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Abstract

Within the field of multi-agent systems theory, we study the problems of consensus
and pursuit-evasion. In our study of the consensus problem, we first provide some
theoretical results and then consider the problem of consensus on SO(3) or attitude
synchronization.

In Chapter 2, for agents with states in Rm, we present two theorems along the
lines of Lyapunov’s second method that, under different conditions, guarantee asymp-
totic state consensus in multi-agent systems where the interconnection topologies are
switching. The first theorem is formulated by using the states of the agents in the multi-
agent system, whereas the second theorem is formulated by using the pairwise states
for pairs of agents in the multi-agent system.

In Chapter 3, the problem of consensus on SO(3) for a multi-agent system with
directed and switching interconnection topologies is addressed. We provide two differ-
ent types of kinematic control laws for a broad class of local representations of SO(3).
The first control law consists of a weighted sum of pairwise differences between po-
sitions of neighboring agents, expressed as coordinates in a local representation. The
structure of the control law is well known in the consensus community for being used
in systems of agents in the Euclidean space, and here we show that the same type of
control law can be used in the context of consensus on SO(3). In a later part of this
chapter, based on the kinematic control laws, we introduce torque control laws for a
system of rigid bodies in space and show that the system reaches consensus when these
control laws are used.

Chapter 4 addresses the problem of consensus on SO(3) for networks of uncali-
brated cameras. Under the assumption that each agent uses a camera in order to mea-
sure its rotation, we prove convergence to the consensus set for two types of kinematic
control laws, where only conjugate rotation matrices are available for the agents. In
these conjugate rotations, the rotation matrix can be seen as distorted by the (unknown)
intrinsic parameters of the camera. For the conjugate rotations we introduce distorted
versions of well known local parameterizations of SO(3) and show consensus by us-
ing control laws that are similar to the ones in Chapter 3, with the difference that the
distorted local representations are used instead.

In Chapter 5, we study the output consensus problem for homogeneous systems
of agents with linear continuous time-invariant dynamics. We derive control laws that
solve the problem, while minimizing a cost functional of the control signal. Instead
of considering a fixed communication topology for the system, we derive the opti-
mal control law without any restrictions on the topology. We show that for all linear
output controllable homogeneous systems, the optimal control law uses only relative
information but requires the connectivity graph to be complete and in general requires
measurements of the state errors. We identify cases where the optimal control law is
only based on output errors.

In Chapter 6, we address the multi-pursuer version of the visibility pursuit-evasion
problem in polygonal environments. By discretizing the problem and applying a Mixed
Integer Linear Programming (MILP) framework, we are able to address problems re-
quiring so-called recontamination and also impose additional constraints, such as con-
nectivity between the pursuers. The proposed MILP formulation is less conservative
than solutions based on graph discretizations of the environment, but still somewhat



more conservative than the original underlying problem. It is well known that MILPs,
as well as multi-pursuer pursuit-evasion problems, are NP-hard. Therefore we apply an
iterative Receding Horizon Control (RHC) scheme, where a number of smaller MILPs
are solved over shorter planning horizons. The proposed approach is illustrated by a
number of solved examples.

Keywords: Multi-agent systems, consensus, attitude synchronization, nonlinear con-
trol, optimization, pursuit-evasion.



Sammanfattning

I denna avhandling betraktar vi konsensusproblem och avsökningsproblem i multi-
agent system. I vår studie av konsensusproblemet så presenterar vi först några teo-
retiska resultat, varefter vi studerar konsensusproblemet på SO(3) där rotationsma-
triser ska synkroniseras.

För agenter med tillsånd i Rm och där kommunikationen mellan agenterna är tids-
beroende, presenterar vi i Kapitel 2, två teorem i linje med Lyapunovs andra metod
som garanterar asymptotisk konsensus för tillstånden när tiden går mot oändligheten.
De två teoremen kompletterar varandra såtillvida att det första är formulerat för de indi-
viduella tillstånden för agenterna, medan det andra är formulerat för par av individuella
tillstånd för agenterna.

I Kapitel 3 betraktar vi konsensusproblemet på SO(3), där kommunikationstopolo-
gierna är tidsberoende. För en stor klass av lokala representationer av SO(3), presen-
terar vi två kinematiska styrlagar som löser problemet under olika antaganden. Den
första styrlagen består av en viktad summa av parvisa differenser mellan positioner för
agenter som är grannar med varandra. Denna typ av styrlag är vanligt förekommande
inom konsensusfältet för system av agenter med tillstånd i det Euklidiska rummet.
Här visar vi att denna typ av styrlag kan användas för att nästan globalt lösa konsen-
susproblemet på SO(3). I den senare delen av detta kapitel så introducerar vi andra
ordningens dynamik och löser konsensusproblemet för en viss typ av tidsbeorende
kommunikation.

I Kapitel 4 betraktar vi konsensusproblemet på SO(3) för nätverk av okalibrerade
kameror. Under antagandet att alla agenter mäter sina rotationer genom att använda
kameror, bevisar vi att systemet når konsensus för två typer av kinematiska styrla-
gar där endast de konjugerade rotationsmatriserna är tillgängliga för agenterna. Dessa
konjugerade rotationsmatriser kan ses som förvrängda rotationsmatriser.

I Kapitel 5 studerar vi konsensusproblemet för homogena system av agenter med
kontinuerlig tidsinvariant linjär dynamik. Vi formulerar en styrlag som löser problemet
och samtidigt minimerar en kostnadsfunktion formulerad för styrlagen. Istället för att
anta en viss kommunikationstopologi och sedan lösa problemet för denna topologi, så
hittar vi den optimala styrlagen utan några restriktioner på topologin. Vi visar att om
agenternas dynamik är sådan att utsignalen kan styras till godtyckligt värde så använder
agenterna bara relativ information i styrlagen, dock måste kommunikationsgrafen vara
fullständig.

I Kapitel 6 betraktar vi fallet med flera jägare ("pursuers") i ett avsökningsproblem
i polygonmiljöer. Målet är att skapa en sökstrategi för ett minimalt antal robotar eller
jägare som ska hitta en inkräktare på området, där inkräktaren känner till robotarnas
positioner och kan röra sig godtyckligt fort. Genom att diskretisera problemet och lösa
ett linjärt heltalsoptimeringsproblem, kan vi betrakta och lösa problem där sökstrategin
kräver att redan avsökta områden måste sökas av igen. Vi kan också formulera krav på
kommunikationen mellan agenterna. Sökstrategin för det nya diskreta problemet är en
konservativ lösning till det ursprungliga problemet, men lösningen är inte lika konser-
vativ som grafbaserade lösningsmetoder. Det är välkänt att heltalsoptimeringproblem
är NP-svåra, därför använder vi oss av en iterativ lösningsmetod där vi i varje iteration
löser ett delproblem för ett par tidssteg framåt i tiden.

v



Nyckelord: Multi-agent system, konsensus, konsensus för rotationsmatriser, ickelinjär
styrning, optimering, avsökningsproblem.
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Except for reading the chapters in consecutive order, there are some alternative paths.
In Figure 1, the dependence between the Chapters is illustrated. Chapter 6 is indepen-
dent from the other chapters, but the results in Chapter 3-5 are dependent on the results
in Chapter 2. The reader who chooses not to read the proofs in Chapter 3 can omit most
parts of Chapter 2 with the exception of the first part of Section 2.1 where some notation
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is introduced which is being used in Chapter 3. In order to read Chapter 4 it is advised that
Chapter 3 is read first. Chapter 5, even though being similar to Chapter 2-4 in terms on con-
tent, is almost independent of the other chapters. A suggestion is to read the introduction
of Chapter 2 before reading Chapter 5.
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Chapter 1

Introduction

The field of networked and multi-agent systems has received a growing interest from re-
searchers within robotics and control theory during the last decade [1]. This increased
attention to network science is partly due to the recent advancement of communication
technologies such as cellular phones, the Internet, GPS, wireless sensor networks etc. The
widespread use and ongoing development of such technologies is a testament to the great
potential applicability of the work carried out within this research field.

The theme of this thesis is the study of collective behavior in multi-agent systems. A
multi-agent system in this context is to be understood as a system or network of agents,
where each agent has an associated dynamical equation describing its behavior in relation
to itself, a subset of the other agents in the network and the environment. Within the field
of multi-agent systems, we address the following subjects which are listed in the order
appearance in the thesis.

1. Convergence tools for consensus,
which is the subject of Chapter 2.

2. Consensus on SO(3) or attitude synchronization,
which is the subject of Chapter 3 and Chapter 4.

3. Optimal output consensus control,
which is the subject of Chapter 5.

4. Multi-robot pursuit-evasion,
which is the subject of Chapter 6.

Now we continue with a short introduction and overview of these four subjects, includ-
ing summaries of the results that we provide.

1



INTRODUCTION

1.1 Convergence tools for consensus

Consensus is a key problem in multi-agent systems theory and it has also been one of
the main objects of attention [2–10]. Apparently, among all the collective behaviors in
multi-agent systems, consensus is one of the simplest, while still important, behavior. To
a large extent, the early works on consensus addressed only first or second order dynam-
ics. For example, a pioneer work is the famous Vicsek model [11], in which a consensus
scheme was proposed based on a simple discrete-time model for the headings of n au-
tonomous agents moving in a plane. Theoretical explanations for the consensus behavior
of the Vicsek model were given in [2, 4, 12]. In [3] the average-consensus problem of a
first order multi-agent system with a strongly connected and balanced directed graph was
solved. In [5, 6, 13, 14], to name a few, consensus for second order multi-agent systems is
discussed. Various connectivity conditions are assumed in order to assure the consensus.

Due to the vast amount of publications, it is a challenge to provide a complete overview
of the subject, and this introduction merely comprises a selection from the body of knowl-
edge. There are books [1, 15], and surveys [16–19] covering the subject from different
perspectives.

The problem of consensus or state agreement can roughly be explained as follows.
Given a multi-agent system where each agent has a state in a space which is common for
all the agents’ states and where the state is updated according to a dynamic equation, design
a distributed control law for the system such that the states of the agents converge to the
same value. The convergence is usually defined in the asymptotic sense (as the time goes
to infinity). The connectivity in a multi-agent system is represented by a graph. Each agent
has a corresponding node in the graph and edges in the graph represent communication
between agents.

In general, the dynamics for the agents can either be defined in discrete time [20,21] or
continuous time [22]. This work considers continuous time dynamics. Furthermore, if the
dynamics is linear, much of the work has centered around graph theoretic concepts such
as the graph Laplacian matrix and its importance for the convergence of the states to the
consensus set [1, 9, 23].

More general linear models have been used in for example [24–28]. In [28] the so
called consensusability of linear time-invariant multi-agent systems is studied, where the
admissible consensus protocol is based on static output feedback. In [29] a quite general
linear model is considered, where the dynamics of each agent can be of any order. Recently,
for homogeneous systems of agents with linear dynamics, the question of which properties
must hold in order to guarantee consensus has been answered [30].

The type of multi-agent systems we consider in this work has n agents, where each
agent i has a corresponding (unique) state xi ∈ Rn. Let x = [xT1 , . . . , x

T
n ]

T ∈ Rmn

comprise the state of the entire system and let u = [uT1 , . . . , u
T
n ]

T be a control signal or
control law, where ui ∈ Rp. Except for the state, there is also an ordinary differential
equation with corresponding initial conditions x0 and t0 that describes the system. This

2



CONSENSUS AND PURSUIT-EVASION IN NONLINEAR MULTI-AGENT SYSTEMS

dynamical equation has the following structure

ẋ1 = f1(t, x, u1),

...
ẋn = fn(t, x, un),

or written in a compact form as
ẋ = f(t, x, u). (1.1)

In Chapter 2, we consider systems on the form

ẋ = f(t, x), (1.2)

which can be seen as systems on the form (1.1) with the control signal chosen as a function
of x and the time t.

If the system is in consensus, this means that the state of the system is contained in the
following set

A = {x = [xT1 , . . . , x
T
n ]

T ∈ Rmn : xi = xj for all i, j}.

If the system (1.2) reaches consensus asymptotically, this means that x(t) approaches the
set A as the time t goes to infinity. More formally, for ϵ > 0 there is T as a function of
ϵ, the initial state and the time such that for for all t ≥ t0 + T it holds that the distance
between x(t) and A is less than ϵ. The distance is defined as

dist(x,A) = inf
y∈A

∥x− y∥.

The convergence to the consensus set is illustrated in Figure 1.1, where a system of agents
with positions in the plane asymptotically reach consensus in their positions.

The contribution of Chapter 2 is in essence two theorems. Provided certain conditions
are fulfilled for the system, the theorems can be used to show consensus for the system. The
theorems can be combined in order to show consensus under the convexity assumptions
in [7, 31, 32]. However, as we show, there are examples when the convexity assumptions
do not hold but where the proposed theorems can be used. These theorems will later be
used in Chapter 3.

Among the examples that are treated in Chapter 2, two are based on the material in the
journal papers [33] and [34] that are written by the author of this thesis together with his
colleagues.

1.2 Consensus on SO(3) or attitude synchronization

The second subject of this thesis is consensus on SO(3) or attitude synchronization. Here
each agent in the multi-agent system has a corresponding rotation matrix, defined in a
common reference coordinate system (frame) and the objective is to synchronize or reach

3



INTRODUCTION

Figure 1.1: A system of five agents with states or positions in the plane reach asymptotic
consensus in their states.

consensus in all these rotations. We are considering a system of n agents, each equipped
with a matrix in the group of rotation matrices SO(3). This matrix group is defined as
follows,

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}.

In real world applications, these rotation matrices represent the rotations of rigid bodies,
e.g., the rotation of a camera, or the rotation of a satellite in space. The problem is illus-
trated in Figure 1.2.

We assume that the control action can either be performed on a kinematic level, which
results in a system of first order, or on a dynamic level, which results in a system of second
order. The kinematics of Ri, the rotation matrix of agent i, is given by

Ṙi = Riω̂i,

where ωi, the control signal, is the angular velocity of agent i in the body frame of agent
i. The matrix ω̂i is the skew-symmetric matrix generated by the vector ωi, i.e., for p =

4
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1 2

3

4

5

6

1 2

35
4

6

Figure 1.2: A multi-agent system with six agents and corresponding rigid bodies with
unsynchronized rotations, left, shall synchronize (or reach consensus in) their
rotations, right. In this figure the communication is illustrated by arrows. The
direction of the arrows denote which agent receives information.

[p1, p2, p3]
T ∈ R3 we have that

p̂ =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 .
When the control action is performed on a dynamic level, we design a control torque

τ i. In this case, the angular velocity is a state variable. The dynamical equation has the
following structure.

Ṙi = Riω̂i,

Jiω̇i = −ω̂iJiωi + τ i,

where Ji is the inertia matrix.
In general, the problem of designing a kinematic control law is a subproblem of the

problem of designing a torque control law. A reason for anyway studying the former
problem is that control laws in the robotics community often are specified on a kinematic
level. The second order dynamic equations are platform dependent and differ between
applications.
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INTRODUCTION

In Chapter 3, for a broad class of local representations of SO(3) we first provide two
conceptually different kinematic control laws that solve the consensus on SO(3) problem
for switching interconnection topologies. The first control law consists of a weighted sum
of pairwise differences between positions of neighboring agents expressed as coordinates
in the local representation. The structure of this control law is well known in the consensus
community for agents in the Euclidean space with single integrator dynamics [1]. Here
we show that the system reaches asymptotic consensus for any of the local representations
of SO(3) if the initial rotations are contained within the region for injectivity for the lo-
cal representation and the interaction graph is uniformly strongly connected. The second
control law is based on the relative rotations between neighboring agents, expressed in lo-
cal coordinates. Under the stronger assumption that the initial rotations are contained in
a strongly convex ball with radius smaller than half of the injectivety radius of the local
representation, we show that the system reaches asymptotic consensus uniformly if and
only if the interaction graph is uniformly quasi-strongly connected [31, 32].

In a later part of Chapter 3, based on the kinematic control laws, we introduce torque
control laws that solve the attitude synchronization problem. In this part we first impose
the stronger assumption of static graphs but the assumptions of strong and quasi-strong
connectivity for said graphs remain. Furthermore, the allowed initial regions for the rota-
tions when the torque control laws are used, are almost as large as when the corresponding
kinematic control laws are used. For one torque control law we then allow for a certain type
of switching behavior, where there is a continuous in time transition between functions that
are time-invariant and Lipschitz continuous in the state. The material in Chapter 3 expands
on the publications [33, 35, 36].

In Chapter 4, we solve the problem of consensus on SO(3), where the exact rotations
are not available for the agents. In this case we assume that each agent is equipped with
a camera. We show that if the agents, instead of using a control law that is based on the
rotation matrices, are using a control law that is based on the conjugate rotation matrices,
the system will reach consensus in the rotations under quite general assumptions. The
conjugate rotation matrices are certain distorted rotation matrices, where the distortion
comes from the unknown camera calibration matrices.

The work in Chapter 4 is inspired by [34], where instead of using the rotation matrices
in order to reach consensus in the rotations, the epipole vectors are used in the control
laws. These epipole vectors lie in the nullspace of the so called fundamental matrix [37]
that provides a geometric relationship between two images taken by a pinhole camera. In
order to calculate the rotation matrix using camera measurements, one can first calculate
the fundamental matrix and then from this matrix, provided the camera is calibrated, cal-
culate the rotation matrix. If the camera is not calibrated, an often nontrivial calibration
routine has to be used before the rotation matrix can be obtained. The idea in [34] was to
bypass the calibration step and the calculation of the rotation matrix and use the epipoles
obtained from the fundamental matrix directly in the control laws. The idea of bypassing
the calibration step and the calculation of the rotation matrix is also the main theme in
Chapter 4, however here we use the conjugate rotation matrix instead of the fundamental
matrix. If a camera is rotating relative to a static scene, two images are related by a ho-
mography [37] and the conjugate rotation matrix can be obtained by solving a set of linear
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equations.

1.3 Optimal output consensus control

In Chapter 5 we study both the asymptotic output consensus problem and the finite-time
output consensus problem for homogeneous systems of agents with linear continuous time-
invariant dynamics. In the finite-time problem considered, the outputs of the agents shall
be equal at some specified finite time, whereas in the asymptotic problem the difference
between the outputs of the agents shall asymptotically converge to zero as the time goes to
infinity. We derive control laws that solve the problems, while minimizing a cost function
of the control signal. Instead of considering a fixed communication topology for the sys-
tem, we derive the optimal control law without any restrictions on the topology. We show
that for all linear output controllable homogeneous systems, the optimal control law uses
only relative information but requires the connectivity graph to be complete and in general
requires measurements of the state errors. We identify cases where the optimal control
law is only based on output errors and in the asymptotic consensus problem we provide a
dynamic control law based on the output errors. The control laws are given in closed form.

Instead of using Pontryagin’s Minimum Principle (PMP) or dynamic programming in
order to solve our problems, we use the Projection Theorem in order to solve the finite time
problem. Using this result, we see that as the time goes to infinity, a matrix expression in
the control law tends to a matrix satisfying an Algebraic Riccati Equation. By using this
observation we can also provide a control law that optimally solves the asymptotic output
consensus problem.

1.4 Multi-robot pursuit-evasion

In the last chapter, Chapter 6, the visibility based pursuit-evasion problem is addressed.
This problem was first proposed by Suzuki and Yamashita [38] and later studied in e.g.,
[39–48]. The problem is to find a search strategy for a group of pursuers in a planar
environment with polygonal obstacles, such that an evader moving arbitrarily fast, and
starting in an unknown location, will be captured no matter what path it decides to take.
Captured in this context means that the evader is seen by a pursuer at some time. Here
we consider the version of the problem where there are multiple pursuers trying to catch
the evader. The group of pursuers comprises a multi-agent system and the problem is to
design an algorithm so that this group is guaranteed to catch the evader. An illustration
of the problem is provided in Figure 1.3. Note that the velocities of the pursuers are not
necessarily constant and only the paths of the pursuers are illustrated in Figure 1.3.

The obvious applications of the pursuit-evasion problem is where security guards or
robots are to clear an office, a warehouse, or a shop after closing time. However, search
strategies of this type can also be used in search and rescue missions, or when looking
for an item that might be moved by a non-adversarial agent in a larger area, such as a
warehouse.

7
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Captured

Figure 1.3: Three pursuers move from their initial positions, denoted by blue squares, in
such a way that the evader, the red disc, cannot escape no matter what move
strategy it decides to take. The evader is assumed to move along a continuous
path and has no upper bound on its velocity.

In order to solve the problem, we discretize it in time and space and apply a Mixed
Integer Linear Programming (MILP) framework, where we are able to address problems
requiring so-called recontamination and also impose additional constraints, such as con-
nectivity between the pursuers. The proposed MILP formulation is less conservative than
solutions based on graph discretizations of the environment, but still somewhat more con-
servative than the original underlying problem. It is well known that MILPs, as well as
multi-pursuer pursuit-evasion problems, are NP-hard. Therefore we apply an iterative Re-
ceding Horizon Control (RHC) scheme where a number of smaller MILPs are solved over
shorter planning horizons.

The content of Chapter 6 is, up to subtleties, consistent with the material in [49].
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Chapter 2

Convergence tools for consensus

In this chapter we develop tools in order to show state-consensus in multi-agent systems
where the states in the system are updated by an ordinary differential equation.

Here, similar to [1–3], we consider a broad class of multi-agent systems and provide
some criteria in order to guarantee consensus. In those works, consensus is assured by
imposing a convexity assumption. Roughly, provided that the existence and uniqueness
of the solution is guaranteed, if the right-hand side of each agent’s dynamics, is inward-
pointing [4] relative to the convex hull of the position of the agent and those of its neighbors
(states), asymptotic consensus can be shown.

Instead of relying on a convexity assumption we use two types of functions. The func-
tions of the first type are functions of the states of the agents and the functions of the second
type are functions of pairs of states. If certain conditions are fulfilled for the system, two
theorems guarantee consensus or state agreement by using these functions. The two theo-
rems differ in the sense that the first theorem is formulated for functions of the first type and
the second theorem is formulated for functions of the second type. The theorems can be
combined in order to show consensus under the convexity assumptions in [1–3]. However,
as we show, there are examples when the convexity assumptions do not hold but where the
proposed theorems can be used.

The functions can be interpreted as Lyapunov functions in order to show consensus for
multi-agent systems. If a function of the first type is used, a strong form of attractiveness
of the consensus set is shown in the first theorem. If a function of the second type is used,
uniform asymptotic stability of the consensus set is shown in the second theorem. The
second theorem provides a stronger type of convergence under weaker conditions on the
topology, but the first theorem can in general be applied in a wider context.

We provide examples that show the usefulness of the theorems. One such example
regards nonlinear scaling in a well known consensus control law for agents with single in-
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tegrator dynamics. This control law consists of a weighted sum of the pairwise differences
between the states of neighboring agents. In the modified nonlinear scaled version, either
the states have been scaled or the differences between the states have been scaled. If the
differences have been scaled, the control law falls into the frameworks of [1–3]. However,
if the states are scaled, this situation is not captured by the convexity assumption, but the
first theorem we present is still applicable.

Connectivity is key to achieving collective behavior in a multi-agent system and the
topologies for practical multi-agent networks may change over time. In the study of vari-
able topologies, a well-known connectivity assumption, called (uniform) joint connection
without requiring connectedness of the graph at every moment, was employed to guarantee
multi-agent consensus for first-order or second-order linear or nonlinear systems [1, 5–7].
Under these mild switching conditions we allow the right-hand side of the system dynam-
ics to switch between a finite set of functions that are piecewise continuous in the time and
Lipschitz continuous in the state, uniformly with respect to time, on some region contain-
ing the origin. Similar to earlier works we assume a positive lower bound on the dwell
time between two consecutive time instances where the right-hand side switches between
two functions in the set of functions. Also, we require in general an upper bound on the
dwell time (in the case of time-invariant right-hand sides we do not require such an upper
bound).

The time dependence in the right-hand side of the system dynamics is restricted in the
sense that it only depends on the time since the last switch between two functions. This
type of time dependence can be used in a wide range of applications, for example one
can show that for a system switching between a finite set of time-invariant functions, one
can define continuous in time transitions between the functions instead of discontinuous
switches, so that the right-hand side of the system dynamics is continuous and the same
type of convergence properties hold as for the switching system.

In this chapter, in order not to obfuscate the main results with the technical details in
the proofs, the proofs to the propositions are relegated to the last section.

2.1 Preliminaries

Hereinafter, throughout the thesis, the real numbers are denoted by R and the set of integers
are denoted by Z. By writing R+ we exclude all the negative real numbers, and by writing
R++ we exclude all the non positive real numbers, the analogous notation holds for Z. We
make no distinction between the symbols +∞ and ∞ which symbolize the right extension
of the real numbers. The left extension of the real numbers is accordingly denoted by −∞.

An element or a vector x that belongs to Rm is by default a column vector. Though all
norms being equivalent in Rm, if nothing else is mentioned, ∥ · ∥ is the Euclidean norm,
where the size of the dimension m should either be explained when the norm is used or
be apparent by the context. By Br,m(x0) we denote the open ball in Rm centered around
x0 ∈ Rm with radius r > 0 and B̄r,m(x0) is the closure of said open ball. Sometimes we
write Br,m or B̄r,m which is short hand notation for Br,m(0) and B̄r,m(0) respectively.
Given x1, . . . , xn where xi ∈ Rm we write the concatenated or stacked vector x in Rmn
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either as x = [xT1 , . . . x
T
n ]

T or x = (x1, . . . , xn)
T , where x1, . . . xn should be treated as

row vectors in the latter notation. Throughout the thesis, the notation (·)′ will never used
to denote the transpose, (·)T , of a vector, nor will it be used to denote the differentiation
operator. Sometimes however, it will be used as part of the name of a variable, a set or a
parameter.

2.1.1 Dynamics

Let us introduce the following finite set of functions

F = {f̃1(t, x), . . . , f̃|F|(t, x)},

where
f̃k : R× Rmn → Rmn, for all k = {1, . . . , |F|},

is continuous in t and Lipschitz in x, uniformly with respect to t, on some open connected
set containing the compact region D ∈ Rmn. We assume that D contains the origin as an
interior point. The symbol |F| is the number of functions in F . Each function f̃k ∈ F can
be written as f̃k = (f̃k,1, . . . , f̃k,n)

T , where

f̃k,l : R× Rmn → Rm for all l.

By following [5], we define switching signal functions which will be used in the defi-
nition of the system dynamics. We will assume that a switching signal function σ satisfies
either Assumption 2.1 (1,2) or Assumption 2.1 (1,2,3) below (what we mean by e.g., (1,2)
is that the conditions 1 and 2 are satisfied).

Assumption 2.1.

1. The function σ(t) : R → {1, . . . , |F|} is piecewise right-continuous.

2. There is a monotonically increasing sequence {τk}, such that τk → ∞ as k → ∞
and τk → −∞ as k → −∞, where each τk ∈ R is such that for any k ∈ Z the
function σ is constant on [τk, τk+1) for all k, and there is a τD > 0 such that

inf
k
(τk+1 − τk) ≥ τD and

3. there is an upper bound τU > 0, such that for any

sup
k
(τk+1 − τk) ≤ τU .

We define the set of all functions σ that fulfills Assumption 2.1 (1,2) as S|F|,D and
fulfills Assumption 2.1 (1,2,3) as S|F|,D,U . The constants τD and τU might be different
for different σ, so condition 2 and 3 in Assumption 2.1 can also be formulated as

inf
k
(τk+1 − τk) > 0 and sup

k
(τk+1 − τk) <∞
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respectively. For each σ, the sequence {τk} is referred to as the switching times of σ, since
it is only at those times σ(t) changes value. If we compare the upper and lower bounds for
two switching signal functions σ1 and σ2, we denote the upper and lower bound for σ1 as
τσ1

U and τσ1

D respectively and the upper and lower bound for σ2 as τσ2

U and τσ2

D respectively.
For a given σ ∈ S|F|,D with switching times {τk} we define (for finite times)

γσ(t) = max{τk : τk ≤ t, k ∈ Z},

where γσ(t) is the largest switching time less than or equal to t.
Let us now consider a system of n agents. The state of agent i at time t is defined as

xi(t) ∈ Rm. The dynamics for the system of agents that we consider is given by

ẋ1 = f1(t, x) = f̃σ(t),1(t− γσ(t), x),

...

ẋn = fn(t, x) = f̃σ(t),n(t− γσ(t), x),

where σ ∈ S|F|,D and

(f̃σ(t),1, . . . , f̃σ(t),n)
T = f̃σ(t) ∈ F .

Note that fi(t, x) ∈ Rm for i ∈ {1, . . . , n}, whereas f̃i(t, x) ∈ Rmn for i ∈ {1, . . . , |F|}.
The main results in this work regard the restricted case when σ ∈ S|F|,D,U , however there
are cases when we assume the general case when σ ∈ S|F|,D. The system dynamics can
be written as

ẋ = f(t, x) = f̃σ(t)(t− γσ(t), x), (2.1)

where, f(t, x) = (f1(t, x), . . . , fn(t, x))
T . For a given σ, the function f(t, x) is piecewise

continuous in t. It is Lipschitz in x on D, uniformly with respect to t. The initial state and
the initial time for (2.1) is x0 ∈ D and t0 respectively. Sometimes we write x(t0) instead
of x0.

The switching signal functions are used in order to indicate which system we are refer-
ring to. For a given F , the switching behavior of the system is captured by σ. In order to
emphasize this, instead of writing x we can write

xσ = (xσ1 , . . . , x
σ
n)

T .

In general we omit the parametrization by σ and write x instead of xσ, but the latter no-
tation is useful when we study solutions of (2.1) for different choices of σ. The solution
for the system (2.1) is sometimes also written as x(t, t0, x0) or xσ(t, t0, x0), where the
explicit dependence on the initial time t0 and the initial state x0 is emphasized.

Lemma 2.2. If all the functions in F are time-invariant, the dynamics (2.1) is given by

ẋ = f̃σ(t)(x),
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and if σ ∈ S|F|,D but σ ̸∈ S|F|,D,U , it holds that there is a corresponding σ′ ∈ S|F|,D,U

for which the dynamics is the same. i.e.,

ẋ = f̃σ′(t)(x) = f̃σ(t)(x)

for all t ≥ 0.

Lemma 2.3. For σ ∈ S|F|,D,U with lower bound τσD and upper bound τσU on the dwell
time between two consecutive switches, there is a finite set of functions (continuous in t
and Lipschitz in x on D, uniformly with respect to t)

F ′ = {f̃ ′1, . . . , f̃ ′|F ′|} ⊃ F

and σ′ ∈ S|F ′|,D,U with a lower bound τσ
′

D = τσD and an upper bound τσ
′

U = 2τσD on the
dwell time between two consecutive switches, such that

f̃ ′σ′(t)(t− γσ′(t), x) = f̃σ(t)(t− γσ(t), x).

The proofs of these lemmas as well as all other proofs that are not given directly are
contained in Section 2.4. Due to Lemma 2.3, we will often consider the case when τU =
2τD since we can replace F with F ′ and σ with σ′. Note that τσD and τσU do not need to be
the greatest lower bound and the least upper bound respectively for the dwell time between
two consecutive switches of σ.

2.1.2 Connectivity

In a multi-agent system the dynamical behavior in general depends on the connectivity
between the agents. The connectivity is described by a graph.

Definition 2.4. A directed graph (or digraph) G = (V, E) consists of a set of nodes,
V = {1, ..., n} and a set of edges E ⊂ V × V .

In our setting, each node in the graph corresponds to a unique agent. Thus V is hence-
forth defined as V = {1, ..., n}. We also define neighbor sets or neighborhoods. Let
Ni ∈ V comprise the neighbor set (sometimes referred to simply as neighbors) of agent i,
where j ∈ Ni if and only if (j, i) ∈ E . We assume throughout the thesis that i ∈ Ni i.e.,
we restrict the collection of graphs to those for which (i, i) ∈ E for all i ∈ V .

A directed path of G is an ordered sequence of distinct nodes in V such that any con-
secutive pair of nodes in the sequence corresponds to an edge in the graph. An agent i is
connected to an agent j if there is a directed path starting in j and ending in i.

Definition 2.5. A digraph is strongly connected if each node i is connected to all other
nodes.

Definition 2.6. A digraph is quasi-strongly connected if there exists a rooted spanning tree
or a center, i.e., at least one node such that all the other nodes are connected to it.
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We are now ready to address time-varying graphs. From Definition 2.4 we see that
there are 2n

2

possible directed graphs with n nodes. For k ∈ {1, . . . , |F|} we associate a
corresponding graph Gk = (V, Ek). Note that the graphs Gk and Gl might be the same for
k ̸= l (i.e., the set of edges is equal for the two graphs Gk and Gl).

For σ ∈ S|F|,D we define the time-varying graph corresponding to σ as Gσ(t) and the
time-varying neighborhoods as Ni(t) for all i. If we want to emphasize explicitly which
switching signal function is used, we write N σ

i (t) or N σ(t)
i .

Definition 2.7. For σ ∈ S|F|,D, the union graph of Gσ(t) during the time interval [t1, t2)
is defined as

G([t1, t2)) =
∪

t∈[t1,t2)
Gσ(t) = (V,

∪
t∈[t1,t2)

Eσ(t)),
where t1 < t2 ≤ +∞.

Definition 2.8. The graph Gσ(t) is uniformly (quasi-) strongly connected if σ ∈ S|F|,D
and there exists a constant Tσ > 0 such that the union graph G([t, t + T σ)) is (quasi-)
strongly connected for all t.

2.1.3 Some special functions, sets and operators

Definition 2.9. For V : Rm → R we define fV,m : Rmn → R as

fV,m(x) = max
j∈V

V (xj).

Definition 2.10. For W : Rm × Rm → R we define fW,m,m : Rmn → R as

fW,m,m(x) = max
(i,j)∈W×V

V (xi, xj).

Definition 2.11. Suppose for σ ∈ S|F|,D that xσ is a solution to (2.1) and xσ(t) is con-
tained in D on an interval [t0, t0 + t̃) where t̃ > 0. Suppose also that V : Rm → R and
W : Rm × Rm → R are continuously differentiable. On [t0, t0 + t̃), let

IV (t1, t2) = {i : V (xi(t2)) = fV,m(x(t1))} ,
JW (t1, t2) = {(i, j) :W (xi(t2), xj(t2)) = fW,m,m(x(t1))} ,

I∗
V (t) = IV (t, t) ∩

{
i :

d

dt
V (xi(t)) < 0, i ∈ V

}
,

J ∗
W (t) = JW (t, t) ∩

{
(i, j) :

d

dt
W (xi(t), xj(t)) < 0, (i, j) ∈ V × V

}
.

These sets, except for being functions of the times t1, t2 or t, also depend on the initial
conditions x0, t0 and the switching signal function. In order to simplify the notation, we
do not parameterize these sets by σ, t0 and x0.

The upper Dini derivative of a function V (t, x(t)) with respect to t is defined as

D+V (t, x(t)) = lim sup
ϵ↓0

V (t+ ϵ, x(t+ ϵ))− V (t, x(t))

ϵ
.
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Given this definition we now proceed with a useful lemma, [1, 2].

Lemma 2.12.

• If V : Rm → R is continuously differentiable, then

D+fV,m(x(t)) = max
i∈IV (t,t)

d

dt
V (xi(t)).

• If V : Rm × Rm → R is continuously differentiable, then

D+fV,m,m(x(t)) = max
(i,j)∈JV (t,t)

d

dt
V (xi(t), xj(t)).

2.1.4 Stability

Let us introduce two equivalent definitions of uniform stability for the origin of (2.1).
The first one is similar to the classic version [8], whereas the second one is a multi-agent
systems version. In the definitions of stability here, we consider the stability for a set or
a family of systems, where the systems in the set differ in the choice of switching signal
function σ. Thus, the stability holds for all choices of switching signal functions in S|F|,D,
where the right-hand side of (2.1) switches between functions in F .

We assume that all the balls in the following definition are contained in D. The exis-
tence of such regions is assured by the assumption that 0 is in the interior of D.

Definition 2.13.

1. The point 0 ∈ Rmn is uniformly stable for (2.1) if for ε > 0, there is δ(ϵ) > 0 such
that

xσ(t0) ∈ B̄δ,mn ⇒ xσ(t) ∈ B̄ϵ,mn, for all t ≥ t0, σ ∈ S|F|,D.

2. The point 0 ∈ Rm is uniformly stable for (2.1) if for ε > 0, there is δ(ϵ) > 0 such
that

xσi (t0) ∈ B̄δ,m ⇒ xσi (t) ∈ B̄ϵ,m, for all i, t ≥ t0, σ ∈ S|F|,D.

In the multi-agent systems setting it feels often more intuitive to define the region of
stability in the space where the agents reside, using 2, since then each agent only needs to
check that its state is inside the region of stability.

For a set A ⊂ Rmn, let

dist(x,A) = inf
y∈A

∥x− y∥.

We say that x(t) approaches A or x(t) → A as t → ∞, on a subset of D if for all
ϵ > 0 and x0 in the subset, there exists T (ϵ, x0, t0) such that dist(x(t),A) < ϵ for all
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t ≥ T (ϵ, x0, t0) + t0. Let us proceed with the definition of invariance of a set for the
system (2.1). We start with the standard definition of invariance, and proceed with the
multi-agent systems definition which is similar to the one in e.g., [2].

Definition 2.14.

1. A set A ∈ Rmn is (positively) invariant for the system (2.1) if for all t0, it holds that

x0 ∈ A =⇒ xσ(t, t0, x0) ∈ A

for all t > t0 and σ ∈ S|F|,D.

2. A set A ∈ Rm is (positively) invariant for the system (2.1) if for all i, t0, it holds
that

xσi (t0) ∈ A =⇒ xσi (t, t0, x0) ∈ A

for all i, t > t0 and σ ∈ S|F|,D.

When we use either one of these definitions, the choice should be apparent by the
context. We define

D∗(t̃) ={x0 ∈ Rmn : xσ(t, t0, x0) ∈ D for all t0, t ∈ [t0, t0 + t̃) and σ ∈ S|F|,D}

and formulate the following lemma.

Lemma 2.15. For any t̃ ∈ [0,∞], the set D∗(t̃) is compact and the set D∗(∞) is also
invariant.

In the definitions of stability of the origin and the definitions of invariance, we assumed
that σ ∈ S|F|,D is arbitrary, i.e., the statements must hold for any σ ∈ S|F|,D. However,
in the definitions of stability of a set which we now are to formulate, we only consider
the case when σ is fixed. Thus, in the following definitions we write x instead of xσ . We
restrict the state to be contained in the invariant compact set D∗(∞). Hence, the stability
of the set is only defined in the relative sense, relative to D∗(∞). In these definitions we
assume that D∗(∞) is nonempty, and we will later show how to assure this.

Definition 2.16. For (2.1) where σ ∈ S|F|,D, the set A is

1. stable relative to D∗(∞) if for all t0 and for all ϵ > 0, there is δ(t0, ϵ) > 0 such that
for x0 ∈ D∗(∞) it holds that

dist(x0,A) ≤ δ =⇒ dist(x(t),A) ≤ ϵ for all t ≥ t0.

2. uniformly stable relative to D∗(∞) if it fulfills 1 and δ as a function of t0 is constant.

3. attractive relative to D∗(∞) if there is c(t0) such that x(t) → A as t → ∞ for all
x0 ∈ D∗(∞) such that dist(x0,A) ≤ c.
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4. uniformly attractive relative to D∗(∞) if it fulfills 3 and c as a function of t0 is
constant. Furthermore, if dist(x0,A) ≤ c, for η > 0 there is T (η) such that

t ≥ t0 + T (η) =⇒ dist(x(t),A) < η.

5. asymptotically stable relative to D∗(∞) if it fulfills 1 and 3.

6. uniformly asymptotically stable relative to D∗(∞) if it fulfills 2 and 4.

7. globally uniformly asymptotically stable relative to D∗(∞), if it fulfills 6 and

c = sup
y∈D∗(∞)

dist(y,A).

8. globally quasi-uniformly attractive relative to D∗(∞) if x(t) → A as t→ ∞ for all
x0 ∈ D∗(∞) and all t0. Furthermore, for all η > 0 there is T (η) such that

min
t∈[t0,t0+T (η)]

dist(x(t),A) < η

for all x0 ∈ D∗(∞) and t0.

Let us in the following choose the set A as the consensus set, i.e.,

A = {x = (x1, . . . , xn)
T ∈ Rmn : xi = xj for all i, j}.

We now formulate an assumption that creates a relationship between the functions in
F and the neighborhoods of the agents.

Assumption 2.17. For any given t and σ ∈ S|F|,D, it holds that f̃σ(t),i(s, x) is, except for
being a function of s, only a function of {xj}j∈Nσ(t)

i

for all s, i ∈ V , and x ∈ D.

Or equivalently. f̃k,i(s, x) is, except for being a function of s, only a function of {xj}j∈Nk
i

for all s, i ∈ V , x ∈ D and k ∈ {1, . . . , |F|}.

We continue with two central assumptions.

Assumption 2.18. Let V : Rm → R be a continuously differentiable function on D. The
function V fulfills the following.

1. V is positive definite.

2. For any initial time t0, initial state x0 ∈ D and σ ∈ S|F|,D, if there is ϵ > 0 such
that the solution to (2.1) exists and is contained in D during [t0, t0 + ϵ), then for
t ∈ [t0, t0 + ϵ) it holds that

D+fV,m(xσ(t)) ≤ 0 and

3. for each agent i ∈ IV (t, t) it holds that i ∈ I∗
V (t) if there is j ∈ N σ

i (t) such
that xσi (t) ̸= xσj (t). Furthermore, if i ∈ IV (t, t) and i ̸∈ I∗

V (t) it holds that
f̃σ(t),i(s, x) = 0 for all s.

21



CONVERGENCE TOOLS FOR CONSENSUS

Assumption 2.19. Let V : Rm × Rm → R+, be a continuously differentiable on D. The
function V fulfills the following.

1. V (x, y) = 0 if and only if x = y,

2. For any initial time t0, initial point x0 ∈ D and σ ∈ S|F|,D, if there is an ϵ > 0
such that the solution to (2.1) exists and is contained in D during [t0, t0 + ϵ), then
for t ∈ [t0, t0 + ϵ)

D+fV,m,m(xσ(t)) ≤ 0 and

3. for each pair of agents (i, j) ∈ JV (t, t) it holds that (i, j) ∈ J ∗
V (t) if there is

k ∈ N σ
i (t) such that xσi (t) ̸= xσk(t), or there is l ∈ N σ

j (t) such that xσj (t) ̸= xσl (t).
Furthermore, if (i, j) ∈ JV (t, t) and (i, j) ̸∈ J ∗

V (t) it holds that f̃σ(t),i(s, x) = 0

and f̃σ(t),j(s, x) = 0 for all s, and

4. for each pair of agents (i, j) ∈ JV (t, t) it holds that (i, j) ∈ J ∗
V (t) only if there is

k ∈ N σ
i (t) such that xσi (t) ̸= xσk(t), or there is l ∈ N σ

j (t) such that xσj (t) ̸= xσl (t).

The easiest way to verify that 2-3 are fulfilled in Assumption 2.18 and 2-4 are fulfilled
in Assumption 2.19, is to use Lemma 2.12. For example the condition 2 in Assump-
tion 2.18 can be verified as follows. If x ∈ D and

i = argmax
k∈V

(V (xk)),

where x = (x1, . . . , xn)
T , then if ∇V (xi)f̃j(t, x) ≤ 0 for all j ∈ {1, . . . , |Fi|}, 2 is

fulfilled. Condition 2 in Assumption 2.19 is verified in the analogous way.

2.2 Main results

Theorem 2.20. Suppose Assumption 2.18 (1,2) holds, then 0 is uniformly stable for (2.1).
Furthermore, suppose that β̂1 and β̂2 are class K functions such that

β̂1(∥y∥) ≤ V (y) ≤ β̂2(∥y∥),

then for ϵ such that (B̄ϵ,m)n ⊂ D, it holds that

x0 ∈ B̄δ,m =⇒ xσi (t, t0, x0) ∈ B̄ϵ,m, for all i, t ≥ t0, σ ∈ S|F|,D,

where δ = β̂−1
2 (β̂1(ϵ)).

Theorem 2.21. Suppose assumptions 2.17 and 2.18 (2,3) hold and σ ∈ S|F|,D,U is such
that Gσ(t) is uniformly strongly connected, then the consensus set A is globally quasi-
uniformly attractive relative to D∗(∞).
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Theorem 2.22. Suppose assumptions 2.17 and 2.19 hold, and σ ∈ S|F|,D,U . It follows
that the consensus set A is globally uniformly asymptotically stable relative to D∗(∞) if
and only if Gσ(t) is uniformly quasi-strongly connected.

Remark 2.1. What we mean when we say that Assumption 2.18 (2,3) hold, is that every-
thing in Assumption 2.18 holds except possibly (1). This notation will be used throughout
the chapter.

Remark 2.2. If Assumption 2.17 holds and Assumption 2.19 (1,2,3) holds, Theorem 2.22
holds provided that the phrase "if and only if Gσ(t) is uniformly quasi-strongly connected"
is replaced with "if Gσ(t) is uniformly quasi-strongly connected".

Remark 2.3. Provided Assumption 2.18 (1,2) hold, we can show that D∗(∞) is nonempty,
and an easy way of guaranteeing that x0 ∈ D∗(∞) is to use Theorem 2.20 and let x0 ∈
(B̄δ,m)n ⊂ D∗(∞). When we know that D∗(∞) is nonempty and x0 ∈ D∗(∞), we do not
require V to be positive definite in Theorem 2.21, i.e., it is sufficient that only conditions
2 and 3 hold for V in Assumption 2.18. This means that we can use one positive definite
function V1 in Theorem 2.20 in order to construct a set that is contained in D∗(∞), and
another not necessarily positive definite function V2, in order to show that A is attractive
in Theorem 2.21.

We proceed with two corollaries. These corollaries follow as a consequence of the fact
that if the functions in F are time-invariant and σ ∈ S|F|,D, then there is σ′ in S|F|,D,U

such that fσ(t)(x) = fσ′(t)(x) for all t ≥ 0, see Lemma 2.2.

Corollary 2.23. If the functions in F are time-invariant, Assumption 2.17 and 2.18 (2,3)
hold and σ ∈ S|F|,D is such that Gσ(t) is uniformly strongly connected, then the consensus
set A is globally quasi-uniformly attractive relative to D∗(∞).

Corollary 2.24. If the functions in F are time-invariant, Assumption 2.17 and 2.19 hold,
and σ ∈ S|F|,D it follows that the consensus set A is globally uniformly asymptotically
stable relative to D∗(∞) if and only if Gσ(t) is uniformly quasi-strongly connected

2.3 Examples and interpretations

In this section we provide some examples of systems on the form (2.1) for which the
theorems are applicable.

2.3.1 Non-convexity

Suppose Assumption 2.17 is fulfilled and there is a function V such that Assumption 2.18
is fulfilled for this V . In general the set {y ∈ Rm : V (y) ≤ α} does not need to be convex,
it depends on the function V . This is illustrated in Figure 2.1, in which the two solid curves
comprise the boundary of the set {y ∈ Rm : V (y) ≤ α} for some α > 0. If all the agents
are contained in this set at some time t and there is an agent i on the boundary which has a
neighbor j such that xi ̸= xj , then xi must move away from the boundary into the interior
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of the set {y ∈ Rm : V (y) ≤ α}. This is illustrated in Figure 2.1, where the arrows
indicate that the agent move into the interior of the set {y ∈ Rm : V (y) ≤ α}.

The dashed curve defines the boundary of the set D∗(∞). Since the agents are con-
tained in D∗(∞) and V fulfills Assumption 2.18, provided Gσ(t) is uniformly strongly
connected, the system will reach consensus.

x

y

Figure 2.1: Here we consider the case whenm = 2 and n = 7. The positions of the agents
at a time t are denoted by stars. The solid curves is the set {y ∈ Rm : V (y) =
α}. The dashed curve is the boundary of D∗(∞).

Another example where the theorems can be used is when the agents are contained in a
geodesic convex and closed subset of a sphere. In this case we can choose fW,m,m(xi, xj)
as the geodesic distance squared between xi and xj . If fi(t, x) corresponds to a tangent
vector that is inward-pointing [4] relative to the convex hull on the sphere (not to mix up
with a convex hull in a Euclidean space) of the positions of the neighbors of agent i at time
t (provided it is nonempty otherwise fi(t, x) = 0), then one can show that Assumption
2.19 is fulfilled. This is illustrated in Figure 2.2.

2.3.2 Convexity

We continue with a less general case where the decreasing functions are chosen as the
Euclidean norm squared of the states and the relative states respectively. Under certain
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Figure 2.2: Suppose the agents are located in a geodesic convex subset of the sphere S2.
The agents on the sphere are moving into the relative interior of the (geodesic)
convex hull of their neighbors. The four connected solid arcs are meant to
illustrate the boundary of convex hull of the agents.

conditions, these choices of functions can be used to show a well known convexity result
that, provided the right-hand side of each agent’s dynamics as an element of the tangent
space TxiRm is inward-pointing [4] relative to the convex hull of its neighbors, the system
reaches consensus asymptotically [1, 2]. We define the tangent cone to a convex set S ∈
Rm at the point y as

T (y, S) =

{
z ∈ Rm : lim inf

λ→0

dist(y + λz, S)

λ
= 0

}
.

This definition can be found in [2], and ξ is inward-pointing relative to S, where 0 ̸= ξ ∈
TyRm (TyRm is the tangent space of Rm at the point y), if ξ belongs to the relative interior
of T (y, S). We use the term relative interior, since the dimension of S might be smaller
than m. Let us denote the convex hull for {xi}ni=1 by conv({xi}ni=1). Similarly, we can
denote the convex hull for the positions of the neighbors of agent i as conv({xj}j∈Ni).

Suppose Assumption 2.17 is fulfilled. We consider the case when

V (xi) = xTi xi and W (xi, xj) = (xj − xi)
T (xj − xi),
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where V and W generate the functions fV,m and fW,m,m respectively.
Suppose the functions in F are Lipschitz in x on Rmn, uniformly with respect to t, and

continuous in t. Furthermore, suppose V fulfills Assumption 2.18, then in Theorem 2.20
we can choose β̂1(∥xi∥) = β̂2(∥xi∥) = ∥xi∥2, and obtain the result that any closed ball
B̄r in Rm is invariant and can be chosen as D = D∗(∞) = B̄r, and the point x = 0 is
uniformly stable. Thus, by Theorem 2.21 we obtain the result that if Gσ(t) is uniformly
strongly connected, then A is globally quasi-uniformly attractive relative to D∗(∞). Un-
less xi = xj for all j ∈ Ni, for any agent i that is furthest away from the origin, fi(t, x) as
an element of the tangent space TxiRm is inward-pointing on the boundary of the closed
ball with radius equal to the norm of agent i. This is illustrated in Figure 2.3. An example
of this situation is provided in Section 2.3.5 in the application of reaching consensus for a
system of rotation matrices.

x

y

Figure 2.3: In this case m = 2. The positions of the agents at a time t are denoted by
stars. When at least one of the neighbors of an agent i on the boundary of the
ball B̄max

k∈V
∥xk(t)∥,2 is located in the interior of the ball, fi(t, x) ∈ TxiR2 is

inward-pointing (relative to the ball).

Suppose not only that V fulfills Assumption 2.18, but also that W fulfills Assump-
tion 2.19. In this case, any closed ball in Rm is invariant and can be chosen as D∗(∞), but
also the largest Euclidean distance between any pair of agents is decreasing. This is illus-
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trated in Figure 2.4. Now Theorem 2.22 holds and A is globally uniformly asymptomati-
cally stable relative to D∗(∞) if and only if Gσ(t) is uniformly quasi-strongly connected.
For agent i, if fi(t, x) is inward-pointing relative to the convex hull of its neighbors [1, 2],
then these conditions are fulfilled.

x

y

Figure 2.4: In this case m = 2. The positions of the agents at some time t are de-
noted by stars. The solid circle denotes the boundary of the ball with radius√
fV,m(x(t)) and the dashed circle denotes the boundary of the ball with ra-

dius
√
fW,m,m(x(t)). The dashed line denotes the distance between the two

agents that are furthest away from each other.

As a special case let

fi(t, x) =
∑

j∈Ni(t)

aij(t− γσ(t))(xj − xi),

where αij(t) > 0 is continuous, positive and bounded for all t. Let us construct the set of
functions F in the following way. There are 2n

2

graphs. For each graph Gk we define a
corresponding function

f̃k(x) =

∑
j∈N1

αij(t)(xj − x1), . . . ,
∑
j∈Nn

αij(t)(xj − xn)

T
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where Ni in this case is the neighborhood of agent i in the graph Gk. Now we let

F = {f̃k}2
n2

k=1,

and σ ∈ S|F|,D,U . In the following examples and in Chapter 3, if F is not explicitly
defined, we assume that F is the set of functions that has been constructed in the way
analogous to this construction, i.e. all the possible right-hand sides.

Now, using the functions

V (xi) = xTi xi and W (xi, xj) = (xj − xi)
T (xj − xi),

with the corresponding functions fV,m and fW,m,m respectively, one can show global uni-
form asymptotic consensus relative to D∗(∞).

x

y

Figure 2.5: Suppose V (xi) = xTi xi and W (xi, xj) = (xj − xi)
T (xj − xi), then fi(t, x)

does not need to be inward-pointing relative to conv({xj}j∈Ni
) whose bound-

ary comprises the dashed curve.

It is not necessary that fi(t, x) as an element of the tangent space TxiRm is inward-
pointing relative to conv({xj}j∈Ni). If i ̸∈ IV (t, t) and there is no j such that (i, j) ̸∈
JW (t, t), then there are no constraints on the direction of fi(t, x). If i ∈ IV (t, t) or (i, j) ∈
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JW (t, t), we can relax the assumption that fi(t, x) as an element of the tangent space
TxiRm is inward-pointing relative to conv({xj}j∈Ni). This is illustrated in Figure 2.5.

2.3.3 Nonlinear scaling

Here we show how the theorems 2.21 and 2.22 can be used to assure consensus when the
states and the relative states for pairs of agents have been scaled with a nonlinear scale
function.

In this context, let us define a nonlinear scale function as follows. The function g is
strictly increasing on [0, η) where η > 0 and the map

h : xi 7→
g(∥xi∥)
∥xi∥

xi

restricted to Bη,m is a diffeomorphism between Bη,m and Bη′,m, where η′ > 0.
The interesting observation here regards the order of application of h. Suppose that

fi(t, x) =
∑

j∈Ni(t)

aij(t− γσ(t))(xj − xi).

Within this context, if we define the following map

d(xi, xj) = xj − xi,

we can write the function fi as follows

fi(t, x) =
∑

j∈Ni(t)

aij(t− γσ(t))d(xi, xj),

and we know that fi, as an element of the tangent space TxiRm, is inward-pointing relative
to the convex hull of the neighbors of agent i. Consequently, on Bη,m, we can use Theo-
rem 2.21 together with Theorem 2.22 in order to show consensus when the graph G(t) is
uniformly quasi-strongly connected. Now, for each pair of agents, if we modify fi into the
following form

f ′i(t, x) =
∑

j∈Ni(t)

aij(t− γσ(t))h(d(xi, xj)),

this new function still fulfills the same convexity assumption.
However, if we reverse the order of application of the functions h and d we get the

following modified version of fi

f ′′i (t, x) =
∑

j∈Ni(t)

aij(t− γσ(t))d(h(xi), h(xj)),

and in this case it is not necessarily true that f ′′i (t, x) as an element of TxiRm is inward-
pointing relative to the convex hull of the neighbors of agent i. However, consensus can be
guaranteed onBη,m by Theorem 2.21 when the graph G(t) is uniformly strongly connected
by using the function V (xi) = xTi xi in Theorem 2.21.
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2.3.4 Avoiding discontinuities

Suppose that F contains only time-invariant functions, σ ∈ S|F|,D,U and Assumption 2.17
holds. We show how it is possible to modify the system defined by F and σ into a system
where the right-hand side is no longer discontinuous in t. Close to each switching time
we can modify the system so that there is a continuous in time transition between the two
time-invariant functions that are being switched between. For the modified system where
there are no longer any discontinuities in t, Assumption 2.17 still holds and if there is a V
such that Assumption 2.18 holds for this V for the discontinuous system (or a W such that
Assumption 2.19 holds for this W for the discontinuous system), then Assumption 2.18
holds for V (or Assumption 2.19 holds for W ) for the modified continuous system.

We start by extending F with time varying functions to a finite set of functions F ′

(Lipschitz in x on D, uniformly with respect to t), where F ′ contains functions that serve
as continuous in time transitions between functions in F . For σ ∈ S|F ′|,D,U we create a
σ′ ∈ S|F ′|,D,U in the following way. Let τσ

′

D < τσD. At each switching time τk of σ, we
squeeze in an extra interval of length τσ

′

D during which the neighbor set N σ′

i of each agent
i is equal to N σ

i (τk−1) ∪ N σ
i (τk). These added time intervals can be seen as transition

periods, during which there is a continuous in time transition between two functions in F .
We extend F to F ′ in the following way. First we define a continuous function

α : (−∞,∞) → [0, 1],

such that α(0) = 1 and α(τσ
′

D ) = 0. Secondly, for each pair of functions (f̃i, f̃j) where f̃i
and f̃j belong to F , we define a function

f̃(i,j)(t, x) = α(t)f̃i(x) + (1− α(t))f̃j(x).

The set of functions F ′ is the set of all functions f̃i and f̃(i,j). At each switching time of
the original system, between the right-hand side f̃i and f̃j , we now squeeze in the function
f̃(i,j) during a time period of length τσ

′

D in the new system. Note that we can make τσ
′

D

much smaller than τσD.
If all functions in F are time-invariant C1 functions in x, and we want the new con-

tinuous right-hand side to be C1 in t when x is regarded as a function of t, we impose
the additional requirement that α̇(0) = 0 and α̇(τσ

′

D ) = 0. A function fulfilling these
requirements is

α(t) =
1

2
+

1

2
cos

(
tπ

τσ
′

D

)
.

We now proceed with some other application oriented examples.

2.3.5 Consensus on SO(3) using the Axis-Angle Representation

This is a brief introduction to the subject of Chapter 3 where a system of n rotation matrices
in SO(3) (controlled on a kinematic level) shall asymptotically reach consensus in the
rotation matrices. For a rotation matrix Ri there is a corresponding vector xi, referred to
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as the Axis-Angle Representation of Ri. Locally around the identity matrix, in terms of
kinematics we have that

Ṙi = Riω̂i or ẋi = Lxiωi,

where

Lxi = I3 +
x̂i
2

+
1

∥xi∥2

(
1− sinc(∥xi∥)

sinc2(∥xi∥
2 )

)
x̂2i ,

and ω̂i, x̂i are the skew-symmetric matrices generated by ωi, xi ∈ R3 respectively, see
Chapter 3, and we require that xi(t0) ∈ Bπ,3 for all i. Now we consider the case when

ωi =
∑

j∈Ni(t)

αij(t− γσ(t))(xj − xi),

where the continuous function αij(t) is positive and bounded, and σ ∈ S|F|,D,U . The
symmetric part of the matrix Lxi is positive definite on Bπ,3, and the system is at an
equilibrium if and only if x = (x1, . . . , xn)

T ∈ A.
Let V (xi) = xTi xi. By observing that xTi Lxi = xTi , it is easy to show that Assumption

2.18 holds for V . We can apply Theorem 2.20 with β̂1(∥xi∥) = β̂2(∥xi∥) = ∥xi∥2, and
show that any ball B̄r,3 is invariant for r < π and may serve as D = D∗(∞). Also,
by Theorem 2.21, if the graph Gσ(t) is uniformly strongly connected, then A is globally
quasi-uniformly attractive.

2.3.6 Consensus on SO(3) for networks of cameras using the epipoles

This example is based on the work in [9, 10], where a more detailed description can be
obtained. Undefined terminology that is used in this example can be found in any stan-
dard text book on computer vision such as [11]. This example also regards consensus
for rotation matrices, but the setting is a bit different and the rotations are restricted to be
only around one common axis. We consider a system of n robots positioned in the two-
dimensional plane. Each robot is equipped with a camera and is at each time observing a
subset of the other robots. Since the rotational axes are fixed and equal, we only need the
scalar θi in order to represent the rotation of each agent i, where θi is the angle of rotation.
In the context of this example, instead of letting θi ∈ [0, π), we let θi ∈ (−π, π). We
assume that all the cameras have the same intrinsic parameters.

The robots are not moving and are only rotating. The position of each robot i in the
world coordinate frame is given by xi ∈ R2. The position of agent j in the body frame of
agent i is given by

xij(θi) = R(θi)(xj − xi),

where

R(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
.

Let

ψij(θi) = arctan
(
xijx
xijy

)
,
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where xijx and xijy are the two components of xij .
Now, instead of measuring the rotation directly, using stereo vision one retrieves the

epipoles as certain nullspace vectors of the so called fundamental matrix. The fundamental
matrix defines the (epipolar) geometric relationship between two images [11], and should
not be mixed up with the fundamental matrix in the solution of a linear time-invariant
dynamical system. We will only consider the x-component (the first component) of these
two-dimensional epipole vectors, which are defined as

eij = α tan(ψij), eji = α tan(ψij − θij),

where θij = θj − θi and α = 1 if the cameras are calibrated, i.e., the focal length is known
(we assume that the position of the principal point is known in the image plane), otherwise
α > 0 is unknown.

Let us define

ωij = arctan

(
eij
β

)
− arctan

(
eji
β

)
where β > 0 is a constant to choose.

We define θ(t) = (θ1(t), . . . , θn(t))
T and the region

D = {θ : −θM ≤ θi ≤ θM for i = 1, . . . , n},

where 0 < θM ≪ π/2. The set D could be seen as being a function of θM . Furthermore,
we assume xijx(0)/xijy(0) = 1 for all i, j, in which case the robots or the cameras are
standing on a line and are oriented in the same direction that forms an angle of π/4 to the
direction of the line. This means that ψij ∈ {−π/4, 3π/4} for all i, j and this configuration
is illustrated in Figure 2.6.

Let us choose the dynamics for the system as

θ̇1 =
∑

j∈N1(t)

α1j(t− γσ(t))ω1j ,

...

θ̇n =
∑

j∈Nn(t)

αnj(t− γσ(t))ωnj .

We assume that αij(t) is continuous, positive and bounded, and σ ∈ S|F|,D,U . Provided
θM is sufficiently small, on D it can be shown that ωij is Lipschitz for all (i, j) ∈ V × V .
It is obvious that Assumption 2.17 holds. We choose θM small enough so that |ωij | < π/2
on D. According to [9], it is true that

θij(t) ̸= 0 =⇒ θij(t)ωij(t) > 0. (2.2)

Let us now consider the function V (θi) = θ2i , where

d

dt
V (θi) = 2θi

∑
j∈Ni(t)

αij(t)ωij .
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Image plane

Image plane

Image plane

Image plane

Camera 1

Camera 2

Camera 3

Camera 4

Epipole 

Epipole 

Epipole 

Epipole 

Figure 2.6: When θi = 0 for all i we assume that ψij ∈ {−π/4, 3π/4} for all i, j. The
epipole eij is the point in the image plane of robot (camera) i where the vector
between the position of robot i and the position of robot j crosses the image
plane. This vector is expressed in the body coordinate frame of robot i.

Suppose i ∈ IV (t, t), and θj(t) = θi(t) for all j ∈ Ni(t), then it follows that V̇ (θi(t)) =
0. Now, consider the situation where i ∈ IV (t, t) and there is at least one j such that
θj(t) ̸= θi(t) when j ∈ Ni(t). Since i ∈ IV (t, t), if θi ̸= θj , using (2.2) we get that

θiωij < 0.

Hence, Assumption 2.18 also holds.

In Theorem 2.20 we can now choose β̂1(|θi|) = β̂2(|θi|) = |θi|2 and reach the con-
clusion that D is positively invariant and D∗(∞) = D. The point 0 is uniformly stable.
Furthermore, according to Theorem 2.21, A is globally quasi-uniformly attractive rela-
tive to D∗(∞) if Gσ(t) is uniformly strongly connected. But we can actually weaken the
assumptions on the graph Gσ(t).
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Let us consider the function W (θi, θj) = (θj − θi)
2, where

d

dt
W (θi, θj)

= 2(θj − θi)

 ∑
k∈Nj(t)

αjk(t− γσ(t))ωjk −
∑

l∈Nl(t)

αil(t− γσ(t))ωil

 .

If (i, j) ∈ JV (t, t), we can without loss of generality assume that θj ≥ θk and that
θi ≤ θk for all k ∈ V . This implies that sign(θij) = sign(θkj) = sign(θil) = 1 for all
k, l ∈ V , so from (2.2) we get that sign(θij)sign(ωjk) = −1 and sign(θij)sign(ωil) = 1.
Thus Assumption 2.19 holds for fW,m,m and Theorem 2.22 can be used. Thus, when
x(t) ∈ D∗(∞) it follows that A is globally uniformly asymptotically stable relative to
D∗(∞) if and only if Gσ(t) is uniformly quasi-strongly connected.

2.3.7 Stabilization

Let us now, as a special case of the consensus problem, consider the stabilization problem,
where we use our consensus results in order to provide known conditions for when {0} is
asymptotically stable for a system

ẏ = g(t, y), (2.3)

where y ∈ Rm.
We show that this problem is a special case of a consensus problem with two agents

in Rm, so that we can use Theorem 2.22 in order to show that {0} is globally uniformly
asymptotically stable relative to some compact invariant set in Rm.

Proposition 2.25. Suppose there is an invariant compact set D′ ⊂ Rm containing the
point 0 and a finite set F ′ = {f̃ ′1, . . . , f̃ ′|F ′|} of functions that are piecewise continuous in

t and Lipschitz in y on D′, uniformly with respect to t. For each function f̃ ′k it holds that
f̃ ′k(t, 0) = 0 for all k and all t. Furthermore, σ ∈ S|F ′|,D,U and the right-hand side of
(2.3) is

g(t, y) = f̃ ′σ(t)(t− γσ(t), y).

If there is a positive definite function V (y), which is continuously differentiable on an
open set containing D′ such that

∇V (y)f̃ ′i(t, y) < 0

for all i ∈ {1, . . . , |F ′|}, all t and nonzero y in D′, then {0} is globally uniformly asymp-
totically stable relative to D′.

Proof : The set D′ is assumed to be invariant for any choices of switching signal
functions in S|F ′|,D. Let us define a system of two agents, agent 1 and agent 2. Based on
the set F ′ we create a new set F ′′ of functions with range R2m in the following way

F ′′ = {(f̃ ′1(t, y2 − y1), 0)
T , . . . , (f̃ ′|F ′|(t, y2 − y1), 0)

T }.
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Now, for all t ≥ 0 and for all σ ∈ S|F ′′|,D we define

N σ
1 (t) = {1, 2} and N σ

2 (t) = {2}.

The system dynamics for this extended system is given as

ẏ1 = f̃ ′1(t− γσ(t), y2 − y1),

ẏ2 = 0.

This system fulfills Assumption 2.17 and we define a function W as

W (y1, y2) = V (y2 − y1).

The functionW fulfills Assumption 2.19. Now, if the initial positions of y1(t) and y2(t) are
y01 ∈ D′ and y02 = 0 ∈ D′ respectively, we see that the dynamics for the extended system
is equivalent to the original system (2.1). For the extended system, the set D′ × {0} ⊂
((D′)2)∗(∞). Since Gσ(t) is uniformly quasi-strongly connected, A is globally uniformly
asymptotically stable relative to ((D′)2)∗(∞). Since y2(t) = 0 for all t, we see that the
state will converge to the point (0, 0)T ∈ R2m in the extended system. �

2.4 Proofs

In this section we provide the proofs. Theorem 2.20 is proven directly, whereas for the two
other theorems, in order to make the proofs more comprehensible, we first introduce some
lemmas, used as building blocks for the final proof.

Proof of Lemma 2.2: We can construct the σ′ as follows. Let us first choose τσ
′

D = τσD
and τσ

′

U ≥ 2τσD. For any k such that τk+1 − τk > τσ
′

U , we split [τk, τk+1) into a partition
of smaller half-open intervals each with equal length smaller than τσ

′

U but larger than τσ
′

D .
On these half-open intervals σ′(t) = σ(t). For all k such that τk+1 − τk ≤ τσ

′

U we let
σ′(t) = σ(t) for t ∈ [τk, τk+1). �

Proof of Lemma 2.3: Let τU = τσU and τD = τσD. The function σ′ is constructed in a
way similar to the procedure in the proof of Lemma 2.2, but here the number of half-open
intervals that [τk, τk+1) is split into is bounded from above by ⌊τU/τD⌋.

We define the partition of intervals as follows

[τk, τk+1) =

⌊(τk+1−τk)/τD⌋−1∪
i=1

[τk + (i− 1)τD, τk + iτD)


∪ [τk + (⌊(τk+1 − τk)/τD⌋ − 1)τD, τk+1).
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We define F ′ as follows

F ′ = {f̃ ′1 = f̃1(t, x),

f̃ ′2 = f̃1(t+ τD, x), . . . ,

f̃ ′⌊τU/τD⌋ = f̃1(t+ (⌊τU/τD⌋ − 1)τD, x), . . . ,

f̃ ′⌊τU/τD⌋(N−1)+1 = f̃N (t+ τD, x), . . . ,

f̃ ′⌊τU/τD⌋N = f̃N (t+ (⌊τU/τD⌋ − 1)τD, x)},

where N = |F|. The set F ′ is constructed by creating ⌊τU/τD⌋ − 1 number of new
time-shifted functions from each function f̃i ∈ F .

Now σ′ is constructed by choosing a function in F ′ on each half-open interval in each
partition so that

f̃σ(t)(t, x) = f̃ ′σ′(t)(t, x)

for all t and x ∈ D. �

Proof of Lemma 2.12: We only prove the first statement for fV,m, the procedure in
order to prove the second statement for fV,m,m is similar and hence omitted.

Since V is Lipschitz in x on D it follows that fV,m is Lipschitz in x on D. Since fV,m
is Lipschitz in x, it follows that

D+(fV,m(x(t))) = D+
fV,m

(fV,m(x∗)),

where

D+
fV,m

(fV,m(x∗)) = lim
ϵ↓0

sup
ffV,m

(t+ ϵ, x0 + ϵfV,m(t, x∗))

ϵ

and x∗ = x(t). This result can be obtained from Chapter 1 in [12]. In [13] it is formulated
as a Theorem (Theorem 4.1 in Appendix I).

The next step is to prove that

D+
fV,m

(fV,m(t, x∗)) = max
i∈IV (t,t)

d

dt
V (xi(t)).

This result can for example be obtained from Theorem 2.1. in [14]. �

Proof of Lemma 2.15: Since D is compact, we only need to verify that D∗(t̃) is
closed in order to show that D∗(t̃) is compact. Suppose there is x0 /∈ D∗(t̃), such that
there is a sequence {xi0}∞i=1 that converges to x0, where each element in the sequence is in
D∗(t̃). We would like to obtain a contradiction by showing that the solution xσ(t, t0, x0)
does exist in D on the interval [t0, t0 + t̃) for any t0, and σ ∈ S|F|,D.

By using the fact that D is compact and that the right-right side of (2.1) is uniformly
Lipschitz in x on D and piecewise continuous in t, we can use the Continuous Dependency
Theorem of initial conditions in order to guarantee that {xσ(t, t0, xi0)}∞i=1 is a Cauchy
sequence for arbitrary t ∈ [t0, t0 + t̃). Now we know, since D is compact, that

x∗(t) = lim
i→∞

xσ(t, t0, x
i
0)
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exists and x∗(t) ∈ D. We want to prove that x∗(t) is the solution for (2.1) on [t0, t0 + t̃)
for the given σ, t0 and x0.

x∗(t) = lim
i→∞

xσ(t, t0, x
i
0)

= lim
i→∞

∫ t

t0

f(s, xσ(s, t0, x
i
0))ds

=

∫ t

t0

lim
i→∞

f(s, xσ(s, t0, x
i
0))ds

=

∫ t

t0

f(s, x∗(s)).

Hence, x∗(t) is contained D for all t, but since σ and t0 were arbitrary, it follows that
x0 ∈ D∗(t̃) which is a contradiction.

Now we prove the statement that D∗(∞) is invariant. Suppose x0 ∈ D∗(∞) is arbitrary
and let

y = xσ1(t1, t0, x0)

for σ1 ∈ S|F|,D and t1 ≥ t0. Consider xσ2(t, t′1, y) for some arbitrary σ2 ∈ S|F|,D and t′1.
We need to show that xσ2(t, t′1, y) is contained in D for all t ≥ t′1.

We define

σ(t) =

{
σ1(t− (t′1 − t1)) if t < t′1,

σ2(t) if t ≥ t′1.

which is contained in S|F|,D. Thus

xσ2(t, t′1, y) = xσ(t, t0 + (t′1 − t1), x0)

which is contained in D for all t ≥ t0 since x0 ∈ D∗(∞). Thus y ∈ D∗(∞).
�

Proof of Theorem 2.20: Since the origin is an interior point of D, there is a ball Bϵ,m

such that (Bϵ,m)n ⊂ D and ϵ > 0. Suppose x0 ∈ (Bϵ,m)n, then there is a closed ball

B̄ϵ′,mn(x0) ⊂ (Bϵ,m)n

with ϵ′ > 0. Now according to Theorem 3.1. in [8], there is a δ′ > 0 such that the system
has a unique solution x(t, t0, x0) on [t0, t0 + δ′]. We choose [t0, t0 + T ′) as the maximal
half-open interval of existence of the unique solution. We know there are class K functions
β1 and β2 such that

β1(∥y∥) ≤ V (y) ≤ β2(∥y∥)

for y ∈ Rm.
Now, using property (2) of Assumption 2.18 we get from the Comparison Lemma

(Lemma 3.4 in [8]), that
fV,m(x(t)) ≤ fV,m(x0)
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for t ∈ [t0, t0 + T ′). Now let δ = β−1
2 (β1(ϵ)). We suppose that x0 was chosen such that

xi(t0) ∈ B̄δ,m ⊂ B̄ϵ,m for all i.

It follows that for t ∈ [t0, t0 + T ′),

max
i∈{1,...,n}

∥xi(t)∥ = β−1
1 (β1( max

i∈{1,...,n}
∥xi(t)∥))

= β−1
1 ( max

i∈{1,...,n}
β1(∥xi(t)∥)) ≤ β−1

1 (fV,m(x(t)))

≤ β−1
1 (fV,m(x(t0))) ≤ β−1

1 ( max
i∈{1,...,n}

β2(∥xi(t0)∥))

≤ β−1
1 (β2( max

i∈{1,...,n}
(∥xi(t0)∥))) ≤ β−1

1 (β2(δ)) = ϵ.

Now it follows by using Theorem 3.3 in [8], that the solution will stay in (B̄ϵ,m)n for
arbitrary times larger than t0, i.e., T ′ = ∞. �

In the following lemma we use the positive limit set L+(x0, t0) of the solution
x(t, t0, x0) when x0 ∈ D∗(∞) (we assume that σ ∈ S|F|,D is fixed here). This limit set
exists and is compact, and x(t) approaches it as the time goes to infinity, however it is not
guaranteed to be invariant which is the case for an autonomous system. Now, in the case
that x0 ∈ D∗(∞), the set L+(x0, t0) is contained in D∗(∞), so any alternative solution of
(2.1) that starts in L+(x0, t0) will remain in D∗(∞).

Lemma 2.26. Suppose that x0 ∈ Ac ∩ D∗(∞) and that Assumption 2.18 (2) holds. Sup-
pose that there is a non-negative function β(y, t̃) that is increasing in t̃ for y ∈ Ac ∩
D∗(∞). Furthermore, suppose that for y ∈ Ac ∩ D∗(∞), there is t̃′(y) > 0 such that for
t̃ ≥ t̃′(y) it holds that β(y, t̃) > 0.

If
fV,m(x(t0 + t̃, t0, x0))− fV,m(x0) ≤ −β(x0, t̃),

then x(t) → A as t→ ∞ for all t0.
Furthermore, if β is lower semi-continuous in y, and t̃′ is independent of y, then A is

globally quasi-uniformly attractive relative to D∗(∞).

Proof : Let us consider an arbitrary x0 ∈ Ac ∩D∗(∞) and t0 for which the solution
x(t, t0, x0) generates the limit set L+(x0, t0) ⊂ D∗(∞). From the fact that fV,m(x(t)) is
continuous in t, the fact that fV,m(x(t)) is decreasing and the fact that x(t) is contained
in the compact set D∗(∞), it follows that fV,m(x(t, t0, x0)) converges to a lower bound
α(x0, t0) ≥ 0 as t → ∞. Suppose L+(x0, t0) ̸⊂ A. We want to prove the lemma by
showing that this assumption leads to a contradiction. Let t1 ≥ t0 be arbitrary and y1 be
an arbitrary point in L+(x0, t0)∩Ac. Since y1 ∈ D∗(∞), we know that x(t, t1, y1) exists
and is contained in D∗(∞) for any time t > t1.

Since each function in F is uniformly Lipschitz continuous in xwith respect to t on the
compact set D∗(∞) and the number of functions in F is finite, we can use the Continuous
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Dependency Theorem of initial conditions (e.g., Theorem 3.4 in [8]). For ϵ > 0 and t̃ ≥ 0
there is δ(ϵ, t̃) > 0 such that

∥y1 − y′1∥ ≤ δ =⇒ ∥fV,m(x(t2, t1, y1))− fV,m(x(t2, t1, y
′
1))∥ ≤ ϵ,

where t2 = t1 + t̃. Let us now choose t̃ ≥ t̃′(y1) and ϵ = β(y1, t̃)/2, from which it
follows that ϵ is guaranteed to be positive. Since y1 ∈ L+(x0, t0), there is t′ > t0 such
that ∥y1 − x(t′, t0, x0)∥ ≤ δ. We choose t1 = t′ and y′1 = x(t′, t0, x0). But then since
fV,m(x(t2, t1, y1)) ≤ α− β(y1, t̃) it follows that fV,m(x(t2, t0, x0)) ≤ α− β(y1, t̃)/2 =
α− ϵ. Since ϵ > 0, this contradicts the fact that α is a lower bound for fV,m.

Now we shall prove the second part of the statement. We prove this by a contradiction
argument. Suppose there is η > 0 such that there is no T (η) ∈ R+ such that

min
t∈[t0,t0+T (η)]

dist(x(t, t0, x0),A) < η

for all x0 ∈ D∗(∞) and all t0. Let

βmin = min
z∈D∗(∞)∩{y:dist(y,A)≥η}

β(z, t̃′) > 0.

Now, for each positive integer N there is t0(N) ≥ 0 and x0(N) ∈ D∗(∞) such that

min
t∈[t0(N),t0(N)+Nt̃′]

dist(x(t, t0(N), x0(N)),A) ≥ η,

otherwise we can choose T (η) = Nt̃, but we assumed that there is no such T (η). We have
that

fV,m(x(t, t0(N) +Nt̃′, x0(N)))− fV,m(x(t, t0(N), x0(N))) ≤ −Nβmin.

Now,

fV,m(x(t, t0(N) +Nt̃′, x0(N)))− fV,m(x(t, t0(N), x0(N))) → −∞ as N → ∞,

which is a contradiction since fV,m is bounded on D∗(∞). �
Remark 2.4. Note that the special structure of A being the consensus set is not used in this
proof. Also the special structure of fV,m is not used in the proof.

Lemma 2.27. Suppose Assumption 2.17 and 2.18 (2,3) hold, σ ∈ S|F|,D,U , xσ(t0) ∈
D∗(∞) ∩ Ac and Gσ(t) is uniformly strongly connected. If t0 is a switching time of σ, it
follows that fV,m(xσ(t)) < fV,m(xσ(t0)) for any any t ≥ n(T σ + 2τD), where Tσ is
given in Definition 2.8.

Proof : We assume without loss of generality, that the longest time between two
consecutive switches of σ(t) is bounded from above by 2τD. This assumption is justified
by Lemma 2.3. Let us consider the solution at an arbitrary switching time τk, and prove
that fV,m(x(n(Tσ + 2τD) + τk)) < fV,m(x(τk)).
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Part 1: We show that if i /∈ IV (τk, s), then i /∈ IV (τk, t) for t > s ≥ τk. Suppose
that i ̸∈ IV (τk, s) and that there is a t′ > s such that i ∈ IV (τk, t′). Then since V (xi(t))
is continuous, there is a t1 > s such that i ∈ IV (τk, t1) and i /∈ IV (τk, t) for t ∈ [s, t1).
Since σ ∈ S|F|,D we know that there is ϵ > 0 such that σ(t) is constant and fi(t, x(t)) is
continuous during [t1 − ϵ, t1), where t1 − ϵ > s.

We define the following constant

V̇ ∗
i = lim

t↑t1
V̇ (xi(t)).

Now we claim that V̇ ∗
i ≤ 0, which we justify as follows. If t1 is not equal to a switching

time, it is immediate that this claim is true since i ∈ IV (τk, t1), see Assumption 2.18 (2)
and Lemma 2.12. On the other hand, if t1 is equal to a switching time, the claim is also
true and can be shown as follows. If σ is the switching signal function for our solution, we
can create another switching signal function σ′ ∈ S|F|,D which satisfies

σ′(t) = σ(t) 0 ≤ t < t1 and σ′(t1) = σ(t1 − ϵ).

So,

V̇ ∗
i = lim

t↑t1
V̇ (xi(t)) = V̇ (xσ

′

i (t)) ≤ 0,

where the last inequality follows from Assumption 2.18 (2) and Lemma 2.12.
We now know that V̇ ∗

i ≤ 0. Thus there are two options for V̇ ∗; either it is (1) strictly
negative or (2) zero. In case (1), since σ(t) is piecewise right-continuous there is a positive
ϵ′ < ϵ such that V̇ (xi(t)) is continuous and strictly negative on [t1− ϵ′, t1). We also know,
since V (xi(t1)) = fV,m(x(τk)), that V (xi(t)) ≤ V (xi(t1)) for all t ≥ τk. Using these
two facts, we get that

V (xi(t1)) = V (xi(t1 − ϵ′)) +

∫ t1

t1−ϵ′
V̇ (xi(t))dt < V (xi(t1))

which is a contradiction.
Now we consider case (2). By using Assumption 2.18 (3) we can show that

x(t1) = lim
t↑t1

x(t)

satisfies xi(t1) = xj(t1) and limt↑t1 V̇ (xj(t)) = 0 for all j ∈ Ni(t1 − ϵ) (note that σ(t)
is constant on [t1 − ϵ, t1), so Ni(t) = Ni(t1 − ϵ) on this half-open interval), otherwise
V (xj(t1)) = fV,m(x(τk)) and

lim
t↑t1

V̇ (xj(t)) < 0,

which we just showed is a contradiction. For any j such that j ∈ Ni(t1 − ϵ) it holds
that xk(t1) = xj(t1) and limt↑t1 V̇ (xk(t)) = 0, for all k ∈ Nj(t1 − ϵ). By using the
same argument for the neighbors of the neighbors of agents in Ni(t1 − ϵ) and so on, we
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get that xi(t1) = xj(t1) for all j that belongs to the connected component of node i in
Gσ(t1−ϵ). Let us denote the state in this connected component by xci(t), where ci ⊂ V are
all neighbors in this connected component. It holds that

lim
t↑t1

V̇ (xj(t)) = 0,

for all j ∈ ci. During [t1 − ϵ, t1) the dynamics for xci is

ẋci = f ci(t, xci).

The function f ci is the part of f corresponding to the connected component ci. By using
Assumption 2.18 (3) we get that

lim
t↑t1

f ci(t, xci(t)) = 0,

which is a contradiction, since xci cannot reach such an equilibrium point in finite time
without violating the uniqueness of the solution property (the functions in F are continuous
in t and Lipschitz in x).

Part 2: Using part 1 we show that IV (τk, t) is empty for t ≥ n(T σ + 2τD) +
τk. Suppose that I(τk, τk) ⊂ I(τk, τk′), where τk′ is the first switching time after τk +
T σ. We know from part 1 that I(τk, τk)c ⊂ I(τk, τk′)c (where complements are taken
with respect to the set V) which implies that I(τk, τk′) ⊂ I(τk, τk), so our assumption
has the consequence that I(τk, τk) = I(τk, τk′). Now, since Gσ(t) is uniformly strongly
connected, there is a switching time τk′′ such that τk ≤ τk′′ ≤ τk + Tσ for which there
are i, j that satisfy i ∈ I(τk, τk), j ∈ I(τk, τk)c and j ∈ Ni(τk′′). But then j ∈ Ni(s)
for s ∈ [τk′′ , τk′′ + τD). Thus, i ∈ I∗

V (s) for s ∈ [τk′′ , τk′′ + τD), which means that
V̇ (xi(s)) < 0 on [τk′′ , τk′′ + τD). But since i ∈ IV (τk, s) for s ∈ [τk′′ , τk′′ + τD), the
function V (xi(s)) is constant on [τk′′ , τk′′ + τD), which is a contradiction. Our hypothesis
that I(τk, τk) ⊂ I(τk, τk′) leads to a contradiction. Thus, I(τk, τk′) is a strict subset of
I(τk, τk).

Now, there are two cases for IV (τk, τk′). It is either (1) empty, or (2) nonempty. In
case (1) we are done. In case (2) we have that IV (τk, τk′) = IV (τk′ , τk′). We know
that τk′ ≤ τk + Tσ + 2τD by the assumption that τU = 2τD. Now we can apply the
same procedure for the set IV (τk′ , τk′). By repeating the procedure n times, we know that
IV (τk, t) = ∅ for t ≥ n(T σ + 2τD) + τk. �

Proof of Theorem 2.21: We prove this theorem by showing that there is a function β
with the properties given in Lemma 2.27. For each σ ∈ S|F|,D,U , there is a corresponding
β.

Initially we assume that t0 is a switching time. This assumption will be relaxed towards
the end of the proof, so that we consider arbitrary times. We assume once again without
loss of generality that τU = 2τD, and from Lemma 2.27 it follows that for a switching
time t0, it holds that fV,m(x(t0 + t̃)) < fV,m(x(t0)) where t̃ ≥ n(Tσ + 2τD). In the fol-
lowing, let us choose t̃ ≥ t̃′ = n(2T σ + 2τD). Obviously, since fV,m(x(t)) is decreasing,
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fV,m(x(t0 + t̃)) < fV,m(x(t0)) for t̃ ≥ t̃′, and this particular choice of t̃′ will have its
explanation towards the end of the proof.

During the time interval [t0, t0 + t̃] there is an upper bound Mu and a lower bound Md

on the number of switches of σ(t). Now we create something which we call scenarios. A
scenario s is defined as follows,

s = (f ′0, f
′
1, . . . f

′
k).

The function f ′i ∈ F for i ∈ {1, . . . , k}, where k ∈ {Md,Md + 1, . . . ,Mu}. What this
illustrates is that during the time period between t0 and the first switching time τ1 after t0,
the function f ′0 is the right-hand side of (2.1), during the second time period between τ1 and
τ2, f ′1 is the right-hand side of (2.1) and so on. By a slight abuse of notation, τ1 is the first
switching time after t0 and τi is the first switching time after τi−1 for i ∈ {2, . . . , k}. The
number of possible scenarios is finite and do not dependent on where the actual switches
occur in time.

Now, for a specific scenario s with k switching times, and where the switching times
are the elements in the vector τ = (τ1, . . . , τk)

T , we write the solution to (2.1) as

x(s,τ)(t0 + t̃) = x(s,τ)(t0) +

∫ τ1

t0

f ′0(t− t0, x
(s,τ)(t))dt+ . . .

+

∫ τk

τk−1

f ′k−1(t− τk−1, x
(s,τ)(t))dt+

∫ t0+t̃

τk

f ′k(t− τk, x
(s,τ)(t)).

Thus, instead of parameterizing x by the switching signals, we here on the interval [t0, t0+
t̃] parameterize x by the scenarios and the switching times vector τ .

The function x(s,τ)(t0 + t̃) is continuous in τ on the set

Cs = {τ : t0 ≤ τi ≤ t0 + t̃ for i = 1, . . . , k,

τ1 ≥ t0 + τD,

τ1 ≤ t0 + 2τD,

τi+1 ≥ τi + τD for i = 1, . . . , k − 1,

τi+1 ≤ τi + 2τD for i = 1, . . . , k − 1

t0 + t̃ ≤ τk + 2τD}.

This is a consequence of the Continuous Dependency Theorem of initial conditions and
is shown by the following argument. For a specific τ , suppose τi is changed to τ ′i , where
|τ ′i−τi| is small and i ∈ {1, . . . , k}. Then we define τ ′ = (τ1, . . . , τi−1, τ

′
i , τi+1, . . . , τk)

T .

x(s,τ
′)(t0 + t̃) = x(s,τ

′)(t0) +

∫ τ1

t0

f ′0(t− t0, x
(s,τ ′)(t))dt+

. . .+

∫ τ ′
i

τi−1

f ′i−1(t− τi−1, x
(s,τ ′)(t))dt+

∫ τi+1

τ ′
i

f ′i(t− τ ′i , x
(s,τ ′)(t))dt+

. . .+

∫ t0+t̃

τk

f ′k(t− τk, x
(s,τ ′)(t)),
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so x(s,τ
′) is an alternative solution where τi is replaced by τ ′i . We know that all such

alternative solutions exist and x(s,τ
′)(t) ∈ D∗(∞) for t ∈ [t0, t0 + t̃].

Now,

x(s,τ)(t0 + t̃) = x(s,τ)(τi) +

∫ τi+1

τi

f ′i(t− τi, x
(s,τ)(t))dt+

. . .+

∫ t0+t̃

τk

f ′k(t− τk, x
(s,τ)(t)),

x(s,τ
′)(t0 + t̃) = x(s,τ

′)(τ ′i) +

∫ τi+1

τ ′
i

f ′i(t− τ ′i , x
(s,τ ′)(t))dt+

. . .+

∫ t0+t̃

τk

f ′k(t− τk, x
(s,τ ′)(t)).

As |τi − τ ′i | → 0 it holds that

∥x(s,τ)(τi+1, τi, x
(s,τ)(τi))− x(s,τ

′)(τi+1, τ
′
i , x

(s,τ ′)(τ ′i))∥ → 0,

which implies that

∥x(s,τ)(t0 + t̃, τi+1, x
(s,τ)(τi+1, τi, x

(s,τ)(τi)))

− x(s,τ
′)(t0 + t̃, τi+1, x

(s,τ ′)(τi+1, τ
′
i , x

(s,τ ′)(τ ′i)))∥ → 0.

The function fV,m(x(s,τ)(t0 + t̃, t0, x0)) is also continuous in τ on Cs.
Only a subset of all scenarios are feasible. We say that a scenario is feasible if there

is τ ′ ∈ Cs and a switching signal function σ′ such that Tσ′
= Tσ and where xσ

′
(t) =

x(s,τ
′)(t) for t ∈ [t0, t0 + t̃′]. According to Lemma 2.27, this means that fV,m(x(t0)) −

fV,m(x(s,τ)(t0 + t̃′, t0, x0)) > 0 for the τ ′ ∈ Cs. Now, suppose the scenario s is feasible,
the question is if it is true that

fV,m(x(t0))− fV,m(x(s,τ)(t0 + t̃′, t0, x0)) > 0

for all τ ∈ Cs. By the subsequent argument we show that this is true.
Suppose s is feasible, then there is τ ∈ Cs such that there is a switching signal function

σ′ (not necessarily σ) which has switching times equal to the elements in τ during [t0, t0+
t̃′] and xσ

′
(t) = x(s,τ)(t) for t ∈ [t0, t0 + t̃′]. The graph Gσ′(t) is uniformly strongly

connected and T σ = Tσ′
. Now, if the elements in τ are changed by means of a continuous

transformation to an arbitrary τ ′′ ∈ Cs, then there is a σ′′ ∈ S|F|,D,U for which Gσ′′(t)

is uniformly strongly connected. The switching times of σ′′ are given by the elements in
τ ′′ during [t0, t0 + t̃′], and an upper bound on the length of an half-open interval in time
such that the union graph Gσ′′(t) is strongly connected during that interval is T σ′′

= 2Tσ .
This is true since we know that the lower bound between two switching times is τD and
the upper bound is 2τD. Thus, by changing τ to τ ′′, the length of any interval between two
consecutive switching times can at most be changed to be twice as long. Now, according
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to Lemma 2.27, since Gσ′′(t) is uniformly strongly connected (with an upper bound of 2Tσ

on the length of the interval such that the union graph is strongly connected) we know that
since t̃′ = n(2Tσ′

+ 2τD) = n(T σ′′
+ 2τD),

fV,m(x(t0))− fV,m(x(s,τ
′′)(t0 + t̃′, t0, x0)) > 0.

Because τ ′′ is arbitrary in Cs, if s is feasible it holds that

fV,m(x(t0))− fV,m(x(s,τ)(t0 + t̃′, t0, x0)) > 0

for all τ ∈ Cs.
By choosing t̃ ≥ t̃′, we now know that for feasible s it holds that

fV,m(x(s,τ)(t0 + t̃, t0, x0))− fV,m(x0) < 0

for all τ in Cs. By Weierstrass Extreme Value Theorem there exists τ∗ ∈ Cs such that

δs(x0, t̃) = min
τ∈Cs

fV,m(x0)− fV,m(x(s,τ)(t0 + t̃, t0, x0))

= fV,m(x(t0))− fV,m(x(s,τ
∗)(t0 + t̃, t0, x0)) > 0.

Note that this δs is not a function of t0, since all possible switching signal functions are
accounted for during [t0, t0 + t̃] for the specific scenario. Thus, t0 could be any switching
time of σ.

Now,

inf
t0∈{τk}

fV,m(x0)− fV,m(xσ(t0 + t̃, t0, x0)) ≥

min
s

min
τ∈Cs

fV,m(x0)− fV,m(x(s,τ)(t0 + t̃, t0, x0)) =

min
s
δs(x0, t̃) >0,

where {τk} is the set of all switching times of σ. The set of scenarios that we minimize
over are only feasible scenarios. Now we define

β(x0, t̃) = min
s
δs(x0, t̃− 2τD),

where δs is defined as zero for negative second arguments. The subtraction by 2τD is due
to the fact that t0 was assumed to be a switching time, hence we subtract this term in order
to be sure that −β(x0, t̃) does not overestimate the decrease of fV,m(x(t)).

Now we need to prove that β(x0, t̃) is lower semi-continuous in x0. We show that
δs(x0, t̃) is continuous in x0 for all s. From this fact it follows that β(x0, t̃) is continuous
in x0. The function

gs(τ, t̃, x0) = fV,m(x0)− fV,m(x(s,τ)(t0 + t̃, t0, x0))
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is continuous in τ and x0. It follows directly that δs is continuous in x0, since

δs(x0, t̃) = min
τ∈Cs

gs(τ, t̃, x0) (2.4)

and Cs is compact. �
Now we turn to the proof of Theorem 2.22, but first we formulate some lemmas neces-

sary in order to prove this theorem. Before we proceed, let us define

B̄r,mn(A) = {x ∈ Rmn : dist(x,A) ≤ r}.

Lemma 2.28. Suppose V fulfills Assumption 2.19 (1), then for x ∈ B̄r,mn(A) ∩ D there
are class K functions β1 and β2 on [0, r] such that

β1(dist(x,A)) ≤ fV,m,m(x) ≤ β2(dist(x,A)).

Proof : We follow the procedure in the proof of Lemma 4.3 in [8] and define

ψ(s) = inf
{s≤dist(x,A)≤r}∩D

fV,m,m(x) for 0 ≤ s ≤ r

from which we have that ψ(dist(x,A)) ≤ fV,m,m(x) on Br,mn(A) ∩ D. We also define

ϕ(s) = sup
{dist(x,A)≤s}∩D

fV,m,m(x) for 0 ≤ s ≤ r

from which we have that fV,m,m(x) ≤ ϕ(dist(x,A)) on Br,mn(A) ∩ D. The functions
ψ and ϕ are continuous, positive definite and increasing, however not necessarily strictly
increasing. The positive definiteness of ψ is guaranteed by the fact that inf is taken over
compact sets, and since fV,m,m(x) is positive and continuous on the sets the result follows
by using Weierstrass Extreme Value Theorem.

Now there exist class K functions β1 and β2 such that β1(s) ≤ kψ(s) for some k ∈
(0, 1), and β2(s) ≥ kϕ(s) for some k > 1 where s ∈ [0, r]. It follows that

β1(dist(x,A)) ≤ fV,m,m(x) ≤ β2(dist(x,A))

on B̄r,mn(A) ∩ D. �

Lemma 2.29. Suppose x(t) ∈ D for all t ≥ t0 and Assumption 2.19 (1,2) holds, then the
set A is uniformly stable for (2.1).

Proof : Compared to the proof of Theorem 2.20 we do not have to address the issue
of existence of the solution, since by assumption it exists in D. Using Assumption 2.19 (2)
we get from the Comparison Lemma (e.g., Lemma 3.4 in [8]), that

fV,m,m(x(t)) ≤ fV,m,m(x0).
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From Lemma 2.28 we know that there exist class K functions β1 and β2 defined on
[0, r] such that

β1(dist(x,A)) ≤ fV,m,m(x) ≤ β2(dist(x,A)).

Now let ϵ ∈ (0, r) and δ = β−1
2 (β1(ϵ)). Then if x(t0) ∈ Bδ,mn(A), it follows that

dist(x,A) ≤ β−1
1 (fV,m,m(x(t))) ≤ β−1

1 (fV,m,m(x0))

≤ β−1
1 (β2(dist(x(t0),A)) ≤ β−1

1 (β2(δ)) = ϵ.

�

If x0 ∈ D∗(∞), the set A is uniformly stable for any σ ∈ S|F|,D.

Lemma 2.30. Suppose x0 ∈ Ac ∩D∗(∞) and t0 are arbitrary and Assumption 2.19 (1,2)
holds. Suppose there is a non-negative function

β(y, t̃) : R+ × R+ → R+

that is increasing in t̃ and lower semi-continuous in y. Furthermore, suppose there is
t̃′ > 0, such that for t̃ ≥ t̃′, it holds that β(y, t̃) > 0 for all y ∈ R++.

If

fV,m,m(x(t, t0, x0))− fV,m,m(x0) ≤ −β(dist(x0,A), t− t0),

A is globally uniformly asymptotically stable relative to D∗(∞).

Proof : We already know from Lemma 3.3 that A is uniformly stable relative to
D∗(∞). What is left to prove is that A is globally uniformly attractive relative to D∗(∞).
In order to show this, the procedure is analogous to the procedure in Lemma 2.27, where
we use the positive limit set L+(x0, t0) for the solution x(t, t0, x0).

Let us consider arbitrary t0 and x0 ∈ D∗(∞)∩Ac. By using the fact that fV,m,m(x(t))
is continuous and D∗(∞) is compact and invariant, it follows that fV,m,m(x(t)) converges
to a lower bound α(x0, t0) ≥ 0 as t → ∞. Suppose that L+(x0, t0) ̸⊂ A. We want to
prove that A is attractive by showing that this assumption leads to a contradiction. Let
t1 = t0 + t̃′ and let y1 be an arbitrary point in L+(x0, t0) ∩ Ac ⊂ D∗(∞). By using the
Continuous Dependency Theorem of initial conditions (e.g. Theorem 3.4 in [8]), for any
ϵ > 0 there is δ(ϵ, t̃′) > 0 such that

∥y1 − y′1∥ ≤ δ =⇒ ∥fV,m,m(x(t2, t1, y1))− fV,m,m(x(t2, t1, y
′
1))∥ ≤ ϵ,

where t2 = t1 + t̃′. Let us choose ϵ = β(dist(y1,A), t̃′)/2. Since y1 ∈ L+(x0, t0), there
is a t′ such that ∥y1 − x(t′, t0, x0)∥ ≤ δ, thus we choose t1 = t′ and y′1 = x(t′, t0, x0).
But then

fV,m,m(x(t2, t0, x0)) ≤ α− β(dist(y1,A), t̃′)/2 < α,

which contradicts the fact that α is a lower bound for V . Hence, x(t, t0, x0) → A as
t→ ∞ for all t0 and x0 ∈ D∗(∞).
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What is left to prove is that for all η > 0 and x0 ∈ D∗(∞), there is T (η) such that

t ≥ t0 + T (η) =⇒ dist(x(t, t0, x0),A) < η.

We use a contradiction argument. Suppose there is an η > 0 such that there is no such
T (η). We know, since A is uniformly stable relative to D∗(∞), that there is a δ′(η) > 0
such that for x0 ∈ D∗(∞) it holds that

dist(x0,A) ≤ δ′ =⇒ dist(x(t),A) ≤ η

for all t ≥ t0. Let
dmax = max

y∈D∗(∞)
dist(y,A)

and
β′ = min

d∈[δ′(η),dmax]
β(d, t̃′) > 0.

For any (positive integer) N there are t0(N) and x0(N) in D∗(∞) such that

dist(x(t, t0(N), x0(N)),A) > δ′

when t0 ≤ t ≤ t0 +Nt̃′, otherwise T (η) would exist which we assume it does not. From
this it follows that

fV,m,m(x(t0(N) +Nt̃′, t0(N), x0(N)))− fV,m,m(x0(N)) ≤ −Nβ′.

Since β′ is a constant, it follows that

lim
N→∞

(fV,m,m(x(t0(N) +Nt̃′, t0(N), x0(N)))− fV,m,m(x0(N)))−∞.

This is a contradiction since fV,m,m is bounded on D∗(∞). �

Lemma 2.31. Suppose Assumption 2.17 and 2.19 (1,2,3) hold, x0 ∈ D∗(∞) ∩ Ac and
σ ∈ S|F|,D,U . Furthermore, suppose Gσ(t) is uniformly quasi-strongly connected, then

fV,m,m(xσ(t)) < fV,m,m(x0)

if t0 is a switching time and t ≥ n(T σ + 2τD) + t0, where T σ is given in Definition 2.8.

Proof : The proof of this lemma is to a large extent similar to the proof of Lemma
2.27 and hence omitted. In part 1, instead of one connected component ci, there are two
connected components, where the states in the connected components reach an equilibrium
in finite time which cannot be reached since the right-hand side of the dynamics is Lipschitz
in x. Thus, one obtains the desired contradiction. In part 2, the main difference is that now

JV (τk, τk + Tσ + 2τD)
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is a strict subset of JV (τk, τk) and the graph is uniformly quasi-strongly connected instead
of uniformly strongly connected. The reason for not letting the graph be uniformly quasi-
strongly connected in Lemma 2.27, is that if it is uniformly quasi-strongly connected, we
might have the situation that the union graph during [τk, τk + Tσ) is a rooted spanning
tree, with the root corresponding to an agent in IV (τk, τk) and in that case IV (τk, τk) =
IV (τk, τk + Tσ + 2τD) might hold.

�

Proof of Theorem 2.22: Only if: Assume Gσ(t) is not uniformly quasi-strongly con-
nected. Then for any T ′ > 0 there is t0(T ′) such that the union graph G([t0, t0 + T ′)) is
not quasi strongly connected. During [t0, t0 + T ′) the set of nodes V can be divided into
two disjoint sets of nodes V1 and V1 (see proof of Theorem 3.8 in [2]) where there are no
edges (i, j) or (j, i) in G([t0, t0 + T ′)) such that i ∈ V1 and j ∈ V2 or j ∈ V1 and i ∈ V2

respectively.
We introduce y∗1 , y

∗
2 ∈ D∗(∞), where y∗1 ̸= y∗2 and let xi(t0) = y∗1 and xj(t0) = y∗2

for all i ∈ V1, j ∈ V2. Let η = dist(x0,A)/2. Suppose now that A is globally uniformly
asymptotically stable relative to D∗(∞), then there is a T (η) such that

t ≥ t0 + T (η) =⇒ dist(x(t),A) < η.

We choose T ′ > T (η). Due to Assumption 2.19 (3) we have that xi(t) = y∗1 and
xj(t) = y∗2 when i ∈ V1 and j ∈ V2 for t ∈ [t0(T

′), t0(T
′)+T ′). Thus, dist(x(t),A) > η

for some t ≥ t0(T
′) + T (η) which is a contradiction.

If: Once again we assume without loss of generality that τU = 2τD. We prove this part
of the proof by constructing a function β according to Lemma 2.30. The proof is to a
large extent similar to the proof of Theorem 2.21 and hence only the important part is
addressed. Along the lines of the proof of Theorem 2.21, we define δs(x0, t̃), where we
use Lemma 2.31 which assures that if t0 is a switching time of σ and t̃′ = n(2T σ + 2τD),
it holds that

fV,m,m(x(t0 + t̃′)) < fV,m,m(x(t0))

for x0 ∈ Ac ∩ D∗(∞).
Now we define

β(v, t̃) =min
s

min
D∗(∞)∩{x0:dist(x0,A)=v}

(δs(x0, t̃− 2τD)),

where the minimization is over feasible scenarios only. Feasible scenarios are defined in the
analogous way as in the proof of Theorem 2.21. Since D∗(∞) ∩ {x0 : dist(x0,A) = v}
is compact and δs(x0, t̃) is positive and continuous on this set for t̃ ≥ t̃′, it holds that
β(v, t̃) is positive for positive v. Also β(v, t̃) is actually not only lower semi-continuous,
but continuous in v. �

Note, that in the only if part of the proof of Theorem 2.22 we have not shown that
x(t) ̸→ A when t → ∞ if Gσ(t) is not uniformly quasi-strongly connected. But we can
guarantee that if convergence would occur, it cannot be uniform if Gσ(t) is not uniformly
quasi-strongly connected.
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Chapter 3

Consensus on SO(3) or attitude
synchronization for switching topologies

In this chapter we address the problem of consensus on SO(3) or attitude synchronization.
In this problem each agent in the multi-agent system has a corresponding rotation matrix
and the objective is that all the agents shall reach consensus in their rotation matrices. The
problem is interesting since it has applications in the real world, e.g., systems of satel-
lites, UAVs or networks of cameras. It is challenging since the kinematics and dynamics
are nonlinear and the system evolves on the compact manifold SO(3), i.e., the group of
orthogonal matrices in R3×3 with determinant equal to 1.

For a broad class of local representations or parameterizations. including the Axis-
Angle Representation and the Rodrigues Parameters, we present two types of kinematic
control laws that each looks structurally the same for any choice of local representation.

The first control law consists of a weighted sum of pairwise differences between posi-
tions of neighboring agents, expressed as coordinates in a local representation. The struc-
ture of the control law is well known in the consensus community for consensus in systems
of agents with single integrator dynamics and states in Rm. In the Euclidean space Rm, this
type of control law is based on so called relative information, where the difference between
the positions of two agents is not dependent on the actual positions of the agents expressed
in a reference coordinate frame, i.e., the difference is translation invariant. However, in the
local representations of SO(3) that we consider, the Euclidean difference between the po-
sitions (expressed as vectors in R3) of two neighboring agents is not translation invariant.
For this type of control law, we show that the system reaches asymptotic consensus for any
of the local representations, if the initial rotations at time t0 are contained within the region
of injectivity of the local representation and the interaction graph for the system of agents
is uniformly strongly connected.
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The second control law is based on relative information, where local representations
of the relative rotations between neighboring agents are used. Under stronger assumptions
on the regions for the initial rotations, namely that the initial rotations are contained in
a geodesic convex ball, smaller than the region of injectivety, we show that the system
reaches asymptotic consensus uniformly if and only if the interaction graph is uniformly
quasi-strongly connected.

Towards the end of this chapter we also consider the second order dynamics and torque
control laws. We use a backstepping and a high-gain approach in order to generalize the
kinematic control laws to the case of rigid bodies in space. This generalization is per-
formed first for the case of fixed connection topologies and then for switching topologies.
The word switching in this context is actually not switching in the same sense as for the
kinematic control laws. Here we assume a continuous in time transition between the func-
tions.

There is a vast literature on attitude synchronization for rigid bodies in space. The
following two works are examples of when the agents can measure their rotation to a
common reference object, which is the case for the first control law we present in this
chapter. In [1] a general framework is proposed for coordinating or synchronizing systems
of agents with lower triangular dynamics using backstepping. The attitude synchronization
problem is considered as an example, where the unit quaternions are used. In [2], a solution
to the synchronization problem is given by using the Modified Rodrigues Parameters. In
these works the connectivity graph between the agents is either required to be balanced
in [1] or undirected in [2]. Also, little is mentioned on how to guarantee injectivity of the
local representations.

In this chapter, we are considering the continuous time formulation of the consensus
problem. An interesting result is provided in [3] for the adjacent problem of discrete time
consensus in SO(3). Using a so called shape function, the authors provide a discrete time
protocol that only uses intrinsic information and works for initial rotations on almost all of
SO(3). The authors of that paper divide the existing algorithms on consensus on SO(3)
into two categories, where methods in the first category, extrinsic methods, embed SO(3)
into an ambient space in which classical consensus algorithms can be deployed. Then the
states are obtained by means of projection onto SO(3). In the second category the control
law is constructed in the tangent space of SO(3) and uses only intrinsic information.

Our second control law uses only intrinsic information. The first control law is not us-
ing intrinsic information, but it is not based on a projection from an ambient space. Instead
it is constructed by using a local representation of SO(3) around the identity matrix.

Almost-global attitude synchronization was achieved in [4] based on switching joint
connection, where auxiliary variables were introduced. This is to regard as an extrinsic
approach, using relative information. The question about which information is available to
the agents is something that is discussed in [5], using the Modified Rodrigues Parameters a
distributed control law is proposed for the agents, where no angular velocity measurements
are necessary. The control laws are defined in a common frame of reference, which makes
it a control law of the same type as our first control law. The injectivity preservation is not
guaranteed in that work, but the author argue that this problem can be mitigated by using
the so called shadow set of the Modified Rodrigues Parameters.
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3.1 Preliminaries

We consider a system of n agents, each residing in SO(3), the group of rotation matrices,
meaning that each agent i has a rotation matrix Ri(t) in this manifold at time t ≥ t0. The
matrix group SO(3) is defined as follows,

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}.

Each agent has also a corresponding rigid body. We denote the world frame as FW and
the instantaneous body frame of the rigid body of any agent i as Fi. We letRi(t) ∈ SO(3)
be the rotation of Fi in the world frame FW at time t and let Rij(t) ∈ SO(3) be the
rotation of Fj in the frame Fi, i.e., Rij(t) = RT

i (t)Rj(t), where i, j ∈ {1, 2, . . . , n}.
Mind the notation here, when we write F (without a subscript) in this chapter, we are
referring to the set of functions defined in Section 2.1.1. We refer to the rotation Ri(t) as
absolute rotation, whereas the rotation Rij(t) will be referred to as relative rotation. The
difference between the two kinds of rotations is illustrated in Figure 3.1 and Figure 3.2.

We denote the instantaneous angular velocity of Fi relative to FW expressed in the
frame Fi as ωi. From now on, until Section 3.5, we assume that ωi is the control variable
for agent i. The kinematics for Ri is given by

Ṙi = Riω̂i,

whereRiω̂i is an element of the tangent space TRiSO(3) and p̂ denotes the skew-symmetric
matrix generated by p = [p1, p2, p3]

T ∈ R3, i.e.,

p̂ =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 . (3.1)

We also define (·)∨ as the inverse of (̂·), i.e., p̂∨ = p.
We consider local representations or parameterizations of SO(3). Often we simply

refer to them as representations or parameterizations. In this context, what is meant by a
local representation is a diffeomorphism (smooth bijection) f : Br(I) → Br′,3(0) ⊂ R3,
where Br(I) is an open geodesic ball around the identity matrix in SO(3) of radius r less
than or equal to π, and Br′,3(0) is an open ball in R3 with radius r′. A set in SO(3)
is convex if any geodesic shortest path segment between any two elements in the set is
contained in the set, the set is strongly convex if there is a unique geodesic shortest path
segment contained in the set [6]. If r = π, Br(I) comprises almost all of SO(3) in terms
of measure, and Br(I) is convex if and only if r ≤ π/2. The radius r is referred to as
the radius of injectivety. The parameterizations that we use have the following special
structure

f(R) = g(θ)u, (3.2)

where θ is the geodesic distance between I and R on SO(3), also referred to as the Rie-
mannian distance which we write as d(I,R). The variable u ∈ S2 is the rotational axis of
R, and g : R → R is an odd continuously differentiable function that is strictly increasing
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Figure 3.1: A rigid body agent (agent i) here is illustrated as a half torus. The absolute
rotation of this rigid body agent is the rotation Ri of its body frame Fi to the
fixed world frame FW .
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Figure 3.2: Two rigid body agents, agent i and agent j here are illustrated as half tori. The
relative rotations Rij and Rji between them is the rotation of Fj to Fi and the
rotation from Fi to Fj , respectively.
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on (−r, r), where r ≤ π. On Bπ(I) the vector u and the positive variable θ are obtained
as functions of R as follows

θ = cos−1

(
trace(R)− 1

2

)
, u =

1

2 sin(θ)

r32 − r23
r13 − r31
r21 − r12

 ,
where R = [rij ].

Let us denote
yi = f(Ri), yij = f(Rij).

It holds that
yij = −yji, but in general yj − yi ̸= yij .

For each representation, i.e., choice of g, r ≤ π is the largest radius such that f is a dif-
feomorphism. The radius r is the radius of injectivity and depends on the representation,
but we suppress this explicit dependence and throughout Chapter 3 and Chapter 4, r cor-
responds to the representation at hand, i.e., the one we have chosen. For the representation
at hand we also define

r′ = sup
s↑r

g(s).

Some common representations are:

• The Axis-Angle Representation, in which case g(θ) = θ, and r = r′ = π. This
representation is almost global. The set SO(3)\Bπ(I) has measure zero in SO(3)
and dimension 2 compared to SO(3) which has dimension 3. The Axis-Angle Rep-
resentation is obtained from the logarithmic map as

xi = (Log(Ri))
∨,

xij = (Log(RT
i Rj))

∨.

In the other direction a rotation matrix Ri is obtained via the exponential map as

Ri(xi) = exp(x̂i).

The matrix Rij is obtained as

Rij(xi, xj) = exp(x̂i)T exp(x̂j).

The function expRi
is the exponential map at the point Ri. Using this notation, the

function exp is short hand notation for expI .

• The Rodrigues Parameters, in which case g(θ) = tan(θ/2) and the corresponding
r = π in this case also but r′ = ∞. For the Axis-Angle Representation the Jaco-
bian matrix (which we soon address), is also far from singular on Bπ(I). Thus there
are reasons for choosing the Axis-Angle Representation instead of the Rodrigues
Parameters. However, the Rodrigues Parameters have the useful property that the
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mapping f is a geodesic map, i.e., geodesic curve segments on SO(3) correspond to
straight lines in the Rodrigues Parameters space. This is a property that is exploited
later in this chapter.

• The Modified Rodrigues Parameters, in which case g(θ) = tan(θ/4), r = π and
r′ = 1. This representation is often preferred, since tan(θ/4) ̸→ ∞ as θ → π and
the Jacobian matrix has a simple structure. This representation is obtained from the
rotation matrices by a second order Cayley transform [7].

• The representation (R−RT )∨, in which case g(θ) = sin(θ), and the correspond-
ing r and r′ are π/2 and 1 respectively. This representation is popular because it is
easy to express in terms of the rotation matrices. Unfortunately, since r = π/2, only
Bπ/2(I) is covered.

• The Unit Quaternions, or rather parts of it. The unit quaternion qi expressed as a
function of the Axis-Angle Representation xi = θiui of Ri ∈ Bπ(I) is given as

q(xi) = (cos(θi/2), sin(θi/2)ui)
T ∈ S3.

This means that we can choose the last three elements of the vector as our represen-
tation, i.e., sin(θi/2)ui, in which case r = π. The unit quaternion representation
is popular since the mapping from SO(3) to the quaternion sphere is a Lie group
homomorphism, i.e.,

q1 7→ R1 q2 7→ R2 =⇒ q1 · q2 7→ R1R2,

where the multiplication of q1 and q2 should be interpreted in the sense of quaternion
multiplication.

The mapping
xi 7→ yi

fulfills that [x̂i, ŷi] = x̂iŷi−ŷix̂i = 0. In fact, only a representation that is a scaled versions
of xi fulfills this criteria, which can be seen from the following lemma.

Lemma 3.1. For the two vectors p1 and p2 in R3 it holds that [p̂1, p̂2] = 0 if and only if
p1 = αp2 for some α ∈ R.

Proof : If: [p̂1, p̂2] = αp̂22 − αp̂22 = 0. Only if: Suppose there is no α such that
p1 = αp2 and [p̂1, p̂2] = p̂1p̂2 − p̂2p̂1 = 0. Since there is no α such that p1 = αp2
it holds that p̂1p̂2p1 ̸= 0, whereas p̂2p̂1p1 = 0, which implies [p̂1, p̂2] ̸= 0, which is a
contradiction. �

Let xi(t) and xij(t) denote the axis-angle representations of the rotations Ri(t) and
Rij(t), respectively. In the following, since we are only addressing representations of

56



CONSENSUS AND PURSUIT-EVASION IN NONLINEAR MULTI-AGENT SYSTEMS

(subsets of) Bπ(I), we choose x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ (Bπ(I))

n as the state
of the system instead of (R1(t), . . . , Rn(t)) ∈ (Bπ(I))

n. Note that g(θi) = g(∥xi∥) since
θi = ∥xi∥. The variables yi and yij are now functions of xi and xi, xj respectively, i.e.,

yi(xi) = (f ◦ exp)(x̂i),

yij(xi, xj) = (f ◦ exp)(Log(RT
i (xi)Rj(xj))).

Since xi, xj are components of the vector x, we can write yi(x) and yij(x). When we
write yi(t) and yij(t), this is short hand notation for yi(x)(t) and yij(x)(t) respectively.

The kinematics is given by

ẋi = Lxiωi, (3.3)

where the Jacobian (or transition) matrix Lxi is given by

Lxi = Lθui = I3 +
θ

2
ûi +

(
1− sinc(θi)

sinc2( θi2 )

)
û2i . (3.4)

The proof is found in [8]. The function sinc(β) is defined so that β sinc(β) = sin(β) and
sinc(0) = 1. It was shown in [9] that Lθu is invertible for θ ∈ (−2π, 2π). Note however
that θ ∈ [0, π) here.

To represent the connectivity between the agents, we use a directed graph (or digraph)
Gσ(t) which is defined in Chapter 2. The function σ is a switching signal function, also
defined in Chapter 2.

Instead of using the term communication graph for Gσ(t), we deliberately use the terms
neighborhood graph, connectivity graph or interaction graph. This is due to the reason
that direct communication does not necessarily take place between the agents. Instead they
can choose to just observe each other via cameras or other sensors, i.e., indirect communi-
cation.

We remind the reader that the neighbors of agent i comprises the set Ni(t). If j ∈
Ni(t), agent i obtains rotation information related to agent j. This information is either the
absolute rotation Rj or the relative rotation Rij . In Section 3.2 we provide two simple lin-
ear control laws which are based on absolute rotations and relative rotations, respectively.
If agent i obtains the absolute rotation Rj , this rotation can either be transmitted by means
of communication, i.e., agent j sends Rj to agent i, or measured by a camera attached to
agent i, i.e., agent i observes agent j together with an object of known rotation in the world
frame FW . In the latter case, agent i can calculate Rj without the need of communication.
The relative rotation Rij can often be obtained without communication, if e.g., a camera is
used.

3.2 Formulation and control design

Let us now consider the attitude synchronization problem. We shall find a feedback con-
trol law ωi for each agent i using the local representations of either absolute rotations or
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relative rotations so that the absolute rotations of all agents converge to the set where all
the rotations are equal as the time goes to infinity, i.e.,

Ri −Rj → 0, for all i, j, as t→ ∞, (3.5)

or equivalently,
Rij → I, for all i, j, as t→ ∞. (3.6)

This is illustrated in Figure 3.3. If y ∈ (Br′,3(0))
n it is true that

Ri = Rj ⇐⇒ xi = xj ⇐⇒ xij = 0 ⇐⇒ yi = yj ⇐⇒ yij = 0 for all i, j. (3.7)

As in Chapter 2 we define the set A, as the consensus set for x, and then according to (3.7),
the condition (3.5) can equivalently be written as x(t) → A as t → ∞. This means that
the solution approaches A. A stronger assumption on the convergence to A is stated in
Chapter 2, and is referred to as (global) uniform asymptotic stability of A relative to a set.
In this case the solution x(t) approaches A uniformly in terms of time and and distance
from A (defined using the euclidean metric).

1 2

3

4

5

6

1 2

35
4

6

Figure 3.3: The rotations of all the agents in the system shall converge to the set where all
the rotations are equal.

The distance (when the Riemannian metric is used) from (R1, . . . , Rn) ∈ (B̄q(I))
n

to the set where all the rotation matrices are equal, is, provided ∥xij∥ < π for all i, j,
bounded from above by

n

(
max

(j,k)∈V×V
∥xjk∥

)
.
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By using this fact together with (3.7) and the continuity property of the exponential and
logarithmic map, one can show that if A is uniformly asymptotically stable in (B̄q,3)

n for
x(t) where q < π, then the set {(R1, . . . , Rn) ∈ (B̄q(I))

n : R1 = . . . = Rn} is uniformly
asymptotically stable in (B̄q(I))

n.
Now we propose the following control laws based on absolute and relative rotations

respectively.

ωi =
∑

j∈Ni(t)

aij(t− γσ(t))(yj − yi), (3.8)

ωi =
∑

j∈Ni(t)

aij(t− γσ(t))yij , (3.9)

where aij(t) > 0 is continuous and bounded, and σ ∈ S|F|,D,U . For each of the two
control laws, the set of functions F is constructed along the lines of the example on con-
vexity in Section 2.3.2, and for all the control laws we consider in this chapter, the set F is
constructed in the analogous way.

The following two sections are devoted to the study of these control laws. We refer to
control law (3.8) as the first control law, whereas (3.9) will be referred to as the second
control law.

3.3 Results for the first control law

The structure of (3.8) is well known from the consensus problem in a system of agents with
single integrator dynamics and states in Rm [10]. The question is if this simple control law
also works for rotations expressed in any of the local representations that we consider. The
answer is yes.

Theorem 3.2. If the rotations initially is contained in B̄q(I) where q < r, and the graph
Gσ(t) is uniformly strongly connected, then if controller (3.8) is used, B̄q,3(0) is invariant,
0 ∈ Rmn is uniformly stable and x(t) → A as t→ ∞.

Proof of Theorem 3.2: We divide the proof into two different parts, where the
invariance of the ball B̄q,3(0) is shown in the first part, and the convergence of x to A is
shown in the second part.

Part 1: The right-hand side of the dynamics for x is switching between a finite number
of functions that are continuous in t and Lipschitz in x, uniformly with respect to t. This
set of functions is the set F , see Chapter 2. Let

V : R3 → R+

be defined as
V (xi) = xTi xi.

The function V is positive definite and fV,3(x) = maxj∈V V (xj).
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Suppose that i ∈ IV (t, t). We investigate how θ2i (t) changes.

d(θ2i /2)

dt
=
d((xTi xi)/2)

dt

= xTi Lxi

∑
j∈Ni(t)

aij(t− γσ(t))(yj − yi) (3.10)

≤
∑

j∈Ni(t)

aij(t− γσ(t))(θig(θj)− θig(θi)) ≤ 0, (3.11)

since xTi Lxi = xTi and g is strictly increasing. This implies that D+fV,3(x(t)) ≤ 0. Now,
according to Theorem 2.20 in Chapter 2, B̄q,3(0) is invariant where β1 = β2 = ∥ · ∥2.
Since q ∈ [0, r) is arbitrary, this means that the point 0 ∈ Rmn is uniformly stable.

The key point of this proof of invariance is to use the special structure of the Jacobian
matrix Lxi . The second and the third term in (3.4) are orthogonal to xi, see Figure 3.4.

Figure 3.4: The second and the third term of (3.4) are orthogonal to xi and lie in the
tangent plane of the sphere with radius ∥xi∥2 at the point xi.

Part 2: In this part we show that all properties are satisfied in order to apply Theo-
rem 2.21 in Chapter 2. We know from part 1, that fV,3(x(t)) is decreasing and V is positive
definite. We will verify that Assumption 2.17 and Assumption 2.18 (3) are fulfilled, then
the desired result follows according to Theorem 2.21. Assumption 2.17 is fulfilled. We see
that as soon as there is j ∈ Ni(t) such that xj ̸= xi, the sum in (3.10) is strictly negative.
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If xi = xj for all j ∈ Ni(t), it holds that Lxiωi = 0 for all t. Thus, Assumption 2.18 (3)
is fulfilled and x(t) → A as t→ ∞. �

Remark 3.1. Instead of using (3.8) one could use feedback linearization and construct the
following control law for agent i

ωi = L−1
yi

∑
j∈Ni(t)

aij(t− γσ(t))(yj − yi),

where Lyi is the Jacobian matrix for the representation yi. If this feedback linearization
control law is used and the graph Gσ(t) is quasi-strongly connected, the consensus set is
almost globally asymptotically stable relative to B̄r′,3. However, for many representations
such as the Rodrigues Parameters, the Jacobian matrix Lyi

is close to singular as yi is
close to the boundary of B̄r′,3, which makes this type of control law less robust to mea-
surement errors than (3.8). In Chapter 4 we use distorted measurements of the rotations
and in this case it is not possible to construct the matrix L−1

yi
, but for the type of distorted

measurements we consider there, a control law of the type (3.8) still works.

3.4 Results for the second control law

Now we continue with the study of (3.9) where only local representations of the relative
rotations are available. Under stronger assumptions on the initial rotations of the agents at
time t0 and weaker assumptions on the graph Gσ(t), the following theorem ensures uniform
asymptotic convergence to the consensus set.

Theorem 3.3. If the rotations initially are contained within a closed ball B̄q(I) of radius
q < r/2 and the controller (3.9) is used, then x(t) → A as t → ∞ and (B̄q,3)

n ∩ A is
globally uniformly asymptotically stable relative to B̄q,3 if and only if Gσ(t) is uniformly
quasi-strongly connected.

Remark 3.2. In Theorem 3.3, since only information that is independent of FW is used in
(3.9), the assumption that the rotations initially are contained in B̄q(I) can be relaxed. As
long as there is a Q ∈ SO(3) such that all the rotations are contained in Br/2(Q) initially,
the rotations will reach consensus asymptotically and uniformly with respect to time.

In order to prove Theorem 3.3, we first formulate and prove another theorem, Theo-
rem 3.4, from which the desired result follows by application of Theorem 2.21 and Theo-
rem 2.22. In the proof of Theorem 3.4, ri(T (zi, conv({zi, zj})) is the relative interior of
the tangent cone at the point zi of conv({zi, zj}, see Section 2.3.2.
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Theorem 3.4. Suppose that the control law (3.9) is used and x ∈ (Bq,3(0))
n, where

q < r/2. Let zi = tan(θi/2)ui, z = (z1, . . . , zn)
T and żi = f̃i(t, z). The function f̃i(t, z)

is piecewise continuous in t (with times of discontinuity only at the switching times of σ)
and Lipschitz in z on Bq,3(0), uniformly with respect to t. The structure of the dynamics is

ż1 =
∑

j∈N1(t)

a1j(t− γσ(t))h1j(z1, zj)(zj − z1),

...

żn =
∑

j∈Nn(t)

anj(t− γσ(t))hnj(zn, zj)(zj − zn),

where hij(zi, zj) ≥ 0 and hij(zi, zj) > 0 if and only if zj ̸= zi.

Remark 3.3. The function hij in Theorem 3.4 depends on the parameterization y.

Proof of Theorem 3.4:
Part 1: Let us introduce the Cayley transform restricted to Bπ(I). This transform

Cay : Bπ(I) → so(3) is defined as

Cay(R) = (I −R)(I +R)−1

and it is its own inverse, i.e., Cay(Cay(R)) = R. We state following important known fact
about the Cayley transform [11]. The transform Cay, restricted to Bπ/2(I), is a geodesic
map, i.e., the geodesic curve segment between two rotations Q1 and Q2, corresponds to a
line between (Cay(Q1))

∨ and (Cay(Q2))
∨ in R3. A convex hull in Bπ/2(I) corresponds

to a polytope in R3 [11]. For the sake of completeness we show this fact, where we use the
unit quaternion representation for a rotation matrix and the gnomic projection. The unit
quaternion q̄ ∈ R4, representing a rotation matrix Q is given by

q̄ = [cos(θ/2), sin(θ/2)uT ]T ,

where once again θ is the rotational angle and u is the rotational axis. A unit quaternion is
an element of the sphere S3 embedded in R4. We see that the identity matrix corresponds to
the quaternion [1, 0, 0, 0]T , since θ = 0. A geodesic line segment between two rotationsQ1

andQ2 inBπ/2(I) corresponds to a great circle segment on the quaternion sphere between
the corresponding quaternions q1 and q2 [11]. Now, if we we use the gnomic projection
in order to project the quaternions onto the three dimensional tangent plane touching the
point [−1, 0, 0, 0]T on the sphere, the point in the plane will be[

−1,− sin(θ/2)

cos(θ/2)
uT
]T

=
[
−1,− tan(θ/2)uT

]T
.

The gnomic projection of a point on the sphere is the point in the plane where the
continuation of the straight line segment between the sphere point and the sphere center
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crosses the plane. It is known that the gnomic projection is a geodesic map, so great
circles on the sphere correspond to straight lines in the plane. Thus, if we can show that
(Cay(R))∨ = − tan θ/2u we are done. A simple calculation shows that this is true, and it
follows from Rodrigues formula. We can equivalently show that

tan(θ/2)û(I +R) = R− I.

Using Rodrigues formula we get that

tan(θ/2)û(I +R) = tan(θ/2)(2− (1− cos(θ)))û+ tan(θ/2) sin(θ)û2

=sin(θ)û+ (1− cos(θ))û2 = R− I.

So the Cayley transform, which up to sign is the map to the Rodrigues Parameter space, is
a geodesic map.

Part 2: We use part 1 and observe that since xj ∈ B̄q,3(0) for all j, it holds that
the strongly geodesic convex hull in SO(3) of the rotations {Rj}nj=1, which we denote by
conv({Rj}nj=1), corresponds to the polytope conv({zj}nj=1) in R3. Also, conv({Rj}j∈Ni),
corresponds to the polytope conv({zj}j∈Ni) contained in R3.

Now suppose

Ṙi = Riŷij = Ri
g(∥xi∥)
∥xi∥

x̂ij

for some j ∈ V . The corresponding dynamics for zi is

żi = Lziyij

which is not equal to zero if Ri ̸= Rj . The matrix Lzi is the Jacobian matrix [12]. We
have that Lziyij ∈ ri(T (zi, conv({zi, zj})) so

Lziyij = hij(zi, zj)(zj − zi)

for a function hij with the structure given in Theorem 3.4. Thus,

Lzi

 ∑
j∈Ni(t)

aij(t− γσ(t))yij

 =
∑

j∈N1(t)

aij(t− γσ(t))hij(zi, zj)(zj − zi).

�

We are now ready to prove Theorem 3.3 and our main tool will be Theorem 2.22 in
Chapter 2.

Proof of Theorem 3.3: Let us define the functions

V (zi) = zTi zi and

W (x) =(zj − zi)
T (zj − zi).
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The mapping from the Axis-Angle Representation on B̄q,3(0) to the corresponding region
in the Rodriugues parameters space is given by

f ′′ = −Cay ◦ exp ◦ (̂·).

Using Theorem 2.20 in Chapter 2 for the function V , one can show that the closed ball
f ′′(B̄q,3(0)) is invariant for z(t), which implies that the ball B̄q,3(0) is also invariant for
x(t) and comprises the set D = D∗(∞). Now, using Theorem 2.22 it is easy to show that
the set {z ∈ Rmn : z1 = · · · zn} is globally uniformly asymptotically stable relative to
f ′′(B̄q,3(0)) for z(t), see the example on convexity in Chapter 2. It follows, by using (3.7)
and that f ′′ is continuous, that A is globally uniformly asymptotically stable relative to
D∗(∞). �

We can actually generalize the results in Theorem 3.2 and Theorem 3.3. Up until now
we have assumed that we first fix a representation yi, yij and then we use the control laws
(3.8) and (3.9) for this representation. Instead, at each switching time τk we can allow
the representation to switch also, so for example during [τk, τk+1) we use the Axis-Angle
Representation, whereas during [τk+1, τk+2) we use the Modified Rodrigues Parameters.
The representations that are used among the agents do not have to be the same either. One
agent can for example use the Rodrigues Parameters to represent the rotations to a subset
of its neighbors and the Axis-Angle Representation in order to represent the rotations to an
other subset of its neighbors. For an agent i, the modified versions of (3.8) and (3.9) might
look like

ωi =
∑
j∈C1

aij(t− γσ(t))(tan(
θj
2
)uj − tan(

θi
2
)ui) +

∑
j∈C2

aij(t− γσ(t))(θiuj − θiui),

ωi =
∑
j∈C1

aij(t− γσ(t)) tan(
θij
2
)uij +

∑
j∈C2

aij(t− γσ(t))θijuij ,

respectively, where {C1, C2} is a partition of Ni.
Essentially, a different representation can be used for each pair of agents in the sum.

We assume that the number of representations we use is finite, and redefine the radius r to
be the smallest radius of injectivety for all representations that are used and q is changed
accordingly in Theorem 3.2 and Theorem 3.3.

As a second remark we add that there is an alternative way of proving Theorem 3.3
instead of using Theorem 3.4, which shows the strength of Theorem 2.22. First we need
the following lemma.

Lemma 3.5 ( [13]). suppose xi ∈ Bπ/2,3 for all i. If θi ≥ θj then xTi xij ≤ 0 and
xTi xij < 0 if xi ̸= xj . Furthermore, if θij ≥ θik and θij ≥ θjk then xTijxjk ≤ 0,
xTjixik ≤ 0 and xTijxjk < 0, xTjixik < 0 if xi ̸= xj ̸= xk.

If we choose
V (xi) = xTi xi and W (xi, xj) = xTijxij ,
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we can use Lemma 3.5 in order to show that Assumption 2.18 and Assumption 2.19 hold
for the functions V and W respectively. Here we see an example where the function
W (xj , xi) is not equal to (xj−xi)T (xj−xi). Even though Theorem 3.4 is not necessary in
order to prove Theorem 3.3 and Lemma 3.5 can be used instead, Theorem 3.4 is interesting
on its own and provides some geometric insight. Lemma 3.5 is proven in [13].

3.5 Torque control laws

In this section we construct control laws on a dynamic level for the special case of rigid
bodies in space. The dynamics for agent i is given by

Jiω̇i = −ω̂iJiωi + τ i, (3.12)

where Ji is the inertia matrix and τi is the control torque, which is given as a bold symbol
since we do not want to mix it up with a switching time τi of the graph Gσ(t).

3.5.1 Static topologies

In this first subsection we strengthen the assumptions on Gσ(t) by assuming it is constant
in time. Thus we denote the time-invariant (also referred to as constant or fixed) graph
as G. The reason for choosing time-invariant graphs, is that we are now considering a
second order system, and the methods we use here are based on backstepping or high-gain
control. In order to show stability, we introduce auxiliary error variables, and in the case of
a switching graph, these variables suffer from discontinuities. In the next subsection we get
around this problem by replacing the discontinuities with continuous in time transitions.

Based on the two kinematic control laws (3.8) and (3.9), we now propose two torque
control laws for each agent i, where the first one is based on absolute rotations and the
second one is based on relative rotations. The control laws are

τ i = Ji(−xi +
∑
j∈Ni

aij(Lxjωj − Lxiωi − ω̃i)) + ω̂iJiωi, (3.13)

τ i = Ji(−kiω̃′
i +

∑
j∈Ni

aijL−yijωij) + ω̂iJiωi. (3.14)

The parameter ki is a positive gain. The error variables ω̃i and ω̃′
i are defined as follows

ω̃i = ωi −
∑
j∈Ni

aij(xj − xi),

ω̃′
i = ωi −

∑
j∈Ni

aijyij ,

where aij > 0 is constant for all i and j. The matrix Lyij is the Jacobian matrix in the
kinematics for yij , i.e.,

ẏij = L−yijωij ,
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and
ωij = Rijωj − ωi

is the relative angular velocity between agent i and agent j. We collect all the xi and ω̃i

into (x, ω̃) ∈ (Bπ)
n × (R3)n and all the xi and ω̃′

i into (x, ω̃′) ∈ (Bπ)
n × (R3)n. Now,

given i ∈ V , the The closed loop system for (xi, ω̃i)
T when the torque control law (3.13)

is used is

ẋi = Lxi

∑
j∈Ni

aij(xj − xi) + Lxi ω̃i,

˙̃ωi = −xi −
∑
j∈Ni

aijω̃i,

whereas the closed loop system for (xi, ω̃′
i)

T when the torque control law (3.14) is used, is

ẋi = Lxi

∑
j∈Ni

aijyij + Lxi ω̃
′
i,

˙̃ω′
i = −kiω̃′

i.

We note that in (3.13), each agent i needs to know, not only the absolute rotations of
its neighbors, but also the angular velocities of its neighbors. This requirement is fair, in
the sense that in order to obtain the absolute rotations of the neighbors, communication
is in general necessary, in which case the angular velocities also can be transmitted. In
(3.14), we see that each agent i needs to know the relative rotations, relative velocities to
its neighbors and the angular velocity of itself. The assumption of knowing the angular
velocity of itself is strong, since it is not to regard as relative information. However, in
practice the angular velocity of itself is possible to measure without the knowledge of the
global frame FW , hence this velocity is to be regarded as local information.

Proposition 3.6. Suppose G is strongly connected. If

max
i∈V

xTi (t0)xi(t0) + ω̃i(t0)
T ω̃i(t0) ≤ q < r,

i.e., (xi(t0), ω̃i(t0))
T ∈ B̄q,6 for all i and any q < r, then if controller (3.13) is used, B̄q,6

is invariant for (x(t), ω̃(t)) and x(t) → A and ωi(t) → 0 for all i as t→ ∞.

The following part of this section, up until the proof of Proposition 3.6 is somewhat
of a detour from the main subject of the chapter. It essentially explains the difficulties in
constructing a quadratic Lyapunov function for the closed loop dynamics of (x, ω̃) if the
graph is not strongly connected. The reason for bringing up this subject is that we are
using such a quadratic Lyapunov function in the proof of Proposition 3.6. In the following
let A ∈ Rm×m be an adjacency matrix [10] for the graph G, meaning that A = [aij ] and
aij ≥ 0 where aij > 0 if and only if (i, j) ∈ E . The graph Laplacian matrix for the graph
G with the adjacency matrix A, we write as

L(G, A) = D −A,
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where

D = diag(d1, . . . , dn) = diag

 n∑
j=1

a1j , . . . ,

n∑
j=1

anj

 .

A graph with adjacency matrix A is balanced if

n∑
j=1

aij =
n∑

j=1

aji.

It is well known that the (symmetric part of the) graph Laplacian matrix is positive semidef-
inite if the graph is balanced [10]. The if part in the lemma is provided in [14].

Lemma 3.7. For a static quasi-strongly connected graph G, there is a positive vector
ξ = (ξ1, . . . , ξn)

T such that L′ = diag(ξ)L(G, A) is the Graph Laplacian matrix of some
balanced graph G′, if and only if the graph G is strongly connected. Furthermore, if G is
not strongly connected but quasi-strongly connected, there is no ξ = (ξ1, . . . , ξn)

T such
that

L′ + L′T

2

is positive semidefinite, where L′ = diag(ξ)L(G, A).

Proof : If: We create a new matrix by L̃ = D−1L = I − D−1A. Since the graph
G is strongly connected, the adjacency matrix A is irreducible and the same holds for
D−1A. The row sum of each row in D−1A is equal to 1. By Perron Frobenius Theo-
rem the largest eigenvalue of D−1A is equal to 1 and the corresponding left eigenvector
v = [v1, . . . , vn]

T has positive elements. This implies that v is a left eigenvector forD−1L
corresponding to the eigenvalue 0. Let us choose ξ = ( v1

d1
, . . . , vndn

)T , then it follows that
the vector [1, . . . , 1]T is a left eigenvector of the matrix L′ = diag(ξ)L(G, A) correspond-
ing to the eigenvalue 0. The matrix L′ is a graph Laplacian matrix of a balanced graph.

Only if: We show this by a contradiction argument. Suppose that the graph G is not
strongly connected but quasi-strongly connected. Consider a system of the following form

ż = L(G, A)z,

where z ∈ Rn. We know that for this linear system z(t) will asymptotically reach con-
sensus since G is quasi-strongly connected. This is true for all initial conditions z0 of the
system. Now consider the special case where all elements in z0 that correspond to the root
of the spanning tree in the condensed graph is equal to α > 0, whereas all other element are
equal to 0. The condensed graph is constructed by identifying all the strongly connected
components in the graph G and then replacing each such component with one node, where
all the incoming and outgoing edges from each component now are incoming respectively
outgoing from the node that replaces the component. Suppose there is a positive vector ξ
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such that the symmetric part of L′ = diag(ξ)L(G, A) is positive semidefinite. In that case

V (x) =
n∑

i=1

ξiz
2
i

is a Lyapunov function for the system and the right-hand side of V̇ (x(t)) is non-positive for
all t ≥ t0. But for our special choice of z0 it holds that the system must reach consensus in
the point z = (α, . . . , α)T , which implies that V must increase during some time period.
This is a contradiction. Now we have proven the only if statement as well as the last
statement in the lemma. �

Suppose that the system is controlled on a kinematic level and that

ωi =
∑
j∈Ni

aij(xj − xi).

We know from Theorem 3.2 that x(t) → A as t → ∞ if G is strongly connected and [aij ]
is an adjacency matrix of G. If there were a positive vector ξ such that diag(ξ)L(G, A) is
positive semidefinite when G is quasi-strongly connected but not strongly connected, then
we could use V (x) =

∑n
i=1 ξix

T
i xi as a candidate Lyapunov for the system and show

that x(t) → A as t → ∞. According to Lemma 3.7, there is unfortunately no such ξ. A
Lyapunov function on this form is desirable, since then we can utilize the special structure
of the Jacobian matrix that xTi Lxi = xTi . In the proof of Proposition 3.6, we have the
expression

∑n
i=1 ξix

T
i xi as a part of the Lyapunov function we use. For this part of the

Lyapunov function, we run into the same kind of troubles as for the example above with
the kinematic control law, if the graph is not strongly connected.

For the sake of completeness, we provide a proof of the fact that a balanced graph has
a positive semidefinite graph Laplacian matrix. We write the incidence matrix [10] of G as

B = B− +B+,

where each element in B− is −1 if and only if the corresponding element in B is −1
otherwise the element is 0. The matrixB+ is defined accordingly where the elements are 1
or 0. Using these matrices we can write the graph Laplacian matrix L for a weighted graph
as

L(G, A) = B−DB
T ,

where D is a diagonal matrix containing the positive edge weights (positive elements in
A) on its diagonal. For a graph that is unweighted, the matrix D is the identity matrix.
This alternative way of writing the graph Laplacian matrix L, (compare with the proof of
Lemma 3.7), can be used to show that L is positive semidefinite if the graph is balanced.
The graph is balanced if

B−D1+B+D1 = 0,

where 1 is a vector in which each element is equal to 1.
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Lemma 3.8. Suppose the graph G is quasi-strongly connected and balanced, then

L̃ =
L(G, A) + L(G, A)T

2

is positive semidefinite. Furthermore, 0 is the smallest eigenvalue of L̃ and all other eigen-
values are strictly larger than 0.

Proof : Let us write the graph Laplacian matrix as follows.

L = B−D
1/2D1/2(B− +B+)

T = B̃−(B̃− + B̃+)
T ,

where B̃− = D1/2B−, B̃+ = D1/2B+ and we define B̃ = B̃− + B̃+. The matrices
B̃T

− and B̃T
+ are orthogonal (each column in B̃T

− is orthogonal to the other columns in B̃T
−,

likewise for B̃T
+) and since the graph is balanced it holds that

B̃−B̃
T
− = B̃+B̃

T
+.

Now,

L̃ = (B̃−(B̃− + B̃+)
T + (B̃− + B̃+)B̃

T
−)/2

= (B̃−(B̃
T
− + B̃T

+) + (B̃−B̃
T
− + B̃+B̃

T
−))/2

= (B̃−(B̃
T
− + B̃T

+) + (B̃+B̃
T
+ + B̃+B̃

T
−))/2

= (B̃−(B̃
T
− + B̃T

+) + B̃+(B̃
T
+ + B̃T

−))/2

= (B̃−B̃
T + B̃+B̃

T )/2 = B̃B̃T ,

which means that L̃ is positive semidefinite. It follows that

L̃1 = B̃B̃T1 = 0.

We also known that rank(B̃B̃T ) = rank(B̃) = n − 1 (assuming n nodes in the graph G).
�

Remark 3.4. An other way to show that L̃ is positive semidefinite is as follows. There is
an orthonormal matrix Q such that

QB̃T
− = B̃T

+.

This means that

L̃ = B̃−

(
I +

Q+QT

2

)
B̃T

−.

Since the absolute values of the eigenvalues of the matrix (Q+QT )/2 are less or equal to
1, L̃ is positive semidefinite. In the special case when the graph is unweighted, i.e., D = I ,
the matrix Q can be chosen as a permutation matrix.
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Proof of Proposition 3.6: In the multi-agent system at hand we have n agents, where
each agent i has the state (xi, ω̃i)

T . We first show the invariance of the ball B̄q,6.

V ((xi, ω̃i)
T ) = xTi xi + ω̃T

i ω̃i.

We see that

d

dt
V ((xi, ω̃i)

T ) =
∑
j∈Ni

aij(xi, ω̃i)(xj − xi,−ω̃i)
T

=
∑
j∈Ni

aij((xi, ω̃i)(xj , 0)
T − (xi, ω̃i)(xi, ω̃i)

T ).

Thus,
D+fV,6((x(t), ω̃(t))

T ) ≤ 0.

Now, using Theorem 2.20 in Chapter 2, we can show that B̄q,6 is invariant, where β1 =
β2 = ∥ · ∥, i.e., the Euclidean norm in R6.

In order to show the convergence, we define the following function

γ̃(x, ω̃) =
n∑

i=1

ξi(x
T
i xi + ω̃T

i ω̃i),

where ξ = (ξ1, . . . , ξn)
T is the positive vector chosen as in the proof of Lemma 3.7. We

have that

˙̃γ = −xT (L′ ⊗ I3)x−
n∑

i=1

ξi
∑
j∈Ni

aijω̃
T
i ω̃i,

where, according to Lemma 3.7, L′ is positive semidefinite. By LaSalle’s theorem,
(x(t), ω̃(t))T will converge to the largest invariant set contained in

{(x, ω̃)T : ˙̃γ((x, ω̃)T ) = 0}

as the time goes to infinity. This largest invariant set is contained in the set {(x, ω̃)T : x ∈
A, ω̃ = 0}. �

Remark 3.5. In the proof of Proposition 3.6, if we look at the dynamics of (x, ω̃), we see
that the largest invariant set contained in {(x, ω̃)T : ˙̃γ((x, ω̃)T ) = 0} is actually the point
0. Hence, the system will reach consensus in the point x = 0.

Proposition 3.9. Suppose G is quasi-strongly connected. For any positive r1 and r2 such
that r1 < r2 < r/2 and q > 0, there is a k > 0 such that if ki ≥ k and (xi(t0), ω̃

′
i(t0))

T ∈
B̄r1,3 × B̄q,3 for all i, then if controller (3.14) is used it holds that (xi(t), ω̃′

i(t))
T ∈

B̄r2,3 × B̄q,3 for all i, t ≥ t0 and

(x(t), ω̃′(t))T → (B̄r2,3)
n ∩ A× {0} as t→ ∞.

Furthermore, (B̄r2,3)
n ∩ A × {0} is globally asymptotically stable relative to the largest

invariant set contained in (B̄r2,3)
n × (B̄q,3)

n for the dynamics of (x(t), ω̃′(t))T .

70



CONSENSUS AND PURSUIT-EVASION IN NONLINEAR MULTI-AGENT SYSTEMS

Before we proceed with the proof of Proposition 3.9, we pose a result that can be
obtained from [15].

Theorem 3.10 ( [15]). Let
∑

: ξ̇ = f̃(ξ) be a dynamical system defined on X ⊂ Rm,
where f̃ is locally Lipschitz on X . Let Γ1,Γ2 and X be compact and positively invariant
for
∑

and Γ1 ⊂ Γ2 ⊂ X , then Γ1 is globally asymptotically stable relative to X if

1. Γ1 is globally asymptotically stable relative to Γ2,

2. Γ2 is stable,

3. Γ2 is globally attractive relative to X ,

Remark 3.6. In Proposition 3.9 and Theorem 3.10 we use the classical definition of invari-
ance of a set, see [16].

Proof of Proposition 3.9: By treating the closed loop dynamics as a switching system
on the form (2.1) (even though the right-hand side is time-invariant) we can borrow the
notation D∗(∞), where

D∗(∞) ⊂ D = (B̄r2,3)
n × (B̄q,3)

n

is the largest set of initial points for the system for which the solution is contained in D for
all times t > t0. We know from Lemma 2.15 that D∗(∞) is compact and invariant, i.e.,
the set D∗(∞) is the largest invariant set contained in D.

Now we show that for a proper choice of the constant k, it holds that

(B̄r1,3)
n × (B̄q,3)

n ⊂ D∗(∞).

We assume without loss of generality that t0 = 0, and note that

∥ω̃′
i(t)∥ = ∥ω̃′

i(0)∥ exp(−kit) ≤ q exp(−kit).

We choose min
i∈V

ki ≥ k and

V (xi(t)) = xi(t)
Txi(t),

where k is still left to be determined. By using Lemma 3.5, it is possible to show that there
exists an interval [0, t1) on which it holds that

D+(fV,3(x(t))) ≤ qr2 exp(−kt).

By using the Comparison Principle, it follows that

fV,3(x(t)) ≤ fV,3(x(0)) + qr2
(1− exp(−kt))

k

on [0, t1). Now if we choose k ≥ qr2/(r2 − r1) we see that fV,3(x(t)) ≤ r2 for t ≥ 0,
and we can choose t1 = ∞.

In order to show convergence we use Theorem 3.10, where X = D∗(∞), Γ2 =
D∗(∞)∩ ((B̄r2/2,3)

n ×{0}) and Γ1 = D∗(∞)∩ (A×{0}). Now 1 in Theorem 3.10 can
be shown by using Theorem 3.3 and 2 and 3 in Theorem 3.10 follow from the first part of
this proof. Note that (B̄r2,3)

n ∩ A× 0 ⊂ D∗(∞). �
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3.5.2 Dynamic topologies with continuous system dynamics

If we allow the graph G to be time-varying and ẋ be discontinuous in t the main problem of
the previous section, as already mentioned in Section 3.5.1, is that the auxiliary error vari-
ables ω̃ and ω̃′ suffer from discontinuities. In order to avoid this problem we here propose
control laws where instead of switching discontinuously between different functions, there
are continuous in time transitions between the functions. For the switching signal function
σ, with the sequence of switching times is {τk}, we define the function

γδσ(t) = max{τk : τk − δ ≤ t, k ∈ Z},

where 0 < δ < τD/4 is a positive constant.
Now we introduce a modified version of (3.13) given as

τ i = Ji(−xi + ˙̄ωi − ω̄′′
i ) + ω̂iJiωi, (3.15)

where Lxi is the Jacobian matrix for the representation xi, ω̃′′
i = ωi − ω̄i and

ω̄i =



∑
j∈Ni(t)

aij(xj − xi)− βxi if γδσ(t)− t ≤ 0,

α
(
γδσ (t)− t

) (∑
j∈Ni(t)

aij(xj − xi)
)

+
(
1− α

(
γδσ (t)− t

)) (∑
j∈Ni(γδ

σ(t))
aij(xj − xi)

)
− βxi otherwise,

and

ω̄′′
i =



∑
j∈Ni(t)

aijω̃
′′
i + βω̃′′

i if γδσ(t)− t ≤ 0,

α
(
γδσ (t)− t

) (∑
j∈Ni(t)

aijω̃
′′
i

)
+
(
1− α

(
γδσ (t)− t

)) (∑
j∈Ni(γδ

σ(t))
aijω̃

′′
i

)
+ βω̃′′

i otherwise.

The function α (t) should be a non-negative C1-function that is positive on (0, δ] such that

α (δ) = 1, α (0) = 0,

α̇ (δ) = 0, α̇ (0) = 0.

One can for example choose

α(t) =
1

2
+

1

2
cos

(
tπ

δ

)
.

The constant β > 0 should be chosen positive.
Now we formulate a modified version of Proposition 3.6.
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Proposition 3.11. Suppose Gσ(t) is uniformly strongly connected. If

max
j∈V

xTj (t0)xj(t0) + ω̃′′
j (t0)

T ω̃′′
j (t0) ≤ q < r,

i.e., if (xi(t0), ω̃′′
i (t0))

T ∈ B̄q,6 for all i and any q < r, then if controller (3.15) is used,
B̄q,6 is invariant for (x(t), ω̃′′(t))T and x(t) → A and ω̃′′

i (t) → 0 for all i as t→ ∞.

Proof : The closed loop dynamics for (xi, ω̃′′
i ) is{

ẋi = Lxi ω̄i + Lxi ω̃
′′
i ,

˙̃ω′′
i = −xi − ω̄′′

i ,

which fulfills Assumption 2.17. We define

V ((xi, ω̃
′′
i )

T ) = xTi xi + ω̃′′T
i ω̃′′

i

and get that

d

dt
V ((xi, ω̃

′′
i )

T ) = (xi, ω̃
′′
i )(ω̄i,−ω̄′′

i )
T . (3.16)

Now we look at the right-hand side of 3.16 for the following two cases.

Case 1: γδσ(t)− t ≤ 0.
The right-hand side of (3.16) is given by

d

dt
V ((xi, ω̃

′′
i )

T ) = −β(xi, ω̃′′
i )(xi, ω̃

′′
i )

T

+
∑

j∈Ni(t)

aij((xi, ω̃
′′
i )(xj , 0)

T − (xi, ω̃
′′
i )(xi, ω̃

′′
i )

T ).

Case 2: γδσ(t)− t > 0.
The right-hand side of (3.16) is given by

d

dt
V ((xi, ω̃

′′
i )

T ) = −β(xi, ω̃′′
i )(xi, ω̃

′′
i )

T

+ α
(
γδσ (t)− t

) ∑
j∈Ni(t)

aij((xi, ω̃
′′
i )(xj , 0)

T − (xi, ω̃
′′
i )(xi, ω̃

′′
i )

T )

+
(
1−

(
γδσ (t)− t

)) ∑
j∈Ni(γδ

σ)

aij((xi, ω̃
′′
i )(xj , 0)

T − α(xi, ω̃
′′
i )(xi, ω̃

′′
i )

T ).

It follows that Assumption 2.18 is fulfilled for the system and V . One can use Theo-
rem 2.20 and show that B̄q,6 is invariant, where β1 = β2 = ∥ · ∥, i.e., the Euclidean norm
in R6. The desired convergence result follows by using Theorem 2.21. �
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Remark 3.7. By including the terms βxi and βiω̃′′
i in the control law, we avoid the problem

that Assumption 2.18 (3) fails. If we do not add these terms we cannot guarantee that if
i ∈ IV (t, t) and i ̸∈ I∗

V (t) it holds that the right-hand side of the dynamics for (xi, ω̃′′
i )

T

is in an equilibrium that is independent of the time, see Assumption 2.18 (3). On the other
hand, by adding the terms, it is obvious that the system converges to the point 0. The
function fV,6(x, ω̃′′

i ) is now strictly decreasing unless (x, ω̃′′
i )

T = 0.

3.6 Formation control

The objective in the formation problem is the following one. Given some desired constant
rotation matrices R∗

1, . . . , R
∗
n, construct a control law for the system such that

R1 (t) → QTR∗
1,

...

Rn (t) → QTR∗
n,

as t→ ∞ for some arbitrary matrix Q, which implies

RT
i (t)Rj (t) → R∗T

i R∗
j

as t→ ∞.
Now we show that on a kinematic level this problem is equivalent to the consensus

problem. Let us define R̃i = RiR
∗T
i for all i. The kinematics for R̃i is given by

˙̃Ri = Riω̂iR
∗T
i = R̃iR

∗
i ω̂iR

∗T
i = R̃iω̂

∗
i ,

where ω∗
i = R∗

i ω̂iR
∗T
i . It is easy to see that if the agents reach consensus in the rotations

R̃1, . . . , R̃n, then the system reaches the desired formation. However in order to reach
consensus using a kinematic control law ω∗

i , we can use any of the proposed control laws
(3.8) and (3.9) where we replace xi and xij by

x̃i = Log
(
R̃i

)
, x̃ij = Log

(
R̃T

i R̃j

)
= Log

(
R∗T

i RijR
∗T
j

)
.

Similarly we can replace yi by ỹi and yij by ỹij . The actual control law ωi used by agent
i is simply ωi = R∗T

i ω∗.
On a dynamic level we have that

JiR
∗T
i ω̇∗

i = −
(
R∗T

i ω̂∗
iR

∗
i

)
JiR

∗T
i ω∗

i + τ i. (3.17)
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Now we can introduce modified versions of the control laws (3.13) and (3.14)

τ i = JiR
∗T
i

−x̃i +
∑
j∈Ni

aij
(
Lx̃jω

∗
j − Lx̃iω

∗
i − ω̃i

)
+
(
R∗T

i ω̂∗
iR

∗
i

)
Ji
(
R∗T

i

)
ω∗
i , (3.18)

τ i = JiR
∗T
i

−kiω̃′
i +

∑
j∈Ni

aijL−ỹijωij

+

(
R∗T

i ω̂∗
iR

∗
i

)
Ji
(
R∗T

i

)
ω∗
i , (3.19)

where in this context

ω̃i = ω∗
i −

∑
j∈Ni

aij (x̃j − x̃i) ,

ω̃′
i = ω∗

i −
∑
j∈Ni

aij ỹij .

Now the same convergence results hold as in Proposition 3.6 and Proposition 3.9 after
replacing yi (t0) with ỹ (t0), and where ω̃i and ω̃′

i are defined in this new sense.

3.7 Illustrative examples

We will now illustrate the convergence for the two different control laws when yi = xi
for all i, i.e., we use the Axis-Angle Representation. We consider the case of 5 agents.
The simulations were conducted in MATLAB using an Euler method to solve the ordinary
differential equations.

In Figure 3.5 and Figure 3.6 the control law (3.8) for absolute rotations is used and
in Figure 3.7 and Figure 3.8 the control law (3.9) for relative rotations is used. One can
see how the rotations of the agents, expressed in the Axis-Angle Representation, converge
from their initial rotations (blue discs in the figure) to the final rotations where they reach
consensus.
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Figure 3.5: There are five agents. The agents use controller (3.8) and their rotations con-
verge to a synchronized rotation as the time goes to infinity. In this example
the initial rotations of the agents, marked by blue discs, are contained in the
region Bq(I) with q = 3. There are two graphs, E1 = {(1, 2), (3, 4), (5, 1)}
with nonzero weights aij = 4 if (j, i) ∈ E1, E2 = {(2, 3), (3, 5), (4, 1)} with
nonzero weights aij = 6 if (j, i) ∈ E2. We use a periodic switching signal
function with period T = 0.2. The switching signal function σ(t) = 1 if
t ∈ [kT, kT + T/2), σ(t) = 2 if t ∈ [kT + T/2, (k+1)T ), k = Z. The time
horizon is 5 sec.

Figure 3.6: The same example as Figure 3.5. The three components of the Axis-Angle
Representation xi of the five agents converge to some common values as the
time goes to infinity.
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Figure 3.7: The rotations of five agents converge to a synchronized rotation as the time
goes to infinity using controller (3.9). In this example the initial rotations of
the agents are contained in the region Bq(I) with q = 1.5. There are two
graphs, E1 = {(1, 2), (3, 4)}, E2 = {(2, 3), (3, 1), (4, 5)}. The switching
signal function is periodic with σ(t) = 1 if t ∈ [kT, kT + T/2), σ(t) = 2
if t ∈ [kT + T/2, (k + 1)T ), k ∈ Z, where the period T = 0.2. The time
horizon was 5 sec. Blue discs indicate the initial rotations of the agents.

Figure 3.8: The same example as Figure 3.7. The three components of the Axis-Angle
Representation xi of the five agents are synchronized respectively as the time
goes to infinity.
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Chapter 4

Consensus on SO(3) for networks of
uncalibrated cameras using the
conjugate rotations

In this chapter, the problem of consensus on SO(3) is studied from a somewhat different
angle. In the problem at hand, a system of uncalibrated cameras shall reach consensus in
their rotations. To be more precise, we assume that each agent corresponds to an uncali-
brated camera, and the estimated rotation matrices are distorted by the intrinsic information
in the partially unknown camera calibration matrices.

In [1] the problem of distributed camera calibration is addressed. Given some initial
relative rotations between the cameras, the goal is to construct an iterative algorithm that
makes the rotation converge to an average rotation, i.e., the Riemannian centre of mass, or
the Karcher mean [2], which is a special case of Lp-mean where p = 2. In [3], the rotation
averaging is addressed from the structure from motion perspective.

In [4, 5], the rotation matrices in a network of cameras are distorted by the unknown
focal length of the camera. In those works, the agents use the epipoles obtained from the
fundamental matrix, where the fundamental matrix determines the geometric relationship
between point features in two images [6–8]. For two agents, agent 1 and agent 2, the
epipole of agent 2 at agent 1 is the (possibly distorted) position of agent 2 in the image
plane of agent 1. In [4, 5], the agents are assumed to be a group of robots positioned in a
plane, equipped with equivalent cameras of unknown focal length. The rotational axis for
the rotation of each camera coincide with the normal vector to the plane. Thus, there is
only one degree of freedom for the epipolar vectors. Provided the agents are sufficiently
close to each other in terms of rotations, the control law guarantees consensus. The size of
the region for convergence is provided in terms of geodesic distance in SO(2). If any pair
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of rotations is closer than π/4 from each other, convergence is guaranteed.
In order to calculate the rotation matrices by using epipolar geometry, one first calcu-

lates the fundamental matrix [9]. Given the fundamental matrix, one then calibrates the
camera and calculates the rotation matrix. Since the knowledge of the full calibration and
rotation is not necessary to have in order to construct a consensus control law, the main
idea in [4, 5] was to skip the calculation of the rotation matrix and the calibration matrix
of the camera and use the information from the fundamental matrix directly in the control
law.

The idea of bypassing the calculation of the calibration matrix and the rotation matrix
in the control design is adopted in this work. However, in this work, instead of using the
epipoles in order to construct consensus control laws, we use the so called conjugate ro-
tations. The epipole, in the planar case, as presented in [5], is a local representation of
SO(2). The local representations we are considering in this work are local representations
of SO(3), and the class of representations we consider is the same as in Chapter 3, which
include the Axis-Angle Representation representation, the Rodrigues Parameters and the
Modified Rodrigues Parameters. These representations all have a special structure that we
utilize. We show that for every local representation in the class, there is a corresponding
distorted local representation, given by an invertible linear transformation of the local rep-
resentation.The transformation is a function of the intrinsic parameters of the camera and
is independent of the local representation.

The distorted local representations are not calculated from the fundamental matrix, but
instead from the conjugate rotation matrix under the assumption of a zero skew factor. We
assume that the conjugate rotation matrices are obtained in either one of the following two
ways. (1) The camera is weakly calibrated, i.e. up to affine reconstruction [9] or (2) the
motion is purely rotational, in which case the conjugate rotation matrices can be calculated
from a homography using at least four point correspondences between two images [10].

We deliberately use the phrase distored local representations instead of e.g., local con-
jugate representations. The reason being that one needs in general 7 parameters to repre-
sent a conjugate rotation [11], but our representation does only have 3 parameters, so the
mapping is not injective. The usefulness lies in their simple structure, they can be calcu-
lated in a similar way as their undistorted counterparts, and they can be used in stabilization
and consensus control laws.

We provide, for the entire class of distorted local representations, three types of control
laws that guarantee local consensus under different circumstances.

By using the Rodrigues Parameters, we generalize the local convergence results to
almost global results for the three control laws. All the control laws we present are defined
on a kinematic level, but they are possible to extend to torque control laws by using a
suitable nonlinear control design technique such as backstepping.

In the single agent case, the problem of stabilization falls into the framework of vi-
sual servoing, [12, 13]. In this problem, the pose (rotation and position) shall converge to
a desired pose, and in the special case of a pure rotation, the rotation matrix shall with-
out loss of generality converge to the identity matrix. We show that the distorted local
representations can be used within this framework also.
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4.1 Preliminaries

Consider a system of n agents. Each agent i has a camera, with a corresponding camera
coordinate frame Fi. As in Chapter 3 we have a world coordinate frame FW . At time
t ≥ 0, the rotation of the body frame Fi in the frame FW is denoted as Ri(t) ∈ SO(3).
The relative rotation of Fj in Fi at time t is denoted as Rij(t) ∈ SO(3). Sometimes we
write (SO(3), d), where d is the Riemannian metric given as

d(R1, R2) =
1√
2
∥log(RT

1 R2)∥2.

Each agent also has a corresponding position or translation denoted by ti(t) which is the
position of the origin of FW expressed in Fi.

4.1.1 Camera model

The matrix

Gi(t) =

[
Ri(t)

T ti(t)
0 1

]
is an element of the matrix group SE(3) [9].

In this work we consider the pinhole camera model for each agent i, which is defined
by the transformation

h : R3 × SE(3) → {x ∈ R3 : (0, 0, 1)x = 1}.

The transformation h maps the point p ∈ R3 to the point h(p,Gi(t)) ∈ {x ∈ R3 :
(0, 0, 1)x = 1} as follows

h(p,Gi(t)) =

1

λ

fisi,x fsi,θ oi,x
0 fisi,y oi,y
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

Ri(t)
T ti(t)

0 1

p
1

 .
The point p is represented in the world frame FW , and the point h(p,Gi(t)) is represented
in the camera frame Fi. The constant matrix

Ki =

fisi,x fisi,θ oi,x
0 fisi,y oi,y
0 0 1


is the intrinsic parameter matrix or the camera calibration matrix, and it is upper triangular
with positive diagonal elements, λ is the depth scale. The parameters in this matrix Ki

are: fi, which is the focal length, si,x, si,y which determine the size of the pixels, si,θ,
which is the skew factor and is henceforth assumed to be zero, oi,x and oi,y , which are the
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offsets. Now, since si,θ is assumed to be zero, which is a reasonable assumption for most
applications, we redefine the matrix Ki as

Ki =

ai 0 bi
0 ci di
0 0 1

 , (4.1)

where ai and bi are positive. Thus, Ki is invertible. In some cases one might assume that
the principal point is known, in which case bi = di = 0, but in general this is the structure
we assume.

4.1.2 Distorted rotations and conjugate rotations

Distorted rotations or distorted rotation matrices are matrices on the following form

Ci(t) = KiR
T
i (t)K

−1
i , (4.2)

Cij(t) = KiR
T
ij(t)K

−1
j . (4.3)

Each agent can compute Ci and transmit this matrix to its neighbors Ni. The matrix Cij is
obtained by agent i if agent j is a neighbor of agent i. The matrix Ci is referred to as the
conjugate rotation and it is shown in [11] that it has seven degrees of freedom. However in
this work, by assuming that si,θ = 0, we limit the degrees of freedom to six.

In order for the agents to be able to measure Ci and Cij we assume the following set-
ting. The positions of the agents in R3 are static, i.e., the movements are purely rotational.
At time 0 all the cameras are initially rotated in the same way. We can without loss of gen-
erality assume that this rotation coincides with the identity matrix in FW , i.e., Ri(0) = I
for all i. In this initial configuration, each camera takes an image of some common ref-
erence object that can be seen by all the cameras. The reference object contains a set of
local feature points on its surface which can be detected in the images by all the cameras.
We assume that there is a ball Bq(I) in SO(3), such that a sufficiently large subset of the
feature points on the object are visible in the image plane by the camera of any agent i with
rotation Ri contained in the ball Bq(I).

At the initial time t0 > 0 (the time 0 is not regarded as the initial time but rather as
the time when the reference images are taken) we assume Ri(t0) ∈ Bq(I) for all i. Let
us denote the image of the camera i at time t by Ii(t), which is a rectangular subset of the
plane {x : xT (0, 0, 1)T = 1} in Fi. Our approach is geometric, so we do not involve any
intensity function in the definition of an image. A point correspondence between Ii(t1)
and Ij(t2) is a pair (p1, p1), where p1 ∈ Ii(t1) and p2 ∈ Ij(t2), for which there is a
feature point p ∈ FW such that p1 = h(p,Gi(t1)) and p2 = h(p,Gj(t2)).

At time t, given at least four different point correspondences between the images I(0)
and I(t), Ci(t) can be calculated by means of a homography see [10] or Chapter 6.4.4.
in [9]. Regarding Cij(t), it is a bit more challenging since there is a nonzero translation
between any pair of cameras. If Cij is calculated we assume that all the camera calibra-
tion matrices for the agents are the same, we will come back to this subject. In order to
calculate Cij , in general we have to use more than four point correspondences, calculate
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the fundamental matrix and perform an affine reconstruction, see Chapter 6 in [9] for an
introduction on this subject. However, there is a benefit of using Cij(t), since then we do
not have to have an initial image Ii(0), but instead it is enough to use the images Ii(t) and
Ij(t) at each time t. Furthermore, one could assume a nonzero translational velocity in
this case.

The main point here is that in order to calculate Ri (or Rij), often we first calculate Ci

(or Cij), and here we provide a way of constructing control laws directly from Ci and Cij ,
without calculating Ri or Rij .

4.1.3 Local distorted representations

Given a rotation matrix Ri, as described in Chapter 3, there are local representations or
parameterizations of this matrix. These are coordinates in a chart covering a portion of
SO(3). In this section we show that for some of the most commonly used representations,
namely the representations described in Chapter 3, there is a corresponding representation
for the conjugate matrix Ci. If yi denotes a local representation for Ri we denote the
distorted local representation for Ci as ỹi. For all the local representations yi we consider,

ỹi = Tiyi, where Ti =

 1
ci

0 0

0 1
ai

0

0 −di

ai

ci
ai

 .
The mapping

yi 7→ ỹi

is a linear transformation which is a function of the intrinsic camera parameters, and this
mapping is the same for any of the local representations we consider.

The local representations are on the same form as in Chapter 3, i.e.,

yi =
g(∥xi∥)
∥xi∥

xi, where xi = (Log(Ri))
∨.

As described in Chapter 3, r is the radius of injectivety for the local representation at hand,
whereas r′ = limρ↑r g(ρ).

In order to understand the choice and structure of Ti, let us first consider the distorted
representation of xi, i.e., x̃i. It is easy to verify that the principal logarithm of Ci for
Ri ∈ Bπ(I) is given by

Log(Ci) = KiLog(RT
i )K

−1
i = −Kix̂iK

−1
i
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and if we expand this expression we get that

Kix̂iK
−1
i =

c11 c12 c13
c21 c22 c23
c31 c32 c33


=

ai 0 bi
0 ci di
0 0 1

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 1
ai

0 − bi
ai

0 1
ci

−di

ci
0 0 1



=

 −bix2

ai

bix1−aix3

ci

b2ix2

ai
+ (aix3−bix1)di

ci
+ aix2

cix3−dix2

ai

dix1

ci

(dix2−cix3)bi
ai

− d2
ix1

ci
− cix1

−x2

ai

x1

ci
bix2

ai
− dix1

ci

 .
We define the distorted representation x̃i as x̃i = (c32,−c31, c21)T , which also can be
written as

x̃i =

 1
ci

0 0

0 1
ai

0

0 −di

ai

ci
ai

xi.
Now we define the operator (·)⊔ as follows. For a matrix

A =

q11 q12 q13
q21 q22 q23
q31 q32 q33

 ∈ R3×3,

A⊔ = (q32,−q31, q21)T . Note that if A is skew-symmetric, (A)∨ = (A)⊔.
In the Rodrigues Parameter vector, g(∥xi∥) = tan(∥xi∥/2), and this representation is

obtained through the Cayley transform as yi = f(Ri) = −((I −Ri)(I +Ri)
−1)∨, and

ỹi = −f(Ci) =
(
Kif(R

T
i )K

−1
i

)⊔
= (KiŷiK

−1
i )⊔ = Tiyi.

Another choice is the map yi = f(Ri) =
(

Ri−R−1
i

2

)∨
, where g(∥xi∥) = sin(∥xi∥), and

ỹi = −f(Ci) =

(
Ki

(
Ri −R−1

i

2

)
K−1

i

)⊔

= (KiŷiK
−1
i )⊔ = Tiyi.

The relationship between distorted representations and undistorted representations are
illustrated in Figure 4.1. Given the conjugate rotation Ci, without knowing the rotation
matrix Ri and the calibration matrix Ki, it is possible to calculate distorted local represen-
tations of Ci using the map 4. Another procedure is to calculate the calibration matrix in
order to obtain the rotation matrix (map 1), then calculate the local representation (map 2)
and finally the distorted local representation is calculated (map 3).

The matrix Ti has positive diagonal elements, since by assumption ai and ci are positive
for all i, but its symmetric part is not necessarily positive definite. However, due to the
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Figure 4.1: The relationship between the representations.

structure of it, there is β′
i > 0 such that if P ′

i = diag(1, β′
i, 1), then the matrix P ′

iTi is
positive definite. Any matrix PiTi is also positive definite if Pi = diag(αi, βi, 1) where
βi ≥ β′

i and αi > 0 is arbitrary.
Regarding the distorted representation ỹij corresponding to the representation yij , it is

defined in the analogous way, ỹij = Tiyij if Ti = Tj for all i, j. In order for this definition
to make sense, all the agents must have the same camera matrices. Henceforth, whenever
we are using the distorted local representations for the relative rotations, we are always
assuming that all the camera calibration matrices in the system are the same, whereas if we
are only using the distorted local representations for the absolute rotations, we in general
assume that the camera matrices might differ between the agents. This means that all types
of distorted rotations we consider are conjugate rotations.

4.1.4 Kinematics

We recall from Chapter 3 that each agent has a constant position in Fi for all t ≥ 0. The
kinematics for the rotations is given by

Ṙi = Riω̂i or ẋi = Lxiωi,

where Riω̂i is an element of the tangent space TRiSO(3) and Lxi is the Jacobian matrix.
The vector ωi ∈ R3 is the angular velocity of agent i defined in Fi and comprises our
control signal. We are aware of the fact that in practice the actual control is performed on
a dynamic level, but the dynamical equations are platform dependent, and the framework
presented in this work can be extended to the case of second order systems by using a
suitable nonlinear control design technique such as backstepping.
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In this chapter we write xabs = x = (x1, . . . , xn)
T ∈ (Bπ,3(0))

n and xrel = (x11, . . . , xnn)
T ∈

(Bπ,3(0))
∑

j∈Ni
|Ni|. We also use the analogous notation for yabs and yrel. For the distorted

representations we write ỹabs and ỹrel respectively.
Let us also introduce the consensus or agreement sets

Aabs = {xabs : x1 = . . . = xn},

and
Arel = {xrel : xij = 0, j ∈ Ni, i ∈ V}.

Note that Arel is actually just the point zero. The purpose of any control strategy proposed
in this work is to guarantee that the solution xabs(t) or xrel(t) of the closed loop dynamics
satisfies xabs(t) → Aabs or xrel(t) → Arel as t→ ∞. We may also say that xabs(t) (xrel(t))
approaches Aabs (Arel).

4.2 Control design and results

We start with the topic of stability and then proceed to the main topic which is consensus.

4.2.1 Stability

Suppose each agent wants to rotate Ri to the identity matrix in the frame FW . In order to
fulfill this task we present the following control law.

ωi = −Piỹi, (4.4)

where Pi is a matrix such that (the symmetric part of) the matrix PiTi is positive definite.
We can for example choose Pi = diag(1, βi, 1), and then PiTi is positive definite if βi is
sufficiently large. If the principal point is known, i.e., if bi = di = 0, then Pi can be any
positive definite matrix.

Proposition 4.1. suppose yi ∈ Br′,3(0) and controller (4.4) is used, then Br′,3(0) is
invariant and xi(t) → 0 as t→ ∞.

Proof : Let us define the following function

V = xTi xi.

We have that

V̇ = −xTi (PiTi)yi − yTi (PiTi)
Txi

= −∥xi∥g(∥xi∥)uTi ((PiTi) + (PiTi)
T )ui

≤ 0,

where ui = xi/∥xi∥. The last inequality is strict unless xi = 0. Thus, the invariance and
the convergence has been shown at once. �

For any representation where the radius of injectivety, r, is equal to π, the identity
matrix I is almost globally asymptotically stable relative to SO(3) if (4.4) is used.
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4.2.2 Local consensus

Here we present local consensus results that are independent of what distorted represen-
tation we choose. Compared to Chapter 3, where we could show invariance for all of our
control laws, we are in general not able to show the invariance using similar methods here
for the distorted local representations. Thus, we have to settle for smaller regions of con-
vergence. However, by choosing the Rodrigues Parameters as the representation, we show
in the next section, that we can achieve almost global consensus. Throughout this chapter
we assume that the interconnection graph G is time-invariant. We begin by presenting two
types of control laws.

ωi =
∑
j∈Ni

aij(ỹj − ỹi), (4.5)

ωi = P
∑
j∈Ni

ỹij , (4.6)

where P is a positive definite diagonal matrix. Note that the parameterization ỹabs or ỹrel

is arbitrary within the class we consider, meaning that it could either be the Axis-Angle
Representation, the Rodrigues Parameters etc.

Now we present some results regarding the stability and convergence of the closed loop
dynamics when (4.5) and (4.6) are used respectively.

Proposition 4.2. Suppose Ki = Kj and Ki is a diagonal matrix for all i, j. If the inter-
connection graph G is strongly connected and the control law (4.5) is used, the point 0 is
stable for the closed loop dynamics of xabs. Furthermore, if xabs(t0) is sufficiently close to
0, xabs(t) approaches A.

Proposition 4.3. Suppose Ki = Kj for all i, j and P is such that the symmetric part of
PTi is positive definite for all agents i. If the interconnection graph G is strongly connected
and undirected and the control law (4.6) is used, Arel is asymptotically stable for the closed
loop dynamics of xrel.

Now we proceed with the introduction of three additional control laws

ωi =
∑
j∈Ni

aijdiag(1, 0, 0)(ỹj − ỹi), (4.7)

ωi =
∑
j∈Ni

aijdiag(0, 1, 0)(ỹj − ỹi), (4.8)

ωi =
∑
j∈Ni

aijdiag(0, 0, 1)(ỹj − ỹi). (4.9)

These control laws are equivalent, up to which of the three elements in the control vector
that is allowed to be nonzero.

Proposition 4.4. Suppose the interconnection graph G is strongly connected.
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(i) If either one of the control laws (4.7-4.8) is used, the point 0 is stable for the closed
loop dynamics of xabs. Furthermore, if xabs(t0) is sufficiently close to 0 and controller (4.7)
is used yi,1(t)− yj,1(t) → 0 as t → ∞, where yi,k denotes the k-th element of the vector
yi. The analogous result holds for controller (4.8).

(ii) Suppose yi,k2(t0) = yi,k3(t0) = 0 for all i and {k1, k2, k3} = {1, 2, 3}. If k1 = 1
and controller (4.7) is used, or if k1 = 2 and controller (4.8) is used, or if k1 = 3 and
controller (4.9) is used, it holds that the point 0 is stable for the closed loop dynamics of
xabs. Furthermore, if xabs(t0) is sufficiently close to 0, then xabs(t) → Aabs as t→ ∞.

There are a couple of trade offs between the propositions. Compared to the other two
propositions, in Proposition 4.4, the system is allowed to be heterogeneous, i.e., the camera
matrices are allowed to be different for the agents. Unfortunately, consensus cannot be
reached in general by means of a continuous control input, and (i) does only guarantee
consensus for some element of yabs.

The strength of Proposition 4.4 lies instead in the second part (ii). This result is useful
when the cameras are located in a plane, and are only rotating around the same axis in the
global frame FW . Compared to the results in [4, 5], where the epipoles were used and all
the cameras were assumed to have the same camera calibration matrix, we consider a more
general scenario for the calibration matrix here.

In Proposition 4.2 we have the assumption that the principal point is known and all
the camera calibration matrices are the same. In Proposition 4.3 we assume that graph
is undirected and that all the camera calibration matrices are equal. The benefits of these
propositions is that they guarantee consensus in local regions of SO(3) of nonzero measure
compared to Proposition 4.4 which only guarantees consensus in a region equivalent to a
local region of SO(2). If the principal point is known, the common gain matrix P can be
set to the identity matrix in Proposition 4.3.

As already mentioned, the control laws differ in what information they use and now
we define two scenarios of how to use them. The control law (4.5) and the control laws
(4.7-4.8) would be suitable in the following scenario. Suppose that all the rotations at time
0 are the same which we assume without loss of generality is equal to the identity matrix.
At time 0 the reference images Ii(0) are taken for all agents i. During the time period
[0, t0) the agents get some other missions and each camera rotates in a small region close
to I . At time t0 the cameras get the instruction to reach consensus, and the control law is
used.

The control law (4.6) would be suitable in the following scenario. Suppose the rotations
are sufficiently close to each other, at time t0, at which time the system get the instruction
to reach consensus and (4.5) is used.

Let us now turn to the proofs of the propositions 4.2, 4.3 and 4.4.

Proof of Proposition 4.2: We use the following fact. There is a positive vector
ξ = (ξ1, . . . , ξn)

T ∈ Rn such that L′ = diag(ξ)L(G, A) is the Graph Laplacian matrix of
a balanced graph G′, where L is the graph Laplacian matrix of the graph G with adjacency
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matrix A, see Lemma 3.7. Let us define the following function

γ(xabs) =
n∑

i=1

ξi

∫ ∥xi∥

0

g(s)ds. (4.10)

We calculate the time derivate of γ(xabs(t)).

γ̇ =
n∑

i=1

ξig(∥xi∥) ˙∥xi∥ =
n∑

i=1

ξiy
T
i ωi

=
n∑

i=1

ξiy
T
i

∑
j∈Ni

aij(ỹj − ỹi)

=
n∑

i=1

ξiy
T
i T

∑
j∈Ni

aij(yj − yi)

=
n∑

i=1

ξiȳ
T
i

∑
j∈Ni

aij(ȳj − ȳi)

= −ȳabsT (L′ ⊗ I)ȳabs,

where T = Ti for all i, ȳi = T
1
2 yi, ȳabs = (ȳ1, . . . , ȳn)

T , the symbol ⊗ denotes the
Kronecker product and I is the identity matrix in R3. It is easy to see that γ̇ ≤ 0 and it is
equal to zero if and only if ȳ1 = . . . = ȳn which implies that xabs ∈ Aabs. �

Before we proceed with the proof of Proposition 4.3 we state the following lemma
which is being used in the proof.

Lemma 4.5. If G is quasi-strongly connected and yabs ∈ (Br′/2,3)
n it holds that xabs ∈

Aabs if and only if ∑
j∈Ni

aijyij = 0 ∀ i, (4.11)

where aij > 0 for all pairs (i, j).

Proof: If: This is a consequence of (3.7) and the fact that G is quasi-strongly
connected.

Only if: We note that since Ri is invertible, it holds that∑
j∈Ni

aijyij = 0 ∀ i, ⇐⇒ Ri

∑
j∈Ni

aij ŷij = 0 ∀ i.

According to Theorem 3.4 it holds that

Ri

∑
j∈Ni

aij ŷij = 0 ∀ i, ⇐⇒
∑
j∈Ni

aijhij(z1, zj)(zj − zi) = 0 ∀ i,
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where hij(z1, zj) ≥ 0 and hij(z1, zj) = 0 if and only if zi = zj . The variable zi is the
Rodrigues Parameter vector of the rotation Ri, see Theorem 3.4.

Now, suppose that z ̸∈ {z : z1 = . . . = zn}. We define the constants

bij =

{
aijhij(zi, zj) if zi ̸= zj ,

aij if zi = zj ,
.

Now we see that
aijhij(z1, zj)(zj − zi) = bij(zj − zi).

This means that
L(G, [bij ])z = 0,

where L(G, [bij ]) is the graph Laplacian matrix for a quasi-strongly connected graph. But
this implies that z ∈ {z : z1 = . . . = zn}, which is a contradiction. Hence z ∈ {z : z1 =
. . . = zn}, which implies that xabs ∈ Aabs. �

Remark 4.1. There is an other technique that can be used in order to prove Lemma 4.5,
which applies to a wider context than SO(3). One can utilize that∑

j∈Ni

aijyij = 0

if and only if the rotation Ri is positioned in certain L2-mean of the rotations {Rj}j∈Ni .
This means that the rotation is contained in the relative interior of the geodesic convex
hull of the neighboring rotations {Rj}j∈Ni , see Theorem 3.11 in [14]. If all the rotations
are in the relative interior of the hull of the neighboring rotations, provided the graph is
quasi-strongly connected, all the rotations are the same.

Proof of Proposition 4.3: Let us define the following function

γ(xrel) =
∑
i∈V

∑
j∈Ni

∫ ∥xij∥

0

g(s)ds.

We calculate the time derivate of γ(xrel(t)).

γ̇ =
∑
i∈V

∑
j∈Ni

gi(∥xij∥) ˙∥xij∥

=
∑
i∈V

∑
j∈Ni

yTij(ωj − ωi)

=
∑
i∈V

∑
j∈Ni

yTij

P ∑
k∈Nj

yjk − P
∑
l∈Ni

yil


= −yrelTBT diag(P, . . . , P )Byrel,
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where B is the incidence matrix, see Section 3.5. Now by LaSalle’s invariance theorem,
xrel converges to the largest invariant set contained in γ̇ = 0. This invariant set is a subset of
{xrel : yrel(xrel) ∈ ker(B)}. If we look at the structure of B, we see that yrel ∈ ker(B(G))
implies ∑

j∈Ni

yij = 0 for all i, (4.12)

where we have used the fact that yij = −yji. According to Lemma 4.5 this implies that
xabs ∈ Aabs if the rotations are sufficiently close the identity in FW . But, since only
information is being used in the control law that is independent of FW , if the rotations are
sufficiently close to each other we can choose FW as a frame where all the rotations are
contained Br/2(I). �

Proof of Proposition 4.4: (i) Let us consider controller (4.7), the proof when using
(4.8) is equivalent and hence omitted. Similar to the proof of Proposition 4.2 we use the
fact that there is a positive vector ξ = (ξ1, . . . , ξn)

T ∈ Rn such that L′ = diag(ξ)L is the
graph Laplacian matrix of a balanced graph G′.

We define the following function

γ(xabs) =

n∑
i=1

1

ci
ξi

∫ ∥xi∥

0

g(s)ds, (4.13)

where 1/ci is the first element in the diagonal of Ti. We calculate the time derivate of
γ(xabs(t)).

γ̇ =
n∑

i=1

1

ci
ξig(∥xi∥) ˙∥xi∥ =

n∑
i=1

1

ci
ξiy

T
i ωi

=
n∑

i=1

1

ci
ξiy

T
i

∑
j∈Ni

aijdiag(1, 0, 0)(ỹj − ỹi)

= −ỹabsT (L′ ⊗ diag(1, 0, 0)) ỹabs. (4.14)

The expression (4.14) is zero if and only if ỹi,1 = ỹj,1 for all i, j,
(ii) The same procedure holds as in (i), however the consequence of the procedure is

different. Now (4.14) is zero if and only if ỹi = ỹj for all i, j, which is equivalent to the
statement that xabs ∈ A. This is an implication of the fact that if all the agents have the
same rotational axis, this axis will remain as the rotational axis. To see this we simply note
that the axis lies in the nullspace of the nonlinear parts of the expression of the Jacobian
matrix Lxi . �
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Remark 4.2. In the proofs of propositions 4.2, 4.3 and 4.4

lim
∥xi∥→0

g(∥xi∥) ˙∥xi∥ = 0 and

lim
∥xij∥→0

g(∥xij∥) ˙∥xij∥ = 0.

When ∥xi∥ = ∥xij∥ = 0, the expressions shall be interpreted in the sense of their limits.

4.2.3 Almost global consensus

The Rodrigues Parameters play an important role as a parametrization. It has the property
that r′ = ∞, i.e.,

g(∥xi∥) = tan(∥xi∥/2) → ∞ as ∥xi∥ → π,

and this property can be used to show almost global consensus when (4.5) is used and
consensus for convex balls in SO(3) when controller (4.6) is used. We recall that the
distorted Rodrigues Parameters are obtained from the Cayley transform as

ỹi = ((I − Ci)(I + Ci)
−1)⊔,

ỹij = ((I − Cij)(I + Cij)
−1)⊔.

Proposition 4.6. Suppose that the local representations are chosen as the Rodrigues Pa-
rameters.

(i) In Proposition 4.2 and Proposition 4.4 part (ii), if all the initial rotations at time t0
are contained in Bπ(I), then there is q < π, where q is a function of xabs(t0), such that
Ri(t) ∈ B̄q(I) for all i, t > t0 and

xabs → Aabs as t→ ∞.

(ii) If (4.6) is used, the graph G is undirected and a spanning tree and

max
(i,j)∈V×V

d(Ri(t0), Rj(t0)) < π,

then there is q < π, where q is a function of xrel(t0), such that

max
(i,j)∈V×V

d(Ri(t), Rj(t)) ≤ q

for all (i, j), t > t0 and
xrel → Arel as t→ ∞.

Proof of Proposition 4.6: Let us start with (i). It suffices to show invariance. We
consider only Proposition 4.2, the proof of Proposition 4.4 part (ii) is similar and omitted.
We note that

γ
(
xabs) = n∑

i=1

∫ ∥xi∥

0

g(s)ds =
n∑

i=1

(
−2 log

(
cos

(
∥xi∥
2

)))
.

94



CONSENSUS AND PURSUIT-EVASION IN NONLINEAR MULTI-AGENT SYSTEMS

Thus,

γ
(
xabs)→ ∞ as

(
max
i∈V

∥xi∥
)

→ π.

But from the proof of Proposition 4.4 and 4.2 we know that γ
(
xabs
)

is decreasing, and
hence there is q on the desired form.

In the case of (ii), in order to show invariance the procedure is similar. We note that

γ
(
xrel) =∑

i∈V

∑
j∈Ni

∫ ∥xij∥

0

g(s)ds

=
∑
i∈V

∑
j∈Ni

(
−2 log

(
cos

(
∥xij∥
2

)))
.

Hence,

γ
(
xabs)→ ∞ as

(
max

(i,j)∈V×V
∥xij∥

)
→ π.

But from the proof of propositions 4.3 we know that γ(xrel) is decreasing, hence there is q
on the desired form.

Now, from the proof of Proposition 4.3 we get that xrel converges to the set

{xrel :
∑
j∈Ni

aijyij = 0, i ∈ V}.

Since the rotations are not guaranteed to be contained in a strictly convex set as in Proposi-
tion 4.3, we cannot use Lemma 4.5 in order to show that the system has reached consensus,
instead the consensus follows as a consequence of the fact that the graph G is a spanning
tree. �

Remark 4.3. We are aware of the fact that the physical constraints imposed by the actual
camera, such as field of view and resolution, makes it practically challenging to consider
rotations in large regions around the identity matrix in SO(3).
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Chapter 5

Optimal output consensus control for
systems of agents with continuous linear
dynamics

In this chapter we study the output consensus problem for a homogeneous system of agents
with linear dynamics, both in finite time and in the asymptotic case (as the time tends to
infinity). In the finite time case, the outputs for all the agents shall be the same at some
predefined time. It is easy to show that for homogeneous systems of agents with linear
dynamics, it is not possible to construct a linear, time-invariant feedback control law based
on relative information such that the agents reach consensus in their states in finite time.
With relative information in this context, we are referring to pairwise differences between
the states of the agents.

Regarding the output consensus problem, using a decomposition of the state space, we
show that if the dynamics for the agents is output controllable and the nullspace of the
matrix which maps the state to the output satisfies a certain invariance condition, there
cannot exist a linear Lipschitz continuous in state, time-invariant feedback control law that
solves the problem while using only relative output information in the form of pairwise
differences between the outputs of the agents. The output controllability is a standing as-
sumption in order to guarantee consensus from arbitrary initial conditions. If only relative
information is used, the control laws need to be either time-varying or non-Lipschitz in
order to solve the finite time consensus problem.

In [1], an optimal linear consensus problem is addressed for systems of mobile agents
with single-integrator dynamics. In this setting the authors constrain the agents to use
only relative information in their controllers, i.e., the controller of each agent consists of
a weighted sum of the differences between its state and the states of its neighbors. In this
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setting the authors show that the graph Laplacian matrix used in the optimal controller for
the system corresponds to a complete directed graph.

We formulate the consensus problem as an optimal control problem, where there are
no restrictions on the controllers except that the agents shall reach consensus at some pre-
defined time. By solving this problem, it turns out that the optimal controller is linear in
state, time-varying and uses only relative information. Moreover, the connectivity graph
needs to be completely connected. This implies that for any other topology between the
agents than the complete graph, any controller constructed will be suboptimal. The pro-
vided control laws are given in closed form and are bounded and continuous. The input
and output dimensions are arbitrary.

Not surprisingly, the optimal controller requires the measurement of state errors in gen-
eral. We identify cases where the optimal controller is only based on the output errors. We
also show that in the asymptotic case, there is a corresponding observer based controller,
that is only based on the output errors.

The objective function in the optimization problem is a weighted sum of the squared
Euclidean norms of the agents’ control signals. Formulated from a physical perspective,
we want to minimize the energy it takes for the agents to reach consensus in their outputs.
The motivation for this problem is the rendezvous problem for mobile robots where all
robots in a group shall meet at some position, while using only relative information. We
want to solve this problem when the agents have linear dynamics, while minimizing the
agents fuel consumption.

Regarding the theoretical contribution of this work, we use linear vector space opti-
mization methods in order to solve the consensus problems. We show that the problem can
be posed as a certain minimum norm problem in a Hilbert space [2]. In this framework the
finite time consensus problem can be viewed as a solution of an optimization problem. For
more references on finite time distributed consensus, see e.g., [3, 4].

5.1 Preliminaries

We consider a system of N agents, where each agent i in the system has the dynamics

ẋi = Axi(t) +Bui(t),

yi = Cxi.

The variable xi(t0) = x0, xi(t) : R → Rn, ui(t) : R → Rm and yi(t) : R → Rp,
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Note that compared to chapters 2-4, n now
denotes the dimension of the state space and m the dimension of the control vector. It is
assumed that B and C are full rank matrices and that the system is output controllable. Let
us define

x(t) = (x1(t), x2(t), . . . , xN (t))T ∈ RnN ,

u(t) = (u1(t), u2(t), . . . , uN (t))T ∈ RmN ,

y(t) = (y1(t), y2(t), . . . , yN (t))T ∈ RpN ,
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and the the vector
a = (a1, a2, ..., aN )T .

The matrix

L(a) = −

(
N∑
i=1

ai

)−1(
1Na

T −
N∑
i=1

aidiag([1, . . . , 1]T
)
, (5.1)

plays an important role in this chapter as one of the building blocks of the proposed control
laws. The vector 1N is a vector of dimension N with all entries equal to one. The matrix
L(a) ∈ RN×N has one eigenvalue 0 and has N − 1 eigenvalues equal, positive and real.
The matrix L(1N ) is the graph Laplacian matrix for the complete graph with edge weights
equal to 1.

We now define the matrices

V1(a) =

[
1

a1
1N−1,−diag

([
1

a2
,
1

a3
, ...,

1

aN

]T)]
,

V2(a) = diag

([
1

a2
,
1

a3
, ...,

1

aN

]T)
+

1

a1
1N−11

T
N−1,

V3 = [−1N−1, IN−1] ,

and formulate the following lemma.

Lemma 5.1. L(a) = −V1(a)TV2(a)−1V3.

Proof : The main difficulty is to calculate V2(a)−1, so we limit the proof to the
determination of this matrix. Let us define P ∈ RN−1×N−1, where the entries are

pii = ai+1

∑
j ̸=i+1

aj

(∑
k

ak

)−1

,

pij = −ai+1aj+1

(∑
k

ak

)−1

i ̸= j.

We prove that P = V2(a)
−1. Let vi ∈ RN−1, i = 1, ..., N − 1, be the transposed row

vectors of V2(a). Let pi ∈ RN−1, i = 1, ..., N − 1, be the column vectors of P . Now let
⟨ , ⟩ denote the inner product in RN−1. We have that

⟨vi, pi⟩ =

( N∑
i=1

ai

)−1((
ai+1

a1
+ 1

) ∑
j ̸=i+1

aj −
ai+1

a1

∑
j ̸=1,i+1

aj

)
= 1.
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Now suppose i ̸= j, then

⟨vi, pj⟩ =

(
N∑
i=1

ai

)−1
aj+1

a1

∑
k ̸=j+1

ak − aj+1 −
aj+1

a1

∑
k ̸=1,j+1

ak

 = 0.

By using the structure V2(a)−1, it follows by calculation that −L(a) = V1(a)
TV2(a)

−1V3.
�

Lemma 5.2. Assume that C ∈ Rp×n has full row rank, P ∈ Rn×n is nonsingular and
ker(C) is P -invariant, then

PTCT (CPWPTCT )−1CP = CT (CWCT )−1C.

Proof : We start by noting that since C has full rank, P is invertible and ker(C) is
P -invariant, the matrix CPTCT is invertible. Now, if ker(C) is P -invariant there exists a
K such that

PTCT = CTK.

Since C is a full rank matrix, it follows that

K = (CCT )−1CPTCT ,

from which it it follows that

PTCT = CT (CCT )−1CPTCT =⇒
CPWPTCT = CPCT (CCT )−1CWCT (CCT )−1CPTCT =⇒

(CPWPTCT )−1 = (CPTCT )−1(CCT )(CWCT )−1(CCT )(CPCT )−1.

If we show that
PTCT (CPCT )−1(CCT ) = CT ,

we are done. But this indeed true since

PTCT (CPCT )−1(CCT ) = CTKK−1 = CT .

�
Let us define

W (t, T ) =

∫ T

t

CeA(T−s)BBT eA
T (T−s)CT ds. (5.2)

The matrix W (t, T ) is the output controllability Gramian, and since the system is assumed
to be output controllable, this matrix is nonsingular (for t < T ). Let us also define the
related matrix

G(t0, T ) =

∫ T−t

0

Ce−ArBBT e−AT rCT dr. (5.3)
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Beware of the difference between the transpose operator (·)T and the time T .
The approach we use in this work relies to a large extent on the projection theorem

in Hilbert spaces. We recall the following version of the projection theorem where inner
product constraints are present.

Theorem 5.3 ( [2]). Let H be a Hilbert space and {z1, z2, . . . , zN} a set of linearly inde-
pendent vectors in H . Among all vectors w ∈ H satisfying

⟨w, z1⟩ = c1,

⟨w, z2⟩ = c2,

...

⟨w, zM ⟩ = cM ,

let z0 have minimum norm. Then

z0 =

n∑
i=1

βizi,

where the coefficients βi satisfy the equations

⟨z1, z1⟩β1 + ⟨z2, z1⟩β2 + · · ·+ ⟨zN , z1⟩βN = c1,
⟨z1, z2⟩β1 + ⟨z2, z2⟩β2 + · · ·+ ⟨zN , z2⟩βN = c2,

...
⟨z1, zM ⟩β1 + ⟨z2, zM ⟩β2 + · · ·+ ⟨zN , zM ⟩βN = cM .

In Theorem 5.3 ⟨·, ·⟩ denotes the inner product.

5.2 Finite time consensus

In this section we consider the following problem.

Problem 5.1. For any finite T > t0, construct a control law u(t) for the system of agents
such that the agents reach consensus in their outputs at time T , i.e.,

yi(T ) = yj(T ) ∀i ̸= j,

while minimizing the following cost functional

∫ T

t0

N∑
i=1

aiu
T
i uidt, (5.4)

where ai ∈ R+, i = 1, 2, ..., N .
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Note that the criterion in Problem 5.1 only regards the time T and does not impose any
constraints on y(t) when t > T . When we say that a control law u for the system is based
on only relative information, we mean that

ui = g(y1 − yi, . . . , yN − yi), ∀i, t ≥ t0

for some function g. An interesting question to answer, is under what circumstances it is
possible to construct a control law that solves Problem 5.1 using only relative information.
The following lemma provides a first step on the path to the answer of this question.

Lemma 5.4. Suppose ker(C) is A-invariant and u is based on only relative information,
then there is no locally Lipschitz continuous in state, time-invariant feedback control law
u that solves Problem 5.1 and for which g(0, . . . , 0) = 0.

Proof of Lemma 5.4: Let us introduce the invertible matrix

P =
[
CT CT

ker

]
,

where Cker has full row rank and the columns of CT
ker span ker(C). Let us now define

x̃i = (xi,1, xi,2)
T through the following relation

xi = Px̃i,

for all i. The dynamics for x̃ is given by

˙̃xi = Ãx̃i + B̃ui, yi = C̃x̃i,

where

Ã =

[
A11 0
A21 A22

]
, B̃ =

[
B1

B2

]
and C̃ =

[
C1 0

]
.

The structure of Ã is a consequence of the fact that ker(C) is A-invariant.
Suppose there is a linear time-invariant feedback control law u that solves the Prob-

lem 5.1. We note that
yi = CCTxi,1.

We define y1j = y1 − yj for all j > 1. The control law u has the following form

u = f(y12, . . . , y1N ),

but y1j = CCTx1j,1, where x1j,1 = x1,1 − xj,1, so u can be written as

u = f(x12,1, . . . , x1N,1).

Since CCT is invertible it follows that y1j = 0 for all j > 1 if and only if x1j,1 = 0

for all j > 1. But, by the structure of f and Ã it follows that (x12,1, . . . , x1N,1)
T = 0

is an equilibrium for the dynamics of (x12,1, . . . , x1N,1)
T . Since the right-hand side of

this dynamics is locally Lipschitz continuous, (x12,1, . . . , x1N,1)
T cannot have reached

the point 0 in finite time. This is a contradiction. �
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We now provide the solution to Problem 5.1.

Theorem 5.5. For T <∞ the solution to Problem 5.1 is

u(t) = −L(a)⊗
(
BT eA

T (T−t)CTW (t0, T )
−1CeA(T−t0)

)
x0, or (5.5)

u(x, t) = −L(a)⊗
(
BT eA

T (T−t)CTW (t, T )−1CeA(T−t)
)
x. (5.6)

Furthermore, if ker(C) is A-invariant, the solution to Problem 5.1 is

u(y, t) = −L(a)⊗BTCTG(t0, T )
−1y. (5.7)

All the control laws (5.5-5.7) are equivalent but expressed in different ways. The con-
trol law (5.5) is the open loop controller and (5.6) is the closed loop version of (5.5). The
matrix W (t, T ) is invertible due to the assumption of output controllability. We take the
liberty of denoting all the controllers (5.5-5.7) by u. Provided u is used during [t0, T ), at
the time T we have that

lim
t↑T

u(x(t), t) = lim
t↑T

u(y(t), t) = u(T ).

Even though the feedback controllers in (5.6) and (5.7) are bounded and continuous for
t ∈ [t0, T ) (see the open loop version of u in (5.5)), computational difficulties arise as
t→ T when (5.5) and (5.6) are used, since W (T ) is not invertible.

Proof of Theorem 5.5: Problem 1 is formally stated as follows

minimize
∫ T

t0

N∑
i=1

aiu
T
i uidt ai ∈ R+ i = 1, 2, ..., N,

when

yi(t) = CeA(t−t0)xi(t0) +

∫ t

t0

CeA(t−s)Buids, for all i,

and ∫ T

t0

CeA(T−s)B (u1 − ui) ds = −CeA(T−t0) (x1(t0)− xi(t0)) , (5.8)

for i ∈ {2, ..., N}. Here we have without loss of generality assumed that the outputs of the
agents at time T , yi(T ), shall be equal to the output of agent 1 at time T , y1(T ).

We notice that this problem is a minimum norm problem in the Hilbert space of all
functions

f = (f1(t), f2(t), ..., fN (t))T : R → RmN ,

such that the Lebesgue integral ∫ T

t0

N∑
i=1

aif
2
i (t)dt (5.9)
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converges. Here fi : R → Rm. We denote this space H, and the norm is given by the
square root of (5.9).

Now we continue along the lines of Theorem 5.3 and reformulate the constraints (5.8)
into inner product constraints in H .∫ T

t0

CeA(T−s)B(u1(s)− ui(s))ds =⟨[
CeA(T−s)B

a1
, 0, ..., 0,−Ce

A(T−s)B

ai
, 0, ..., 0

]T
,

[
uT1 , 0, ..., 0, u

T
i , 0, ..., 0

]T ⟩
=

−CeA(T−t0) (x1(t0)− xi(t0)) .

Depending on context the symbol ⟨·, ·⟩ shall be interpreted as follows. If f and g belongs
to H , ⟨f, g⟩ denotes the inner product between these two elements. If f(t) and g(t) are
matrices of proper dimensions, then ⟨f, g⟩ is a matrix inner product where each element in
the matrix is an inner product between a column in f and a column in g.

To simplify the notation we define

pi =

[
CeA(T−s)B

a1
, 0, ..., 0,−Ce

A(T−s)B

ai
, 0, ..., 0

]T
.

Since this is a minimum norm problem and all the columns of all the pi are independent,
by Theorem 5.3 we get that the optimal controller u(t) is given by

u(t) = [p2, ..., pN ]β, (5.10)

where β is the solution to
Qβ = V3 ⊗ CeA(t−t0)x0, (5.11)

where

Q =


⟨p2, p2⟩ ⟨p3, p2⟩ · · · ⟨pN , p2⟩
⟨p2, p3⟩ ⟨p3, p3⟩ · · · ⟨pN , p3⟩

...
...

. . .
...

⟨p2, pN ⟩ ⟨p3, pN ⟩ · · · ⟨pN , pN ⟩

 . (5.12)

From (5.10 - 5.12) we get that β = Q−1V3⊗CeA(t−t0)x0 and u = [p1, p2, ..., pN ]Q−1V3⊗
CeA(t−t0)x0. Now we have that [p1, p2, ..., pN ] = V1(a)

T ⊗ (BT eA
T (T−t)CT ).

Since

⟨pi, pj⟩ =

{
1
a1
W (t0, T ) if i ̸= j,(
1
a1

+ 1
ai+1

)
W (t0, T ) if i = j,
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where W (t0, T ) =
∫ T

t0
CeA(T−s)BBT eA

T (T−s)CT ds, we have that

Q = V2(a)⊗W (t0, T ).

u(t) = V1(a)
T ⊗ (BT eA

T (T−t)CT )V2(a)
−1 ⊗W (t0, T )

−1V3 ⊗ CeA(T−t0)x0

= (V1(a)
TV2(a)

−1V3)⊗ (BT eA
T (T−t)CTW (t0, T )

−1CeA(T−t0))x0 (5.13)

= −L(a)⊗ (BT eA
T (T−t)CTW (t0, T )

−1CeA(T−t0))x0, (5.14)

where (5.13) follows from the mixed-product property of the Kronecker product and (5.14)
follows from Lemma 5.1. By Bellman’s Principle we get that

u(x, t) = −L(a)⊗
(
BT eA

T (T−t)CTW (t, T )−1CeA(T−t)
)
x(t). (5.15)

Now, suppose ker(C) is P -invariant. It holds that

eA
T (T−t)CTW (t, T )−1CeA(T−t) =

eA
T (T−t)CT

(∫ T

t

CeA(T−s)BBT eA
T (T−s)CT ds

)−1

CeA(T−t) =

eA
T (T−t)CT

(∫ T−t

0

CeA(T−t)e−ArBBT e−AT reA
T (T−t)CT dr

)−1

CeA(T−t) =

eA
T (T−t)CT

(
CeA(T−t)(

∫ T−t

0

e−ArBBT e−AT rdr)eA
T (T−t)CT

)−1

CeA(T−t) =

{by using Lemma 5.2 } =

CT

(
C

∫ T−t

0

e−ArBBT e−AT rdrCT

)−1

C =

CT

(∫ T−t

0

Ce−ArBBT e−AT rCT dr

)−1

C =

CTG(t0, T )C,

from which we get that

u(y, t) = −L(a)⊗BTCTG(t0, T )
−1y.

�

Corollary 5.6. The controllers (5.6-5.7) use only relative information, i.e. differences of
the states (outputs) of the agents.
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Proof :

ui(t, y) = BT eA
T (T−t)CTW (t, T )−1CeA(T−t)

(
n∑

i=1

ai

)−1 n∑
j=1

aj(yj − yi), (5.16)

ui(t, y) = BTCTG(t0, T )
−1

(
n∑

i=1

ai

)−1 n∑
j=1

aj(yj − yi). (5.17)

�
Let us define yc = 1∑N

i=1 ai

∑N
i=1 aiyi,and ȳc = (yc, . . . , yc)

T ∈ RpN .

Lemma 5.7. Suppose that A has not full rank and xi(0) = x0 ∈ ker(A) for all i =
1, ..., N , then the consensus point for the system of agents using the controller (5.6) or
(5.7) is yc(0).

Proof : We use (5.14), from which we get that

y(T ) = IN ⊗ CeA(T−t0)x0 +

∫ T

t0

(
IN ⊗ CeA(T−t)B

)
·(

−L(a)⊗BT eA
T (T−t)CTW (t0, T )

−1CeA(T−t0)
)
x0dt =

y0 +

∫ T

t0

(
−L(a)⊗ CeA(T−t)BBT eA

T (T−t)CTW (t0, T )
−1
)
y0dt = ȳc(t0).

�

5.3 Extension to the asymptotic consensus problem

We now examine the asymptotic case, i.e., we want the system to asymptotically reach
consensus while minimizing the cost functional. The problem is formally stated as follows.

Problem 5.2. Construct a control law u(t) for the system of agents such that the agents
asymptotically reach consensus in the outputs, i.e.,

lim
t→∞

(yi(t)− yj(t)) = 0 for all i, j such that i ̸= j,

while minimizing the following cost functional∫ ∞

t0

N∑
i=1

aiu
T
i (t)ui(t)dt (5.18)

where ai ∈ R+ for i = 1, 2, ..., N .
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In order to solve Problem 5.2, we start by defining the matrix

P (t) = eA
T (T−t)CTW (t, T )−1CeA(T−t)

which satisfies the following differential Riccati equation

Ṗ = −ATP − PA+ PBBTP. (5.19)

The matrix P (t) is an essential part of the control laws that were presented in the last
section, and here we see that this matrix is provided as the solution to a differential matrix
Riccati equation. It is well known that (5.19) has a positive semidefinite limit P0 as T−t→
∞ if (A,B) is stabilizable and A does not have any eigenvalue on the imaginary axis. In
order to see this we consider the following problem

min
∫ ∞

0

∥u∥2dt

s.t. ẋ = Ax+Bu.

(5.20)

If (A,B) is stabilizable and A does not have any eigenvalue on the imaginary axis,

u = −BTP0x

is the optimal control law that solves (5.20), where P0 is the positive semi-definite solution
to

−ATP0 − P0A+ P0BB
TP0 = 0.

This Algebraic Riccati equation is obtained by letting the left-hand side of (5.19) be equal
to zero.

The problem (5.20) is not a consensus problem, and the question is, except for the fact
the same matrix P0 is used in the optimal control law, how it is related to our consensus
problem. It turns out that the control law, except for being the solution of the consensus
problem, is also the solution of N problems on the form (5.20). In order to show this we
introduce

xc =
1∑N

i=1 ai

N∑
i=1

aixi, and δi = xi − xc.

The dynamics of xc and δi are given by

ẋc = Axc and δ̇i = Aδi +Bui.

Now each control law ui(t) contained in the vector

u(t) = −L(a)⊗ (BTP0)x,

can be written as
ui = BTP0δi
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and ui solves the problem

min
∫ ∞

0

∥u∥2dt

s.t. ẋ = Aδi +Bui.

(5.21)

By using K in Lemma 5.2, provided ker(C) is A-invariant, it is possible to express the
control law u as follows

u = −L(a)⊗ (BTCT (CCT )−1CP0C
T (CTC)−1y. (5.22)

Thus, by introducing G0 = (CCT )−1CP0C
T (CTC)−1, (5.22) can be written as

u = −L(a)⊗ (BTCTG0)y.

Proposition 5.8. If A is stabilizable with no eigenvalues on the imaginary axis. Then P0

exists, is positive semidefinite and the optimal control law that solves Problem 5.2 is

u = −L(a)⊗ (BTP0)x.

Furthermore, if ker(C) is also A-invariant then

u = −L(a)⊗ (BTCTG0)y.

When only the output yi = Cxi is available for control action, and ker(C) is not
necessarily P − invariant, an observer can be designed.

˙̂
δi = (A−BBTP0)δ̂i −Q

 1∑N
i=1 ai

N∑
j=1

aj(yi − yj)− Cδ̂i

 .

Under the assumption that (A,C) is detectable and A does not have any eigenvalue on
the imaginary axis we have that

˙̂
δ = Aδ̂ −BBTP0x̂−Q((yi − yc)− Cδ̂),

where
AQ+QAT = −QCTCQ.

We summarize our results in this case in the following theorem.

Proposition 5.9. Suppose (A,B) is stabilizable and (A,C) is detectable, and A has no
eigenvalue on the imaginary axis. Then, if the following dynamic output control law is
used,

ui = −BTP0δ̂i,

˙̂
δi = (A−BBTP0)δ̂i −Q

 1∑N
i=1 ai

N∑
j=1

aj(yi − yj)− Cδ̂i

 ,

the system reaches asymptotic consensus in the outputs.
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Chapter 6

A mixed integer linear programming
approach to pursuit-evasion problems
with optional connectivity constraints

In this chapter we solve the visibility pursuit-evasion problem by using the tools of Mixed
Integer Linear Programming (MILP) and Receding Horizon Control (RHC). These tools
were applied to UAV path planning in [1], where MILP was used to find detailed trajecto-
ries over a short planning horizon. The MILP computations were then iterated in a RHC
fashion where each trajectory ended closer to goal than the previous one. The polygo-
nal pursuit-evasion problem is quite different from the UAV problem studied in [1], but
share the properties of a complex short term planning step and a long term goal. In the
pursuit-evasion problem we let the size of the cleared area be a measure of how far we are
from completing the search, and encode the motion of the pursuers and the evolution of
the cleared area into a MILP problem that is iteratively solved. The proposed approach is
implemented in MATLAB/CPLEX and illustrated by a number of solved examples. To the
knowledge of the author, he and Petter Ögren where the first ones to solve the visibility
based pursuit-evasion problem, by formulating it as a MILP.

A complete solution to the one-pursuer case was proposed by Guibas et al. [2] where
it was also pointed out that the extension of that same approach presented considerable
challenges in the multi-pursuer case. The two pursuer case was addressed in [3], but since
Guibas et al. also showed that the general problem is indeed NP-hard, solving problems
with additional pursuers in reasonable time will be very hard. The concepts of [2] were
built upon in [4], where a field of view limitation was incorporated into the problem. The
one-pursuer case was successfully treated, but once again, the multi-pursuer case turned
out to be computationally intractable. Additional aspects of the problem have also been
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addressed, such as curved environments [5] and bounded speed evaders [6].
As optimal deterministic strategies with guaranteed capture are hard to find, the option

of using randomized strategies was explored in [7]. It was shown that a single pursuer can
locate an evader in any simply connected environment with high probability. Randomized
approaches such as these are clearly an option for the multi-pursuer problem, but will
not be investigated in this thesis. An interesting approach, focusing on the discrete time
evolution of the cleared and contaminated parts of the environment was presented in [8].

A problem that is closely related to the visibility based pursuit-evasion problem is the
one where the evader and pursuers are constrained to move in a graph. All instances of
the former can be more or less conservatively discretized into the latter, [9]. One version
of the graph search problem is called graph-clear, and was studied in [10]. In the graph-
clear problem, each vertex corresponds to a room, and each edge corresponds to a door.
Each vertex and edge furthermore has a number assigned to it, corresponding to how many
pursuers are needed to clear the vertex (room), or block the edge (door). The problem is
now to deploy pursuers to the edges and vertices in such a way that the whole graph is
cleared. It is easy to see that most polygonal environments can be divided into rooms and
doors in many different ways. The rooms could either be very small, and trivially clearable
by a single pursuer, or quite big, making the room clearing a non-trivial subproblem. The
potential drawback of making the rooms very small is that the quality of the solution might
be reduced since pursuers can not see from one room to another. Therefore, one could
imagine a hierarchical approach with a global graph-clear problem and a polygonal pursuit-
evasion problem for each room. The latter can be solved by e.g., the approach presented
here, to find how many pursuers are needed to clear each room.

The proposed approach in this chapter can be seen as a lying in between the exact
approaches and the graph based ones in the following sense. The visibility properties of
the different areas is captured by the MILP in a way that is more conservative than the
exact approaches [2, 3], but less conservative than the graph based ones [9].

6.1 Problem formulation

Following Guibas et al. [2], the pursuers and evader are modeled as points moving in the
polygonal free space, F . Let e(τ) denote the position of the evader at time τ ≥ 0. It is
assumed that e : [0,∞) → F is continuous, and the evader is able to move arbitrarily fast.
The initial position e(0) and path e is not known to the pursuers. At each time instant, F
is partitioned into two subsets, the cleared and the contaminated, where the latter might
contain the evader and the former might not. Given N pursuers, let pi(τ) : [0,∞) → F
denote the position of the i:th pursuer, and P = {p1, . . . , pN} be the motion strategy of
the whole group of pursuers.

Let V (q) denote the set of all points that are visible from q ⊂ F , i.e., the line segment
joining q and any point in V (q) is contained in F .

Problem 6.1 (Pursuit Evasion). Given an evader, a set of N pursuers and a polygonal free
space F , find a solution strategy P such that for every continuos function e : [0,∞) → F
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there exists a time τ and an i such that e(τ) ∈ V (pi(τ)), i.e., the pursuer will always be
seen by some evader, regardless of its path.

It was shown in [2] that computing the minimal number of pursuers needed to solve
Problem 6.1 is NP-hard. Hence it is also NP-hard to determine if a solution exists for a
given number of pursuers. To find efficient solutions in reasonable time one must thus
sacrifice optimality. This can be done by exploring randomized approaches [7], or by
relaxing the problem and applying other optimization schemes.

In the following section we will first relax Problem 6.1 by discretizing it, and then
apply a combination of Mixed Integer Linear Programming (MILP) and Receding Horizon
Control (RHC). These tools have proved to be very useful when addressing other hard path
planning problems [1] and we will argue that they are applicable to Problem 6.1 as well.

6.2 Proposed solution

In the proposed solution, we first discretize Problem 6.1 by partitioning the polygonal free
space F into a set of convex regions, F = ∪i∈JFi, J = {1, . . . ,K}. The relations between
those regions are then described by Mj ⊂ J and Nj ⊂ J , where Mj is the index set of
other regions that are neighbors to Fj , and Nj is the index set of regions that are visible
from Fj . Then, a MILP is formulated, capturing what regions are occupied by pursuers at
what times, and when the regions are cleared or contaminated over time. By maximizing
the cleared area at the end time of the MILP, the continuous pursuer trajectories pi(τ) can
be constructed from the discrete MILP output.

6.2.1 Discretization of the free space environment

The first step of the discretization of Problem 6.1, i.e., the partitioning F = ∪iFi, is
illustrated in Figure 6.1. As can be seen, all straight obstacle boundaries are extended until
they reach another obstacle, or the perimeter of F . From these extended boundaries the
partition F = ∪iFi is formed.

Lemma 6.1. In the partition there are at most O(n2) regions, where n is the number of
straight boundaries of the obstacle polygons and the perimeter.

Proof : In the partitioning, each extended straight obstacle boundary intersects a
number of other extended boundaries. There are less than n(n − 1)/2 such intersections
and there are less than n2 line-segments that form the boundaries of the regions in F . For
each such line-segment there are two regions that share the line-segment as part of their
boundaries. Thus the number of regions k, satisfy k ≤ 2n2. �

The second step of the discretization of Problem 6.1 deals with the motion, pi(τ), of
the pursuers. These are now discretized into moving between the regions Fi. A pursuer
standing in Fi can in the next, discretized, time instant occupy any region with index in the
set Mi, i.e., any neighboring region. This is illustrated in Figure 6.2 (a).
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(a) (b)

Figure 6.1: An example environment with one irregularly shaped obstacle (a), and the
corresponding partition of the free space F into convex polygons F1 . . . F21

(b).

(a) (b)

Figure 6.2: The neighborhood that can be moved to, M1 (a) and the neighborhood that
can be seen, N1 (b), from area F1, see Figure 6.1.

The third step in discretizing Problem 6.1 involves the visible set V (·). Let Ni be the
index set of regions such that Fj ⊂ V (x) for all j ∈ Ni and all x ∈ Fi. Note that visibility
is symmetric, i.e. j ∈ Ni implies i ∈ Nj .

Remark 6.1. Note that the discretization of V (·) is conservative, since regions Fj that
are partially visible are considered not visible at all. In some approaches, such as [2, 4],
this is not the case, but in others, such as the graph search approaches [9], an even more
conservative discretization is needed to address open areas.

The final step of discretizing Problem 6.1 is to capture the regions being clear, or con-
taminated during the search in terms of a MILP.
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6.2.2 MILP formulation

As described above, a pursuer located in region i sees the regions with index in the set Ni

and can move to regions with index in the set Mi.

During the search we keep track of where the pursuers are, and which regions are
cleared and which are contaminated. In order to do so, we introduce the following binary
variables λit, σit, θit ∈ {0, 1}, where i ∈ J and t ∈ {1, 2, ..., T}. Let λit = 1 if and only
if a pursuer is located in region i at time t. Let furthermore σit = 1 if and only if region i
is seen at time t and θit = 1 if and only if region i is cleared but unseen at time t.

Before formulating the MILP we define four different search-states that each region
Fi can be in. Theoretically, there are eight combinations of the three binary variables
λit, σit, θit, but given the meanings we assign to them, only four of those eight combi-
nations are possible, and we denote them S1, S2, S3, S4. These four states will help us
capture the time evolution of the search in the MILP formalism. We differentiate between
three different cleared states, S1, S2, S3 and one contaminated state, S4.

S1 The region is seen by a pursuer and contains a pursuer, i.e., λit = 1, σit = 1 and
θit = 0.

S2 The region is seen by a pursuer, but does not contain a pursuer, i.e., λit = 0, σit = 1
and θit = 0.

S3 The region is not seen by a pursuer, but can not contain the evader, i.e., λit =
0, σit = 0 and θit = 1.

S4 The region might contain the evader, i.e., λit = 0, σit = 0 and θit = 0.

We now state the MILP formulation and then show, in Lemma 6.2, that a feasible so-
lution does indeed correspond to traversable pursuer paths pi(τ) and an expanding cleared
region {i : θit = 1}. Note that the proof of Lemma 6.2, as a side effect, gives motivations
for all the constraints (6.2)-(6.12).

Problem 6.2 (MILP). Given a T ∈ Z+ solve the following integer linear program.

maximize Z = α
∑
i∈J

θiT + (1− α)
∑
i∈J

σiT (6.1)
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subject to

State S1 constraints :∑
j∈Mi

λjt − λi(t−1) ≥ 0 (6.2)

N − (N − 1)λit −
∑

j∈Mi

λjt ≥ 0 (6.3)

2−
∑

j∈Mi

λj(t−1) − λit ≥ 0 (6.4)

2−
∑

j∈Mi

λjt ≥ 0 (6.5)

∑
i∈J

λit −N = 0 (6.6)

State S2 constraints :∑
j∈Ni

λjt − σit ≥ 0, (6.7)

σit − λjt ≥ 0 ∀j ∈ Ni (6.8)

State S3 constraints :

σjt + θjt − θit ≥ 0, ∀j ∈ Mi − {i}, (6.9)
σi(t−1) + θi(t−1) − θit ≥ 0, (6.10)

1− σit − θit ≥ 0, (6.11)
θi1 = 0, (6.12)

where α ∈ [0, 1], i ∈ J and t ∈ {2, 3, ..., T} in (6.2), (6.4) and (6.10) and t ∈ {1, 2, ..., T}
in the other constraints.

Note that α = 1 corresponds to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2), while α = 0.5 corresponds to
maximizing the cleared region (S1, S2 or S3) at the final time T . In Section 6.6 below we
will see that α = 1 is actually the best measure of progress for the clearing task. Note also
that constraint (6.6) imply that pursuers never occupy the same region. This restriction is
somewhat conservative, as it is not present in Problem 6.1.

Lemma 6.2. A feasible solution to Problem 6.2 can be used to generate pursuer paths
pi(τ), τ ∈ [0, T ′], i ∈ {1, ..., N}, guaranteeing the following. If e(τ) ̸∈ V (pi(τ)) for all
i and τ ∈ [0, T ′], then e(T ′) ∈ Fi such that Fi is in state S4 at discrete time T, i.e., if the
evader has not been seen up till time T ′, then it must be in the contaminated area. Above,
T ′ is the continuous final time corresponding to the discrete final time T .
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Proof : We first prove that N valid pursuer paths can be generated from a feasible
solution. In (6.6) it is guaranteed that there are exactly N pursuers at each time t. In (6.2)
it is guaranteed that there must must be a pursuer in the move neighbourhood of region i
at time t+ 1 if there is a pursuer at the region i at time t. Constraints (6.3), (6.4) and (6.5)
together guarantee that a pursuer move between adjacent regions in consecutive time steps.
Now, pursuer paths pi(τ) can be created from λit where all pursuers cross borders between
the Fi at the same time. Finally, a mapping between continuous time τ and discrete time t
can be created to accommodate the pursuer velocity bounds.

To see that the right regions are denoted as seen, σit = 1, we note that in (6.7) and
(6.8) the variable σit is set to 1 if and only if there is a j ∈ Ni such that λjt = 1.

To see that the cleared area, θit = 1, evolves correctly note the following. In (6.9) it is
verified that the region i cannot be in state S3 at time t if any of the Mi-neighbours are in
state S4, and in (6.10) it is verified that the region i cannot be in state S3 at time t if it was
in state S4 at time t− 1. In (6.11) it is verified that region i cannot be in state S3 if it is in
state S1 or state S2 at time t and (6.12) verifies that that no region is in state S3 when the
search starts.

To conclude we note that evader e(τ) can not start in the cleared area S3 and that
the cleared area is always separated from the contaminated S4 by seen or occupied areas
S1, S2. Thus, if it is not seen, it must be in the contaminated area. �

Lemma 6.3. A feasible solution strategy P to Problem 6.2 with N pursuers ending with
an empty contaminated area, i.e.,∑

i∈J

(σiT + θiT ) = |J |, (6.13)

is a solution to Problem 6.1.

Proof : A straightforward application of Lemma 6.2 above. �

Remark 6.2 (Backwards). Given a solution strategy P of Problem 6.1, a new solution can
be created by running the pursuer trajectories pi(τ) backwards. To see this note that the
cleared unseen area (S3) is always separated from the contaminated area (S4), and we start
with an empty cleared unseen area and finish with an empty contaminated area. Running
the trajectories backwards would thus result in exchanging the labels cleared unseen and
contaminated, i.e. switching states S3 and S4.

Remark 6.3 (Number of pursuers). In the proposed MILP formulation, the number of
variables or the number of constraints will not increase with the number of pursuers, i.e.,
the size of the problem does not grow with the number of pursuers. However, the number
of constraints does grow linearly with the number of regions.

6.3 Reducing the computation times using RHC and relaxation

In this section we will describe how the computation times for solving Problem 6.1 can be
reduced using RHC and by relaxing some of the integer constraints in the MILP.
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6.3.1 An RHC solution to the pursuit-evasion problem

Depending on the problem size, large time horizons T might be needed to find a solution
to Problem 6.2 with empty contaminated area. Large time horizons T often result in long
computation times. A classical way to balance performance with computational resources
is RHC, where an optimization problem over a shorter time horizon is iteratively solved
instead of solving it once and for all over a longer time horizon. In our setting the RHC
concept might be implemented as follows.

Algorithm 6.1.

1. Solve the MILP with α = 1 or α = 0.5 and some given horizon length T .

2. If the final states σiT and θiT satisfies∑
i∈J

(σiT + θiT ) = |J |, (6.14)

the whole area is cleared, and the algorithm terminates.

3. Else, if there was no increase in
∑

i∈J (σiT +θiT ) increase either the horizon length
T or the number of pursuers N .

4. Prepare a new RHC iteration by removing constraint (6.12) and adding constraints
setting the initial states of the next iteration θi1, λi1, σi1 equal to the terminal states
θiT , λiT , σiT of the current iteration.

5. Goto 1.

Remark 6.4. In step (3) of Algorithm 6.1, the choice depends on the situation at hand.
If pursuers are scarce, the horizon length is increased. If, on the other hand, computa-
tional time is critical, the number of pursuers is increased. If none of the above solves the
problem, decompositioning, as described in Algorithm 6.2, can be used.

Lemma 6.4. If Algorithm 6.1 terminates, a solution to Problem 6.1 is found.

Proof : A straightforward application of Lemma 6.3 above. �

6.3.2 Relaxation of the MILP problem

To increase the computational efficiency when solving Problem 6.2 we note that some of
the integer constraints can be relaxed.

Problem 6.3 (Relaxation). The variables σit and θit in Problem 6.2 are relaxed such that
they are no longer binary variables but belong to [0, 1], i.e

0 ≤ σit ≤ 1, (6.15)
0 ≤ θit ≤ 1. (6.16)
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Using CPLEX 10.2, Problem 6.3 is as much as 20 times faster than the original formu-
lation in some scenarios.

Lemma 6.5. The pursuer paths λit in the solution to Problem 6.3 are also pursuer paths
in an optimal solution to Problem 6.2.

Proof : Note that if there is a j such that λjt = 1, j ∈ Ni then σit = 1 by (6.8),
also if λjt = 0, ∀j ∈ Ni then σit = 0 by (6.7), thus σit is binary. Now let (λ, σ, θb) be a
solution to to Problem 6.2 in which only θb differs from the solution of problem 6.3. Let Z2

and Z3 be the cost of the solutions to Problem 6.2 and 6.3 respectively. From (6.9), (6.10)
and (6.11) we get that that for each θit ∈ (0, 1], θbit = 1. This implies that Z3 ≤ Z2, but
since problem 6.3 is a relaxation of problem 6.2 this implies that Z2 ≤ Z3. Thus Z2 = Z3.

�

6.4 Decomposition of large environments

One way of reducing the complexity of large problem instances is to use a hierarchical
decomposition with a graph-clear problem at the top and instances of Problem 6.1 at the
lower level. Another option is to decrease the problem size and complexity by placing
stationary pursuers at positions where they cover large areas, and then solve instances of
Problem 6.1 in the remaining unseen parts of F . This approach is described below.

Algorithm 6.2.

1. Solve the MILP with k pursuers and one time step with α = 0. This corresponds to
maximizing the number of seen regions by k pursuers, i.e., solving an Art Gallery
Problem [11].

2. Remove all regions that are in state S1 or S2 from F , leaving a possibly disconnected
F .

3. Apply Algorithm 6.1 to each connected component of F and let q be the maximal
number of pursuers needed.

4. The number of pursuers needed to clear the original F is now k + q.

What we mean by connected component in Algorithm 6.2 is that it is possible to go be-
tween neighboring regions between two regions that are in state S3 or S4 without entering
a region that is in state S1 or S2.

6.5 Connectivity constrained search

An area receiving an increasing amount of interest is communication aware motion plan-
ning, [12, 13]. In this section we will show how the proposed MILP framework can be
extended to handle one such problem, namely the problem where the whole group of pur-
suers shall be connected in a line-of-sight graph at a given time instant t′. We will present
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two sets of constraints. The first set corresponds to a general line-of-sight graph, while the
second set corresponds to a special case, a star shaped line-of-sight graph, where one of
the pursuers sees all others.

For the general case we extend Problem 6.2 with a set of binary variables uij , where
i ∈ J and j ∈ {1, 2, ..., N} = JP , and the following constraints

λit′ − uij ≥ 0, ∀i ∈ J, j ∈ JP , (6.17)∑
j∈Jp

uij ≤ 1, ∀i ∈ J, (6.18)

∑
i∈J

uij = 1, ∀j ∈ JP , (6.19)

j−1∑
l=1

∑
k∈Ni

ukl − uij ≥ 0, ∀i ∈ J, j ∈ JP − {1}. (6.20)

Equation (6.17) states that uij can be equal to 1 only if λit′ is equal to 1. Equations (6.18)
and (6.19) together guarantee that there is one and only one unique uij = 1 for each
λit′ = 1. Equation (6.20) states that uij where i ∈ J and j ∈ {2, 3, ..., N} can only be
equal to 1 if there is at least one one pair (k, l), where k ∈ Ni and l ∈ {1, 2, ..., j − 1},
such that uk,l = 1. Given equations (6.17)-(6.19), equation (6.20) guarantees the existence
of a line-of-sight graph.

Remark 6.5. If these constraints are used at all time steps, the entire search is performed
with the group of pursuers connected in a line-of-sight graph.

An alternative to the general case above, is the problem of creating a line-of-sight
graph where one single vertex is connected to all others. This results in a smaller set of
binary variables ui. The topology of the connected visibility graph is defined by the first
constraints below, whereas the last constraint, with the sum of all uj :s, implies that there
must exist such a graph.

λit′ +
∑
j∈Ni

λjt′ − (N + 1)ui ≥ 0, i ∈ J (6.21)

∑
j∈J

uj ≥ 1. (6.22)

Both of these sets of constraints will result in a connected graph independently of the
number of pursuers.

6.6 Simulation examples

When running Algorithm 6.1, it turns out that the best results are found using α = 1. A
drawback of the more intuitive α = 1/2 is that the pursuers might get stuck at positions
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(a) (b)

Figure 6.3: The results of running Algorithm 6.1 with a six step planning horizon (b) in
the environment in (a). A green triangle denotes the start of a pursuer path, and
a red square denotes the end of a pursuer path, blue discs denote intermediate
steps.

where they see a large area, e.g., looking down a corridor, but any motion results in a reduc-
tion of this area. Thus we use α = 1 in all but one of the examples below. The simulations
were done on a Intel Xeon CPU X5450, 3.00GHz, running the MILP software CPLEX
10.2 [14]. Furthermore, all results were found using the relaxed version, Problem 6.3, as it
was found to be on average twice as fast as the non-relaxed formulation. Finally, we note
that the proposed approach is not directly suitable for very large problems. Such problems
can be decomposed into smaller ones, either by applying Algorithm 6.2 or using a graph-
clear formulation. The performance and limitations of the approach can be seen from the
examples below.

The first problem instance is depicted in Figure 6.3(a) with the corresponding solution
in Figure 6.3(b). With a time horizon of T = 6, and α = 1/2, a single RHC iteration was
needed, and found in four seconds.

The second problem instance is shown in Figure 6.4, with corresponding solution in
Figure 6.5 (a-c). The problem was first solved in 3 RHC iterations using a total number 10
time steps. The computational time was about 3 seconds for each iteration resulting in a
computational time of 9 seconds in total. Note that the first two RHC iterations achieved
progress with T = 3, while the third iteration needed T = 4 to remove the last S4 region.
Figure 6.5 (d) shows the result of the alternative failed iteration with three time steps.
This problem was also solved in a single iteration using a time horizon of T = 6, with a
corresponding computation time of 110 seconds, see Figure 6.6(a).

The third problem instance is shown in Figure 6.6(b) with corresponding solution in
Figure 6.7. The solution involves three RHC iterations with 2 pursuers, followed by one
iteration with three pursuers. The computational time was about 5 seconds for the three first
iterations and 15 seconds for the last iteration. In order to find a two-pursuer solution we
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(a) (b)

Figure 6.4: The partition (b) of a Manhattan grid with four obstacles (a).

run the algorithm with 2 pursuers and 10 time steps in the first iteration, after 45 minutes,
the algorithm had not finished.

The solution of the fourth problem is shown in Figure 6.8. The environment is the same
as the third problem, but the solution is found using decomposition, i.e., Algorithm 2, as
presented in Section 6.4. Step 1 of the algorithm was solved in two seconds with k = 1,
i.e. one stationary pursuer was used. The position of this pursuer is shown in Figure 6.8
(a). The search of the remaining unseen parts of F , in this case five disconnected regions,
took two seconds each and is shown in Figure 6.8 (b). Thus the problem was solved in a
total of twelve seconds, using 2 pursuers.

The fifth problem illustrates the connectivity constraints. The Manhattan grid in Fig-
ure 6.4 was solved with the algorithm in two iterations with 4 and 5 time steps respectively,
see Figure 6.9. The additional connectivity constraints (6.21) and (6.22) were active at the
final time of each iteration. In the figure one can see that the two pursuers are indeed
connected by a fee line of sight at the final time of each iteration.

The sixth problem is a single pursuer problem, where a problem is solved that requires
so-called recontamination, Figure 6.11. The problem is taken from [2], where it was shown
that some problems require a linear (in edges) number of recontaminations, i.e., some areas
need to change back and forth between being contaminated and cleared a number of times,
before finally being cleared. In this problem, the recontaminated area is at the very top,
and the recontamination is shown in Figure 6.11(b).

In the seventh problem, we want to illustrate how the computational time grows with
the problem size. In Figure 6.10 we have a subset of one of the scenarios in the classic
arcade game Pac-Man. We run Algorithm 1 with α = 1 and time horizon T = 3 on four
different sub-regions of the Pac-Man scenario. In Figure 6.10 the four regions are defined
as follows. Region 1 is defined as A. Region 2 is defined as the union of A and B. Region
3 is defined as the union of A, B and C and region 4 is defined as the union of the regions
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(a) (b)

(c) (d)

Figure 6.5: The results of running Algorithm 6.1 on a Manhattan grid with four obstacles.
The search problem is solved with two pursuers in three iterations where the
results of iteration 1, 2 and 3 are shown in (a), (b) and (c) respectively. Note
that four time steps were necessary in iteration 3, the result of the third iteration
with three time steps is shown in (d). White regions are in states S1, S2 or
S3, whereas grey regions are in state S4. A green triangle denotes the start
of a pursuer path, and a red square denotes the stop of a pursuer path, blue
discs denote intermediate steps. A number i inside a triangle, disc or square
indicates that the pursuer waits an additional i time steps in the region.

A, B, C and D.

The computational times for different amount of pursuers are shown for each scenario
in Table 6.1. In this table the computational time of running Algorithm 1 with α = 1 and
time horizon T = 3 is shown as a function of the number of pursuers and the Region. The
computational time is measured in seconds. Each element in the leftmost column constitute
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(a) (b)

Figure 6.6: (a) The solution when running Algorithm 6.1 on the environment in Figure 6.4
with two pursuers for six time steps. The color coding of the regions are as in
Figure 6.5. (b) A complex environment with fewer loops.

Region 1 Region 2 Region 3 Region 4
2 0 7 timeout timeout
3 0 26 timeout timeout
4 0 0 timeout timeout
5 0 8 timeout timeout
6 0 0 timeout timeout
7 0 13 timeout timeout
8 0 0 timeout timeout
9 0 13 timeout timeout
10 0 1 21 timeout
11 infeasible 0 2 timeout
12 infeasible 0 39 timeout
13 infeasible 72 38 0
14 infeasible 0 0 18
15 infeasible infeasible 0 10

Table 6.1

the number of pursuers, where this number goes between 2 and 15. The elements in the top
row denote the regions 1-4. If a cell contains the words infeasible or timeout, this indicates
that the it was not possible to find feasible initial positions and that the computational time
exceeded 1700s. If the computational time exceeded 1700s, the execution was aborted, and
this is denoted as ”timeout”. If it was not possible to find initial positions for the pursuers,
this is denoted as ”infeasible”. One can observe that the computational time in general
decreases with the number of pursuers.
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(a) (b)

(c) (d)

Figure 6.7: The results of running Algorithm 6.1 on the environment in Figure 6.6(b).
The search problem is solved with three pursuers in four iterations where the
results of iteration 1, 2, 3 and 4 are shown in (a), (b), (c) and (d) respectively.
After iteration 3, no improvement is achieved with 2 pursuers, thus one more
pursuer is added in iteration 4. The number of time steps was also increased.
The color coding of the regions are the same as in Figure 6.5.
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(a) (b)

Figure 6.8: The results or running Algorithm 6.2 with two pursuers on the environment in
Figure 6.6(b). In step 1, we use k = 1, i.e., one pursuer is used to cover as
much of the area as possible, and the resulting position is shown in (a) denoted
by P. Then the remaining five connected components of F are searched one
after the other with one pursuer, (b). The color coding of the regions are as in
Figure 6.5.
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(a) (b)

Figure 6.9: The result of running Algorithm 6.1 on the Manhattan grid with the additional
connectivity constraints (6.21) and (6.22) active at the final time of each it-
eration. The problem was solved in two iterations using 4 and 5 time steps
respectively, and one can verify that the pursuers can see each other at the
final time of each iteration.

Figure 6.10: In this figure four different regions are defined; A, B, C and D.
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(a) (b)

(c) (d)

Figure 6.11: The results of running Algorithm 6.1 on a problem requiring recontamina-
tion. Note that the upper part of the area is first cleared, then contaminated
and finally cleared once again, and that recontamination is necessary when
clearing the whole area with one pursuer.
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