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Abstra
tIn this thesis a method based on a Markov 
hain Monte Carlo (MCMC)algorithm is proposed to 
ompute the probability of a rare event. The 
on-ditional distribution of the underlying pro
ess given that the rare event o
-
urs has the probability of the rare event as its normalising 
onstant. Us-ing the MCMC methodology a Markov 
hain is simulated, with that 
on-ditional distribution as its invariant distribution, and information aboutthe normalising 
onstant is extra
ted from its traje
tory.The algorithm is des
ribed in full generality and applied to four di�er-ent problems of 
omputing rare-event probability. The �rst problem 
on-siders a random walk Y1+· · ·+Yn ex
eeding a high threshold, where the in-
rements Y are independent and identi
ally distributed and heavy-tailed.The se
ond problem is an extension of the �rst one to a heavy-tailed ran-dom sum Y1 + · · · + YN ex
eeding a high threshold, where the numberof in
rements N is random and independent of Y1, . . . , Yn. The thirdproblem 
onsiders a sto
hasti
 re
urren
e equation Xn = AnXn−1 + Bnex
eeding a high threshold, where the innovations B are independent andidenti
ally distributed and heavy-tailed. The �nal problem 
onsiders theruin probability for an insuran
e 
ompany with risky investments.An unbiased estimator of the re
ipro
al probability for ea
h 
orre-sponding problem is 
onstru
ted whose normalised varian
e vanishes asymp-toti
ally. The algorithm is illustrated numeri
ally and 
ompared to exist-ing importan
e sampling algorithms.
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SammanfattningI denna avhandling presenteras en metod baserad på MCMC (Markov
hain Monte Carlo) för att beräkna sannolikheten av en sällsynt hän-delse. Den betingade fördelningen för den underliggande pro
essen givetatt den sällsynta händelsen inträ�ar har den sökta sannolikheten somsin normaliseringskonstant. Med hjälp av MCMC-metodiken skapas enMarkovkedja med betingade fördelningen som sin invarianta fördelningo
h en skattning av normaliseringskonstanten baseras på den simuleradekedjan.Algoritmen beskrivs i full generalitet o
h tillämpas på fyra exempel-problem. Första problemet handlar om en slumpvandring Y1 + · · · + Ynsom överskrider en hög tröskel, då stegen Y är oberoende, likafödelademed tungsvansad fördelning. Andra problemet är en utvidgning av detförsta till summa av ett stokastiskt antal termer. Tredje problemet be-handlar sannolikheten att lösningen Xn till en stokastisk rekurrensekva-tion Xn = AnXn−1 + Bn överskrider en hög tröskel då innovationerna
B är oberoende, likafördelade med tungsvansad fördelning. Sista prob-lemet handlar om ruinsannolikhet för ett försäkringsbolag med riskfylldainvesteringar.För varje exempelproblem konstrueras en väntevärdesriktig skattningav den re
iproka sannolikheten. Skattningarna är e�ektiva i meningenatt deras normaliserade varians går mot noll. Vidare är de konstrueradeMarkovkedjorna likformigt ergodiska. Algoritmerna illustreras numeriskto
h jämfös med existerande importan
e sampling algoritmer.
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1 Introdu
tionMathemati
al modelling of systems, in for instan
e natural s
ien
es has been oneof the key building blo
ks of s
ienti�
 understanding. The system of interest maybe the motion of the planets, the dynami
 �ow in a liquid, 
hanges in sto
k pri
esor the total amount of insuran
e 
laims made in a year. Often the model involvesthe system's dynami
 laws, long-time behavior and di�erent possible s
enarios.Su
h models nearly always in
lude a parameter, or a set of parameters, whi
h,though unknown in advan
e are still needed to 
alibrate the model to reality.Thus in order to have a fully spe
i�ed model 
apable of fore
asting the futureproperties or value, then one needs to measure the values of the the unknownparameters and thereby most likely introdu
ing some measurement error. Thiserror is assumed to be random and thus the resulting fore
ast is the out
ome ofa sto
hasti
 mathemati
al model.With the ever in
reasing 
omputational 
apa
ity in re
ent de
ades the mod-els are be
oming more and more 
omplex. Minor aspe
ts that were ignored inthe simpler models 
an now be in
luded in the 
omputations, with in
reasing
omplexity. Resear
hers and pra
titioners alike strive to enhan
e 
urrent modelsand introdu
e more and more details to it, in the hope of in
reasing their fore-
asting ability. Weather systems and �nan
e pro
esses are examples of modelsthat today are so involved that it is be
oming di�
ult to give analyti
al and
losed form answers to property and fore
asting questions. This has given riseto alternative approa
hes to handling su
h 
omplex sto
hasti
 models, namelysto
hasti
 simulation.Brie�y, simulation is the pro
ess of sampling the underlying random fa
-tors of a model to generate many instan
es of it, in order to make inferen
esabout its properties. This has proved to be a powerful tool for 
omputationin many a
ademi
 �elds su
h as physi
s, 
hemistry, e
onomi
s, �nan
e, in-suran
e. Generating instan
es of even the highly advan
ed sto
hasti
 models,multi-dimensional, non-linear and highly sto
hasti
 models 
an be done in afew millise
onds. Sto
hasti
 simulation has thus played its part in the s
ien-ti�
 progress of re
ent de
ades and the simulation themselves has grown into ana
ademi
 �eld in its own right.In physi
s, hypothesis are often tested and veri�ed via a number of exper-iments. One experiment is 
arried out after another, and if su�
iently manyof the experiments support the hypothesis then it a
quires a 
ertain validityand be
omes a theory. This was for instan
e the 
ase at CERN in the summerof 2012, when the existen
e of the Higgs boson was 
on�rmed through experi-ments whi
h supported the old and well known hypothesis. However, one 
annot always 
arry out experiments to validate hypotheses. Sometimes it is sim-ply impossible to repli
ate the model in reality, as is the 
ase when studyingthe e�e
ts of global warming. Obviously, sin
e we 
an only generate a singlephysi
al instan
e of the Earth, any simulations need to be done via 
omputermodelling. To better re�e
t reality, the resolution needs to be high and manydi�erent physi
al and meteorologi
al fa
tors need to be taken into a

ount. Thesurfa
e of the Earth is broken into 10km times 10km squares, ea
h with itstemperature, air pressure, moisture and more. The dynami
s of these weatherfa
tors need to be simulated with small times steps, perhaps many years intothe future. The Mathemati
s and Climate Resear
h Network (MCRN) 
arriesout extensive sto
hasti
 simulations, repli
ating the Earth using di�erent types1



of s
enarios to fore
ast possible 
limate 
hanges. Clearly, this type of sto
has-ti
 simulation is immensely 
omputationally 
ostly. This s
ienti�
 work alonejusti�es the importan
e of 
ontinuing resear
h and improvement in the �eld ofsto
hasti
 simulation.A sub�eld of sto
hasti
 simulation whi
h deals with unlikely events of smallprobability is 
alled rare-event simulation. Examples of rare-event simulationis when 
al
ulating 
apital requirements of a �nan
ing �rm subje
t to BaselIII regulations, or of a insuran
e 
ompany subje
t to Solven
y II regulations.Natural 
atastrophes su
h as avalan
hes, vol
ani
 eruptions, to name but few,are also types rare-events for whi
h we are interested in analysing. This is ofparti
ular importan
e when it 
omes to 
omputationally heavy models. Thatis be
ause, if an event is rare a 
omputer needs many simulations to get a fairpi
ture of its frequen
y and the 
ir
umstan
es in whi
h it o

urred. And ifevery simulation takes up a lot of 
omputational time, then a thorough studywould require a prohibitive amount of 
omputer time would indeed be required.Therefore the improvement of e�
ient rare-event sto
hasti
 simulation is of highimportan
e.The e�e
t of heavy-tails in sto
hasti
 modelling is an important fa
tor not tobe overlooked. By heavy tails we mean essentially that there is a non-negligibleprobability of extreme out
omes that di�er signi�
antly from the average. Su
hextreme out
omes may have a 
onsiderable impa
t on a sto
hasti
 system. Forinstan
e, large 
laims due to a 
atastrophi
 event arrive at an insuran
e 
ompany
ausing serious �nan
ial distress for the 
ompany. Similarly, large �u
tuationson the �nan
ial market may lead to insolven
y of �nan
ial institutions. In datanetworks the arrival of huge �les may 
ause serious delays in the network, andso on.This thesis presents a new methodology in rare-event simulation based onthe theory of Markov 
hain Monte Carlo. The general method presented inSe
tion 2 makes very modest probabilisti
 assumptions and in subsequent se
-tions (random walk in Se
tion 3, random sum in Se
tion 4, sto
hasti
 re
urrentequations in Se
tion 5, ruin probability in Se
tion6) is applied to few 
on
reteexamples and shown to be e�
ient.1.1 Sto
hasti
 simulationIn this se
tion we introdu
e the basi
 tools in sto
hasti
 simulation, su
h aspseudo random number, the inversion method and Monte Carlo. We presentthe Markov 
hain Monte Carlo methodology and dis
uss brie�y ergodi
ity.1.1.1 Sampling a random variableIn this se
tion we present the foundations of sto
hasti
 simulation, namely thegeneration of a pseudo random number by a 
omputer and how it 
an be usedto sample a random variable via the inversion method.Most statisti
al software programs provide methods for generating a uni-formly distributed pseudo random number on the interval, say, [0, 1]. Thesealgorithms are deterministi
, at its 
ore, and 
an only imitate the propertiesand behaviour of a uniformly distributed random variable. The early designsof su
h algorithms showed �aws in the sense that the pseudo random numbersgenerated followed a pattern whi
h 
ould easily be identi�ed and predi
ted.2



Nowadays there exists many highly advan
ed algorithms that generate pseudorandom numbers, mimi
king a true random number quite well. For the purposesof this thesis we assume the existen
e of an algorithm produ
ing a uniformlydistributed pseudo random number, and ignore any de�
ien
ies and errors aris-ing from the algorithm. In short, we assume that we 
an sample a perfe
tlyuniformly distributed random variable in some 
omputer program. For a morethorough and detailed dis
ussion we refer to [48℄.Now 
onsider a random variable X and denote by F its probability distri-bution. Say we would like, via some 
omputer software, to sample the randomvariable X .One approa
h is the inversion method. The inversion method in-volves only applying the quantile fun
tion to uniformly random variable. Moreformally the algorithm is as follows.1. Sample U from the standard uniform distribution.2. Compute Z = F−1(U),where F−1 = min{x | F (x) ≥ p}. The random variable Z has the same distri-bution as X as the following display shows.
P(Z ≤ x) = P(F−1{U} ≤ x) = P(U ≤ F (x)) = F (x).The method 
an easily be extended to sampling X 
onditioned on being largerthan some 
onstant c. Meaning that we want to sample from the 
onditionaldistribution

P(X ∈ · | X > c).The algorithm is formally as follows.1. Sample U from the standard uniform distribution.2. Compute Z = F−1
((

1− F (c)
)
U + F (c)

).The distribution of Z is given by,
P(Z ≤ x) = P

(
(1− F (c))U + F (c) ≤ F (x)

)
= P

(
U ≤

F (x)− F (c)

1− F (c)

)

=
F (x) − F (c)

1− F (c)
=

P(c ≤ X ≤ x)

P(X > c)
= P(X ≤ x | X > c).Thus the inversion method provides a simple way of sampling a random variable,
onditioned on being larger than c, based solely on the generation of a uniformlydistributed random number.The most standard tool for sto
hasti
 simulation is the Monte Carlo te
h-nique. The power of Monte Carlo is its simpli
ity. Let X be a random variableand assume we want to 
ompute the probability that {X ∈ A} for some Borelset A. The idea of Monte Carlo is to sample independent and identi
ally dis-tributed 
opies of random variable, say X1, . . . , Xn and simply 
ompute thefrequen
y of hitting the set A. More formally, the Monte Carlo estimator of

P(X ∈ A) is given by
p̂ =

1

n

n∑

i=1

I{Xi ∈ A}.While the pro
edure is easy and simple there are drawba
ks that will be dis-
ussed in Se
tion 1.1.3. 3



1.1.2 Markov 
hain Monte CarloIn this se
tion we present a simulation te
hnique 
alled Markov 
hain MonteCarlo (MCMC) for sampling a random variable X despite only having limitedinformation about its distribution.MCMC is typi
ally useful when sampling a random variable X having adensity f that is only known up to a 
onstant, say
f(x) =

π(x)

c
,where π is known but c = ∫ π(x)dx is unknown. This may seem strange setupat �rst but on
e noted that the normalising 
onstant c may be di�
ult to deter-mine, say there is no known 
losed form for c, then this is a natural formulation.An example of this type of setup 
an be found in Bayesian statisti
s and hiddenMarkov 
hains.In short, the basi
 idea of sampling via MCMC is to generate a Markov 
hain

(Yt)t≥0 whose invariant density is the same as of X , namely f . There existsplentiful of MCMC algorithms but we shall only name two in this thesis, theMetropolis-Hastings algorithm and the Gibbs algorithm.The method �rst laid out by Metropolis [41℄ and then extended by Hastings[26℄ is based on a proposal density, whi
h we shall denote by g. Firstly theMarkov 
hain (Yt)t≥0 is initialised with some Y0 = y0. The idea behind theMetropolis-Hastings algorithm is to generate a proposal state Z using the pro-posal density g. The next state of the Markov 
hain is then assigned the value
Z with the a

eptan
e probability α, otherwise the next state of the Markov
hain stays un
hanged (i.e. retains the same value as before). More formallythe algorithm is as follows.Algorithm 1.1. Set Y0 = y0. For a given state Yk, for some k = 0, 1, . . ., thenext state Yk+1 is sampled as follows1. Sample Z from the proposal density g.2. Let

Yk+1 =

{
Z with probability α(Yk, Z)
Yk otherwisewhere α(y, z) = min{1, r(y, z)}, r(y, z) = π(z)g(z,y)

π(y)g(y,z) .This algorithm produ
es a Markov 
hain (Yk)k≥1 whose invariant density isgiven by f . Fore more details on the Metropolis-Hastings algorithm we refer to[3℄ and [23℄.Another method of MCMC sampling is the Gibbs sampler, whi
h was orig-inally introdu
ed by Geman and Geman in [22℄. If the random variable X ismulti-dimensional X = (X1, . . . , Xd), the Gibbs sampler updates ea
h 
om-ponent at the time by sampling from the 
onditional marginal distributions.Let fk|6k(xk | x1, . . . , xk−1, xk+1, . . . , xd), k = 1, . . . , d, denote the 
onditionaldensity of Xk given X1, . . . , Xk−1, Xk+1, . . . , Xd. The Gibbs sampler 
an beviewed as a spe
ial 
ase of the Metropolis-Hastings algorithm where, given
Yk = (Yk,1, . . . , Yk,d), one �rst updates Yk,1 from the 
onditional density f1|61(· |
Yk,2, . . . , Yk,d), then Yk,2 from the 
onditional density f2|62(· | Yk+1,1, Yk,3, . . . , Yk,d),4



et
. By sampling from these proposal densities the a

eptan
e probability is al-ways equal to 1, so no a

eptan
e step is needed.An important property of a Markov 
hain is its ergodi
ity. Informally, er-godi
ity measures the how qui
kly the Markov 
hain mixes and thus how soonthe dependen
y of the 
hain dies out. This is a highly desired property sin
egood mixing speeds up the 
onvergen
e of the Markov 
hain.1.1.3 Rare-event simulationIn some spe
i�
 
ases we are interested in 
omputing the probability of a rareevent. This may be the probability of ruin of a �nan
ial 
ompany due to random-ness in the future value of assets and liabilities. The multidimensional system ofinvestments and bonds may be so 
omplex that a simulation of the 
atastrophi
event of a ruin may be feasible. For another example, 
onsider a graph of somesort and say we send out a parti
le on a random walk along the graph givensome starting position. Computing the small, and qui
kly de
reasing probabil-ity, of that parti
le returning to its starting position may be of interest as it isan indi
ator of that graph's dimension. For these reasons and many other, the
omputation of the probability for a rare-event is relevant.Consider an unbiased estimator p̂ of the probability p and investigate its per-forman
e as the probability gets smaller p → 0. A useful performan
e measureis the relative error: RE(p̂) = Std(p̂)
p

.An estimator is said to have vanishing relative error if RE(p̂) → 0 as p → 0and bounded relative error if RE(p̂) < ∞ as p → 0.It is well known that the Monte Carlo estimator is ine�
ient for 
omputingrare-event probabilities as the following argument shows. Let X be a givenrandom variable with distribution fun
tion F and say we would like to 
ompute
p = P(X ∈ A). We sample number of i.i.d. 
opies of X , denoted by X1, . . . , Xnand 
ompute

p̂ =
1

n

n∑

i=1

I{Xi ∈ A}.The varian
e of the estimator is Var(p̂) = 1
n
p(1−p), whi
h 
learly tends to zeroas n → ∞ but that is not main 
on
ern here. What is more interesting is itsrelative error as the probability p tends to zero. Its relative error is given byStd(p̂)

p
=

√
1

n

(1
p
− 1
).The relative error tends to in�nity as p → 0. Thus making the Monte Carloalgorithm very 
ostly when it 
omes to rare-event simulation. For example, if arelative error at 1% is desired and the probability is of order 10−6 then we needto take n su
h that √(106 − 1)/n ≤ 0.01. This implies that n ≈ 1010 whi
h isinfeasible on most 
omputer systems.To improve on standard Monte Carlo a 
ontrol me
hanism needs to be in-trodu
ed that steer the samples towards the relevant part of the state spa
e,thereby in
reasing the relevan
e of ea
h sample. There are several ways to dothis, for instan
e by importan
e sampling des
ribed brie�y below, or by splitting5



s
hemes as by L'E
yer [39℄, or intera
ting parti
le systems as by Del Moral in[14℄.1.1.4 Importan
e samplingThe simulation method of importan
e sampling 
omes as a remedy to the prob-lem arising in rare-event simulation. The underlying problem of the Monte Carlosimulation for rare-event studies is the fa
t that we get too few samples in theimportant part of the output spa
e, meaning that we get too few samples where
{X ∈ A}. The basi
 idea of importan
e sampling is that instead of samplingfrom the original distribution F the X1, . . . , Xn are sampled from a so-
alledsampling distribution, say G. The sampling distribution G is 
hosen su
h thatwe obtain more samples where {X ∈ A}. The importan
e sampling is then sim-ply the average of hitting the event, weighted with the relevant Radon-Nikodymderivative,

p̂IS =
1

n

n∑

i=1

dF

dG
I{Xi ∈ A}.This is a unbiased and 
onsistent estimator sin
e

EG[p̂IS] = ∫
A

dF

dG
dG = P(X ∈ A).The main di�
ulty in importan
e sampling is to design the sampling distri-bution. Traditionally the fun
tionality and reliability of new sto
hasti
 simu-lation algorithms is �proved� by running extensive numeri
al experiments. Butnumeri
al eviden
e alone is insu�
ient. There are numerous examples wherethe standard heuristi
s fail and the numeri
al eviden
e indi
ates that the al-gorithm has 
onverged when, in fa
t, it is severely biased [24℄. The limitedeviden
e provided by simply running numeri
al experiments has generated theneed for a deeper theoreti
al understanding and analysis of the performan
eof sto
hasti
 simulation algorithms. Over the last de
ade mathemati
al toolsfrom stability theory and 
ontrol theory have been developed with the aim totheoreti
ally quantify the performan
e of sto
hasti
 simulation algorithms for
omputing probabilities of rare events. In the 
ontext of importan
e samplingtwo main approa
hes have been studied; the subsolution approa
h, based on
ontrol theory, by Dupuis, Wang, and 
ollaborators, see e.g. [18, 19, 17℄, andthe approa
h based on Lyapunov fun
tions and stability theory by Blan
het,Glynn, and others, see [5, 6, 7, 10℄.In the theoreti
al work on e�
ient importan
e sampling an algorithm is saidto be e�
ient if relative error per sample, Std(p̂)/p does not grow too rapidlyas p ↓ 0.1.1.5 Heavy-tailed distributionsIn this thesis we 
onsider in parti
ular probability distributions F with heavy-tails. The notion of heavy tails refers to the rate of de
ay of the tail F = 1−Fof a distribution fun
tion F . A popular 
lass of heavy-tailed distributions is the
lass of subexponential distributions. A distribution fun
tion F supported onthe positive axis is said to belong to the subexponential distributions if

lim
x→∞

P(X1 +X2 > x)

P(X1 > x)
= 2,6



for independent random variables X1 and X2 with distribution F . A sub
lassof the subexponential distributions is the regularly varying distributions. F is
alled regularly varying (at ∞) with index −α ≤ 0 if
lim
t→∞

F (tx)

F (t)
= x−α, for all x > 0.The heavy-tailed distributions are often des
ribed with the �one big jump�analogy, meaning that the event of a sum of heavy-tailed random variables beinglarge is dominated by the 
ase of one of the variables being very large whilstthe rest are relatively small. This is in sharp 
ontrast to the 
ase of light-tails,where the same event is dominated by the 
ase of every variable 
ontributingequally to the total. As a referen
e to the one big jump analogy we refer thereader to [28, 30, 15℄.This one big jump phenomena has been observed in empiri
al data. Forinstan
e, when we 
onsider sto
k market indi
es su
h as Nasdaq, Dow Joneset
. it turns out that the distribution of daily log returns typi
ally has a heavyleft tail, see Hult et al. in [29℄. Another example is the well studied Danish �reinsuran
e data, whi
h 
onsists of real-life 
laims 
aused by industrial �res inDenmark. While the arrivals of 
laims is showed to be not far from Poisson, the
laim size distribution shows 
lear heavy-tail behavior. The data set is analysedby Mikos
h in [43℄ and the tail of the 
laim size is shown to be �t well with aPareto distribution.Sto
hasti
 simulation in the presen
e of heavy-tailed distributions has beenstudied with mu
h interest in re
ent years. The 
onditional Monte Carlo te
h-nique was applied on this setting by Asmussen et al. [2, 4℄. Dupuis et al. [16℄ usedimportan
e sampling algorithm in a heavy-tailed setting. Finally we mentionthe work of Blan
het et al. 
onsidering heavy-tailed distributions in [11, 8℄.1.2 Markov 
hain Monte Carlo in rare-event simulationIn this se
tion we des
ribe a new methodology based on Markov 
hain MonteCarlo (MCMC), for 
omputing probabilities of rare events. A more generalversion of the algorithm, for 
omputing expe
tations, is provided in Se
tion 2along with a pre
ise asymptoti
 e�
ien
y 
riteria.1.2.1 FormulationLet X be a real-valued random variable with distribution F and density f withrespe
t to the Lebesgue measure. The problem is to 
ompute the probability

p = P(X ∈ A) =

∫

A

dF . (1.1)The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA bethe 
onditional distribution of X given X ∈ A. The density of FA is given by
dFA

dx
(x) =

f(x)I{x ∈ A}

p
. (1.2)Consider a Markov 
hain (Xt)t≥0 with invariant density given by (1.2). Su
h aMarkov 
hain 
an be 
onstru
ted by implementing an MCMC algorithm su
has a Gibbs sampler or a Metropolis-Hastings algorithm, see e.g. [3, 23℄.7



To 
onstru
t an estimator for the normalising 
onstant p, 
onsider a non-negative fun
tion v, whi
h is normalised in the sense that ∫
A
v(x)dx = 1. Thefun
tion v will be 
hosen later as part of the design of the estimator. For any
hoi
e of v the sample mean,

1

T

T−1∑

t=0

v(Xt)I{Xt ∈ A}

f(Xt)
,
an be viewed as an estimate of

EFA

[
v(X)I{X ∈ A}

f(X)

]
=

∫

A

v(x)

f(x)

f(x)

p
dx =

1

p

∫

A

v(x)dx =
1

p
.Thus,

q̂T =
1

T

T−1∑

t=0

u(Xt), where u(Xt) =
v(Xt)I{Xt ∈ A}

f(Xt)
, (1.3)is an unbiased estimator of q = p−1. Then p̂T = q̂−1

T is an estimator of p.The expe
ted value above is 
omputed under the invariant distribution FAof the Markov 
hain. It is impli
itly assumed that the sample size T is su�-
iently large that the burn-in period, the time until the Markov 
hain rea
hesstationarity, is negligible or alternatively that the burn-in period is dis
arded.Another remark is that it is theoreti
ally possible that all the terms in the sumin (1.3) are zero, leading to the estimate q̂T = 0 and then p̂T = ∞. To avoidsu
h nonsense one 
an simply take p̂T as the minimum of q̂−1
T and one.There are two essential design 
hoi
es that determine the performan
e of thealgorithm: the 
hoi
e of the fun
tion v and the design of the MCMC sampler.The fun
tion v in�uen
es the varian
e of u(Xt) in (1.3) and is therefore of main
on
ern for 
ontrolling the rare-event properties of the algorithm. It is desirableto take v su
h that the normalised varian
e of the estimator, given by p2 Var(q̂T ),is not too large. The design of the MCMC sampler, on the other hand, is 
ru
ialto 
ontrol the dependen
e of the Markov 
hain and thereby the 
onvergen
e rateof the algorithm as a fun
tion of the sample size. To speed up simulation it isdesirable that the Markov 
hain mixes fast so that the dependen
e dies outqui
kly.1.2.2 Controlling the normalised varian
eThis se
tion 
ontains a dis
ussion on how to 
ontrol the performan
e of theestimator q̂T by 
ontrolling its normalised varian
e.For the estimator q̂T to be useful it is of 
ourse important that its varian
eis not too large. When the probability p to be estimated is small it is reasonableto ask that Var(q̂T ) is of size 
omparable to q2 = p−2, or equivalently, that thestandard deviation of the estimator is roughly of the same size as p−1. To thisend the normalised varian
e p2 Var(q̂T ) is studied.Let us 
onsider Var(q̂T ). With

u(x) =
v(x)I{x ∈ A}

f(x)
,8



it follows that
p2VarFA

(q̂T ) = p2 VarFA

( 1

T

T−1∑

t=0

u(Xt)
)

= p2
( 1

T
VarFA

(u(X0)) +
2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFA
(u(Xs), u(Xt))

), (1.4)Let us for the moment fo
us our attention on the �rst term. It 
an be writtenas
p2

T
VarFA

(
u(X0)

)
=

p2

T

(
EFA

[
u(X0)

2
]
−EFA

[
u(X0)

]2)

=
p2

T

( ∫ ( v(x)
f(x)

I{x ∈ A}
)2

FA(dx) −
1

p2

)

=
p2

T

( ∫ v2(x)

f2(x)
I{x ∈ A}

f(x)

p
dx−

1

p2

)

=
1

T

( ∫

A

v2(x)p

f(x)
dx− 1

).Therefore, in order to 
ontrol the normalised varian
e the fun
tion v must be
hosen so that ∫
A

v2(x)
f(x) dx is 
lose to p−1. An important observation is that the
onditional density (1.2) plays a key role in �nding a good 
hoi
e of v. Letting

v be the 
onditional density in (1.2) leads to
∫

A

v2(x)

f(x)
dx =

∫

A

f2(x)I{x ∈ A}

p2f(x)
dx =

1

p2

∫

A

f(x)dx =
1

p
,whi
h implies,

p2

T
VarFA

(
u(X)

)
= 0.This motivates taking v as an approximation of the 
onditional density (1.2).This is similar to the ideology behind 
hoosing an e�
ient importan
e samplingestimator.If for some set B ⊂ A the probability P(X ∈ B) 
an be 
omputed expli
itly,then a 
andidate for v is

v(x) =
f(x)I{x ∈ B}

P(X ∈ B)
,the 
onditional density of X given X ∈ B. This 
andidate is likely to performwell if P(X ∈ B) is a good approximation of p. Indeed, in this 
ase

∫

A

v2(x)

f(x)
dx =

∫

A

f2(x)I{x ∈ B}

P(X ∈ B)2f(x)
dx =

1

P(X ∈ B)2

∫

B

f(x)dx =
1

P(X ∈ B)
,whi
h will be 
lose to p−1.Now, let us shift emphasis to the 
ovarian
e term in (1.4). As the samples

(Xt)
T−1
t=0 form a Markov 
hain the Xt's are dependent. Therefore the 
ovarian
eterm in (1.4) is non-zero and may not be ignored. The 
rude upper bound

CovFA
(u(Xs), u(Xt)) ≤ VarFA

(u(X0)),9



leads to the upper bound
2p2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFA
(u(Xs), u(Xt)) ≤ p2

(
1−

1

T

)
VarFA

(u(X0))for the 
ovarian
e term. This is a very 
rude upper bound as it does not de
ayto zero as T → ∞. But, at the moment, the emphasis is on small p so wewill pro
eed with this upper bound anyway. As indi
ated above the 
hoi
e of v
ontrols the term p2 VarFA
(u(X0)). We 
on
lude that the normalised varian
e(1.4) of the estimator q̂T is 
ontrolled by the 
hoi
e of v when p is small.1.2.3 Ergodi
 propertiesAs we have just seen the 
hoi
e of the fun
tion v 
ontrols the normalised varian
eof the estimator for small p. The design of the MCMC sampler, on the otherhand, determines the strength of the dependen
e in the Markov 
hain. Strongdependen
e implies slow 
onvergen
e whi
h results in a high 
omputational 
ost.The 
onvergen
e rate of MCMC samplers 
an be analysed within the theoryof ϕ-irredu
ible Markov 
hains. Fundamental results for ϕ-irredu
ible Markov
hains are given in [42, 44℄. We will fo
us on 
onditions that imply a geometri

onvergen
e rate. The 
onditions given below are well studied in the 
ontext ofMCMC samplers. Conditions for geometri
 ergodi
ity in the 
ontext of Gibbssamplers have been studied by e.g. [12, 51, 52℄, and for Metropolis-Hastingsalgorithms by [40℄.A Markov 
hain (Xt)t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt =

x) is ϕ-irredu
ible if there exists a measure ϕ su
h that ∑t p
(t)(x, ·) ≪ ϕ(·),where p(t)(x, ·) = P(Xt ∈ · | X0 = x) denotes the t-step transition kernel and

≪ denotes absolute 
ontinuity. A Markov 
hain with invariant distribution π is
alled geometri
ally ergodi
 if there exists a positive fun
tion M and a 
onstant
r ∈ (0, 1) su
h that

‖p(t)(x, ·) − π(·)‖TV ≤ M(x)rt, (1.5)where ‖ · ‖TV denotes the total-variation norm. This 
ondition ensures that thedistribution of the Markov 
hain 
onverges at a geometri
 rate to the invariantdistribution. If the fun
tion M is bounded, then the Markov 
hain is said to beuniformly ergodi
. Conditions su
h as (1.5) may be di�
ult to establish dire
tlyand are therefore substituted by suitable minorisation or drift 
onditions. Aminorisation 
ondition holds on a set C if there exist a probability measure ν,a positive integer t0, and δ > 0 su
h that
p(t0)(x,B) ≥ δν(B),for all x ∈ C and Borel sets B. In this 
ase C is said to be a small set.Minorisation 
onditions have been used for obtaining rigorous bounds on the
onvergen
e of MCMC samplers, see e.g. [49℄.If the entire state spa
e is small, then the Markov 
hain is uniformly er-godi
. Uniform ergodi
ity does typi
ally not hold for Metropolis samplers, seeMengersen and Tweedie in [40℄ Theorem 3.1. Therefore useful su�
ient 
on-ditions for geometri
 ergodi
ity are often given in the form of drift 
onditions[12, 40℄. Drift 
onditions, established through the 
onstru
tion of appropriateLyapunov fun
tions, are also useful for establishing 
entral limit theorems forMCMC algorithms, see [34, 42℄ and the referen
es therein.10



1.2.4 E�
ien
y of the MCMC algorithmRoughly speaking, the arguments given above lead to the following desired prop-erties of the estimator.1. Rare event e�
ien
y: Constru
t an unbiased estimator q̂T of p−1 a

ord-ing to (1.3) by �nding a fun
tion v whi
h approximates the 
onditionaldensity (1.2). The 
hoi
e of v 
ontrols the normalised varian
e of theestimator.2. Large sample e�
ien
y: Design the MCMC sampler, by �nding an ap-propriate Gibbs sampler or a proposal density in the Metropolis-Hastingsalgorithm, su
h that the resulting Markov 
hain is geometri
ally ergodi
.1.3 Outline and 
ontribution of this thesisThe outline and 
ontribution of the thesis are as follows.a. General formulation of the algorithm in Se
tion 2. In this se
tion wepresent the formal methodology in how to set up the MCMC simulationfor e�
ient rare-event 
omputation. The probabilisti
 assumptions madeare mild and the setting is for instan
e not restri
ted to heavy-tails. Thetwo essential design 
hoi
es are highlighted. Corresponding to rare-evente�
ien
y and large sample e�
ien
y.b. Appli
ation to heavy-tailed random walks in Se
tion 3. In this se
tion theMCMC methodology is applied to the problem of 
omputing
pn = P(Y1 + · · ·+ Yn > an),where an → ∞ su�
iently fast so that the probability tends to zero. Thein
rements Y are assumed to be heavy-tailed. We present a Gibbs samplerto produ
e a Markov 
hain whose invariant distribution is the 
onditionaldistribution

P
(
(Y1, . . . , Yn) ∈ · | Y1 + · · ·+ Yn > an

).The Markov 
hain is shown to preserve stationarity and uniformly ergodi
,ensuring the large sample e�
ien
y. In addition we design an estimatorfor 1/pn having vanishing normalised varian
e. Numeri
al experimentsperformed and 
omparison made between MCMC and best-performingexisting importan
e sampling estimators as well as standard Monte Carlo.
. Appli
ation to heavy-tailed random sums in Se
tion 4. In this se
tion theMCMC methodology is applied to the problem of 
omputing
pn = P(Y1 + · · ·+ YNn

> aNn
),where N is a random variable and aN → ∞ su�
iently fast so that theprobability tends to zero. The in
rements Y are assumed to be heavy-tailed. We present a Gibbs sampler to produ
e a Markov 
hain whoseinvariant distribution is the 
onditional distribution

P
(
(N, Y1, . . . , YN ) ∈ · | Y1 + · · ·+ YN > aN

).11



The Markov 
hain is shown to preserve stationarity and uniformly ergodi
,ensuring the large sample e�
ien
y. In addition we design an estimatorfor 1/pn having vanishing normalised varian
e. Numeri
al experimentsperformed and 
omparison made between MCMC and best-performingexisting importan
e sampling estimators as well as standard Monte Carlo.d. Appli
ation to sto
hasti
 re
urrent equations in Se
tion 5. In this se
tionthe MCMC methodology is applied to the problem of 
omputing pn =
P(Xn > an), where

Xn = AnXn−1 +Bn,
X0 = 0,and an → ∞ su�
iently fast so that the probability tends to zero. The in-
rements B are assumed to be regularly varying of index α and E[Aα+ǫ] <

∞ for some ǫ > 0. We present a Gibbs sampler to produ
e a Markov 
hainwhose invariant distribution is the 
onditional distribution
P
(
(A2, . . . , An, B1, . . . , Bn) ∈ · | Xn > an

).The Markov 
hain is shown to preserve stationarity and uniformly ergodi
,ensuring the large sample e�
ien
y. In addition we design an estimatorfor 1/pn having vanishing normalised varian
e. Numeri
al experimentsperformed and 
omparison made between MCMC and best-performingexisting importan
e sampling estimators as well as standard Monte Carlo.e. Appli
ation to 
omputing probability of ruin in an insuran
e model withrisky investments in Se
tion 6...A paper titled Markov 
hain Monte Carlo for 
omputing rare-event proba-bilities for a heavy-tailed random walk by Gudmundsson and Hult [25℄ basedon Se
tions 2, 3, and 4 in the thesis has been a

epted for publi
ation in theJournal of Applied Probability in June 2014.
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2 General Markov 
hain Monte Carlo formula-tionIn this se
tion the Markov 
hain Monte Carlo ideas are applied to the problemof 
omputing an expe
tation. Here the setting is general, for instan
e, there isno assumption that densities with respe
t to Lebesgue measure exist.Let X be a random variable with distribution F and h be a non-negative
F -integrable fun
tion. The problem is to 
ompute the expe
tation

θ = E
[
h(X)

]
=

∫
h(x)dF (x).In the spe
ial 
ase when F has density f and h(x) = I{x ∈ A} this problemredu
es to the simpler problem of 
omputing the probability in (1.1). illustratedin Se
tion 1.2.The analogue of the 
onditional distribution in (1.2) is the distribution Fhgiven by

Fh(B) =
1

θ

∫

B

h(x)dF (x), for measurable sets B.Consider a Markov 
hain (Xt)t≥0 having Fh as its invariant distribution. Tode�ne an estimator of θ−1, 
onsider a probability distribution V with V ≪ Fh.Then it follows that V ≪ F and it is assumed that the density dV/dF is known.Consider the estimator of ζ = θ−1 given by
ζ̂T =

1

T

T−1∑

t=0

u(Xt), where u(x) =
1

θ

dV

dFh

(x). (2.1)Note that u does not depend on θ be
ause V ≪ Fh and therefore
u(x) =

1

θ

dV

dFh

(x) =
1

h(x)

dV

dF
(x),for x su
h that h(x) > 0. The estimator (2.1) is a generalisation of the estimator(1.3) where one 
an think of v as the density of V with respe
t to Lebesguemeasure. An estimator of θ 
an then 
onstru
ted as θ̂T = ζ̂−1

T .The varian
e analysis of ζ̂T follows pre
isely the steps outlined in Se
tion1.2. The normalised varian
e is
θ2 VarFh

(ζ̂T ) =
θ2

T
VarFh

(
u(X0)

)
+

2θ2

T 2

T−1∑

t=0

T−1∑

s=t+1

CovFh

(
u(Xs), u(Xt)

), (2.2)where the �rst term 
an be rewritten, similarly to the display (1.4), as
θ2

T
VarFh

(
u(X0)

)
=

1

T

(
EV

[ dV
dFh

]
− 1
).The analysis above indi
ates that an appropriate 
hoi
e of V is su
h that

EV [
dV
dFh

] is 
lose to 1. Again, the ideal 
hoi
e would be taking V = Fh leading tozero varian
e. This 
hoi
e is not feasible but nevertheless suggests sele
ting V asan approximation of Fh. As already noted this is similar to the ideology behind
hoosing an e�
ient importan
e sampling estimator. The di�eren
e being thathere V ≪ F is required whereas in importan
e sampling F needs be absolutely
ontinuous with respe
t to the sampling distribution. The 
rude upper boundfor the 
ovarian
e term in (2.2) is valid, just as in Se
tion 1.2.13



2.1 Asymptoti
 e�
ien
y 
riteriaAsymptoti
 e�
ien
y 
an be 
onveniently formulated in terms of a limit 
riteriaas a large deviation parameter tends to in�nity. As is 
ustomary in problemsrelated to rare-event simulation the problem at hand is embedded in a sequen
eof problems, indexed by n = 1, 2, . . . . The general setup is formalised as follows.Let (X(n))n≥1 be a sequen
e of random variables with X(n) having distri-bution F (n). Let h be a non-negative fun
tion, integrable with respe
t to F (n),for ea
h n. Suppose
θ(n) = E

[
h(X(n))

]
=

∫
h(x)dF (n)(x) → 0,as n → ∞. The problem is to 
ompute θ(n) for some large n.Denote by F

(n)
h the distribution with dF

(n)
h /dF (n) = h/θ(n). For the nthproblem, a Markov 
hain (X

(n)
t )T−1

t=0 with invariant distribution F
(n)
h is gener-ated by an MCMC algorithm. The estimator of ζ(n) = (θ(n))−1 is based on aprobability distribution V (n), su
h that V (n) ≪ F

(n)
h , with known density withrespe
t to F (n). An estimator ζ̂(n)T of ζ is given by

ζ̂
(n)
T =

1

T

T−1∑

t=0

u(n)(X
(n)
t ),where

u(n)(x) =
1

h(x)

dV (n)

dF (n)
(x).The heuristi
 e�
ien
y 
riteria in Se
tions 1.2 
an now be rigorously formu-lated as follows:1. Rare-event e�
ien
y: Sele
t the probability distributions V (n) su
h that

(θ(n))2 Var
F

(n)
h

(u(n)(X)) → 0, as n → ∞.2. Large sample size e�
ien
y: Design the MCMC sampler, by �nding an ap-propriate Gibbs sampler or a proposal density for the Metropolis-Hastingsalgorithm, su
h that, for ea
h n ≥ 1, the Markov 
hain (X
(n)
t )t≥0 is geo-metri
ally ergodi
.Remark 2.1. The rare-event e�
ien
y 
riteria is formulated in terms of thee�
ien
y of estimating (θ(n))−1 by ζ̂

(n)
T . If one insists on studying the meanand varian
e of θ̂(n)T = (ζ̂

(n)
T )−1, then the e�e
ts of the transformation x 7→ x−1must be taken into a

ount. For instan
e, the estimator θ̂(n)T is biased and itsvarian
e 
ould be in�nite. The bias 
an be redu
ed for instan
e via the deltamethod illustrated in [3, p. 76℄. We also remark that even in the estimation of

(θ(n))−1 by ζ̂
(n)
T there is a bias 
oming from the fa
t that the Markov 
hain notbeing perfe
tly stationary.
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3 Heavy-tailed Random WalkThe MCMC methodology presented in Se
tion 2 is here applied to 
omputethe probability that a random walk Sn = Y1 + · · · + Yn, where Y1, . . . , Yn arenon-negative, independent and heavy-tailed, ex
eeds a high threshold an. Thisproblem has re
eived some attention in the 
ontext of 
onditional Monte Carloalgorithms [2, 4℄ and importan
e sampling algorithms [35, 16, 11, 8℄.In this se
tion a Gibbs sampler is presented for sampling from the 
on-ditional distribution P((Y1, . . . , Yn) ∈ · | Sn > an). The resulting Markov
hain is proved to be uniformly ergodi
. An estimator for (p(n))−1 of the form(2.1) is suggested with V (n) as the 
onditional distribution of (Y1, . . . , Yn) given
max{Y1, . . . , Yn} > an. The estimator is proved to have vanishing normalisedvarian
e when the distribution of Y1 belongs to the 
lass of subexponential dis-tributions. The proof is elementary and is 
ompleted in a few lines. This is insharp 
ontrast to e�
ien
y proofs for importan
e sampling algorithms for thesame problem, whi
h require more restri
tive assumptions on the tail of Y1 andtend to be long and te
hni
al [16, 11, 9℄. The se
tion is 
on
luded with nu-meri
al experiments to illustrate the 
omparativeness with existing importan
esampling algorithm and standard Monte Carlo.3.1 A Gibbs sampler for 
omputing P(Sn > an)Let Y1, . . . , Yn be non-negative independent and identi
ally distributed randomvariables with 
ommon distribution FY and density fY with respe
t to somereferen
e measure µ. Consider the random walk Sn = Y1 + · · · + Yn and theproblem of 
omputing the probability

p(n) = P(Sn > an),where an → ∞ su�
iently fast that p(n) → 0 as n → ∞.It is 
onvenient to denote by Y(n) the n-dimensional random ve
tor
Y(n) = (Y1, . . . , Yn)

⊤ ,and the set
An = {y ∈ R

n : 1
⊤

y > an},where 1 = (1, . . . , 1)
⊤

∈ R
n and y = (y1, . . . , yn)

⊤ . With this notation
p(n) = P(Sn > an) = P(1

⊤

Y(n) > an) = P(Y(n) ∈ An).The 
onditional distribution
F

(n)
An

(·) = P(Y(n) ∈ · | Y(n) ∈ An),has density
dF

(n)
An

dµ
(y1, . . . , yn) =

∏n
j=1 fY (yj)I{y1 + · · ·+ yn > an}

p(n)
. (3.1)The �rst step towards de�ning the estimator of p(n) is to 
onstru
t theMarkov 
hain (Y

(n)
t )t≥0 whose invariant density is given by (3.1) using a Gibbssampler. In short, the Gibbs sampler updates one element of Y(n)

t at a timekeeping the other elements 
onstant. Formally the algorithm pro
eeds as follows.15



Algorithm 3.1. Start at an initial state Y(n)
0 = (Y0,1, . . . , Y0,n)

⊤ where Y0,1 +

· · ·+ Y0,n > an. Given Y
(n)
t = (Yt,1, . . . , Yt,n)

⊤ , for some t = 0, 1, . . ., the nextstate Y
(n)
t+1 is sampled as follows:1. Draw j1, . . . , jn from {1, . . . , n} without repla
ement and pro
eed by up-dating the 
omponents of Y(n)

t in the order thus obtained.2. For ea
h k = 1, . . . , n, repeat the following.(a) Let j = jk be the index to be updated and write
Yt,−j = (Yt,1, . . . , Yt,j−1, Yt,j+1, . . . , Yt,n)

⊤ .Sample Y ′
t,j from the 
onditional distribution of Y given that the sumex
eeds the threshold. That is,
P(Y ′

t,j ∈ · | Yt,−j) = P

(
Y ∈ · | Y +

∑

k 6=j

Yt,k > an

).(b) Put Y′
t = (Yt,1, . . . , Yt,j−1, Y

′
t,j , Yt,j+1, . . . , Yt,n)

⊤ .3. Draw a random permutation π of the numbers {1, . . . , n} from the uniformdistribution and put Y(n)
t+1 = (Y ′

t,π(1), . . . , Y
′
t,π(n))

⊤ .Iterate steps (1)-(3) until the entire Markov 
hain (Y
(n)
t )T−1

t=0 is 
onstru
ted.Remark 3.2. (i) In the heavy-tailed setting the traje
tories of the random walkleading to the rare event are likely to 
onsist of one large in
rement (the bigjump) while the other in
rements are average. The purpose of the permutationstep is to for
e the Markov 
hain to mix faster by moving the big jump todi�erent lo
ations. However, the permutation step in Algorithm 3.1 is not reallyneeded when 
onsidering the probability P(Sn > an). This is due to the fa
tthat the summation is invariant of the ordering of the steps.(ii) The algorithm requires sampling from the 
onditional distribution P(Y ∈
· | Y > c) for arbitrary c. This is easy whenever inversion is feasible, see [3,p. 39℄, or a

eptan
e/reje
tion sampling 
an be employed. There are, however,situations where sampling from the 
onditional distribution P(Y ∈ · | Y > c)may be di�
ult, see [33, Se
tion 2.2℄.The following proposition 
on�rms that the Markov 
hain (Y

(n)
t )t≥0, gener-ated by Algorithm 3.1, has F (n)

An
as its invariant distribution.Proposition 3.3. The Markov 
hain (Y

(n)
t )t≥0, generated by Algorithm 3.1,has the 
onditional distribution F

(n)
An

as its invariant distribution.Proof. The goal is to show that ea
h updating step (Step 2 and 3) of the al-gorithm preserves stationarity. Sin
e the 
onditional distribution F
(n)
An

is per-mutation invariant it is 
lear that Step 3 preserves stationarity. Therefore it issu�
ient to 
onsider Step 2 of the algorithm.Let Pj(y, ·) denote the transition probability of the Markov 
hain (Y
(n)
t )t≥0
orresponding to the jth 
omponent being updated. It is su�
ient to show that,16



for all j = 1, . . . ,m and all Borel sets of produ
t form B1 × · · · ×Bn ⊂ An, thefollowing equality holds:
F

(n)
An

(B1 × · · · ×Bn) = E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)].Observe that, be
ause B1 × · · · ×Bn ⊂ An,
F

(n)
An

(B1 × · · · ×Bn) = E

[ n∏

k=1

I{Yk ∈ Bk} | Sn > an

]

=
E[I{Yj ∈ Bj}I{Sn > an}

∏
k 6=j I{Yk ∈ Bk}]

P(Sn > an)

=

E

[
E[I{Yj∈Bj}|Yj>an−Sn,−j,Y

(n)
−j ]

∏
k 6=j I{Yk∈Bk}

P(Yj>an−Sn,−j|Y
(n)
−j )

]

P(Sn > an)

=
E[Pj(Y

(n), B1 × · · · × Bn)
∏

k 6=j I{Yk ∈ Bk}]

P (Sn > an)

= E[Pj(Y
(n), B1 × · · · ×Bn) | Sn > an]

= E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)],with the 
onventional notation of writing Y(n) = (Y1, . . . , Yn)
⊤ , Sn = Y1+ · · ·+

Yn, Y(n)
−j = (Y1, . . . , Yj−1, Yj+1, Yn)

⊤ and Sn,−j = Y1 + · · ·+Yj−1 +Yj+1 + · · ·+
Yn.As for the ergodi
 properties, Algorithm 3.1 produ
es a Markov 
hain whi
his uniformly ergodi
.Proposition 3.4. For ea
h n ≥ 1, the Markov 
hain (Y

(n)
t )t≥0 is uniformlyergodi
. In parti
ular, it satis�es the following minorisation 
ondition: thereexists δ > 0 su
h that

P(Y
(n)
1 ∈ B | Y

(n)
0 = y) ≥ δF

(n)
An

(B),for all y ∈ An and all Borel sets B ⊂ An.Proof. Take an arbitrary n ≥ 1. Uniform ergodi
ity 
an be dedu
ed from thefollowing minorisation 
ondition (see [44℄): there exists a probability measure
ν, δ > 0, and an integer t0 su
h that

P(Y
(n)
t0

∈ B | Y
(n)
0 = y) ≥ δν(B),for every y ∈ An and Borel set B ⊂ An. Take y ∈ An and write g( · | y) for thedensity of P(Y

(n)
1 ∈ · | Y

(n)
0 = y). The goal is to show that the minorisation
ondition holds with t0 = 1, δ = p(n)/n!, and ν = F

(n)
An

.For any x ∈ An there exists an ordering j1, . . . , jn of the numbers {1, . . . , n}su
h that
yj1 ≤ xj1 , . . . , yjk ≤ xjk , yjk+1

> xjk+1
, . . . , yjn > xjn ,17



for some k ∈ {0, . . . , n}. The probability to draw this parti
ular ordering inStep 1 of the algorithm is at least 1/n!. It follows that
g(x | y) ≥

1

n!

fY (xj1 )I{xj1 ≥ an −
∑

i6=j1
yi}

FY (an −
∑

i6=j1
yi)

×
fY (xj2)I{xj2 ≥ an −

∑
i6=j1,j2

yi − xj1}

FY (an −
∑

i6=j1,j2
yi − xj1)...

×
fY (xjn)I{xjn ≥ an − xj1 − . . . xjn−1}

FY (an − xj1 − . . . xjn−1)
.By 
onstru
tion of the ordering j1, . . . , jn all the indi
ators are equal to 1 andthe expression in the last display is bounded from below by

1

n!

n∏

j=1

fY (xj) =
p(n)

n!
·

∏n
j=1 fY (xj)I{x1 + · · ·+ xn > an}

p(n)
.The proof is 
ompleted by integrating both sides of the inequality over any Borelset B ⊂ An.Remark 3.5. To keep the proof of Proposition 3.4 simple, we have not usedthe permutation step of the algorithm in the proof and not tried to optimise

δ. By taking advantage of the permutation step we believe that the 
onstant δ
ould, with some additional e�ort, be in
reased by a fa
tor n!.3.2 Constru
ting an e�
ient estimatorNote that so far the distributional assumption of steps Y1, . . . , Yn of the ran-dom walk have been 
ompletely general. For the rare-event properties of theestimator the design of V (n) is essential and this is where the distributionalassumptions be
ome important. In this se
tion a heavy-tailed random walk is
onsidered. To be pre
ise, assume that the variables Y1, . . . , Yn are nonnegativeand that the tail of FY is heavy in the sense that there is a sequen
e (an) ofreal numbers su
h that
lim
n→∞

P(Sn > an)

P(Mn > an)
= 1, (3.2)where Mn denotes the maximum of Y1, . . . , Yn. The 
lass of distributions forwhi
h (3.2) holds is large and in
ludes the subexponential distributions. General
onditions on the sequen
e (an) for whi
h (3.2) holds are given in [15℄, see also[13℄. For instan
e, if FY is regularly varying at ∞ with index β > 1 then (3.2)holds with an = an, for a > 0.Next 
onsider the 
hoi
e of V (n). As observed in Se
tion 2 a good approx-imation to the 
onditional distribution F

(n)
An

is a 
andidate for V (n). For aheavy-tailed random walk the �one big jump� heuristi
s says that the sum islarge most likely be
ause one of the steps is large. Based on the assumption(3.2) a good 
andidate for V (n) is the 
onditional distribution,
V (n)(·) = P(Y(n) ∈ · | Mn > an).18



Then V (n) has a known density with respe
t to F (n)(·) = P(Y(n) ∈ ·) given by
dV (n)

dF (n)
(y) =

1

P(Mn > an)
I{y : ∨n

j=1yj > an} =
I{y : ∨n

j=1yj > an}

1− FY (an)n
.The estimator of q(n) = P(Sn > an)

−1 is then given by
q̂
(n)
T =

1

T

T−1∑

t=0

dV (n)

dF (n)
(Y

(n)
t ) =

1

1− FY (an)n
·
1

T

T−1∑

t=0

I{∨n
j=1Yt,j > an} (3.3)where (Y

(n)
t )t≥0 is generated by Algorithm 3.1. Note that the estimator (3.3)
an be viewed as the asymptoti
 approximation (1 − FY (an)

n)−1 of (p(n))−1multiplied by the random 
orre
tion fa
tor 1
T

∑T−1
t=0 I{∨n

j=1Yt,j > an}. Thee�
ien
y of this estimator is based on the fa
t that the random 
orre
tionfa
tor is likely to be 
lose to 1 and has small varian
e.Theorem 3.6. Suppose that (3.2) holds. Then the estimator q̂
(n)
T in (3.3) hasvanishing normalised varian
e for estimating (p(n))−1. That is,

lim
n→∞

(p(n))2 Var
F

(n)
An

(q̂
(n)
T ) = 0.Proof. With u(n)(y) = 1

1−FY (an)n
I{∨n

j=1yj > an} it follows from (3.2) that
(p(n))2 Var

F
(n)
An

(u(n)(Y(n)))

=
P(Sn > an)

2

P(Mn > an)2
Var

F
(n)
An

(I{Y : ∨n
j=1Yj > an})

=
P(Sn > an)

2

P(Mn > an)2
P(Mn > an | Sn > an)P(Mn ≤ an | Sn > an)

=
P(Sn > an)

P(Mn > an)

(
1−

P(Mn > an)

P(Sn > an)

)
→ 0.This 
ompletes the proof.Remark 3.7. Theorem 3.6 
overs a wide range of heavy-tailed distributionsand even allows the number of steps to in
rease with n. Its proof is elementary.This is in sharp 
ontrast to the existing proofs of e�
ien
y (bounded relativeerror, say) for importan
e sampling algorithms that 
over less general modelsand tend to be long and te
hni
al, see e.g. [16, 11, 9℄. It must be mentioned,though, that Theorem 3.6 proves e�
ien
y for 
omputing (p(n))−1, whereas theauthors of [16, 11, 9℄ prove e�
ien
y for a dire
t 
omputation of p(n).3.3 Numeri
al experimentsFirst a note whi
h applies to all of the numeri
al results presented in this thesis.The theoreti
al results guarantee that q̂(n)T is an e�
ient estimator of (p(n))−1.However, for 
omparison of existing algorithms the numeri
al experiments arebased on p̂

(n)
T = (q̂

(n)
T )−1 as an estimator for p(n). The literature in
ludesnumeri
al 
omparison for many of the existing algorithms. In parti
ular, inthe setting of random sums. Numeri
al results for the algorithms by Dupuis et19



al. [16℄, the hazard rate twisting algorithm by Juneja and Shahabuddin [35℄,and the 
onditional Monte Carlo algorithm by Asmussen and Kroese [4℄ 
anbe found in [16℄. Additional numeri
al results for the algorithms by Blan
hetand Li [9℄, Dupuis et al. [16℄, and Asmussen and Kroese [4℄ 
an be found in [9℄.From the existing results it appears as if the algorithm by Dupuis et al. [16℄ hasthe best performan
e. Therefore, we only in
lude numeri
al experiments of theMCMC estimator and the estimator in [16℄, whi
h is labelled IS.By 
onstru
tion ea
h simulation run of the MCMC algorithm only generatesa single random variable (one simulation step) while both importan
e samplingand standard Monte Carlo generate n number of random variables (n simulationsteps). Therefore the number of runs for the MCMC is s
aled up by a fa
tor of
n so that all of the algorithms (MCMC, Monte Carlo and importan
e sampling)generate essentially the same number of random numbers. Thus getting a fairer
omparison of the 
omputer runtime between the three approa
hes.Consider estimating P(Sn > an) where Sn = Y1 + · · · + Yn with Y1 hav-ing a Pareto distribution with density fY (x) = β(x + 1)−β−1 for x ≥ 0. Let
an = an. Ea
h estimate is 
al
ulated using b number of bat
hes, ea
h 
onsistingof T simulations in the 
ase of importan
e sampling and standard Monte Carloand Tn in the 
ase of MCMC. The bat
h sample mean and sample standarddeviation is re
orded as well as the average runtime per bat
h. The results arepresented in Table 1. The 
onvergen
e of the algorithms 
an also be visualisedby 
onsidering the point estimate as a fun
tion of number of simulation steps.This is presented in Figure 1. The MCMC algorithm appears to perform 
om-parably with the importan
e sampling algorithm for p up to order 10−4 whi
his a relevant range in, say, insuran
e and �nan
e. However for smaller p theMCMC appears to performs better. The improvement over importan
e sam-pling appears to in
rease as the event be
omes more rare. This is due to thefa
t that the asymptoti
 approximation be
omes better and better as the eventbe
omes more rare.
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Figure 1: The �gure illustrates the point estimate of P(Sn > an) as a fun
tion ofthe number of simulation steps, with n = 5, a = 10, β = 2. The estimate generatedvia the MCMC approa
h is drawn by a solid line and the estimate generated via IS isdrawn by a dotted line.
20



Table 1: The table displays the bat
h mean and standard deviation of the estimatesof P(Sn > an) as well as the average runtime per bat
h for time 
omparison. Thenumber of bat
hes run is b, ea
h 
onsisting of T simulations for importan
e sampling(IS) and standard Monte Carlo (MC) and Tn simulations for Markov 
hain MonteCarlo (MCMC). The asymptoti
 approximation is pmax = P(max{Y1, . . . , Yn} > an).
b = 25, T = 105, β = 2, n = 5, a = 5, pmax = 0.737e-2MCMC IS MCAvg. est. 1.050e-2 1.048e-2 1.053e-2Std. dev. 3e-5 9e-5 27e-5Avg. time per bat
h(s) 12.8 12.7 1.4
b = 25, T = 105, β = 2, n = 5, a = 20, pmax = 4.901e-4MCMC IS MCAvg. est. 5.340e-4 5.343e-4 5.380e-4Std. dev. 6e-7 13e-7 770e-7Avg. time per bat
h(s) 14.4 13.9 1.5

b = 20, T = 105, β = 2, n = 5, a = 103, pmax = 1.9992e-7MCMC ISAvg. est. 2.0024e-7 2.0027e-7Std. dev. 3e-11 20e-11Avg. time per bat
h(s) 15.9 15.9
b = 20, T = 105, β = 2, n = 5, a = 104, pmax = 1.99992e-9MCMC ISAvg. est. 2.00025e-9 2.00091e-9Std. dev. 7e-14 215e-14Avg. time per bat
h(s) 15.9 15.9
b = 25, T = 105, β = 2, n = 20, a = 20, pmax = 1.2437e-4MCMC IS MCAvg. est. 1.375e-4 1.374e-4 1.444e-4Std. dev. 2e-7 3e-7 492e-7Avg. time per bat
h(s) 52.8 50.0 2.0
b = 25, T = 105, β = 2, n = 20, a = 200, pmax = 1.2494e-6MCMC IS MCAvg. est. 1.2614e-6 1.2615e-6 1.2000e-6Std. dev. 4e-10 12e-10 33,166e-10Avg. time per bat
h(s) 49.4 48.4 1.9
b = 20, T = 105, β = 2, n = 20, a = 103, pmax = 4.9995e-8MCMC ISAvg. est. 5.0091e-8 5.0079e-8Std. dev. 7e-12 66e-12Avg. time per bat
h(s) 53.0 50.6
b = 20, T = 105, β = 2, n = 20, a = 104, pmax = 5.0000e-10MCMC ISAvg. est. 5.0010e-10 5.0006e-10Std. dev. 2e-14 71e-14Avg. time per bat
h(s) 48.0 47.14 Heavy-tailed Random SumThe MCMC methodology presented in Se
tion 2 and exempli�ed with a randomwalk in previous se
tion, is here extended to 
ompute the probability that aheavy-tailed random sum SN = Y1+ · · ·+YNn

, where the number of steps Nn israndom, and the Y 's are non-negative, independent and heavy-tailed, ex
eedsa high threshold an.This is a relevant formulation in a
tuarial s
ien
e, risk and queuing theoryto name but a few. For instan
e, the stationary distribution of the waiting timeand the workload of an M/G/1 queue 
an be represented as a random sum,see Amussen [1, Theorem 5.7, p. 237℄. The 
lassi
al Cramér-Lundberg modelfor the total 
laim amount fa
ed by an insuran
e 
ompany is another standardexample of a random sum.This se
tion follows the same stru
ture as the previous one, a Gibbs sampler21



is presented for sampling from the 
onditional distribution P((Y1, . . . , YN ) ∈ · |
SN > an). The resulting Markov 
hain is proved to be uniformly ergodi
. Anestimator for (p(N))−1 of the form (2.1) is suggested with V (n) as the 
ondi-tional distribution of (Y1, . . . , YN ) given max{Y1, . . . , YN} > an. The estimatoris proved to have vanishing normalised varian
e when the distribution of Y1belongs to the 
lass of subexponential distributions. The se
tion is 
on
ludedwith numeri
al experiments to illustrate the 
omparativeness with existing im-portan
e sampling algorithm and standard Monte Carlo.4.1 A Gibbs sampler for 
omputing P(SNn

> an)Let Y1, Y2, . . . be non-negative independent random variables with 
ommon dis-tribution FY and density fY . Let (N (n))n≥1 be integer valued random variablesindependent of Y1, Y2, . . . . Consider the random sum SN(n) = Y1 + · · ·+ YN(n)and the problem of 
omputing the probability
p(n) = P(SN(n) > an),where an → ∞ at an appropriate rate.Denote by Y

(n) the ve
tor (N (n), Y1, . . . , YN(n))
⊤ . The 
onditional distribu-tion of Y(n) given SN(n) > an is given by

P(N (n) = k, (Y1, . . . , Yk) ∈ · | SN(n) > an)

=
P((Y1, . . . , Yk) ∈ · , Sk > an)P(N (n) = k)

p(n)
. (4.1)A Gibbs sampler for sampling from the 
onditional distribution in (4.1) 
anbe 
onstru
ted essentially as in Algorithm 3.1. The only additional di�
ulty isto update the random number of steps in an appropriate way. In the followingalgorithm a parti
ular distribution for updating the number of steps is proposed.To ease the notation the supers
ript n is suppressed in the des
ription of thealgorithm.Algorithm 4.1. To initiate, draw N0 from P(N ∈ ·) and Y0,1, . . . , Y0,N0 su
hthat Y0,1 + · · · + Y0,N0 > an. Ea
h iteration of the algorithm 
onsists of thefollowing steps. Suppose Yt = (kt, yt,1, . . . , yt,kt

) with yt,1 + · · · + yt,kt
> an.Write k∗t = min{j : yt,1 + · · ·+ yt,j > an}.1. Sample the number of steps Nt+1 from the distribution

p(kt+1 | k∗t ) =
P(N = kt+1)I{kt+1 ≥ k∗t }

P (N ≥ k∗t )
.If Nt+1 > Nt, sample Yt+1,kt+1, . . . , Yt+1,Nt+1 independently from FY andput Y(1)

t = (Yt,1, . . . , Yt,kt
, Yt+1,kt+1, . . . , Yt+1,Nt+1).2. Pro
eed by updating all the individual steps as follows:(a) Draw j1, . . . , jNt+1 from {1, . . . , Nt+1} without repla
ement and pro-
eed by updating the 
omponents of Y(1)

t in the order thus obtained.(b) For ea
h k = 1, . . . , Nt+1, repeat the following.22



i. Let j = jk be the index to be updated and write
Y

(1)
t,−j = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

).Sample Y
(2)
t,j from the 
onditional distribution of Y given thatthe sum ex
eeds the threshold. That is,

P(Y
(2)
t,j ∈ · | Y

(1)
t,−j) = P

(
Y ∈ · | Y +

∑

k 6=j

Y
(1)
t,k > an

).ii. Put Y(2)
t = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(2)
t,j , Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)
⊤ .(
) Draw a random permutation π of the numbers {1, . . . , Nt+1} from theuniform distribution and put Yt+1 = (Nt+1, Y

(2)
t,π(1), . . . , Y

(2)
t,π(Nt+1)

).Iterate until the entire Markov Chain (Yt)
T−1
t=0 is 
onstru
ted.Proposition 4.2. The Markov 
hain (Yt)t≥0 generated by Algorithm 4.1 hasthe 
onditional distribution P((N, Y1, . . . , YN ) ∈ · | Y1 + . . . YN > an) as itsinvariant distribution.Proof. The only essential di�eren
e from Algorithm 3.1 is the �rst step of thealgorithm, where the number of steps and possibly the additional steps areupdated. Therefore, it is su�
ient to prove that the �rst step of the algorithmpreserves stationarity. The transition probability of the �rst step, starting froma state (kt, yt,1, . . . , yt,kt

) with k∗t = min{j : yt,1 + · · · + yt,j > an}, 
an bewritten as follows.
P (1)(kt, yt,1, . . . , yt,kt

; kt+1, A1 × · · · ×Akt+1)

= P
(
Nt+1 = kt+1, (Yt,1, . . . , Yt,kt+1) ∈ A1 × · · · ×Akt+1

| Nt = kt, Yt,1 = yt,1, . . . , Yt,kt
= yt,kt

)

=

{
p(kt+1 | k∗t )

∏kt+1

k=1 I{yt,k ∈ Ak}, kt+1 ≤ kt,

p(kt+1 | k∗t )
∏kt

k=1 I{yt,k ∈ Ak}
∏kt+1

k=kt+1 FY (Ak), kt+1 > kt.Consider the stationary probability of a set of the form {kt+1} × A1 × · · · ×
Akt+1 . With π denoting the 
onditional distribution P((N, Y1, . . . , YN ) ∈ · |
Y1 + . . . YN > an), it holds that

Eπ[P
(1)(Nt, Yt,1, . . . , Yt,Nt

; kt+1, A1 × · · · ×Akt+1)]

=
1

P(SN > an)
E[P (1)(N, Y1, . . . , YN ; kt+1, A1 × · · · ×Akt+1 )I{SN > an}]By 
onditioning onN and using independen
e ofN and Y1, Y2, . . . the expressionin the last display equals

1

P(SN > an)

∞∑

kt=1

P(N = kt)

×E

[
P (1)(kt, Y1, . . . , Ykt

; kt+1, A1 × · · · ×Akt+1)I{Skt
> an}

]
.23



With Bk∗ = {(y1, y2, . . . ) ∈ ∪∞
q=k∗R

q : min{j : y1 + · · · + yj > a} = k∗},
A⊗

kt
= A1 × · · · × Akt

, and A⊗
kt+1

= A1 × · · · × Akt+1 the expression in the lastdisplay 
an be written as
1

P(SN > an)

(
kt+1∑

kt=1

P(N = kt)

×E

[ kt∑

k∗=1

I{(Y1, . . . , Ykt
) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt

; kt+1, A
⊗
kt+1

)
]

+

∞∑

kt=kt+1+1

P(N = kt)

×E

[ kt+1∑

k∗=1

I{(Y1, . . . , Ykt+1) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt
; kt+1, A

⊗
kt+1

)
])

.Inserting the expression for P (1) the last expression equals
1

P(SN > a)

(
kt+1∑

kt=1

P(N = kt)

×

kt∑

k∗=1

P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)
p(kt+1 | k∗)

kt+1∏

j=kt+1

FY (Aj)

+

∞∑

kt=kt+1+1

P(N = kt)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
p(kt+1 | k∗)

).Changing the order of summation the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

kt+1∑

kt=k∗

P(N = kt)

×P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)
p(kt+1 | k∗)

kt+1∏

j=kt+1

FY (Aj)

+

kt+1∑

k∗=1

∞∑

kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

).Sin
e P
(
(Y1, . . . , Ykt

) ∈ Bk∗ ∩ A⊗
kt

)∏kt+1

j=kt+1 FY (Aj) = P
(
(Y1, . . . , Ykt+1) ∈

Bk∗ ∩ A⊗
kt+1

) the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

kt+1∑

kt=k∗

P(N = kt)P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

+

kt+1∑

k∗=1

∞∑

kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1 ) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)

).24



Summing over kt the last expression equals
1

P(SN > an)

(
kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)P(k∗ ≤ N ≤ kt+1)

+

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
p(kt+1 | k∗)P(N ≥ kt+1 + 1)

).From the de�nition of p(kt+1 | k∗) it follows that the last expression equals
1

P(SN > an)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗

kt+1

)
p(kt+1 | k∗)P (N ≥ k∗)

=
1

P(SN > an)

kt+1∑

k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗

kt+1

)
P (N = kt+1)

=
1

P(SN > an)
P
(
(Y1, . . . , Ykt+1) ∈ A⊗

kt+1

)
P (N = kt+1)

= P
(
N = kt+1, (Y1, . . . , Ykt+1) ∈ A⊗

kt+1
| Y1 + · · ·+ YN > an

),whi
h is the desired invariant distribution. This 
ompletes the proof.Proposition 4.3. The Markov 
hain (Yt)t≥0 generated by Algorithm 4.1 isuniformly ergodi
. In parti
ular, it satis�es the following minorisation 
ondi-tion: there exists δ > 0 su
h that
P(Y1 ∈ B | Y0 = y) ≥ δP((N, Y1, . . . , YN ) ∈ B | Y1 + · · ·+ YN > an),for all y ∈ A = ∪k≥1{(k, y1, . . . , yk) : y1 + · · · + yk > an} and all Borel sets

B ⊂ A.The proof requires only a minor modi�
ation from the non-random 
ase,Proposition 3.4, and is therefore omitted.4.2 Constru
ting an e�
ient estimatorNow 
onsider the distributional assumptions and the design of V (n). The mainfo
us is on the rare event properties of the estimator and therefore the largedeviation parameter n will be suppressed to ease notation. Let the distributionof the number of steps P(N (n) ∈ ·) to depend on n. By a similar reasoning as inthe 
ase of non-random number of steps the following assumption are imposed:the variables N (n), Y1, Y2, . . . and the numbers an are su
h that
lim
n→∞

P(Y1 + · · ·+ YN(n) > an)

P(MN(n) > an)
= 1, (4.2)where Mk = max{Y1, . . . , Yk}. Note that the denominator 
an be expressed as

P(MN(n) > an) =

∞∑

k=1

P(Mk > an)P(N (n) = k)

=

∞∑

k=1

[1− FY (an)
k]P(N (n) = k)

= 1− gN(n)(FY (an)),25



where gN(n)(t) = E[tN
(n)

] is the generating fun
tion of N (n). Su�
ient 
on-ditions for (4.2) to hold are given in [37℄, Theorem 3.1. For instan
e, if FY isregularly varying at ∞ with index β > 1 and N (n) has Poisson distribution withmean λn → ∞, as n → ∞, then (4.2) holds with an = aλn, for a > 0.Similarly to the non-random setting a good 
andidate for V (n) is the 
ondi-tional distribution,
V (n)(·) = P(Y

(n)
∈ · | MN(n) > an).Then V (n) has a known density with respe
t to F (n)(·) = P(Y

(n)
∈ ·) given by

dV (n)

dF (n)
(k, y1, . . . , yk) =

1

P(MN(n) > an)
I{(y1, . . . , yk) : ∨

k
j=1yj > an}

=
1

1− gN(n)(FY (an))
I{(y1, . . . , yk) : ∨

k
j=1yj > an}.The estimator of q(n) = P(Sn > an)

−1 is given by
q̂
(n)
T =

1

T

T−1∑

t=0

dV (n)

dF (n)
(Y

(n)

t ) =
1

gN(n)(FY (an))
·
1

T

T−1∑

t=0

I{∨Nt

j=1Yt,j > an}, (4.3)where (Y
(n)

t )t≥0 is generated by Algorithm 4.1.Theorem 4.4. Suppose (4.2) holds. The estimator q̂
(n)
T in (4.3) has vanishingnormalised varian
e. That is,

lim
n→∞

(p(n))2 Varπn
(q̂

(n)
T ) = 0,where πn denotes the 
onditional distribution P(Y

(n)
∈ · | SN(n) > an).Remark 4.5. Be
ause the distribution of N (n) may depend on n Theorem 4.4
overs a wider range of settings for random sums than those studied in [16, 9℄where the authors present provably e�
ient importan
e sampling algorithms.Proof. Sin
e p(n) = P(SN(n) > an) and

u(n)(k, y1, . . . , yk) =
I{∨k

j=1yj > an}

P(MN(n) > an)
,it follows that

[p(n)]2 Varπn
(u(n)(Y

(n)
))

=
P(SN(n) > an)

2

P(MN(n) > an)2
Varπn

(I{∨N(n)

j=1 Yj > an})

=
P(SN(n) > an)

2

P(MN(n) > an)2
P(MN(n) > an | SN(n) > an)P(MN(n) ≤ an | SN(n) > an)

=
P(SN(n) > an)

P(MN(n) > an)

(
1−

P(MN(n) > an)

P(SN(n) > an)

)
→ 0,by (4.2). This 
ompletes the proof. 26



4.3 Numeri
al experimentsBy 
onstru
tion ea
h simulation run of the MCMC algorithm only generates asingle random variable (one simulation step) while both importan
e samplingand standard Monte Carlo generate N + 1 number of random variables (N + 1simulation steps). Therefore the number of runs for the MCMC is s
aled up bya fa
tor of E[N ] + 1 so that all of the algorithms (MCMC, Monte Carlo andimportan
e sampling) generate essentially the same number of random numbers.Thus getting a fairer 
omparison of the 
omputer runtime between the threeapproa
hes.Consider estimatingP(SN > aρ) where SN = Y1+· · ·+YN withN Geometri-
ally distributedP(N = k) = (1−ρ)k−1ρ for k = 1, 2, . . . and aρ = aE[N ] = a/ρ.The estimator 
onsidered here is p̂T = (q̂T )
−1 with q̂T as in (4.3). Ea
h esti-mate is 
al
ulated using b number of bat
hes, ea
h 
onsisting of T simulationsin the 
ase of importan
e sampling and standard Monte Carlo and TE[N ] inthe 
ase of MCMC. The results are presented in Table 2. The MCMC algo-rithm appears to outperform the importan
e sampling algorithm 
onsistentlyfor di�erent 
hoi
es of the parameters.We remark that in our simulation with ρ = 0.2, a = 5 · 109 the samplestandard deviation of the MCMC estimate is zero. This is be
ause we did notobserve any indi
ators I{∨n

j=1yt,j > aρ} being equal to 0 in this 
ase.Table 2: The table displays the bat
h mean and standard deviation of the estimatesof P(SN > aρ) as well as the average runtime per bat
h for time 
omparison. Thenumber of bat
hes run is b, ea
h 
onsisting of T simulations for importan
e sampling(IS) and standard Monte Carlo (MC) and T E[N ] simulations for Markov 
hain MonteCarlo (MCMC). The asymptoti
 approximation is pmax = P(max{Y1, . . . , YN} > aρ).
b = 25, T = 105, β = 1, ρ = 0.2, a = 102, pmax = 0.990e-2MCMC IS MCAvg. est. 1.149e-2 1.087e-2 1.089e-2Std. dev. 4e-5 6e-5 35e-5Avg. time per bat
h(s) 25.0 11.0 1.2
b = 25, T = 105, β = 1, ρ = 0.2, a = 103, pmax = 0.999e-3MCMC IS MCAvg. est. 1.019e-3 1.012e-3 1.037e-3Std. dev. 1e-6 3e-6 76e-6Avg. time per bat
h(s) 25.8 11.1 1.2

b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 107, pmax = 2.000000e-8MCMC ISAvg. est. 2.000003e-8 1.999325e-8Std. dev. 6e-14 1114e-14Avg. time per bat
h(s) 385.3 139.9
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 109, pmax = 2.0000e-10MCMC ISAvg. est. 2.0000e-10 1.9998e-10Std. dev. 0 13e-14Avg. time per bat
h(s) 358.7 130.9

b = 25, T = 105, β = 1, ρ = 0.05, a = 103, pmax = 0.999e-3MCMC IS MCAvg. est. 1.027e-3 1.017e-3 1.045e-3Std. dev. 1e-6 4e-6 105e-6Avg. time per bat
h(s) 61.5 44.8 1.3
b = 25, T = 105, β = 1, ρ = 0.05, a = 5 · 105, pmax = 1.9999e-6MCMC IS MCAvg. est. 2.0002e-6 2.0005e-6 3.2000e-6Std. dev. 1e-10 53e-10 55,678e-10Avg. time per bat
h(s) 60.7 45.0 1.327



5 Sto
hasti
 Re
urren
e EquationsThe MCMC methodology presented in Se
tion 2 is here applied to 
ompute theprobability that a solution Xm to a re
urren
e equation Xm = AmXm−1 +Bm,where the innovations B are regularly varying with index α and E[Aα+ǫ] < ∞for some ǫ > 0, ex
eeds a high threshold cn. This problem has been 
onsideredusing importan
e sampling s
heme by Hult, Blan
het and Leder in [27℄.In this se
tion a Gibbs sampler is presented for sampling from the 
onditionaldistribution P(A1, . . . , Am, B1, . . . , Bm | Xm > cn). The resulting Markov 
hainis proved to be uniformly ergodi
. An estimator for (p(n))−1 of the form (2.1) issuggested with V (n) as the 
onditional distribution of (A1, . . . , Am, B1, . . . , Bm)given {Ak > a, ∀k} ∩ {∃!j : Bja
m−j > cn}. The estimator is proved to havevanishing normalised varian
e under the probabilisti
 assumptions mentionedabove. The proof is elementary and is 
ompleted in a few lines. The se
tionis 
on
luded with numeri
al experiments to illustrate the 
omparativeness withexisting importan
e sampling algorithm and standard Monte Carlo.5.1 A Gibbs sampler for 
omputing P(Xm > cn)Fix m and let A = (A2, . . . , Am) and B = (B1, . . . , Bm) be independent se-quen
es of independent and identi
ally distributed random variables. Let A bea generi
 random variable for an element of the sequen
e A and likewise B foran element of the sequen
e B.Consider the solution (Xk)

m
k=0 to the sto
hasti
 re
urren
e equation

Xk = AkXk−1 +Bk, for k = 1, . . . ,m,
X0 = 0.The solution (Xk)

m
k=0 
an be written as a randomly weighted random walk

Xk = Bk +AkBk−1 + · · ·+AkAk−1 · · ·A2B1 +Ak · · ·A1x0, k = 1, . . . ,m.(5.1)Our interest is in the problem of 
omputing p(n) = P(Xm > cn), where
cn → ∞. To this end we will propose a Gibbs sampler that produ
es a Markov
hain with the 
onditional distribution

F (m)
cn

(·) = P
(
(A,B) ∈ · | Xm > cn

) (5.2)as its invariant distribution. In addition we will suggest a 
hoi
e of the proba-bility distribution V (n) with good asymptoti
 properties.The Markov 
hain (At,Bt)t≥0 is 
onstru
ted by the following algorithm,where the elements are updated sequentially in su
h a way that the weightedrandom walk ex
eeds the threshold after ea
h individual update. Formally thealgorithm is given as follows. An empty produ
t, su
h as ∏m
j=m+1 Aj , is inter-preted as 1.Algorithm 5.1. Start with initial state (A(m)

0 ,B(m)
0 ) = (A0,2, . . . , A0,m, B0,1, . . . , B0,m)where X

(m)
0 = B0,m +

∑m−1
i=1 B0,i

∏m
j=i+1 A0,j > cn. Given (A(m)

t ,B(m)
t ), forsome t = 0, 1, . . ., the next state (A(m)

t+1,B(m)
t+1) is sampled as follows:28



1. Draw a randomized ordering j1, . . . , j2m of {1, . . . , 2m} and pro
eed up-dating (A(m)
t ,B(m)

t ) in the order thus obtained.2. For l = 1, . . . , 2m, set k = jl and do the following:i. If k ∈ {1, . . . ,m} then At,k is to be updated. Sample A′ from the
onditional distribution
P(A′ ∈ · | A′ > s),where

s = max

{
cn −

∑m
i=k Bt,i

∏m
j=i+1 At,j

∑k−1
i=1 Bt,i

∏m
j=i+1, 6=k At,j

, 0

}.PutA(m)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,m) andB(m)
t+1 = B(m)

t .ii. If k ∈ {m + 1, . . . , 2m} then Bt,(k−m) is to be updated. Sample B′from the 
onditional distribution
P(B′ ∈ · | B′ > s),where

s = max

{
cn −

∑m
i=1, 6=(k−m) Bt,i

∏m
j=i+1 At,j

At,m · · ·At,(k−m)+1
, 0

}.PutA(m)
t+1 = A(m)

t andB(m)
t+1 = (Bt,1, . . . , Bt,(k−m)−1, B

′, Bt,(k−m)+1, . . . , Bt,m).Iterate steps 1 and 2 until the entire Markov 
hain (A(m)
t ,B(m)

t )T−1
t=0 is 
on-stru
ted.The Markov 
hain (A(m)

t ,B(m)
t )t≥0 
onstru
ted by Algorithm 5.1 has F (m)

cnas its invariant probability distribution.Proposition 5.2. The Markov 
hain (A(m)
t ,B(m)

t )t≥0 generated by Algorithm5.1, has the 
onditional distribution F
(m)
cn as its invariant distribution.Proof. Note that it is su�
ient to show that ea
h updating step (Step 2i and2ii in the Algorithm) preserves stationarity.Consider the updating steps (Step 2i and 2ii). Let m be given and set

PA
k (a(m),b(m), ·) and PB

k (a(m),b(m), ·) to be the transition probability of theMarkov 
hain (A(m)
t ,B(m)

t )t≥0 where the kth element of A(m)
t and B(m)

t isupdated, respe
tively. Let
R =

{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn},and observe that if Ak is to be updated 
onditioned on Xm > cn then

Ak >
cn −

∑m
i=k Bt,i

∏m
j=i+1 At,j

∑k−1
i=1 Bt,i

∏m
j=i+1, 6=k At,j

=: sAk
,and similarly, if Bk is to be updated 
onditioned on Xm > cn then

Bk >
cn −

∑m
i=1, 6=(k−m) Bt,i

∏m
j=i+1 At,j

At,m · · ·At,(k−m)+1
=: sBk

.29



To prove that stationarity is preserved under updating via Step 2i it is su�
ientto show that for arbitrary k ∈ {1, . . . ,m} and D1×· · ·×Dm×E1×· · ·×Em ⊂ Rthen it holds that
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PA
k (A1, . . . , Am, B1, . . . , Bm, D1 × . . .×Dm × E1 × . . .× Em)

].(5.3)Similarly to prove that stationarity is preserved under updating via Step 2ii itis su�
ient to show
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PB
k (A1, . . . , Am, B1, . . . , Bm, D1 × · · · ×Dm × E1 × · · · × Em)

].(5.4)The following 
omputation shows that (5.3) holds.
F (m)
cn

(D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[ m∏

j=1

I{Aj ∈ Dj}

m∏

i=1

I{Bi ∈ Ei}
]

=
E
[
I{Ak ∈ Dk}I{Xm > cn} ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

=
E

[
E[I{Ak∈Dk}|Ak>sAk

,A−k,B]

P(Ak>sAk
) ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

=
E
[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em) ·

∏m
j=1, 6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]

P(Xm > cn)

= E
[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em) | Xm > cn

]

= E
F

(m)
cn

[
PA
k (A,B, D1 × · · · ×Dm × E1 × · · · × Em)

],with the 
onventional notation A−k = (A1, . . . , Ak−1, Ak+1, . . . , Am).The proof is 
ompleted by showing that (5.4) holds with similar 
omputationas above.The Markov 
hain (A(m)
t ,B(m)

t )t≥0 
onstru
ted by Algorithm 5.1 is uni-formly ergodi
, thus ensuring large-sample e�
ien
y.Proposition 5.3. For any m ≥ 1, the Markov 
hain (A(m)
t ,B(m)

t )t≥0 is uni-formly ergodi
.Proof. Let m ≥ 1 be given and set
R =

{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn}.Uniform ergodi
ity follows from the minorization 
ondition (see Nummelin [44℄): there exists a probability measure ν, δ > 0 and t0 ∈ N su
h that

P
(
(A(m)

t0
,B(m)

t0
) ∈ D × E | (A(m)

0 ,B(m)
0 ) = (a,b)) ≥ δν(D × E),30



for any (a,b) and D × E ⊂ R. The goal is to prove this inequality for t0 = 1,
δ = p(n)/(2m)! and ν = F

(m)
cn .Take 
 = (a,b) and let g(· | a,b) be the density of P(A1,B1 ∈ · | A0,B0 =a,b).Observe that for any z = (x,y) ∈ R there exists an ordering j1, . . . , j2m of

{1, . . . , 2m} su
h that
cj1 ≤ zj1 , . . . , cjk ≤ zjk

cjk+1
≥ zjk+1

, . . . , cj2m ≥ zj2m ,for some k. When updating from 
 to z using this parti
ular ordering, then �rstall of elements in z whi
h are larger than their 
ounterparts in 
 are updated,and then all of the elements in z whi
h are smaller are updated. This guaranteesthat after every updating step, the updated ve
tor belongs to R.The probability for this parti
ular ordering is 1/(2m)!. To simplify notation,introdu
e
Zk =

{
Ai if update jk 
orresponds to updating Ai for some i
Bi if update jk 
orresponds to updating Bi for some iand

sZk
=

{
sAi

if update jk 
orresponds to updating Ai for some i
sBi

if update jk 
orresponds to updating Bi for some iTherefore
g(x,y) =

1

(2m)!

fZ1(zj1)I{Z1 > sZ1}

P(Z > sZ1)

×
fZ2(zj2)I{Z2 > sZ2}

P(Z > sZ2)...
×
fZ2m(zj2m)I{Z2m > sZ2m}

P(Z > sZ2m)
.By 
onstru
tion all of the indi
ator fun
tions are equal to 1 and the normalizingprobabilities are bounded by 1 so the last display is bounded from below by

1

(2m)!

2m∏

k=1

fZk
(zk) =

p(n)

(2m)!
·

∏2m
k=1 fZk

(zk)I{z ∈ R}

p(m)
.The proof is 
ompleted by integrating both sides.Remark 5.4. The lower bound δ in the proof of Proposition 5.3 
an be 
hosento be larger, but that would 
ompli
ate and lengthen the proof.5.2 Constru
ting an e�
ient estimatorAs mentioned in Se
tion 2 a good 
andidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(m),B(m)) ∈ R(n)

),31



where r(n) = P
(
(A(m),B(m)) ∈ R(n)

) is asymptoti
ally 
lose to p(n) = P(Xm >

cn) in the sense that r(n)/p(n) → 1 as n → ∞.Observe that so far no limitation have been set on the probabilisti
 proper-ties of A and B. The distributional assumptions have been very general. Forthe design of V (n) the probabilisti
 properties of A and B are of 
entral impor-tan
e and here they 
ome into play. This paper 
onsiders the setting where theinnovations B are most likely responsible for extreme values of the solution tothe sto
hasti
 re
urren
e equation. We make the following assumptions.1. The generi
 random variables A and B are nonnegative.2. The generi
 random variable B has a regularly varying tail, with index
−α < 0. Formally,

lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.3. The Breiman 
ondition holds for the generi
 random variable A. That is,there exists ǫ > 0 su
h that

E[Aα+ǫ] < ∞.Under the assumptions (1)-(3) it is possible to derive the asymptoti
 de
ay of
p(n). Indeed, it follows from the representation (5.1) as a weighted random walkand Theorem 3.1 in [31℄ that

P(Xm > cn)

P(B > cn)
→

m−1∑

k=0

E[Aα]k.Now 
onsider the 
hoi
e of V (n). Let V (n) be de�ned as the probabilitydistribution
V (n)(·) = P

(
(A(m),B(m)) ∈ · | (A(n),B(n)) ∈ R(n)

),with
R(n) = {Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}.The probability of this 
onditioning event 
an be 
omputed expli
itly as

r(n) = P
(
{Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}

)

= P(A > a)m−1

×
(
P(Bm > x)P(Bm−1 < x/a) · · ·P(B1 < x/am−1)

+P(Bm < x)P(Bm−1 > x/a)P(Bm−2 < x/a2) · · ·P(B1 < x/am−1)

+ · · ·+ P(Bm < x) · · ·P(B2 < x/am−2)P(B1 > x/am−1)
)

= FA(a)
m−1

m∑

i=1

FB(x/a
m−i)

m∏

j=1, 6=i

FB(x/a
m−j).32



From the regular variation property of the distribution of B, assumption (2),it follows that
r(n) ∼ FA(a)

m−1FB(cn)
{
1 + aα + (aα)2 + · · ·+ (aα)m−1

} as n → ∞.A 
onvenient 
hoi
e of the level a = an is su
h that r(n)/p(n) → 1, as n → ∞.That is, a may be 
hosen as the solution to
FA(a)

m−1
m−1∑

k=0

akα =

m−1∑

k=0

E[Aα]k.The distribution V (n) has a known density with respe
t to F (·) = P
(
(A(m),B(m)) ∈

·) given by
dV (n)

dF (·)
(a,b) = 1

r(n)
I
{
(a,b) ∈ Rm

}.Thus the MCMC estimator q̂(n)T of 1/p(n) is given by
q̂
(n)
T =

1

r(n)
1

T

T−1∑

t=0

I
{
(A(m)

t ,B(m)
t ) ∈ R(n)

}, (5.5)where (At,Bt)
T−1
t=0 is generated via Algorithm 5.1. Observe that the estimator�rst fa
tor of the estimator q̂(n)T may be interpreted as the asymptoti
 approxi-mation 1/r(n) multiplied by a sto
hasti
 
orre
tion fa
tor.Theorem 5.5. The estimator q

(n)
T given by 5.5 has vanishing normalized vari-an
e for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
VarFcn

(q̂
(n)
T ) → 0.Proof. With u(n)(a,b) = 1

r(n) I{(a,b) ∈ R} it follows from assumptions 1-3made above that
(p(n))2 Var

F
(m)
cn

( 1

r(n)
I{(a,b) ∈ R}

)

=
(p(n))2

(r(n))2
Var

F
(m)
cn

(
I{(a,b) ∈ R}

)

=
(p(n))2

(r(n))2
P
(
I{(a,b) ∈ R} | Xm > cn

)
P
(
I{(a,b) /∈ R} | Xm > cn

)

=
p(n)

r(n)
P

(
1−

r(n)

p(n)

)
→ 0.This 
ompletes the proof.5.3 Numeri
al experimentsTheorem 5.5 of this paper proves that q̂

(n)
T is an e�
ient estimator of 1/p(n).Most existing algorithms however design an e�
ient estimator p̂(n)T of p(n), sofor 
omparison reasons the numeri
al experiments are based on (q̂

(n)
T )−1.33



By 
onstru
tion ea
h simulation run of the MCMC algorithm only generatesa single random variable (one simulation step) while both importan
e samplingand standard Monte Carlo generate 2m number of random variables (2m sim-ulation steps). Therefore the number of runs for the MCMC is s
aled up bya fa
tor of 2m so that all of the algorithms (MCMC, Monte Carlo and im-portan
e sampling) generate essentially the same number of random numbers.Thus getting a fairer 
omparison of the 
omputer runtime between the threeapproa
hes.Consider estimating P(Xn > cn) where Xn is a solution to the re
urren
eequation Xn = AnXn−1 + Bn with X0 = 0. The innovation B is a Paretodistributed variable with index α while the A is exponentially distributed withintensity λ. Ea
h estimate is 
al
ulated using b number of bat
hes, ea
h 
on-sisting of T simulations in the 
ase of importan
e sampling and standard MonteCarlo and 2nT in the 
ase of MCMC. The results are presented in Table 3.Table 3: The table displays the bat
h mean and standard deviation of the estimatesof P(Xn > c) as well as the average runtime per bat
h for time 
omparison. Thenumber of bat
hes run is b, ea
h 
onsisting of T simulations for importan
e sampling(IS) and standard Monte Carlo (MC) and T 2n simulations for Markov 
hain MonteCarlo (MCMC).
b = 25, T = 105, n = 4, c = 10, α = 2, λ = 3MCMC IS MCAvg. est. 1.233e-2 1.223e-2 1.221e-2Std. dev. 43e-5 9e-5 43e-5Avg. time per bat
h(s) 35 36 2
b = 25, T = 105, n = 4, c = 102, α = 2, λ = 3MCMC IS MCAvg. est. 1.298e-4 1.278e-4 1.360e-4Std. dev. 7e-6 1e-6 35e-6
b = 25, T = 105, n = 4, c = 103, α = 2, λ = 3MCMC IS MCAvg. est. 1.149e-6 1.284e-6 2.000e-6Std. dev. 36e-8 7e-8 408e-8
b = 25, T = 105, n = 5, c = 2, α = 5, λ = 3
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6 Ruin probability in an Insuran
e Model withRisky InvestmentsIn this se
tion the Markov 
hain Monte Carlo approa
h to rare-event simulationis applied to 
ompute the ruin probability in an insuran
e model with riskyinvestments.The ruin problem with investment is reasonably well studied. A re
entoverview is given by Paulsen [46℄. In the in�nite horizon setting there are twoasymptoti
 regimes. Power tail asymptoti
s 
an arise either as the 
umulativee�e
t of negative returns on the investment asset or be
ause of power tails ofthe 
laim size distribution. In the �rst 
ase the power tail asymptoti
s 
an bederived by expressing the risk reserve as the solution to a sto
hasti
 re
urren
eequation whose stationary solution has a power tail. See e.g. [45, 36, 20, 47, 38℄.In the se
ond 
ase the power asymptoti
s of the ruin probability is more dire
tlyinferred from the power tail of the 
laim size distribution, see [21, 50, 38℄.The following model, in dis
rete time, for the risk reserve of an insuran
e
ompany is 
onsidered here. Denote by Bk the net loss, 
laims minus premiums,over the kth period. Suppose the insuran
e 
ompany invests the risk reserve ina risky asset and denote by Rk the sto
hasti
 return on the risky asset over the
kth period. It is assumed that {Bk} and {Rk} are independent sequen
es, ea
h
onsisting of independent and identi
ally distributed random variables. The riskreserve Uk at the end of the kth period is modeled as

Uk = Rk(Zk−1 −Bk), for k ≥ 1,
U0 = u.Iterating the relation above yields

Un = Rn · · ·R1u−
(
Rn · · ·R1B1 +Rn · · ·R2B2 + · · ·+RnBn

).Assume that Rk > 0 a.s. for all k and put Ak = 1/Rk. The last display isequivalent to
A1 · · ·AnUn = u−Wn,where

Wn = B1 +A1B2 + · · ·+A1 · · ·An−1Bn.Observe that Wn represents the dis
ounted losses that have a

umulated upuntil time n. The event of ruin up until time n is equivalent to
{

inf
0≤k≤n

Uk < 0

}
=

{
sup

0≤k≤n

Wk > u

} .Our obje
tive is to 
onstru
t an e�
ient algorithm to 
ompute the ruin proba-bility
p(n) = P

(
sup

0≤k≤n

Wk > un

).As in the previous se
tion we denote by A(n) = (A1, . . . , An−1) and B(n) =
(B1, . . . , Bn). To 
ompute p(n) with the MCMC approa
h a Gibbs sampler isproposed with the 
onditional distribution

Fn
un

(·) = P((A(n),B(n)) ∈ · | sup
0≤k≤n

Wk > un).35



6.1 A Gibbs sampler for 
omputing the ruin probabilityThe Gibbs sampler is 
onstru
ted similarly as in Se
tion 5 with the di�eren
ethat the 
onditioning event is {sup0≤k≤n Wk > un} instead of {Xm > cn}.Algorithm 6.1. Start with initial state (A(n)
0 ,B(n)

0 ) = (A0,1, . . . , A0,n, B0,1, . . . , B0,n)where X
(n)
0 > un. Given (A(n)

t ,B(n)
t ), for some t = 0, 1, . . ., the next state

(A(n)
t+1,B(n)

t+1) is sampled as follows:1. Draw a randomized ordering j1, . . . , j2n of {1, . . . , 2n} and pro
eed updat-ing (A(n)
t ,B(n)

t ) in the order thus obtained.2. For m = 1, . . . , 2n, set k = jm and do the following:i. If k ∈ {1, . . . , n} then At,k is to be updated. Sample A′ from the
onditional distribution
P(A′ ∈ · | A′ > s),where

s = min
1≤k≤n

{
un −

∑k
i=1 Bt,i

∏k−1
j=1 At,j

∑n
i=k+1 Bt,i

∏i−1
j=1, 6=k At,j

}.Put A(n)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,n) and B(n)
t+1 = B(n)

t .ii. If k ∈ {n + 1, . . . , 2n} then Bt,(k−n) is to be updated. Sample B′from the 
onditional distribution
P(B′ ∈ · | B′ > s),where

s = min
1≤(k−n)≤n

{
un −

∑n
i=1, 6=(k−n) Bt,i

∏i−1
j=1 At,j

∏(k−n)−1
j=1 At,j

}.PutA(n)
t+1 = A(n)

t andB(n)
t+1 = (Bt,1, . . . , Bt,(k−n)−1, B

′, Bt,(k−n)+1, . . . , Bt,n).Iterate steps 1 and 2 until the entire Markov 
hain (A(n)
t ,B(n)

t )T−1
t=0 is 
on-stru
ted.Proposition 6.2. The Markov 
hain (A(n)

t ,B(n)
t )t≥0 generated by Algorithm6.1, has the 
onditional distribution F

(n)
un as its invariant distribution and isuniformly ergodi
.The proof of the above result is essentially identi
al to the proofs of Propo-sition 5.2 and 5.3 is therefore omitted.6.2 Constru
ting an e�
ient estimator of the re
ipro
alruin probabilityAs mentioned in Se
tion 2 a good 
andidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(n),B(n)) ∈ R(n)

),36



where r(n) = P
(
(A(n),B(n)) ∈ R(n)

) is asymptoti
ally 
lose to p(n) in the sensethat r(n)/p(n) → 1 as n → ∞.Observe that, apart from the independen
e assumptions, the distributionalassumptions on B and R have been 
ompletely general. For the design of V (n)the probabilisti
 properties of B and R are of 
entral importan
e and here they
ome into play. This paper 
onsiders the setting where large 
laims are mostlikely responsible for ruin. We make the following assumptions.1. The distribution of B has a regularly varying right tail, with index−α < 0:
lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.2. The sto
hasti
 returns R are almost surely stri
tly positive. In addition,there exists ǫ > 0 su
h that E[R−α−ǫ] < 1.Under the assumptions (1)-(2) it is possible to derive the asymptoti
 de
ay of

p(n). Note �rst that (2) translates into the 
onditions that the generi
 randomvariables A is stri
tly positive and E[Aα+ǫ] < 1 for some ǫ > 0. It follows fromthe representation ofWn as a weighted random walk and by 
ombining Example2.2 and Corollary 5.1 in [32℄ that
lim
n→∞

P(sup 0≤k≤n Wk > un)

nP(B > un)
= E

[(
sup
k≥1

k∏

j=1

Aj

)α]
.Now 
onsider the 
hoi
e of V (n). Let V (n) be de�ned as the probabilitydistribution

V (n)(·) = P
(
(A(n),B(n)) ∈ · | (A(n),B(n)) ∈ R(n)

),with
R(n) = {Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−j

n Bj > un}.The probability of this 
onditioning event 
an be 
omputed expli
itly as
r(n) = P

(
{Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−j

n Bj > un}
)

= P(A > an)
n−1

(
P(Bn > un)P(Bn−1 < un/an) · · ·P(B1 < un/a

n−1
n )

+P(Bn < un)P(Bn−1 > un/an)P(Bn−2 < un/a
2
n) · · ·P(B1 < un/a

n−1
n )

+ · · ·+ P(Bn < un) · · ·P(B2 < un/a
n−2
n )P(B1 > un/a

n−1
n )

= FA(an)
n−1

n∑

i=1

FB(un/a
n−i
n )

n∏

j=1, 6=i

FB(un/a
n−j
n ).From the regular variation property of the distribution of B, assumption (2),it follows that if un/a

n−1
n → ∞, then

r(n) ∼ FA(an)
n−1FB(un)

{
1 + aαn + (aαn)

2 + · · ·+ (aαn)
n−1
} as n → ∞.37



A 
onvenient 
hoi
e of the level an is su
h that r(n)/p(n) → 1, as n → ∞. Thatis, an may be 
hosen as the solution to
FA(an)

n−1
n−1∑

k=0

akαn = nE
[(

sup
k≥1

k∏

j=1

Aj

)α]
.The distribution V (n) has a known density with respe
t to F (·) = P

(
(A(n),B(n)) ∈

·) given by
dV (n)

dF (·)
(a,b) = 1

r(n)
I
{
(a,b) ∈ Rn

}.Thus the MCMC estimator q̂(n)T of 1/p(n) is given by
q̂
(n)
T =

1

r(n)
1

T

T−1∑

t=0

I
{
(A(n)

t ,B(n)
t ) ∈ R(n)

}, (6.1)where (At,Bt)
T−1
t=0 is generated via Algorithm 6.1. Observe that the estimator�rst fa
tor of the estimator q̂(n)T may be interpreted as the asymptoti
 approxi-mation 1/r(n) multiplied by a sto
hasti
 
orre
tion fa
tor.Theorem 6.3. The estimator q

(n)
T given by (6.1) has vanishing normalizedvarian
e for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
Var

F
(n)
un

(q̂
(n)
T ) → 0.Referen
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