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AbstratIn this thesis a method based on a Markov hain Monte Carlo (MCMC)algorithm is proposed to ompute the probability of a rare event. The on-ditional distribution of the underlying proess given that the rare event o-urs has the probability of the rare event as its normalising onstant. Us-ing the MCMC methodology a Markov hain is simulated, with that on-ditional distribution as its invariant distribution, and information aboutthe normalising onstant is extrated from its trajetory.The algorithm is desribed in full generality and applied to four di�er-ent problems of omputing rare-event probability. The �rst problem on-siders a random walk Y1+· · ·+Yn exeeding a high threshold, where the in-rements Y are independent and identially distributed and heavy-tailed.The seond problem is an extension of the �rst one to a heavy-tailed ran-dom sum Y1 + · · · + YN exeeding a high threshold, where the numberof inrements N is random and independent of Y1, . . . , Yn. The thirdproblem onsiders a stohasti reurrene equation Xn = AnXn−1 + Bnexeeding a high threshold, where the innovations B are independent andidentially distributed and heavy-tailed. The �nal problem onsiders theruin probability for an insurane ompany with risky investments.An unbiased estimator of the reiproal probability for eah orre-sponding problem is onstruted whose normalised variane vanishes asymp-totially. The algorithm is illustrated numerially and ompared to exist-ing importane sampling algorithms.
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SammanfattningI denna avhandling presenteras en metod baserad på MCMC (Markovhain Monte Carlo) för att beräkna sannolikheten av en sällsynt hän-delse. Den betingade fördelningen för den underliggande proessen givetatt den sällsynta händelsen inträ�ar har den sökta sannolikheten somsin normaliseringskonstant. Med hjälp av MCMC-metodiken skapas enMarkovkedja med betingade fördelningen som sin invarianta fördelningoh en skattning av normaliseringskonstanten baseras på den simuleradekedjan.Algoritmen beskrivs i full generalitet oh tillämpas på fyra exempel-problem. Första problemet handlar om en slumpvandring Y1 + · · · + Ynsom överskrider en hög tröskel, då stegen Y är oberoende, likafödelademed tungsvansad fördelning. Andra problemet är en utvidgning av detförsta till summa av ett stokastiskt antal termer. Tredje problemet be-handlar sannolikheten att lösningen Xn till en stokastisk rekurrensekva-tion Xn = AnXn−1 + Bn överskrider en hög tröskel då innovationerna
B är oberoende, likafördelade med tungsvansad fördelning. Sista prob-lemet handlar om ruinsannolikhet för ett försäkringsbolag med riskfylldainvesteringar.För varje exempelproblem konstrueras en väntevärdesriktig skattningav den reiproka sannolikheten. Skattningarna är e�ektiva i meningenatt deras normaliserade varians går mot noll. Vidare är de konstrueradeMarkovkedjorna likformigt ergodiska. Algoritmerna illustreras numerisktoh jämfös med existerande importane sampling algoritmer.
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1 IntrodutionMathematial modelling of systems, in for instane natural sienes has been oneof the key building bloks of sienti� understanding. The system of interest maybe the motion of the planets, the dynami �ow in a liquid, hanges in stok priesor the total amount of insurane laims made in a year. Often the model involvesthe system's dynami laws, long-time behavior and di�erent possible senarios.Suh models nearly always inlude a parameter, or a set of parameters, whih,though unknown in advane are still needed to alibrate the model to reality.Thus in order to have a fully spei�ed model apable of foreasting the futureproperties or value, then one needs to measure the values of the the unknownparameters and thereby most likely introduing some measurement error. Thiserror is assumed to be random and thus the resulting foreast is the outome ofa stohasti mathematial model.With the ever inreasing omputational apaity in reent deades the mod-els are beoming more and more omplex. Minor aspets that were ignored inthe simpler models an now be inluded in the omputations, with inreasingomplexity. Researhers and pratitioners alike strive to enhane urrent modelsand introdue more and more details to it, in the hope of inreasing their fore-asting ability. Weather systems and �nane proesses are examples of modelsthat today are so involved that it is beoming di�ult to give analytial andlosed form answers to property and foreasting questions. This has given riseto alternative approahes to handling suh omplex stohasti models, namelystohasti simulation.Brie�y, simulation is the proess of sampling the underlying random fa-tors of a model to generate many instanes of it, in order to make inferenesabout its properties. This has proved to be a powerful tool for omputationin many aademi �elds suh as physis, hemistry, eonomis, �nane, in-surane. Generating instanes of even the highly advaned stohasti models,multi-dimensional, non-linear and highly stohasti models an be done in afew milliseonds. Stohasti simulation has thus played its part in the sien-ti� progress of reent deades and the simulation themselves has grown into anaademi �eld in its own right.In physis, hypothesis are often tested and veri�ed via a number of exper-iments. One experiment is arried out after another, and if su�iently manyof the experiments support the hypothesis then it aquires a ertain validityand beomes a theory. This was for instane the ase at CERN in the summerof 2012, when the existene of the Higgs boson was on�rmed through experi-ments whih supported the old and well known hypothesis. However, one annot always arry out experiments to validate hypotheses. Sometimes it is sim-ply impossible to repliate the model in reality, as is the ase when studyingthe e�ets of global warming. Obviously, sine we an only generate a singlephysial instane of the Earth, any simulations need to be done via omputermodelling. To better re�et reality, the resolution needs to be high and manydi�erent physial and meteorologial fators need to be taken into aount. Thesurfae of the Earth is broken into 10km times 10km squares, eah with itstemperature, air pressure, moisture and more. The dynamis of these weatherfators need to be simulated with small times steps, perhaps many years intothe future. The Mathematis and Climate Researh Network (MCRN) arriesout extensive stohasti simulations, repliating the Earth using di�erent types1



of senarios to foreast possible limate hanges. Clearly, this type of stohas-ti simulation is immensely omputationally ostly. This sienti� work alonejusti�es the importane of ontinuing researh and improvement in the �eld ofstohasti simulation.A sub�eld of stohasti simulation whih deals with unlikely events of smallprobability is alled rare-event simulation. Examples of rare-event simulationis when alulating apital requirements of a �naning �rm subjet to BaselIII regulations, or of a insurane ompany subjet to Solveny II regulations.Natural atastrophes suh as avalanhes, volani eruptions, to name but few,are also types rare-events for whih we are interested in analysing. This is ofpartiular importane when it omes to omputationally heavy models. Thatis beause, if an event is rare a omputer needs many simulations to get a fairpiture of its frequeny and the irumstanes in whih it ourred. And ifevery simulation takes up a lot of omputational time, then a thorough studywould require a prohibitive amount of omputer time would indeed be required.Therefore the improvement of e�ient rare-event stohasti simulation is of highimportane.The e�et of heavy-tails in stohasti modelling is an important fator not tobe overlooked. By heavy tails we mean essentially that there is a non-negligibleprobability of extreme outomes that di�er signi�antly from the average. Suhextreme outomes may have a onsiderable impat on a stohasti system. Forinstane, large laims due to a atastrophi event arrive at an insurane ompanyausing serious �nanial distress for the ompany. Similarly, large �utuationson the �nanial market may lead to insolveny of �nanial institutions. In datanetworks the arrival of huge �les may ause serious delays in the network, andso on.This thesis presents a new methodology in rare-event simulation based onthe theory of Markov hain Monte Carlo. The general method presented inSetion 2 makes very modest probabilisti assumptions and in subsequent se-tions (random walk in Setion 3, random sum in Setion 4, stohasti reurrentequations in Setion 5, ruin probability in Setion6) is applied to few onreteexamples and shown to be e�ient.1.1 Stohasti simulationIn this setion we introdue the basi tools in stohasti simulation, suh aspseudo random number, the inversion method and Monte Carlo. We presentthe Markov hain Monte Carlo methodology and disuss brie�y ergodiity.1.1.1 Sampling a random variableIn this setion we present the foundations of stohasti simulation, namely thegeneration of a pseudo random number by a omputer and how it an be usedto sample a random variable via the inversion method.Most statistial software programs provide methods for generating a uni-formly distributed pseudo random number on the interval, say, [0, 1]. Thesealgorithms are deterministi, at its ore, and an only imitate the propertiesand behaviour of a uniformly distributed random variable. The early designsof suh algorithms showed �aws in the sense that the pseudo random numbersgenerated followed a pattern whih ould easily be identi�ed and predited.2



Nowadays there exists many highly advaned algorithms that generate pseudorandom numbers, mimiking a true random number quite well. For the purposesof this thesis we assume the existene of an algorithm produing a uniformlydistributed pseudo random number, and ignore any de�ienies and errors aris-ing from the algorithm. In short, we assume that we an sample a perfetlyuniformly distributed random variable in some omputer program. For a morethorough and detailed disussion we refer to [48℄.Now onsider a random variable X and denote by F its probability distri-bution. Say we would like, via some omputer software, to sample the randomvariable X .One approah is the inversion method. The inversion method in-volves only applying the quantile funtion to uniformly random variable. Moreformally the algorithm is as follows.1. Sample U from the standard uniform distribution.2. Compute Z = F−1(U),where F−1 = min{x | F (x) ≥ p}. The random variable Z has the same distri-bution as X as the following display shows.
P(Z ≤ x) = P(F−1{U} ≤ x) = P(U ≤ F (x)) = F (x).The method an easily be extended to sampling X onditioned on being largerthan some onstant c. Meaning that we want to sample from the onditionaldistribution

P(X ∈ · | X > c).The algorithm is formally as follows.1. Sample U from the standard uniform distribution.2. Compute Z = F−1
((

1− F (c)
)
U + F (c)

).The distribution of Z is given by,
P(Z ≤ x) = P

(
(1− F (c))U + F (c) ≤ F (x)

)
= P

(
U ≤

F (x)− F (c)

1− F (c)

)

=
F (x) − F (c)

1− F (c)
=

P(c ≤ X ≤ x)

P(X > c)
= P(X ≤ x | X > c).Thus the inversion method provides a simple way of sampling a random variable,onditioned on being larger than c, based solely on the generation of a uniformlydistributed random number.The most standard tool for stohasti simulation is the Monte Carlo teh-nique. The power of Monte Carlo is its simpliity. Let X be a random variableand assume we want to ompute the probability that {X ∈ A} for some Borelset A. The idea of Monte Carlo is to sample independent and identially dis-tributed opies of random variable, say X1, . . . , Xn and simply ompute thefrequeny of hitting the set A. More formally, the Monte Carlo estimator of

P(X ∈ A) is given by
p̂ =

1

n

n∑

i=1

I{Xi ∈ A}.While the proedure is easy and simple there are drawbaks that will be dis-ussed in Setion 1.1.3. 3



1.1.2 Markov hain Monte CarloIn this setion we present a simulation tehnique alled Markov hain MonteCarlo (MCMC) for sampling a random variable X despite only having limitedinformation about its distribution.MCMC is typially useful when sampling a random variable X having adensity f that is only known up to a onstant, say
f(x) =

π(x)

c
,where π is known but c = ∫ π(x)dx is unknown. This may seem strange setupat �rst but one noted that the normalising onstant c may be di�ult to deter-mine, say there is no known losed form for c, then this is a natural formulation.An example of this type of setup an be found in Bayesian statistis and hiddenMarkov hains.In short, the basi idea of sampling via MCMC is to generate a Markov hain

(Yt)t≥0 whose invariant density is the same as of X , namely f . There existsplentiful of MCMC algorithms but we shall only name two in this thesis, theMetropolis-Hastings algorithm and the Gibbs algorithm.The method �rst laid out by Metropolis [41℄ and then extended by Hastings[26℄ is based on a proposal density, whih we shall denote by g. Firstly theMarkov hain (Yt)t≥0 is initialised with some Y0 = y0. The idea behind theMetropolis-Hastings algorithm is to generate a proposal state Z using the pro-posal density g. The next state of the Markov hain is then assigned the value
Z with the aeptane probability α, otherwise the next state of the Markovhain stays unhanged (i.e. retains the same value as before). More formallythe algorithm is as follows.Algorithm 1.1. Set Y0 = y0. For a given state Yk, for some k = 0, 1, . . ., thenext state Yk+1 is sampled as follows1. Sample Z from the proposal density g.2. Let

Yk+1 =

{
Z with probability α(Yk, Z)
Yk otherwisewhere α(y, z) = min{1, r(y, z)}, r(y, z) = π(z)g(z,y)

π(y)g(y,z) .This algorithm produes a Markov hain (Yk)k≥1 whose invariant density isgiven by f . Fore more details on the Metropolis-Hastings algorithm we refer to[3℄ and [23℄.Another method of MCMC sampling is the Gibbs sampler, whih was orig-inally introdued by Geman and Geman in [22℄. If the random variable X ismulti-dimensional X = (X1, . . . , Xd), the Gibbs sampler updates eah om-ponent at the time by sampling from the onditional marginal distributions.Let fk|6k(xk | x1, . . . , xk−1, xk+1, . . . , xd), k = 1, . . . , d, denote the onditionaldensity of Xk given X1, . . . , Xk−1, Xk+1, . . . , Xd. The Gibbs sampler an beviewed as a speial ase of the Metropolis-Hastings algorithm where, given
Yk = (Yk,1, . . . , Yk,d), one �rst updates Yk,1 from the onditional density f1|61(· |
Yk,2, . . . , Yk,d), then Yk,2 from the onditional density f2|62(· | Yk+1,1, Yk,3, . . . , Yk,d),4



et. By sampling from these proposal densities the aeptane probability is al-ways equal to 1, so no aeptane step is needed.An important property of a Markov hain is its ergodiity. Informally, er-godiity measures the how quikly the Markov hain mixes and thus how soonthe dependeny of the hain dies out. This is a highly desired property sinegood mixing speeds up the onvergene of the Markov hain.1.1.3 Rare-event simulationIn some spei� ases we are interested in omputing the probability of a rareevent. This may be the probability of ruin of a �nanial ompany due to random-ness in the future value of assets and liabilities. The multidimensional system ofinvestments and bonds may be so omplex that a simulation of the atastrophievent of a ruin may be feasible. For another example, onsider a graph of somesort and say we send out a partile on a random walk along the graph givensome starting position. Computing the small, and quikly dereasing probabil-ity, of that partile returning to its starting position may be of interest as it isan indiator of that graph's dimension. For these reasons and many other, theomputation of the probability for a rare-event is relevant.Consider an unbiased estimator p̂ of the probability p and investigate its per-formane as the probability gets smaller p → 0. A useful performane measureis the relative error: RE(p̂) = Std(p̂)
p

.An estimator is said to have vanishing relative error if RE(p̂) → 0 as p → 0and bounded relative error if RE(p̂) < ∞ as p → 0.It is well known that the Monte Carlo estimator is ine�ient for omputingrare-event probabilities as the following argument shows. Let X be a givenrandom variable with distribution funtion F and say we would like to ompute
p = P(X ∈ A). We sample number of i.i.d. opies of X , denoted by X1, . . . , Xnand ompute

p̂ =
1

n

n∑

i=1

I{Xi ∈ A}.The variane of the estimator is Var(p̂) = 1
n
p(1−p), whih learly tends to zeroas n → ∞ but that is not main onern here. What is more interesting is itsrelative error as the probability p tends to zero. Its relative error is given byStd(p̂)

p
=

√
1

n

(1
p
− 1
).The relative error tends to in�nity as p → 0. Thus making the Monte Carloalgorithm very ostly when it omes to rare-event simulation. For example, if arelative error at 1% is desired and the probability is of order 10−6 then we needto take n suh that √(106 − 1)/n ≤ 0.01. This implies that n ≈ 1010 whih isinfeasible on most omputer systems.To improve on standard Monte Carlo a ontrol mehanism needs to be in-trodued that steer the samples towards the relevant part of the state spae,thereby inreasing the relevane of eah sample. There are several ways to dothis, for instane by importane sampling desribed brie�y below, or by splitting5



shemes as by L'Eyer [39℄, or interating partile systems as by Del Moral in[14℄.1.1.4 Importane samplingThe simulation method of importane sampling omes as a remedy to the prob-lem arising in rare-event simulation. The underlying problem of the Monte Carlosimulation for rare-event studies is the fat that we get too few samples in theimportant part of the output spae, meaning that we get too few samples where
{X ∈ A}. The basi idea of importane sampling is that instead of samplingfrom the original distribution F the X1, . . . , Xn are sampled from a so-alledsampling distribution, say G. The sampling distribution G is hosen suh thatwe obtain more samples where {X ∈ A}. The importane sampling is then sim-ply the average of hitting the event, weighted with the relevant Radon-Nikodymderivative,

p̂IS =
1

n

n∑

i=1

dF

dG
I{Xi ∈ A}.This is a unbiased and onsistent estimator sine

EG[p̂IS] = ∫
A

dF

dG
dG = P(X ∈ A).The main di�ulty in importane sampling is to design the sampling distri-bution. Traditionally the funtionality and reliability of new stohasti simu-lation algorithms is �proved� by running extensive numerial experiments. Butnumerial evidene alone is insu�ient. There are numerous examples wherethe standard heuristis fail and the numerial evidene indiates that the al-gorithm has onverged when, in fat, it is severely biased [24℄. The limitedevidene provided by simply running numerial experiments has generated theneed for a deeper theoretial understanding and analysis of the performaneof stohasti simulation algorithms. Over the last deade mathematial toolsfrom stability theory and ontrol theory have been developed with the aim totheoretially quantify the performane of stohasti simulation algorithms foromputing probabilities of rare events. In the ontext of importane samplingtwo main approahes have been studied; the subsolution approah, based onontrol theory, by Dupuis, Wang, and ollaborators, see e.g. [18, 19, 17℄, andthe approah based on Lyapunov funtions and stability theory by Blanhet,Glynn, and others, see [5, 6, 7, 10℄.In the theoretial work on e�ient importane sampling an algorithm is saidto be e�ient if relative error per sample, Std(p̂)/p does not grow too rapidlyas p ↓ 0.1.1.5 Heavy-tailed distributionsIn this thesis we onsider in partiular probability distributions F with heavy-tails. The notion of heavy tails refers to the rate of deay of the tail F = 1−Fof a distribution funtion F . A popular lass of heavy-tailed distributions is thelass of subexponential distributions. A distribution funtion F supported onthe positive axis is said to belong to the subexponential distributions if

lim
x→∞

P(X1 +X2 > x)

P(X1 > x)
= 2,6



for independent random variables X1 and X2 with distribution F . A sublassof the subexponential distributions is the regularly varying distributions. F isalled regularly varying (at ∞) with index −α ≤ 0 if
lim
t→∞

F (tx)

F (t)
= x−α, for all x > 0.The heavy-tailed distributions are often desribed with the �one big jump�analogy, meaning that the event of a sum of heavy-tailed random variables beinglarge is dominated by the ase of one of the variables being very large whilstthe rest are relatively small. This is in sharp ontrast to the ase of light-tails,where the same event is dominated by the ase of every variable ontributingequally to the total. As a referene to the one big jump analogy we refer thereader to [28, 30, 15℄.This one big jump phenomena has been observed in empirial data. Forinstane, when we onsider stok market indies suh as Nasdaq, Dow Joneset. it turns out that the distribution of daily log returns typially has a heavyleft tail, see Hult et al. in [29℄. Another example is the well studied Danish �reinsurane data, whih onsists of real-life laims aused by industrial �res inDenmark. While the arrivals of laims is showed to be not far from Poisson, thelaim size distribution shows lear heavy-tail behavior. The data set is analysedby Mikosh in [43℄ and the tail of the laim size is shown to be �t well with aPareto distribution.Stohasti simulation in the presene of heavy-tailed distributions has beenstudied with muh interest in reent years. The onditional Monte Carlo teh-nique was applied on this setting by Asmussen et al. [2, 4℄. Dupuis et al. [16℄ usedimportane sampling algorithm in a heavy-tailed setting. Finally we mentionthe work of Blanhet et al. onsidering heavy-tailed distributions in [11, 8℄.1.2 Markov hain Monte Carlo in rare-event simulationIn this setion we desribe a new methodology based on Markov hain MonteCarlo (MCMC), for omputing probabilities of rare events. A more generalversion of the algorithm, for omputing expetations, is provided in Setion 2along with a preise asymptoti e�ieny riteria.1.2.1 FormulationLet X be a real-valued random variable with distribution F and density f withrespet to the Lebesgue measure. The problem is to ompute the probability

p = P(X ∈ A) =

∫

A

dF . (1.1)The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA bethe onditional distribution of X given X ∈ A. The density of FA is given by
dFA

dx
(x) =

f(x)I{x ∈ A}

p
. (1.2)Consider a Markov hain (Xt)t≥0 with invariant density given by (1.2). Suh aMarkov hain an be onstruted by implementing an MCMC algorithm suhas a Gibbs sampler or a Metropolis-Hastings algorithm, see e.g. [3, 23℄.7



To onstrut an estimator for the normalising onstant p, onsider a non-negative funtion v, whih is normalised in the sense that ∫
A
v(x)dx = 1. Thefuntion v will be hosen later as part of the design of the estimator. For anyhoie of v the sample mean,

1

T

T−1∑

t=0

v(Xt)I{Xt ∈ A}

f(Xt)
,an be viewed as an estimate of

EFA

[
v(X)I{X ∈ A}

f(X)

]
=

∫

A

v(x)

f(x)

f(x)

p
dx =

1

p

∫

A

v(x)dx =
1

p
.Thus,

q̂T =
1

T

T−1∑

t=0

u(Xt), where u(Xt) =
v(Xt)I{Xt ∈ A}

f(Xt)
, (1.3)is an unbiased estimator of q = p−1. Then p̂T = q̂−1

T is an estimator of p.The expeted value above is omputed under the invariant distribution FAof the Markov hain. It is impliitly assumed that the sample size T is su�-iently large that the burn-in period, the time until the Markov hain reahesstationarity, is negligible or alternatively that the burn-in period is disarded.Another remark is that it is theoretially possible that all the terms in the sumin (1.3) are zero, leading to the estimate q̂T = 0 and then p̂T = ∞. To avoidsuh nonsense one an simply take p̂T as the minimum of q̂−1
T and one.There are two essential design hoies that determine the performane of thealgorithm: the hoie of the funtion v and the design of the MCMC sampler.The funtion v in�uenes the variane of u(Xt) in (1.3) and is therefore of mainonern for ontrolling the rare-event properties of the algorithm. It is desirableto take v suh that the normalised variane of the estimator, given by p2 Var(q̂T ),is not too large. The design of the MCMC sampler, on the other hand, is ruialto ontrol the dependene of the Markov hain and thereby the onvergene rateof the algorithm as a funtion of the sample size. To speed up simulation it isdesirable that the Markov hain mixes fast so that the dependene dies outquikly.1.2.2 Controlling the normalised varianeThis setion ontains a disussion on how to ontrol the performane of theestimator q̂T by ontrolling its normalised variane.For the estimator q̂T to be useful it is of ourse important that its varianeis not too large. When the probability p to be estimated is small it is reasonableto ask that Var(q̂T ) is of size omparable to q2 = p−2, or equivalently, that thestandard deviation of the estimator is roughly of the same size as p−1. To thisend the normalised variane p2 Var(q̂T ) is studied.Let us onsider Var(q̂T ). With

u(x) =
v(x)I{x ∈ A}

f(x)
,8



it follows that
p2VarFA

(q̂T ) = p2 VarFA

( 1

T

T−1∑

t=0

u(Xt)
)

= p2
( 1

T
VarFA

(u(X0)) +
2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFA
(u(Xs), u(Xt))

), (1.4)Let us for the moment fous our attention on the �rst term. It an be writtenas
p2

T
VarFA

(
u(X0)

)
=

p2

T

(
EFA

[
u(X0)

2
]
−EFA

[
u(X0)

]2)

=
p2

T

( ∫ ( v(x)
f(x)

I{x ∈ A}
)2

FA(dx) −
1

p2

)

=
p2

T

( ∫ v2(x)

f2(x)
I{x ∈ A}

f(x)

p
dx−

1

p2

)

=
1

T

( ∫

A

v2(x)p

f(x)
dx− 1

).Therefore, in order to ontrol the normalised variane the funtion v must behosen so that ∫
A

v2(x)
f(x) dx is lose to p−1. An important observation is that theonditional density (1.2) plays a key role in �nding a good hoie of v. Letting

v be the onditional density in (1.2) leads to
∫

A

v2(x)

f(x)
dx =

∫

A

f2(x)I{x ∈ A}

p2f(x)
dx =

1

p2

∫

A

f(x)dx =
1

p
,whih implies,

p2

T
VarFA

(
u(X)

)
= 0.This motivates taking v as an approximation of the onditional density (1.2).This is similar to the ideology behind hoosing an e�ient importane samplingestimator.If for some set B ⊂ A the probability P(X ∈ B) an be omputed expliitly,then a andidate for v is

v(x) =
f(x)I{x ∈ B}

P(X ∈ B)
,the onditional density of X given X ∈ B. This andidate is likely to performwell if P(X ∈ B) is a good approximation of p. Indeed, in this ase

∫

A

v2(x)

f(x)
dx =

∫

A

f2(x)I{x ∈ B}

P(X ∈ B)2f(x)
dx =

1

P(X ∈ B)2

∫

B

f(x)dx =
1

P(X ∈ B)
,whih will be lose to p−1.Now, let us shift emphasis to the ovariane term in (1.4). As the samples

(Xt)
T−1
t=0 form a Markov hain the Xt's are dependent. Therefore the ovarianeterm in (1.4) is non-zero and may not be ignored. The rude upper bound

CovFA
(u(Xs), u(Xt)) ≤ VarFA

(u(X0)),9



leads to the upper bound
2p2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFA
(u(Xs), u(Xt)) ≤ p2

(
1−

1

T

)
VarFA

(u(X0))for the ovariane term. This is a very rude upper bound as it does not deayto zero as T → ∞. But, at the moment, the emphasis is on small p so wewill proeed with this upper bound anyway. As indiated above the hoie of vontrols the term p2 VarFA
(u(X0)). We onlude that the normalised variane(1.4) of the estimator q̂T is ontrolled by the hoie of v when p is small.1.2.3 Ergodi propertiesAs we have just seen the hoie of the funtion v ontrols the normalised varianeof the estimator for small p. The design of the MCMC sampler, on the otherhand, determines the strength of the dependene in the Markov hain. Strongdependene implies slow onvergene whih results in a high omputational ost.The onvergene rate of MCMC samplers an be analysed within the theoryof ϕ-irreduible Markov hains. Fundamental results for ϕ-irreduible Markovhains are given in [42, 44℄. We will fous on onditions that imply a geometrionvergene rate. The onditions given below are well studied in the ontext ofMCMC samplers. Conditions for geometri ergodiity in the ontext of Gibbssamplers have been studied by e.g. [12, 51, 52℄, and for Metropolis-Hastingsalgorithms by [40℄.A Markov hain (Xt)t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt =

x) is ϕ-irreduible if there exists a measure ϕ suh that ∑t p
(t)(x, ·) ≪ ϕ(·),where p(t)(x, ·) = P(Xt ∈ · | X0 = x) denotes the t-step transition kernel and

≪ denotes absolute ontinuity. A Markov hain with invariant distribution π isalled geometrially ergodi if there exists a positive funtion M and a onstant
r ∈ (0, 1) suh that

‖p(t)(x, ·) − π(·)‖TV ≤ M(x)rt, (1.5)where ‖ · ‖TV denotes the total-variation norm. This ondition ensures that thedistribution of the Markov hain onverges at a geometri rate to the invariantdistribution. If the funtion M is bounded, then the Markov hain is said to beuniformly ergodi. Conditions suh as (1.5) may be di�ult to establish diretlyand are therefore substituted by suitable minorisation or drift onditions. Aminorisation ondition holds on a set C if there exist a probability measure ν,a positive integer t0, and δ > 0 suh that
p(t0)(x,B) ≥ δν(B),for all x ∈ C and Borel sets B. In this ase C is said to be a small set.Minorisation onditions have been used for obtaining rigorous bounds on theonvergene of MCMC samplers, see e.g. [49℄.If the entire state spae is small, then the Markov hain is uniformly er-godi. Uniform ergodiity does typially not hold for Metropolis samplers, seeMengersen and Tweedie in [40℄ Theorem 3.1. Therefore useful su�ient on-ditions for geometri ergodiity are often given in the form of drift onditions[12, 40℄. Drift onditions, established through the onstrution of appropriateLyapunov funtions, are also useful for establishing entral limit theorems forMCMC algorithms, see [34, 42℄ and the referenes therein.10



1.2.4 E�ieny of the MCMC algorithmRoughly speaking, the arguments given above lead to the following desired prop-erties of the estimator.1. Rare event e�ieny: Construt an unbiased estimator q̂T of p−1 aord-ing to (1.3) by �nding a funtion v whih approximates the onditionaldensity (1.2). The hoie of v ontrols the normalised variane of theestimator.2. Large sample e�ieny: Design the MCMC sampler, by �nding an ap-propriate Gibbs sampler or a proposal density in the Metropolis-Hastingsalgorithm, suh that the resulting Markov hain is geometrially ergodi.1.3 Outline and ontribution of this thesisThe outline and ontribution of the thesis are as follows.a. General formulation of the algorithm in Setion 2. In this setion wepresent the formal methodology in how to set up the MCMC simulationfor e�ient rare-event omputation. The probabilisti assumptions madeare mild and the setting is for instane not restrited to heavy-tails. Thetwo essential design hoies are highlighted. Corresponding to rare-evente�ieny and large sample e�ieny.b. Appliation to heavy-tailed random walks in Setion 3. In this setion theMCMC methodology is applied to the problem of omputing
pn = P(Y1 + · · ·+ Yn > an),where an → ∞ su�iently fast so that the probability tends to zero. Theinrements Y are assumed to be heavy-tailed. We present a Gibbs samplerto produe a Markov hain whose invariant distribution is the onditionaldistribution

P
(
(Y1, . . . , Yn) ∈ · | Y1 + · · ·+ Yn > an

).The Markov hain is shown to preserve stationarity and uniformly ergodi,ensuring the large sample e�ieny. In addition we design an estimatorfor 1/pn having vanishing normalised variane. Numerial experimentsperformed and omparison made between MCMC and best-performingexisting importane sampling estimators as well as standard Monte Carlo.. Appliation to heavy-tailed random sums in Setion 4. In this setion theMCMC methodology is applied to the problem of omputing
pn = P(Y1 + · · ·+ YNn

> aNn
),where N is a random variable and aN → ∞ su�iently fast so that theprobability tends to zero. The inrements Y are assumed to be heavy-tailed. We present a Gibbs sampler to produe a Markov hain whoseinvariant distribution is the onditional distribution

P
(
(N, Y1, . . . , YN ) ∈ · | Y1 + · · ·+ YN > aN

).11



The Markov hain is shown to preserve stationarity and uniformly ergodi,ensuring the large sample e�ieny. In addition we design an estimatorfor 1/pn having vanishing normalised variane. Numerial experimentsperformed and omparison made between MCMC and best-performingexisting importane sampling estimators as well as standard Monte Carlo.d. Appliation to stohasti reurrent equations in Setion 5. In this setionthe MCMC methodology is applied to the problem of omputing pn =
P(Xn > an), where

Xn = AnXn−1 +Bn,
X0 = 0,and an → ∞ su�iently fast so that the probability tends to zero. The in-rements B are assumed to be regularly varying of index α and E[Aα+ǫ] <

∞ for some ǫ > 0. We present a Gibbs sampler to produe a Markov hainwhose invariant distribution is the onditional distribution
P
(
(A2, . . . , An, B1, . . . , Bn) ∈ · | Xn > an

).The Markov hain is shown to preserve stationarity and uniformly ergodi,ensuring the large sample e�ieny. In addition we design an estimatorfor 1/pn having vanishing normalised variane. Numerial experimentsperformed and omparison made between MCMC and best-performingexisting importane sampling estimators as well as standard Monte Carlo.e. Appliation to omputing probability of ruin in an insurane model withrisky investments in Setion 6...A paper titled Markov hain Monte Carlo for omputing rare-event proba-bilities for a heavy-tailed random walk by Gudmundsson and Hult [25℄ basedon Setions 2, 3, and 4 in the thesis has been aepted for publiation in theJournal of Applied Probability in June 2014.
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2 General Markov hain Monte Carlo formula-tionIn this setion the Markov hain Monte Carlo ideas are applied to the problemof omputing an expetation. Here the setting is general, for instane, there isno assumption that densities with respet to Lebesgue measure exist.Let X be a random variable with distribution F and h be a non-negative
F -integrable funtion. The problem is to ompute the expetation

θ = E
[
h(X)

]
=

∫
h(x)dF (x).In the speial ase when F has density f and h(x) = I{x ∈ A} this problemredues to the simpler problem of omputing the probability in (1.1). illustratedin Setion 1.2.The analogue of the onditional distribution in (1.2) is the distribution Fhgiven by

Fh(B) =
1

θ

∫

B

h(x)dF (x), for measurable sets B.Consider a Markov hain (Xt)t≥0 having Fh as its invariant distribution. Tode�ne an estimator of θ−1, onsider a probability distribution V with V ≪ Fh.Then it follows that V ≪ F and it is assumed that the density dV/dF is known.Consider the estimator of ζ = θ−1 given by
ζ̂T =

1

T

T−1∑

t=0

u(Xt), where u(x) =
1

θ

dV

dFh

(x). (2.1)Note that u does not depend on θ beause V ≪ Fh and therefore
u(x) =

1

θ

dV

dFh

(x) =
1

h(x)

dV

dF
(x),for x suh that h(x) > 0. The estimator (2.1) is a generalisation of the estimator(1.3) where one an think of v as the density of V with respet to Lebesguemeasure. An estimator of θ an then onstruted as θ̂T = ζ̂−1

T .The variane analysis of ζ̂T follows preisely the steps outlined in Setion1.2. The normalised variane is
θ2 VarFh

(ζ̂T ) =
θ2

T
VarFh

(
u(X0)

)
+

2θ2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFh

(
u(Xs), u(Xt)

), (2.2)where the �rst term an be rewritten, similarly to the display (1.4), as
θ2

T
VarFh

(
u(X0)

)
=

1

T

(
EV

[ dV
dFh

]
− 1
).The analysis above indiates that an appropriate hoie of V is suh that

EV [
dV
dFh

] is lose to 1. Again, the ideal hoie would be taking V = Fh leading tozero variane. This hoie is not feasible but nevertheless suggests seleting V asan approximation of Fh. As already noted this is similar to the ideology behindhoosing an e�ient importane sampling estimator. The di�erene being thathere V ≪ F is required whereas in importane sampling F needs be absolutelyontinuous with respet to the sampling distribution. The rude upper boundfor the ovariane term in (2.2) is valid, just as in Setion 1.2.13



2.1 Asymptoti e�ieny riteriaAsymptoti e�ieny an be onveniently formulated in terms of a limit riteriaas a large deviation parameter tends to in�nity. As is ustomary in problemsrelated to rare-event simulation the problem at hand is embedded in a sequeneof problems, indexed by n = 1, 2, . . . . The general setup is formalised as follows.Let (X(n))n≥1 be a sequene of random variables with X(n) having distri-bution F (n). Let h be a non-negative funtion, integrable with respet to F (n),for eah n. Suppose
θ(n) = E

[
h(X(n))

]
=

∫
h(x)dF (n)(x) → 0,as n → ∞. The problem is to ompute θ(n) for some large n.Denote by F

(n)
h the distribution with dF

(n)
h /dF (n) = h/θ(n). For the nthproblem, a Markov hain (X

(n)
t )T−1

t=0 with invariant distribution F
(n)
h is gener-ated by an MCMC algorithm. The estimator of ζ(n) = (θ(n))−1 is based on aprobability distribution V (n), suh that V (n) ≪ F

(n)
h , with known density withrespet to F (n). An estimator ζ̂(n)T of ζ is given by

ζ̂
(n)
T =

1

T

T−1∑

t=0

u(n)(X
(n)
t ),where

u(n)(x) =
1

h(x)

dV (n)

dF (n)
(x).The heuristi e�ieny riteria in Setions 1.2 an now be rigorously formu-lated as follows:1. Rare-event e�ieny: Selet the probability distributions V (n) suh that

(θ(n))2 Var
F

(n)
h

(u(n)(X)) → 0, as n → ∞.2. Large sample size e�ieny: Design the MCMC sampler, by �nding an ap-propriate Gibbs sampler or a proposal density for the Metropolis-Hastingsalgorithm, suh that, for eah n ≥ 1, the Markov hain (X
(n)
t )t≥0 is geo-metrially ergodi.Remark 2.1. The rare-event e�ieny riteria is formulated in terms of thee�ieny of estimating (θ(n))−1 by ζ̂

(n)
T . If one insists on studying the meanand variane of θ̂(n)T = (ζ̂

(n)
T )−1, then the e�ets of the transformation x 7→ x−1must be taken into aount. For instane, the estimator θ̂(n)T is biased and itsvariane ould be in�nite. The bias an be redued for instane via the deltamethod illustrated in [3, p. 76℄. We also remark that even in the estimation of

(θ(n))−1 by ζ̂
(n)
T there is a bias oming from the fat that the Markov hain notbeing perfetly stationary.
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3 Heavy-tailed Random WalkThe MCMC methodology presented in Setion 2 is here applied to omputethe probability that a random walk Sn = Y1 + · · · + Yn, where Y1, . . . , Yn arenon-negative, independent and heavy-tailed, exeeds a high threshold an. Thisproblem has reeived some attention in the ontext of onditional Monte Carloalgorithms [2, 4℄ and importane sampling algorithms [35, 16, 11, 8℄.In this setion a Gibbs sampler is presented for sampling from the on-ditional distribution P((Y1, . . . , Yn) ∈ · | Sn > an). The resulting Markovhain is proved to be uniformly ergodi. An estimator for (p(n))−1 of the form(2.1) is suggested with V (n) as the onditional distribution of (Y1, . . . , Yn) given
max{Y1, . . . , Yn} > an. The estimator is proved to have vanishing normalisedvariane when the distribution of Y1 belongs to the lass of subexponential dis-tributions. The proof is elementary and is ompleted in a few lines. This is insharp ontrast to e�ieny proofs for importane sampling algorithms for thesame problem, whih require more restritive assumptions on the tail of Y1 andtend to be long and tehnial [16, 11, 9℄. The setion is onluded with nu-merial experiments to illustrate the omparativeness with existing importanesampling algorithm and standard Monte Carlo.3.1 A Gibbs sampler for omputing P(Sn > an)Let Y1, . . . , Yn be non-negative independent and identially distributed randomvariables with ommon distribution FY and density fY with respet to somereferene measure µ. Consider the random walk Sn = Y1 + · · · + Yn and theproblem of omputing the probability

p(n) = P(Sn > an),where an → ∞ su�iently fast that p(n) → 0 as n → ∞.It is onvenient to denote by Y(n) the n-dimensional random vetor
Y(n) = (Y1, . . . , Yn)

⊤ ,and the set
An = {y ∈ R

n : 1
⊤

y > an},where 1 = (1, . . . , 1)
⊤

∈ R
n and y = (y1, . . . , yn)

⊤ . With this notation
p(n) = P(Sn > an) = P(1

⊤

Y(n) > an) = P(Y(n) ∈ An).The onditional distribution
F

(n)
An

(·) = P(Y(n) ∈ · | Y(n) ∈ An),has density
dF

(n)
An

dµ
(y1, . . . , yn) =

∏n
j=1 fY (yj)I{y1 + · · ·+ yn > an}

p(n)
. (3.1)The �rst step towards de�ning the estimator of p(n) is to onstrut theMarkov hain (Y

(n)
t )t≥0 whose invariant density is given by (3.1) using a Gibbssampler. In short, the Gibbs sampler updates one element of Y(n)

t at a timekeeping the other elements onstant. Formally the algorithm proeeds as follows.15



Algorithm 3.1. Start at an initial state Y(n)
0 = (Y0,1, . . . , Y0,n)

⊤ where Y0,1 +

· · ·+ Y0,n > an. Given Y
(n)
t = (Yt,1, . . . , Yt,n)

⊤ , for some t = 0, 1, . . ., the nextstate Y
(n)
t+1 is sampled as follows:1. Draw j1, . . . , jn from {1, . . . , n} without replaement and proeed by up-dating the omponents of Y(n)

t in the order thus obtained.2. For eah k = 1, . . . , n, repeat the following.(a) Let j = jk be the index to be updated and write
Yt,−j = (Yt,1, . . . , Yt,j−1, Yt,j+1, . . . , Yt,n)

⊤ .Sample Y ′
t,j from the onditional distribution of Y given that the sumexeeds the threshold. That is,
P(Y ′

t,j ∈ · | Yt,−j) = P

(
Y ∈ · | Y +

∑

k 6=j

Yt,k > an

).(b) Put Y′
t = (Yt,1, . . . , Yt,j−1, Y

′
t,j , Yt,j+1, . . . , Yt,n)

⊤ .3. Draw a random permutation π of the numbers {1, . . . , n} from the uniformdistribution and put Y(n)
t+1 = (Y ′

t,π(1), . . . , Y
′
t,π(n))

⊤ .Iterate steps (1)-(3) until the entire Markov hain (Y
(n)
t )T−1

t=0 is onstruted.Remark 3.2. (i) In the heavy-tailed setting the trajetories of the random walkleading to the rare event are likely to onsist of one large inrement (the bigjump) while the other inrements are average. The purpose of the permutationstep is to fore the Markov hain to mix faster by moving the big jump todi�erent loations. However, the permutation step in Algorithm 3.1 is not reallyneeded when onsidering the probability P(Sn > an). This is due to the fatthat the summation is invariant of the ordering of the steps.(ii) The algorithm requires sampling from the onditional distribution P(Y ∈
· | Y > c) for arbitrary c. This is easy whenever inversion is feasible, see [3,p. 39℄, or aeptane/rejetion sampling an be employed. There are, however,situations where sampling from the onditional distribution P(Y ∈ · | Y > c)may be di�ult, see [33, Setion 2.2℄.The following proposition on�rms that the Markov hain (Y

(n)
t )t≥0, gener-ated by Algorithm 3.1, has F (n)

An
as its invariant distribution.Proposition 3.3. The Markov hain (Y

(n)
t )t≥0, generated by Algorithm 3.1,has the onditional distribution F

(n)
An

as its invariant distribution.Proof. The goal is to show that eah updating step (Step 2 and 3) of the al-gorithm preserves stationarity. Sine the onditional distribution F
(n)
An

is per-mutation invariant it is lear that Step 3 preserves stationarity. Therefore it issu�ient to onsider Step 2 of the algorithm.Let Pj(y, ·) denote the transition probability of the Markov hain (Y
(n)
t )t≥0orresponding to the jth omponent being updated. It is su�ient to show that,16



for all j = 1, . . . ,m and all Borel sets of produt form B1 × · · · ×Bn ⊂ An, thefollowing equality holds:
F

(n)
An

(B1 × · · · ×Bn) = E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)].Observe that, beause B1 × · · · ×Bn ⊂ An,
F

(n)
An

(B1 × · · · ×Bn) = E

[ n∏

k=1

I{Yk ∈ Bk} | Sn > an

]

=
E[I{Yj ∈ Bj}I{Sn > an}

∏
k 6=j I{Yk ∈ Bk}]

P(Sn > an)

=

E

[
E[I{Yj∈Bj}|Yj>an−Sn,−j,Y

(n)
−j ]

∏
k 6=j I{Yk∈Bk}

P(Yj>an−Sn,−j|Y
(n)
−j )

]

P(Sn > an)

=
E[Pj(Y

(n), B1 × · · · × Bn)
∏

k 6=j I{Yk ∈ Bk}]

P (Sn > an)

= E[Pj(Y
(n), B1 × · · · ×Bn) | Sn > an]

= E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)],with the onventional notation of writing Y(n) = (Y1, . . . , Yn)
⊤ , Sn = Y1+ · · ·+

Yn, Y(n)
−j = (Y1, . . . , Yj−1, Yj+1, Yn)

⊤ and Sn,−j = Y1 + · · ·+Yj−1 +Yj+1 + · · ·+
Yn.As for the ergodi properties, Algorithm 3.1 produes a Markov hain whihis uniformly ergodi.Proposition 3.4. For eah n ≥ 1, the Markov hain (Y

(n)
t )t≥0 is uniformlyergodi. In partiular, it satis�es the following minorisation ondition: thereexists δ > 0 suh that

P(Y
(n)
1 ∈ B | Y

(n)
0 = y) ≥ δF

(n)
An

(B),for all y ∈ An and all Borel sets B ⊂ An.Proof. Take an arbitrary n ≥ 1. Uniform ergodiity an be dedued from thefollowing minorisation ondition (see [44℄): there exists a probability measure
ν, δ > 0, and an integer t0 suh that

P(Y
(n)
t0

∈ B | Y
(n)
0 = y) ≥ δν(B),for every y ∈ An and Borel set B ⊂ An. Take y ∈ An and write g( · | y) for thedensity of P(Y

(n)
1 ∈ · | Y

(n)
0 = y). The goal is to show that the minorisationondition holds with t0 = 1, δ = p(n)/n!, and ν = F

(n)
An

.For any x ∈ An there exists an ordering j1, . . . , jn of the numbers {1, . . . , n}suh that
yj1 ≤ xj1 , . . . , yjk ≤ xjk , yjk+1

> xjk+1
, . . . , yjn > xjn ,17



for some k ∈ {0, . . . , n}. The probability to draw this partiular ordering inStep 1 of the algorithm is at least 1/n!. It follows that
g(x | y) ≥

1

n!

fY (xj1 )I{xj1 ≥ an −
∑

i6=j1
yi}

FY (an −
∑

i6=j1
yi)

×
fY (xj2)I{xj2 ≥ an −

∑
i6=j1,j2

yi − xj1}

FY (an −
∑

i6=j1,j2
yi − xj1)...

×
fY (xjn)I{xjn ≥ an − xj1 − . . . xjn−1}

FY (an − xj1 − . . . xjn−1)
.By onstrution of the ordering j1, . . . , jn all the indiators are equal to 1 andthe expression in the last display is bounded from below by

1

n!

n∏

j=1

fY (xj) =
p(n)

n!
·

∏n
j=1 fY (xj)I{x1 + · · ·+ xn > an}

p(n)
.The proof is ompleted by integrating both sides of the inequality over any Borelset B ⊂ An.Remark 3.5. To keep the proof of Proposition 3.4 simple, we have not usedthe permutation step of the algorithm in the proof and not tried to optimise

δ. By taking advantage of the permutation step we believe that the onstant δould, with some additional e�ort, be inreased by a fator n!.3.2 Construting an e�ient estimatorNote that so far the distributional assumption of steps Y1, . . . , Yn of the ran-dom walk have been ompletely general. For the rare-event properties of theestimator the design of V (n) is essential and this is where the distributionalassumptions beome important. In this setion a heavy-tailed random walk isonsidered. To be preise, assume that the variables Y1, . . . , Yn are nonnegativeand that the tail of FY is heavy in the sense that there is a sequene (an) ofreal numbers suh that
lim
n→∞

P(Sn > an)

P(Mn > an)
= 1, (3.2)where Mn denotes the maximum of Y1, . . . , Yn. The lass of distributions forwhih (3.2) holds is large and inludes the subexponential distributions. Generalonditions on the sequene (an) for whih (3.2) holds are given in [15℄, see also[13℄. For instane, if FY is regularly varying at ∞ with index β > 1 then (3.2)holds with an = an, for a > 0.Next onsider the hoie of V (n). As observed in Setion 2 a good approx-imation to the onditional distribution F

(n)
An

is a andidate for V (n). For aheavy-tailed random walk the �one big jump� heuristis says that the sum islarge most likely beause one of the steps is large. Based on the assumption(3.2) a good andidate for V (n) is the onditional distribution,
V (n)(·) = P(Y(n) ∈ · | Mn > an).18



Then V (n) has a known density with respet to F (n)(·) = P(Y(n) ∈ ·) given by
dV (n)

dF (n)
(y) =

1

P(Mn > an)
I{y : ∨n

j=1yj > an} =
I{y : ∨n

j=1yj > an}

1− FY (an)n
.The estimator of q(n) = P(Sn > an)

−1 is then given by
q̂
(n)
T =

1

T

T−1∑

t=0

dV (n)

dF (n)
(Y

(n)
t ) =

1

1− FY (an)n
·
1

T

T−1∑

t=0

I{∨n
j=1Yt,j > an} (3.3)where (Y

(n)
t )t≥0 is generated by Algorithm 3.1. Note that the estimator (3.3)an be viewed as the asymptoti approximation (1 − FY (an)

n)−1 of (p(n))−1multiplied by the random orretion fator 1
T

∑T−1
t=0 I{∨n

j=1Yt,j > an}. Thee�ieny of this estimator is based on the fat that the random orretionfator is likely to be lose to 1 and has small variane.Theorem 3.6. Suppose that (3.2) holds. Then the estimator q̂
(n)
T in (3.3) hasvanishing normalised variane for estimating (p(n))−1. That is,

lim
n→∞

(p(n))2 Var
F

(n)
An

(q̂
(n)
T ) = 0.Proof. With u(n)(y) = 1

1−FY (an)n
I{∨n

j=1yj > an} it follows from (3.2) that
(p(n))2 Var

F
(n)
An

(u(n)(Y(n)))

=
P(Sn > an)

2

P(Mn > an)2
Var

F
(n)
An

(I{Y : ∨n
j=1Yj > an})

=
P(Sn > an)

2

P(Mn > an)2
P(Mn > an | Sn > an)P(Mn ≤ an | Sn > an)

=
P(Sn > an)

P(Mn > an)

(
1−

P(Mn > an)

P(Sn > an)

)
→ 0.This ompletes the proof.Remark 3.7. Theorem 3.6 overs a wide range of heavy-tailed distributionsand even allows the number of steps to inrease with n. Its proof is elementary.This is in sharp ontrast to the existing proofs of e�ieny (bounded relativeerror, say) for importane sampling algorithms that over less general modelsand tend to be long and tehnial, see e.g. [16, 11, 9℄. It must be mentioned,though, that Theorem 3.6 proves e�ieny for omputing (p(n))−1, whereas theauthors of [16, 11, 9℄ prove e�ieny for a diret omputation of p(n).3.3 Numerial experimentsFirst a note whih applies to all of the numerial results presented in this thesis.The theoretial results guarantee that q̂(n)T is an e�ient estimator of (p(n))−1.However, for omparison of existing algorithms the numerial experiments arebased on p̂

(n)
T = (q̂

(n)
T )−1 as an estimator for p(n). The literature inludesnumerial omparison for many of the existing algorithms. In partiular, inthe setting of random sums. Numerial results for the algorithms by Dupuis et19



al. [16℄, the hazard rate twisting algorithm by Juneja and Shahabuddin [35℄,and the onditional Monte Carlo algorithm by Asmussen and Kroese [4℄ anbe found in [16℄. Additional numerial results for the algorithms by Blanhetand Li [9℄, Dupuis et al. [16℄, and Asmussen and Kroese [4℄ an be found in [9℄.From the existing results it appears as if the algorithm by Dupuis et al. [16℄ hasthe best performane. Therefore, we only inlude numerial experiments of theMCMC estimator and the estimator in [16℄, whih is labelled IS.By onstrution eah simulation run of the MCMC algorithm only generatesa single random variable (one simulation step) while both importane samplingand standard Monte Carlo generate n number of random variables (n simulationsteps). Therefore the number of runs for the MCMC is saled up by a fator of
n so that all of the algorithms (MCMC, Monte Carlo and importane sampling)generate essentially the same number of random numbers. Thus getting a faireromparison of the omputer runtime between the three approahes.Consider estimating P(Sn > an) where Sn = Y1 + · · · + Yn with Y1 hav-ing a Pareto distribution with density fY (x) = β(x + 1)−β−1 for x ≥ 0. Let
an = an. Eah estimate is alulated using b number of bathes, eah onsistingof T simulations in the ase of importane sampling and standard Monte Carloand Tn in the ase of MCMC. The bath sample mean and sample standarddeviation is reorded as well as the average runtime per bath. The results arepresented in Table 1. The onvergene of the algorithms an also be visualisedby onsidering the point estimate as a funtion of number of simulation steps.This is presented in Figure 1. The MCMC algorithm appears to perform om-parably with the importane sampling algorithm for p up to order 10−4 whihis a relevant range in, say, insurane and �nane. However for smaller p theMCMC appears to performs better. The improvement over importane sam-pling appears to inrease as the event beomes more rare. This is due to thefat that the asymptoti approximation beomes better and better as the eventbeomes more rare.
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Figure 1: The �gure illustrates the point estimate of P(Sn > an) as a funtion ofthe number of simulation steps, with n = 5, a = 10, β = 2. The estimate generatedvia the MCMC approah is drawn by a solid line and the estimate generated via IS isdrawn by a dotted line.
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Table 1: The table displays the bath mean and standard deviation of the estimatesof P(Sn > an) as well as the average runtime per bath for time omparison. Thenumber of bathes run is b, eah onsisting of T simulations for importane sampling(IS) and standard Monte Carlo (MC) and Tn simulations for Markov hain MonteCarlo (MCMC). The asymptoti approximation is pmax = P(max{Y1, . . . , Yn} > an).
b = 25, T = 105, β = 2, n = 5, a = 5, pmax = 0.737e-2MCMC IS MCAvg. est. 1.050e-2 1.048e-2 1.053e-2Std. dev. 3e-5 9e-5 27e-5Avg. time per bath(s) 12.8 12.7 1.4
b = 25, T = 105, β = 2, n = 5, a = 20, pmax = 4.901e-4MCMC IS MCAvg. est. 5.340e-4 5.343e-4 5.380e-4Std. dev. 6e-7 13e-7 770e-7Avg. time per bath(s) 14.4 13.9 1.5

b = 20, T = 105, β = 2, n = 5, a = 103, pmax = 1.9992e-7MCMC ISAvg. est. 2.0024e-7 2.0027e-7Std. dev. 3e-11 20e-11Avg. time per bath(s) 15.9 15.9
b = 20, T = 105, β = 2, n = 5, a = 104, pmax = 1.99992e-9MCMC ISAvg. est. 2.00025e-9 2.00091e-9Std. dev. 7e-14 215e-14Avg. time per bath(s) 15.9 15.9
b = 25, T = 105, β = 2, n = 20, a = 20, pmax = 1.2437e-4MCMC IS MCAvg. est. 1.375e-4 1.374e-4 1.444e-4Std. dev. 2e-7 3e-7 492e-7Avg. time per bath(s) 52.8 50.0 2.0
b = 25, T = 105, β = 2, n = 20, a = 200, pmax = 1.2494e-6MCMC IS MCAvg. est. 1.2614e-6 1.2615e-6 1.2000e-6Std. dev. 4e-10 12e-10 33,166e-10Avg. time per bath(s) 49.4 48.4 1.9
b = 20, T = 105, β = 2, n = 20, a = 103, pmax = 4.9995e-8MCMC ISAvg. est. 5.0091e-8 5.0079e-8Std. dev. 7e-12 66e-12Avg. time per bath(s) 53.0 50.6
b = 20, T = 105, β = 2, n = 20, a = 104, pmax = 5.0000e-10MCMC ISAvg. est. 5.0010e-10 5.0006e-10Std. dev. 2e-14 71e-14Avg. time per bath(s) 48.0 47.14 Heavy-tailed Random SumThe MCMC methodology presented in Setion 2 and exempli�ed with a randomwalk in previous setion, is here extended to ompute the probability that aheavy-tailed random sum SN = Y1+ · · ·+YNn

, where the number of steps Nn israndom, and the Y 's are non-negative, independent and heavy-tailed, exeedsa high threshold an.This is a relevant formulation in atuarial siene, risk and queuing theoryto name but a few. For instane, the stationary distribution of the waiting timeand the workload of an M/G/1 queue an be represented as a random sum,see Amussen [1, Theorem 5.7, p. 237℄. The lassial Cramér-Lundberg modelfor the total laim amount faed by an insurane ompany is another standardexample of a random sum.This setion follows the same struture as the previous one, a Gibbs sampler21



is presented for sampling from the onditional distribution P((Y1, . . . , YN ) ∈ · |
SN > an). The resulting Markov hain is proved to be uniformly ergodi. Anestimator for (p(N))−1 of the form (2.1) is suggested with V (n) as the ondi-tional distribution of (Y1, . . . , YN ) given max{Y1, . . . , YN} > an. The estimatoris proved to have vanishing normalised variane when the distribution of Y1belongs to the lass of subexponential distributions. The setion is onludedwith numerial experiments to illustrate the omparativeness with existing im-portane sampling algorithm and standard Monte Carlo.4.1 A Gibbs sampler for omputing P(SNn

> an)Let Y1, Y2, . . . be non-negative independent random variables with ommon dis-tribution FY and density fY . Let (N (n))n≥1 be integer valued random variablesindependent of Y1, Y2, . . . . Consider the random sum SN(n) = Y1 + · · ·+ YN(n)and the problem of omputing the probability
p(n) = P(SN(n) > an),where an → ∞ at an appropriate rate.Denote by Y

(n) the vetor (N (n), Y1, . . . , YN(n))
⊤ . The onditional distribu-tion of Y(n) given SN(n) > an is given by

P(N (n) = k, (Y1, . . . , Yk) ∈ · | SN(n) > an)

=
P((Y1, . . . , Yk) ∈ · , Sk > an)P(N (n) = k)

p(n)
. (4.1)A Gibbs sampler for sampling from the onditional distribution in (4.1) anbe onstruted essentially as in Algorithm 3.1. The only additional di�ulty isto update the random number of steps in an appropriate way. In the followingalgorithm a partiular distribution for updating the number of steps is proposed.To ease the notation the supersript n is suppressed in the desription of thealgorithm.Algorithm 4.1. To initiate, draw N0 from P(N ∈ ·) and Y0,1, . . . , Y0,N0 suhthat Y0,1 + · · · + Y0,N0 > an. Eah iteration of the algorithm onsists of thefollowing steps. Suppose Yt = (kt, yt,1, . . . , yt,kt

) with yt,1 + · · · + yt,kt
> an.Write k∗t = min{j : yt,1 + · · ·+ yt,j > an}.1. Sample the number of steps Nt+1 from the distribution

p(kt+1 | k∗t ) =
P(N = kt+1)I{kt+1 ≥ k∗t }

P (N ≥ k∗t )
.If Nt+1 > Nt, sample Yt+1,kt+1, . . . , Yt+1,Nt+1 independently from FY andput Y(1)

t = (Yt,1, . . . , Yt,kt
, Yt+1,kt+1, . . . , Yt+1,Nt+1).2. Proeed by updating all the individual steps as follows:(a) Draw j1, . . . , jNt+1 from {1, . . . , Nt+1} without replaement and pro-eed by updating the omponents of Y(1)

t in the order thus obtained.(b) For eah k = 1, . . . , Nt+1, repeat the following.22



i. Let j = jk be the index to be updated and write
Y

(1)
t,−j = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

).Sample Y
(2)
t,j from the onditional distribution of Y given thatthe sum exeeds the threshold. That is,

P(Y
(2)
t,j ∈ · | Y

(1)
t,−j) = P

(
Y ∈ · | Y +

∑

k 6=j

Y
(1)
t,k > an

).ii. Put Y(2)
t = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(2)
t,j , Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)
⊤ .() Draw a random permutation π of the numbers {1, . . . , Nt+1} from theuniform distribution and put Yt+1 = (Nt+1, Y

(2)
t,π(1), . . . , Y

(2)
t,π(Nt+1)

).Iterate until the entire Markov Chain (Yt)
T−1
t=0 is onstruted.Proposition 4.2. The Markov hain (Yt)t≥0 generated by Algorithm 4.1 hasthe onditional distribution P((N, Y1, . . . , YN ) ∈ · | Y1 + . . . YN > an) as itsinvariant distribution.Proof. The only essential di�erene from Algorithm 3.1 is the �rst step of thealgorithm, where the number of steps and possibly the additional steps areupdated. Therefore, it is su�ient to prove that the �rst step of the algorithmpreserves stationarity. The transition probability of the �rst step, starting froma state (kt, yt,1, . . . , yt,kt

) with k∗t = min{j : yt,1 + · · · + yt,j > an}, an bewritten as follows.
P (1)(kt, yt,1, . . . , yt,kt

; kt+1, A1 × · · · ×Akt+1)

= P
(
Nt+1 = kt+1, (Yt,1, . . . , Yt,kt+1) ∈ A1 × · · · ×Akt+1

| Nt = kt, Yt,1 = yt,1, . . . , Yt,kt
= yt,kt

)

=

{
p(kt+1 | k∗t )

∏kt+1

k=1 I{yt,k ∈ Ak}, kt+1 ≤ kt,

p(kt+1 | k∗t )
∏kt

k=1 I{yt,k ∈ Ak}
∏kt+1

k=kt+1 FY (Ak), kt+1 > kt.Consider the stationary probability of a set of the form {kt+1} × A1 × · · · ×
Akt+1 . With π denoting the onditional distribution P((N, Y1, . . . , YN ) ∈ · |
Y1 + . . . YN > an), it holds that

Eπ[P
(1)(Nt, Yt,1, . . . , Yt,Nt

; kt+1, A1 × · · · ×Akt+1)]

=
1

P(SN > an)
E[P (1)(N, Y1, . . . , YN ; kt+1, A1 × · · · ×Akt+1 )I{SN > an}]By onditioning onN and using independene ofN and Y1, Y2, . . . the expressionin the last display equals

1

P(SN > an)

∞∑

kt=1

P(N = kt)

×E

[
P (1)(kt, Y1, . . . , Ykt

; kt+1, A1 × · · · ×Akt+1)I{Skt
> an}

]
.23



With Bk∗ = {(y1, y2, . . . ) ∈ ∪∞
q=k∗R

q : min{j : y1 + · · · + yj > a} = k∗},
A⊗

kt
= A1 × · · · × Akt

, and A⊗
kt+1

= A1 × · · · × Akt+1 the expression in the lastdisplay an be written as
1

P(SN > an)

(
kt+1∑

kt=1

P(N = kt)

×E

[ kt∑

k∗=1

I{(Y1, . . . , Ykt
) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt

; kt+1, A
⊗
kt+1

)
]

+

∞∑

kt=kt+1+1

P(N = kt)

×E

[ kt+1∑

k∗=1

I{(Y1, . . . , Ykt+1) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt
; kt+1, A

⊗
kt+1

)
])

.Inserting the expression for P (1) the last expression equals
1

P(SN > a)

(
kt+1∑

kt=1

P(N = kt)

×

kt∑

k∗=1

P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)
p(kt+1 | k∗)

kt+1∏

j=kt+1

FY (Aj)

+

∞∑

kt=kt+1+1

P(N = kt)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
p(kt+1 | k∗)

).Changing the order of summation the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

kt+1∑

kt=k∗

P(N = kt)

×P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)
p(kt+1 | k∗)

kt+1∏

j=kt+1

FY (Aj)

+

kt+1∑

k∗=1

∞∑

kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

).Sine P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)∏kt+1

j=kt+1 FY (Aj) = P
(
(Y1, . . . , Ykt+1) ∈

Bk∗ ∩ A⊗
kt+1

) the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

kt+1∑

kt=k∗

P(N = kt)P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

+

kt+1∑

k∗=1

∞∑

kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1 ) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

).24



Summing over kt the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)P(k∗ ≤ N ≤ kt+1)

+

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
p(kt+1 | k∗)P(N ≥ kt+1 + 1)

).From the de�nition of p(kt+1 | k∗) it follows that the last expression equals
1

P(SN > an)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)P (N ≥ k∗)

=
1

P(SN > an)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
P (N = kt+1)

=
1

P(SN > an)
P
(
(Y1, . . . , Ykt+1) ∈ A⊗

kt+1

)
P (N = kt+1)

= P
(
N = kt+1, (Y1, . . . , Ykt+1) ∈ A⊗

kt+1
| Y1 + · · ·+ YN > an

),whih is the desired invariant distribution. This ompletes the proof.Proposition 4.3. The Markov hain (Yt)t≥0 generated by Algorithm 4.1 isuniformly ergodi. In partiular, it satis�es the following minorisation ondi-tion: there exists δ > 0 suh that
P(Y1 ∈ B | Y0 = y) ≥ δP((N, Y1, . . . , YN ) ∈ B | Y1 + · · ·+ YN > an),for all y ∈ A = ∪k≥1{(k, y1, . . . , yk) : y1 + · · · + yk > an} and all Borel sets

B ⊂ A.The proof requires only a minor modi�ation from the non-random ase,Proposition 3.4, and is therefore omitted.4.2 Construting an e�ient estimatorNow onsider the distributional assumptions and the design of V (n). The mainfous is on the rare event properties of the estimator and therefore the largedeviation parameter n will be suppressed to ease notation. Let the distributionof the number of steps P(N (n) ∈ ·) to depend on n. By a similar reasoning as inthe ase of non-random number of steps the following assumption are imposed:the variables N (n), Y1, Y2, . . . and the numbers an are suh that
lim
n→∞

P(Y1 + · · ·+ YN(n) > an)

P(MN(n) > an)
= 1, (4.2)where Mk = max{Y1, . . . , Yk}. Note that the denominator an be expressed as

P(MN(n) > an) =

∞∑

k=1

P(Mk > an)P(N (n) = k)

=

∞∑

k=1

[1− FY (an)
k]P(N (n) = k)

= 1− gN(n)(FY (an)),25



where gN(n)(t) = E[tN
(n)

] is the generating funtion of N (n). Su�ient on-ditions for (4.2) to hold are given in [37℄, Theorem 3.1. For instane, if FY isregularly varying at ∞ with index β > 1 and N (n) has Poisson distribution withmean λn → ∞, as n → ∞, then (4.2) holds with an = aλn, for a > 0.Similarly to the non-random setting a good andidate for V (n) is the ondi-tional distribution,
V (n)(·) = P(Y

(n)
∈ · | MN(n) > an).Then V (n) has a known density with respet to F (n)(·) = P(Y

(n)
∈ ·) given by

dV (n)

dF (n)
(k, y1, . . . , yk) =

1

P(MN(n) > an)
I{(y1, . . . , yk) : ∨

k
j=1yj > an}

=
1

1− gN(n)(FY (an))
I{(y1, . . . , yk) : ∨

k
j=1yj > an}.The estimator of q(n) = P(Sn > an)

−1 is given by
q̂
(n)
T =

1

T

T−1∑

t=0

dV (n)

dF (n)
(Y

(n)

t ) =
1

gN(n)(FY (an))
·
1

T

T−1∑

t=0

I{∨Nt

j=1Yt,j > an}, (4.3)where (Y
(n)

t )t≥0 is generated by Algorithm 4.1.Theorem 4.4. Suppose (4.2) holds. The estimator q̂
(n)
T in (4.3) has vanishingnormalised variane. That is,

lim
n→∞

(p(n))2 Varπn
(q̂

(n)
T ) = 0,where πn denotes the onditional distribution P(Y

(n)
∈ · | SN(n) > an).Remark 4.5. Beause the distribution of N (n) may depend on n Theorem 4.4overs a wider range of settings for random sums than those studied in [16, 9℄where the authors present provably e�ient importane sampling algorithms.Proof. Sine p(n) = P(SN(n) > an) and

u(n)(k, y1, . . . , yk) =
I{∨k

j=1yj > an}

P(MN(n) > an)
,it follows that

[p(n)]2 Varπn
(u(n)(Y

(n)
))

=
P(SN(n) > an)

2

P(MN(n) > an)2
Varπn

(I{∨N(n)

j=1 Yj > an})

=
P(SN(n) > an)

2

P(MN(n) > an)2
P(MN(n) > an | SN(n) > an)P(MN(n) ≤ an | SN(n) > an)

=
P(SN(n) > an)

P(MN(n) > an)

(
1−

P(MN(n) > an)

P(SN(n) > an)

)
→ 0,by (4.2). This ompletes the proof. 26



4.3 Numerial experimentsBy onstrution eah simulation run of the MCMC algorithm only generates asingle random variable (one simulation step) while both importane samplingand standard Monte Carlo generate N + 1 number of random variables (N + 1simulation steps). Therefore the number of runs for the MCMC is saled up bya fator of E[N ] + 1 so that all of the algorithms (MCMC, Monte Carlo andimportane sampling) generate essentially the same number of random numbers.Thus getting a fairer omparison of the omputer runtime between the threeapproahes.Consider estimatingP(SN > aρ) where SN = Y1+· · ·+YN withN Geometri-ally distributedP(N = k) = (1−ρ)k−1ρ for k = 1, 2, . . . and aρ = aE[N ] = a/ρ.The estimator onsidered here is p̂T = (q̂T )
−1 with q̂T as in (4.3). Eah esti-mate is alulated using b number of bathes, eah onsisting of T simulationsin the ase of importane sampling and standard Monte Carlo and TE[N ] inthe ase of MCMC. The results are presented in Table 2. The MCMC algo-rithm appears to outperform the importane sampling algorithm onsistentlyfor di�erent hoies of the parameters.We remark that in our simulation with ρ = 0.2, a = 5 · 109 the samplestandard deviation of the MCMC estimate is zero. This is beause we did notobserve any indiators I{∨n

j=1yt,j > aρ} being equal to 0 in this ase.Table 2: The table displays the bath mean and standard deviation of the estimatesof P(SN > aρ) as well as the average runtime per bath for time omparison. Thenumber of bathes run is b, eah onsisting of T simulations for importane sampling(IS) and standard Monte Carlo (MC) and T E[N ] simulations for Markov hain MonteCarlo (MCMC). The asymptoti approximation is pmax = P(max{Y1, . . . , YN} > aρ).
b = 25, T = 105, β = 1, ρ = 0.2, a = 102, pmax = 0.990e-2MCMC IS MCAvg. est. 1.149e-2 1.087e-2 1.089e-2Std. dev. 4e-5 6e-5 35e-5Avg. time per bath(s) 25.0 11.0 1.2
b = 25, T = 105, β = 1, ρ = 0.2, a = 103, pmax = 0.999e-3MCMC IS MCAvg. est. 1.019e-3 1.012e-3 1.037e-3Std. dev. 1e-6 3e-6 76e-6Avg. time per bath(s) 25.8 11.1 1.2

b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 107, pmax = 2.000000e-8MCMC ISAvg. est. 2.000003e-8 1.999325e-8Std. dev. 6e-14 1114e-14Avg. time per bath(s) 385.3 139.9
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 109, pmax = 2.0000e-10MCMC ISAvg. est. 2.0000e-10 1.9998e-10Std. dev. 0 13e-14Avg. time per bath(s) 358.7 130.9

b = 25, T = 105, β = 1, ρ = 0.05, a = 103, pmax = 0.999e-3MCMC IS MCAvg. est. 1.027e-3 1.017e-3 1.045e-3Std. dev. 1e-6 4e-6 105e-6Avg. time per bath(s) 61.5 44.8 1.3
b = 25, T = 105, β = 1, ρ = 0.05, a = 5 · 105, pmax = 1.9999e-6MCMC IS MCAvg. est. 2.0002e-6 2.0005e-6 3.2000e-6Std. dev. 1e-10 53e-10 55,678e-10Avg. time per bath(s) 60.7 45.0 1.327



5 Stohasti Reurrene EquationsThe MCMC methodology presented in Setion 2 is here applied to ompute theprobability that a solution Xm to a reurrene equation Xm = AmXm−1 +Bm,where the innovations B are regularly varying with index α and E[Aα+ǫ] < ∞for some ǫ > 0, exeeds a high threshold cn. This problem has been onsideredusing importane sampling sheme by Hult, Blanhet and Leder in [27℄.In this setion a Gibbs sampler is presented for sampling from the onditionaldistribution P(A1, . . . , Am, B1, . . . , Bm | Xm > cn). The resulting Markov hainis proved to be uniformly ergodi. An estimator for (p(n))−1 of the form (2.1) issuggested with V (n) as the onditional distribution of (A1, . . . , Am, B1, . . . , Bm)given {Ak > a, ∀k} ∩ {∃!j : Bja
m−j > cn}. The estimator is proved to havevanishing normalised variane under the probabilisti assumptions mentionedabove. The proof is elementary and is ompleted in a few lines. The setionis onluded with numerial experiments to illustrate the omparativeness withexisting importane sampling algorithm and standard Monte Carlo.5.1 A Gibbs sampler for omputing P(Xm > cn)Fix m and let A = (A2, . . . , Am) and B = (B1, . . . , Bm) be independent se-quenes of independent and identially distributed random variables. Let A bea generi random variable for an element of the sequene A and likewise B foran element of the sequene B.Consider the solution (Xk)

m
k=0 to the stohasti reurrene equation

Xk = AkXk−1 +Bk, for k = 1, . . . ,m,
X0 = 0.The solution (Xk)

m
k=0 an be written as a randomly weighted random walk

Xk = Bk +AkBk−1 + · · ·+AkAk−1 · · ·A2B1 +Ak · · ·A1x0, k = 1, . . . ,m.(5.1)Our interest is in the problem of omputing p(n) = P(Xm > cn), where
cn → ∞. To this end we will propose a Gibbs sampler that produes a Markovhain with the onditional distribution

F (m)
cn

(·) = P
(
(A,B) ∈ · | Xm > cn

) (5.2)as its invariant distribution. In addition we will suggest a hoie of the proba-bility distribution V (n) with good asymptoti properties.The Markov hain (At,Bt)t≥0 is onstruted by the following algorithm,where the elements are updated sequentially in suh a way that the weightedrandom walk exeeds the threshold after eah individual update. Formally thealgorithm is given as follows. An empty produt, suh as ∏m
j=m+1 Aj , is inter-preted as 1.Algorithm 5.1. Start with initial state (A(m)

0 ,B(m)
0 ) = (A0,2, . . . , A0,m, B0,1, . . . , B0,m)where X

(m)
0 = B0,m +

∑m−1
i=1 B0,i

∏m
j=i+1 A0,j > cn. Given (A(m)

t ,B(m)
t ), forsome t = 0, 1, . . ., the next state (A(m)

t+1,B(m)
t+1) is sampled as follows:28



1. Draw a randomized ordering j1, . . . , j2m of {1, . . . , 2m} and proeed up-dating (A(m)
t ,B(m)

t ) in the order thus obtained.2. For l = 1, . . . , 2m, set k = jl and do the following:i. If k ∈ {1, . . . ,m} then At,k is to be updated. Sample A′ from theonditional distribution
P(A′ ∈ · | A′ > s),where

s = max

{
cn −

∑m
i=k Bt,i

∏m
j=i+1 At,j

∑k−1
i=1 Bt,i

∏m
j=i+1, 6=k At,j

, 0

}.PutA(m)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,m) andB(m)
t+1 = B(m)

t .ii. If k ∈ {m + 1, . . . , 2m} then Bt,(k−m) is to be updated. Sample B′from the onditional distribution
P(B′ ∈ · | B′ > s),where

s = max

{
cn −

∑m
i=1, 6=(k−m) Bt,i

∏m
j=i+1 At,j

At,m · · ·At,(k−m)+1
, 0

}.PutA(m)
t+1 = A(m)

t andB(m)
t+1 = (Bt,1, . . . , Bt,(k−m)−1, B

′, Bt,(k−m)+1, . . . , Bt,m).Iterate steps 1 and 2 until the entire Markov hain (A(m)
t ,B(m)

t )T−1
t=0 is on-struted.The Markov hain (A(m)

t ,B(m)
t )t≥0 onstruted by Algorithm 5.1 has F (m)

cnas its invariant probability distribution.Proposition 5.2. The Markov hain (A(m)
t ,B(m)

t )t≥0 generated by Algorithm5.1, has the onditional distribution F
(m)
cn as its invariant distribution.Proof. Note that it is su�ient to show that eah updating step (Step 2i and2ii in the Algorithm) preserves stationarity.Consider the updating steps (Step 2i and 2ii). Let m be given and set

PA
k (a(m),b(m), ·) and PB

k (a(m),b(m), ·) to be the transition probability of theMarkov hain (A(m)
t ,B(m)

t )t≥0 where the kth element of A(m)
t and B(m)

t isupdated, respetively. Let
R =

{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn},and observe that if Ak is to be updated onditioned on Xm > cn then

Ak >
cn −

∑m
i=k Bt,i

∏m
j=i+1 At,j

∑k−1
i=1 Bt,i

∏m
j=i+1, 6=k At,j

=: sAk
,and similarly, if Bk is to be updated onditioned on Xm > cn then

Bk >
cn −

∑m
i=1, 6=(k−m) Bt,i

∏m
j=i+1 At,j

At,m · · ·At,(k−m)+1
=: sBk

.29



To prove that stationarity is preserved under updating via Step 2i it is su�ientto show that for arbitrary k ∈ {1, . . . ,m} and D1×· · ·×Dm×E1×· · ·×Em ⊂ Rthen it holds that
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PA
k (A1, . . . , Am, B1, . . . , Bm, D1 × . . .×Dm × E1 × . . .× Em)

].(5.3)Similarly to prove that stationarity is preserved under updating via Step 2ii itis su�ient to show
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PB
k (A1, . . . , Am, B1, . . . , Bm, D1 × · · · ×Dm × E1 × · · · × Em)

].(5.4)The following omputation shows that (5.3) holds.
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[ m∏

j=1

I{Aj ∈ Dj}

m∏

i=1

I{Bi ∈ Ei}
]

=
E
[
I{Ak ∈ Dk}I{Xm > cn} ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

=
E

[
E[I{Ak∈Dk}|Ak>sAk

,A−k,B]

P(Ak>sAk
) ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

=
E
[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em) ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

= E
[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em) | Xm > cn

]

= E
F

(m)
cn

[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em)

],with the onventional notation A−k = (A1, . . . , Ak−1, Ak+1, . . . , Am).The proof is ompleted by showing that (5.4) holds with similar omputationas above.The Markov hain (A(m)
t ,B(m)

t )t≥0 onstruted by Algorithm 5.1 is uni-formly ergodi, thus ensuring large-sample e�ieny.Proposition 5.3. For any m ≥ 1, the Markov hain (A(m)
t ,B(m)

t )t≥0 is uni-formly ergodi.Proof. Let m ≥ 1 be given and set
R =

{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn}.Uniform ergodiity follows from the minorization ondition (see Nummelin [44℄): there exists a probability measure ν, δ > 0 and t0 ∈ N suh that

P
(
(A(m)

t0
,B(m)

t0
) ∈ D × E | (A(m)

0 ,B(m)
0 ) = (a,b)) ≥ δν(D × E),30



for any (a,b) and D × E ⊂ R. The goal is to prove this inequality for t0 = 1,
δ = p(n)/(2m)! and ν = F

(m)
cn .Take  = (a,b) and let g(· | a,b) be the density of P(A1,B1 ∈ · | A0,B0 =a,b).Observe that for any z = (x,y) ∈ R there exists an ordering j1, . . . , j2m of

{1, . . . , 2m} suh that
cj1 ≤ zj1 , . . . , cjk ≤ zjk

cjk+1
≥ zjk+1

, . . . , cj2m ≥ zj2m ,for some k. When updating from  to z using this partiular ordering, then �rstall of elements in z whih are larger than their ounterparts in  are updated,and then all of the elements in z whih are smaller are updated. This guaranteesthat after every updating step, the updated vetor belongs to R.The probability for this partiular ordering is 1/(2m)!. To simplify notation,introdue
Zk =

{
Ai if update jk orresponds to updating Ai for some i
Bi if update jk orresponds to updating Bi for some iand

sZk
=

{
sAi

if update jk orresponds to updating Ai for some i
sBi

if update jk orresponds to updating Bi for some iTherefore
g(x,y) =

1

(2m)!

fZ1(zj1)I{Z1 > sZ1}

P(Z > sZ1)

×
fZ2(zj2)I{Z2 > sZ2}

P(Z > sZ2)...
×
fZ2m(zj2m)I{Z2m > sZ2m}

P(Z > sZ2m)
.By onstrution all of the indiator funtions are equal to 1 and the normalizingprobabilities are bounded by 1 so the last display is bounded from below by

1

(2m)!

2m∏

k=1

fZk
(zk) =

p(n)

(2m)!
·

∏2m
k=1 fZk

(zk)I{z ∈ R}

p(m)
.The proof is ompleted by integrating both sides.Remark 5.4. The lower bound δ in the proof of Proposition 5.3 an be hosento be larger, but that would ompliate and lengthen the proof.5.2 Construting an e�ient estimatorAs mentioned in Setion 2 a good andidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(m),B(m)) ∈ R(n)

),31



where r(n) = P
(
(A(m),B(m)) ∈ R(n)

) is asymptotially lose to p(n) = P(Xm >

cn) in the sense that r(n)/p(n) → 1 as n → ∞.Observe that so far no limitation have been set on the probabilisti proper-ties of A and B. The distributional assumptions have been very general. Forthe design of V (n) the probabilisti properties of A and B are of entral impor-tane and here they ome into play. This paper onsiders the setting where theinnovations B are most likely responsible for extreme values of the solution tothe stohasti reurrene equation. We make the following assumptions.1. The generi random variables A and B are nonnegative.2. The generi random variable B has a regularly varying tail, with index
−α < 0. Formally,

lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.3. The Breiman ondition holds for the generi random variable A. That is,there exists ǫ > 0 suh that

E[Aα+ǫ] < ∞.Under the assumptions (1)-(3) it is possible to derive the asymptoti deay of
p(n). Indeed, it follows from the representation (5.1) as a weighted random walkand Theorem 3.1 in [31℄ that

P(Xm > cn)

P(B > cn)
→

m−1∑

k=0

E[Aα]k.Now onsider the hoie of V (n). Let V (n) be de�ned as the probabilitydistribution
V (n)(·) = P

(
(A(m),B(m)) ∈ · | (A(n),B(n)) ∈ R(n)

),with
R(n) = {Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}.The probability of this onditioning event an be omputed expliitly as

r(n) = P
(
{Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}

)

= P(A > a)m−1

×
(
P(Bm > x)P(Bm−1 < x/a) · · ·P(B1 < x/am−1)

+P(Bm < x)P(Bm−1 > x/a)P(Bm−2 < x/a2) · · ·P(B1 < x/am−1)

+ · · ·+ P(Bm < x) · · ·P(B2 < x/am−2)P(B1 > x/am−1)
)

= FA(a)
m−1

m∑

i=1

FB(x/a
m−i)

m∏

j=1, 6=i

FB(x/a
m−j).32



From the regular variation property of the distribution of B, assumption (2),it follows that
r(n) ∼ FA(a)

m−1FB(cn)
{
1 + aα + (aα)2 + · · ·+ (aα)m−1

} as n → ∞.A onvenient hoie of the level a = an is suh that r(n)/p(n) → 1, as n → ∞.That is, a may be hosen as the solution to
FA(a)

m−1
m−1∑

k=0

akα =

m−1∑

k=0

E[Aα]k.The distribution V (n) has a known density with respet to F (·) = P
(
(A(m),B(m)) ∈

·) given by
dV (n)

dF (·)
(a,b) = 1

r(n)
I
{
(a,b) ∈ Rm

}.Thus the MCMC estimator q̂(n)T of 1/p(n) is given by
q̂
(n)
T =

1

r(n)
1

T

T−1∑

t=0

I
{
(A(m)

t ,B(m)
t ) ∈ R(n)

}, (5.5)where (At,Bt)
T−1
t=0 is generated via Algorithm 5.1. Observe that the estimator�rst fator of the estimator q̂(n)T may be interpreted as the asymptoti approxi-mation 1/r(n) multiplied by a stohasti orretion fator.Theorem 5.5. The estimator q

(n)
T given by 5.5 has vanishing normalized vari-ane for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
VarFcn

(q̂
(n)
T ) → 0.Proof. With u(n)(a,b) = 1

r(n) I{(a,b) ∈ R} it follows from assumptions 1-3made above that
(p(n))2 Var

F
(m)
cn

( 1

r(n)
I{(a,b) ∈ R}

)

=
(p(n))2

(r(n))2
Var

F
(m)
cn

(
I{(a,b) ∈ R}

)

=
(p(n))2

(r(n))2
P
(
I{(a,b) ∈ R} | Xm > cn

)
P
(
I{(a,b) /∈ R} | Xm > cn

)

=
p(n)

r(n)
P

(
1−

r(n)

p(n)

)
→ 0.This ompletes the proof.5.3 Numerial experimentsTheorem 5.5 of this paper proves that q̂

(n)
T is an e�ient estimator of 1/p(n).Most existing algorithms however design an e�ient estimator p̂(n)T of p(n), sofor omparison reasons the numerial experiments are based on (q̂

(n)
T )−1.33



By onstrution eah simulation run of the MCMC algorithm only generatesa single random variable (one simulation step) while both importane samplingand standard Monte Carlo generate 2m number of random variables (2m sim-ulation steps). Therefore the number of runs for the MCMC is saled up bya fator of 2m so that all of the algorithms (MCMC, Monte Carlo and im-portane sampling) generate essentially the same number of random numbers.Thus getting a fairer omparison of the omputer runtime between the threeapproahes.Consider estimating P(Xn > cn) where Xn is a solution to the reurreneequation Xn = AnXn−1 + Bn with X0 = 0. The innovation B is a Paretodistributed variable with index α while the A is exponentially distributed withintensity λ. Eah estimate is alulated using b number of bathes, eah on-sisting of T simulations in the ase of importane sampling and standard MonteCarlo and 2nT in the ase of MCMC. The results are presented in Table 3.Table 3: The table displays the bath mean and standard deviation of the estimatesof P(Xn > c) as well as the average runtime per bath for time omparison. Thenumber of bathes run is b, eah onsisting of T simulations for importane sampling(IS) and standard Monte Carlo (MC) and T 2n simulations for Markov hain MonteCarlo (MCMC).
b = 25, T = 105, n = 4, c = 10, α = 2, λ = 3MCMC IS MCAvg. est. 1.233e-2 1.223e-2 1.221e-2Std. dev. 43e-5 9e-5 43e-5Avg. time per bath(s) 35 36 2
b = 25, T = 105, n = 4, c = 102, α = 2, λ = 3MCMC IS MCAvg. est. 1.298e-4 1.278e-4 1.360e-4Std. dev. 7e-6 1e-6 35e-6
b = 25, T = 105, n = 4, c = 103, α = 2, λ = 3MCMC IS MCAvg. est. 1.149e-6 1.284e-6 2.000e-6Std. dev. 36e-8 7e-8 408e-8
b = 25, T = 105, n = 5, c = 2, α = 5, λ = 3
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6 Ruin probability in an Insurane Model withRisky InvestmentsIn this setion the Markov hain Monte Carlo approah to rare-event simulationis applied to ompute the ruin probability in an insurane model with riskyinvestments.The ruin problem with investment is reasonably well studied. A reentoverview is given by Paulsen [46℄. In the in�nite horizon setting there are twoasymptoti regimes. Power tail asymptotis an arise either as the umulativee�et of negative returns on the investment asset or beause of power tails ofthe laim size distribution. In the �rst ase the power tail asymptotis an bederived by expressing the risk reserve as the solution to a stohasti reurreneequation whose stationary solution has a power tail. See e.g. [45, 36, 20, 47, 38℄.In the seond ase the power asymptotis of the ruin probability is more diretlyinferred from the power tail of the laim size distribution, see [21, 50, 38℄.The following model, in disrete time, for the risk reserve of an insuraneompany is onsidered here. Denote by Bk the net loss, laims minus premiums,over the kth period. Suppose the insurane ompany invests the risk reserve ina risky asset and denote by Rk the stohasti return on the risky asset over the
kth period. It is assumed that {Bk} and {Rk} are independent sequenes, eahonsisting of independent and identially distributed random variables. The riskreserve Uk at the end of the kth period is modeled as

Uk = Rk(Zk−1 −Bk), for k ≥ 1,
U0 = u.Iterating the relation above yields

Un = Rn · · ·R1u−
(
Rn · · ·R1B1 +Rn · · ·R2B2 + · · ·+RnBn

).Assume that Rk > 0 a.s. for all k and put Ak = 1/Rk. The last display isequivalent to
A1 · · ·AnUn = u−Wn,where

Wn = B1 +A1B2 + · · ·+A1 · · ·An−1Bn.Observe that Wn represents the disounted losses that have aumulated upuntil time n. The event of ruin up until time n is equivalent to
{

inf
0≤k≤n

Uk < 0

}
=

{
sup

0≤k≤n

Wk > u

} .Our objetive is to onstrut an e�ient algorithm to ompute the ruin proba-bility
p(n) = P

(
sup

0≤k≤n

Wk > un

).As in the previous setion we denote by A(n) = (A1, . . . , An−1) and B(n) =
(B1, . . . , Bn). To ompute p(n) with the MCMC approah a Gibbs sampler isproposed with the onditional distribution

Fn
un

(·) = P((A(n),B(n)) ∈ · | sup
0≤k≤n

Wk > un).35



6.1 A Gibbs sampler for omputing the ruin probabilityThe Gibbs sampler is onstruted similarly as in Setion 5 with the di�erenethat the onditioning event is {sup0≤k≤n Wk > un} instead of {Xm > cn}.Algorithm 6.1. Start with initial state (A(n)
0 ,B(n)

0 ) = (A0,1, . . . , A0,n, B0,1, . . . , B0,n)where X
(n)
0 > un. Given (A(n)

t ,B(n)
t ), for some t = 0, 1, . . ., the next state

(A(n)
t+1,B(n)

t+1) is sampled as follows:1. Draw a randomized ordering j1, . . . , j2n of {1, . . . , 2n} and proeed updat-ing (A(n)
t ,B(n)

t ) in the order thus obtained.2. For m = 1, . . . , 2n, set k = jm and do the following:i. If k ∈ {1, . . . , n} then At,k is to be updated. Sample A′ from theonditional distribution
P(A′ ∈ · | A′ > s),where

s = min
1≤k≤n

{
un −

∑k
i=1 Bt,i

∏k−1
j=1 At,j

∑n
i=k+1 Bt,i

∏i−1
j=1, 6=k At,j

}.Put A(n)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,n) and B(n)
t+1 = B(n)

t .ii. If k ∈ {n + 1, . . . , 2n} then Bt,(k−n) is to be updated. Sample B′from the onditional distribution
P(B′ ∈ · | B′ > s),where

s = min
1≤(k−n)≤n

{
un −

∑n
i=1, 6=(k−n) Bt,i

∏i−1
j=1 At,j

∏(k−n)−1
j=1 At,j

}.PutA(n)
t+1 = A(n)

t andB(n)
t+1 = (Bt,1, . . . , Bt,(k−n)−1, B

′, Bt,(k−n)+1, . . . , Bt,n).Iterate steps 1 and 2 until the entire Markov hain (A(n)
t ,B(n)

t )T−1
t=0 is on-struted.Proposition 6.2. The Markov hain (A(n)

t ,B(n)
t )t≥0 generated by Algorithm6.1, has the onditional distribution F

(n)
un as its invariant distribution and isuniformly ergodi.The proof of the above result is essentially idential to the proofs of Propo-sition 5.2 and 5.3 is therefore omitted.6.2 Construting an e�ient estimator of the reiproalruin probabilityAs mentioned in Setion 2 a good andidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(n),B(n)) ∈ R(n)

),36



where r(n) = P
(
(A(n),B(n)) ∈ R(n)

) is asymptotially lose to p(n) in the sensethat r(n)/p(n) → 1 as n → ∞.Observe that, apart from the independene assumptions, the distributionalassumptions on B and R have been ompletely general. For the design of V (n)the probabilisti properties of B and R are of entral importane and here theyome into play. This paper onsiders the setting where large laims are mostlikely responsible for ruin. We make the following assumptions.1. The distribution of B has a regularly varying right tail, with index−α < 0:
lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.2. The stohasti returns R are almost surely stritly positive. In addition,there exists ǫ > 0 suh that E[R−α−ǫ] < 1.Under the assumptions (1)-(2) it is possible to derive the asymptoti deay of

p(n). Note �rst that (2) translates into the onditions that the generi randomvariables A is stritly positive and E[Aα+ǫ] < 1 for some ǫ > 0. It follows fromthe representation ofWn as a weighted random walk and by ombining Example2.2 and Corollary 5.1 in [32℄ that
lim
n→∞

P(sup 0≤k≤n Wk > un)

nP(B > un)
= E

[(
sup
k≥1

k∏

j=1

Aj

)α]
.Now onsider the hoie of V (n). Let V (n) be de�ned as the probabilitydistribution

V (n)(·) = P
(
(A(n),B(n)) ∈ · | (A(n),B(n)) ∈ R(n)

),with
R(n) = {Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−j

n Bj > un}.The probability of this onditioning event an be omputed expliitly as
r(n) = P

(
{Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−j

n Bj > un}
)

= P(A > an)
n−1

(
P(Bn > un)P(Bn−1 < un/an) · · ·P(B1 < un/a

n−1
n )

+P(Bn < un)P(Bn−1 > un/an)P(Bn−2 < un/a
2
n) · · ·P(B1 < un/a

n−1
n )

+ · · ·+ P(Bn < un) · · ·P(B2 < un/a
n−2
n )P(B1 > un/a

n−1
n )

= FA(an)
n−1

n∑

i=1

FB(un/a
n−i
n )

n∏

j=1, 6=i

FB(un/a
n−j
n ).From the regular variation property of the distribution of B, assumption (2),it follows that if un/a

n−1
n → ∞, then

r(n) ∼ FA(an)
n−1FB(un)

{
1 + aαn + (aαn)

2 + · · ·+ (aαn)
n−1
} as n → ∞.37



A onvenient hoie of the level an is suh that r(n)/p(n) → 1, as n → ∞. Thatis, an may be hosen as the solution to
FA(an)

n−1
n−1∑

k=0

akαn = nE
[(

sup
k≥1

k∏

j=1

Aj

)α]
.The distribution V (n) has a known density with respet to F (·) = P

(
(A(n),B(n)) ∈

·) given by
dV (n)

dF (·)
(a,b) = 1

r(n)
I
{
(a,b) ∈ Rn

}.Thus the MCMC estimator q̂(n)T of 1/p(n) is given by
q̂
(n)
T =

1

r(n)
1

T

T−1∑

t=0

I
{
(A(n)

t ,B(n)
t ) ∈ R(n)

}, (6.1)where (At,Bt)
T−1
t=0 is generated via Algorithm 6.1. Observe that the estimator�rst fator of the estimator q̂(n)T may be interpreted as the asymptoti approxi-mation 1/r(n) multiplied by a stohasti orretion fator.Theorem 6.3. The estimator q

(n)
T given by (6.1) has vanishing normalizedvariane for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
Var

F
(n)
un

(q̂
(n)
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