
This degree project was performed with Inteno Broadband Technology
Inteno contact: Strhuan Blomquist

Configuration and device identification on network
gateways

Konfiguration och enhetsidentifiering på nätverksgateways

SIMON KERS

Bachelor of Science in Engineering
15 ECTS Credits

Supervisor: Micael Lundvall
Examiner: Ibrahim Orhan

TRITA-STH 2013:22

KTH Royal Institute of Technology
School of Technology and Health

SE-136 40 Handen, Sweden
http://www.kth.se/sth

Abstract
To set up port forwarding rules on network gateways, certain technical skills are required
from end-users. These assumptions in the gateway software stack, can lead to an increase
in support calls to network operators and resellers of customer premises equipment. The
user interface itself is also an important part of the product and a complicated interface
will contribute to a lessened user experience. Other issues with an overwhelming user
interface include the risk of faulty configuration by the user, potentially leaving the network
vulnerable to attacks.

We present an enhancement of the current port forwarding configuration in the gateway
software, with an extensible library of presets along with usability improvements. To help
users with detecting available services, a wrapper for a network scanner is implemented, for
detecting devices and services on the local network. These parts combined relieves end-users
of looking up forwarding rules for ports and protocols to configure their gateway, basing
their decisions on data collected by the network scanner or by using an applications name
instead of looking up its ports. Another usability improvement is an internal DNS service,
which enables access to the gateway interface through a human-memorable domain name,
instead of using the LAN IP address.

Using the Nmap utility for identifying services on the network, could be considered
harmful activity by network admins and intrusion detection systems. The preset library
is extensible and generic enough to be included in the default software suite shipping with
the network equipment. Working within the unified configuration system of OpenWrt, the
preset design will add value and allow resellers to easily customize it to their services. This
proposal could reduce support costs for the service operators and improve user experience
in configuring network gateways.

i

Referat
Konfiguration och enhetsidentifiering på nätverksgateways

Vid portmappning i nätverksgateways krävs det vissa tekniska förkunskaper av användaren.
Höga krav på kunskapsnivå kan leda till ett ökat antal supportsamtal för återförsäljare
och nätverksoperatörer. Användargränssnittet i sig är också en viktig del i produkten och
ett komplicerat gränssnitt bidrar till försämrad användarupplevelse. Övriga problem med
komplicerade användargränssnitt är risken för felaktig konfiguration, vilket kan försämra
IT-säkerheten på nätverket.

En förändring av nuvarande inställningar för portmappning presenteras, tillsammans
med ett utbyggbart bibliotek med förinställda regler, samt generella förbättringar av an-
vändargränssnittet. Ytterligare förbättringar av användarvänligheten sker i form av nä-
tadressöversättning, som möjliggör åtkomst till nätverksgateway via domännamn som är
enklare att minnas än IP adressens siffror. För att hjälpa användare med identifikation
av enheter och att göra rätt inställningar, utvecklas en wrapper för en portskanner, som
automatiskt kan identifiera enheter och nättjänster på det lokala nätverket. Tillsammans
underlättar dessa delar för slutanvändaren, befriar den från att referera till regler för portar
och protokoll och möjliggör inställningar enbart genom att använda portskanning eller välja
namnet på önskad tjänst från en lista.

Användandet av verktyget Nmap för att identifiera nättjänster på nätverket kan komma
att betraktas som dataintrång av nätverksadministratörer och intrångdetekteringssystem.
Konfigurationsfilerna med förinställningar är utbyggbar, fungerar och passar in tillräck-
ligt bra för att levereras med standardmjukvaran. Via det centraliserade konfigurationssys-
temet i OpenWrt, kommer utformningen av systemet med förinställningar för portmappning
möjliggöra för komplementering av återförsäljare, för att innefatta deras respektive nät-
tjänster och enheter som kräver vidarebefodring av särskilda portar. Systemet kan minska
supportkostnader för bredbandsleverantörer och bidra till en förbättrad användarupplevelse
vid konfiguration av nätverksgateways.

ii

Acknowledgements
A special thanks to Strhuan Blomquist of Inteno for teaching me how to walk like a hacker,
instead of just talking like one. I would like to express my gratitude to Şükrü Şenli of Inteno,
for helping me grok LuCI and perform Lua sorcery.

I’m grateful for the support of my supervisor Micael Lundvall, being an overall great
guy and providing insightful comments on my work. Thanks to my examiner Ibrahim Orhan
for giving great feedback, for making me focus on the task at hand and helping me with the
disposition.

Finally I would like to thank everyone involved in free and open-source software for
inspiring me to learn programming and teaching me best coding practices.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals . 1
1.3 Delimitations . 2
1.4 Solutions . 2

2 Current situation 3

3 Research 5
3.1 Design and layout . 5
3.2 Measuring improvements . 5
3.3 Alternative using a locally run application . 6
3.4 Programming languages . 6

3.4.1 Lua . 6
3.4.2 Almquist shell . 6
3.4.3 JavaScript . 7

3.5 Software suite . 7
3.5.1 OpenWrt . 7
3.5.2 OPKG . 7
3.5.3 Inteno Open Platform System . 8
3.5.4 Lua Configuration Interface . 8
3.5.5 Dnsmasq . 8

4 Implementation 9
4.1 Usability . 10

4.1.1 Current firewall tab . 10
4.1.2 Guided firewall tab . 10

4.2 User interface . 10
4.3 Nmap . 12

4.3.1 Wrapper . 12
4.4 Preset library . 13
4.5 Internal DNS . 13

5 Results 15
5.1 Operating system scan . 15
5.2 Version scan . 16
5.3 Linux server . 17

6 Conclusions 19
6.1 Further development . 19

iv

Appendices 20

A Configuration files 21

B Programming and shell scripting 23

Bibliography 25

v

Chapter 1

Introduction

1.1 Background
There are simple ways in which to improve the user experience, add value to the product and put less
stress on the end-users. We want to prototype a port forwarding wizard that is designed for being
usable and safe. Developers of network gateway software often implement a set of presets of port
forwarding rules for common applications, there is no reason to stop there.

Working from the theory that a good user experience lies in the details, iterative improvements
of the system is the way to address this. This project contributes to the ongoing work of improving
details of user experience, strengthening the product and saving costs for support departments. The
project aspires to contribute to the continuous development of the OpenWrt ecosystem and aid users
in configuring their gateways.

1.2 Goals
Simplifying configuration by abstracting common tasks for the end-user aims to relieve customers and
technical support staff. Using automatic device identification and automating common tasks such as
port forwarding, will result in savings in support along with a better user experience. This project will
investigate the simplification of usability when configuring port forwarding and evaluate the changes.
Many common support issues could be automated by the software running on the customer premises
equipment (CPE). By effective communication with the end-user through the user interface, these
improvements would also aid first-line support when guiding the customer over phone. In order to
even begin configuring the device, the correct IP address to the CPE has to be typed in the web
browsers address bar. A wrapper script which helps with automatic DNS translation from a domain
name to its LAN IP address will be developed. The project goals can be summarized as:

• Preset library of port forwarding rules

• Automatic detection of services on the local network devices

• Evaluate usability

• Internal DNS translation of the gateway IP address

1

CHAPTER 1. INTRODUCTION

1.3 Delimitations
The main purpose of this degree project is to achieve a more user friendly operation by adding
automatic service discovery on the local network within the OpenWrt system. It is assumed that
operation of the device is user-friendlier, when the end-user receive helpful hints and a more interactive
workflow in the configuration process. The internal DNS translation for reaching the front-end of the
CPE through an internal domain name, does not account for various browser implementations of the
address bar, which could sometimes interpret a domain address as a search query. The internal DNS
translation system will operate independently from the rest of the project, it will not be dependant
on either the preset library or the service detection.

Evaluation of usability is meant to be of a more qualitative type and focuses on reason rather than
test groups. Measuring actual effects on support costs is out of the scope of this degree project.

1.4 Solutions
By building a library of presets for common port forwarding rules and developing a simple selection
dialog, the end user can more efficiently set up port their firewall redirection rules and general con-
figuration of their gateway. A limited range of settings and automatic portforwarding settings are
presented to the user.

For the system of service identification, a wrapper around a port scanner is implemented, which
performs a scan of the network nodes and returns a list of available services. This information is in turn
used to match against the known presets and protocols, and offers the user a choice of applying the
preset rules for the newly detected network device. The preset system is extensible, allowing retailers
to add their own devices and services as preset definitions, each with their specific forwarding rules.

DNS translation of the gateway IP address, allows easy access through the web browser by simply
entering a domain name in the address bar, which should be easier for users than remembering or
figuring out its IP. This works by translating the gateways internal IP address to a domain name and
keeping it up to date whenever the IP is changed.

These parts will be developed in an iterative process with support and suggestions from the
company throughout the project.

2

Chapter 2

Current situation

Inteno Broadband Technology is a company that supplies customer premises equipment for internet
service providers. Their headquarters and research and development center is located in Stockholm,
Sweden. Inteno Open Systems Platform, or iopsys, is a Linux-based open source platform running
on their CPE. It is based on the OpenWrt distribution which targets embedded devices, specifically
network gateways.[3]

The research and development department at Inteno works on improving the platform, adding
value to the end users, the operators and the larger OpenWrt software ecosystem. By the nature
of OpenWrt’s free software licence[4], the code is publicly released and available for download from
Intenos webpage.[2]

The resellers of Inteno gateways are mainly internet service providers, who then deploy the CPE
among end users. Connectivity of the XBox 360 gaming console has been chosen as the reference unit
to do tests and verifications against. Based on previous information from technical support of service
providers, one of the most commonly reported issues of end users, is setting up port forwarding for
connecting their XBox 360 to the XBox Live network.

3

Chapter 3

Research

End users of Inteno CPE have expressed concern about the relative difficulty of port forwarding and
configuration of their network gateway. The default settings page for port forwarding is currently
located under the Firewall tab in the OpenWrt front end, the forwarding procedure involves looking
up ports for the specific device or unit, and entering these on the web page forms.

These set of rules sometimes involve several ports and over different protocols, increasing the
possibility for misstep and faulty configuration by the end user. If these complexities could be reduces
and presented in a way that is easily understandable, then user satisfaction would increase. Such
tasks could be well suited for automation by software, especially for applications and devices which
require several port forwarding rules, automating some of these steps will save time and bring overall
value to the user experience.

Currently the interaction with the web interface requires the user to enter the gateways IP address
in the web browsers address bar. This potential barrier to access the web interface could be lowered
by using DNS address-to-name mapping, locally on the internal network, just like how DNS works on
the global internet.

3.1 Design and layout
The user interface of a product, including graphical and ergonomic design, is an important part of the
brand and ease of use of products. Inaccessible interfaces to electronic devices and its software, can
cause irritations with the product and leave the user with a sense of hopelessness and self-blame.[12] It
is important to communicate a clear usage that is as unambiguous as possible to the user, the project
aims to focus on this idea of clarity when implementing the improvements. This is the main goal
of the user experience, removing the possibility of misstep by communicating clearly. Citing Krug’s
second law of usability, “It doesn’t matter how many times I have to click, as long as each click is a
mindless, unambiguous choice”.[10]

3.2 Measuring improvements
For evaluating usability a more qualitative approach is chosen as opposed to testing on humans.
The main reason for the more analytical approach is inexperience with putting together test groups
and evaluating the results. This allowed for a more sequential approach in delivering the module
and provided time to familiarize with the OpenWrt ecosystem before starting work on implementing
the user interface. At the request of Inteno, the basic usability scenario chosen for evaluation was
configuring port forwarding of the XBox 360.

Disadvantages of not using usability tests with actual people, includes developers missing out
on valuable feedback from the people they are designing it for. The iterative process of producing
a prototype, having users test is and improving the design based on own observations and their

5

CHAPTER 3. RESEARCH

direct feedback is lost. The main purpose of the usability improvements presented in this project, is
presenting a more guiding and interactive approach, resulting in fewer mental steps.

We feel the method chosen works for its intentions and is suitable for a project of this scope,
although continuous testing would have been employed had we done it again

3.3 Alternative using a locally run application

To test the newly applied configurations, web-based or locally run port scanners can be used, as
opposed to a gateway-centric port forwarding solution presented by this report. Web-based port
scanners will scan the users external IP address for open ports and present which are open, however
this does not guarantee that the packets are routed to the correct internal address.

Alternative solutions to simplifying port forwarding include using standalone applications which
run on a PC, connected to the local network. These applications also use internal lists of port
forwarding rules for common applications and devices, which is then applied for a specific IP address
on the local network. Examples of locally run port scanners include PFConfig, which functions in a
similar way to the proposed system but requires a separate download and installation.[8]

3.4 Programming languages

3.4.1 Lua

Lua is a programming language that is intended to be embeddable and extensible, it is implemented
in C and enables the developer to employ different programming techniques with its multi-paradigm
approach. The programming language is distributed with a permissive free software licence[5], while
being open source allowing use within proprietary software. The language is dynamically typed,
which means that the underlying variable type is determined at runtime and supports features such
as memory management, closures and first-class functions.

Implementation-wise the language is small in size yet expressive, which makes it suitable for higher
level programming in embedded systems such as network gateways. Since the web user interface of
OpenWrt uses Lua, it was beneficial to implement as much of the application in the programming
language and contained in a Lua Configuration Interface module. See section 3.5.4 for details on Lua
Configuration Interface, or LuCI.

3.4.2 Almquist shell

Adhering to the POSIX standards, Almquist shell1 on OpenWrt it is the default operating system
command-line interface, scripting language and command processor. It has less features than bash and
sometimes requires a strict and sometimes more verbose scripting style, without the permissiveness of
bash idioms, such practices are referred to as bashism and are often incompatible with ash and such
primitive shells.

Shell scripting allows the developer to aggregate the power of a range of UNIX programs, using
redirection to route the output of one program as the input of another, and with the shell prompt
as an interactive development environment it allows for rapid prototyping. The permissiveness and
features of bash, has brought along handy constructs such as process substitution, which is unavailable
in ash. Instead the port scanning wrapper of section 4.3.1 solves this by using named pipes, in which
the script manually creates a temporary buffer in which the processes can exchange data. An example
of explicitly redirecting the output from a command into a named pipe and then processing the output
of that command is available in appendix B.1.

1Also called sh, A shell or ash

6

3.5. SOFTWARE SUITE

3.4.3 JavaScript

JavaScript is a common interpreted programming language mostly used in client-side web develop-
ment. For the LuCI web interface in OpenWrt, the view can be extended using JavaScript2 to include
custom graphical elements and interaction logic to the Model-View Controller framework. LuCI can
perform much of the heavy lifting when it comes to interactive pages, but it supplies support routines
for AJAX operations through their xhr.js library. AJAX calls are used extensively in the module,
because of the difficulty of writing interaction logic sticking to the LuCI CBI models. For an exam-
ple on how to perform an XMLHttpRequest, sending data from JavaScript to the Lua backend and
receiving an answer, please refer to figure B.2 in appendix B.

3.5 Software suite

The newer Inteno devices ship with the OpenWrt distribution, which is a small GNU/Linux operating
system. It provides the developer with the basic UNIX debugging tools and a POSIX compatible
command-line interface shell. As common with free software, the OpenWrt exists in an ecosystem of
applications and tools, in this section a few of these parts are discussed.

3.5.1 OpenWrt

OpenWrt is a free and open-source GNU/Linux distribution, targeting embedded devices, specifically
network routers, but can run on almost any set of hardware. It intends to be a meta distribution and
offers developers a framework on which to base their firmware on, it is regarded as the Bazaar model
from Eric S. Raymond’s The Cathedral and the Bazaar.[13]

Cross-compilation is enabled by OpenWrt Buildroot, which compiles the C code using uClibc, a
lightweight C library focusing on embedded Linux systems. OpenWrt is then compiled and linked
using gcc and binutils, with the help of Makefiles and patches for the various gcc versions and target
platforms. The GNU Autotools handles dependencies, linking and cross-compiling, provides build
automation for end users and developers. OpenWrt Buildroot supports menuconfig, which before
building lets users select which features of the distribution they want to compile or link from a menu
of choices, menuconfig is often used when building the Linux kernel.

OpenWrt offers the BusyBox set of stripped-down UNIX tools, enabling advanced users to fully
interact with their Linux system and providing developers with a familiar platform for debugging and
testing their product.[6]

Unified Configuration Interface, or UCI, is used in OpenWrt as a uniform format for commonly
used configuration files. UCI has a Lua bindings as well as a command line interface, to read and
modify the configuration files. One example is the rules for port forwarding, which are defined in the
UCI compatible configuration file in /etc/config/firewall. A port forwarding rule which forwards
external HTTP traffic over port 80 to the internal IP 192.168.1.214, is shown in figure A.1 in appendix
A, in our example the line config redirect defines the start of a section, a section can contain several
values and the UCI configuration file can consist of several such sections.

3.5.2 OPKG

The package management system used in OpenWrt is Open PacKaGe Management, or OPKG. It is
based off the discontinued ipkg and operates similar to APT and dpkg of Debian-based distributions.
It targets GNU/Linux based operating systems for embedded devices and there are currently over
2000 OPKG packages available for OpenWrt.

2Just like in ordinary web design

7

CHAPTER 3. RESEARCH

The OpenWrt system and its packages are built using GNU Autoconf, which automates tasks
associated with compiling larger software suites. This includes pulling in parts of the system from
remote software repositories and automatically resolving dependencies on programs and libraries.

3.5.3 Inteno Open Platform System
For Customer Premises Equipment like wireless gateways, Inteno Open Platform System offers an
open-source Linux distribution based on OpenWrt. It uses the OpenWrt’s build system including
cross-compilation toolchain to ensure compatibility with the ecosystem and upstream.

Inteno maintains and hosts a repository, which contains a frozen release of OpenWrt and compat-
ible packages and patches. Freezing an ever changing open source codebase means forking an existing
version, submitting more conservative patches to the system and focusing on smaller changes. This
leads to good compatibility with Inteno hardware and protection from breakage because of upstream3

code changes.

3.5.4 Lua Configuration Interface
Lua Configuration Interface, or LuCI, is a suite of programs and libraries for extending OpenWrt using
the Lua programming language and providing a web interface built with the Model-View Controller
architecture. It originated in the OpenWrt project, but is now an independent project on its own.
Developing LuCI pages that interact with the settings of the OpenWrt deployment is usually done
with CBI models, which map the Lua module to OpenWrt and its configuration files.

LuCI relies on the Model-View Controller software architecture pattern and separates data and
its visual representation. It is divided in three parts with the model representing the data and storing
it in UCI configuration files. The view provides a visual representation of the model. When sticking
to CBI models, most of the code and design effort can be put into the Lua module, allowing LuCI to
automatically handle GUI elements, form validation, and writing UCI files.

The controller part of the LuCI MVC framework is the dispatching tree. It associates input
events with logic in the model, and contains a tree of dispatching actions which is most apparent in
the display of the dropdown menus of the web site.

3.5.5 Dnsmasq
In order for the user to have access to the web interface by a domain name instead of an IP address,
we use DNS. Dnsmasq is a lightweight DNS server, using the /etc/hosts file to translate IP addresses
on the local network to domain names.[1] The simple operation of Dnsmasq is suitable for serving
address translations on smaller networks, such as LAN.

3Code released and maintained by the official project

8

Chapter 4

Implementation

The overall design of the system consists of two parts, the service identification and port forwarding
presets. These parts are connected by the LuCI dispatcher1 and the model. Communication between
the different parts of the port forwarding process is outlined in figure 4.1. The user initiates the iden-
tification procedure and the identification process starts. Nmap and its wrapper script is represented
by the package : detect process in the digram, it receives a call from the dispatcher that originates
in an AJAX call from the view. A scan is then performed in the background by Nmap, which tries
to “guess” the services available behind the IP address on the network. When the results from the
identification are returned the list of presets is sorted. Based on the results from the identification,
the user can review their options before finally applying the new settings.

model:devices.lua config:presetUser package:detect config:firewall

start wizard

start

show services

select forwarding
lookup ports and protocols

update firewall rules

show forwarding

return services

apply forwarding

1

Figure 4.1. Sequential diagram of applying port forwarding rules, the User box
represents the view or the user interaction part of the implementation.

By selecting the name of the service, the correct forwarding rules are loaded and presented to the
user, who can then chose to apply them, after which they are written to the configuration files. The
port forwarding wizard works with the standard OpenWrt configuration files2 and uses nmap as its
backend for discovering and identifying services on the local network.

Visible in the sequential diagram of figure 4.1 are the two UCI configuration files, config:firewall
(/etc/config/firewall) and config:presets (/etc/config/preset), located on the router filesystem.
The service detection wrapper returns the newly discovered services, these can then be matched

1Not shown in diagram
2OpenWrt can be configured using Unified Configuration System, or UCI. It also provides a command-line utility

and provides an API for programming languages such as C and Lua

9

CHAPTER 4. IMPLEMENTATION

against the presets of forwarding rules. The final redirection settings are applied to the firewall
configuration file, based on the preset library, the network service scan and user choice.

4.1 Usability
There are a few issues with the current firewall tab for novice users. It requires the user to acquire
all the ports necessary for the network service, this increases the chance of missteps and faulty
configuration. Another issue that has been identified are the tedious steps involved in applying
the rules through the web interface.

4.1.1 Current firewall tab
For the device or network service to function properly, the user has to add a forwarding rule for each
required port. A screenshot of the port forwarding form in the web interface is shown in figure 4.2.
For our reference unit, the XBox 360 which requires ports 88 (UDP), 3074 (UDP), 3074 (TCP) and
80 (TCP), this requires four such steps.

Figure 4.2. Current port forwarding dialog, the user is burdened with identifying
and applying rules for every port of the service.

4.1.2 Guided firewall tab
In the projects improved port forwarding dialog, the user is confronted with fewer mental steps. In
figure 4.3, we see a conceptual flowchart of the all the steps in the current user interaction when port
forwarding. The two parts called “Look it up!” requires a switch of context which can delay the
configuration of the port forwarding.

The mental steps and actions within the gray area of figure 4.3 (left), will form a loop every time
the service has several protocols and ports. The general idea is reducing as many of these harder
choices or replacing them with simpler ones. In addition to the “Look it up!”-steps, in the example
of the XBox 360 – which has four ports – the user have to perform seven additional actions for the
three remaining ports:

• Select host

• Enter protocol and port

• Enter description

The intention is to turn hard choices into easier ones, while automating as many tasks as possible.

4.2 User interface
For a port forwarding interface page, the user is presented with detected nodes and their corresponding
network services, as shown in figure 4.4. Listed presets are sorted by the output from the service
identification process, presenting the user with the most likely services at the top of the list. To apply
the port forwarding rule set, the user selects a node in the network and the service from the sorted
list, then applies it.

10

4.2. USER INTERFACE

Host
known?

Select host

Look
it up!

Enter protocol
and port

Port forward page

Apply

Enter description
More

ports and
protocols?

Ports and
protocol

known?

Look
it up!

no
yes

no

yes

yes

no

1

Display details.

Host
known?

Select host

Scan host

Select service
from Presets

Wizard page

Display discovered services.

Preselect the first from Preset

Correct
Preset

selected?

Apply

yes

no

yes

no

1

Figure 4.3. Usability flowchart for configuring port forwarding, illustrating differ-
ences in user interaction with the conventional port forwarding tab (left), to the one
presented in this paper (right).

Figure 4.4. Screenshots of scanning the local network for available services.

Instead of performing all the steps automatically like in the current implementation, the user is
interacting with the system and approving the suggested changes before they are set. The service
identification is there to help the users make choices, not decide for them.

This way of interacting with the user before writing any files required the more asynchronous
approach using XMLHttpRequests from the JavaScript code than what was offered by using LuCI’s
CBI model. This method is known as asynchronous JavaScript and XML, or AJAX.

An alternative solution would be to write temporary UCI configuration files to disk. This would
allow the implementation to rely on LuCI’s CBI models, which are discussed in section 3.5.4, probably
making the codebase more consistent with less custom JavaScript. Disadvantages of using CBI models
for this use case is that we do not want the configuration files to be used as temporary databases.
Since the interactive logic requires an intermediary state of possible forwarding selections and the
developers experience in JavaScript, it was decided to implement it with AJAX techniques.

11

CHAPTER 4. IMPLEMENTATION

Figure 4.5. Screenshots of applying the forwarding rules and viewing the resulting
redirection rules on the conventional firewall configuration page.

4.3 Nmap

The program Nmap is a popular network discovery program, and was chosen as the engine for the
service scanner implementation. The XBox 360 gaming console was chosen at Inteno’s suggestion,
with the motivation that it is one of the devices that end users have had the most issues with, in
regards to port forwarding. Nmap is capable of detecting several operating systems, embedded devices
and network services.

Using Nmap is quite intrusive and could be detected as an attack by intrusion detection software,
used to monitor the network for illicit behavior. An alternative approach is using passive fingerprinting
of network traffic, one such utility is P0f which uses passive scanning of traffic.[7] However, in order
to provide low latency, the Inteno routers are configured with cut-through switching, which would
render the passive fingerprinting of P0f ineffective. Cut-through switching, as opposed to store and
forward, starts forwarding the packets before it has been fully received, this hides hides the packet
information from software processing and analyzing techniques. These disadvantages of P0f along
with Nmap being a common, well tested-tool in analysis of network topology and nodes, it was chosen
as the backend.

4.3.1 Wrapper

Executing the Nmap scanning utility and returning results, is implemented as a shell script. In the
development process of the wrapper, a shell script was written to test the functionality and extract
data about the detected services. The original intent was to replace this with a Lua script, for a more
consistent codebase in regards to the rest of the system. Due to lack of time, the rewrite was cancelled
and a quick adaptation was made to to the script to return valid JSON for the JavaScript frontend.

When running the basic operating system scan service identification features of Nmap, there is no
way for Nmap to positively identify an XBox 360. This failure is due to an inconclusive fingerprint.
Using a flag named version scan – run with arguments -sV – Nmap interrogates ports more thoroughly
and returns more information than a regular operating system scan. The extra scan using the Nmap
version scan, was successfully used to identify the XBox 360. Whenever the service is identified as
LSA-or-nterm, the TCP ports 1026 and 1027, were scanned, either of these are in use by the XBox
360.[11] A more thorough version scan is issued for the device and then matched for XBox 360 UPnP,

12

4.4. PRESET LIBRARY

which the wrapper is set to interpret as a positive match and returns its service name3.
An alternative solution would be constructing an Nmap-compatible fingerprint, this was decided

against because of the wish to use a standard ipkg package of Nmap, which is already in the OpenWrt
repository.

4.4 Preset library
The preset library consists of common services and port data, that the user would want to set up
forwarding rules for. Details of these ports and protocols are provided by the application developers,
specifically for address translation reasons.

Using the Unified Configuration System, which is included in the OpenWrt distribution, all the
basic commands for configuring the firewall rules were prototyped and explored. A set of XBox 360
port forwarding rules from the preset configuration file is shown in figure A.1 in appendix A. The
rules were formatted to fit the UCI configuration file format and returned as JSON to the JavaScript
frontend in an AJAX call through the Lua dispatcher.4

For the scope of this project the following services is added to the preset library:

• Xbox360

• HTTP traffic

• POP3 email

• FTP traffic

• SSH traffic

• IMAP email

• IMAP3 email

• IMAPS email

• POP3S email

Applying the rules requires the user to select the desired service from a list, and pressing a button
which runs a JavaScript function, performing an AJAX call to the Lua backend, issuing the UCI calls.
See section 3.4.3 for examples of how JavaScript is used in the LuCI module.

4.5 Internal DNS
The implementation of the internal IP address translation is a small and simple improvement of the
user experience. In order for the end user to reach the web interface they need to find out and enter the
IP address of the gateway. DNS works by translating hard to remember IP addresses to memorable
domain names. By using the lightweight DNS forwarder Dnsmasq we can make the web interface
easier to access. Being a standard part of most operating systems, the hosts file keeps a localized
record of address translations. On most Unix-like operating systems the hosts file is assessable from
/etc/hosts, and consist of a text file that list IP addresses and their corresponding domain name.

This small usability improvement consists of a shell script that keeps the routers current IP
up to date with the domain name login.lan. The script gets its current IP address from the UCI
command-line interface, it then proceeds to iterate through the lines of the hosts file, updating the IP

3The XBox 360 is labeled xbox360 in the configuration presets
4The dispatcher is the Controller in the MVC framework

13

CHAPTER 4. IMPLEMENTATION

address associated with the login.lan hostname. Since any DNS request passes through the router,
Dnsmasq will now translate the human-memorable name to its own IP address. The source code of
this implementation is available in figure B.3.

14

Chapter 5

Results

This chapter presents the results and duration of the service scan for different devices on the network.
The important results as well as the duration of each scan is highlighted in the output. We notice
that the duration per scanned port increases significantly when issuing the version detection.

5.1 Operating system scan
The results of the basic operating system scan of XBox 360 is shown in figure 5.1. Note the line:

No exact OS matches for host (test conditions non-ideal).

We observe that the scan is unable to identify the correct operating system for the XBox 360
and that it had a duration of 35.78 seconds. A more thorough scan is required to detect the gaming
console in question.

root@Inteno :~# time nmap -O --osscan -guess --fuzzy 192.168.1.218

Starting Nmap 5.51 (http :// nmap.org) at 2013 -05 -28 18:03 CEST
Nmap scan report for 192.168.1.218
Host is up (0.00061 s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE

1026/tcp open LSA-or-nterm

MAC Address : 00:22:48:40:11: FE (Microsoft)
Warning : OSScan results may be unreliable because we could not find at
least 1 open and 1 closed port
Device type: general purpose | switch
Running (JUST GUESSING): IBM OS/2 4.X (92%), HP OpenVMS
Aggressive OS guesses : IBM OS/2 Warp 2.0 (92\%) , HP OpenVMS

No exact OS matches for host (test conditions non-ideal).
Network Distance : 1 hop
OS detection performed . Please report any incorrect results at
http :// nmap.org/ submit / .
Nmap done: 1 IP address (1 host up) scanned in 41.67 seconds
real 0m 35.78s
user 0m 18.00s
sys 0m 2.37s

Figure 5.1. Raw output of first Nmap scan of XBox 360, failing to guess
target operating system.

15

CHAPTER 5. RESULTS

5.2 Version scan
By issuing a version scan, this Nmap scan is able to positively identify the service XBox 360 XML
UPnP (Serial number 757502283805) in 13 seconds, as shown in figure 5.2.

root@Inteno :~# time nmap -sV -p 1026 -1027 192.168.1.218

Starting Nmap 5.51 (http :// nmap.org) at 2013 -05 -28 18:06 CEST
Nmap scan report for 192.168.1.218
Host is up (0.00081 s latency).
PORT STATE SERVICE VERSION

1026/tcp open upnp XBox 360 XML UPnP (Serial number 757502283805)

1027/ tcp filtered IIS
MAC Address : 00:22:48:40:11: FE (Microsoft)
Service Info: Device : game console

Service detection performed . Please report any incorrect results at
http :// nmap.org/ submit / .
Nmap done: 1 IP address (1 host up) scanned in 12.89 seconds
real 0m 13.02s
user 0m 4.09s
sys 0m 1.44s

Figure 5.2. Raw output of deeper Nmap scan of XBox 360, positively
identifying it as XBox 360 UPnP.

This exhaustive scan takes longer to complete per port, but is limited to a smaller port range.
The results shows that the system manages to identify the XBox 360 gaming console, using the extra
scan issued by the wrapper, the device can positively be identified correctly. Its services in terms of
ports are well known and defined in the preset part of the implemented system.

An additional duration of 13 seconds is required to positively identify the XBox 360, the total
duration of the scan adds up to 49 seconds.

16

5.3. LINUX SERVER

5.3 Linux server
Scanning a faily standard GNU/Linux operating system1 running on the Raspberry Pi installed with
the options web server, mail server and ssh server, detect these services and ports as shown in figure
5.3. The mail server option in the installer, enables identification on ports 110, 143, 993 and 995
because of the various email delivery protocols. Every enabled network service is discovered on the
GNU/Linux system, as opposed to scanning gaming consoles, a more typical use of the Nmap tool.

PORT STATE SERVICE REASON VERSION
22/ tcp open ssh syn -ack OpenSSH 6.0 p1 Debian 4 ...
80/ tcp open http syn -ack Apache httpd 2.2.22 ...
110/ tcp open pop3 syn -ack Dovecot pop3d
111/ tcp open rpcbind syn -ack 2-4 (RPC #100000)
143/ tcp open imap syn -ack Dovecot imapd
993/ tcp open ssl/imap syn -ack Dovecot imapd
995/ tcp open ssl/pop3 syn -ack Dovecot pop3d
MAC Address : B8 :27: EB:0C:A5 :70 (Raspberry Pi Foundation)

Figure 5.3. Nmap version scan of the Raspberry Pi, identifying available
services on the open ports.

The Raspberry Pi running the Debian GNU/Linux distribution has its MAC address successfully
detected as such, all services selected during the installation are successfully detected by the scan.
The front-end will pre-select the first service from the dropdown list of presets, present the user with
the choice to apply its forwarding rules or selecting a different service.

These results show that the method of using Nmap is generic enough to identify common services
offered by the network node.

1The operating system running on the Raspberry Pi is the recommended Raspbian, a Debian based distribution

17

Chapter 6

Conclusions

The preset system will simplify the port forwarding procedure and provide the novice user with
helpful hints, in an otherwise complex graphical environment. This part of the system could be made
production ready and included by default in the iopsys platform, internet service providers can extend
these presets using familiar configuration files of OpenWrt.

Detection is currently slow and tweaking the scan arguments or caching results were out of scope
of this project. The identification process of the XBox 360 is not a generic Nmap solution, it requires
a workaround implemented in the custom shell script wrapper around Nmap. This behaviour is
not optimal but perhaps acceptable, depending on the frequency of the issue of future devices not
delivering sufficient data for Nmap fingerprinting. Considering the CPE operators various needs, we
are unable to draw any conclusions as to weather it should be implemented as part of the default
distribution or not.

The usability analysis were completed and provided valuable insight with regards to the interactive
port forwarding wizard. Choosing not to employing usability testing and working in an iterative
process while developing the design was a mistake. The scope of usability enhancement were however
relatively small and we conclude that the results of the improvements made to the graphical user
interface are positive in terms of usability.

The internal DNS service is functional and keeps its records updated. This provides the user
access to the web interface by entering a domain name instead of an IP address in their web browsers.

6.1 Further development
The solution using Nmap could be interpreted as illegal activity and attempt at exploit, by network
administrators and automated intrusion detection systems. This is a risk that could render the
proposed solution undesirable for use in the real world. A fix for this would be to implement a less
intrusive way of identifying services, reviewing the ARP tables, one could filter possible devices by
their manufacturers MAC address, with an already populated ARP table this procedure is unintrusive
and fast. A more detailed Nmap version scan could then be performed according to a configuration
file, mapping MAC addresses of known device manufacturers to more lightweight Nmap scans. It
would be a better fit for our reference model, but more error-prone and less generic than using Nmap.

The execution time of Nmap is an issue, on local networks with several devices the latency would be
deemed too high for several use cases. To address this issue one could adjust the service to preload the
automatic identification results and have it run in the background, to provide a more responsive user
experience using the cached results. But allowing such background jobs that are not system-critical
will most likely be deemed too wasteful on embedded systems.

19

Appendix A

Configuration files

config redirect
option target ’DNAT ’
option src ’wan ’
option dest ’lan ’
option proto ’tcp ’
option src_dport ’80’
option dest_ip ’192.168.1.214 ’
option dest_port ’80’
option name ’Web server ’

Figure A.1. Port forwarding section in the UCI firewall configuration file.

config device ’xbox360 ’
option name ’xbox360 ’
option description ’Xbox 360 Live ’

config redirect
option device ’xbox360 ’
option proto ’udp ’
option port ’88’

config redirect
option device ’xbox360 ’
option proto ’tcp udp ’
option port ’3074’

config redirect
option device ’xbox360 ’
option proto ’tcp udp ’
option port ’53’

config redirect
option device ’xbox360 ’
option proto ’tcp ’
option port ’80’

Figure A.2. Preset for port forwarding sections in the UCI preset configu-
ration file.

21

Appendix B

Programming and shell scripting

create a named pipe , if it does not exist
[! -p /tmp/fifo] && mkfifo /tmp/fifo
scan target , pipe the output into a named pipe
nmap -O --osscan -guess --fuzzy $1 > /tmp/fifo &
while read -r line
do

case "$line" in
"open") # on open ports , perform :

extraction of service name and ports
SERVICE =$(echo "$line" | awk ’{print $3}’)
PORT=$(echo "$line" | awk -F "/" ’{print $1}’)
check if port is a number
if ["$PORT" -eq "$PORT"] 2>/ dev/null; then

append to RESULT
RESULT =" $RESULT \" $SERVICE \": $PORT , "

fi
;;

esac
done < /tmp/fifo
rm /tmp/fifo
return RESULT

Figure B.1. Wrapper for Nmap, by using a named pipe to redirect the
output of one program to a temporary file and reading it line by line, the
wrapper parses the output and formats it as a JSON string.

xhr.get(’ <%= luci. dispatcher . build_url (" admin "," wizard ")% >/ get_list /’+argument , null ,
function (reply) {

// Perform operation on ’reply ’
}

);

Figure B.2. Example of calling the LuCI dispatcher from client-side
JavaScript with an argument, using the XMLHttpRequest helper class xhr.js
of LuCI.

23

APPENDIX B. PROGRAMMING AND SHELL SCRIPTING

#!/ bin/sh /etc/rc. common
Update hosts file to enable access through "http :// login.lan /" etc from LAN

START =25

domains ="www.login.lan login.lan www. routerlogin .net routerlogin .net"
HOSTS =/ etc/hosts
IP=$(uci get network .lan. ipaddr)

start () {
ROW =0
while read LINE;
do
ROW=$((ROW +1))

case $LINE in
Already up to date , exit
"$IP $domains ") exit ;;
Change to current IP , reload and exit
*" $domains ")

sed -i -e "$ROW s/.*/ $IP\ $domains /g" $HOSTS
/etc/init.d/ dnsmasq reload &
exit ;;

esac
done < $HOSTS
Add new entry
echo "$IP $domains " >> $HOSTS
/etc/init.d/ dnsmasq reload &

}

restart () {
start

}

Figure B.3. Initscript that keeps the IP address translation for the
local network up to date, allowing users to access the gateway by visiting
http://login.lan in their web browsers address bar.

24

Bibliography

[1] dnsmasq Linux man page. http://linux.die.net/man/8/dnsmasq. Accessed: 2013-08-08.

[2] Inteno GPL support page. http://www.inteno.se/Support/GPL.aspx. Accessed: 2013-05-21.

[3] New business possibilities with Open Source software. http://www.inteno.se/Portals/
0/IntenoFiles/ProductDocs/241/689/iopsys_white_paper.pdf_20121015135755.pdf. Ac-
cessed: 2013-04-29.

[4] Open Source Initiative homepage. http://opensource.org/licenses/mit-license.php. Ac-
cessed: 2013-06-05.

[5] Open Source Initiative homepage. http://opensource.org/licenses/mit-license.php. Ac-
cessed: 2013-06-05.

[6] OpenWrt structure and design. http://wiki.confine-project.eu/_media/soft:
openwrt-talk-2012-06-01.pdf. Accessed: 2013-04-29.

[7] p0f homepage. http://lcamtuf.coredump.cx/p0f3/. Accessed: 2013-05-22.

[8] Port Forward homepage. http://portforward.com/. Accessed: 2013-05-14.

[9] R. Ierusalimschy. Programming in Lua. Lua.org, 2006.

[10] S. Krug. Don’t make me think!: a common sense approach to Web usability. Voices That Matter
Series. New Riders, 2006.

[11] Halvar Myrmo. Game consoles - are they secure? Master’s thesis, Gjøvik University College,
2007.

[12] D.A. Norman. The Design of Everyday Things. Basic Books, 2002.

[13] E.S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly Media, 2008.

25

http://linux.die.net/man/8/dnsmasq
http://www.inteno.se/Support/GPL.aspx
http://www.inteno.se/Portals/0/IntenoFiles/ProductDocs/241/689/iopsys_white_paper.pdf_20121015135755.pdf
http://www.inteno.se/Portals/0/IntenoFiles/ProductDocs/241/689/iopsys_white_paper.pdf_20121015135755.pdf
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php
http://wiki.confine-project.eu/_media/soft:openwrt-talk-2012-06-01.pdf
http://wiki.confine-project.eu/_media/soft:openwrt-talk-2012-06-01.pdf
http://lcamtuf.coredump.cx/p0f3/
http://portforward.com/

	Introduction
	Background
	Goals
	Delimitations
	Solutions

	Current situation
	Research
	Design and layout
	Measuring improvements
	Alternative using a locally run application
	Programming languages
	Lua
	Almquist shell
	JavaScript

	Software suite
	OpenWrt
	OPKG
	Inteno Open Platform System
	Lua Configuration Interface
	Dnsmasq

	Implementation
	Usability
	Current firewall tab
	Guided firewall tab

	User interface
	Nmap
	Wrapper

	Preset library
	Internal DNS

	Results
	Operating system scan
	Version scan
	Linux server

	Conclusions
	Further development

	Appendices
	Configuration files
	Programming and shell scripting
	Bibliography

