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Abstract

In this paper we present a modification to a latent topic nhogkich makes the

model exploit supervision to produce a factorized reprigEm of the observed
data. The structured parameterization separately enc@diesice that is shared
between classes from variance that is private to each cjaselntroduction of a

new prior over the topic space. The approach allows for a rafficent inference

and provides an intuitive interpretation of the data in teohan informative signal

together with structured noise. The factorized represiemtés shown to enhance
inference performance for image, text, and video clasgific.

[1 Introduction

Representing data in terms of latent variables is an impbidal in many applications. A generative

latent variable model provides a parameterization thab@es the variations in the observed data,
relating them to an underlying representation, e.g., afsgheses, using some kind of mapping. It
is important to note that any modeling task is inherenthgdhditioned as there exists an infinite

number of combinations of mappings and parameterizatioasdould have generated the data.
To that end, we choose different models, based on differsntraptions and preferences that will
induce different representations, motivated by how wedltfit the data and for what purpose we

wish to use the representation.

Inference in generative models meets difficulties if theatans in the observed data are not rep-
resentative of the variations in the underlying state tontieried. As an example, consider a visual
animal classifier, trained with, e.g., SIFT _[20] featuregr&sted from training images of horses,
cows and cats with a variation of fur texture. The task is nmelassify an image of a spotted horse.
Based on the features, which will mostly pick up the fur tegtihe classifier will be unsure of the

class, since there are spotted horses, cows and cats irathegrdata. The core of the problem

is that fur texture is a weak cue to animal class given thia:deibrses, cows and cats can all be
red, spotted, brown, black and grey. Shape is on the othef &atrong cue to distinguish between
these classes. However, the visual features will mostlyucafexture information — the shape in-

formation (signal) is “hidden” among the significantly reattexture information (structured noise)

making up the dominant part of the variation in the data.

In this paper we address this issue by explicitly factogzihe data into a structured noise part,
whose variations are shared between all classes, and &gghavhose variations are characteristic
of a certain class. For our purposes, it is very useful toktlsibout data as composed topics
Probabilistic topic models [23, 11} 4, 2] model a data exanasl a collection ofvords(in the case
of imagesyisual word3, each sampled from a latent distributiortepics The topics can be thought
of as different aspects of the data — a topic model trainel thié data in our animal example above
might model one topic for shape and another for fur textund,acertain data instance is modeled
as a combination of a certain shape and a certain texture.

Our approach is t@ncourage the topics to assume either a very high correladioa very low
correlation with class The class can then be inferred using only the class-spéajfics, while the
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shared topics are useddmplain awaythe aspects of the data that are not interesting to thiscpéati
inference problem. We present a variant of a Latent DiricAllcation (LDA) [2] model which is
able to model the signal and structured noise separataty fihe@ data. This new model is trained
using a factorizing prior, which partitions the topic spate a private signal part and a shared noise
part. The model is described in Sectidn 3.

Experiments in Sectionl 4 show that the proposed model datpes both the standard LDA and
a supervised variant, SLDA[3], on classification of imagtst, and video. Furthermore, the
explicit noise model increases the sparsity of the topicasgntation. This is encouraging for two
reasons: firstly, it indicates that the factorized LDA mbidea better model of class compared to the
unrestricted LDA; enabling better performance on any igriee or data synthesis task. Secondly,
it enables a more economical data representation in terraordge and computation; crucial for
applications with very large data sets. The factorizati@thad can be applied to other topic models
as well, and the sparse factorized topic representatiopngficial not only for classification, as
shown here, but also for synthesis [5], ambiguity modelifigdnd domain transfer [21].

2 Related Work

In this section we will create a context for the model that we @bout to propose by relating it
to factorized latent variable models in general and topide®in specific. Providing a complete
review of either is beyond the scope of this paper, why herailldocus on only the most relevant
subset of work needed to motivate the model.

The motivation for learning a latent variable model is tolekghe structure of the new representa-
tion to perform tasks such as synthesis or prediction of iaat&, or to ease an association task such
as classification. For continuous observations, seveaiasid algorithms such as Principal Compo-
nent Analysis (PCA) and Canonical Correlation Analysis f€an be interpreted as latent variable
models[[1| 15, 117, 27]. Another modeling scenario is whereplaions are provided in the form of
collections of discrete entities. An example is text dat&@mla document consists of a collection of
words. One approach to encode such data is using a lateesegqtation that groups words in terms
of topics. Several approaches for automatically learnipics from data have been suggested in the
literature. A first proposal of a generative topic model Wasbabilistic Latent Semantic Indexing
(pLSI) [11]. The model represents each document as a migrfitgpics. The next important devel-
opment in terms of a Bayesian version of pLSI by adding a gddhe mixture weights. This was
done by the adaptation of a Dirichlet layer and referred tbadsnt Dirichlet Allocation (LDA) [4].

Central to the work presented in this paper is a specifimtat&ructure simultaneously proposed
by several authors [7, 13, 114,]18]. Given multiple obseoratnodalities of a single underlying
state, the purpose of these models is to learn a repregsamtiatit separately encodes the modality-
independent variance from the modality-dependent. Thentaiepresentation is factorized such
that the modality-independent and modality-dependentaceded in separate subspaceés [6]. This
factorization has an intuitive interpretation in that thivate space encodes variations that exists in
only one modality and does therefore encode variationesgmting the ambiguities between the
modalities[[7].

In this paper we will exploit a similar type of factorizatievithin a topic model, but instead of ex-
ploiting correlations between observation modalities,enegloy a single observation modality and
a class label associated with each observation. In spamifi@pproach will encourage a factoriza-
tion relating to class, such that the topics will be splibithose encoding within-class variations
from those that encode between-class variations. Suchterifeation becomes interesting for in-
ferring the class label from unseen data; the class-shapidstcan be considered as representing
“structured noise” while only the private class topics @nthe relevant for class inference.

However, it is not easy to directly transfer the above faztdion, formulatecbetweermodalities
and described for continuous data, to topic models, whiehirgnerently discrete. Results have
been presented [12, 25,128] for the case of two conditionatigpendent observation modalities,
addressing the image and text cross-modal multimediavedrproblem with topic representation.
In [12] a model that can be seen as a Markov random field of LBpid models is presented.
The topic distribution of each topic model affect the ungied topic spaces of other topic models,
connected to that model through the Markov random field.thary in [25] CCA is applied to the
topic space of the text data, which in turn has been learmmed EDA and the image feature space.
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(a) LDA with class label[[B] (b) Our factorized LDA
Figure 1:Graphic representation of LDA structures. The notatiorbiig adopted from Jia et al. [12].

LDA and CCA are used as two separate steps. Differently,if28¢ad use a Hierarchical Dirichlet
Process (HDP) based method which has a complexity selgmtigerty. It takes the topics that only
describe variance in only one modality as the private spalsieh explains away the information that
cannot be matched between different modalities. This isxéeneion of [22] to multi-modalities,
hence it can not be generalized to other topic models, sutbAsor pLSI and it can not be used
to model the private and shared information with only one atiby

Differently from [12,[28/ 25], which need to model the shatepics and private topics in the joint
topic space across different observation modalities, achofization takes place over one modality
across different classes, where the structured noise i®l@ddn the class-shared topics and the
signal is modeled in class-private topics. Furthermorel iamportantly, our approach is flexible
and can be easily transferred to any type of topic model. @aice of LDA stems from the fact
that it has previously been successfully applied for a lasgge of data and has desirable sparsity
properties that makes for an efficient model.

Topic models, and the LDA model in specific, are motivatedhmy benefit of representations that
are sparse in terms of the distribution of topics for eachudwent. In addition to this, the model

we are about to present aims to encourage a specific steustiine topic themselves. This notion
is not new and have been proposed by several other authof8] time topics are represented as
combinations of a small number of latent components as &atding to a more compact model. In
[29] the each topic is constrained by the words in the voaatyuHowever, none of these models
aim to learn a topic structure that is related to class.

3 Model

As described in the introduction, we add factorization to@del that describes variations of data
in terms of a set of latent topics. We seek a structured reptagon that encodes topics containing
within-class, or class private, variations separatelynftbose containing variations that are shared
between the classes. We apply our factorization framewmrknt adaptation of LDA, which in-
corporates additional class information to recover suchctofized latent space. In this section,
the traditional LDA model([4] is first revisited, followedytthe description of our factorized topic
model.

3.1 LDA Revisited

Formally a documentv consist of a collection of wordsr = [wy,...,wy] from a vocabulary
indexed by{1, ..., V}. Within a topic model each document df words is described as a mixture
of K topics such that each word is associated with a specifictepi [z1, ..., zn], Wherez,, €
{1,..., K}. The mixture is defined as

N K
p(wlz, 8) = HZ (wal20s By) (@)

n=1 k=

whereg,, is the distribution over the vocabulary for topic The novelty, and the reason for the
success, of the LDA model is how the topicand the topic vocabular are constructed within the
framework. The underpinning intuition is that the topiceslkl present a compact representation
with K < N, and that the structure of the topics should be sparse suabhieve a robust and
interpretable model. Assuming the topiego be governed by a multinomial distribution, ~
Multi(z]0), sparsity can be achieved by choosing the paramées governed by a Dirichlet
distribution,® ~ Dir(6|a). By the same motivation a Dirichlet prior is placed over tbpit-
vocabulary distributior8 ~ Dir(3|n). As the Dirichlet is conjugate to the multinomial distritmurt,



the marginal likelihood can be reached analytically by commlg the likelihood with the prior and
performing the integration,

N
p(wla,T) = /p(Ola) (H [Zp(znlo)p(wnlzn,BZn)] p(ﬁlﬂ)) de (2)

n=1 Zn
from which the parameters of the model can be learned.

One way of incorporating class information within the LDAafnework was suggested [r [8] where
the use of a class dependent topic distribution was propoBeid was implemented by using the

class variable: as a “switch”; p(0|a, ¢) = ]'[jc:1 Dir(8)a;)% whered;; is the Kronecker delta
function. Using this model the class can be inferred for a deaumentw™ through a maximum
likelihood proceduré = arg max. p(w*|a, 7, ¢) [8].

In this paper we take inspiration from the work presente@]ntiowever, we choose to incorporate
the class information in a slightly different manner. Ingfie, we use a factorizing prior over the
topic distribution, which firstly encourages sparsitydaecondly introduces a preference for a class
conditioned structure, such that separate topics encoténvgdlass variations and between-class
variations in the data. Thus, the model we will propose hasteanger class dependency compared
to [8]. We will now proceed to describe and motivate the rateme of this class dependency.

3.2 Factorized Topic Model

As motivated in Sectioh]1, our idea is to separate the topcesjinto two parts, where the class-
private part explains the class-dependent informatigméd) and the shared part explains the class-
independent information (structured noise). To achieisvte introduce an additional prip(@) to

the model presented inl[8]. This will encourage a factoriziedcture such that thE topics can be
“softly” split into K, class-private topics anll; shared topics whet&,+ K, = K. The advantage
of such a structured topic space is that it will be more cortipean a regular model; all aspects of the
data that correlate with class will be pushed into the cfasste part of the topic space. Since the
other, class-shared, part of the topic space will then oohtain noise, the class of a new document
w* will in effect be inferred using only the class-private parurther, in our model, we will use
the same sparsity priar over the topics for all classes. This removes the additifiezibility of
allowing a different topic sparsity for each class — which ba relevant in certain special cases —
but the gain is a more robust model with fewer free paramgtegsiiring less training data.

In the following, let@<'*** be the topic distributions of all classes, obtained by nreigingd over
class. Its rows are defined ﬂ@lass o Zﬁf:l 0..9., ., wherec,, indicates the class label of the
m" document and;; the Kronecker delta function. Examples&?fass distributions can be seen in

Figures B[ U5, and 6.

Intuitively, the private topics would concentrate to a agrtclass ind°**, while the shared top-

ics would be more spread among all classes (more unifornslyilolited over a column iB°#5%).
Information entropy, widely used in different fields [19]2provides a good measurement of this
property. In this case, we employ an entropy-like meagfife) over class for each topic:

c class class

1 c,k c,k
H(k) = ——— log( —) 3)
log(l/C) ; chzl gglzbb 25021 98255

whereegfg“ is the element in row and columrk of 8<'*. H (k) € [0, 1], 0 if all the probability in
the topick is concentrated to one class, 1 if all classes are equallygire to contain the topike.

To split the topics into a private and shared part, we wishptie p(6|x) to encourage topick to
either have a lowH (k) (be very class-specific) or higH (k) (be very class-unspecific). Hence, we
introduce a function as:

A(k) = H(k)? — H(k)+1. (4)
The prior is defined as:

K
p(6) o J] A(k) . (5)
k=1

This prior thus treats each column@t®* independently. With the additional prior (Figre 1(b)),
the generative model becomes:
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p(wla, 7,0) = / p(6la, )p(6) (H [pre)p(wmzn,m] p(ﬁm) . ()

=1L zn

Learning. We use Gibbs sampling for learning the parameters of the mouwe specifically,

collapsed Gibbs sampling [10] in the same manner as [12].fadterizing prior presents itself in
the learning as an additional factor in the objective fumtitverz, compared to the original LDA
model. It should be noted that the factorizing prior in Eqpa is independent of the type of
learning procedure — the model in Equafidn 6 can also bedtaising, e.g., a variational method.

When training the model, the topics are initialized randgmihich means that they all havera
close to 1. During Gibbs sampling, it would be very unlikedyfind a topic with lowH, given
the bimodality ofA in Equation[[4). To address this problem, we introduce arid‘@nnealing”
procedure, wherel is replaced with a dynamic cooling function starting off byceuraging low
H only, and gradually encouraging high more and more, as the averakjedecreases (i.e., when
some topics have found a class-specific state). Heiég changed to a dynamic function

A(k) = H(k)? —2HH (k) + 1 (7)

where the averagl, H = Zszl H(k)/K, is used as an annealing parameter in the function. As
with other annealing procedures, the “auto-annealingtedore means that the factorizing prior
p(0) changes in each step of the iterative learning procedur@ nbrmal annealing procedure, this

change would be actuated by changing the annealing pararitses, H can be thought of as an
autonomous annealing parameter since it converges autathato a value reflecting the fraction
of the class-dependent versus class-independent variatthe data. For example, the text data set

(Figure3) has a loweH than the natural scene dataset (Figdre 5).

Segmenting the topic space. When the model have been trained we can evaluate the stuaftur
the learned topic space by computiffk) for each topick. We consider topics with lowd as
class-dependent while topics with high are considered as independent. As such the topic space
can be “softly” segmented and interpreted in a class cantéti manner. As an example, the words
building up the shared topics can be considerestag words In text processing, there is usually
some standard stop words list, which can be used to pre-gstice text. However, these stop words
are predefined, for example, “the”, “at” etc. However, tlemymetimes also provide class-relevant
information, for example, some topics are more locatioresielent or have more nouns. On the other
hand, there are words, like “learning”, “performance” etbjich do not carry much information in,
say, a machine learning conference corpus. In our modelutegratically learn the real stop words
for the given domain. Furthermore, while it is easy to pradethe stop words in text data, this
problem becomes much more challenging in computer visiphicgiions. The “stop-visual-words”
are ill-defined and much less intuitive to find, why an aigfum which automatically learns them,
such as the one we propose, is very beneficial. We would tilentphasize again that there is still
only one topic space; no hard splitting or removal of topgslone, neither for learning, nor for
inference.

4 Experiments

The proposed model is evaluated on four different classificgasks, and compared to two baselines
consisting of a regular LDA model with class label [8], and @d®l with stronger class-supervision
in the topic learning, SLDA[3].

4.1 Object Classification

We first demonstrate how the factorization works using adataset. The dataset, shown in Fig-
urel2, is constructed to have a very high degree of structuoésk. There are four object classes:
bulb, car, duck, and mug. All 8 instances of a certain clas® ltlae same shape and image loca-
tion. However, there is a very high intra-class variabilityforeground and background texture.
Furthermore, all four classes contain the exact same fouegi-background texture combinations.
Thus, the texture (which will dominate the variation amoeagtfires from any visual extractor) can
be regarded as structured noise, while the true signakretatshape. The properties of this dataset
can also be found to some extent in natural images: mosstiedtnage and object classes display
large intra-class appearance variation, and differesssela share appearance aspects. Furthermore,
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Figure 2:All the instances in the toy object dataset.
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Figure 3:Toy object dataset. (a) Regular LDA topic distribution niaadjzed over clas§°'***, topics sorted
in ascending order of class-specificity. (b) SLDA topictdisution marginalized over clagls'®s, topics sorted
in ascending order of class-specificity. (c) FactorizedALiDpic distribution marginalized over clags'ass,
topics sorted in ascending order of class-specificity lireglindicating partition betwee@” and6®.

the backgrounds in natural scenes are often complex anéhgaigtroducing even more variation
among training data for a class.

SIFT features on two different scales are densely extrdoted all images, and a 64-word vocabu-
lary is learned in which all SIFT features are representéisTeach image is represented by a bag
of visual words in this vocabulary.

The experiment is performed in a hold-one-out manner, wbach image in turn is classified using
a model trained on the other 31 images. In the following, wehyi“regular LDA” mean the regular
LDA with upstream supervision presented|in [8], but trainesthg Gibbs sampling in the same way
as our model, with the same valuecofor all documents. With "SLDA”, we mean the more strongly
supervised LDA variant with downstream supervision présg:in [3], implemented by Blei et al.

Our proposed factorized LDA, as well as regular LDA and SLR#g trained with 15 topicsy =
0.1 and7m = 0.2. The classification performance for each class is foundu®yraging over the
performances for the 8 images of that class.

It should be noted that the test image always will have a texttat is different from the training
images of that class. However, the same texture can be founthér classes. A classifier that
tries to explain all variation in the data in terms of classiation will therefore have difficulties
in modeling this data set; a regular LDA or SLDA model traingith this data will be forced to
represent texture as well as shape in the same topics, $iadeitichlet prior will promote topic
sparsity. Thus, very few topics will purely represent oress| as shown in Figurgs 3(a) 4nd B(b).

However, our model, which explicitly factorizes the topioto those private to a certain class and
those shared between all classes, will allow the relevapekariation to be represented separately
from the texture variation, which will just confuse the diigation in this case. Figufe 3{c) shows
the factorized topic distribution; it is clear that the topin§? are private to a certain class, while the
noise topics irg® are shared equally over all classes; all the structureckri@s thus been pushed
into 8°. Thus, even though the full topic space is used for clagdifig, it is effectively only based
on 67, while the shared topia®® (right of the red line in Figurg 3()) are effectively disegded in

the classification since they appear with equal probatiitall classes.

As expected, the explicit noise model greatly improvessifeesation on this dataset: the factorized
LDA reaches 81.25%, while a regular LDA reaches a classifinaate of 34.38%, only slightly
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Figure 4: Reuters 21578 R8 dataset. (a) Regular LDA topic distribbutiarginalized over clag’'>, topics
sorted in ascending order of class-specificity. (b) SLDgidadistribution marginalized over clag$'®**, topics
sorted in ascending order of class-specificity. (c) Fapgar LDA topic distribution marginalized over class
0°12*%  topics sorted in ascending order of class-specificiiy,lie indicating partition betweef and6*.
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Figure 5: Natural scene dataset. (a) Regular LDA topic distributicarginalized over clasg'***, topics
sorted in ascending order of class-specificity. (b) SLDgi¢alistribution marginalized over clags'®**, topics
sorted in ascending order of class-specificity. (c) Fapsar LDA topic distribution marginalized over class
0°1%*  topics sorted in ascending order of class-specificiy,lie indicating partition betwee” ande®.

above chance, and SLDA who is forced by the stronger supemis represent all variation (where
texture is dominating) in terms of class achieves a resuigokince the texture of the test image is
not present in the training data of the same class.

4.2 Text Classification

We now evaluate the proposed model in a realistic text ¢lea8bn scenario. We use the stan-
dard R8 training and testing set from the Reuters 21578 elgl26], which contains 5485 training
documents and 2189 testing documents. The all-terms veosithe data is used since we want to
illustrate how our model deals with noise.

The regular LDA, SLDA and factorized LDA models are trainelm20 topics, and parameter
settingsae = 0.5 and7 = 0.1.The topic distributions are shown in Figufes #{a), (b} [dc)
The factorized class-private topic distributiéfi (left of the red line in Figurg¢ 4(E)) is n0t|ceably
cleaner than the regular distributiéfi®** (Figure[4(@)). In the factorized LDA, onl§* contributes
to the classification, while the shared top&35(right of the red line in Figurg 4(k)) are effectively
disregarded since they appear with equal probability iclakses. The topics of the SLDA model
are sparser (Figufe 4(b)), but all topics are forced to besefpecific by the stronger supervision.

There is a significant classification improvement usingfictorized topic space, from 74.63% with
regular LDA and 63.75% with SLDA to 83.91% with factorized AD

4.3 Scene Classification

We also evaluate the proposed model on a challenging nateak dataset used id [8]. There are
four classes: forest, mountain, open country and coast, 4@0 training images and 50 test images
per class. From each image, SIFT features on two differeésare densely extracted, and labeled
according to a 192-word vocabulary learned from the featwag in[[8].

The regular LDA, SLDA, and factorized LDA models are traingith 20 topics, and parameter
settingsae = 0.5 andw = 0.1.Figureg 5(3), 5(®), arld 5{c) show the respective topicibigtons;
notably, the class-specific topic spa@® effectively used for classification in our factorized LDA
only contains 8 topics, while 12 topic6%) are devoted to modeling structured noise. Thus, the
factorized representation is notably sparser than a regla representation, which gives the op-
portunity to save both storage space and computation timeglclassification — an important factor
to take into account for large datasets.

In addition to rendering a notably sparser data repredentathe factorized LDA reaches a
marginally higher performance rate than with a regular LD#l &LDA: 84.50% for our model

compared to 80.50% for the regular LDA and 84.00% for SLDAIl pdrformances are slightly
better than the original implementation of the regular LIB) which reaches 76.0%.
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Figure 6: Action dataset. (a) Regular LDA topic distribution mardined over clas®<'>**, topics sorted in
ascending order of class-specificity. (b) SLDA topic dmition marginalized over clag¥'**, topics sorted
in ascending order of class-specificity. (c) FactorizedA.pic distribution marginalized over clags'sss,
topics sorted in ascending order of class-specificity lirglindicating partition betwee@” and6°.

4.4 Action Classification

We proceed to evaluate the methods on a dataset with moigarindependent of class. The
dataset consists of three actions from the KTH Action da{d$} boxing, handclapping and hand-
waving. There are 100 short video sequences of each actlinhwhow 25 different people per-
forming the action, recorded in four shooting conditiorsofning and panning of camera, different
background ). The shooting condition has large influencénemrtotion in the video, as each zoom
or panning motion adds global motion to the video and baakage contribute to the motion fea-
tures as well. However, the variation in shooting condif®not at all correlated with action class
in the dataset. Just as in the toy experiment above (but newnrpre realistic setting), a large pro-
portion of the data variation is thus independent of theoactiass. Due to the low signal-to-noise
ratio, a topic model without factorization will have diffities capturing the aspects of data relevant
for discriminating activity class.

The experiment was performed by separating out from theitrgdata all the 25 images of an action
filmed with a certain shooting condition. The topic modelsrevthen trained with all other data,
and evaluated with the 25 removed images. Hence, the cexaibination of action and camera
condition in the test data was not present in the training.dahis was done for all actions in turn,
and the result was averaged over actions.

STIP featured [15] were extracted from all sequences arsierked into a vocabulary of 128 spatio-
temporal words. This representation was used to train thdael DA, SLDA and factorized LDA
models with 10 topicsy = 0.1 andw = 0.1.

Figure[6 shows the topic distributions corresponding t@é¢hthiree models. We can see that Fac-
torized LDA is able to model the class-dependent infornmafleft of the red line) and the class-
independentinformation ( right of the red line), which makéoe able to archive better performance
in noisy data. For the regular LDA, although the topics aresiared, however, it models all the
information and assigned that to different classes with togics which made the topics themselves
became noisy. So does SLDA which models the "noise” as theiLisgics.

Factorized LDA gives an accuracy of 65.22%, which is fardrdttan both regular LDA, 38%, and
SLDA, 51.33%. This confirms that the findings of the toy esipent above applies to realistic
settings as well. Confusion matrices are shown in Figura}[6(b), anfl 6(¢) respectively.

5 Conclusions

We present a factorized latent topic model, which expliaidpresents aspects of the data which
are not correlated with model state. Specifically, we t@inLDA class model with an additional
factorizing prior, which encourages topics to either beyvaass-specific or evenly shared among
classes. The topic spaéeis thus partitioned into one paff’ whose topics are private to certain
classes, and another p#&rt with topics shared between classes. Offycontributes effectively to
classification.

Experiments show the factorized LDA model to give considydetter classification performance
and sparser topic representations than both a regular LD#eh{8] and SLDA [3]. Sparse repre-
sentations are advantageous for large datasets sinceabegt®rage space and computation time
during classification.

Future work includes investigating the effect of this faiation prior on other topic models, such
as HDP, and to integrate the prior into models with multipdéedviews, such as in [12, 28,130].
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