random profile.

3 7 15 23 31 39 47 55 63 71 79 87 95 103 111 1190

10

20

30

40

50

60

70

80

90

100

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.1. The win rate, based on 100 matchups, of the 124th generation versus
earlier generations.

22

3.1. FIRST FFA RUN

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 1230

10

20

30

40

50

60

70

80

90

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.2. The win rate, based on 50 matchups, of the greedy profile versus all
generations.

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123
0

20

40

60

80

100

Against generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.3. The win rate, based on 80 matchups, of the default profile versus all
generations.

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 1230

5

10

15

20

25

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.4. The win rate, based on 40 matchups, of a randomized profile versus all
generations.

23

CHAPTER 3. RESULTS

Finally, the archetype’s performance versus the default profile in 1000 matchups
was measured to 49%.

3.2 RPS run
Tables 3.4, 3.5 and 3.6 present the parameter values for the archetypes of "rock", "pa-
per" and "scissors" respectively of the last (57th) generation. After these archetypes
were computed, they were run against their respective neighbors in 100 matchups
each. The results are presented in Table 3.3.

Matchup Win rate
rock vs. scissors 54%
scissors vs. paper 47%
paper vs. rock 43%

Table 3.3. Win rates for rock-paper-scissors matchups.

Knight value Bishop value Rook value Queen value
3599 4508 5686 11501
Knight center Knight growth Has castled Castle penalty
0 linear 789 350
Knight outpost Rook outpost Outpost growth Bishop principals
189 0 square root 28
Bishop growth Rook open file Exchanges Capture threshold
square root 53 372 -1938
Pawn structure Pawn growth Closed knight Open bishop
0 unbiased 366 0
King center King growth
11 linear

Table 3.4. Parameter values for the "rock" archetype of generation 57.

24

3.2. RPS RUN

Knight value Bishop value Rook value Queen value
1861 3200 5148 10144
Knight center Knight growth Has castled Castle penalty
6 quadratic 2219 350
Knight outpost Rook outpost Outpost growth Bishop principals
73 0 square root 0
Bishop growth Rook open file Exchanges Capture threshold
linear 53 222 -1013
Pawn structure Pawn growth Closed knight Open bishop
0 loves connected 0 0
King center King growth
11 linear

Table 3.5. Parameter values for the "scissors" archetype of generation 57.

Knight value Bishop value Rook value Queen value
2208 4194 6165 11236
Knight center Knight growth Has castled Castle penalty
39 linear 337 0
Knight outpost Rook outpost Outpost growth Bishop principals
37 0 square root 3
Bishop growth Rook open file Exchanges Capture threshold
square root 212 0 -1938
Pawn structure Pawn growth Closed knight Open bishop
5 hates doubled 0 10
King center King growth
15 sigmoid

Table 3.6. Parameter values for the "paper" archetype of generation 57.

25

CHAPTER 3. RESULTS

3.3 Second FFA run

Table 3.7 presents the parameter values for the archetype of the last (108th) gener-
ation.

Knight value Bishop value Rook value Queen value
3578 4015 6617 18197
Knight center Knight growth Has castled Castle penalty
9 cubic 832 0
Knight outpost Rook outpost Outpost growth Bishop principals
10 0 linear 7
Bishop growth Rook open file Exchanges Capture threshold
linear 48 0 -1738
Pawn structure Pawn growth Closed knight Open bishop
0 loves connected 0 0
King center King growth
10 quadratic

Table 3.7. Parameter values for the archetype of generation 108 for the second FFA
run.

The performance of this archetype versus previous generations is shown in Figure
3.5. This win rate was based on 100 matchups. Similarly, shown in Figure 3.6, 3.7
and 3.8 are the win rates versus the greedy profile, Agent’s default profile, and a
random profile.

1200 20 40 60 80 1000

20

40

60

80

100

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.5. The win rate, based on 100 matchups, of the 108th generation versus
earlier generations.

26

3.3. SECOND FFA RUN

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99103107
0

10

20

30

40

50

60

70

80

90

100

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.6. The win rate, based on 50 matchups, of the greedy profile versus all
generations.

3 11 19 27 35 43 51 59 67 75 83 91 99 1070

20

40

60

80

100

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.7. The win rate, based on 80 matchups, of the default profile versus all
generations.

3 11 19 27 35 43 51 59 63 75 83 91 99 107
0

5

10

15

20

25

30

35

40

45

Against Generation

W
in

 P
er

ce
nt

ag
e

%

Figure 3.8. The win rate, based on 40 matchups, of a randomized profile versus all
generations.

Finally, the archetype’s performance versus the default profile in 1000 matchups
was measured to 52%.

27

CHAPTER 3. RESULTS

3.4 Statistics
In total, there were approximately 450,000 games played by the clients, for both
simulation and testing purposes. The simulation time (with parallelization con-
sidered) amounted to 323 days. Representing all these chess games in plain text
requires approximately 400 MB of memory.

28

Chapter 4

Discussion

This chapter presents an analysis of the results. They can be analyzed in respect
to the feasibility of genetic algorithms, and the game of chess in general.

4.1 Analysis

The most accessible trend of all considered diagrams is that the win rate rapidly
drops in the first few generations. Most considered archetypes enjoy a 90%+ win
rate against the first, mostly random generation, but this quickly changes. Each
considered archetype (latest, greedy, etc) starts becoming less and less effective
as the program learns and evolves. This clearly indicates that learning is taking
place, and quite rapidly so, as the program becomes more difficult to defeat. In
addition, no archetype manages to win more than 50% of the time against the
latest generation with any reasonable statistical significance. This evidence clearly
supports this paper’s thesis.

The rate at which the program adopts reasonable parameters (that is, param-
eters that guarantee approximately 50% wins) was much greater than expected.
In all cases, within the first 15-20 generations, the program is already reasonably
strong. This decline is gradual, as well, just as evolution is in nature: it can be
clearly seen that this change does not happen immediately.

All tests of the second FFA generation also show a curious "notch" at generation
90, along with a seemingly strange decrease of program strength in the middle
generations. The reason behind these will be analyzed and explained in Section
4.1.2.

It is also clear, however, judging from both the appearance of each generation,
and the win rate of the diagrams in the first FFA run, that this learning process
stagnates quickly. This is likely because the algorithm has found a local maximum:
a point where most simple mutations and recombinations seem to generate less fit
offspring. There may be a global maximum, the most fit version of Agent, but finding
it from a local maximum may be very difficult. This maximum makes the population
settle, and the time until a superior recombination or mutation comes along may

29

CHAPTER 4. DISCUSSION

be very long. This process is also seen in nature when large-scale environmental
changes are seldom.

It must be emphasized, however, that genetic algorithms are much more limited
than the processes that happen in nature, restricting us from speaking too much of
any likenesses. In particular, nature is much more complex, and even the simplest
organism’s genome is much more complicated than our simple chess profiles, for
instance.

4.1.1 Parameter analysis

Overall, both FFA runs yielded material values that are close to the expected,
traditional values. The first FFA run, in particular, differed from the traditional
values by only 6%, 7%, 15% and 19% for knight, bishop, rook and queen respectively.

One of the most surprising results is the pervasive choice of a rather large neg-
ative value for discarding captures, which all populations ended up with. For ex-
ample, the first FFA run yielded an archetype which discards captures worse than
losing approximately two pawns. This effectively means that the genetic algorithm
has decided that programs which sacrifice some search depth by also considering
losing captures in the quiescence search (and a changed ordering during normal
search) are more fit, and hence better.

This is a profound statement. It means the program has taught itself that
reasonable sacrifices in chess can be very important to consider, even at the leaf
nodes during quiescence search. Indeed, in most cases in chess, a sacrifice of up to a
minor piece can be very sound if it gains the player an advantage otherwise, which
Agent seems to have learned.

Other notable factors include a much heavier emphasis on having a centralized
king in the endgame, performing castling, and on having bishops on the principal
diagonals than was expected. The first is particularly interesting, as it can probably
be attributed to the tendency towards having drawn-out endgames. In addition,
the material value of the queen was very emphasized, especially in the second FFA
run. More generally, both runs had high emphasis on non-pawn pieces, which can
probably be attributed to Agent’s comparatively weak understanding of pawns. In
particular, with no "passed pawn" bonus, this emphasis does not come across as
surprising.

Something particularly notable in both runs, but in particular the first, was the
appearance of very low, even negative, scores on certain strategic elements, such
as open-game bishops and outposts, which is unfortunate. This may indicate a
limitation of genetic algorithms, as such strategic elements are quite subtle, unlike
material and mobility.

4.1.2 Performance analysis

While the program evidently improved itself against all its considered opponents,
the performance differences are of considerable interest. In particular, while the

30

4.1. ANALYSIS

greedy profile started out by winning over 90% of games, it quickly lost ground to
the improving program, ending up winning only 20-25% of games. This means that
the evolved versions of FFA had a much better grasp of chess than a simple greedy
version. In particular, this proves that an overly simple theoretically deduced profile
cannot hope to compete with a profile that has had the chance to evolve.

The results against the random profile, however, do not come across as sur-
prising. While showing some ability against the first generation or so, the random
profile very, very quickly degrades to winning almost 0% of the time. In fact, the
only time it wins or draws later is likely against mutated opponents in generations.
It is neither very surprising that the latest generation is stronger, or at least as
strong, as previous generations, as this is what the theory behind genetic algo-
rithms predicts; a progressive refinement. This serves as further evidence to our
thesis as it indicates a progressively stronger program.

However, the results of the RPS run are disappointing. With win rates that are
no different from 50% with any statistical significance, there appears to have been
no triangular specialization, despite very varied final populations for "rock", "paper"
and "scissors". While these results do not prove there is little room for triangular
specialization in chess, they do show that there may be difficulties in constructing
a learning mechanism by which they can be found.

Of considerable interest is the sudden increase in program strength at generation
90 of the second FFA run, as well as the decreasing strength in the middle. The
explanation, however, is likely simple. At generation 28, the mutation chance was
increased significantly, and even further at generation 45. This probably causes the
poor middle performance, as the profiles are more likely to be matched versus a
mutated profile in the generation, increasing their chance of victory. At generation
90, when the mutation is reset to 20%, the profile immediately strengthens.

This deviation indicates a very important point to consider in the results. Be-
cause approximately 20% of each generation is mutated in both FFA runs, the
archetypal, fixed profiles run against them automatically have an advantage over
many such mutated profiles. This means the results are biased in the archetype’s fa-
vor, meaning that each generation’s strength appears lower than it really is. The al-
ternative approach, however, which would be to calculate a single archetype of each
generation, is more problematic, because it introduces artificial strength through
the law of large numbers. That is, a collective archetype1 of some generation will
very likely be stronger or at least as strong as any single profile in the same gen-
eration. Hence, this bias is important to consider in all results, especially the ones
where the opponent is our default profile.

Considering this bias when looking at the results versus our default profile is
important. In both FFA runs, the diagrams indicate an approximate 50% win
chance against the default profile (or slightly higher in the case of the second FFA
run). While this seems to indicate that the evolved program is only equal in strength

1As before, taking the median of each parameter across the population to create a collective
archetype (as opposed to choosing a random profile from the population)

31

CHAPTER 4. DISCUSSION

to the default profile, the aforementioned bias must be considered as it may influence
this result. However, the tests in which 1000 specific matchups were performed of
the individual archetypes versus the default profile indicate that the strength is
approximately equal. In any case, the evolved programs are at least as effective
as our default profile, and perhaps better, indicating that genetic algorithms are a
very feasible choice of optimization algorithm, even for a game such as chess.

4.2 Error & stability analysis
The outcome of a single game of chess is usually a poor indicator of the players’
individual strengths. Hence, a sum of averages is required to attain any useful
information, which leads to errors. These errors are no different in this case. The
standard deviation, defined as

sN =
√

1
N

∑
i=1

N(xi − x̄)2

can be used as an estimate of data precision. In this case, for the settled data
points of the first FFA run, the standard deviation was calculated to

sN = 7, 22%

where % indicates procentual units. This means that one can only really speak
of statistical significance of approximately 7 procentual units. In other words, a win
rate of 43% may not be statistically different to a win rate of 50%. This deviation,
however, is still quite low, and it does not influence any ability to make a qualitative
statement of strengths particularly much.

4.3 Conclusions
This paper conclusively proves that genetic algorithms are very well suited to com-
plex problems such as playing chess. While evaluating a suitable fitness function for
chess is particularly computationally intensive, it is still a feasible way to improve a
program’s playing strength. This paper also proves that genetic algorithms help to
highlight potential implementation considerations, as it did in this case by showing
that a low capture threshold leads to better play than a high one.

Some problems with genetic algorithms are also highlighted in this paper. In
particular, many genetic algorithms which can be feasibly run with much bigger
populations and for much longer, can be used to capitalize on speciation phenomena.
This phenomena does not really appear in this application, as the population settles
relatively early. Hence, not all applications can enjoy certain benefits of genetic
algorithms, because of time and computation limitations.

Finally, we turn back to the question of machine learning. Sadly, the results of
this paper are not exempt from the AI effect, which occurs when a problem has been

32

4.3. CONCLUSIONS

solved by an artificial intelligence whereupon many onlookers discount the AI with
statements such as "that’s just computation". In addition, genetic algorithms do
not exactly replicate any known processes in the human brain. This paper, however,
tries to resolutely oppose this view. Without any significant human intervention,
the program, when viewed from a perspective ignorant of its workings, must be
said to have learned. While clearly not the best chess program available, Agent has
certainly improved itself and acquired its skills in a fashion that is hard for even
humans to fully grasp.

33

Appendix A

Access to Agent & surrounding software

Details for accessing and downloading Agent and surrounding content is given below.

A.1 Agent program for Windows
An executable version of Agent for Windows, which can be run to play against
different profiles of Agent can be downloaded at: http://host-a.net/u/Schreib/
agent.zip. This version has been slightly improved over the one used in this
paper, in that Agent now also recognizes a penalty for early queen development,
and a bonus for passed pawns. The file "openingbook.obf" must be placed in the
same directory as "chessagent.exe".

A.2 Agent source code
The C source code for the version of Agent given in Section A.1 can be downloaded
at: http://host-a.net/u/Schreib/Chess_Dev_VI.zip

A.3 Simulation client
The simulation client for performing simulations on behalf of a server may be
downloaded at: http://host-a.net/u/Schreib/acsclient.jar. This download
includes the Java source files inside the .jar file as well as being independently
runnable.

A.4 Simulation server
The basic simulation server for running our genetic algorithms may be downloaded
at: http://host-a.net/u/Schreib/acsserver.zip. This download includes the
Java source files inside the .jar file as well as being independently runnable. Basic
generation files are also included.

35

http://host-a.net/u/Schreib/agent.zip
http://host-a.net/u/Schreib/agent.zip
http://host-a.net/u/Schreib/Chess_Dev_VI.zip
http://host-a.net/u/Schreib/acsclient.jar
http://host-a.net/u/Schreib/acsserver.zip

Appendix B

Acknowledgements

We would like to thank our supervisor Johan Boye for his guidance through this
project. We would also like to thank everyone who helped us simulate, without
which this project would not have been possible. Statistics from the genetic al-
gorithm runs are presented in Table B.1 excluding the authors’ runs. Finally, we
would like to thank our friends and family for their encouragement and support.

Simulator Games simulated
Ludvig Bramstång 50,025
Calle Svensson 33,211
CSC computers 24,157
Allan Mossiaguine 10,377
Johannes Wennberg 5,233
Ramona Mayer 2,730
Niclas Höglund 912

Table B.1. Table of simulation partners and the number of games simulated by each
during the genetic algorithm runs.

37

Bibliography

[1] Adelson-Velsky, G. M., Arlazarov, V. L., Bitman A.R., Zhivotovsky, A.A and
Uskov, A. V, 1970. Programming a computer to play chess. Russian Mathemat-
ical Surveys, 25(2).

[2] Akl, S. Newborn, M., 1977. The Principal Continuation and the Killer Heuristic.
ACM Annual Conference Proceedings, pp. 466-473. ACM, Seattle, WA.

[3] Fogel, D. B., Hays T. J., Hahn, S.L. and Quon, J, 2004. A self-learning
evolutionary chess program. Proceedings of the IEEE, 32(12), [online] Avail-
able at: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
72.4267>

[4] Fraser, A. and Burnell, D., 1970. Computer Models in Genetics, New York:
McGraw-Hill.

[5] de Groot, A., 1965. Thought and Choice in Chess. Mouton & Co Publishers,
The Hague, The Netherlands. Second edition 1978.

[6] Harris, L., 1975. The Heuristic Search And The Game Of Chess - A Study
Of Quiescence, Sacrifices, And Plan Oriented Play. IJCAI Tbilisi, Georgia, pp.
334-339.

[7] Hyatt, R. M., 1984. Using time wisely. ICCA Journal, 7(1).

[8] Hyatt, R. M. and Cozzie, A. E., 2005. The effect of hash signature collisions in
a chess program. Journal of The International Computer Games Association,
28(3), pp. 131-139, [online] Available at: <http://www.cis.uab.edu/info/
faculty/hyatt/collisions.html>

[9] Knuth, D. E. and Moore, R. W., 1975. An Analysis of Alpha-Beta Pruning.
Artificial Intelligence, 6(4), pp. 293-326.

[10] Lefler, M. et al. Chess Programming Wiki. [online] Available at: <http://
chessprogramming.wikispaces.com/>

[11] Marsland, T. and Campbell, M., 1982. Parallel Search of Strongly Ordered
Game Trees. ACM Computer Survey, 14(4), pp. 533-551, [online] Available at:
<http://webdocs.cs.ualberta.ca/~tony/OldPapers/strong.pdf>

39

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.4267
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.4267
http://www.cis.uab.edu/info/faculty/hyatt/collisions.html
http://www.cis.uab.edu/info/faculty/hyatt/collisions.html
http://chessprogramming.wikispaces.com/
http://chessprogramming.wikispaces.com/
http://webdocs.cs.ualberta.ca/~tony/OldPapers/strong.pdf

BIBLIOGRAPHY

[12] Pollock, N. Norm’s chess downloads. [online] Available at: <http://www.
hoflink.com/~npollock/chess.html> last updated 13th of April,

[13] Reinefeld, A., 1983. An improvement to the Scout tree search algorithm.
ICCA Journal, 6(4), [online] Available at: http://www.top-5000.nl/ps/An%
20improvement%20to%20the%20scout%20tree%20search%20algorithm.pdf

[14] Shannon, C., 1950. Programming a Computer for Playing Chess. Philosophical
Magazine 41(314).

[15] Spracklen, D. and K., 1978a. First steps in Computer Chess Programming. Byte
Publications Inc, [online] Available at: <http://archive.computerhistory.
org/projects/chess/related_materials/text/4-4.First_Steps.Byte_
Magazine/First_Steps_in_Computer_Chess_Programing.Spracklen-Dan_
Kathe.Byte_Magazine.Oct-1978.062303035.sm.pdf>

[16] Spracklen, D. and K., 1978b. An Exchange Evaluator for Computer Chess.
Byte Publications Inc, 3(11).

[17] Warnock, T. and Wendroff, B., 1988. Search tables in computer chess. ICCA
Journal, 11(1), pp. 10-13.

[18] Zobrist, A. L., 1969. A new hashing method with application for game playing.
Technical Report 88, Computer Sciences Department, University of Wisconsin,
Madison, Wisconsin, [online] Available at: <http://research.cs.wisc.edu/
techreports/1970/TR88.pdf>

40

http://www.hoflink.com/~npollock/chess.html
http://www.hoflink.com/~npollock/chess.html
http://www.top-5000.nl/ps/An%20improvement%20to%20the%20scout%20tree%20search%20algorithm.pdf
http://www.top-5000.nl/ps/An%20improvement%20to%20the%20scout%20tree%20search%20algorithm.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/4-4.First_Steps.Byte_Magazine/First_Steps_in_Computer_Chess_Programing.Spracklen-Dan_Kathe.Byte_Magazine.Oct-1978.062303035.sm.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/4-4.First_Steps.Byte_Magazine/First_Steps_in_Computer_Chess_Programing.Spracklen-Dan_Kathe.Byte_Magazine.Oct-1978.062303035.sm.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/4-4.First_Steps.Byte_Magazine/First_Steps_in_Computer_Chess_Programing.Spracklen-Dan_Kathe.Byte_Magazine.Oct-1978.062303035.sm.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/4-4.First_Steps.Byte_Magazine/First_Steps_in_Computer_Chess_Programing.Spracklen-Dan_Kathe.Byte_Magazine.Oct-1978.062303035.sm.pdf
http://research.cs.wisc.edu/techreports/1970/TR88.pdf
http://research.cs.wisc.edu/techreports/1970/TR88.pdf

Glossary

AI effect an effect that occurs when a problem has been solved by an artificial
intelligence, whereupon many onlookers discount the AI arguing it is not really
thinking

alpha-beta pruning a pruning technique applied to minimax searches to vastly
decrease the needed search space by stopping the search of a position when it
can be proved that a player would not put herself in the position because a
better alternative exists elsewhere in the game tree

archetype a chess profile that represents some population as a whole; computed
by taking the median of each set of parameters

bitboard a type of data structure representing a 64-square game position in which
64-bit numbers record different types of states for each square on the board

evaluation see static evaluation

evolutionary programming a set of programming paradigms that try to imitate
evolutionary processes in nature

FFA see free-for-all

fitness function a core component in genetic algorithms; a function which deter-
mines the fitness of an individual in a population

free-for-all a genetic algorithm simulation strategy in which a single population
is used and competition is restricted to happening inside it

genome a string of data representing the genetic coding for an individual

horizon effect a phenomenon in which a game playing program selects suboptimal
moves because it cannot see crucial events past its search depth horizon

iterative deepening a search strategy in which the planned search depth is suc-
cessively incremented; used to speed up an alpha-beta pruned search using
move ordering

41

Glossary

killer heuristics a type of move ordering in which moves that caused an alpha-
beta pruned search to stop searching early in some other section of the game
tree are tried first; the expectation is that they too will cause the search to
stop earlier at the current position

law of large numbers a mathematical predication stating that the average value
of some data set goes to its expected value as the data set grows in size

mailbox a type of data structure representing a game position in which each square
on the game position board is mapped to the piece standing on it

minimax a recursive algorithm for finding the best move in a game; its basic
assumption is that both players play optimally in each position

move generation a component of a game playing program responsible for gener-
ating all legal moves from a given position

move ordering an attempt to speed up an alpha-beta pruned search by searching
the expected best moves first

natural selection a core component in the theory of evolution; a process in which
only well-performing individuals are selected to survive in some context

negascout a minimax search with an improved alpha-beta pruning technique; it
enables more pruning by searching supposed bad moves with the sole intent
of proving they are worse than a given move

null window search a selective minimax search of moves not expected to be
played; searched with the intent of proving this

opening book a precomputed source of moves game playing programs use during
the opening of a game; used since such programs often play poorly in the
opening

ply one half-move; for example, searching to a depth of 6 plies means looking
forward 3 full moves (both players have made 3 moves)

principal variation search an exhaustive minimax search of the expected line of
play for both players

quiescence search a reduced minimax search done at the deepest part of the
search to mitigate the horizon effect; used to ensure the search stops in a
quiet position

reproduction with variation a core component in the theory of evolution; a pro-
cess in which individuals produce offspring with possibly varied characteristics

42

Glossary

rock-paper-scissors a genetic algorithm simulation strategy in which three pop-
ulations compete in order to achieve triangular specialization

RPS see rock-paper-scissors

search heuristic a method to search some structure by using educated guesses,
rule of thumbs, etc.

SEE see static exchange evaluation

static evaluation a central strategy or algorithm of a game playing program which
tries to estimate how much some player is ahead in some game position without
considering moves ahead

static exchange evaluation an algorithm for determining the gain for the opti-
mal sequence of capturing moves on a selected square

transposition tables data structures used to save the search scores of positions
so that they can be used if the position occurs in a different section of the
game tree

triangular specialization a situation in which three players are adept at defeat-
ing exactly one other player and poor at defeating exactly one other player

Turing Test a classical intelligence test conceived by famous computer scientist
Alan Turing in which a machine may pass this test if it, by holding a text
conversation with a human, cannot be distinguished from a second human
doing the same

Zobrist hashing a method to compute a hash value of a game position by only
considering the changes between two positions; named after Albert Zobrist

43

	Introduction
	Problem description
	Genetic algorithms
	Background of chess programs

	Methodology
	Chess program implementation
	Chess profiles
	Search
	Evaluation
	Miscellaneous

	Simulation setup
	Simulating a game
	Scoring & natural selection
	Reproduction & variation
	Distributed computing setup

	Performing the simulations
	Free-for-all and rock-paper-scissors strategies
	Simulation runs
	Testing the simulation results

	Results
	First FFA run
	RPS run
	Second FFA run
	Statistics

	Discussion
	Analysis
	Parameter analysis
	Performance analysis

	Error & stability analysis
	Conclusions

	Appendices
	Access to Agent & surrounding software
	Agent program for Windows
	Agent source code
	Simulation client
	Simulation server

	Acknowledgements
	Bibliography
	Glossary

