
Tool Support for Enterprise Architecture Analysis

with application in cyber security

MARKUS BUSCHLE

Doctoral Thesis
Stockholm, Sweden 2014

TRITA-EE 2014:025
ISSN 1653-5146
ISRN KTH/ICS/R-14/03-SE
ISBN 978-91-7595-159-1

Industrial Information and Control Systems
KTH, Royal Institute of Technology

Stockholm, Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av Doctor of Philosophy June 11, 2014 i F3,
Kungl Tekniska högskolan, Lindstedsvägen 26, Stockholm.

© Markus Buschle, June 2014

Tryck: Set in LATEX by the author
Cover illustration by Evelina Ericsson
Printed by Universitetsservice US AB

für Wolfgang Buschle

v

Abstract

In today’s companies, business processes and information technology are
interwoven. Old and new systems as well as off-the-shelf products and tai-
lored solutions are used. This results in heterogeneous, often complex IT
landscapes. The impact of changes and the affected systems are difficult to
identify. However, volatile business environments and changing customer re-
quests require organizations to adapt quickly and to frequently make decisions
about the modifications of their information technology.

IT management aims at generating value from the usage of information
technology. One frequently used IT management approach is Enterprise Ar-
chitecture. Company-wide models are used to obtain a holistic picture. These
models are usually created using Enterprise Architecture modeling tools.
These tools frequently have strong documentation capabilities. However, they
often lack advanced analysis functionality. Specifically, such tools do not offer
sufficient support for the analysis of system properties, such as cyber security,
availability or interoperability. The ability to analyze a set of possible sce-
narios and predict the properties of the modeled systems would be valuable
for decision-making. Changes or extensions could be evaluated before their
implementation. In other domains, for example, in architecture in its classical
meaning or in the development of machines, the analysis of models is a com-
mon practice. Typically, CAD tools are used to perform analysis and support
decision-making. It is thereby possible to investigate the stability of buildings
or the performance of engines without the need for empirical testing.

The contribution of the research work documented in this thesis is a soft-
ware tool with a particular focus on the analysis of Enterprise Architecture
models and thereby support for decision-making. This tool combines state-
of-the-art Enterprise Architecture tooling with advanced analysis capabilities
that, until now, were only offered by modeling tools for other domains. The
presented tool possesses two components. One component allows the creation
of a metamodel capturing Enterprise Architecture analysis theory, for exam-
ple, relevant concepts in the context of cyber security and how they relate
to each other. The other component supports the instantiation of the meta-
model into an Enterprise Architecture model. Once a model is in place, it
can be analyzed with regards to the previously specified theory so that, for
instance, a cyber security evaluation can be conducted.

The analysis tool was partly developed within the context of a larger re-
search project on cyber security analysis. However, the tool is not restricted
to applications within this field. It can be used for the evaluation of numerous
system properties. Several authors contributed to the tool both on an imple-
mentation level and in the development and design of the tool’s features. The
performed research followed the Design Science methodology. First, the ob-
jectives of a tool for Enterprise Architecture analysis were defined. Next, an
artifact was designed and developed in terms of a software tool. This tool was
then demonstrated and evaluated against the objectives. Lastly, the results
were communicated to both academic and non-academic audiences.
Keywords: Enterprise Architecture, Decision-making, Model-based analy-
sis, Property analysis, Cyber security, Software tool, Design Science

vii

Sammanfattning

På de flesta företag är affärsprocesser och IT tätt sammanvävda, det fö-
rekommer en kombination av gamla och nya system, så väl standardiserade
produkter som skräddarsydda lösningar används. Detta resulterar i heteroge-
na och ofta komplexa IT-landskap. Effekten av förändringar och vilka system
som påverkas är ofta svårt att identifiera. Trots det kräver dagens ostadiga
företagsmiljöer och kundkrav att organisationer snabbt anpassar sig till, och
kontinuerligt fattar beslut om ändringar av deras informationsteknologi.

IT- management syftar till att generera värde ur användandet av infor-
mationsteknik. En vanlig IT- management strategi är Enterprise Architectu-
re (organisationsövergripande arkitektur) som rekommenderar skapandet av
företagsövergripande modeller för att få en helhetsbild av en verksamhet.
Vanligtvis skapas dessa modeller med hjälp av modelleringsverktyg anpassa-
de för att dokumentera en verksamhets nuläge. Avancerade analysfunktioner
saknas ofta i befintliga verktyg, som därför ger svagt stöd vid utvädring av
specifika systemegenskaper som till exempel IT-säkerhet, tillgänglighet el-
ler interoperabilitet. Förmågan att analysera möjliga scenarier och förutsäga
de modellerade systemens egenskaper skulle vara värdefullt för beslutsfatta-
re. Förändringar skulle på så sätt kunna utvärderas före implementering i
verksamheten. Inom andra områden, till exempel arkitektur i dess klassiska
mening, eller vid utveckling av maskiner, är analys av modeller ett vanligt
tillvägagångssätt. CAD verktyg används ofta för att utföra analyser och som
stöd vid beslutsfattande. Därigenom är det möjligt att utvärdera byggnaders
stabilitet eller motorers prestanda utan omfattande tester eller mätningar.

Bidraget från forskningen i denna avhandling är ett verktyg för analys av
Enterprise Architecture modeller och därmed stöd för beslutsfattande. Detta
verktyg kombinerar moderna Enterprise Architecture verktyg med avancerade
analysfunktioner som fram till idag endast applicerats inom andra domäner.
Analysverktyget har två komponenter,en komponent som gör det möjligt att
beskriva Enterprise Architecture analysteori och hur de relaterar till varandra,
exempelvis inom IT-säkerhet. En annan komponent stödjer användandet av
denna teori i en Enterprise Architecture-modell. När en arkitekturmodell är
på plats kan verktyget hjälpa användare att utföra analys med avseende på
tidigare angiven teori, så att till exempel en utvärdering av IT-säkerhet kan
genomföras.

Analysverktyget har delvis utvecklats inom ramen för ett större forsk-
ningsprojekt om IT-säkerhetsanalys. Verktyget är dock inte begränsat till
tillämpningar inom detta område utan kan även användas för att utvärdera
andra systemegenskaper. Flera personer har bidragit till verktyget både avse-
ende design, utveckling och implementering av verktygets funktioner. Forsk-
ningen har genomförts enligt Design Science-metodiken. Först definierades
krav på ett verktyg för Enterprise Architecture analys. Därefter utformades
och utvecklades ett verktyg. Detta verktyg har sedan demonstreras och ut-
värderas i förhållande till kraven. Resultaten har slutligen presenterats i både
akademiska och icke-akademiska forum.
Nyckelord: Enterprise Architecture, beslutsfattande, modellbaserad analys,
egenskapsanalys, cybersäkerhet, mjukvaruverktyg, Design Science

ix

Zusammenfassung

In heutigen Unternehmen sind Geschäftsprozesse und Informationstech-
nologie untrennbar miteinander verwoben. Alte und neue Systeme, Standard-
produkte und maßgeschneiderte Technologien finden dabei Verwendung. Dies
resultiert in heterogenen komplexen IT-Landschaften. Die Auswirkungen von
Änderungen auf betroffene Systeme sind schwer zu erkennen. Dynamische
wirtschaftliche Rahmenbedingungen und wechselnde Kundenanforderungen
erfordern schnelle Anpassung und Entscheidung über Änderungen der Infor-
mationstechnologie.

IT-Management hat als Ziel Wertschöpfung aus der Nutzung von Infor-
mationstechnologie zu fördern. Ein gängiger Ansatz ist dabei Enterprise Ar-
chitecture. Durch unternehmensweite Modelle erhält man ein ganzheitliches
Bild. Diese Modelle werden mittels Enterprise Architecture Modellierungs-
werkzeugen erstellt. Die Werkzeuge haben häufig ausgeprägte Dokumenta-
tionsfunktionen, aber keine tiefgreifende Analysefunktionalität. Insbesondere
unterstützen die Werkzeuge die Analyse von Systemeigenschaften, wie z.B.
Cyber-Security, Verfügbarkeit und Interoperabilität nur unzureichend. Die
Analyse potentieller Szenarien und die Vorhersage ihrer Eigenschaften för-
dert die Entscheidungsfindung. Änderungen oder Erweiterungen könnten so
vor ihrer Umsetzung modelliert werden. In anderen Bereichen, z.B. in der Ar-
chitektur im klassischen Sinne oder bei der Entwicklung von Maschinen, ist die
Analyse von Modellen üblich. Typischerweise werden dabei CAD-Werkzeuge
verwendet. Dadurch ist es möglich, die Stabilität von Gebäuden oder Leistung
von Motoren zu untersuchen ohne empirische Tests durchzuführen.

In dieser Arbeit wird ein Softwarewerkzeug zur Analyse von Enterprise
Architecture Modellen vorgestellt. Es kombiniert Funktionalität von aktuel-
len Enterprise Architecture Werkzeugen mit erweiterter Analysefähigkeit, die
es bis heute nur bei Modellierungswerkzeugen in anderen Domänen gibt. Das
vorgestellte Analysewerkzeug besitzt zwei Komponenten. Eine Komponente
dient der Theoriespezifikation für die Analyse von Enterprise Architecture-
Modellen. Relevante Konzepte und deren Beziehung zueinander können defi-
niert werden. Die zweite Werkzeugkomponente unterstützt die Instanziierung
der Analysetheorie in Architekturmodellen. Die Modelle können anschließend
unter Berücksichtigung der zuvor festgelegten Theorie (die z.B. eine Cyber-
Security Bewertung beschreibt) ausgewertet werden.

Das beschriebene Analysewerkzeug wurde teilweise im Rahmen eines um-
fangreicheren Forschungsprojekts zur Cyber-Security Analyse entwickelt. Es
ist jedoch nicht auf diesen Kontext beschränkt, sondern kann zur Analyse
einer Vielzahl von Systemeigenschaften benutzt werden. Eine Anzahl von Au-
toren haben zur Implementierung sowie zur Entwicklung und Gestaltung der
Funktionalität beigetragen. Das Werkzeug wurde gemäß dem Design Science
Ansatz entwickelt. Zu Beginn wurden Anforderungen an ein Werkzeug für die
Enterprise Architecture- Analyse ermittelt. Danach wurde das Werkzeug de-
signed, implementiert und anhand der Anforderungen ausgewertet. Abschlie-
ßend wurden potentielle Anwender über das Werkzeug informiert.
Stichworte: Enterprise Architecture, Beschlussfassung, Modellbasierte Ana-
lyse, Eigenschaftsanalyse, Cyber-Security, Softwarewerkzeug, Design Science

Acknowledgments

Many people have supported me during my Ph.D. studies. I owe a debt of gratitude
to my supervisors Pontus Johnson, Mathias Ekstedt and Göran Ericsson.

Torsten Cegrell was not only kind enough to hire me, but, together with Judy
Westerlund, created a unique, international, inspiring and rewarding working envi-
ronment. Thank you both. You two really helped me get started in Sweden and
made me feel at home.

Being a Ph.D. student sometimes has its ups and downs. I was lucky to have
supportive colleagues ensuring that the good times outweighed the rough moments.
In particular, I want to thank Joakim Lilliesköld, Robert Lagerström, Per Närman,
Pia Närman, Teodor Sommestad, Johan Ullberg, Moustafa Chenine, Ulrik Franke,
David Höök, Johan König, Waldo Rocha Flores, Liv Gingnell, Nicholas Honeth,
Claes Sandels, Matus Korman and Margus Välja.

I especially want to thank Khurram Shahzad, who contributed to my research
probably more than anyone else.

Four colleagues in particular made my life more enjoyable. A big thank you
goes to Kun Zhu, who shares my passion for traveling and photography as well as
my curiosity and interest in trying out Stockholm’s restaurants.

I also want to thank Hannes Holm, who inspired me both in numerous work-
related conversations and at the gym. Frequently, both things happened at the
same time.

Annica Johannesson deserves acknowledgment for doing the magic behind the
scenes. I always enjoyed working with you. This thesis would not be the same
without your support!

Ett stort tack goes to Evelina Ericsson, who over the last few years became a
very close friend of mine. Thank you for teaching me Swedish and introducing me
to Sweden. I cannot imagine what the last five years would have been like without
your continuous help!

I am grateful to my international co-authors Oliver Holschke, Jannis Rake-
Revelant, Dick Quartel, Florian Matthes, Sabine Buckl, Chrisitan M. Schweda,
Sascha Roth, Matheus Hauder, Sebastian Grunow, Sasi K. K. and Nithin Soma-
sundaran.

Furthermore, I would like to thank Daniel Feller, Torsten Derlat and Marten
Schönherr. Without you, I would never have ended up in Stockholm.

xi

xii

While writing this thesis, I was supported by John and Teri Schmelzel. Thanks
a lot!

Without a doubt, Rafaela Buschle is the person I need to thank the most. You
helped me in uncountable ways and were always there for me whenever I got lost.
Thank you! I will do the same for you when it is time for your Ph.D. studies.

I am grateful to my friends who supported me during the last several years:
Sebastian Wrede, Virginia Hüntemann, Baki Cakici, Hanna Sjögren, Christiana
Gransow, Andrea Bobrowsky, Andrea Feller, Anna Önnhage, Yunle Mo and Maria
Zayas as well as my siblings from another mother (and father): Erin Schmelzel,
Anne Copple and Adam Schmelzel.

I would also like to thank Ursula Buschle and Eberhard Riedel for their support.

Thank you all!

Stockholm, June 2014
Markus Buschle

Table of contents

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Research motivation . 1
1.2 Research contribution and delimitation 6
1.3 Applications to cyber security . 15
1.4 Remaining structure of the thesis . 16

2 Research method 17
2.1 Design Science . 17
2.2 The resulting Design Science methodology 19

3 Enterprise Architecture and system property analysis 23
3.1 Enterprise Architecture . 23
3.2 Enterprise Architecture analysis . 25
3.3 Properties for Enterprise Architecture analysis 29

4 Requirements on a tool for Enterprise Architecture analysis 35
4.1 Requirements derived from Enterprise Architecture tool evaluations 36
4.2 Requirements derived from an Enterprise Architecture analysis method 43
4.3 Requirements derived from CAD tools 45
4.4 Requirements summary . 49

5 Design decisions 55
5.1 Design option I: Overall tool architecture 60
5.2 Design option II: Platform . 68
5.3 Design option III: Modeling language 72
5.4 Design option IV: Inference engine 82
5.5 Design option V: Level of abstraction 93
5.6 Design option VI: Cyber security modeling 99
5.7 Summarized design decisions . 104

xiii

xiv TABLE OF CONTENTS

6 Tool development process 105
6.1 Development process . 105
6.2 Important milestones . 108

7 Artifact 111
7.1 User interface . 114
7.2 Distinct functionality . 127
7.3 Architecture of the tool . 138
7.4 The areas of contribution in relation to the presented artifact 149

8 Demonstration of the usability of the tool 153
8.1 Usage of the tool to specify theory 153
8.2 Specification of a cyber security analysis language 154
8.3 Other analysis frameworks . 157
8.4 Usage of the tool to perform analysis 160

9 Evaluation 163
9.1 The tool shall offer a high degree of usability 163
9.2 The tool shall possess analysis capabilities 171
9.3 The tool shall possess administrative capabilities 176
9.4 The tool shall possess presentation capabilities 177
9.5 The tool shall feature an extendable metamodel 177
9.6 The tool shall support the import, editing and validation of data

from external sources . 178
9.7 The tool shall support the storage of models, in- stantiating a meta-

model, in a repository . 179
9.8 The tool shall support the creation of metamodels that cover the do-

mains of business architecture, information architecture, technology
or technical architecture and solution architecture 179

9.9 The tool shall support the creation of models 182
9.10 General evaluation . 183

10 Discussion 185
10.1 Validity . 185
10.2 Reliability . 190
10.3 Generalizability . 196

11 Information of relevant audiences 199
11.1 Information of relevant audiences . 199
11.2 Presentation of the tool for academic audiences 199
11.3 Presentation of the tool for tool users 200

12 Future Work 201
12.1 Future work based on the evaluation of the presented tool 201

12.2 Future work with regards to Enterprise Architecture analysis 202
12.3 Future work supporting cyber security analysis 204
12.4 Enhancement of the tool inspired by other Enterprise Architecture

tools . 204

13 Conclusions 207

Appendices 210

Bibliography 215

List of publications 237

List of Figures

1.1 The Simplified overall architecture of the presented tool 7
1.2 The included concepts . 8
1.3 The role distribution during the development process 11
1.4 The author’s contribution with regards to analysis 12
1.5 The author’s contribution with regards to modeling 14

2.1 The Design Science Research Methodology (DSRM) Process Model . . . 18

3.1 The concidered Enterprise Architecture analysis method 26

4.1 The Kiviat diagrams used to evaluate Enterprise Architecture tools . . . 38
4.2 The stages of simulation . 46
4.3 A combined view of an expert simulation system 47
4.4 The Expert system structure for computer aided design 48
4.5 The Expert system’s architecture . 49

5.1 The decision hierarchy . 56
5.2 The simplified integrated architecture 61
5.3 The simplified architecture based on two tools 62
5.4 The simplified architecture based on two tools sharing a core 64
5.5 The 14 UML diagrams . 80
5.6 An example application of P2AMF . 88
5.7 The extension of Countermeasure Attack trees to Defense trees 100

6.1 The overall structure of an FDD project 106

7.1 The user interface of the Class modeler 114
7.2 The palette of the Class modeler . 115
7.3 The tabs of the Class modeler . 115
7.4 The model outline of the Class modeler 116
7.5 The tabs allowing navigating through the Class diagram 116
7.6 The menu bar of the Class modeler . 116
7.7 The recommended process for the usage of the Class modeler 118

xvii

7.8 The properties tab for classes of the Class modeler 119
7.9 The properties tab for relations of the Class modeler 120
7.10 The Object Modeler with the modeling canvas in the center 122
7.11 The menu bar of the Object modeler . 122
7.12 The tabs of the Object modeler . 122
7.13 The Attribute value tab of the Object modeler 123
7.14 The model outline of the Object modeler 123
7.15 The tabs allowing navigating through the Object diagram 124
7.16 The recommended process for the usage of the Object modeler 126
7.17 The workflow of the Class modeler in relation to the tool features 128
7.18 The structure of viewpoints and views 129
7.19 The workflow of the Object modeler in relation to the tool features . . . 133
7.20 A minimalistic Class diagram . 135
7.21 A possible template based on the Class diagram 135
7.22 An illustrating Object diagram . 136
7.23 The Eclipse Rich Client Platform . 139
7.24 The resulting architecture . 142
7.25 The data model of the Class modeler . 143
7.26 The data model of the Object modeler 145
7.27 The connection between datamodel of Class and Object modeler 146
7.28 The structure of Ecore . 148

8.1 The Cyber Security Analysis Language (CySeMol) 155
8.2 An anonymized network topology . 156

9.1 The answers for claim 1 . 166
9.2 The answers for claim 2 . 166
9.3 The answers for claim 3 . 167
9.4 The answers for claim 4 . 167
9.5 The answers for claim 5 . 168
9.6 The answers for claim 6 . 168
9.7 The answers for claim 7 . 169
9.8 The answers to the control question . 169

10.1 The not supported circular relationships between attributes 197

xviii

List of Tables xix

List of Tables

4.1 Enterprise architecture tool survey comparison 42
4.2 Requirements derived from the considered Enterprise Architecture tool

surveys . 43
4.3 Requirements derived from the considered Enterprise Architecture Anal-

ysis method . 45
4.4 Requirements derived from CAD tools and expert systems 48
4.5 Summarized requirements . 53

5.1 Mapping between requirements and design decisions 59
5.2 Comparison of the potential architecture candidates 67
5.3 Comparison of the potential rich client platforms candidates 71
5.4 Comparison of potential modeling languages 78
5.5 Comparison of the used inference engines 86
5.6 Comparison of the sampling algorithms 92
5.7 Comparison of means to provide a level of abstraction 98
5.8 Comparison of security modeling approaches 103
5.9 Summarized design decisions . 104

7.1 Mapping between the design decisions and the reflecting tool features . 113
7.2 Mapping between performed work and describing sections 152

8.1 Implemented analysis frameworks . 160
8.2 Users of the presented tool performing analysis 161

9.1 The claims used to evaluate the usability 165
9.2 User groups applying the tool . 171
9.3 Evaluated properties . 172
9.4 Number of conducted analyses . 172
9.5 Performance of P2CySeMoL . 176
9.6 Comparison of modeling effort . 179
9.7 Ability to consider Business architecture, Information architecture, Tech-

nical architecture and Solution architecture 182
9.8 Created models using the presented tool 183

Chapter 1

Introduction

This first chapter of this thesis introduces the topic of the documented research.
The first section explains the motivation for the research performed. Furthermore,
the purpose of the presented research is stated. In the second section, the main
contributions of the presented research work are summarized. Thereafter, the re-
search work documented in this thesis is delimited, including a clarification of its
relationship to the work of other authors. The collaborative research project to
which the presented research partly contributed is thereafter introduced. Lastly,
the fourth section introduces to the structure of the remainder of this thesis. This
thesis targets several audiences. First and foremost, academic audiences will be
informed of the author’s research and findings. Second, the result of the research
documented in this thesis is a software tool that can support the work of practi-
tioners. Therefore, professionals and potential tool users are addressed to inform
them about the tool and convince them of the value of its use.

1.1 Research motivation

The business of contemporary enterprises now depends more than ever on the usage
of IT (information technology). The advent of the Internet; the mass production
of inexpensive standard IT components, such as desktop computers, servers and
network equipment; and the achievements made to simplify software development
are the main drivers of this trend. Recent phenomena such as cloud computing,
the ubiquitous usage of IT and software as services and the penetration of smart-
phones in the Western and Eastern civilizations connect the business area even
more closely to the IT domain. This is an observable trend that is not limited to a
particular business area or part of our society. Instead, it is almost impossible to
find companies not using any IT systems at all. Considering many of the successful
IT companies that were founded during the last two decades, it becomes apparent
that those companies tend to have business models that are strongly connected to
the usage of IT. Deloitte, as part of their 2013 Technology Fast 500™ ranking,

1

2 CHAPTER 1. INTRODUCTION

found that “New technologies like cloud and software as a service (SaaS) are at
the forefront of the exponential growth we are seeing in software companies”[60].
Five of the seven fastest-growing IT companies listed in the Fortune 100 ranking of
the fastest-growing IT companies are companies whose business model is to offer
various IT-based services [72].

However, the extensive usage of IT is not a unique feature of newly established
enterprises. Even fairly old areas, such as the finance sector, the insurance industry,
the electric power industry and the defense industry, now rely on the usage of IT.
Companies operating in these domains use information technology to automate
tasks whose manual performance would be expensive. Decisions and transactions
can be made much more quickly when performed digitally, and the outcome is often
easier to predict. Storing data digitally saves space and makes it easy to retrieve
information. The usage of IT as a means of communication allows the creation of
virtual organizations with sites spread all over the world. Work can be performed
collaboratively without the need for the physical presence of the team members and
the traveling that goes along with it.

However, the sheer extent of usage of IT is by no means a quality assurance
[48]. IT has become a commodity and, as every enterprise is using information
technology, it is not possible to gain a competitive advantage by simply buying
computer systems. The question is how to utilize information systems in an optimal
way. This typically translates into the question of how to use IT in a way that
is as cost efficient as possible and as closely aligned to the business goals of the
company. Companies have to adapt quickly to satisfy their costumers and keep up
with and overtrump their competitors. They need to be able to quickly offer new
and interesting products to attract new customers and bind their existing ones.
This requires companies to have flexible business processes that can be adjusted on
demand.

As mentioned earlier, business and IT are typically connected. Therefore, mod-
ifications of a business process or the development of a new product are likely to
propagate. Adjusting the business to meet the customers’ demands also poses re-
quirements on the underlying information technology. IT components need to be
capable of supporting the current products and business processes, as well as future
modifications, variations and preferably even completely new products.

Supporting their business by adding more and more IT components, many com-
panies have aggregated a zoo of IT systems. Very often, one can find a heteroge-
neous setup. Many companies use hardware and software from different vendors in
parallel, run different operating systems on their machines and use different soft-
ware versions simultaneously. They utilize several integration technologies parallel
to each other to connect their systems, consume IT services delivered by numerous
providers and use different types of databases side by side. Companies use hardware
that they bought several decades ago in combination with the latest technology. In
addition, they combine tailored solutions developed to solve a specific problem with
off-the-shelf products one can find almost everywhere. According to Garner, 355.2
million computer were sold in 2011, 74 % of which were procured for business pur-

1.1. RESEARCH MOTIVATION 3

poses [32]. Some large companies have several hundred thousand computer systems
in use [117]. Almost 15 years ago, in 2000, the American Department of Defense
had 10,000 computer systems consisting of 1.5 million computers [59]. These figures
are likely to increase every year.

Administrating and coordinating these huge quantities of information systems
cannot be achieved without using elaborate proceedings and methods. Already, it
is common for small companies to have a dedicated role dealing with IT-related
questions. Large companies have large departments working exclusively with infor-
mation systems.

The discipline of information technology management aims to help enterprises in
their attempts to steer their computer systems. In particular, it provides a toolkit
for planning and directing the evolutionary development of the (IT) landscape [107].
The overall goal of IT management is to generate value from the usage of technology.
This can only be achieved if business strategies and technology are aligned. Thus,
it must be stressed that IT management is more than just the management of IT
systems. Topics other than business IT alignment that are typically included in
IT management include governance, strategic planning, financial management, risk
analysis and organizational performance [91].

Enterprise Architecture (EA) is one approach to IT management, wherein mod-
els, e.g., diagrammatic illustrations or textual descriptions, are used to represent
enterprises holistically. Enterprise Architecture models include both the business
domain and the IT area found in contemporary companies. By connecting these
two domains, Enterprise Architecture models foster communication between differ-
ent involved stakeholders. In this way, Enterprise Architecture supports business
IT alignment.

Moreover, Enterprise Architecture models can be used to describe scenarios.
This includes illustrations of how the company looks today (as-is models) as well as
potential future setups (to-be models) [153]. By supporting the comparison of dif-
ferent alternative scenarios, Enterprise Architecture also provides decision support.
Stakeholders can evaluate models to recognize the strengths and weaknesses of a
particular scenario. This helps to identify a desired future scenario. Additionally,
the as-is model can be compared with the future goal to identify the necessary
changes and milestones while transitioning[239].

Enterprise Architecture models are typically created based on metamodels that
provide syntax and semantics on how to create the descriptions. These metamodels,
as well as methods detailing what and how to model, are typically called Enterprise
Architecture frameworks. Over the years, a number of public and private organiza-
tions have developed Enterprise Architecture frameworks, including the Zachman
framework [276], TOGAF[265] and DODAF [98].

The usage of Enterprise Architecture to describe the relationship between the
business and IT domains typically results in fairly large models. The description of
a small subset of the considered organization can already lead to a model with sev-
eral hundred elements. If a companywide model is to be created, depending on the
size of the considered company, one can expect several hundred thousand elements

4 CHAPTER 1. INTRODUCTION

to be part of the description. The manual creation of models of this size is both
expensive and prone to errors. Instead, people working in IT management typically
perform this task using Enterprise Architecture modeling tools. These tools allow
the collaborative creation of models as well as the visualization of specific aspects
depending on the target audience. Models created with Enterprise Architecture
tools typically document the current state of the enterprise. Once a model is in
place, a process owner can, for example, identify the IT systems that are used to
execute a certain process. However, the sheer usage of Enterprise Architecture tools
is not sufficient to ensure that business strategies and IT capabilities are sufficiently
adjusted. Gartner states that “Enterprise architecture tools can provide tremen-
dous business value, but only when aligned with the needs of the organization.
Enterprise Architecture tools must be selected, deployed and managed carefully to
ensure proper ROI.[87]”

Information technology advisories such as Gartner [88]and academic groups
such as the Department of Software Engineering for Business Information Systems
at Technische Universität München (TUM) [166] evaluate Enterprise Architecture
tools. They conduct these evaluations in collaboration with tool vendors and espe-
cially end-user customers. Furthermore, they use such criteria as ability to create
visualizations, support of large-scale data, communication and collaboration sup-
port and usability to evaluate the strengths and weaknesses of those tools [166].
Both studies identify that the currently available tools are strong in terms of the
creation of Enterprise Architecture models and the support of collaborative model
creation.

However, current Enterprise Architecture tools often do not allow the inves-
tigation of the details of the described systems. In particular, Enterprise Archi-
tecture tools generally possess limited analysis capabilities with regards to system
properties, such as cyber security, availability or interoperability. Answering such
questions as “is this business process available, even under high pressure and many
executions, given the company’s infrastructure?” or “is this system likely to be
target of a cyber security attack?” is not possible by those tools. One cause of
this weakness is that Enterprise Architecture tools typically do not consider the at-
tributes of the modeled elements completely way and, in particular, disregard how
attributes impact each other. Doing so, they lack the ability to evaluate whether
the scenario described in a certain model fulfills the requirements posed against
it. This, however, is necessary to identify whether the description is preferable
and, as a second step, whether the described scenario should be implemented or
disregarded.

Gartner and TUM identify the need for Enterprise Architecture tools to “provide
valuable information and analysis capabilities for strategic decision making”[87].
Evaluating 14 (Gartner) or 12 (TUM) Enterprise Architecture tools, both tool sur-
veys identify that the analysis capabilities are not yet completely mature. In the
Hype Cycle for Enterprise Architecture [90], 2013, it is stated that Enterprise Ar-
chitecture tools are two to five years away from “capturing vital enterprise context
background, along with content development and analysis capabilities across the

1.1. RESEARCH MOTIVATION 5

business, information, technology and solution architectures.” On the other hand,
TUM [166] notes that, “concluding this non-exhaustive list of ideas for possible top-
ics in Enterprise Architecture management and development . . . we regard mecha-
nisms for performing simulations on the Enterprise Architecture or subsets thereof
being a promising approach. With these simulations techniques complemented by
methods for quantifying certain properties of the Enterprise Architecture, likewise
metrics, we see the dawn of a new Enterprise Architecture management maturity
level”. Outside the domain of Enterprise Architecture, tools that combine modeling
and analysis exist.

Numerous tools allow the investigation of subparts of organizations. Tools such
as Opnet[176] focus on the performance analysis of computer networks and appli-
cations. In this tool, one first creates a visual representation of the infrastructure
that should be investigated. Thereafter, this description can be used to investigate
whether the applications of a considered company are sufficiently supported by the
underlying information systems and networks. Other modeling tools focus on the
description of a company’s business processes. The ARIS Business Process Analysis
Platform [3] allows the description of how different roles perform the activities that
can be found at an organization. Additionally, how activities relate to each other
and together form business processes can be modeled. It is even possible to simulate
these processes to identify bottlenecks, overcapacity and suboptimal utilization of
resources or redundant tasks.

Using MulVAL [206], one can model possible attacks on IT architecture. These
models are created based on vulnerability scanners. NetSPA[11] and its successors
GARNET [270] and NAVIGATOR[52] follow the same approach to support model-
based vulnerability assessments. k-Zero Day Safety [266] is a tool for modeling
zero-day attacks.

The ATHENA Interoperability Framework [21] includes a tool for the inter-
operability analysis of IT systems. The Analytical Availability Assessment of IT
Services [163] allows the modeling and evaluation of service availability.

However, no available tool allows company-wide analysis covering both business
and IT elements comprehensively. Unlike the available Enterprise Architecture
tools, the available analysis tools do not focus on providing enterprise-wide deci-
sion support. Instead, the analysis tools focus on limited parts of a considered
organization. Moreover, the discussed tools only allow the consideration of one or a
few system properties 1 . An analysis of numerous system properties simultaneously
is typically not supported by these tools. In particular, no tradeoffs between the
system properties from different domains, such as tradeoffs between cyber security
and organizational structure, are possible.

Switching focus from enterprises to the products they create and sell, the design
technology CAD (computer-aided design) [63] is often encountered. This approach
is commonly used in the making of machines, vehicles and buildings, i.e., models

1The term “system” is here used in its wider meaning, i.e., “a complex whole” [207], and is
not limited to IT systems.

6 CHAPTER 1. INTRODUCTION

of the artifacts that will be created. These models provide a great benefit: it is
easy to perform calculations of how the artifacts would behave instead of testing
them empirically. Empirical testing, such as crash tests, is expensive and time
consuming. Based on CAD calculations, the optimal material for a given purpose
can be identified or an optimal setup for a certain construction can be selected.

Current Enterprise Architecture tools are comparable to available CAD tools
without the ability to analyze the design, i.e., without the functionality to simu-
late crash tests, calculate the stability of buildings or investigate the performance
of engines. The available Enterprise Architecture tools generally only support the
creation of descriptive models and lack advanced analysis capabilities [166]. Inves-
tigations of system availability or how well an organization is capable of fulfilling its
goals are generally not possible, nor is it possible to analyze cyber security aspects
to identify vulnerabilities.

The research documented in this thesis was intended to completely fulfill the
CAD analogy.

The purpose of the described research is therefore to develop
and demonstrate an Enterprise Architecture modeling tool
with a focus on system property analysis. Furthermore, the
goal is to identify and implement the necessary functionality
that such a tool needs to support.

An Enterprise Architecture tool that combines modeling and analysis is pre-
sented. Descriptions of organizations cannot only be created as a means of docu-
mentation but instead allow for reasoning over system properties.

1.2 Research contribution and delimitation

In this section, the research contribution made by the author is described in three
steps.

First, the purpose of the performed research work is detailed, and measurable
subtasks are stated.

Second, the contribution made by this research work is discussed.
Third, the author’s specific contributions to the presented research work are

discussed. This is necessary as the research work described in this thesis was carried
out as part of several larger research projects. Each project had several contributors
who sometimes also added to the presented research work. These contributions were
coordinated and governed by the author of this thesis.

Purpose of the performed research

As stated in the previous section, the aim of the presented research project was
to develop a software tool that can be considered a computer-aided design tool for

1.2. RESEARCH CONTRIBUTION AND DELIMITATION 7

Enterprise Architecture. The goal was to develop a tool that uses models repre-
senting scenarios as input to analyze the characteristics of these setups and identify
a preferable scenario. Fulfilling this goal included

1. Eliciting the requirements of a tool for Enterprise Architecture analysis
2. Designing and developing a tool considering these requirements
3. Evaluating the quality of the created tool with regards to the identified re-

quirements
4. Demonstrating this tool to both academics and practitioners

Contribution of the research work
Compared to existing tools, the proposed solution presented in this thesis allows
in-depth analysis of the system properties of enterprise architecture models. The
attributes of the modeled entities are calculated using mathematical reasoning. It is
possible to trace chains of impact and find root causes to identify potential sources
for improvement.

The simplified overall architecture of the tool is presented in Figure 1.1.

Figure 1.1: The Simplified overall architecture of the presented tool

8 CHAPTER 1. INTRODUCTION

It can be seen that the presented tool has two components, which are tailored to
support two different target audiences. The first component, the class modeler, al-
lows academics and other experts to iteratively develop analysis frameworks. These
frameworks contain extended metamodels, specified as UML class diagrams [29],
formalizing analysis theory. Additionally, frameworks may include templates, i.e.,
reusable blueprints that are specified on top of the UML class diagrams. View-
points, specifying coherent set of views based on the class diagrams, might be
included in an analysis framework as well. These frameworks can describe various
system properties, including cyber security, performance, modifiability and cost of
usage. Using the second component, the object modeler, practitioners can apply
these analysis frameworks to evaluations and facilitate decision-making. Thereby,
the users instantiate the included, previously created UML class diagrams into
UML object diagrams to create a model describing the scenario of interest. The
user of the object modeler can instantiate the templates that are included in the
analysis framework during the creation of the object diagram. Practitioners can
also consider the resulting object diagrams based on views conforming to the view-
points that are included in the analysis framework. Practitioners do not need to
be experts in the fields that they strive to investigate but do need to know their IT
and business domain.

The described concepts and the relationships between them are depicted in
Figure 1.2.

Figure 1.2: The concepts included in the analysis frameworks and scenario descrip-
tions

Class	

Diagram	

(extended	

metamodel)	

Object	

Diagram	

(model)	

Viewpoints	
 Views	

defines instantiates

defines conforms to

consists of

defined on

consists of

participates in

Templates	

Analysis	

framework	

Scenario	

descrip@on	

includes

includes

includes

is part of

is part of

is part of

instantiates

defined on

consists of

is part of

is part of
includes

includes

is instantiated in

Class	
 modeler	
 Object	
 modeler	

Enterprise Architecture tools typically do not address two different user groups.

1.2. RESEARCH CONTRIBUTION AND DELIMITATION 9

Usually, these tools focus on the creation of company-specific descriptions, whereas
no or only limited support is offered for the specification of analysis frameworks.
Most of the available Enterprise Architecture tools can therefore be compared to the
second component of the presented tool. The application of Enterprise Architecture
is company-specific. Depending on the business sector that a particular company
operates in, the goals of its Enterprise Architecture endeavor may vary. The banking
sector often has a particular interest in availability questions, whereas power utilities
frequently focus on cyber security aspects. Therefore, the tool allows analyses of
various types.

Moreover, the tool is not limited to a set of properties that can be analyzed.
Instead, the tool is implemented such that new types of analyses can be defined
when needed. This can be performed by the tool user directly and does not need
support from the tool developer. This is different than the functionally provided
by many of the available Enterprise Architecture tools. These tools typically come
with a fixed set of analysis capabilities. Additional analysis functionality cannot
be added by the user; instead, he or she needs to purchase add-ons or enhanced
versions of the tool to extend the analysis capabilities.

Using the presented tool, not only can analyses be added as needed but the
existing analyses can also be modified and adapted to fit a particular company.
This includes the setting of enterprise-wide default values, the adaption of the
mathematics used during the analysis and the introduction of company-specific
concepts that should be captured when creating Enterprise Architecture models.
This is again different from many of the available Enterprise Architecture tools. If
these tools possess analysis capabilities, these capabilities are often realized as a
black box that cannot be modified by the tool user.

In addition, using the tool, it is possible to update the used analysis framework.
In this way, even if they have been created in the past, models can be evaluated
with regards to the latest theory. This tool separates the visual descriptions of an
enterprise and the mechanisms used to evaluate these models. Taking this feature
to the extreme, it is occasionally even possible to analyze a model with regards to
a certain system property even if one did not have that particular aspect in mind
when creating the model of the organization.

Another feature that typically cannot be found in other tools is the tool’s ability
to handle uncertainty. This is relevant with regards to two aspects. On one hand,
practitioners might not know all of the details required to create a holistic model
or might not be sure whether some aspects need to be described. The tool does
not expect the models to be correct in every detail; instead, it is possible that
a user expresses that he or she is unsure about the value of a certain attribute
or relationship. On the other hand, the other user group, academics and theory
experts, can also benefit from the consideration of uncertainty. In the present
tool, this group can express uncertainty with regards to the analysis theory that
they define. In this way, effects between attributes, default values or the existence
of theoretical concepts can be specified, even if the experts are not completely
convinced of the soundness of the theory they describe.

10 CHAPTER 1. INTRODUCTION

The author’s specific contributions
During the performance of the research work described in this thesis, previous
results were considered. The presented research work was part of several large
research projects (cf. Section 1.3). Several authors and other contributors were
involved in the presented project. In particular, the author did not implement
the presented software tool by himself. This task was performed by a team of
programmers. Instead, the author was responsible for the project management and
worked in a variety of roles in numerous tasks. The specific contributions of the
author are described in the following and are related to the work of others.

The first task of the described project was to design a development process
that could be followed to reach the previously mentioned goal of the research work.
To create an Enterprise Architecture analysis tool, relevant user groups were ap-
proached: academics interested in the specification of analysis frameworks and prac-
titioners wanting to evaluate a certain architecture. Together with those groups,
requirements for a tool for Enterprise Architecture analysis were derived. There-
after, the collected requirements were translated into specifications that could be
used during the implementation. The author was also responsible for the coordi-
nation of the requirements prioritization to select the next feature that should be
added to the tool. Once a selection was made, the requirement was translated into
a to-be (tool) architecture that could be used by the development team. This team
consisted of one fulltime programmer and was frequently supported by students.
The team did the actual coding on its own, coordinated by the author. The outcome
was tested and evaluated by the author again. Additional implementation activi-
ties were triggered if needed. This was the case when tests failed or requirements
were not met. The testing and especially the evaluation activities were performed
together with the stakeholders of the requirements. Lastly, the outcome of the tool
development was incrementally demonstrated together with the other stakeholders.
This involved authoring scientific papers to present the tool features, presenting
the tool to relevant audiences and conducting case studies together with industry
partners.

The development process described above is visualized in Figure 1.3.

1.2. RESEARCH CONTRIBUTION AND DELIMITATION 11

Figure 1.3: The role distribution during the development process

The author collaborated with numerous (academic) tool users to identify and
realize relevant features. These collaborations were typically carried out in terms
of larger research projects with several contributors. In particular, the research
project on cyber security analysis, described in the following section (cf. Section
1.3), generated several requirements that were considered while performing the
research work described in this thesis. In the remainder of this section, the author’s
contribution is discussed with regards to the two core aspects of the tool, analysis
and modeling. Figure 1.4 and Figure 1.5 depict the contribution made. A scale
with four categories, single author, author, co-author and not involved at all, is
used to describe the contributions. The category “single author” refers to work on
the tool in terms of feature development that the author carried out by himself,
with very limited support from other contributors. The category “joined author”
indicates that the author of this thesis was part of a group of equal contributors
when a certain feature was developed. The category “co-author” describes features
where the development was led by a project participant and the author of this thesis
had a limited contributing role. Lastly, the category “not involved at all” describes
features of the tool developed without any nameable contribution by the author.

12 CHAPTER 1. INTRODUCTION

The author’s contribution with regards to the analysis capabilities of
the presented tool

Figure 1.4: The author’s contribution with regards to analysis

Update	
 of	

Analysis	

Framework	

Impact	
 Analysis	

Input	

Configura;on	

Inference	
 Engine	

Probabilis;c	

Reasoning	

Actual	

Specifica;on	
 of	

Analysis	

Framework	

The	
 author's	
 contribu0on:	
 Analysis	

single	
 author	

	

	

joined	
 author	

	

	

co-­‐author	

	

	

not	
 involved	
 at	
 all	

	

Six categories need to be considered with regards to the analysis of the capa-
bilities of the tool. Chapter 7 contains a thorough description of these features
(cf. Section 7.4). However, to discuss the author’s research contribution, it is nec-
essary to briefly introduce these categories here. The categories and the author’s
contributions are illustrated in Figure 1.4.

The category “update of the analysis framework” describes the capability of
the tool to replace the framework that is used for the analysis with a reworked
and improved version. The tool handles this exchange of the analysis framework
internally; no manual reworking is required by the user. It is also not necessary for
the user to restart his or her modeling endeavor. Instead, the user can continue
extending the model originally created by applying a previous version of the analysis
framework based on the latest version of that framework.

The category “impact analysis” covers the capability of the tool to identify
dependencies between characteristics of the described system and how these char-
acteristics impact the system properties that the user wants to evaluate. The tool
is able to create networks illustrating the factors that impact the characteristics of
a modeled entity. In addition, the tool can identify all aspects of a model that one

1.2. RESEARCH CONTRIBUTION AND DELIMITATION 13

particular characteristic of a modeled entity impacts.
“Input configuration” describes the tool’s capabilities to define the underlying

theory to evaluate the characteristics of the created models. In this category, the
tool’s ability to express derivation rules based on and for the included model con-
cepts are covered.

The inference engine is the component of the tool that evaluates derivation rules.
These derivation rules are utilized to determine the characteristics of the modeled
entities based on other characteristics that are part of the model. During the
described research project, different engines using different algorithms to perform
inference were designed and implemented (cf. Section 5.4).

The category “probabilistic reasoning” describes the tool’s ability to consider
probability theory during the inference of the tool characteristics. Using prob-
abilistic reasoning, the tool is able to feature structural definitional uncertainty,
theoretical heterogeneity, causal uncertainty, empirical uncertainty and structural
uncertainty (cf. Section 3.2). The category “actual specification of the analysis
framework” describes the use of the tool to specify an analysis framework based
on a previously established knowledge base. Before a framework can be specified,
relevant concepts and their dependencies, in the context of the considered system
property, need to be identified. However, the activity of deriving a knowledge base
is outside the workflow supported by the tool. Instead, the tool is designed to
create analysis frameworks representing such a knowledge base. Once an analysis
framework is in place, it can then be used to evaluate scenarios of interest.

The author is the single author of the tool components allowing the updating of
the analysis framework during run-time. Together with other project participants,
he realized the need to conduct impact analysis and is therefore a joined author of
this feature. He is also a joined author of the tool’s feature allowing it to provide
input to the analysis engine (input configuration), as this feature was added to
the tool based on previous prototypical implementations of the tool implemented
before the documented research project was initiated. The author is co-author of
the inference engine, which was the result of a research project carried out at the
author’s department over several iterations. The author of this thesis is also co-
author of the approach used to perform probabilistic reasoning that is used as part
of the inference engine. This decision was made in research projects led by other
project contributors. Lastly, the author did not directly contribute to the actual
specification of analysis frameworks.

The author’s contribution with regards to the modeling capabilities of
the presented tool

For the analysis domain, seven dimensions need to be considered with regards to
the tool’s modeling capabilities. These dimensions and the author’s contribution
are illustrated in Figure 1.5.

14 CHAPTER 1. INTRODUCTION

Figure 1.5: The author’s contribution with regards to modeling

Templates	

Automa-c	
 Model	

Instan-a-on	
 	

User	
 Interface	

Usability	
 Result	
 Visualiza-on	

Model	
 Crea-on	
 &	
 Edi-ng	

Actual	
 Model	
 Crea-on	

The	
 author's	
 contribu0on:	
 Modeling	

single	
 author	

	

	

joined	
 author	

	

	

co-­‐author	

	

	

not	
 involved	
 at	
 all	

	

The category “templates” describes the tool’s ability to specify and use blueprints
to accelerate the modeling process and reduce the visual complexity. Templates can
already be defined as part of the analysis framework specification to guide the user
during the utilization of the framework.

The category “automatic model instantiation” describes the import of data
gained from external sources, the processing of these data in the preparation of
an analysis and finally the creation of a model representing the processed external
data.

The user interface describes the tool’s graphical component used to interact
with the user to create models. Interaction is bidirectional, as input from the user
is processed and output in terms of visual depictions is created. This category also
concerns dialogs, their structure and the look and feel used during the modeling
endeavor.

The category “usability” covers the ability of the tool to provide the user with
the information that he or she needs at a particular moment during the tool ap-
plication. Additionally, this category addresses the tool’s capability to support the
fulfillment of the tasks that a user intends to complete. This category also cap-
tures the development of a workflow to be followed during the tool usage. Such a
workflow suggests how to use the tool and in which order tasks should be executed.

1.3. APPLICATIONS TO CYBER SECURITY 15

The category “result visualization” describes the tool’s abilities to graphically
illustrate the results of a system property analysis.

Model creation and editing describes the tool features used to create models.
Features to apply the analysis framework to describe a particular scenario are cov-
ered here as well. This category captures aspects such as the automatic generation
of a layout of a model, the reuse of existing models to create a new one and the
performance of changes in a model.

Lastly, the category “actual model creation” addresses the usage of the tool
to actually investigate a scenario. This category describes the usage of analysis
frameworks to describe a particular setup, evaluate this scenario and consider the
analysis results.

The author was the single author of the components involving specifying and
using the templates. He is also the single author of the tool’s features allowing it
to automatically create models (object diagrams) instantiating the class diagrams
included in analysis frameworks. The author and other project participants are
responsible for the design of the user interface and usability aspects; therefore, the
category “joined author” is used. The author is co-author of the result visualization,
which he designed, led by other colleagues. He also contributed to the development
of the tool components that allow the creation and editing of the model under
the leadership of other project participants. The author did not contribute to the
actual creation of models to be used for analysis.

The discussed features of the tool are explained in-depth in Chapter 7.

1.3 Applications to cyber security

The tool presented in this thesis was partially developed as a contribution to a col-
laborative research project between the Swedish National Grid (Svenska Kraftnät),
the Swedish Defense Research Agency (Totalförsvarets forskningsinstitut) and the
Royal Institute of Technology. This consortium partially financed the research work
described in this thesis. The goal of the joined research project was to provide a
means for decision-support with regards to the design of industrial control systems
from a cyber security perspective. The decision support should be provided so that
information security is addressed from a holistic and enterprise-wide level. To fulfill
this project goal, two areas had to be addressed. On the one hand, the complex-
ity and size of industrial control systems (SCADA systems) had to be considered.
On the other hand, the complexity of the cyber security domain needed to be ad-
dressed. Here, it is necessary to cope with various aspects, such as vulnerabilities,
possible attacks and prevention techniques, to achieve a good level of security.

The presented software tool contributes to the fulfillment of this research goal for
decision-support with regards to cyber security, as it offers an environment that can
be used to perform system analysis. Some of the tool’s features that are presented
in this thesis support the analysis of enterprise models with regards to security in

16 CHAPTER 1. INTRODUCTION

particular. However, the tool as such is general and, as seen in the remainder of
this thesis, supports the analysis of numerous system properties.

The connection between the described research work and the project on cyber
security analysis can be traced throughout this thesis. Section 3.3 provides back-
ground information for this field of research. Furthermore, Section 5.6 describes
the decisions made to specifically support the creation of enterprise-wide security
modeling within the tool. In this section, several possible options to realize cyber
security modeling are presented and compared. Based on this comparison, one
modeling approach, attack graphs, was selected, and support for this approach was
added to the tool. The usage of this support for the creation of models for cyber
security analysis considering organizations from a holistic perspective is demon-
strated in Section 8.2. The reliability of the design decision to make use of attack
graphs is discussed in Section 10.2 as part of a larger discussion of the validity,
reliability and generalizability of the performed research. Lastly, in Chapter 12, a
section discussing future projects to further improve the tool’s support for cyber
security analysis is included.

1.4 Remaining structure of the thesis

In this section, the structure of the present thesis is briefly described. In Chapter
1, the topic of this thesis is introduced, the performed research is motivated and
the main contributions made as well as the achieved results are discussed. The rest
of this thesis unfolds as follows. In Chapter 2, the research methodology that was
applied during this thesis is presented. Additionally, a mapping between the steps
of the used research method and the chapters of this thesis is established. The
underlying theory for the performed work is described in Chapter 3. In Chapter 4,
the requirements of a tool supporting Enterprise Architecture analysis are discussed.
Thereafter, in Chapter 5, different architectural options that were considered during
the tool development and design decisions made are discussed. In the next chapter,
Chapter 6, the development process that was followed is described. The outcome
of this development activity is the topic of Chapter 7. Here, the tool is presented
and visually illustrated. In Chapter 8, the aspects of how the tool was presented
to a broader audience are covered. Practical applications at numerous companies
as well as how the analysis frameworks were specified using the presented tool are
described. The evaluation of the tool is described in Chapter 9. In particular, the
fulfillment of the requirements presented in Chapter 4 is discussed. Thereafter,
in Chapter 10, the performed research is discussed with regards to the validation,
reliability and generalizability of the presented results. Following the used method,
how the outcome of this thesis was communicated to relevant audiences is described
in Chapter 11. Lastly, future work is outlined in Chapter 12. The thesis is concluded
in Chapter 13.

Chapter 2

Research method

This chapter describes the underlying research design followed to achieve the goals
of the presented research. In addition, this section describes how the structure of
this thesis reflects the research design.

2.1 Design Science

The development of a tool for Enterprise Architecture analysis is a typical case of
information systems (IS) research [241, 47, 271]. This discipline aims at developing
IT artifacts, including constructs, models, methods and instantiations [114] . The
Enterprise Architecture analysis tool that is described in this thesis can be classified
as an instantiation, as the research resulted in the implementation of a prototype.

IS research is interdisciplinary, combining computer science, management, sys-
tems theory, sociology, finance, economics and anthropology [195].

Gregor [96] identified five theories in the field of IS research, including the theory
for design and action, also called Design Science [196]. Design Science addresses the
question of how to do something [97]. In the context of the performed research, the
question is how to create a tool for Enterprise Architecture analysis. It is about the
principles of form and function, methods and justificatory theoretical knowledge
that are used in the development of IS.

Design Science is a problem-solving paradigm originating from engineering [114].
It aims at the creation of artifacts based on existing kernel theories that are applied,
tested, modified, and extended through the experience, creativity, intuition and
problem-solving capabilities of the researcher.

To find the best, or at least a satisfactory, solution to the considered problem,
Design Science is typically carried out as an iterative process. During each iteration,
one tries to make use of the experience gained previously and create an even better
solution [155, 114].

There are numerous processes outlining the performance of Design Science, in-
cluding the following.

17

18 CHAPTER 2. RESEARCH METHOD

Figure 2.1: The Design Science Research Methodology (DSRM) Process Model
[210]

In [211], the authors present, demonstrate and evaluate a Design Science re-
search methodology (DSRM) process model that was derived based on prominent
Design Science approaches. The process is visualized in Figure 2.1. This method-
ology was followed during the development of the Enterprise Architecture analysis
tool presented in this thesis.

The methodology consists of six steps:
1. Identify problem & motivate
2. Define objectives of a solution
3. Design & develop
4. Demonstrate
5. Evaluation
6. Communication

A consideration of the steps in detail follows.

Step 1: Identify the Problem & Motivate
Initially, one needs to define the addressed problem. The user of the methodology
will later use this definition to evaluate the created artifact. In line with [114] this,
one must have a reason for conducting the research, i.e., there must be a need
to propose a new artifact. This need can be expressed formally as the differences
between a goal state and the current state of any type of system.

Step 2: Define Objectives of a Solution
The second step is to derive the objectives of a proposed solution considering the
problem definition as well as what is possible and feasible. One should also consider
the existing (not completely satisfying) solutions[114].

2.2. THE RESULTING DESIGN SCIENCE METHODOLOGY 19

Step 3: Design & Develop
In this step of the methodology, one creates the artifact using the previously identi-
fied objectives as a theoretical basis. The authors of [211] stress that the resources
required during the transition from objectives to design and development include
knowledge of theory that can be brought to bear in a solution.

Step 4: Demonstrate
Here, one demonstrates the application of the previously developed artifact to solve
one or more instances of the problem [261]. The usage can be demonstrated in
several ways, including experiments, simulations, case studies and (mathematical)
proofs [210].

Step 5: Evaluation
In this step, one observes and evaluates to what degree the artifact offers a solution
to the identified problem [212, 195, 264]. Typically, one compares the objectives
of a solution (step 2) to the actual results observed in step 4. Once again, the
performance of this step should be tailored to the nature of the problem and the
artifact. As part of this step, the method applicant can determine whether to iterate
back to step three with the aim of creating an improved artifact or leave further
refinement to follow-up projects. This decision might depend on the considered
problem.

Step 6: Communication
The final step is to inform relevant audiences about the problem and its importance,
the artifact, its utility and novelty, the rigor of its design, and its effectiveness
[56]. This includes scientific publications. According to the authors of the DSRM
“communication requires knowledge of the disciplinary culture”.

2.2 The resulting Design Science methodology

This section describes how the previously described DSRM process model was used
to achieve the goals of the research work presented in this thesis. For each of the
method’s steps, a mapping to the corresponding chapters of this thesis is estab-
lished, and the content of these chapters is briefly presented.

Step 1: Research motivation for a tool for Enterprise
Architecture analysis
This first step corresponds to the “Identify the Problem & Motivate” step of the
DSRM process model. The first step of the DSRM is covered in the introductory

20 CHAPTER 2. RESEARCH METHOD

chapter of this thesis: Section 1.1 contains a description of the purpose of the
performed research work i.e., the development of a tool for Enterprise Architecture
analysis. The need for such a tool is motivated, and how it should differ from
existing solutions is explained. Additionally, the context of the performed research
is explained (cf. Section 1.3).

Step 2: Requirements on a tool for Enterprise Architecture
analysis

The second step of the applied method reflects the step “Define the Objectives of a
Solution” in the DSRM model. Combined, Chapters 3 and 4 cover this second step.
Chapter 3 describes the existing and not fully satisfactory solutions and places these
solutions in context. To do so, first, already available Enterprise Architecture tools
are put into context. This helps reveal what is possible and feasible. In Chapter 4,
the elicited requirements of a tool for Enterprise Architecture analysis are discussed.
These requirements form the valuation criteria for evaluating the created artifact
(cf. step 5).

Step 3: Development of a tool for Enterprise Architecture
analysis

This third step is the instantiation of the “Design & Develop” step of the DSRM
process model. Chapters 2, 5 and 6 cover this step. Combined, these chapters
describe the design and development of the tool for Enterprise Architecture analysis.
Chapter 2 (this chapter) contains a description of the method followed during the
described research work. Chapter 5 describes the design of the artifact and explains
the architectural options chosen and fundamental decisions made. This chapter also
presents background information concerning the decisions made. Gathering this
background information was relevant to understanding the potential architectural
options and provided decision support for selecting the proper alternative. Chapter
6 contains a description of the development process followed to create the Enterprise
Architecture analysis tool.

Step 4: Demonstration of a tool for Enterprise Architecture
analysis

This step corresponds to the “Demonstrate” step of the DSRM process model.
Chapter 7 describes the outcome, the artifact that was developed and especially
the realization of the architectural options. Moreover, a description of a number of
case studies using the Enterprise Architecture analysis tool can be found in Chapter
8.

2.2. THE RESULTING DESIGN SCIENCE METHODOLOGY 21

Step 5: Evaluation of a tool for Enterprise Architecture analysis
In Chapters 9 and 10, an evaluation of the tool is presented, corresponding to the
fifth step of the DSRM process model. In Chapter 9, this is first conducted by
comparing the tool demonstrated in Chapters 7 and 8 to the objectives as stated in
Chapter 4. In addition, the validity, reliability and generalizability of the performed
research are discussed in Chapter 10.

Step 6: Discussion and communication of the achieved results
The final step of the DSRM (“Communication”) is covered in Chapter 11, which
describes how relevant audiences were informed and how the achievements made
were presented.

The following chapter (Chapter 12) goes beyond the DSRM, discussing future
work. This discussion is based on the results from the fifth step (Evaluation) and
with regards to the feedback received while presenting the tool to relevant audiences.
Lastly, Chapter 13 concludes the thesis and summarizes the performed work and
achieved results.

Chapter 3

Enterprise Architecture and
system property analysis

In terms of the research methodology presented in Chapter 2, this section con-
tributes to the second step, “Define the Objectives of a Solution”. In detail, an
introduction to the topic of Enterprise Architecture is given. Thereafter, a method
for Enterprise Architecture analysis is introduced. This section is followed by a
section describing the currently available Enterprise Architecture tools and a con-
sideration of their analysis capabilities. Lastly, this chapter contains a section on
the properties typically considered during Enterprise Architecture analysis. These
properties recur in the remainder of this thesis.

3.1 Enterprise Architecture

One widely accepted approach to IT management is Enterprise Architecture (EA).
Many authors consider John Zachman, who developed the Zachman Framework
[276] in the late 1980s, to be the founder of this discipline. He was the first to present
a classification schema arguing for the structured description of enterprises in a
holistic manor. In particular, the framework stressed the importance of modeling
comprehensively from the strategic aspects of an organization via business and
(IT) system details down to the implementational characteristics. Additionally,
Zachman stressed the management aspects by suggesting six categories of models:

• The data description — What
• The function description — How
• The Network description — Where
• The people description — Who
• The time description — When
• The motivation description — Why

23

24
CHAPTER 3. ENTERPRISE ARCHITECTURE AND SYSTEM PROPERTY

ANALYSIS

However, Zachman was not specific with regards to modeling notation. He sug-
gested neither modeling syntax and semantics nor how to synchronize the different
models.

Other Enterprise Architecture frameworks that were developed later, including
TOGAF [111], feature metamodels, i.e., language specifications clarifying what to
model and how do to so. TOGAF 9 contains the architecture development method
(ADM) [109], which describes eight domains to be considered during an Enterprise
Architecture endeavor. These domains cover, among others, the architecture vision,
the resulting business architecture, the technical architecture as well as the projects
performed to fulfill the architecture vision. With the release of the ArchiMate 2.0
[108] standard by the Open Group, a modeling language became available that
“complements TOGAF in that it provides a vendor-independent set of concepts,
including a graphical representation, that helps to create a consistent, integrated
model . . . which can be depicted in the form of TOGAF views [104]”. The Archi-
Mate standard describes a mapping between TOGAF views and the ArchiMate
viewpoints, going as far as that the “ArchiMate standard does not provide its own
set of defined terms, but rather follows those provided by the TOGAF standard”.

TOGAF and the Zachman Framework are some of the most commonly used En-
terprise Architecture frameworks [139]. Other frequently used approaches include
the Department of Defense Architecture Framework (DODAF) [191] for the United
States Department of Defense, the Treasury Enterprise Architecture Framework
(TEAF) published by the US Department of the Treasury [194] and the Federal
Enterprise Architecture (FEA) developed by the Federal Government of the United
States [54]. Including Enterprise Architecture frameworks developed by smaller or-
ganizations and those focusing on specific audiences, more than 900 frameworks and
modeling tools provide different approaches to giving recommendations on what to
consider while performing Enterprise Architecture endeavors [193]. Most of these
frameworks have in common that they typically advocate for the description of
companies with regards to the business, application, infrastructure and informa-
tion domains. These four domains can be found under different names, as no
common language for Enterprise Architecture has been established to date, and
many Enterprise Architecture frameworks use their own wording to describe the
offered concepts [231]. Furthermore, some frameworks aggregate some of the do-
mains. For example, a consideration of the application and infrastructure is fairly
common. In the business domain, it is common to describe organizations with re-
gards to business processes, business roles, actors, business objects and products
[108]. In the application domain, one can find such concepts as applications and
data objects[108]. The infrastructure domain covers servers and desktop comput-
ers, network equipment and other physical devices[108]. How data between the
three abovementioned domains is exchanged is covered in the information domain.
This crosscutting domain both describes digital information stored in databases
and processed in computer systems as well as the physical representation of this
information, for example, as paper copies of contracts.

3.2. ENTERPRISE ARCHITECTURE ANALYSIS 25

Many frameworks also emphasize the importance of modeling the visions and
strategic goals of the described organization [66]. Keeping in mind that Enterprise
Architecture is a tool for IT management with a special focus on business IT align-
ment, this is useful for evaluating whether the business domain and IT help reach
these goals.

It is also common to find support for describing engineering requirements and, in
particular, the expression of the requirements posed on different elements that are
part of the organization. Often, requirements can be described for both business
elements, e.g., that a certain business process should have a certain maximum
execution duration and a certain infrastructure and that a certain server should be
available during business hours.

In some frameworks, one can also find support for describing change projects
that address the migration from one state of the enterprise to another. Often, one
can describe these projects in terms of the team structure, resource allocation and
the elements of the Enterprise Architecture that are affected.

Recently, the modeling of security aspects on an enterprise level has also become
popular in some of the frameworks [213]. This is an aspect of relevance for both
the business and IT domains of an organization. On the one hand, hacking and
other forms of cyber criminality impact computer systems and the information
those systems process. On the other hand, social aspects, including phishing and
skimming, are relevant in the business domain.

Frameworks that are specific to the modeling process typically use metamodels
to define the visual representations. These metamodels establish a language for
the creation of models in terms of syntax and semantics. One finds the allowed
concepts that can be used for the creation of enterprise-wide descriptions as well
as how these concepts should be connected. Being specific about the language has
the advantage that everyone who is familiar with a certain metamodel will be able
to understand all models that instantiate it.

The various previously mentioned architecture aspects cover a variety of differ-
ent topics from strategic business aspects to very technical details. To integrate
this diversity, many Enterprise Architecture frameworks specify viewpoints on top
of the metamodel [153]. Viewpoints typically define subsets of the metamodel in
terms of allowed concepts and relationships. The result of the application of a
viewpoint to a model is a submodel only capturing an excerpt of the whole. The
subset is called a view.

3.2 Enterprise Architecture analysis

Kurpjuweit and R. Winter [148] identified that Enterprise Architecture models can
be used for (i) documentation, (ii) design and (iii) analysis. In [133] the authors
stress that Enterprise Architecture documentation and analysis posses no intrin-
sic value in themselves but can be valuable for providing good decision support
to decision-makers concerning organizational-wide topics. However, only a few ex-

26
CHAPTER 3. ENTERPRISE ARCHITECTURE AND SYSTEM PROPERTY

ANALYSIS

ceptions of the previously described Enterprise Architecture frameworks support
analysis [137]. In [153] and [122] the authors use ArchiMate to conduct a perfor-
mance analysis. [137] describes a method for Enterprise Architecture analysis. A
further developed version of this method can be found in [43]. Despite minor dif-
ferences, the underlying approach remains the same. The general thinking is that
Enterprise Architecture models should be created with a purpose. It is too costly to
collect all of the data needed for a model that is only used for descriptive purposes.
Instead, modeling and data collection should be performed in alignment with the
goals of the enterprise. The authors argue that potential scenarios should be eval-
uated with regards to their contribution to the goal of the organization. Doing
so allows the comparison of scenarios, the identification of the most suitable one
and decisions regarding its implementation. The authors of both previously men-
tioned Enterprise Architecture analysis methods argue for the usage of extended
metamodels to create analysis frameworks. These extended metamodels not only
describe the resulting models but also feature built-in analysis theory that can be
used to evaluate system properties. The evaluated system properties should in turn
be relevant for the goals of the enterprise. Figure 3.1 depicts the described method

Figure 3.1: The concidered Enterprise Architecture analysis method

The method in brief: First, an academic or other theory expert identifies a
system property relevant for Enterprise Architecture analysis and creates an anal-
ysis framework consisting of an extended metamodel. This metamodel describes
not only the allowed content and structure of the models that make use of it but
also how the attributes of the model impact each other with regard to the chosen
property to be evaluated. Following the method, the impact of the attributes on
each other is expressed in terms of calculation rules. The creator of the extended
metamodel specifies a set of parental attributes for each attribute as well as how the
derivation of the attribute’s value takes place based on the values of the parental
attributes. Additionally, the relationships between the modeled entities and the

3.2. ENTERPRISE ARCHITECTURE ANALYSIS 27

structure of the model can also be considered to derive the value of the modeled
attributes.

For the attributes that are part of the extended metamodel, general data that
describe them can be included as well. Typically, this is expressed in terms of default
values. In the next step, practitioners identify scenarios of interest. These scenarios
should be options with the potential of fulfilling the company’s goals. Following
the method, it is necessary to describe each scenario as a model instantiating the
metamodel included in the analysis framework. This means that the practitioner
should select a fitting analysis framework to evaluate a certain goal. For a particular
scenario, general data can be replaced with specific information for some or all
attributes that are part of the model. This results in a more specific description of
the scenario. In the nomenclature of probabilistic inference, such instance-specific
data are called evidence. In the following step, analysis, the practitioner performs
inference to derive the quantitative values of the models’ attributes and predict the
characteristics of the modeled scenario. The authors of the method suggest inferring
values using probabilistic reasoning. This allows the consideration of uncertainty. In
particular, the authors of [138] have identified five areas of uncertainty: definitional
uncertainty, theoretical heterogeneity, causal uncertainty, empirical uncertainty and
structural uncertainty.

Next, the analysis results can be visualized. Additionally, beyond the scope of
the proposed method lies the task of actually deciding which scenario to implement.

An example based on a real problem is as follows 1 . Närman et al. developed
and published an analysis framework for availability analysis on an enterprise level
[182]. The authors of [136] further developed it into a framework capable of eval-
uating such attributes as cost, data accuracy and modifiability. This framework is
called the multi-attribute property (MAP) class diagram. A large Swedish bank
found itself in a situation in which it was restricted by a tight budget but required
its services to have the best possible uptime. The goals of the bank were thus
high availability and low costs. A decision-maker decided to investigate one par-
ticular business service that was supported by a large network of IT services and
other components. In particular, many load-balancer and redundant systems were
present to ensure the availability of the business service. The decision-maker used
the MAP metamodel to describe the business service and IT support. He developed
two scenarios, represented in two models. Both models instantiated the extended
metamodel included in the already mentioned analysis framework, containing anal-
ysis theory for, among others, cost and service availability. One model covered
the as-is situation, including the mentioned redundancy and load-balancing tech-
niques. The second scenario and model described a flattened architecture without
redundancy. For both models, the decision maker collected evidence to describe the
costs as well the availability of the systems. Next, he used the tool for Enterprise
Architecture analysis that is the result of the research work presented in this thesis

1A course participant presented a slightly modified variant of this example as part of an
enterprise architecture course supervised by the author.

28
CHAPTER 3. ENTERPRISE ARCHITECTURE AND SYSTEM PROPERTY

ANALYSIS

to evaluate both models. The tool calculated the values for the availability and
cost of the business service and visualized the results. The decision-maker realized
that he could achieve almost the same degree of availability in the second scenario,
but at a markedly lower price.

Enterprise Architecture tools

Enterprise Architecture models often become very large. They can contain several
thousands of entities and an even larger number of relationships between them
[15]. Therefore Enterprise Architecture tools are used to handle this complexity.
Some of the most well known Enterprise Architecture tools include Rational System
Architect [124], ARIS Architect & Designer [2], BiZZdesign Architect [27], the
Troux Architect [256] and planningIT [6]. Gartner [88] and the Department of
Software Engineering for Business Information Systems at Technische Universität
München (TUM) [166] identified more than 10 tools that organizations often use,
but the market is even larger. In their latest survey, TUM considered more than 50
tools [277]. These tools generally support one or several of the previously mentioned
frameworks and their metamodels, whereas some have their own framework and
metamodels.

Analysis capabilities of common Enterprise Architecture tools

According to the Enterprise Architecture tool studies performed by Gartner and
TUM, the previously mentioned tools possess some analysis capabilities. These
analyses are typically qualitative and based on visualizations and do not include
the consideration of system properties. For example, which IT-systems support
a selected business process, how many applications read a certain data object or
which roles are assigned to a specific department can be investigated. In addition,
two versions of a model (typically as-is and to-be) can be visually compared.

Within these tools, Enterprise Architecture models usually cannot be analyzed
with respect to such properties as performance, business fit, availability or cyber
security. Common Enterprise Architecture tools allow the relating of entities, indi-
cating that a certain concept, e.g., is a specialization of another one, is composed
of several concepts or is the predecessor of a modeled object. Within the tools,
relationships visually indicate that the real concepts, which the model entities are
meant to reflect, have a connection. A certain organizational role might be a spe-
cialization of another one, a business process might consist of several sub-processes
or an activity might be the predecessor of another one. However, within the tools,
the relationships are merely illustrative and are not used to analyze the causal
impact of the properties of the modeled entities on each other. The tools do not
infer the state of a considered attribute based on other attributes that are affecting
it. Third, as well-known Enterprise Architecture tools do not focus on advanced
analysis capabilities, the tools do not cover the aspect of incomplete models. These
tools only consider elements that have explicitly been modeled. The fact that the

3.3. PROPERTIES FOR ENTERPRISE ARCHITECTURE ANALYSIS 29

tool user might not know all of the details for creating a holistic model or might
not be certain of whether some aspects need to be described is not covered. Lastly,
well-known tools expect the models to be correct in every detail. A user typically
cannot express that he or she is unsure about the value of a certain attribute or
relationship.

In contrast, Abacus [62] offers complex analysis capabilities. It allows the inves-
tigation of Enterprise Architecture models with respect to performance, reliability,
cost, openness, complexity, alignment regulatory and modularity [12, 13]. This is
performed using discrete-event and Monte Carlo simulations. Moreover, tradeoff
and sensitivity analysis can be performed. Abacus lacks two characteristics of the
tool presented in this thesis 2 . First, Abacus does not allow the incorporation
of definitional uncertainty, theoretical heterogeneity, causal uncertainty, empirical
uncertainty and structural uncertainty in the analysis. Second, Abacus has a fixed
set of system properties that can be evaluated; the tool presented in this thesis
allows the user to specify new or modify current analysis theories.

AnnL [156] is another Enterprise Architecture tool possessing advanced analysis
capabilities. It has a focus on the planning of viable enterprises; in particular
consequence analyses can be conducted during the design process of enterprises.
AnnL helps to measure the risks of the options that have been generated from
combinations of alternative resources. It also allows the determination of the price
risk of the options through a cost model and the description of an action plan for
carrying out the tasks using these resources. AnnL evaluates a system dynamics
model using Powersim Studio 9 [245] based on input specified in Excel spreadsheets
[169]. The result of the analysis is then again presented in Excel. Compared to
the tool presented in this thesis, AnnL lacks several characteristics. For example,
AnnL does not support graphical modeling. The used metamodel is fixed and
cannot be adapted by the user. Moreover, AnnL focuses on the risks that arise
during the design. The actual identification (based on, for instance, a cyber security
analysis) of risks is not supported. Lastly, AnnL allows the modeling of the impact
of attributes on one another and the extension of this impact. Uncertainty about
whether this impact relationship exists at all cannot be expressed.

3.3 Properties for Enterprise Architecture analysis

In this section, relevant properties that are often considered for Enterprise Architec-
ture analysis are introduced. In accordance with the applied research methodology
(cf. Chapter 2), this section contributes to the problem definition. A tool for En-
terprise Architecture analysis should support the types of analyses that potential
tool users likely want to perform. Therefore, it is important to understand these

2The presented weaknesses were identified based on the publicly available information about
Abacus on the vendor’s webpage and other secondary sources. The author tried to register for a
trial license to perform an in-depth evaluation of the tool. The request was denied by Avolution, the
tool vendor, due to a conflict of interest between their tool development and the tool development
performed during the described research work.

30
CHAPTER 3. ENTERPRISE ARCHITECTURE AND SYSTEM PROPERTY

ANALYSIS

potential users. Moreover, this section serves as preparation for Chapter 8, in which
applications of the tool are reported. These tool applications were all conducted
with the purpose of either specifying an analysis framework to analyze one of the
following properties or applying such an analysis framework to evaluate a system
property.

Cyber security

The usage of off-the-shelf products, interconnected information systems and in-
creased complexity have given rise to the emergence of logical vulnerabilities over
the last several decades [164, 34]. The impact of several recent large-scale cyber-
attacks and their capability made this problem obvious [151].

For an organization-wide decision-maker, this is not just a question of protecting
soft- and hardware systems. Social aspects, including phishing, scamming and
baiting [67, 173], turn cyber security into an issue that is equally important for the
business level and, in particular, for the employees of a given company. One other
important aspect is that cyber security attacks are typically conducted in terms of
parallel or sequentially conducted attack-steps aiming to reach a certain goal. In
many cases, an attacker does not stop after having performed one single step but
rather uses one step after another to gain more privileges and fulfill his target.

When Enterprise Architecture models are used for cyber security analysis, they
help evaluate the company as a whole and identify likely sequences of attacks as
well as weak links. A systematic consideration of these weak links can be useful for
improving the level of cyber security.

Application modifiability

One of the core concerns of Enterprise Architecture is to ensure that business en-
vironments and IT are in alignment. In particular, this means ensuring that the
IT domain is able to respond to changes triggered from the usually volatile busi-
ness domain. If the business changes, for example, when a company launches a
new product or modifies a business process based on customers’ feedback, the IT
systems need to be modified to continue to support the affected processes. Possible
changes include extending, phasing out, adapting and restructuring the enterprise
systems [18].

At one extreme are local modifications that only impact one particular system.
On the other extreme is the redesign of the entire system landscape by, for ex-
ample, introducing a service-oriented architecture. Many information systems are
currently interconnected, and it is necessary to use them jointly to achieve a certain
result. This connection also needs to be considered when performing modifications.
A change in a system might cause a chain reaction requiring further changes at
additional systems. These changes in turn might trigger follow-up changes at even
more systems, and so on.

3.3. PROPERTIES FOR ENTERPRISE ARCHITECTURE ANALYSIS 31

Performing changes ad hoc might be a good approach for solving abrupt prob-
lems in some cases; however, if those changes are not followed up, they are likely to
negatively impact future modifications. According to [136], these raise questions for
decision makers, such as the following: “Is the source code easy to grasp?” “Which
systems are interconnected and how?” “Are the systems too complex?”

Using Enterprise Architecture models for modifiability analysis supports an-
swering these questions helps decision-makers determine how much effort a given
modification to an enterprise information system would require.

Data accuracy
Not only digital information but also physical documents and other artifacts captur-
ing information are transferred within an organization and to connected enterprises.
Typically, applications or persons read, write, update or delete objects (physical or
virtual) that contain data of relevance. The processing of digital information, which
originates from analog sources, including paper documents or fax messages, might
be the most illustrative example of the close connection between the business and
IT domains.

The use of low-quality data in IT systems is costly according to [254]. An-
alyzing the quality of data is therefore of great importance for reducing waste.
Completeness, consistency, currency, relevance and accuracy are the most common
dimensions of data quality [216].

For Enterprise Architecture analysis, it is common to focus on data accuracy
[136]. IEEE defines data accuracy as (1) a qualitative assessment of correctness,
or freedom from error, and (2) a quantitative measure of the magnitude of error
[215]. Accurate data is the basis for sound decisions. It does not matter whether
the data is used in a manual business process or within an automated application
service; both applications are executed flawlessly at all times, resulting in steadily
deteriorating data accuracy. Another widespread phenomenon is the fact that the
further away from the source the data are, the poorer their accuracy will be [136].

Supported by Enterprise Architecture analysis a decision-maker can evaluate
the accuracy of the exchanged facts, concepts or instructions in a holistic manner.
It is possible to identify humans or IT systems operating on a certain data set and
to evaluate whether they contribute to an improvement or decrease in the data
accuracy.

Application usage
In medium and large enterprises, the usage of a large application portfolio is com-
mon. Often, these portfolios represent large investments and consist of several
hundreds of applications. Realizing their full value is difficult in many cases [35].

Many organizations are facing the problem of an uncontrolled proliferation of
applications. This leads to a heterogeneous application portfolio, redundancy, ex-
pensive IT systems and, in particular, poor business-IT alignment [224].

32
CHAPTER 3. ENTERPRISE ARCHITECTURE AND SYSTEM PROPERTY

ANALYSIS

Enterprise Architecture provides means for company-wide, structured applica-
tion portfolio and landscape management [221].

Service availability
The availability of business processes or business services and thus continuous busi-
ness operations depends on the availability of the application and infrastructure
services they consume [236].

In [79], the authors identified the relevance of this aspect for decisions. Un-
available IT systems not only incur direct costs [237] but also intercept business
operations and have a negative impact on the market value of publicly traded com-
panies [23].

Interoperability
According to IEEE, interoperability describes the capability of two or more systems
or components to communicate with one another, typically by exchanging informa-
tion [215]. For a decision-maker, ensuring interoperability translates into the task of
satisfying a set of communication needs. Enterprise Architecture analysis provides
a means to identify and fulfill these needs throughout the organization.

Cost
Gartner reported in 2007 that information system costs consumed 4.4 % of Euro-
pean firms’ revenue [86]. They further concluded that the information system costs
were likely to increase. The Bureau of Economic Analysis in the United States re-
ported that the share of IT in business equipment investments exceeded 50 percent
in the year 2000 [192].

Considering the huge amount of money spent and the importance of informa-
tion systems (cf. Chapter 1), it is imperative to increase the quality of decisions
concerning information system management.

Bad decisions not only negatively impact the smooth operation of a company but
also have high costs. Enterprises typically procure IT systems with the intention
of using them over a long time period [4]. Thus, considering the longevity of
information systems, it is not sufficient to only consider the initial costs. Instead,
one should also consider maintenance costs, support costs, the cost of changes and
license costs as well as the annual costs. Looking at an organization as a whole,
other cost drivers outside the IT domain are worth monitoring, including labor
costs, the cost of used products and the costs that arise from the consumption of
(business) services that are externally provided.

Using Enterprise Architecture analysis for cost analysis helps identify spending,
allows the price of a product to be traced to the IT systems used during its manu-
facturing and can be used to evaluate the application portfolio of an organization
[10].

3.3. PROPERTIES FOR ENTERPRISE ARCHITECTURE ANALYSIS 33

The authors of [272] state that “an important application of cost analysis tech-
niques is the calculation of IT-related costs and the allocation of these costs to
products, services, processes, organizational units and other artifacts on the strat-
egy layer and on the organization layer”.

Multi-property utility
Multi-property utility evaluation aims at determining how satisfying a given solu-
tion is [19]. This system property is of particular interest when a decision-maker
tries to evaluate multiple other properties, as discussed in this section, at the same
time. In particular, utility theory can be used to perform trade-off analysis between
otherwise incomparable properties, such as cyber-security and interoperability, to
identify the best outcome [142]. Typically, a utility function is used to evaluate a
particular scenario. This utility function takes all of the properties of interest into
consideration and evaluates them, yielding one final score per scenario. The litera-
ture typically describes this phenomenon as multi-attribute utility theory [165, 126].

Enterprise Architecture analysis can incorporate many properties. Often, the
decision-maker has to balance these properties against one another when trying
to find the best possible architecture. Multi-property utility theory applied to
Enterprise Architecture analysis helps the user optimize this tradeoff.

Actor profitability
Business actors, such as companies, follow one or several business models, depending
on their size and the products they deliver. Frequently, they are part of business
collaborations with other organizations. When considering both business models
and collaborations, it is important to predict the performance of the business-to-be
before actually implementing it.

Using such techniques as e-3 value modeling [95], it is possible to investigate
such properties as costs, revenues, risks and profitability and evaluate the economic
efficiency in advance. Additionally, potential business rules can be tested and sen-
sitivity analysis conducted to identify strengths and weaknesses.

Business performance and organizational structure
To achieve an organization’s goals, it is important that its structure is designed in
the most supportive way. To evaluate the quality of an organizational structure,
Mintzberg [174], based on numerous case studies, suggests the consideration of
organizational learning, motivation, efficiency, productivity, coordination, flexibility
and variability.

Analyzing the organizational structure using Enterprise Architecture models, an
IT decision-maker can evaluate whether a proper mapping between organizational
goal and structure exists. He or she can additionally use this type of analysis to
derive a supporting business structure and underlying IT architecture.

Chapter 4

Requirements on a tool for
Enterprise Architecture analysis

In this chapter, the “Define the Objectives of a Solution” step of the applied re-
search method is continued. In particular, the requirements of a tool for Enterprise
Architecture analysis are described. Three domains were considered when identi-
fying these requirements: the criteria that the department of Software Engineering
for Business Information Systems at Technische Universität München (TUM) [166]
and Gartner [88] used in their Enterprise Architecture tool evaluations; the method
for Enterprise Architecture analysis, which the tool presented in this thesis is meant
to support; and the requirements of CAD (computer-aided design) tools and ex-
pert systems. Consideration of the requirements of Enterprise Architecture tools is
evident, as the described research work aimed at advancing the field of Enterprise
Architecture tools. Therefore, a new contribution in this field should be at least as
good as the already available tools. To identify whether this is the case, the same
evaluation applied to existing Enterprise Architecture software is used. The pre-
sented tool was developed with the goal of creating an Enterprise Architecture tool
with a focus on analysis capabilities. Therefore, Enterprise Architecture analysis,
in particular a method for doing so, is a relevant source of requirements as well. The
aim of creating an Enterprise Architecture analysis tool arose in part while consid-
ering existing solutions outside the Enterprise Architecture domain that combine
modeling and analysis. In particular, CAD tools were role models, successfully
demonstrating that visual descriptions do not necessarily need to be descriptive
but also can be used to evaluate the properties of the system they are capturing.
This section ends by summarizing the elicited requirements. This summary will be
used in Chapter 9 to evaluate the tool.

35

36
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

4.1 Requirements derived from Enterprise Architecture
tool evaluations

As mentioned in Chapter 3, some groups have performed Enterprise Architecture
tool evaluations. In this thesis, the work of TUM and Gartner is highlighted. These
two groups have different perspectives on the field of Enterprise Architecture. TUM
has an academic background, whereas Gartner has a stronger link to Enterprise
Architecture users from industry. The work of these two groups was chosen for
study to obtain a holistic perspective of the evaluation of Enterprise Architecture
tool evaluations.

Both groups evaluate Enterprise Architecture tools according to eight dimen-
sions. TUM’s academic background is also indicated by the criteria they consider
when investigating tools: importing, editing and validating; creating visualizations;
interacting with, editing, and annotating visualizations; the flexibility of the infor-
mation model; communication and collaboration support; support for large-scale
data; impact analysis; and reporting and usability. Gartner, in contrast, evaluates
tools with regards to repository/metamodel, modeling, decision analysis, presen-
tation, administration, configurability, frameworks and standards and usability. A
brief consideration of the categories, starting with TUM, follows.

Importing, editing, and validating

The category importing, editing, and validating describes the tool’s ability to make
use of data from external sources. This includes the validation of the imported
data with regards to its data quality. The authors stress the importance of import
capabilities, as many companies create Enterprise Architecture models using data
from existing models (describing subparts of the enterprise) or other sources [70,
225]. Editing describes the ability to modify data during the import process to
make it fit the rest of the model.

Creating visualizations

The creating visualizations category covers the presentation functionality of the
Enterprise Architecture tools. Aspects such as the capability of depicting the se-
lected relationships between entities, e.g., a part-of relationship using containment
or a vertical/horizontal alignment of symbols, are considered as well. Additionally,
user-defined visualizations, with or without templates, are investigated. For TUM,
the term “template” refers to a type of visualization, not an instance; thus, defining
a new template creates a new type of diagram with rules defining the entities to be
displayed and how they shall be displayed.

4.1. REQUIREMENTS DERIVED FROM ENTERPRISE ARCHITECTURE
TOOL EVALUATIONS 37

Interacting with, editing of, and annotating visualizations
Interacting with, editing and annotating visualizations covers the tool’s capability
to handle visualizations. Enterprise architecture has a strong focus on visualization
and graphically creating an overview. Therefore, such aspects as zooming in and
out of visualizations, layering or the closing of symbols to hide a complex inner
structure are of particular relevance. Additionally, the ability to edit visualizations
is considered. Annotating visualizations with additional information is also of rel-
evance in this category. TUM also considers results from metric evaluations as
annotations.

Flexibility of the information model
TUM uses the flexibility of the information model category to express that the
underlying metamodel of the tools should remain adaptable, in particular after
a (partial) instantiation. TUM considers the ability to create, edit and delete
the entities, attributes and relationships of the predefined metamodel to create a
company-specific modeling language. TUM also evaluates whether the tool users
can perform the metamodel configuration or if this is a task exclusively performed
by the tool vendors. Export of the metamodel and (re-)import are captured as well.
In addition, TUM investigates whether attributes can be set to default values and
whether information can be marked as mandatory.

Communication and collaboration support
The communication and collaboration support category describes the collaboration
support of the tools. Whether multiple users can edit the models in parallel is
considered, as are the available auditing mechanisms and workflow or notification
capabilities. User access management and the detail in which this can be accom-
plished are also part of this category.

Support of large scale data
Support of large-scale data considers whether the tools can cope with models of
several thousand entities and all of the connections between these entities. TUM
investigates two particular aspects: the performance and scalability of the tool as
well as navigation within huge data sets.

Impact analysis and reporting
This category refers to the possibility of performing calculations or impact analysis
based on the models. TUM stresses that calculations in this specific case refer, e.g.,
to summing up or deriving averages of values of an entity’s attributes as well as of a
transitively linked entity. Furthermore, impact analyses involve traversing specific
relations and filtering the resulting data according to the given criteria. Another

38
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

aspect is whether these features are part of the user interface or accessible using
a query or programming language. Additionally, whether the tool can produce
reports and whether filters can be used during the report creation activity are
considered.

Usability

The usability category describes the overall user experience. In particular, TUM
investigates how simple or complicated it was to use the provided functional-
ity. The considered aspects include intuitive and well-structured menus with self-
explanatory names, consistent editors and supportive help systems. This dimension
is based on a subjective impression of the tool usage.

Figure 4.1: The Kiviat diagrams used by [166]to evaluate Enterprise Architecture
tools

TUM uses the described categories to draw Kiviat diagrams (cf. Figure 4.1)
allowing comparison of the investigated Enterprise Architecture tools. Each axis
reflects one of the previously discussed categories.

The following describes the categories that Gartner uses in their Enterprise
Architecture tool evaluation [89].

4.1. REQUIREMENTS DERIVED FROM ENTERPRISE ARCHITECTURE
TOOL EVALUATIONS 39

Repository/metamodel
In Gartner’s evaluation, the category repository/metamodel refers to capability
of Enterprise Architecture tools to store models instantiating a metamodel and to
make this model available for the tool users. Gartner stresses that Enterprise Archi-
tecture models should typically capture at least five aspects: the enterprise context,
business architecture, information architecture, technology or technical architecture
and solution architecture. Also of relevance are the possibility of modifying and
customizing the metamodel, the use of frameworks on top of the selected meta-
model and the possibility of differentiating between geographic and organization
levels.

Modeling
Gartner’s modeling category addresses the aspect of presenting information to dif-
ferent stakeholders. This includes the creation of a holistic model illustrating an
enterprise from “the strategy level to technical implementation”[89]. It also cov-
ers the creation of models of the as-is state as well as one or more to-be states.
Another aspect is the traceability of changes. Enterprise architecture tools should
be able to indicate the impact of (business) changes to all architecture viewpoints.
Interactions with other modeling tools are also considered in this category.

Decision analysis
In the decision analysis category, Gartner evaluates whether the Enterprise Ar-
chitecture tools are capable of performing gap analysis between the current and
future states of the architectures. Additionally, Gartner investigates whether what-
if analysis for tracing the consequences of changes can be performed, allowing the
evaluation of business, organizational and regulatory compliance, among others.
Additionally, investment management support, project and portfolio management
functionality and strategic panning capabilities are part of this category.

All of these aspects aim at fostering a scenario planning and system-thinking
approach.

Presentation
This category addresses the visualization of the information captured by Enterprise
Architecture tools and how this information is accessible to interested stakeholders.
Enterprise architecture models might be large and comprehensive; however, Gartner
stresses that the presentation of the contained information must be straightforward.
This presentation should be illustrative and applicable to the target audience re-
gardless of background. Areas of interest are visualizations that make it easy to
identify the impacts of changes and support multiple scenarios depending on the
stakeholders. Moreover, interfaces to other presentation applications are also rele-
vant.

40
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

Administration
The administration category aims at evaluating whether Enterprise Architecture
tools can strike the balance of supporting large-scale models while still having a
clear and user-friendly graphical user interface. The aspect of providing accurate
information is considered as well. Additionally, collaborative usage of the tools and
user access management are considered.

Configurability
Gartner analyzes whether Enterprise Architecture tools can be adapted to specif-
ically fit the organizations using them. This includes modifications of the meta-
model, visualizations and the tools’ default language. Furthermore, Gartner inves-
tigates the ease of performing a configuration and whether multiple environments
(development, testing and production) are supported.

Frameworks and standards
Using this category, Gartner evaluates whether Enterprise Architecture tools sup-
port the Enterprise Architecture endeavor according to specific frameworks and
standards, such as TOGAF, the Zachman Framework, FEAF, MODAF and DODAF.
One area of interest is to evaluate whether Enterprise Architecture tools allow the
use of several of the previously mentioned standards and frameworks in parallel.
Gartner also investigates whether these standards and frameworks can be modified
in accordance to the organizations’ approach to working with EA.

Usability
Gartner investigates the tools’ ability to address complex models in a simple man-
ner. This category also captures whether the tools are easy to use, intuitive and
straightforward to learn and maintain. This includes the user interface, the mod-
eling domain and the administrative functionality typically happening in the back-
ground. Another aspect is how easy it is to remember how to use a tool.

Tool survey summary
Considering the eight criteria considered by TUM and the eight criteria considered
by Gartner, one can notice that the two sets do not evaluate the same aspects. Both
evaluations overlap; however, Gartner has a stronger focus on management aspects
in terms of change propagation and usage of standards as well as visualization
for specific stakeholders. In addition, the organizational-wide usage of the tools is
considered by the evaluation of administrational aspects. TUM focuses more on
modeling, model creation from existing data sources and support for large models.

Both evaluations investigate the usability of Enterprise Architecture tools, using
even the same name for the category. Additionally both investigate the ability to

4.1. REQUIREMENTS DERIVED FROM ENTERPRISE ARCHITECTURE
TOOL EVALUATIONS 41

trace changes and create reports over impacted entities. TUM calls this category
impact analysis and reporting whereas Gartner uses the term decision analysis.
There are some categories do not match exactly, but are related to one another.
Gartner’s administration category, a tradeoff between support for large data and
user-friendliness, covers among others large models, as described by TUM’s Sup-
port of large-scale data. Moreover, Gartner’s presentation category addresses the
presentation of the right information for the right stakeholders. This aspect is con-
sidered spread over three categories by TUM (creating visualizations, interacting
with, editing of, and annotating visualizations, communication and collaboration
Support). TUM’s category flexibility of the information model is partly addressed
by Gartner’s Frameworks and standards configurability describing the modification
of the used metamodel, as well as Gartner’s configurability addressing the adapting
of the Enterprise Architecture tools to fit a company’s purpose.

Furthermore, some categories can only be found in one evaluation. The category
of importing, editing and validating describes the usage of data from existing sources
and is only part of TUM’s evaluation. Gartner’s repository/metamodel category is
not explicitly reflected by TUM. However, indirectly, TUM assumes a structure of
metamodels describing the content of instantiating models as well as an underlying
architecture storing this information. Gartner’s category modeling is not explicitly
part of TUM’s evaluation, either. Nevertheless, TUM assumes a model to be in
place covering everything from the organizational goals to the technical details
implemented to reach that goal.

The following table (cf. Table 4.1) depicts the described comparison.

42
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

TUM Relation Gartner
Usability Equal to Usability
Impact Analysis and Reporting Equal to Decision analysis
Support of large-scale Data Part of Administration
Creating Visualizations

Part of PresentationInteracting with, Editing of, and An-
notating Visualizations
Communication and Collaboration
Support

Flexibility of the Information Model Spread over Frameworks and Standards
Configurability

Importing, Editing, and Validating Unique
Unique Repository/metamodel
Unique Modeling

Table 4.1: Enterprise architecture tool survey comparison

Table 4.2 summarizes the requirements deduced after comparing the two dis-
cussed Enterprise Architecture tool surveys. The categories included in Table 4.2,
entitled EA tool survey comparison, were rephrased to foster an evaluation of the
presented tool against these categories (cf. Chapter 9). Additionally the criterion
“the tool shall support an extendable metamodel” was introduced to replace the
“flexibility of the information model” category from TUM, which corresponds to two
categories identified by Gartner, “frameworks and standards” and “configurability”.
Moreover, Gartner’s combined criterion “repository/metamodel” was divided into
two requirements to enable an evaluation of this criterion. The two requirements
“the tool shall support the storage of models instantiating a metamodel in a repos-
itory” and “the tool shall support the creation of metamodels covering the domains
of business architecture, information architecture, technology or technical architec-
ture and solution architecture” were introduced to replace “repository/metamodel”.

4.2. REQUIREMENTS DERIVED FROM AN ENTERPRISE
ARCHITECTURE ANALYSIS METHOD 43

Requirements derived from Enterprise Architecture tool evaluations
The tool shall offer a high degree of usability
The tool shall possess analysis capabilities
The tool shall possess administrative capabilities
The tool shall possess presentation capabilities
The tool shall support an extendable metamodel
The tool shall support the import, editing and validation of data from external
sources
The tool shall support the storage of models, instantiating a metamodel, in a repos-
itory
The tool shall support the creation of metamodels covering the domains business
architecture, information architecture, technology or technical architecture and so-
lution architecture
The tool shall support the creation of models

Table 4.2: Requirements derived from the considered Enterprise Architecture tool
surveys

4.2 Requirements derived from an Enterprise Architecture
analysis method

Section 3.2 describes a method for Enterprise Architecture analysis. The aim of
the research work presented in this thesis is to develop a tool that supports this
method. To make it possible to evaluate whether the presented tool supports the
method, the included method steps need to be considered. In particular, it is
necessary to investigate whether the resulting tool supports all of the method steps
properly. To foster an evaluation of the proper support of the steps, they need to
be translated into requirements. Following the method for Enterprise Architecture
analysis, first, an academic or other experts identifies a system property relevant
for Enterprise Architecture analysis and creates an analysis framework including an
extended metamodel. Thus, the requirement “the tool shall support the creation
of extended metamodels describing system properties” was identified.

According to the method, this metamodel describes not only the allowed content
and structure of the models that make use of it but also how the attributes of
the model impact one another with regard to a chosen property considered for
architecture analysis.

The impact of attributes on one another should be expressed in terms of calcu-
lation rules. This aspect of the model led to the requirement “the tool shall provide
means to express the impact of attributes in terms of calculation rules”.

Following the method, the creator of the extended metamodel specifies a set of
parental attributes for each attribute as well as how the derivation of the attribute’s
value takes place based on the values of the parental attributes. In addition, the

44
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

method suggests that relationships between the modeled entities and the structure
of the model should be considered to derive the value of the modeled attributes.
To cover this aspect, the requirement “the tool shall consider parents of an at-
tribute and the structure of the model during the derivation of attribute values”
was elicited.

For the attributes that are part of the extended metamodel, the considered
method for Enterprise Architecture analysis suggests that general data that describe
these attributes can be included as well. These data should typically be expressed
in terms of default values. To cover this aspect, the requirement “the tool shall
support the specification of default values for attributes” was elicited.

Once an analysis framework was specified, it could be used by practitioners.
To do so, the practitioners must first identify scenarios of interest. Following the
method, it is necessary to describe each scenario based on the analysis framework
as a model instantiating the previously created, included metamodel. Therefore,
the requirement “the tool shall support the instantiation of metamodels in terms
of models” was identified.

The method suggests that a practitioner will replace the general data with spe-
cific information to describe a particular scenario. This results in a more specific
description of the considered scenario. This step of the method led to the require-
ment “the tool shall support the overriding of default values”.

In the next step, analysis, the practitioner uses inference to obtain the quantita-
tive values of the models’ attributes. The authors of the method suggest inferring
values using probabilistic reasoning, which allows uncertainty to be considered. In
particular, the authors of [138] have identified five areas of uncertainty: definitional
uncertainty, theoretical heterogeneity, causal uncertainty, empirical uncertainty and
structural uncertainty. To capture this approach to inference, the requirement “the
tool shall support the derivation of attribute values based on probabilistic reason-
ing” was specified.

Once inference was performed, the authors of the considered method suggest
that the inferred results should be visualized. To include this ability, the require-
ment “the tool shall offer visualization of the calculation results” was identified.

Table 4.3 summarizes the aforementioned requirements.

4.3. REQUIREMENTS DERIVED FROM CAD TOOLS 45

Requirements derived from the considered Enterprise Architecture analysis method
The tool shall support the creation of extended metamodels describing system prop-
erties
The tool shall provide means to express the impact of attributes in terms of calcu-
lation rules
The tool shall consider parents of an attribute and the structure of the model during
the derivation of attribute values
The tool shall support the specification of default values for attributes
The tool shall support the instantiation of metamodels in terms of models
The tool shall support the overriding of default values
The tool shall support the derivation of attribute values based on probabilistic
reasoning
The tool shall offer visualization of the calculation result

Table 4.3: Requirements derived from the considered Enterprise Architecture Anal-
ysis method

4.3 Requirements derived from CAD tools

As stated in Chapter 1 for the described research project, current Enterprise Archi-
tecture tools should be combined with insights gained from CAD (computer-aided
design) tools. Therefore, this type of software tools also needs to be considered
when identifying requirements for the presented contribution.

CAD tools assist in the creation, modification, analysis and optimization of a
design [179, 162]. There is no generic CAD software covering all possible use cases.
Instead, there is a wealth of CAD tools addressing different problems on different
levels. The scopes of application include building and architecture, architecture
for transportation facilities, product design, automotive engineering, shipbuilding,
N-body simulation, dental technology and finite element analysis [162, 68, 278].

As the scopes of CAD tools vary, it is not possible to compare those tools
using the same evaluation criteria, nor would it make sense. Someone interested
in constructing a technical machine is not interested in urban design and would
therefore not benefit from comparing tools for these two different purposes. This
leads to the challenge that, unlike TUM and Gartner’s Enterprise Architecture tool
evaluations, there is no common evaluation criteria catalog available that can be
used to directly derive the requirements of a CAD tool for Enterprise Architecture.

One way of identifying requirements indirectly is by considering the general,
descriptive literature on CAD tools and using the abstract characteristics of CAD
tools as input. [273] sketches the current structure of CAD tools for architecture
modeling and analysis (cf. Figure 4.2). In particular, the analysis components
of such tools are described. In total, the authors identified eight components:
user level, problem description level, systems of equations, numerical solver levels,

46
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

calculated results, storage and post-processing of output, extensions to capability
and computing environment.

Figure 4.2: The stages of simulation identified by [273]

User	
 Computer	

Databases	

Calcula1on	

	
 Loop	

System	
 of	

Equa1ons	
 Descrip1on	
 of	
 Problem	

Post	
 Processing	
 of	

Output	

Calculated	

Results	

Storage	
 of	

Output	

Numerical	
 Solver	

Equa1on	
 Coefficients	

and	
 Boundary	

Condi1ons	

Many CAD tools use expert systems to perform analyses. [229] describes a
generic approach for an expert system is described (cf. Figure 4.3). This approach
outlines a user interface that is connected to an inference engine. This inference
engine is the central component. It is connected to a model library, which is used
to store created models at any state of the simulation process. The inference engine
also possesses a connection to a database with default values via a database inter-
face. According to the authors, this is a component library allowing the loading
of default values. The inference engine is also connected to a knowledge base stor-
ing four different types of information: simulation knowledge, domain knowledge,
target language knowledge and natural language processing knowledge. Simula-
tion knowledge describes the algorithm used to perform a simulation. Domain
knowledge is, according to the authors, the knowledge about the problem. Target
knowledge describes the knowledge regarding creating a valid input that can be
used to perform simulation upon. Finally, natural language processing knowledge
refers to a user interface to the CAD tool that uses natural language to capture the
user’s input.

4.3. REQUIREMENTS DERIVED FROM CAD TOOLS 47

Figure 4.3: A combined view of an expert simulation system [229]

User	
 interface	

I	

N
F	

E	

R	

E	

N
C	

E	

	

E	

N
G	

I	

N
E	

Code	
 Genera5on	

Natural	
 Language	

Knowledge	

Data-­‐base	
 Interface	

Model	
 Edi5ng	

Output	
 Analysis	

Input	
 Data	
 Prepara5on	

K
N
O
W
L
E
D
G
E

B
A
S
E

Data	

Base	

Model	

Library	

Target	
 Language	

Knowledge	

Domain	
 Knowledge	

Simula5on	
 Knowledge	

Model	

Development	

Verifica5on	

Experimental	

Design	

User

…

[69] is another publication describing the basic components of an expert system
(cf. Figure 4.4). The authors identify six components: dynamic data manipula-
tion and creation, performance specifications, a man-machine interface, a rule-base,
computational tools and an inference engine.

48
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

Figure 4.4: The Expert system structure for computer aided design of feedback
controllers [69]

Dynamic	
 Data	

Inference	

Engine	

Rule	
 Base	

Math	
 Tool	

Performance	

Specifica=on	

Man	

	

Machine	

	

Interface	

In [171], a summary illustrating the common ground of the described approaches
can be found. CAD tools have a user interface supporting the man-machine inter-
action. This user interface is the connection to the inference engine actually per-
forming the analysis. The inference engine might make use of numerous knowledge
bases. These knowledge bases include simulation algorithms, domain knowledge,
default values and component libraries as well as information on how to express a
problem such that the inference engine can solve it. Additionally, external inter-
faces are available to connect the knowledge base and inference engine to other tools
or components used to visualize results, specify rules for the inference or perform
specific mathematical calculations.

Table 4.4 summarizes the requirements derived from a consideration of CAD
tools and expert systems.

Requirements derived from CAD tools and expert systems
The tool shall offer a user interface
The tool shall feature a build-in inference engine
The tool shall make use of a knowledge base
The tool shall offer external interfaces

Table 4.4: Requirements derived from CAD tools and expert systems

4.4. REQUIREMENTS SUMMARY 49

Figure 4.5: The Expert system’s architecture[171]

Knowledge	
 Base	

(facts,	
 heuris6cs)	

Inference	
 Engine	

(reasoning	
 mechanism)	

External	
 Interfaces	

User	
 Interface	

(consulta6on,	
 conclusions)	
 User	

4.4 Requirements summary

Table 4.2, Table 4.3 and Table 4.4 present requirements from three different do-
mains: Enterprise Architecture tool surveys, a method for Enterprise Architecture
analysis and CAD tools and expert systems. The elicited requirements partially
overlap or are closely related to one another. This section presents a summary
considering this redundancy.

Both the Enterprise Architecture tool evaluations and the requirements derived
from CAD tools and expert systems stress the need for the tool to be easy to
use. Based on the tool evaluations, the tool should offer a high degree of usability,
whereas the CAD tools and expert systems indirectly consider this domain by
requiring a user interface. The requirement “the tool shall offer a high degree of
usability” was used to cover this requirement.

All three sources of these requirements target the area of analysis. For the
tool evaluations, the requirement “the tool shall possess analysis capabilities” was
identified. Based on the presented method for Enterprise Architecture analysis,
the requirements “the tool shall provide means to express the impact of attributes
in terms of calculation rules”, “the tool shall support the derivation of attribute
values based on probabilistic reasoning” and “the tool shall consider parents of an
attribute and the structure of the model during the derivation of attribute values”
were identified. Based on the consideration of CAD tools and expert systems, the
requirement “the tool shall feature a built-in inference engine” was identified. These
requirements were aggregated into the requirement “the tool shall possess analysis

50
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

capabilities”.
Only the Enterprise Architecture tool evaluations identified the need for admin-

istrative capabilities. Therefore, the requirement “the tool shall possess adminis-
trative capabilities” was retained.

The Enterprise Architecture tool evaluations stressed the relevance of presenta-
tion capabilities. This feature was also recognized as a requirement from the CAD
tools and expert systems, again expressed as part of the requirement “the tool shall
offer a user interface”. Here, the requirement “the tool shall possess presentation
capabilities”, elicited based on the Enterprise Architecture tool evaluations, was
retained.

Another requirement identified by all three sources was the extendable meta-
model. Based on the Enterprise Architecture tool evaluations, the requirement “the
tool shall support an extendable metamodel” was elicited. The Enterprise Archi-
tecture analysis method is more specific. Two requirements addressing extendable
metamodels were identified: “The tool shall support the creation of extended meta-
models describing system properties” and “the tool shall provide means to express
the impact of attributes in terms of calculation rules”

In the field of CAD tools and expert systems, the establishment of a knowledge
base is required, which would naturally refer to an extended metamodel in the
field of Enterprise Architecture [257]. The requirement “the tool shall support
an extendable metamodel” was used to express the various requirements of the
metamodel.

Both the Enterprise Architecture tool evaluations and the computer-aided de-
sign tool requirements stress the importance of importing, editing and validating
capabilities. The requirement “the tool shall support the import, editing and vali-
dation of data from external sources” was retained.

The Enterprise Architecture tool evaluations identified the requirement that
“the tool shall support the storage of models instantiating a metamodel in a repos-
itory”. This requirement was retained.

The need for a powerful metamodel was expressed by the Enterprise Archi-
tecture tool evaluations. Considering these evaluations, the requirement “the tool
shall support the creation of metamodels covering the domains business architec-
ture, information architecture, technology or technical architecture and solution
architecture” was elicited. Based on the Enterprise Architecture analysis method,
the requirement “the tool shall support the creation of extended metamodels de-
scribing system properties” was identified. The wording introduced based on the
Enterprise Architecture tool evaluations and the requirement “the tool shall support
the creation of metamodels covering the domains business architecture, information
architecture, technology or technical architecture and solution architecture” were
adopted.

Finally, the Enterprise Architecture tool evaluations describe the need for sup-
port for the creation of models. This requirement can also be found in the require-
ments elicited from the Enterprise Architecture analysis method, wherein more
fine-grained versions of the requirements “the tool shall support the instantiation

4.4. REQUIREMENTS SUMMARY 51

of metamodels in terms of models” and “the tool shall support the overriding of
default values” can be found. “The tool shall support the creation of models” was
used as an umbrella term.

The described summary can be found in Table 4.5. Following the research
method, these requirements were used to evaluate the tool. This evaluation is
presented in Chapter 9.

Summarized
Requirements

Including Source

The tool shall offer a
high degree of usability

The tool shall offer a
high degree of usability

EATE

The tool shall offer a user
interface

CAD

The tool shall possess
analysis capabilities

The tool shall provide
support for impact anal-
ysis and reporting

EATE

The tool shall provide
means to express the
impact of attributes in
terms of calculation rules

EAAM

The tool shall support
the derivation of at-
tribute values based on
probabilistic reasoning

EAAM

The tool shall feature a
build-in inference engine

CAD

The tool shall possess
administrative capabili-
ties

The tool shall possess
administrative capabili-
ties

EATE

The tool shall possess
presentation capabilities

The tool shall possess
presentation capabilities

EATE

The tool shall provide
support for impact anal-
ysis and reporting

CAD

The tool shall support an
extendable metamodel

The tool shall support an
extendable metamodel

EATE

The tool shall support
the creation of extended
metamodels describing
system properties

EAAM

Continued on next page

52
CHAPTER 4. REQUIREMENTS ON A TOOL FOR ENTERPRISE

ARCHITECTURE ANALYSIS

Table 4.5 – continued from previous page
Summarized
Requirements

Including Source

The tool shall sup-
port the specification
of default values for
attributes

EAAM

The tool shall make use
of a knowledge base

CAD

The tool shall support
the import, editing and
validation of data from
external sources

The tool shall support
the import, editing and
validation of data from
external sources

EATE

The tool shall offer exter-
nal interfaces

CAD

The tool shall support
the storage of models, in-
stantiating a metamodel,
in a repository

The tool should support
the storage of models in-
stantiating a metamodel
in a repository

EATE

The tool shall support
the creation of meta-
models covering the
domains business ar-
chitecture, information
architecture, technology
or technical architecture
and solution architecture

The tool shall support
the creation of metamod-
els covering the domains
business architecture, in-
formation architecture,
technology or technical
architecture and solution
architecture.

EATE

The tool shall support
the creation of extended
metamodels describing
system properties

EAAM

The tool shall support
the creation of models

The tool shall support
the creation of models

EATE

The tool shall support
the instantiation of
metamodels in terms of
models

EAAM

The tool shall support
the overriding of default
values

EAAM

Continued on next page

4.4. REQUIREMENTS SUMMARY 53

Table 4.5 – continued from previous page
Summarized
Requirements

Including Source

Table 4.5: Summarized requirements (EATE: Enterprise Architecture tool evalu-
ations, EAAM: Enterprise Architecture analysis method, CAD: Computer Aided
Design Tool)

Chapter 5

Design decisions

To accomplish the purpose of the research work described in this thesis, several
fundamental decisions regarding the design of the artifact, i.e., the tool for Enter-
prise Architecture analysis, had to be made in a manner in line with the followed
research method (cf. Chapter 2).

The areas for decision-making arose iteratively during the design of the tool,
which followed the process described in Chapter 6. Once a design decision was
made, its outcome generated the need for further decisions. Decisions needed to be
made until the design of the artifact was complete, i.e., until the resulting design
was considered to be powerful enough that the goal of the research work could be
achieved and the identified requirements could be met. Following the used research
method, the final result was evaluated against the identified requirements at a later
stage of the performed research project. This evaluation is documented in Chapter
9.

At first, a general decision regarding the overall tool architecture needed to be
made. Based on this decision, a suitable (rich client) platform could be selected
and used to realize the designed architecture. Once a decision regarding the plat-
form was made, a suitable modeling language could be selected. This modeling
language was realized based on the capabilities of the platform. The selection of
the platform also allowed the inference engine to be chosen, as the platform’s fea-
tures could be used to implement this component. With the decisions regarding
the modeling language and inference engine in place, the level of abstraction for the
models could be decided, as the level of abstraction is restricted by the modeling
language and inference engine’s expectation of input in terms of models. Finally,
the support for cyber security modeling, a particular work task of the performed
research project (cf. Chapter 1), could be realized considering the previous mod-
eling language, inference engine and level of abstraction decisions. The design of
the cyber security modeling support required the decisions regarding the modeling
language to be made because, to ensure a deep integration, the modeling should
be realized with the available modeling language. Again, for reasons of integration,

55

56 CHAPTER 5. DESIGN DECISIONS

the cyber security modeling needed to be realized on top of the built-in inference
engine, allowing the reuse of this component. The decisions regarding the level of
abstraction needed to be considered for the design of the cyber security capabilities,
as the level of abstraction determines the character of the provided input used for
cyber security analysis. The hierarchy of decisions is visualized in Figure 5.1.

Figure 5.1: The decision hierarchy

The decisions in the previously discussed areas were made under consideration
of the requirements stated in (cf. Table 4.5).

In the following, a mapping between the requirements and the areas for decision-
making that they affected is established. The relationship between the requirement
and the area of design decision-making is discussed briefly. A more extended discus-
sion of the individual relationships is then presented in the following subchapters
for each decision area.

There did not exist a 1-to-1 relationship between the requirements and the
area for making a design decision that needed to be considered. Instead some
requirements impacted the decision-making in several areas and some decisions
addressed multiple requirements (n:m relationship). To achieve high usability, the
user and how he or she will use the tool need to be considered already at an early
stage during the design of the overall architecture and during the decisions involved
in this task. Usability can also be supported by the rich client platform used, as
such a platform often contains a framework fostering the creation of user-friendly
applications. The requirement that the tool offer a high degree of usability also
impacts the choice of the modeling language. Some languages might be considered
to be more intuitive and thus contribute to a higher usability than others. A
selection of the used platform should therefore consider usability aspects as well.

57

Finally, the level of abstraction impacts how users perceive the created models. A
decision regarding the level of abstraction is therefore also impacted by the usability
requirement.

The requirement that the tool shall possess analysis capabilities impacts the
selection of the inference engine, as this component is responsible for deriving at-
tribute values, an important activity during the performance of Enterprise Archi-
tecture analysis. This requirement further impacts the selection of the modeling
language. This is the case, as input for the inference engine needs to be specified
in some notation in the presented tool using the modeling language.

The requirement that the tool shall possess administrative capabilities also im-
pacted the decision-making regarding the rich client platform used. Some platforms
provide framework components fostering the implementation of administrative ca-
pabilities.

To address the requirement that the tool shall possess presentation capabili-
ties, this aspect needed to be considered during the selection of the platform and
while deciding on the level of abstraction. Some rich client platforms offer features
easing the presentation of information. This aspect needed to be considered when
deciding on the platform to use for the presented research work. Moreover, the
requirements concerning the presentation capabilities impact the decision-making
regarding the level of abstraction of the used models, as the demand to present in-
formation in a certain way requires that the information be appropriately available
for presentation.

The requirement that the tool shall support an extendable metamodel needed
to be considered during the decision-making regarding the overall tool architecture,
as the support and representation of the metamodel needed to be determined on
an overall architecture level to create a sound information architecture. The re-
quirement of supporting an extendable metamodel also impacted the choice of the
supported modeling language. In the area of Enterprise Architecture tools, meta-
models and modeling language are closely related concepts: modeling languages
can be used to express metamodels [232]. Therefore, demanding an extendable
metamodel impacts the choice of the modeling language. A selection needed to be
made allowing for the extension of the metamodel. Finally, in the context of the
presented research work, the inference engine uses models, instantiating extend-
able metamodels, as input. The decision regarding the inference engine therefore
needed to consider their ability to handle extended metamodels and the instantia-
tion thereof.

A consideration of the requirement that the tool shall support the import, edit-
ing and validation of data from external sources impacted the choice of the used
platform. Some platforms were found to support the import of information based
on common, standardized file formats.

The requirement that the tool shall support the storage of models instantiating a
metamodel in a repository impacted the overall tool architecture and the modeling
language. The decision regarding the overall tool architecture was affected, as the

58 CHAPTER 5. DESIGN DECISIONS

tool architecture needs to be designed in a way that it offers the storage of models
that are created based on metamodels.

The requirement that the tool shall support the creation of metamodels covering
the domains business architecture, information architecture, technology or technical
architecture and solution architecture needed to be considered during the design of
the modeling language and the support for cyber security modeling. The modeling
language needed to be selected such that it was capable of expressing the required
domains. For cyber security modeling, it needed to be ensured that a consideration
of these areas from a cyber security perspective was possible.

Finally, the requirement “the tool shall support the creation of models” impacted
three design decisions: the modeling language, the level of abstraction and the
support for cyber security modeling. The impact on the modeling language was
due to models being created based on a modeling language. The level of abstraction
was impacted because models are created at a certain level of detail. The impact
on the support of cyber security modeling a result of cyber security models being
one form of models.

Table 5.1 describes the previously described mapping between the requirements
and the areas for decision- making that they affected

Summarized
Requirements

Impact on decision area

The tool shall offer a high degree
of usability

Design decision I: Overall tool architecture
Design decision II: Platform
Design decision III: Modeling language
Design decision V: Level of abstraction

The tool shall possess analysis
capabilities

Design decision III: Modeling language
Design decision IV: Inference engine

The tool shall possess adminis-
trative capabilities

Design decision II: Platform

The tool shall possess
presentation capabilities

Design decision II: Platform
Design decision V: Level of abstraction

The tool shall support an
extendable metamodel

Design decision I: Overall tool architecture
Design decision III: Modeling language
Design decision IV: Inference engine

The tool shall support the im-
port, editing and validation of
data from external sources

Design decision II: Platform

The tool shall support the stor-
age of models, instantiating a
metamodel, in a repository

Design decision I: Overall tool architecture

Continued on next page

59

Table 5.1 – continued from previous page
Summarized
Requirements

Impact on decision area

The tool shall support the
creation of metamodels covering
the domains business
architecture, information
architecture, technology or
technical architecture and
solution architecture

Design decision III: Modeling language
Design decision VI: Cyber security modeling

The tool shall support the
creation of models

Design decision I: Overall tool architecture
Design decision III: Modeling language
Design decision V: Level of abstraction
Design decision VI: Cyber security modeling

Table 5.1: Mapping between requirements and design decisions

It can be noted that design decisions were made in favor of the overall goal
of the performed research i.e., to develop and demonstrate an Enterprise
Architecture modeling tool with a focus on system property analysis (cf.
Chapter 1). Therefore, overall, aspects related to Enterprise Architecture analysis
were considered to be more important than general aspects not leading to the
fulfillment of the goal of the research documented in this thesis.

60 CHAPTER 5. DESIGN DECISIONS

5.1 Design option I: Overall tool architecture

The Enterprise Architecture tool resulting from the research work described in this
thesis was developed with the goal of advancing the field of Enterprise Architecture
tools. The tool should distinguish itself from other available solutions by having a
focus on the analysis of Enterprise Architecture models. Compared to other tools,
the analysis of system properties should be supported more extensively.

While designing the tool described in this thesis, how the tool’s strengths could
be reflected in its software architecture had to be determined. A holistic solution
that made the features distinguishing the tool from other solutions accessible to its
users without overwhelming or confusing them was sought. It was realized that the
tool usability could benefit the software architecture developed in accordance with
the goals of the research work.

As stated in the previous section, four requirements impacted the design decision
regarding the overall tool architecture.

• The tool shall offer a high degree of usability
• The tool shall support an extendable metamodel
• The tool shall support the storage of models, instantiating a metamodel, in

a repository
• The tool shall support the creation of models
Moreover, the research project described in this thesis was fairly dynamic with

frequently changing requirements. Thus, the support of the tool development was
also considered during the evaluation of architecture alternatives.

A structured a workflow was contained in the considered method for the anal-
ysis of Enterprise Architecture models (cf. Section 3.2). This workflow suggested
the serial working of theory developers and theory applicants. The workflow does
not include any collaboration of the two groups in a sense that they work side-
by-side. These groups only interact on an administrative level, e.g., when the
theory developer educates the theory applicant or when the theory applicant sug-
gests improvements based on his or her experiences gained from using the analysis
framework. The architecture of the tool is impacted by the serial order of the
performed activities suggested as part of the method. In general, the tool is first
used by a theory expert to create an analysis framework, including an extended
metamodel. Thereafter, the resulting analysis framework is used by a practitioner.
He or she evaluates one or several scenarios in terms of models instantiating the
metamodel that is included in the analysis framework. The practitioner may also
utilize templates or viewpoints (based on the outcome of design decision V) that
are eventually included in the analysis framework and specified on the extended
metamodel. These two groups should be supported by the tool and provided with
the necessary functionally for performing their particular task to increase the us-
ability of the tool. In addition, the information flow from the theory expert to the
practitioner needs to be covered, and the created information needs to be stored in
a repository or similar solution.

5.1. DESIGN OPTION I: OVERALL TOOL ARCHITECTURE 61

Three possible ways to provide tailored support for the user were identified.
Initially, the implementation of a combined application for both theory experts and
theory applicants was considered (cf. Figure 5.2).

Figure 5.2: The simplified integrated architecture

Within the same application, theory experts could specify analysis frameworks
and the included extended metamodels and practitioners could create models based
on the metamodels included in the analysis frameworks. From a development per-
spective, this was considered to be an interesting option, as it would ensure a single
point of truth, avoiding redundant code [244].

The connection of the metamodel and instantiating model, the most important
information objects in the tool, could also be realized fairly easy. These files could
be stored in one common file format. A visually homogeneous user interface could
also be realized comparably easily in a combined application for theory experts and
practitioners.

However, several disadvantages were identified that ultimately led to the elim-

62 CHAPTER 5. DESIGN DECISIONS

ination of this option. It was realized that the fact that both user groups need
different functionalities to perform their tasks leads to an information overflow
that negatively impacts the tool’s usability. In particular, a negative impact on
the usability was expected because a separation of concerns would be difficult to
realize. Moreover, it was suspected that an integrated application would have an
excessively large code base, negatively impacting the modifiability of the applica-
tion. The addition of new features or the alteration of existing ones was expected
to be difficult due to a complicated and relatively opaque code structure.

Another design option considered was to develop two independent software tools
(cf. Figure 5.3).

Figure 5.3: The simplified architecture based on two tools

In such a solution, one tool would be developed specifically for the specification
of analysis frameworks in terms of extended metamodels. A second, separate tool
would allow the creation of models based on those metamodels to evaluate scenarios
of interest.

It was expected that a clear separation would improve the usability, as the
user interface would be cleaner and only offer the needed functionality. A positive
impact on the modifiability of the two software tools was expected, as these would

5.1. DESIGN OPTION I: OVERALL TOOL ARCHITECTURE 63

have a thinner code base, simplifying the implementation of changes. Again, several
disadvantages were identified for this design option, and it was ultimately discarded.
Compared to the previous alternative, a stronger need for synchronization of the
used data structure was identified. In particular, compatibility between the two
tools would need to be ensured carefully. If the data structure used in the first
component to represent the metamodel were modified, these changes would have
to be propagated to the second component to ensure the proper operation of the
tool. Another costly disadvantage was identified in the fact that, in some cases,
the same tool functionality would have to be developed twice. For instance, the
implementation of copy and paste of metamodels elements would have to be redone
on a model level. This need was expected to arise for several features of the user
interface in particular. Finally, the risk of choosing to develop two applications with
a heterogeneous look and feel was realized. Implementing two tools would likely
lead to small differences in their user interface, for instance, with regards to the
order of items in the menu structure. This inconsistency was considered to cause
confusion and thereby negatively impact the usability.

Finally, a common core with two specializations was identified as the third
design option (cf. Figure 5.4). This option was chosen after the evaluation of its
strength and weaknesses.

64 CHAPTER 5. DESIGN DECISIONS

Figure 5.4: The simplified architecture based on two tools sharing a core

The two specializations included in this option support the different user groups,
and the functionality relevant for both components only needs to be implemented
once. One specialization would support the ability of theory experts to specify
analysis frameworks consisting of extended metamodels. The other component
would support the creation of models based on the metamodels included in the
analysis frameworks to apply the frameworks and evaluate scenarios.

In this architecture, the advantages of the two previously descripted design op-
tions are combined. First, the development is simplified, as no redundant work
needs to be performed; instead, this can be carried out on the core level. A het-
erogeneous look and feel is created, as a consistent user interface can be realized
on the core level as well. Additionally, the information exchange between the two
components can be realized within the core.

The storage of models instantiating metamodels could be handled by the core as
well. Another identified advantage is the fact that the code base is kept comparably
thin, as the core only contains the common code of the tool components and the two
components only contain their individual additions. Finally, it was also identified
that in such an application, the right information is available at the right moment

5.1. DESIGN OPTION I: OVERALL TOOL ARCHITECTURE 65

and the features relevant for different user groups are only available for them. This
was expected to have a positive impact on the usability. This design option is
not perfect either. In particular, the design of the common core was recognized as
challenging. The proper operation of the two tool components depends on the core,
which therefore needs to be designed and implemented carefully. In particular, the
core needed to be designed in a flexible way ensuring the tools modifiability.

Table 5.2 compares the discussed tool architectures.

Architecture Strength Weakness
One application
for theory speci-
fication and the-
ory application

• Support of an extend-
able metamodel

• Support for the cre-
ation of model

• Support of tool devel-
opment
– Development with

a single point of
truth

• Storage of models,
instantiating a meta-
model, in a repository
– Deep integration

of metamodel and
model

• Contributes to a high
level of usability
– Homogeneous

user interface

• Negative impact on us-
ability
– No separation of

concern
– Overwhelming in-

formation
• Negative impact on

tool development
– One large code

base
– Low modifiability

Continued on next page

66 CHAPTER 5. DESIGN DECISIONS

Table 5.2 – continued from previous page
Architecture Strength Weakness

Two applica-
tions, one for
theory experts
and one for the-
ory applicants

• Support of an extend-
able metamodel

• Support for the cre-
ation of model

• Contributes to a high
level of usability
– The right infor-

mation at the
right moment for
the different user
groups

– Clean user inter-
face

• Support of tool devel-
opment
– High modifiability
– Thin code base

• Negative impact on
tool development
– Stronger impor-

tance of synchro-
nized information
between meta-
models and
models

– Compatibility is-
sues

– Same function-
ality developed
twice

• Negative impact on us-
ability
– Eventually het-

erogeneous look
and feel user
interface

Continued on next page

5.1. DESIGN OPTION I: OVERALL TOOL ARCHITECTURE 67

Table 5.2 – continued from previous page
Architecture Strength Weakness

A common core
and two special-
izations

• Support of an extend-
able metamodel

• Support for the cre-
ation of model

• Support of tool devel-
opment
– Simplified de-

velopment as no
redundant work
needs to be done

– Thinner code base
compared to one
integrated appli-
cation

• Contributes to a high
level of usability
– Heterogeneous

user interface
– The right infor-

mation at the
right moment for
the different user
groups

– Simplified infor-
mation exchange

• Storage of models,
instantiating a meta-
model, in a repository

• Negative impact on
tool development
– Whole application

depends on the
common core

Table 5.2: Comparison of the potential architecture candidates

68 CHAPTER 5. DESIGN DECISIONS

5.2 Design option II: Platform

Currently, the development of a software tool is typically performed based on the
usage of one or several (rich client) platforms. These platforms offer standard com-
ponents, including menus, toolbars, internationalization and help systems, that are
part of almost any application [46]. Reimplementing these components is expen-
sive, prone to introducing errors and results in a heterogeneous application design.
Instead, the user feels easily comfortable when the same building blocks are reused
and the same patterns are followed across different applications.

As described in the introductory section of this chapter, the platform selection
was impacted by the following requirements.

• The tool shall offer a high degree of usability
• The tool shall possess administrative capabilities
• The tool shall possess presentation capabilities
• The tool shall support the import, editing and validation of data from external

sources
Another factor that needed to be considered during the selection of the platform

was support for the tool development. For a dynamic project such as the research
project described in this thesis, a lively user community is of great importance.

The components that are included in a rich client platform also support the
administrative capabilities of a tool, i.e., the tool’s capability to handle large-scale
models. This is the case because these platforms are optimized to handle large
amounts of data.

Furthermore, using the included components of rich client platforms, one can
design user interfaces that support the presentation of information. In the context
of the discussed research, the capability to present information can be utilized to
visualize models or parts thereof.

Finally, rich client platforms sometimes foster the realization of import and
export functionality, as they provide components that allow the reading and writ-
ing of files following commonly used file standards. Editing and validating such
imports and exports is also possible. Thus, it was decided that an existing rich
client platform would be used for the realization of the previously designed overall
architecture. The considered platforms had to be based on Java, as this was the
best-understood language of the project team. Moreover, it had to be open-source
for financial and political reasons. A focus on desktop applications was another
choice, as all existing Enterprise Architecture tools are available for this architec-
ture platform as well [166]. The final choice was support for the creation of modeling
applications as a sine qua non for the implementation of an Enterprise Architecture
tool.

These requirements reduced the list of possible candidates down to two: Net-
Beans [30, 200] and the Eclipse Rich Client Platform[167, 226]. Yet again, the
selection was made following the iterative method described in Chapter 2.

With the NetBeans Visual Library [202], NetBeans offers a Java-based compo-
nent library for the creation of modeling tools. The usage of this library is fairly

5.2. DESIGN OPTION II: PLATFORM 69

easy, and it was applied during the first versions of the tool [44]. In particular, the
included Matisse GUI Builder [201] simplified the creation of the user interface.

However, as the tool grew larger during development, several bugs and weak-
nesses of the NetBeans Visual Library were identified and reported in the official
forums. These weaknesses were so drastic that an initiative to identify alterna-
tives was initiated, including an evaluation of the Eclipse Rich Client Platform as
a master thesis [127].

A change in the ownership of Sun Microsystems [197], the company behind
NetBeans, also affected NetBeans itself. Oracle, the new owner of NetBeans, offered
two Java development environments: the proprietary JDeveloper [203] and the
open-source NetBeans. As a result of this dualism, the development team of the
presented Enterprise Architecture analysis tool reported a decline in the support for
NetBeans. In particular, reported bugs were not solved as desired, and the Visual
Library was not updated at all.

Thus, based on the outcome of [127] the decision was made to phase out Net-
Beans and to instead use the Eclipse Rich Client Platform. Eclipse not only has a
very active community but also provides a significantly larger number of reusable
components [268], plugins in the Eclipse jargon, that help to easily create advanced
applications. In particular, the Eclipse Modeling Framework (EMF) [250, 76] was
useful for the development of the presented tool. It was used during the implemen-
tation of both the user interface and the inference engine. However, a discussion
of the architecture of the tool and usage of the EMF is beyond the scope of this
section. Instead, the reader is referred to Chapter 7, which elaborates on the tool
architecture.

The Eclipse Rich Client platform has a lively and supportive user community
that supports the tool development. In terms of weaknesses, this platform lacks a
no non-commercial tool for the creation of a graphical user interfaces.

Table 5.3 summarizes the described platform comparison.

70 CHAPTER 5. DESIGN DECISIONS

Platform Strength Weakness
Eclipse Rich
Client Platform • Contributes to a high

level of usability
– Integration with

the operating
system

• Supports realizing
administrative capabil-
ities
– Using existing

plugins for such
tasks

• Supports realizing pre-
sentation capabilities
– Using existing

plugins for such
tasks

• Supports realizing im-
port, edit and vali-
date data from external
sources
– Using existing

plugins for such
tasks

• Support of tool devel-
opment
– Good community

support
– Powerful platform
– Many projects

developing plu-
gins that can
be integrated in
other applications

– Commonly used

• Negative impact on
tool development
– No graphical GUI

builder available

Continued on next page

5.2. DESIGN OPTION II: PLATFORM 71

Table 5.3 – continued from previous page
Platform Strength Weakness

NetBeans
• Contributes to a high

level of usability
– Integration with

the operating
system

– Matisse GUI
Builder

• Supports realizing
administrative capabil-
ities
– Using included

components
• Supports realizing pre-

sentation capabilities
– Using included

components
• Supports realizing im-

port, edit and vali-
date data from external
sources
– Using included

components
• Support of tool devel-

opment
– Easy to use

• Negative impact on
tool development
– Community com-

parably less re-
sponsive

– Development of
the Rich Client
Platform less
lively

Table 5.3: Comparison of the potential rich client platforms candidates

72 CHAPTER 5. DESIGN DECISIONS

5.3 Design option III: Modeling language

To develop a tool for Enterprise Architecture analysis, a modeling language must be
chosen to give the tool user a ready notation that he or she can use to create input
that then can be processed by the software tool. The modeling language needed to
be selected with the goal of the presented research work in mind. In the first part
of this chapter, the requirements of a tool for Enterprise Architecture analysis that
impact the selection of the modeling language were discussed. These requirements
are as follows:

• The tool shall offer a high degree of usability
• The tool shall possess analysis capabilities
• The tool shall support an extendable metamodel
• The tool shall support the creation of metamodels covering the domains busi-

ness architecture, information architecture, technology or technical architec-
ture and solution architecture

• The tool shall support the creation of models
Potential modeling languages were evaluated against these requirements.
In the field of Enterprise Architecture, especially the academic community per-

forming research in that field, ArchiMate [153] is widely used. ArchiMate offers
a defined metamodel that covers business architecture, information architecture,
technology architecture and solution architecture (using the Motivation extension
[66]). It is considered to be fairly easy to understand and therefore possesses a high
usability.

[153] states that TOGAF is the most popular Enterprise Architecture frame-
work. Since the release of ArchiMate 2.0 in 2012, ArchiMate completely supports
TOGAF [103]. It is reasonable to assume that ArchiMate will increase in popular-
ity, even outside the academic community. A natural first choice would therefore
be to select ArchiMate as the supported modeling language for the tool presented
in this thesis.

However, even though ArchiMate is widely used, it has several disadvantages
that led to the selection of another language as the default modeling language.
ArchiMate has a fixed metamodel defining a number of classes that can be used to
describe an enterprise. These classes cover the general aspects of a company; how-
ever, some concepts for system property analysis are not included. For instance,
neither languages and protocols that are relevant for interoperability analysis [260]
nor network interfaces and attack steps that are of importance for cyber secu-
rity analysis [246] are included. Although ArchiMate is (too) specific concerning
some aspects of its metamodel, there are other dimensions in which it is not pre-
cise enough. ArchiMate does not specify multiplicities for the defined relations [22],
making its usage sometimes ambiguous and negatively impacting the usability. An-
other drawback is that ArchiMate has no unified support for adding attributes to
its metamodel. This limits the extendibility of ArchiMates’ metamodel, as there
is no standard procedure of how to implement an extension. Limited support for
attributes also impacts their consideration if they are added to a model. ArchiMate

5.3. DESIGN OPTION III: MODELING LANGUAGE 73

does not foresee a standard way to calculate values for modeled attributes.
Nevertheless, several successful attempts have been made, including [170, 123],

during which a variety of system properties have been evaluated. However, these
attempts all featured an external calculation mechanism, such as queuing theory
in the case of [123] or probabilistic relational models in the case of [144] and [185].
Offering a unified method of describing and evaluating the described system prop-
erties would, on the one hand, increase the usability of the modeling language, as
the models would be easier to understand and, on the other hand, allow to combine
different system property analyses and make the results easier to compare. Finally,
ArchiMate does not allow the existence or non-existence of described concepts and
relationships to be explicitly considered. It is not intended to describe classes or
relationships between them that eventually do not exist. Instead, ArchiMate as-
sumes that everything that is part of a created model actually is in place. This
makes it difficult, if not impossible, to express structural uncertainty. However,
this is an important characteristic that needs to be considered during Enterprise
Architecture analysis [138].

The DEMO methodology [219, 61] is a flowchart method that includes a social
emphasis. Using DEMO, models can be created that describe actions that take
place at organizations in the context of their actors and intended audience [16].
Demo suggests the usage of transactions to describe business aspects of enterprises.
Transactions are patterns consisting of interactions and actions. An action is the
core of a business transaction, describing an activity that generates a new result.
Actors coordinate actions based on interactions, or acts of communication. Business
transactions are carried out in three distinct phases: order, execution and result
phase. The DEMO methodology makes use of Petri nets to allow the analysis of
models created following this approach. The usage of Petri nets allows probabilistic
reasoning [147] to be expressed as part of the DEMO methodology.

However, several weaknesses led to the selection of a different methodology. Its
strong focus on business aspects, especially business process modeling, was con-
sidered to be a disadvantage within the context of Enterprise Architecture. Other
domains, such as information architecture, technology or technical architecture and
solution architecture, cannot be captured sufficiently. Additionally, the usage of
transactions, implying the consideration of three states (before, during and after),
made the performance of an activity too specific for the research work described in
the thesis. Such system properties as modifiability [149] or availability [182] do not
consider enterprises from such a time perspective. Finally, the DEMO methodology
does not allow structural uncertainty to be considered.

Frank et al.[78] propose Score-ML, a language for defining (business) indicator
systems within enterprise models. These models focus on the business architec-
ture. However, the information architecture, technology or technical architecture
and solution architecture of a considered organization can be described to a certain
extent as well. Score-ML instantiates the MEMO metamodeling language (MML)
[77]. Thus, Score-ML features classic capabilities of object-oriented metamodeling
facilities, including cardinalities and primitive data types. Score-ML’s indicators

74 CHAPTER 5. DESIGN DECISIONS

can also consider specialized relationship types, allowing dependencies between dif-
ferent indicators and between an indicator and a goal to be described. Score-ML
does not place particular emphasis on the notion of uncertainty, nor does it fa-
cilitate the introduction of distributions acting as surrogates for actual indicator
values [36]. In the context of the described research project, its analysis capabilities
are therefore not sufficient.

Other well-known Enterprise Architecture modeling languages and frameworks,
including PEAF, the Pragmatic Enterprise Architecture Framework [243], and
FEA, the U.S. Federal Enterprise Architecture Framework [54], have some or all
of the disadvantages that led to the removal of the previously discussed languages
from consideration. Typically, the metamodel does not cover all of the relevant
concepts that are needed for the performance of Enterprise Architecture analysis.
A common weakness from an analysis perspective is also the limited ability to con-
sider uncertainty. After considering the common Enterprise Architecture modeling
languages and realizing their insufficient support for analysis, the need for a more
powerful language was identified.

A more general approach is Alloy [129], a language that captures the essence
of software abstractions simply and succinctly, with an analysis that is fully auto-
matic, and that can expose the subtlest of flaws. Using Alloy, one can fully auto-
matically perform semantic analysis as well as check consequences and consistency
and simulate execution [128]. Alloy is fairly easy to understand and use [112], which
positively contributes to its usability. It allows the creation of models covering the
domains of business architecture, information architecture, technology or technical
architecture and solution architecture. However, Alloy comes with the disadvantage
of not having such notions as field, method or integer arithmetic, which are imper-
ative for the performance of Enterprise Architecture analysis following the method
presented in Section 3.2. It also lacks recursively defined constraints, which are
important, for instance, in the case of cyber security analyses. Moreover, neither
the sequencing of operations nor the use of higher-order quantifiers is possible [128].

The most obvious candidate for use as a modeling language in the presented
tool was the UML [102]. Its sheer popularity [240] made it worth considering, as
did the fact that many existing (classical) Enterprise Architecture tools including
Sparx Systems Enterprise Architect [255] and Mega System Blueprint [125] offer
support for the Unified Modeling Language were relevant arguments. Users of those
tools can switch to another tool offering the same modeling language fairly easily,
contributing to the fulfillment of the requirement that the tool offer a high degree
of usability.

An evaluation of the UML revealed that this language was indeed suitable for an
Enterprise Architecture analysis tool, leading to its selection. Using UML Class and
Objects [102], one can specify Enterprise Architecture metamodels and their instan-
tiations in terms of architecture models. These architecture models can describe
such aspects as the business architecture, information architecture, technology or
technical architecture and solution architecture of an organization.

5.3. DESIGN OPTION III: MODELING LANGUAGE 75

Moreover, it is possible to specify languages, protocols, network interfaces, at-
tack steps and a variety of other concepts that were not supported by ArchiMate
and the other considered Enterprise Architecture modeling languages. This con-
tributes to the fulfillment of the requirement that the tool support an extendable
metamodel. Additionally, with OCL [267], the UML offers a second mechanism to
define constraints on the models’ structure. OCL can also be used to evaluate the
attributes that are included in models created using the UML [5]. Therefore, using
the UML contributes to the fulfillment of the requirement that the tool possess
analysis capabilities. Another weakness of ArchiMate and similar languages can be
addressed. Class diagrams and object diagrams may make use of association classes
[102] according to the UML. Using association classes, one can assign attributes to
relationships that are included in the class and object diagrams [94]. In this way, it
was possible to overcome the final identified weakness of ArchiMate and the other
considered modeling languages: the lack of support for structural uncertainty. A
mechanism for the specification of structural uncertainty on both the class and the
relationship level could be achieved by equipping both concepts with an additional
existence attribute (cf. Section 5.4). A weakness of the UML is that it is very
powerful and requires some effort to learn.

Table 5.4 summarizes the previously discussed modeling languages and their
identified strengths and weaknesses.

Language Strength Weakness
ArchiMate

• Supports the creation
of models

• Contributes to a high
level of usability
– Commonly used

within the field
of Enterprise
Architecture

• Covers the domains
business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture

• Negatively impacts us-
ability
– Ambiguities in

metamodel
• Insufficient analysis ca-

pabilities
– No defined ap-

proach for the
evaluation of
attributes is
suggested

• Does not offer a suf-
ficiently extendable
metamodel

Continued on next page

76 CHAPTER 5. DESIGN DECISIONS

Table 5.4 – continued from previous page
Language Strength Weakness

DEMO
• Supports the creation

of models
• Possesses analysis ca-

pabilities
– Probabilistic rea-

soning using Petri
nets

• Limited analysis capa-
bilities
– Focus on transac-

tions
– Structural uncer-

tainty not consid-
ered

• Difficult to model do-
mains information ar-
chitecture, technology
or technical architec-
ture and solution archi-
tecture
– Focus on business

aspects
• Does not offer a suf-

ficiently extendable
metamodel

Score-ML
• Supports the creation

of models
• Possesses analysis ca-

pabilities
– Indicators of

architecture
elements

• Covers the domains
business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture

• Does not offer a suf-
ficiently extendable
metamodel
– Fixed metamodel

• Limited analysis capa-
bilities
– Capturing of un-

certainty not sup-
ported

Continued on next page

5.3. DESIGN OPTION III: MODELING LANGUAGE 77

Table 5.4 – continued from previous page
Language Strength Weakness

Alloy
• Supports the creation

of models
• Contributes to a high

level of usability
– Is easy to under-

stand
• Possesses analysis ca-

pabilities
– Performance of se-

mantic analysis
• Possesses an extend-

able metamodel
• Can cover the domains

business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture

• Limited analysis capa-
bilities
– No notions as

field, method or
integer arithmetic

– No recursively de-
fined constraints

– No sequencing of
operations.

– No higher-order
quantifier

Continued on next page

78 CHAPTER 5. DESIGN DECISIONS

Table 5.4 – continued from previous page
Language Strength Weakness

UML
• Supports the creation

of models
• Contributes to a high

level of usability
– Commonly used
– Powerful language

• Possesses analysis ca-
pabilities
– Querying using

OCL
• Possesses an extend-

able metamodel
– Metamodel can be

specified as classes
and objects

• Can cover the domains
business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture

• Negatively impacts us-
ability
– Can be considered

to be too power-
ful and difficult to
learn

Table 5.4: Comparison of potential modeling languages

The following section discusses both UML and OCL and presents relevant back-
ground information. Chapter 8 reports on the usage of the tool in general and on the
definition of Enterprise Architecture metamodels in terms of UML class diagrams
in particular.

UML and OCL

The Unified Modeling Language (UML) is a graphical language for visualizing, spec-
ifying, constructing, documenting and analyzing artifacts. Over the last decade,
UML has become the de facto standard for creating models of software-based sys-
tems, as well as for modeling business and similar processes [99].

Using UML, one can write system blueprints describing conceptual aspects, busi-
ness processes and system functions as well as concrete details, such as programming
language statements, database schemas and reusable (software) components [99].

5.3. DESIGN OPTION III: MODELING LANGUAGE 79

The first version of UML was the result of a synchronization of three popular
object-oriented methods: Object Modeling Technique (OMT) [228] Object-Oriented
Software Engineering (OOSE) [130] and Booch [28]. With revision 2.0, UML [102]
has been enhanced with more specific definitions of its abstract syntax and seman-
tics, a more modular structure and better support for the modeling of large-scale
systems.

UML’s metamodel specifying its abstract syntax is based on MOF [101], the Ob-
ject Management Group’s Meta-Object Facility, a semiformal approach to writing
models and metamodels.

UML’s abstract syntax specifies the set of modeling concepts, including their
attributes and relationships. The rules for combining these concepts to construct
partial or complete UML models are covered as well. In total, UML specifies 14
different types of diagrams [17](cf. Figure 5.5). These can be generally divided
into two groups. On the one hand one can find structural diagrams describing
aspects that must be present in the modeled system. On the other hand there
are behavior diagrams explaining what must happen in the described system. The
supported structural diagrams are class diagrams, component diagrams, composite
structure diagrams, deployment diagrams, object diagrams, package diagrams and
profile diagrams. The behavior diagrams specified by UML are activity diagrams,
communication diagrams, interaction overview diagrams, sequence diagrams, state
machine diagrams and timing diagrams. In the context of Enterprise Architecture
modeling, class diagrams and object diagrams are typically of relevance. Class
diagrams describe the structure of a system by showing its classes, their attributes
and the relationships among the classes. Object diagrams follow class diagrams
and are used to illustrate the state of a modeled system at a particular time [102].

80 CHAPTER 5. DESIGN DECISIONS

Figure 5.5: The 14 UML diagrams, as presented in [17]

It can be difficult to synchronize information over different UML diagrams. The
authors of [220] stress that “for certain aspects of a design, diagrams often do not
provide the level of conciseness and expressiveness that a textual language can
offer”. To overcome this weakness, the Object Management Group complemented
UML with OCL, the Object Constraint Language [100]. Jos Warmer and Anneke
Klepper developed this language based on Steve Cook and John Daniels’s Syntropy
language [251].

OCL’s syntax is similar to common object-oriented languages and query lan-
guages, such as SQL. OCL is declarative and can be used to specify constraints
on a conceptual level, abstracting them from lower-level implementation details
[220]. In particular, it allows the specification of constraints on UML class dia-
grams. These constraints can then be investigated on the UML object diagrams
that instantiate the class diagrams. The consideration of OCL invariants during
the instantiation ensures the creation of compliant object diagrams.

OCL expressions are side-effect-free, meaning that the state of the system will

5.3. DESIGN OPTION III: MODELING LANGUAGE 81

not change based on the result of an OCL expression. OCL is typed; thus, every
expression has a type, and all types must match so that the expression is correct
[258].

OCL expressions are specified in the context of a model and do not exist without
one. These expressions can consider both the structure of the model and the mod-
eled characteristics, i.e., attribute values or states of the model elements. Although
OCL was originally mainly created as a constraint language to ensure consistency
over UML diagrams, it can also be used as a query language due to its ability to
navigate the model and form collections of objects [5]. The selected platform, the
Eclipse Rich Client Platform, eased the support of the class and object diagrams by
offering the Eclipse Modeling Framework [250], a component that supports model-
ing according to UML.

82 CHAPTER 5. DESIGN DECISIONS

5.4 Design option IV: Inference engine

Another important decision that had to be made during the tool implementation
was the selection of the used analysis engine. This component is used to evaluate
an Enterprise Architecture model. The task of the engine is to infer the values of
the attributes that are part of an architecture model given values for a subset of
the contained attributes.

The inference engine needed to be selected with the goal of the presented re-
search work in mind. In the first part of this chapter, the requirements of a tool for
Enterprise Architecture analysis that impact the selection of the inference engine
were listed as follows:

• The tool shall possess analysis capabilities
• The tool shall support an extendable metamodel
In accordance with the iterative character of the method used to perform this

thesis, the decision had to be made several times. Typically, the identification of
weaknesses of one inference engine led to a consideration of possible alternatives.
The most promising alternative was then implemented in the tool after an evalua-
tion.

The first considered inference engine was built on Dempster-Shafer theory [238,
274]. Dempster-Shafer theory allows architectural analysis, including inference of
attribute values based on other values, incomplete Enterprise Architecture models
and credibility assessments with regards to the provided input [139]. Dempster-
Shafer theory is specifically designed to allow the representation of ignorance [137].
However, it lacks support for decision and goal representation. It also does not pro-
vide support for managing multiple levels of abstraction or defining new concepts.
Compared to class and object diagrams featured by UML, separating analysis the-
ory and application of theory is difficult.

To overcome the weaknesses of Dempster-Shafer theory, a second inference en-
gine based on extended influence diagrams (EIDs) [150] was designed. This engine
had stronger analysis capabilities and allowed the expression of decisions and goals.
Based on Bayesian probability theory, it also allowed uncertainty to be considered to
a certain extent, mainly in the forms of definitional uncertainty, theoretical hetero-
geneity, causal uncertainty and empirical uncertainty could be covered. However,
the issue of missing support for multiple levels of abstraction remained. There-
fore, the requirement “the tool shall support an extendable metamodel” could not
sufficiently be met by this inference engine.

The third engine was built using probabilistic relational models (PRMs) [143]. A
tool version using this engine was presented in [44]. PRMs allowed the separation of
theory specification in terms of a class diagram and the application of the theory in
an object diagram. In this way, the weakness of the two previous inference engines,
which did not sufficiently support extended metamodels, was overcome. PRMs
contributed to the analysis capabilities of the tool, as PRMs allowed the modeling
of discrete Bayesian attributes. Dependencies between these attributes could be

5.4. DESIGN OPTION IV: INFERENCE ENGINE 83

considered and specified in terms of probability tables. Additionally, default values
for the states of the included attributes could be specified.

This engine was later extended to support hybrid probabilistic relational models
(HPRMs) [181]. Compared to PRMs, these models allowed the consideration of
continuous attributes, i.e., attributes that are not characterized by a defined number
of states but by a numerical value. Thus, the analysis capabilities increased. While
using this fourth engine, the need for structural analysis arose [38, 259]. For the
analysis of some system properties, especially interoperability according to [260],
it is important to consider the structure of the model, i.e., to investigate whether
certain relationships exist. PRMs and their extension HPRMs, however, were not
able to sufficiently support structural analysis.

This led to the implementation of the fifth inference engine, that which is used
in the latest version of the tool [43]. This engine uses the Predictive, Probabilistic
Architecture Modeling Framework (P2AMF) [140](cf. Section 5.4) to evaluate En-
terprise Architecture models. The engine provides the tool with advanced analysis
capabilities. P2AMF allows the attribute values to be calculated based on the val-
ues of the parental attributes. For attribute values, it is possible to specify default
values. Using P2AMF, both continuous and discrete attributes can be considered.
It also allows the structural aspects to be considered when evaluating models. Us-
ing P2AMF’s existence attribute, it is possible to describe structural uncertainty.
As P2AMF supports the analysis of models using Markov chains, even definitional
uncertainty, theoretical heterogeneity, causal uncertainty and empirical uncertainty
can be considered.

P2AMF is designed on top of OCL, which in turn is closely related to UML class
and object diagrams (cf. Section 5.3) and allows likewise a separation between the
definition of a theory and the application of the defined theory. This characteristic
helped address the requirement “the tool shall support an extendable metamodel”.
The selected rich client platform facilitated the implementation of P2AMF, as it
offered components for the evaluation of OCL queries on UML models. However,
as the application of P2AMF is not very common, its usage might initially be
considered complicated.

Table 5.5 summarizes the discussed inference engines and their weaknesses.

84 CHAPTER 5. DESIGN DECISIONS

Inference engine Strength Weakness
Dempster-
Shafer theory • Analysis capabilities

– Calculation of
attribute val-
ues based on
other included
attributes

• Insufficient analysis ca-
pabilities
– Lacking support

for decision and
goal representa-
tion

• Insufficient support for
extendable metamod-
els
– No separation be-

tween metamodel
and model

Extendend
Influence Dia-
grams

• Analysis capabilities
– Calculation of

attribute val-
ues based on
other included
attributes

– Decisions and
goals can be
modeled

• Insufficient support for
extendable metamod-
els
– No separation be-

tween metamodel
and model

• Insufficient analysis ca-
pabilities
– Difficult to con-

sider structural
aspects (which
had to be hard-
coded)

Continued on next page

5.4. DESIGN OPTION IV: INFERENCE ENGINE 85

Table 5.5 – continued from previous page
Inference engine Strength Weakness

Probabilistic
Relational
Models

• Analysis capabilities
– Calculation of

attribute val-
ues based on
other included
attributes

– Possible to specify
default values for
attributes

• Separation between
metamodel and model

• Insufficient analysis ca-
pabilities
– Difficult to con-

sider structural
aspects (which
had to be hard-
coded)

– Only discrete at-
tributes can be
considered

Hybrid Prob-
abilistic Rela-
tional Models

• Analysis capabilities
– Calculation of

attribute val-
ues based on
other included
attributes

– Possible to specify
default values for
attributes

– Consideration of
discrete and con-
tinuous attributes

• Separation between
metamodel and model

• Insufficient support of
structural analysis

Continued on next page

86 CHAPTER 5. DESIGN DECISIONS

Table 5.5 – continued from previous page
Inference engine Strength Weakness

Predictive,
Probabilis-
tic Architec-
ture Modeling
Framework

• Analysis capabilities
– Calculation of

attribute val-
ues based on
other included
attributes

– Possible to specify
default values for
attributes

– Consideration of
discrete and con-
tinuous attributes

– Support for struc-
tural analysis

• Separation between
metamodel and model

• Steep learning curve

Table 5.5: Comparison of the used inference engines

Predictive, Probabilistic Architecture Modeling Framework

The Predictive, Probabilistic Architecture Modeling Framework (P2AMF) [140] is
an extension of OCL for probabilistic analysis and prediction of system properties.
It makes use of OCL’s capability to act as a query language. The main feature of
P2AMF is its ability to express uncertainties of objects, relations and attributes in
UML models and perform probabilistic assessments incorporating these uncertain-
ties. A typical usage of P2AMF would be to create a model for predicting, e.g., the
availability of an application. In P2AMF, two types of uncertainty are introduced.
First, attributes may be stochastic. When attributes are instantiated, their values
are expressed as probability distributions. Second, the existence of objects and re-
lationships may be uncertain. It may be the case that one no longer knows whether
a specific server is still in service, which is a case of object existence uncertainty.
Such uncertainty is specified using an existence attribute E that is mandatory for
all classes (here, using the concept class in the regular object-oriented aspect of
the word), where the probability distribution of the instance myServer.E might be
P(myServer.E)=0.8

i.e., there is an 80% chance that myServer still exists. It might also be uncertain
whether myServer is still serving a specific application, i.e., whether there is a con-
nection between the server and the application. Similarly, relationship uncertainty

5.4. DESIGN OPTION IV: INFERENCE ENGINE 87

is specified with an existence attribute E on the relationships.
The probabilistic aspects are considered in a Monte Carlo fashion. In each it-

eration, the stochastic variables are instantiated with instance values according to
their respective distributions. This includes the existence of classes and relation-
ships, which are sometimes instantiated, sometimes not, depending on the distri-
bution. Then, each of the P2AMF statements is transformed into a proper OCL
statement and can be evaluated. How this is realized is described in the following
section.

Sampling algorithms

This section explains how inference is performed in the tool. The authors of P2AMF
are not specific about how this should be realized. In the tool, three sampling
algorithms are implemented to infer the values of the attributes that are part of
the created model: forward sampling, rejection sampling and Metropolis-Hastings
sampling [161]. Each algorithm has advantages and disadvantages. The Gibbs
sampler [49], an alternative algorithm that is also frequently used, was not directly
supported, as it is a special case of the more general Metropolis-Hastings algorithm.

The user starts the sampling functionality as soon as the object diagram de-
scribes the scenario of interest. The P2AMF object diagram is sampled to create
a set of deterministic object diagrams. This is performed considering the proba-
bility that a certain object is part of the created object diagram and that a given
relationship is contained in that object diagram as well. Therefore, the existence
attribute E, as explained above, is evaluated.

For each of these sample models, standard OCL inference is performed, thus
generating sample values for all modeled attributes. For each attribute, the sample
set collected from all sampled OCL models is used to characterize the posterior
distribution.

For all sampling algorithms, the first step is to generate random samples from
the existence attributes’ probability distribution P (X) : x1, . . . , xM . For each sam-
ple, xi, and based on the P2AMF object diagram Op, a reduced object diagram,
Ni ∈ N , containing only those objects and links whose existence attributes, Xj, were
assigned the value true is created. Some object diagrams generated in this manner
will not conform to the constraints of UML. In particular, object diagrams may
appear such that a link is connected to only one or even zero objects. Such sam-
ples are rejected. Other generated object diagrams will violate, e.g., the multiplicity
constraints of the class diagram. Such samples are also rejected. Additionally, some
OCL derivations are undefined for certain object diagrams, for instance, a summa-
tion derivation over an empty set of attributes. A set of traditional UML/OCL
object diagrams remains with Ξ ⊂ N , whose structures vary but are syntactically
correct and whose attributes are not yet assigned values. Finally, if the user pro-
vides evidence for one or several attributes, the sample is assigned the evidence
value.

88 CHAPTER 5. DESIGN DECISIONS

Forward sampling

Forward sampling (cf. Algorithm 1) consists of only a few steps and leads to a fast
sampling process. However, forward sampling has the disadvantage of not allowing
the specification of evidence; on any arbitrary attribute in the object diagrams, only
evidence on attributes not calculated based on other attributes’ values is allowed.

Figure 5.6: An example application of P2AMF

In the example depicted in Figure 5.6, only evidence for the attribute database
server.availability can be provided. Forward sampling requires the attributes that
are part of a sample Y1, . . . , Yn to be sorted in topological order, such that parent
attributes appear earlier in the sequence than the attributes that are calculated
based on them, their children. Thus, Database server.availability comes before
Read database.availability in the example of Figure 5.6. Following the general first
step, as described above, the second step of the forward sampling algorithm is
that for each of the remaining object diagrams, Ξi, the probability distribution of
the attributes not calculated based on the value(s) of other attributes, P (Yr) is
sampled. This creates the sample set yr[1], . . . ,yr[size(Ξ)]. If there is evidence on
a root attribute, the sample is assigned the evidence value. Based on the samples
of the root attributes, the OCL derivations are calculated in topological order for
each remaining attribute in the object diagram, yr

i = fyr
i
(Payr

i
). The result is a

set of deterministic UML/OCL object diagrams, Λ ⊂ Ξ, where in each model, all
attributes are assigned values. The final set of object diagrams, O ⊂ Λ, contains
attribute samples from the posterior probability distribution P (X,Y|e). These
samples may thus be used to approximate the posterior.

5.4. DESIGN OPTION IV: INFERENCE ENGINE 89

Algorithm 1: Forward sampling

Rejection sampling

The objective of rejection sampling (cf. Algorithm 2) is to generate samples from
the posterior probability distribution P (X,Y|e), where e = eX ∪ eY denotes the
evidence of existence attributes as well as the remaining attributes. The objec-
tive is thus to approximate the probability distributions of all attributes, given the
observations on the actual values of some attributes, and prior probability distribu-
tions representing beliefs about the values of all attributes prior to observing any
evidence. Rejection sampling extends the previously described forward sampling al-
gorithm with a third step. In this third step, object diagrams containing attributes
not conforming to the evidence are rejected. The sampling process ensures that
root attributes always conform, but this is not the case for OCL-defined attributes.

90 CHAPTER 5. DESIGN DECISIONS

Algorithm 2: Rejection sampling

As described above, rejection sampling extends forward sampling. In this way,
it overcomes the weakness of only allowing the specification of evidence on the
root attributes. The pseudo code above shows that this is implemented as a filter,
where samples conforming to the evidence are kept and all others are rejected.
This approach is costly, as it requires the creation of many samples to generate a
sufficient number of valid samples.

Metropolis- Hastings sampling

Metropolis-Hastings sampling (cf. Algorithm 3) is an iterative sampling technique
converging to a desired distribution limit. It aims at creating a Markov chain MC
with a stationary distribution being the desired distribution, i.e., a chain of samples
where the sampled attribute values match the specified evidence.

First, one valid sample is created using rejection sampling. Once this sample is
found, it is used as the first element in the Markov chain.

5.4. DESIGN OPTION IV: INFERENCE ENGINE 91

Algorithm 3: Metropolis-Hastings sampling

The second step is to create a new chain element based on the last added
element. A new sample is created as a copy of the last chain element. For the at-
tributes without any specified evidence new values are generated using a candidate-
generating distribution. Then the likelihood of the new sample given the old sample
P (x′|x) is evaluated. Thereafter the probability of acceptance α of the sample is
calculated, considering the likelihood P (x′|x), which over time is given more weight
to. If α is greater than a given limit l the sample is added to the chain otherwise
the last added element is added again. The second step is repeated until a prede-
fined number M of chain elements has been added. The first samples are typically
not used to evaluate the model; they are called burn-in samples B and train the
algorithm. As a final step the burn-in samples are removed.

Similar to rejection sampling, Metropolis-Hastings sampling allows specifying
evidence for any attribute of the model. This algorithm does need a comparably
smaller number of samples and is therefore more effective, especially when consid-
ering models including a large number of attributes. The biggest disadvantage of
Metropolis-Hastings sampling is that, especially for models with many local min-
ima, a solution not being the best one might be found. This is because of the chain
structure of the result, where samples are based on their predecessor.

92 CHAPTER 5. DESIGN DECISIONS

Table 5.6 compares the described sampling algorithms.

Sampling algorithm Strengths Weaknesses
Forward sampling • Fast • Only evidence on

leaf nodes

Rejection sampling • Evidence on all
nodes

• Time-consuming
for large modes

Metropolis-Hastings
sampling • Supports Evidence

on all nodes
• Relatively fast

• Risk of only finding
local minima

• Advanced config-
uration, requiring
insights into the
algorithm, needed

Table 5.6: Comparison of the sampling algorithms

5.5. DESIGN OPTION V: LEVEL OF ABSTRACTION 93

5.5 Design option V: Level of abstraction

Many Enterprise Architecture models are large, consisting of several hundreds of
entities (cf. Chapter 8). When Enterprise Architecture models are to be used for
analysis purposes, they are typically even larger than models intended purely for
documentation. This is the case because, typically, some extra information needs to
be captured for the models as input for analysis. For example [182] presents a class
diagram for the analysis of availability. This analysis theory introduces the usage
of gates to aggregate available data between different layers of the architecture.
These gates are not relevant from a documentation perspective but are needed for
analysis.

As identified in the first section of this chapter, the provided level of abstraction
needed to be selected under consideration of the following requirements of the tool:

• The tool shall offer a high degree of usability
• The tool shall possess presentation capabilities
• The tool shall support the creation of models
During the implementation of the tool and usage in practice, the high complex-

ity of the models was identified. It was realized that to support the tool user in
conducting an analysis, it is helpful to reduce the size of the graphical model to de-
crease the visual complexity and thereby facilitate the user’s navigation through the
model. To achieve this goal while retaining the previously selected modeling lan-
guage UML and providing input to the P2AMF inference engine, three alternatives
were identified.

First, the analysis theory described in the analysis framework could be simplified
and shortened to reduce the number of entities of which the resulting models con-
sisted. Second, the tool could leave the creation of easier comprehendible models to
the user. Instead of an active support that would automatically be utilized during
the tool usage, a passive approach triggered by the user was imagined. As soon
as the user felt overwhelmed by the model, he or she could use a filter mechanism
or rework the model, using cut and paste, to make it easier to grasp. The third
alternative was support for templates. Using templates, model complexity can be
encapsulated in building blocks, and the number of depicted model elements could
be reduced. The same user defining the analysis theory could define the templates
specifically per class diagram. This should lead to meaningful visual aggregations,
as the author of the analysis theory likely has a good feeling for useful building
blocks.

The three alternatives were evaluated, and both the second and third alterna-
tives were implemented iteratively.

The first alternative, simplified analysis theory, would have contributed to a
higher degree of usability. This approach would have supported the creation of
models, and the resulting models would have consisted of fewer objects. The models
based on the simplified theory would be easier to grasp, as their complexity would
be lower. The tool would also have possessed improved presentation capabilities
with this solution, as only a subset of the original model would have been visualized.

94 CHAPTER 5. DESIGN DECISIONS

However, this approach also has some disadvantages that prevented its selection.
The resulting models would have been simplified compared to models based on the
original analysis theory. Therefore, analyzing the resulting models would at some
point lead to different results from the models based on the original theory, as the
used theory might not contain all relevant aspects. Another aspect is that the
simplification of metamodels would have been difficult to realize using a generic
approach. Instead, the simplification would be manual and time-consuming. This
approach would also not solve the problem of complex models, only postponing
it. Even based on simplified analysis theory expressed in metamodels consisting of
fewer entities, it would be possible to create complex models; it would only take a
longer time to do so. Finally, this approach would reduce presentation capabilities,
as it would not be possible to present all information due to the simplifications.

In the first iteration, the previously described second alternative was realized.
The tool offers the user the ability to define views [153] to visually slice and dice
the model into smaller, more graspable sub-models. In addition, filters can be
applied to depict only a subset of the contained attributes. It is also possible to
only show the attributes that affect a particular attribute or only the attributes
that are impacted by a certain attribute. A discussion of the tool functionality is,
however, beyond the scope of this section. This is part of Chapter 8.

This approach contributes to the fulfillment of the requirement “the tool shall
offer a high degree of usability”, as it is a flexible solution allowing the creation of
individually tailored visualizations of subsets of the model. This approach also adds
presentation capabilities to the tool, as relevant information can be presented to
interested stakeholders based on filtering. The approach also supports the creation
of models, as during the process of model creation, the focus can be set on a
certain subset of the model. All other temporarily irrelevant parts can be hidden
while modeling this subset.

The usage of viewpoints, views and filters has the disadvantage of adding an-
other activity to the modeling process. The usage of this approach requires some
manual activity and cannot be performed completely automatically. Someone, typ-
ically the theory expert, needs to define the relevant viewpoints, which might be
time-consuming. Moreover, creating views illustrating subsets of the model also
requires the investment of time on the part of the practitioner.

As a result of another iterative tool extension, the presented tool offers the usage
of templates as a means of aggregation of model elements and thereby reduces the
model complexity. This second extension, reducing the visual complexity, could
be added to the tool without interfering with the previously described viewpoints
and views. Instead, both features can be used jointly, increasing the usability even
more.

The Enterprise Architecture analysis tool supports the specification of templates
defined on top of the class diagrams. These templates can be used as building blocks
during the instantiation of the class diagram into an object diagram. In particular,
templates can be reused several times during the instantiation. In this way, it
is possible to create a large object diagram fairly easy. This contributes to the

5.5. DESIGN OPTION V: LEVEL OF ABSTRACTION 95

fulfillment of the requirement “the tool shall offer a high degree of usability”.
The creation of models is supported, as templates can be connected to other

entities or other templates using defined ports (cf. Section 7.2). Instead of visu-
alizing all constituent parts individually, the tool visually summarizes them into
one model element and thereby decreases the number of shown entities. However,
the tool user is still able to consider the elements that are included into a template
individually, as the tool allows the consideration of the sub-model, which is de-
scribed separately in a specific view. These features contribute to the presentation
capabilities of the tool. Furthermore, the analysis results are not affected, as the
tool internally dissolves the templates into its constituent objects before feeding the
model into the inference engine.

The disadvantage of templates as they are supported in the tool at present is
that their initial specification is time-consuming. The included classes need to be
modeled before a template can be used, and it is also necessary to specify how the
template can be connected to the rest of the model using its ports. The use of
templates was first presented in [119].

As for filtering, the intent of this section is not to explain these features in detail.
Instead, the design decisions and, in particular, the design decision to implement
support for the tool-side reduction of the visual complexity are of importance. An
explanation of the two mentioned features can be found in Section 7.2. As part of
the discussion of the data model (cf. Section 7.3), the concepts of templates and
viewpoints are related to the core information objects of the tool: the class diagram,
representing the extended metamodel, and the object diagram, the instantiation of
the metamodel.

Table 5.7 summarizes the comparison of the considered alternatives to support
an appropriate level of abstraction.

96 CHAPTER 5. DESIGN DECISIONS

Means for
complexity
reduction

Strength Weakness

Simplified and
shortened anal-
ysis theory

• Contributes to a high
level of usability
– Simplified models

• Supports the creation
of models
– Models consist of

less entities
• Supports realizing pre-

sentation capabilities
– Presentation of an

aggregated subset

• Limited support the
creation of models
– Models are simpli-

fications
– No generic way to

simplify models
– Problem not

solved only post-
poned

• Limited support for re-
alizing presentation ca-
pabilities
– Not all relevant

information might
be available in
simplified models

Continued on next page

5.5. DESIGN OPTION V: LEVEL OF ABSTRACTION 97

Table 5.7 – continued from previous page
Means for
complexity
reduction

Strength Weakness

Filtering com-
bined with
viewpoints and
views

• Contributes to a high
level of usability
– Flexible solution

allows individ-
ual tailoring of
displayed model
parts

• Supports realizing pre-
sentation capabilities
– Using of filters to

provide visualiza-
tions for the tar-
get audiences

• Supports the creation
of models
– Viewpoints and

views can be used
on top of existing
models to focus
on a subset

• Negative impact on us-
ability
– Either theory ex-

pert has to spec-
ify a viewpoint or
practitioner has to
manually create a
view

Continued on next page

98 CHAPTER 5. DESIGN DECISIONS

Table 5.7 – continued from previous page
Means for
complexity
reduction

Strength Weakness

Templates
• Contributes to a high

level of usability
– Reuse of model

components
– Modeling of many

objects at once
• Supports realizing pre-

sentation capabilities
– Level of abstrac-

tion is provided
– Inside of tem-

plates can be
considered if
needed

• Supports the creation
of models
– Templates behave

like objects
– Relation to other

templates or ob-
jects

• Negative impact on us-
ability
– Specification time

consuming
– Needs to be done

by a theory expert

Table 5.7: Comparison of means to provide a level of abstraction

5.6. DESIGN OPTION VI: CYBER SECURITY MODELING 99

5.6 Design option VI: Cyber security modeling

As mentioned in Chapter 1, the tool presented in this thesis was partly developed
in the context of a research project with the goal of creating means for evaluating
industrial control systems from a cyber security perspective. The project sponsors
were particularly interested in developing tool functionalities to foster such analyses.

There are a variety of different approaches to security analysis [145], and no
generic solution is applicable in every context. Therefore, an important decision,
within the research project that the tool development was part of, was the selection
of a cyber security analysis approach. The author was not directly involved in
making this decision; however, the outcome was relevant for the presented work in
that a means to support the chosen approach had to be designed and developed.

As stated in the introduction to this chapter, candidates for providing support
for cyber security modeling needed to be evaluated regarding their contribution to
the fulfillment of two requirements:

• The tool shall support the creation of metamodels covering the domains busi-
ness architecture, information architecture, technology or technical architec-
ture and solution architecture

• The tool shall support the creation of models
In accordance with the goal of the research project, the selected approach had to
allow the making of enterprise-wide decisions. To produce input useable for the tool,
the approach had to be expressible using the previously explained (cf. Section 5.3)
modeling language of the tool (UML and OCL). It was also relevant that the selected
approach was compatible with the method for Enterprise Architecture analysis (cf.
Section 3.2), which is supported by the presented tool. This includes following
a structure consisting of an extended metamodel specifying analysis theory and
models instantiating this metamodel. Additionally, a consideration of uncertainty,
as suggested by the analysis method, required. These latter requirements can be
summarized as compatibility with the P2AMF (cf. Section 5.4).

Four families of approaches providing support for model-based security analysis
while fitting into the context of the project were considered [247] techniques for
model-driven security analysis during the system development, approaches to risk
modeling, attack trees and attack graphs. The following comparison of the modeling
approaches is a summary of the evaluation presented in [247].

SecureUML [158] provides a language with the purpose of specifying security
aspects while performing model-driven development. This language comes with the
drawback of lacking a method to quantitatively assess security based on the created
models.

UMLsec [141] provides a language and methodology that can be used for security
analyses during the development of systems. The output of the analysis method is
a pass/fail result stating whether the architecture fulfills the requirements. Such a
verification can support security risk analysis, but there are no automated means
to compute security threats directly from the results [247].

100 CHAPTER 5. DESIGN DECISIONS

CORAS [82] is a method for analyzing and quantifying risk. This is achieved by
modeling the relationships between assets, threats, vulnerabilities, unwanted events,
risks and treatments. The authors of [247] state that although risk in CORAS is
defined as the product of likelihood and consequence, there is no analysis framework
coupled to the metamodel and thus no algorithmic method to calculate risk based
on a graphical description. Furthermore, there is also no description of which
types of risk treatment should be modeled or how risk treatments influence risks in
CORAS.

The concept of attack trees describes the application of fault tree analysis for
cyber security analysis [230]. This approach aims at depicting the main goal of an
attacker as the root of a tree. The steps that it takes to reach this objective are
broken down into the subgoals of the attack. These subgoals can be related to each
other using “AND” and “OR” gates. This is a frequently used way to model threats
and security and exists in numerous variations [119, 246]. [233] suggests evaluating
the probability of attacks taking place, the probability of success, whether special
equipment is needed, the cost and the legality of mounting an attack on the system
by assigning leaf events in the tree and then following their propagations upwards
within the tree.

A holistic perspective on cyber security can be obtained when not only attacks
but also countermeasures are considered [81]. [120] presents an approach in which
countermeasures are modeled together with trees illustrating threats. [26] demon-
strates the combination of countermeasures in a tree structure in so-called “defense
trees”. Figure 5.7 illustrates this approach.

Figure 5.7: Countermeasure Attack trees can be extended to Defense trees

Attack trees and defense trees have the disadvantage of being large. A fully
comprehensive attack tree with all possibilities and factors would require one or

5.6. DESIGN OPTION VI: CYBER SECURITY MODELING 101

more experts and a large investment of time and effort, resulting in poor scalability
[58].

In [247], it was described that attack graphs model the sequence of steps needed
to accomplish the attack rather than the set of steps. This is modeled in a graph
structure. [247] also reports that attack graphs have been used to assess the prob-
ability that an attacker reaches a particular attack step [131] or to analyze the
security of system configurations in terms of the weakest adversary that can com-
promise the network [208].

[157] demonstrated the usage of Bayesian networks to express attack graphs to
calculate the probability of an attack against computer networks being successful
based on vulnerabilities within it. These “Bayesian attack graphs” can be used
to answer questions about the current security status and to facilitate comparison
with previous measurements [81]. Attack graphs have the disadvantage of possibly
growing exponentially with the size of the network if no means to complexity re-
duction are used. This complexity makes the creation of visualizations difficult and
has a negative impact on the usability of this approach [188].

Table 5.8 compares the discussed cyber security modeling approaches.

Security
modeling
approach

Strength Weakness

Security eval-
uations during
model-driven
development
(SecureUML,
UMLSec)

• Supports the creation
of models
– Extensions to the

UML

• Difficult to model busi-
ness architecture, tech-
nology or technical ar-
chitecture and solution
architecture
– Focus on the de-

sign of systems
• No support for analysis

Continued on next page

102 CHAPTER 5. DESIGN DECISIONS

Table 5.8 – continued from previous page
Security
modeling
approach

Strength Weakness

Analyzing and
quantifying risk • Covers the domains

business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture
– Relationships

between assets,
threats, vulnera-
bilities, unwanted
events, risks and
treatments

• Insufficient supports
for the creation of
models
– No description

of what differ-
ent types of
risk treatments
that should be
modeled, or how
risk treatments
influence risks

• No algorithmic method
to calculate risk based
on a graphical descrip-
tion

Attack trees and
defense trees • Supports the creation

of models
– Goals and sub-

goals can be ex-
pressed

• Covers the domains
business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture
– Defense trees are

a holistic ap-
proach to create
enterprise-wide
models

• Insufficient supports
for the creation of
models
– Resulting models

tend to be fairly
large

Continued on next page

5.6. DESIGN OPTION VI: CYBER SECURITY MODELING 103

Table 5.8 – continued from previous page
Security
modeling
approach

Strength Weakness

Attack graphs
• Supports the creation

of models
– Network structure

between modeled
elements can be
captured

• Covers the domains
business architecture,
information archi-
tecture, technology
or technical archi-
tecture and solution
architecture
– Holistic ap-

proach to create
enterprise-wide
models

• Insufficient supports
for the creation of
models
– Visualization

can be diffi-
cult because of
complexity

– Attack graphs
grow exponen-
tially with the size
of the network if
no countermea-
sure is taken i.e.
if no advanced
approach is used

Table 5.8: Comparison of security modeling approaches

The other contributors to the cyber security research project of which the pre-
sented tool was an outcome chose to base their work on the usage of attack graphs.
They initially created [247] a cyber security analysis framework making use of the
PRM formalism. Later, as part of the research project for evaluating industrial con-
trol systems from a cyber security perspective, an updated and extended version
was presented. P2CySeMoL: Predictive, Probabilistic Cyber Security Modeling
Language [119] makes of the latest inference engine included in the tool (the Pre-
dictive, Probabilistic Architecture Modeling Framework (P2AMF)). While defining
this language, the authors of [119] made use of the tools capabilities to address
various levels of abstractions (cf. Section 5.5) to reduce the discussed complexity
problems existing for attack graphs. They defined a set of templates, as introduced
in the previous section on the level of abstraction, which could be used to describe
typical reoccurring building blocks.

104 CHAPTER 5. DESIGN DECISIONS

5.7 Summarized design decisions

The design decisions made are summarized in Table 5.9. For the overall architecture
of the tool, implementing a common core and two specializations, each tailored to
support one of the user groups, was chosen. The platform was realized based on the
Eclipse Rich Client Platform. The Unified Modeling Language (UML) was selected
as the modeling language. The inference engine of the tool was implemented based
on the Predictive, Probabilistic Architecture Modeling Framework (P2AMF) [140].
To address the visual complexity arising from large Enterprise Architecture models,
two support functionalities were added to the tool: the ability to filter and use of
viewpoints and views to visualize tailored subsets of complex models and the ability
to add templates. Templates, reusable submodels that are visualized as one model
entity, allow the reduction of the amount of displayed content without minimizing
the information used for analysis.

Finally, attack graphs were selected as a means to support the performance of
cyber security analysis. This approach allows cyber security analysis on the network
because the business architecture, information architecture, technology or technical
architecture and solution architecture of an enterprises are described in one holistic
model.

Area for making design decision Outcome
Overall architecture A common core and two specializations
Platform Eclipse Rich Client Platform
Modeling language UML
Inference engine Predictive, Probabilistic Architecture

Modeling Framework (P2AMF)
Level of abstraction Filtering combined with viewpoints and

views
Templates

Cyber security modeling Attack graphs

Table 5.9: Summarized design decisions

Chapter 6

Tool development process

This section describes the tool development process that was followed to implement
the presented Enterprise Architecture analysis tool. The chapter concludes with
a short presentation of significant milestones that were achieved during the tool
development.

6.1 Development process

To ensure the successful implementation of the tool for the analysis of Enterprise
Architecture models, the tool was developed closely with its intended users: aca-
demics specifying analysis frameworks and practitioners performing analyses based
on analysis frameworks. An agile approach [1] was chosen to satisfy the users
through the early and continuous delivery of valuable software [7]. Following an
agile process model allowed the consideration of changing requirements, even late
in the development [53]. It was thereby ensured that the tool always satisfied the
stakeholders’ latest requirements. Following this approach had the advantage of
there always being working software available [53].

As the second group of tool users, i.e., practitioners that want to conduct anal-
yses, depends on the first group, the theory experts, the latter was considered first.
To perform analyses, an analysis framework needs to be in place, and in order for
analysis frameworks to be available, a tool that allows the specification of analysis
frameworks is needed.

This chain of impact led to a close collaboration between the tool development
team and the theory experts during the initiation of the tool development. Once
a minimalistic tool component for the specification of analysis frameworks was in
place, the second user group, practitioners performing analyses, was considered
as well. The tool component for the usage of analysis frameworks was then imple-
mented, yet again in a basic version without advanced functionality. Once both tool
components were in place, they were extended and modified iteratively in terms of

105

106 CHAPTER 6. TOOL DEVELOPMENT PROCESS

Figure 6.1: The overall structure of an FDD project as described in [121]

Iden%fy	
 and	
 priori%se	
 overall	

feature	
 list	

Roughly	
 plan	
 our	
 itera%ons	
 and	

features	
 with	
 %me	
 boxes	

Revise	
 features	
 for	
 itera%on	
 and	

plan	
 itera%on	
 in	
 detail	

Implement	
 and	
 test	
 individual	

features	

Apply	
 acceptance	
 tests	

Create	
 a	
 release	
 if	
 required	

Last	
 itera%on?	

smaller and larger features. This approach was performed following a feature-driven
development approach [121, 9] similar to the approach visualized in Figure 6.1.

The list of feature candidates contained potential additions identified by the
author in collaboration with both analysis theory experts and practitioners. The
author had the task of collecting potential new features, describing them and trans-
lating them into concrete work packages for the development team in the case of a
selection.

At this stage, an evaluation of potential features was conducted as well. This

6.1. DEVELOPMENT PROCESS 107

evaluation aimed at determining whether the feature requests were contradictory to
the requirements of the tool presented in Chapter 4. If this was the case, alternative
solutions were developed whenever possible. Feature requests carrying the risk of
jeopardizing the goal of the presented research work were rejected.

The testing of new features was carried out in collaboration with the users
who requested a certain feature to ensure that the implementation would meet the
stakeholders’ requirements. This was performed frequently, on a day-to-day basis
depending on the feature, to ensure that no resources were wasted, in accordance
with the Agile Manifesto [7]. Once a feature was implemented satisfactorily, a new
release of the Enterprise Architecture analysis tool was released, and the feature
was made available for all tool users. Once the implementation of a feature was
complete, the technical documentation of the tool was updated accordingly, an
activity not covered in Figure 6.1.

In accordance with [121], the feature prioritization was carried out in a larger
group, led by the author. In this group, the development team, the stakeholders
requesting new features and tool users without a particular need for a tool exten-
sion were all represented. Possible new features were evaluated with regards to
their costs, scientific contribution, contribution for the practitioners and interde-
pendencies. Whenever a feature implementation iteration was completed, a decision
regarding the following tool extension was made.

Another activity that is not covered in Figure 6.1 is the aspect of bug fixing,
especially concerning tool-wide bugs arising from the realization of a new feature.
Sometimes the realization of a new feature had interdependencies with the existing
features. It could be the case that old features stopped working as a result of
changes made to realize new functionality. To handle situations such as this, a
process parallel to the one described in Figure 6.1 was introduced. This process
dealt with bug handling and, in particular, bug fixing. This process was always
given highest priority so that newly identified bugs could be solved immediately,
pausing the regular development process. This proceeding is in line with the Agile
Manifesto and its goal of always having working software in place [7].

The development of the tool for Enterprise Architecture analysis became in-
creasingly professional over time. Initially, it was a side project of a Ph.D. student.
Later, it was conducted as a master thesis project, and then a full-time programmer
started working on the tool. The project was supported by a number of students
completing their internships or conducting their master thesis projects. Typically,
the student projects had the task of developing proofs of concepts with a limited
focus and functionality. The results of these test developments were then fed back
into the main branch of the tool development.

To identify and realize new tool features, collaborations with both theory experts
and practitioners were performed. Collaborative work with more than 10 frequent
users applying the tool to specify analysis frameworks was performed over a period
of six years. Additionally, collaborations with practitioners were carried out for over
five years to capture their needs during the tool implementation. This was carried
out in part through industrial case studies and master thesis projects. Following the

108 CHAPTER 6. TOOL DEVELOPMENT PROCESS

Agile Manifesto, these groups were also used to identify redundant and unnecessary
functionality, which was then removed to ensure a simple and efficient software
product.

Chapter 8 reports the application of the tool in collaboration with both previ-
ously mentioned audiences in detail.

6.2 Important milestones

This section briefly reports on some important intermediate tool versions that were
implemented before or during the presented research project. The latest version of
the tool is covered by this thesis; however, four predecessors are worth mentioning.

The first attempts to implement a tool for the analysis of Enterprise Architecture
models were presented in [132]. As part of this research project, spreadsheets were
used to analyze architecture descriptions.

In [135], the first independent tool for Enterprise Architecture analysis was
sketched. The tool implemented the method for analysis of Enterprise Architecture
models that was presented in Section 3.2. This tool featured the inference engine
based on extended influence diagrams described in the previous chapter. The tool
was already implemented in JAVA, a decision retained until the present study. The
NetBeans Visual Library (cf. Section 5.2) was used.

In [64] and [44], the third version of the tool was presented, the result of the
master thesis project described in [40]. This version used the same technologies
as the previous version on the outside. However, it featured an inference engine
based on probabilistic relational models (PRMs) [143]. The code base of this im-
plementation was of significantly higher quality, and design patterns, including the
Model-View-Controller pattern [217], were applied for the first time.

All three versions described above were prototypical implementations illustrat-
ing the general idea of tool support for Enterprise Architecture. However, these
prototypes possessed limited usability and only basic functionality.

The fourth version of the tool was the first to provide sufficient stability and
usability to allow large-scale usage. Some of the tool applications presented in
(Chapter 8) were made with this version. This was achieved in part using an ex-
tended development team as well as a more structured development process that
included the usage of test cases. For the first time, more than just basic tool func-
tionality was implemented. For example, [42] described a tool feature that can be
used to automatically instantiate class diagrams based on the results of vulnerabil-
ity scanners. This tool was the first to support a P2AMF-based inference engine,
which was presented in [259] (under its previous name pi-OCL). This P2AMF-based
inference engine was offered in parallel to an inference engine based on PRMs. The
filtering and tracing of attribute dependencies, as presented in the previous chapter
(cf. Section 5.5), was offered as well.

The fifth and current version of the tool was first presented in [43]. Following
the argumentation regarding the platform included in the previous chapter, this

6.2. IMPORTANT MILESTONES 109

version makes use of the Eclipse Rich Client Platform [167] and Eclipse Modeling
Framework [250]. This version only offers the P2AMF-based inference engine that
was developed for the previous version. Templates (cf. Section 5.5) were imple-
mented as well. The fifth version of the tool has been used by more than 10 analysis
experts and more than 50 practitioners (including students using the tools for the
analysis of real and fictitious cases) to date.

For a more detailed description of the tool usage, the reader is referred to
Chapter 8, which elaborates on the tool applications.

Chapter 7

Artifact

Following the used method (cf. Chapter 2), this chapter demonstrates the result
of the research project described in this thesis from a technical perspective. This
chapter starts with a description of the user interface of the Enterprise Architec-
ture analysis tool, which was impacted by the design decision to implement this
tool as two components sharing a common core. The Class modeler is the tool
component that allows the specifying of analysis frameworks consisting of class di-
agrams representing analysis theory for Enterprise Architecture modeling. Further
viewpoints and templates, both specified on top of the class diagram, can be in-
cluded in the analysis framework as well. The counterpart of the Class modeler,
the Object modeler, supports the instantiation of the class diagrams and contains
the inference engine, which can be used to evaluate the architectural descriptions.
For both components, a presentation of the suggested workflow, illustrating the
recommended order for applying the functionality provided by the user interface,
is presented as well. Thereafter, a presentation of the distinct functionality of the
tool is given. The distinct functionality of the Class modeler is presented first. The
description is followed by a presentation of the functionality of the Object modeler.

An in-depth description of the tool’s architecture, internal structure and the
used libraries is presented in the following. Finally, once the presentation of the
tool is established, the contribution made by the author (cf. Section 1.2) is related
to the various characteristics of the tool discussed.

The resulting artifact was developed based on the previously made design de-
cisions (cf. Chapter 5). In Table 7.1, a mapping between the design decisions and
some of the features of the tool is presented.

The decision to realize the overall architecture using a common core and two
specializations was reflected in the design of the user interface (cf. Section 7.1).
Furthermore, the used data model (cf. Section 7.3) was an outcome of this decision,
as it was designed to connect the two components of the tool. The functionality to
update the used analysis framework (cf. Section 7.3) is also a consequence of the
architecture based on two components. This functionality is a connector between

111

112 CHAPTER 7. ARTIFACT

the Class modeler and Object modeler and allows the analysis framework used to
analyze architecture models to be refreshed.

The decision to use the Eclipse Rich Client Platform (cf. Section 5.2) impacted
the architecture of the created artifact (cf. Section 7.3). This architecture was
designed to optimize the utilization of the platform’s capabilities.

The design decision to use an inference engine based on the Predictive, Proba-
bilistic Architecture Modeling Framework led to the design of a functionality that
allows validating input according to this framework (cf. Section 7.2).

The decision to support filtering combined with viewpoints and views and tem-
plates to handle the visual complexity of the models led to two features that are
presented in this chapter: complexity reduction using templates (cf. Section 7.2)
and the creation of filtered views based on viewpoints (cf. Section 7.2).

The decision to support cyber security modeling using attack graphs led to
the development of the functionality to trace the source of impact (cf. Section
7.2) to find the reason for a given analysis result. This functionality can be used
to identify security deficiencies and meaningful countermeasures while conducting
cyber security analyses.

113

Area for making design
decision

Outcome Reflected in tool features

Overall architecture • A common core
and two specializa-
tions

• User interface
• The used data

model
• Update of the used

analysis framework

Platform • Eclipse Rich Client
Platform

• Architecture
– The used

platform
– The resulting

tool architec-
ture

Modeling language • UML

Inference engine • Predictive, Prob-
abilistic Archi-
tecture Model-
ing Framework
(P2AMF)

• P2AMF validation

Level of abstraction • Filtering combined
with viewpoints
and views

• Templates

• Complexity re-
duction using
templates

• Creation of filtered
views based on
viewpoints

Cyber security modeling • Attack graphs • Source of impact
tracing

Table 7.1: Mapping between the design decisions and the reflecting tool features

114 CHAPTER 7. ARTIFACT

Not every feature of the tool that will be discussed in this chapter is directly
determined by the design decisions. Some of the functionality that the developed
tool for Enterprise Architecture analysis possesses was not mainly added to meet the
previously identified requirements or to fulfill design decisions that arose based on
the requirements. Instead, features were sometimes added as the need for them was
identified during the application of the tool. However, the support of these features
contributed indirectly to the fulfillment of the requirement “the tool should offer
a high degree of usability” in that the added functionality either simplified the
application of the tool or made the tool better at performing its tasks. Before
new features were added to the tool, it was always ensured that they were not
contradictory to the previously made design decisions.

7.1 User interface

This section contains a description of the user interface of the presented tool. Ini-
tially, a presentation of the user interface of the Class modeler is given. Thereafter,
the typical workflow when using the Class modeler is presented. This is followed by
a presentation of the Object modeler and the typical workflow for the application
of this component.

User interface of the Class modeler

Figure 7.1: The user interface of the Class modeler

7.1. USER INTERFACE 115

The user interface of the Class modeler (cf. Figure 7.1) mainly consists of
the modeling canvas, which can be found in the center. This is the location in
which, during the application of the Class modeler, the analysis framework and in
particular the included class diagram will be created. To the right of the model
canvas, a palette can be found (cf. Figure 7.2). This palette holds all of the possible
model elements that can be used to construct an analysis framework.

Figure 7.2: The palette of the Class modeler

Below the modeling canvas is an area consisting of several tabs (cf. Figure 7.3).

Figure 7.3: Tabs to consider and specify model properties of the Class modeler

These tabs show the outcome of model validation, allow the specification of
P2AMF-based derivations, visualize the error log and allow the investigation and
changing of properties of the model elements. In the lower left corner, a model
outline can be found (cf. Figure 7.4).

116 CHAPTER 7. ARTIFACT

Figure 7.4: The model outline of the Class modeler

This outline contains allows the user to quickly navigate through the model and
to consider it from a high level. To the left of the modeling canvas, three tabs can
be found (cf. Figure 7.5).

Figure 7.5: The tabs allowing navigating through the Class diagram

These tabs allow the content of the created class diagram and its visual struc-
ture to be explored. One tab, the Class Explorer, lists all of the created classes,
their attributes, relations and the defined templates. A second tab, Views, follows,
allowing the consideration of different views on the model. The tab navigator allows
the investigation of the currently considered view.

Figure 7.6: The menu bar of the Class modeler

7.1. USER INTERFACE 117

On top of the modeling canvas, a menu bar can be found (cf. Figure 7.6) . This
bar allows quick access to several frequently used functionalities. Both new Views
and Templates can be defined based on classes of the model. New models can be
opened, and the existing one can be saved (including Save As . . .). Thereafter,
the menu bar offers the functionality to undo and redo the last performed activity.
Moreover, the menu bar offers delete functionality, export of the currently consid-
ered view/template to png and model validation. This functionality is followed
by zooming functionality. Thereafter, the user interface offers several alignments
options. The menu of the tool is located in the top area of the user interface. Here,
the File menu offers to save, load and export the analysis frameworks. The Edit
menu includes undo/redo, delete, cut, copy & paste and select all. In the P2AMF
menu, a refactoring of the P2AMF code is offered. A switch to turn on autovali-
dation and an option to validate the model follow. Finally, the Show menu allows
all of the dialogs and elements of the user interface to be shown again if they have
been closed.

Workflow of the Class modeler
The creation of analysis frameworks typically follows the process described in Figure
7.7. A user can perform the process steps in any order or divided over several
iterations.

118 CHAPTER 7. ARTIFACT

Figure 7.7: The recommended process for the usage of the Class modeler

The following descriptions assume that the process described here is followed.
The application of the Class modeler begins with the modeling of the relevant
classes. Classes can be added to a model from the palette (cf. Figure 7.2). First,
one needs to select a class and then drag it out to the modeling canvas. The name
of the class can then be adjusted by double-clicking the top part of the newly added
class. Additionally, it is possible to change the name from the properties tab (as
described above, located in the lower part of the user interface). This tab (cf.

7.1. USER INTERFACE 119

Figure 7.8), once a class was selected, also offers the option to specify a design
rational, i.e., a short notice on the modeled class. The existence, according to
P2AMF, can be specified, and the background color can be set. The class can be
set to be abstract. It is also possible to assign an icon to that class. Finally, the
visible attributes (for that particular view/templates) can be specified.

Figure 7.8: The properties tab for classes used during the application of the Class
modeler

If a class should describe a specialization of an already modeled class, an inher-
itance relation can be used. From the palette, the connecting element inheritance
can be selected for this purpose. This can, for example, be used to express that
the class Linux is a specialization of the class Operating System. In a model, one
would set an inheritance relation from Linux to Operating System.

Another way of connecting two classes is using the association relation. Associa-
tions can be created from the palette as well. Once Association is selected, relations
will be created between any two classes that are selected in order. The properties
of the association relationship can be modified from the properties tab (cf. Figure
7.9). The name of the association can be changed. It is also possible to specify
a design rationale and to set the existence of the relation according to P2AMF.
Likewise, multiplicity and roles can be set. Furthermore, OCL properties of the
relation can be changed. The relation can be set to be derived, a containment,
unique and ordered. Additionally it is also possible to switch from an association
to an aggregation or composition relation. The derivation statement, in the case of
a derived relation, can be specified in the derivation tab. It is possible to specify a
priority for a derived relation. This priority specifies when the derivation will take
place (compared to the derivation of other derived relations). The tool uses 0 as the
highest value and all values below 0 (e.g., 1, 4, . . .) as lower prioritizations. This
can be helpful when relations should be derived considering other derived relations.

120 CHAPTER 7. ARTIFACT

Figure 7.9: The properties tab for relations used during the application of the Class
modeler

One can use attributes to describe classes in the context of the analysis frame-
work. The Class modeler supports three different types: real, integer and Boolean.
These three types can be found in the palette. Classes can be described using
these attributes by dragging an attribute from the palette to the class of interest.
Two types of attributes can be used: derived and non-derived. To specify how an
attribute should be derived based on other attributes and/or the structure of the
model, a derivation statement needs to be specified. This specification can be per-
formed from the derivation tab. Attributes can be modified from their properties
tab. Their name can be changed, a design rationale can be provided and whether
the attribute should be derived and the type can be set.

To foster code reuse, P2AMF allows the definition of operations to be used
during attribute derivation. To add operations to a class, one needs to drag the
operation element from the palette to the object that should be equipped with it.
From the properties tab, these operations can be customized. A new name can
be set, and a design rationale can be provided. In addition, the output type can
be specified (yet again, from real, integer and Boolean). It can also be specified
whether the result should be a single element or a collection.

Parameters can be added to describe the input of operations. Yet again, this
addition is performed from the palette. A new parameter can be dragged from the
palette to the desired operation, where it then can be dropped. Once a parameter
is dropped, it can be adapted based on the user’s intention. From the properties
tab, it is possible to change the name, assign a design rationale, change the type
(real, integer and Boolean) and set whether the parameter should describe a set
(including a bag and sequence) or a single element.

As described in Figure 7.7 it is possible to specify invariants on the model.
Invariants are constraints on the model that need to hold during the creation of
object diagrams. These can, for example, specify the values of attributes, number
of instantiations or structure of relations. Yet again, these can be found in the

7.1. USER INTERFACE 121

palette and can be assigned to elements of the model by dragging and dropping.
Their evaluation can be specified in the derivation tab.

A click on the plain canvas allows general properties of the model to be set
(cf. Figure 7.3). Again, this step can be performed from the properties tab. This
tab allows the name of the currently considered view to be changed. Additionally,
whether connections, link labels and role names should be shown can be set. The
pattern to display role names can be varied as well. Additionally, the visibility of
attributes, operations and invariants can be specified. Finally, it is possible to set
this view as a viewpoint (to be used in the object modeler).

Once a model is complete or at any moment during the model creation, the user
can validate it. Validation here refers to checking whether the model is a proper
P2AMF model and can be used for calculations. This can be triggered from the
P2AMF model. The results are displayed in the model validation tab, located in
the lower part of the user interface. For validation, the Class modeler translates the
model into an OCL-compatible model. Next, the Class modeler uses third party
libraries (provided by the eclipse modeling framework EMF) to check the syntax
and semantics.

User interface of the Object modeler
The design of the user interface of the Object modeler was based closely on that of
the Class modeler. Therefore, yet again, the modeling canvas consumes the most
space and is located in the center of the application. To the right of the model
canvas, a palette can be found (cf. Figure 7.10) In the Object modeler, this palette
visualizes the properties of the currently considered model element, regardless of
whether it is an object, relationship or attribute.

122 CHAPTER 7. ARTIFACT

Figure 7.10: The Object Modeler with the modeling canvas in the center

Below the modeling canvas, again, an area consisting of several tabs can be
found (cf. Figure 7.11).

Figure 7.11: The menu bar of the Object modeler

These tabs allow the manually querying of the created model from the OCL
Console, reporting on errors during model creation and calculation. The user can
identify invalid invariants and trace the usage of the currently considered object
over the model’s views. Yet again, as observed in the Class modeler, the lower left
corner provides the user with a model outline (cf. Figure 7.12).

Figure 7.12: Tabs to consider and specify model properties of the Object modeler

7.1. USER INTERFACE 123

This outline allows navigation through the model and consideration of it from a
high level. In contrast to the Class modeler, the lower left corner also contains an
Attribute Value tab allowing the user to consider the value of a selected attribute
(cf. Figure 7.13).

Figure 7.13: The Attribute value tab of the Object modeler

To the left of the modeling canvas, four tabs can be found (cf. Figure 7.14).

Figure 7.14: The model outline of the Object modeler

These tabs allow the exploration of the content of the created object diagram
and its visual structure. One tab, the Object Model Explorer, lists all of the
instantiated objects and their defining classes, their properties and the defined
templates. A second tab, Views, follows, allowing the consideration of different
views of the model. The tab navigator allows the currently considered view to be
investigated. Finally, the tab Viewpoints allows the consideration of the viewpoints
that were specified on top of the used class diagram.

124 CHAPTER 7. ARTIFACT

Figure 7.15: The tabs allowing navigating through the Object diagram

Again, following the Class modeler, on top of the modeling canvas, a menu bar
can be found (cf. 7.15) . New views can be added based on the class diagram,
and new models can be opened and the existing one saved (including Save As. . .).
Thereafter, the menu bar offers the functionality to undo or redo the last performed
activity. Additionally, the menu bar offers delete functionality and export of the
currently considered view to png. The analysis framework can be updated, and the
created object diagram can be evaluated, triggered by the Calculate bottom. This
functionality is followed by zooming functionality. Thereafter, the user interface
offers several alignments options.

The menu of the tool is located in the top area of the user interface. Here, the
File menu offers to save or load the Object diagrams. Moreover, the used analysis
framework and its included class diagram can be replaced. It is also possible to
export the model to Excel to post-process it after analysis. The class diagram that
the current object diagram is based on can also be extracted. The Edit menu covers
undo/redo, delete, cut, copy & paste and select all. The user can add new views
from the Views menu. The P2AMF menu can be used to trigger the analysis of
the current model. In this way, the tool will feed the currently created model into
the inference engine and, once an evaluation is complete, display the values of the
derived attributes. The user can steer the calculation from the P2AMF menu and,
in particular, select the sampling algorithm that should be used. He or she can
also deactivate the sampling completely. It is also possible to remove all evidence
(cf. Figure 7.16) that has been collected for the modeled objects. It is also possible
to turn on autovalidation of the described constraints on the model. Finally, the
Show menu allows all of the dialogs and elements of the user interface to be shown
again if they have been closed.

Workflow of the Object modeler

The first step in the usage of the Object modeler is to understand the situation that
should be modeled in terms of the analysis framework that should be used. Thus,
the user needs to perform a translation to determine how the real-life aspects that
he or she wants to investigate can be modeled with the included class diagram. To

7.1. USER INTERFACE 125

this end, the user needs to understand the analysis framework, the included class
diagram and the scenario of interest.

Once the user achieves this understanding, he or she can start describing the
scenario based on the class diagram included in the analysis framework. In this way,
the user instantiates classes that are specified in the selected class diagrams into
objects. Third, he or she connects the objects to describe the situation of interest
considering the relationships specified in the class diagram. The fourth step is to
replace the general data included in the class diagram with specific information
for some or all attributes that are part of the model to provide a more specific
description. In the nomenclature of probabilistic inference, such instance-specific
data are called evidence [43]. Once the user is satisfied with the description of
the situation (this does not necessary mean that the description is complete, for
example, in the case of structural uncertainty), he or she can configure the sampling
algorithm that should be used to infer the remaining, unknown attribute values (cf.
Section 5.4). As soon as the sampling has been configured, the user can execute the
sampling functionality of the tool, which will evaluate the model’s attribute values
autonomously. It is then the user’s task to investigate the evaluated model and to
consider its attributes. Based on the described scenario and in consideration of the
performed analysis, the user can derive alternative setups of interest. He or she
can represent them again as models following the described process. Finally, once
the user has evaluated all relevant alternatives, he or she can compare his or her
findings and identify one or several preferable scenarios.

The described process is illustrated in Figure 7.16.

126 CHAPTER 7. ARTIFACT

Figure 7.16: The recommended process for the usage of the Object modeler

7.2. DISTINCT FUNCTIONALITY 127

7.2 Distinct functionality

This section describes the selected features of the presented tool. They are discussed
because they are unique, or at least rare, for Enterprise Architecture tools. Some
of the functionality that the tool offers is inspired by solutions found in other tools;
however, this tool extends these capabilities. Moreover, the presented features
all support reaching the goal of this project, i.e., to create a tool for Enterprise
Architecture analysis. The features of the tool that are common for almost all
available software tools, such as the ability to save a model and load it at a later
moment, are not part of this section. This category of features neither has scientific
depth nor requires explanation upon usage.

In the remainder of this section, functionality of the Class modeler will be
discussed first. Thereafter, the capabilities of the Object modeler worth mentioning
will be discussed.

Distinct functionality of the Class modeler
In this subsection, the functionality of the Class modeler distinguishing it from other
Enterprise Architecture tools will be introduced and discussed. In particular, the
handling of viewpoints, complexity reduction using templates, the configuration of
result visualization based on the analysis outcome and the validation of the P2AMF
code will be covered.

Figure 7.17 illustrates how the features that are discussed in the following relate
to the workflow presented earlier (cf. Figure 7.7). The features for the specification
of templates as well as viewpoints support the user of the Class modeler throughout
the usage of this tool component. The feature to specify the result visualization on
the class diagram level is especially relevant during the specification of the relevant
attributes. Finally, the validation of the P2AMF code is useful when P2AMF is
used to specify how attribute derivation should take place.

The features of the Class modeler that will be discussed in this section are:
• Viewpoint definition
• Complexity reduction using templates (definition)
• Result visualization
• Validation of P2AMF code

128 CHAPTER 7. ARTIFACT

Figure 7.17: The workflow of the Class modeler and its relation to the presented
features

View point definition

According to the IEEE [116, 115], a viewpoint is a pattern for capturing a set of
concerns in an architecture description. Views follow viewpoints and construct a

7.2. DISTINCT FUNCTIONALITY 129

representation of a whole system from the perspective of a set of concerns. This is
visualized in Figure 7.18.

Figure 7.18: The structure of viewpoints and views

Viewpoints are typically subsets of the class diagram and consist of some or
all of its classes. They contain from zero to all relationships between the included
classes. Common Enterprise Architecture tools have built-in viewpoints to describe
the information, IT, application and business architectures [166]. These viewpoints
depend on the used class diagram, included in a selected analysis framework, that
the tool user selects. The tool vendors sometimes also implement viewpoints based
on what they consider to be the users’ needs. However, the vendor-specific view-
points typically cover the four previously mentioned domains of information, IT,
application and business architectures on various levels of granularity, sometimes
using different wording [234].

The presented tool addresses the topic of viewpoints in a broader way. The
usage of viewpoints is spread over the Class and Object modeler. The Class mod-
eler allows the theory expert to define viewpoints that he or she considers to be
relevant, and the Object modeler allows instantiating the class diagram conforming
to the previously defined viewpoint. The unique feature of the Class modeler is
that viewpoints do not necessarily cover information, IT, application and business
architectures. Instead, they illustrate any subset of the class diagram that the
creator of the analysis framework that includes the class diagram considers to be
worth investigating.

These can be subsets of classic viewpoints, e.g., only network links and routers of
the IT architecture, as well as more unexpected combinations, such as some business
aspects combined with some parts of the infrastructure architecture. Filtering on
the attribute level can be performed. The user of the Class modeler can, for the
classes that are part of a specified viewpoint, decide to only select some of the
classes’ attributes and some relationships.

The motivation for offering the advanced viewpoint feature is to support anal-
ysis, which is in line with the purpose of the tool. In particular, the intent is to

130 CHAPTER 7. ARTIFACT

increase the ease with which the user can conduct analyses by reducing the visual
complexity and to only display the information needed for a certain purpose (cf.
Section 5.5). The values of attributes in Enterprise Architecture models often de-
pend on the values of other attributes (cf. Section 3.2). These dependency chains
are not necessarily limited to a certain class or a certain part of the architecture.
Instead, complex network chains between the attributes can be found, for example,
in the cases discussed in [260] and [119]. Using the Class modeler, one can reflect
these chains as viewpoints and thereby help the user of the resulting class diagrams
to trace chains of dependencies and conduct analyses. This feature is of particu-
lar interest for the creation of large and complex class diagrams, such as [136], or
class diagrams that cover tradeoff aspects between several system properties of the
model, such as [51] and [181] . In the case of tradeoffs in particular, it is helpful to
investigate the considered properties in isolation, using viewpoints, before finally
looking at the focal point.

Complexity reduction using templates (definition)

Another tool feature that helps reduce the visual complexity is the use of templates.
This feature also accelerates the modeling process, as large and repetitive parts of
the model can be described rapidly and automatically.

During an Enterprise Architecture modeling endeavor, the same submodel often
needs to be created repeatedly. For example, a submodel consisting of a desktop
computer with an operating system and office suite installed, an assigned role oper-
ating the machine and a connection to the enterprise network can be found several
times as part of a company-wide model. The presented tool allows such a sub-
model to be described as a template for reuse. Templates are specified in the Class
modeler as part of the specification of the analysis framework. Instead of adding
and relating the involved model objects manually, the user of the object diagram
can simply instantiate a template that is part of the analysis framework, and the
tool will add all included components and their relations to the model. The tool
visually aggregates the elements of a template into one component, resulting in
a lower number of displayed objects compared to a manual modeling. However,
these aggregates can be opened to more closely consider the included elements or
to provide specific evidence for included attributes. Once the user has completed
his or her detailed consideration, he or she can close the template again. To ease
the analysis, the Class modeler also allows the specification of representative at-
tributes. These attributes can be selected from the set of attributes that are part
of the template and will be visualized as though the template were a regular class
and the representative attributes were the attributes of that class. Using represen-
tative attributes, the user of the Object modeler can evaluate relevant aspects of
the model without having to open up the template.

The tool allows defining ports similar to the ports suggested by SysML [83]
to specify how the elements of templates interact with their environment. This is
of particular relevance when an object should be connected to a template as part

7.2. DISTINCT FUNCTIONALITY 131

of the instantiation of the class diagram. Using ports, it can be described that
external objects should be able to connect to a certain object inside the template,
all objects instantiating a certain class or a subset.

The user of the Class modeler can also specify default values for the attributes
that are part of the created models. Furthermore, he or she can lock templates to
prevent the user of the Object modeler from performing modifications.

Finally, the tool’s architecture to support templates is also designed such that
templates can be parameterized during the instantiation of templates. In the ex-
ample of the desktop computer that was described earlier in this subsection, a
parameterized instantiation allows describing a template with n roles assigned to
the computer. Upon instantiation of the template, the Object modeler can then
provide the correct number of roles given the specific submodel. The resulting
template instantiations will then connect the appropriate number of role objects
to the desktop computer object. This feature can also be used to describe generic
workspace environments where computers are running different operating systems.
Based on the provided operating system parameter, the tool is able to instantiate
the corresponding service objects that the operating systems typically provide.

Result visualization

Enterprise architecture models tend to consist of numerous objects, each having a
number of attributes. The analysis of such models by looking at one attribute at a
time is a time-consuming and repetitive task. Instead, it is preferable to consider
some or even all of the included attributes at a time. To obtain a quick overview,
the absolute values of the Enterprise Architecture are often of minor importance,
whereas a tendency to see whether the attribute values are within the bounds is
helpful.

The Class modeler lets the creator of the class diagram specify value ranges for
the included attributes. These value ranges can be assigned with colors. The Object
modeler, after evaluating the model to derive unknown attribute values, uses this
color mapping to visualize the state of the attributes. Doing so, the user of the
Object modeler can easily grasp the state of the currently considered scenario. This
feature can be combined with the usage of representative attributes, as described
earlier.

P2AMF validation

Some class diagrams included in analysis frameworks use a large amount of P2AMF
code to specify the performance of system property analysis. For example, [119]
presents a class diagram for cyber security analysis consisting of more than 5210
lines of code. Dealing with such a huge code base can be cumbersome and error-
prone, especially as the presented tool requires specifying code on an attribute or
operation level (cf. Section 7.1 and 5.3). Therefore, it is difficult to ensure a high
code quality with consistent wording and free of spelling mistakes or typing errors.

132 CHAPTER 7. ARTIFACT

Validation is a well-established technique for ensuring the quality of a product
within the overall software development lifecycle [65]. In the tool, validation is
used to ensure that the P2AMF statements provided by the creator of the analysis
framework are correct. To this end, the tool offers a validation feature inline with
[190] stating that a validation assessment aims to determine the degree to which a
model is an accurate representation of the real world from the perspective of the
intended uses of the model. Applied to P2AMF, this means that the tool offers a
functionality to test whether the provided P2AMF code is correct. As expressed
in Section 5.4, P2AMF is built on top of OCL. Therefore, the tool translates the
P2AMF code into OCL and tries to execute it using the Eclipse Modeling Frame-
work (cf. Section 7.3). The tool then notifies the user regarding the outcome of the
execution and points to existing code segments that contain errors.

Distinct functionality of the Object modeler
The previous section contained a discussion of the prominent features of the Class
modeler component of the tool. This section covers the functionality of the Object
modeler that is unique or at least exceptional in the way it is presented. This
section addresses the usage of views based on viewpoints to filter the displayed
part of the model, complexity reduction using templates, analysis to identify the
source of impact for a certain attribute value, updates of the analysis framework,
automatic instantiations of the used class diagram and the creation of reports to
export calculation results.

Similar to Figure 7.17, Figure 7.19 illustrates how the tool features that will be
presented in the following relate to the workflow of the Object modeler (cf. Figure
7.16). The feature supporting the update of analysis frameworks contributes to the
modeling of object activities, as objects will be described according to the latest
analysis framework. The feature usage of templates also contributes to the modeling
of objects, as it accelerates the modeling process and generates a homogeneous
structure. Third, the feature automatic instantiation of class diagrams contributes
to the modeling of objects as well and reduces the time spent on modeling creation.
It also improves the quality of the created model. The feature source of impact
analysis contributes to the step evaluation of the model, as it allows the cause of a
certain result to be traced. The filtering of views based on viewpoints contributes
to the interpretation and comparison activity, as it allows the model to be looked at
from different angles and with focus on various areas. Finally, the feature creation of
reports contributes to the interpretation and comparison activity as well as it allows
the analysis result to be exported and made accessible to interested audiences.

7.2. DISTINCT FUNCTIONALITY 133

Figure 7.19: The workflow of the Object modeler and its relation to the presented
features

134 CHAPTER 7. ARTIFACT

The following features of the Object modeler will be discussed in this section:
• Creation of filtered views based on viewpoints
• Complexity reduction using templates (application)
• Source of impact tracing
• Update of the used analysis framework
• Automatic instantiation of the Class diagram
• Creation of reports

Creation of filtered views based on viewpoints

Large Enterprise Architecture models with several hundred objects are often diffi-
cult to grasp. Considering them as a whole is almost impossible, as there are too
many model components and relationships between them that need to be consid-
ered. Looking at subsets of the model, for example, just the part of the model
that affects a certain property, is often the only way to cope with this complexity.
Following the architecture presented in Figure 7.18, viewpoints can be used in the
presentation to visualize such subsets of interest. In particular, views can be cre-
ated at any time during the usage of the Object modeler. To create a visualization
of the submodel of interest, the user can create an empty view based on a defined
viewpoint and copy and paste the complete model into this view. The tool will then
work as a filter and test all of the elements that are pasted into the view. Only
those model elements that are in accordance with the underlying viewpoint will be
added to the view; the other objects will be rejected.

Complexity reduction using templates (application)

The templates included in the analysis framework and defined on top of the class
diagram (cf. Section 7.2) can be used in the Object modeler to accelerate the
modeling process. The user can select them as though they were regular classes and
add them to the model. An instantiation of a template results in an instantiation
of all of the classes that are part of it. As described previously, templates can be
parameterized, and if this is the case, the tool first prompts the user to provide input
for the parameters. Thereafter, these parameters are used to create a corresponding
template instantiation.

Connecting templates to other elements of the object diagram, including to
other templates, is realized under consideration of the relations that are defined in
the class diagram. Only defined relations can be used. Moreover, this set is even
more limited, as templates use ports to connect. Relationships that are allowed by
the ports of the templates can actually be connected. The usage of templates is
illustrated in the following:

7.2. DISTINCT FUNCTIONALITY 135

Figure 7.20: A minimalistic Class diagram

Figure 7.20 presents a minimalistic class diagram. A potential templates defined
on top of this template could include that illustrated in Figure 7.21. This template
contains one instance of the A class specified in the class diagram and two instances
of the D concept.

Figure 7.21: A possible template based on 7.20

The template has two ports to connect with the environment (depicted as red
squares in the border of the template). Following the class diagram, the user of the
object diagram could either connect objects instantiating B (using the upper port)
or objects instantiating C (using the lower port) to the template. Depending on
the configuration of the ports (and the class diagram), several or just one B can be
connected to the template. For the Cs, the port not only determines the number
of objects that can be connected to the template but also to which objects the
connections can be established. It could be that every C is automatically connected
to all Ds or one specific D or that the user must make this decision manually. Using
the ports to connect objects and templates leads to indirect connections between
the objects and the objects that are included in the template. These indirect
connections are colored in green in Figure 7.22, illustrating the described scenario.

136 CHAPTER 7. ARTIFACT

Figure 7.22: An Object diagram illustrating the combined usage of templates and
objects

During the usage of the Object modeler, the user can open the templates to
investigate the constituent parts. If the template is not locked by the creator of the
class diagram, the user can override the default values for the included attributes.
Once the calculation functionality of the tool is executed, the tool resolves the
templates into their constituent objects. Thereafter, the actual sampling process
starts.

Source of impact tracing

In the presented tool, the focus is on the analysis of architecture models. The tool
allows the inference of unknown attribute values based on information available on
the states of other attributes. For a decision-maker using Enterprise Architecture
as support in his or her work, it is important to know in which state a certain
attribute is and to identify the reason for the outcome of an analysis. In particular,
it is useful to identify the attributes of the model that actually affect the attribute
of interest. Changing the values of these parental attributes might improve the
situation, and it might be worth considering whether a scenario leading to higher
values is worth adopting.

The tool allows the sources that lead to a certain result to be traced. For every
attribute that is part of the model, a network over the attributes impacting it can
be displayed. In this way, the determining factors can be identified. To create such
networks, the tool uses the P2AMF code specifying the derivation of the attribute
values. Following a bottom-up approach, i.e., going from the attribute of interest
to its parents and then continuing to their parents, the P2AMF code is internally

7.2. DISTINCT FUNCTIONALITY 137

unrolled and traced recursively until all attributes that are not dependent on the
values of other attributes have been identified. The result is then presented to the
tool user in a separate view only consisting of the network of impacting attributes.
This gives the user the opportunity to experiment with the involved attributes and
to identify one or several to-be scenarios that best fit his or her requirements.

Update of the used analysis framework

The creation of Enterprise Architecture is a time-consuming and expensive task
[85], as many roles and many information sources need to be considered to create
a holistic and complete description. Companies try to avoid performing this task
frequently, instead aiming for the reuse of created architecture models.

As stated in (Section 3.2), there is often a certain degree of uncertainty involved
in the usage of analysis frameworks used to perform Enterprise Architecture anal-
ysis. This uncertainty encourages the creator of a certain class diagram describing
an analysis framework to improve this diagram based on his or her findings and
insights gained during the application of the class diagram. Users of the Object
modeler are typically prone to using the latest version of a certain class diagram,
as it reflects the latest state of knowledge and has the lowest theoretical uncer-
tainty. However, as described previously, creating a new object diagram each time
the underlying class diagram is updated is not an option, as it is too expensive.

The tool overcomes this weakness by allowing the tool user to automatically
update the analysis framework, i.e., the included class diagram. A user of the Object
modeler can, at any time, refresh the class diagram and update the included P2AMF
derivation rules. The tool does this without any need for manual interaction with
the user. Internally, the Object modeler keeps track of the objects and the classes
that they are instantiating. When an updated class diagram is loaded, the tool
uses its database and compares for each class the latest available version with the
one currently in use. If the Object modeler identifies a deviation, it alters the
instantiating objects and performs an update of the P2AMF code.

Using this feature, there is no need for the user of the Class modeler to recreate
his or her model; instead, the Enterprise Architecture can continue from the last
version of the architecture model.

Automatic instantiation of the Class diagram

As stated in the previous subsection the creation of Enterprise Architecture models
is time consuming and expensive. It is also error prone and consists typically of a
lot for manual activities [70, 42]. Reducing the manual tasks is therefore preferable
to cut costs and increase the data quality.

The presented task addresses this desire by a mechanism that supports the
automatic creation of Enterprise Architecture models. In particular, it allows the
instantiation of the used class diagram automatically provided that a (partial)
architecture description is available. [42] illustrates the automatic creation of cyber

138 CHAPTER 7. ARTIFACT

security models and [118] for general Enterprise Architecture models, this is possible
when, for example, the output of a vulnerability scanner is available. These tools
probe networks for connected computer systems and the services they expose to
the components attached to the network. The results can often be exported in xml
format, following a (XSD) schema definition [84].

The tool allows the definition of mappings between those schema definitions and
the class diagrams that should be used. Using this mapping, the Object modeler
component can then instantiate classes and relate the resulting objects to each
other, following the structure of the xml file.

As reported in [118], this approach has advantages over manual model creation
in regard to both the data accuracy and the time spent creating architecture models.

Creation of reports

To ease the communication of analysis results and as a means of documentation,
the Object modeler offers to export the outcome of Enterprise Architecture analyses
as PDF files.

For the creation of reports, the tool iterates over all modeled objects, queries
them for the values of their attributes and creates visualizations of these values.
Finally, the visualizations are added to a PDF file, which is saved at a user-defined
location.

7.3 Architecture of the tool

This section presents the (software) architecture of the presented tool. The section
starts with a discussion of the used rich client platform. Thereafter, its application
and the resulting tool architecture are presented. This section also contains a
description of the data model describing how information is presented internally.
As the resulting architecture includes the usage of several external libraries and
components, a description of the utilized third-party components is presented in
the following.

Used platform
Eclipse is an open-source community most known for its Java Integrated Develop-
ment Environment (IDE) of the same name [167]. Underneath this IDE is a generic
tooling platform supporting a variety of tools for languages and systems. Another
level below is the Eclipse Rich Client Platform (RCP), a generic environment for
executing applications. The previously mentioned IDE is one such application.
Figure 7.23 illustrates the architecture of Eclipse.

This platform was used for the realization of the presented Enterprise Architec-
ture tool. Eclipse has several features that made it particular interesting.

Components: During the implementation of the tool, the RCP component
model [167] was heavily utilized. This model allows large applications to be com-

7.3. ARCHITECTURE OF THE TOOL 139

Figure 7.23: The Eclipse Rich Client Platform [31]

posed based on smaller components called plug-ins. Plug-ins can be reused, and
several plugin-versions can be installed in parallel, a feature that supports the evo-
lution of applications over time in particular[167]. The Eclipse RCP provides the
user with a middleware layer simplifying the communication between plugins, as
this does not need to be implemented per application.

Native user interface: The RCP integrates directly with the native user inter-
face [167], resulting in applications that look and feel like other software programs
for the same operating system.

Portability: Applications based on Eclipse RCP can be executed in any envi-
ronment and operating system that offer a Java Virtual Machine. Currently, this
applies to more than 95 % of all enterprise computers [199].

Stand-alone applications:Compared to thin client platforms, Eclipse aims at
fat clients that are useable without a network connection. An RCP-based applica-
tion contains all of the necessary libraries and components so that it can be used
right away.

Component libraries and community: The Eclipse RCP comes with nu-
merous plugins that the user can integrate into his or her own applications. These
plugins include Help content, installer and update support, graphical and textual
editing frameworks and reporting. An active community that works in close con-
tact with the users develops these plugins. Therefore, found bugs can often be

140 CHAPTER 7. ARTIFACT

acknowledged and solved within a short period of time.

Resulting tool architecture
Figure 7.24 describes the architecture that was derived. It contains three layers,
in which the lower two (Rich Client Platform and Workbench IDE) originate from
the Eclipse Rich Client Platform. The top layer, the EAAT (Enterprise Architec-
ture analysis tool) IDE, represents the components implemented to support the
performance of Enterprise Architecture analysis. The components that are used
from each layer, as well as the own developed components that can be found in
the EAAT IDE layer, will be discussed in the remainder of this subsection. The
description will be given following the bottom-up approach because components of
a higher level typically make use of the underlying functionality.

On the lowest level of the Eclipse Rich Client Platform, the Standard Widget
Toolkit (SWT) can be found. SWT is an open-source widget toolkit for Java, which
connects applications to the user-interface facilities of the operating systems.

On the same level, one can also find the platform runtime environment, OSGI -
Equinox. This is the Eclipse implementation of the OSGI specification [8] and pro-
vides applications with a platform for network-provisioned components and services.
It also contains a security model and features dynamic updates of the components
built on top of it with minimal perturbation of the running environment [168, 105].

JFace is a toolkit used to create user interfaces. The toolkit is built based on
SWT. It offers common components of user interfaces, such as dialogs, buttons
and text fields [110]. The Eclipse Rich Client Platform also offers the Workbench
UI [262], which allows the creation of workspaces in desktop applications. These
workspaces can be seamlessly integrated in the application. Workspaces based on
the Workbench UI contain one or several perspectives that control views and editors
and define the menu structure. Applications can hold several workspaces at a time
[39].

On the highest level of the Eclipse Rich Client Platform, one finds JFace Text, a
framework based on JFace supporting the manipulation of text documents. JFace
Text is used in the text editors provided by the Work Bench UI. Forms [242] is
a framework complementing JFace and SWT for creating portable web-style user
interfaces across the Eclipse user interface. Two specialized views, Outline and
Properties views, are offered by the Workbench UI. The Outline view is used to
show the objects presented in the editor, while the Properties view is used to edit
the properties of the selected object. Finally, Update allows the parts of the imple-
mented tool to be updated without affecting the other components.

The intermediate layer of the developed architecture is the Workbench IDE.
Here, the Workspace-based Document Editors can be found. These editors are
specialized editors, built on top of the previously discussed Workbench Text Ed-
itors. The Workspace-based Document Editors are connected to files residing in
the workspace. Any change in the editor will be recorded, and upon saving, the
connected file will be updated accordingly. The Workbench IDE also contains the

7.3. ARCHITECTURE OF THE TOOL 141

Workspace Resources. These describe the information concerning the presented
tool object and class diagrams that the user works with. The Workbench IDE UI
is the user interface of the tool that integrates the Workspace-based document ed-
itors, resources and other user interface functionality provided by the Eclipse Rich
Client Platform layer.

The highest layer in the architecture of the tool is labeled as EAAT (Enterprise
Architecture analysis tool) IDE in Figure 7.24. To implement the tool, the Eclipse
Modeling Framework (EMF) was used (cf. Section 7.3). EMF provides the tool
with the ability to create ECore-based models and metamodels. In the tool, EMF
was used to create class diagrams and their instantiating object diagrams. The
Eclipse Modeling Tools, which can be used on top of the EMF, provide the tool
with an OCL environment that was used during the implementation of P2AMF.

Eclipse Xtext is a framework that can be used to define own programming
languages within an Eclipse environment. In the tool, Xtext was used to extend
the OCL capabilities of the Eclipse Modeling Tools to feature probabilistic dis-
tributions as they are frequently used in P2AMF (cf. Section 5.4). Additionally,
Xtext was used to realize other operations that are not part of the OCL standard.
For example, operations to solve polynomials, needed for utility analyses as pre-
sented in [204], were added. To realize the user interface, widgets provided by
the Eclipse Graphical Editing Framework [227] graphical editors and views for the
Eclipse Workbench UI were also used. The Eclipse Graphical Editing Framework
is an API that allows the creation of interactive diagrams and the visualization of
information. The tool also uses JFreeChart (cf. Section 7.3) for the result visual-
ization in terms of histograms and other diagrams. JFreeChart displays the results
obtained from P2AMF evaluations performed using the Eclipse Modeling Tools.
On top of the Eclipse Modeling Tools and the Eclipse Graphical Editing Frame-
work, the Enterprise Architecture analysis tool Class modeler and Object modeler
API can be found. These two APIs were designed with the goal of offering mech-
anisms for the creation of class diagrams and their instantiation in terms of object
diagrams. On top of the Enterprise Architecture analysis tool Class modeler and
Object modeler API, the Enterprise Architecture analysis tool P2AMF API was
built. This API realizes the inference engine. It connects class diagrams and object
diagrams to the tool component that implements sampling according to P2AMF,
as described earlier (cf. Section 5.4). Furthermore, the Enterprise Architecture
analysis tool P2AMF API makes use of the ApacheMath library (cf. Section 7.3)
to realize the probabilistic functions that are fundamental parts of P2AMF. The
library also connects to JasperReports (cf. Section 7.3) to export the outcome of
the sampling in terms of reports. The topmost level of the EAAT IDE architecture
layer consists of Enterprise Architecture analysis tool Editors, Views and UI Com-
ponents. These components form the user interface of the tool. They allow the
user to perform the previously described workflows (cf. Section 7.1) and provide
the user with the functionality described in Section 7.2.

142 CHAPTER 7. ARTIFACT

Figure 7.24: The resulting architecture

Data model

This section describes the data model used in the tool, which represents the internal
structure used in the tool. The data model used in the Object modeler is designed
on top of the data model in operation in the Class modeler. The data model is
aligned with MOF [101], which is the metamodel of the UML [102]. This ensures
the possibility of compatibility with other tools following the UML. Compatibility
can be achieved by implementing model-to-model transformations [57], which can
be realized fairly easy without the risk of information loss.

Following MOF simplified the usage of the Eclipse Modeling Framework (cf.

7.3. ARCHITECTURE OF THE TOOL 143

Section 7.3), as this framework is built to support MOF.
The data model additionally reflects several characteristics of the tool presented

earlier in particular templates. The resulting structure will be discussed in the
remainder of this section. First, the data structure of the Class modeler, visualized
in Figure 7.25, will be addressed.

Figure 7.25: The data model of the Class modeler

	

TemplateComponent

Port

Association

MetaTemplate OCLClass

Reference AttributeInvariant

Parameter

OperationOCLClassFeature

ClassModel

1

*

1

*

1

*

1

*

1

*1
*

1

*

1

*

TemplateAttribute

1

*

The following description starts with the classes that can be found in the top
layer of Figure 7.25 and then continues layer by layer.

ClassDiagram: This is the representation of the class diagram containing
classes, templates and viewpoints.

ViewPoint: This is a coherent set of views consisting of subsets of classes,
attributes and references that are included in the class diagram.

144 CHAPTER 7. ARTIFACT

MetaTemplate: This class is an extension of TemplateComponent used to
indicate that templates can be constructed on top of each other.

OCLClass: This is the tool’s implementation of the UML Class concept. An
OCLClass contains attributes and references to other OCLClasses.

TemplateComponent: Templates can consist of instances of classes and in-
stances of other templates. The template component provides the top-level func-
tionality for both types of components. It also provides the communication func-
tionality for template components to interact with each other using ports and as-
sociations.

OCLClassFeature: Representation of the abstraction level for different struc-
tural components of the OCLClass structure, in accordance with the UML specifi-
cation. The specializations include attribute, reference and invariant.

Operation: An operation can have multiple parameters and basically repre-
sents a combination of related OCL statements written to perform a specific task.
It is used to increase modularity and usability in the model. Operation extends
from the parameter class, as it is a specialization of the concept. Similar to param-
eters, operation also has a type, and it accepts multiple arguments/parameters as
input.

Parameter: The parameter is a type of model object, and an OCL operation
can have multiple parameters.

Association: The association represents the connection between two template
components and contains connection ports for both ends.

Port: The port functions as an interface to a template component. If two
template components need to interact with each other, they must have compatible
ports. Each port represents a reference (connection between classes). To connect to
the template components, they must have ports sharing the same reference object.

Invariant: Invariants help impose constraints on a model. This component is
part of the data model to represent the invariant concept that is included in OCL
[5].

Reference: References are the implementation of the association concept on
a class level. This concept contains references to classes on both ends. References
provide the functionality for defining multiplicities for both ends as well. Refer-
ences can be derived based on the result of OCL queries, supported by the Eclipse
Modeling Framework’s implementation of OCL.

Attribute: This class represents the implementation of the UML Attribute.
TemplateAttribute: As described earlier (cf. Section 7.2), the tool allows the as-
signment of virtual attributes to templates that actually belong to elements included
in the template.

Figure 7.26 illustrates the data model of the Object modeler.

7.3. ARCHITECTURE OF THE TOOL 145

Figure 7.26: The data model of the Object modeler

	

Node

ModelNode

TemplateContainer

TemplateComponent PortAssociation

MetaTemplate TemplateObject

OCLClass

Reference Attribute

TemplateNode TemplateAttribute

Invariant

NamedModelNode

TypedModelNode

Parameter

Operation

OCLClassFeature

ClassModel

Node: This is the base interface for every element of the data structure. It pro-
vides generic methods for the publisher-subscriber design pattern [45] that is used
in the application to synchronize the information between the visual representation
of the model and the internal representation.

ModelNode: This is the implementation of the node interface and provides
the basic concrete functionality of the property listeners following the publisher-
subscriber design pattern.

TemplateNode: This class is an interface to provide extra functionality for
templates, especially by extending them and querying their properties.

146 CHAPTER 7. ARTIFACT

NamedModelNode: This class contains functionality to keep track of the
model node being used in different templates. When an object is added to a tem-
plate, the object registers itself to NamedModelNode. When the NamedModelNode
is deleted in one of the created templates, then all instantiations will also be re-
moved from the templates including it.

ClassDiagram: This class is the representation of the class diagram containing
related classes and templates. It defines the concepts that the user of the Object
modeler can make use of.

ViewPoint: This class represents the viewpoints that are specified as part of
the analysis framework on the class diagram.

TemplateContainer: This class is responsible for the composition functional-
ity of templates, allowing them to be implemented using already defined templates.

TemplateObject: This is an extension of the TemplateComponent class repre-
senting a leaf in a complex structure of templates specified based on other templates.

TypedModelNode: This represents the nodes that are part of a model and
have a type. The types supported by the tool and OCL are integer, double and
boolean.

The concepts TemplateAttribute, OCLClass, Association, MetaTemplate, In-
variant, Reference, Attribute, Parameter and Operation have the same meaning
for the Object modeler as previously described for the Class modeler.

The connection of the data model for Class and Object modeler is governed by
the discussed tool (cf. Figure 7.27).

Figure 7.27: The connection between datamodel of Class and Object modeler

Class%
Diagram%
(extended%
metamodel)%

Object%
Diagram%
(model)%

Viewpoints% Views%

defines instantiates

defines conforms to

consists of

defined on

consists of

participates in

Templates%

Analysis%
framework%

Scenario%
descrip@on%

includes

includes

includes

is part of

is part of

is part of

instantiates

defined on

consists of

is part of

is part of

includes

includes

is instantiated in

Class%modeler% Object%modeler%

7.3. ARCHITECTURE OF THE TOOL 147

The Class modeler allows the creation of analysis frameworks. These frame-
works include a class diagram, which is an extended metamodel. Viewpoints can
be included in an analysis framework. Viewpoints are defined in the class diagram.
Specifying templates based on the class diagram, as part of the analysis framework,
is possible as well. The Object modeler component of the tool allows the creation
of scenario descriptions based on a defined analysis framework. These scenario de-
scriptions consist of an object diagram that instantiates the class diagram included
in the analysis framework. In addition, views can be added to a scenario descrip-
tion, fostering the consideration of subsets of the object diagram. Views can be
used based on the defining viewpoints.

Used 3rd party libraries

This subsection describes libraries provided by third parties that are used in the
tool. These libraries were used in various parts of the tool with the aim of reusing
existing, well proven and well documented functionalities. Especially in areas such
as the visualization of large statistical datasets, the implementation of visual mod-
eling editors and query language established solutions were reused. This helped
to reduce the time between releases, ensured the quality of the tool and freed re-
sources that could be used to focus on the tool’s main purpose. In particular, this
section describes the usage of the Apache Commons Mathematics Library, Eclipse
modeling framework, JFreeChart library and JasperReports Library.

Apache Commons Mathematics Library

To implement the P2AMF plug-in, the Apache Commons Mathematics Library [73]
was identified as a suitable library to realize the probabilistic distributions that
P2AMF heavily makes use of (cf. Section 5.4). This open-source library supports
more than 10 probabilistic distributions, including normal, Bernoulli and Weibull
distributions. This library is well documented and therefore easy to integrate into
other applications.

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [39] unifies Java programing, XML mes-
sages and UML modeling [250, 25]. It can be used to transform input provided
in any of these three notations into the other two notations. The model followed
to represent models in EMF is called Ecore [39]. EMF supports Essential MOF
(EMOF) [249] as part of the OMG MOF 2.0 specification and follows a similar
modeling hierarchy [25]. The type information of sets of instance models is de-
fined in a so-called core model corresponding to the metamodel concept that can
be found in EMOF. The metamodel for core models is the Ecore model containing
the model elements, which are available for EMF core models in principle [24]. The
core of Ecore is shown in Figure 7.28.

148 CHAPTER 7. ARTIFACT

Figure 7.28: The structure of Ecore [75]

The Eclipse Modeling Framework features numerous editors, both graphical and
textual, that can be used to create Ecore models and to perform transformations
between them. In particular, the presented tool uses the offered plugins for the
visual creation of models in both the Class and the Object modeler.

As part of the EMF Model Development Tools, EMF offers Eclipse OCL, which
implements the OCL language. Eclipse OCL can be used to specify the pre- and
post-conditions on Ecore and UML models and to evaluate queries on them. In
particular, it can be used to evaluate attribute values while considering the state
of the model.

This characteristic was used to implement the P2AMF plug-in of the tool.
Eclipse OCL also features a console for the interactive evaluation of OCL expres-
sions. This console was used in the present tool to offer the user of the Object mod-
eler the capability to investigate the model based on user-defined queries. Moreover,
Eclipse OCL features mechanisms to validate OCL code. As described in the fea-
ture section of the Class modeler (cf. Section 7.2), this is a helpful feature to ensure
code quality. Therefore, the tool makes use of this functionality.

7.4. THE AREAS OF CONTRIBUTION IN RELATION TO THE
PRESENTED ARTIFACT 149

jFreeChart

To visualize the analysis results and, in particular, to draw histograms based on the
outcome of sampling, the tool uses the free Java chart library JFreeChart [92]. This
library supports the drawing of a variety of charts and allows the configuration of
the visualization based on the use case.

JasperReports Library

In the current implementation, an export functionality to generate PDF reports
describing the analysis of the architecture models was included. This function
was realized using the open-source reporting engine JasperReports Library [113].
Using JasperReports Library, one can develop applications that generate reports
and dynamic content. The library allows these reports to be exported in a number
of files, including PDF, Microsoft Word, XML and RTF.

7.4 The areas of contribution in relation to the presented
artifact

In part of the introductory chapter (cf. Section 1.2), the contribution of the author
to the development of the tool’s features was described. This section concludes the
description of the artifact by relating the areas in which work was performed to the
sections of this chapter covering them. The features of the tool will be discussed
following the structure of Figure 1.4 and Figure 1.5, starting with a discussion of
the work performed in the analysis area and then considering the modeling aspect.

The tool’s functionality to update the analysis framework was described in Sec-
tion 7.2.

The capabilities of the tool to perform impact analysis are covered in Section
7.3. The input configuration of the tool was covered in the section describing the
user interface (cf. Section 7.1). The tool’s inference engine was described in the
Sections 7.2 and 7.3. In addition, research related to this feature was already
covered in the section describing the underlying design decisions that led to the
implemented inference engine (cf. Section 5.4).

The actual specification of an analysis framework is a manual task that is not
directly reflected by the presented tool (cf. Sections 7.1). The tool provides support
for translating a knowledge base, i.e., the theoretical foundation of the analysis of a
system property, into an analysis framework. This can be achieved using the tool’s
user interface (cf. Section 7.1) connecting the user input to the internally used data
structure (cf. Section 7.3).

The tool’s functionality to specify templates is covered in Section 7.2. The tool’s
support for the usage of specified templates is discussed in this section too (cf.
Section 7.2). The tool’s functionality to automatically instantiate class diagrams
included in analysis frameworks is reflected in Section 7.2. The user interface was
described in Section 7.1. The author’s work on the usability topic is reflected in the

150 CHAPTER 7. ARTIFACT

section describing the user interface (cf. Section 7.1) and in the section describing
the usage of views and viewpoints (cf. Section 7.2). The outcome of the author’s
and other contributors’ work to address the visualization of the analysis results can
be found in Section 7.2. The tool’s support for the creation and editing of models
was described in the section covering the Object modeler’s workflow (cf. Section
7.1) and the user interface of the Object modeler was described in this section as
well (cf. Section 7.1). Manual model creation is indirectly supported by the user
interface (cf. Section 7.1).

Area The author’s
contribution

Discussed
in section

Analysis Update of Analysis Frame-
work • Distinct function-

ality of the Object
modeler/Update of
the used analysis
framework

Impact Analysis
• Distinct functionality

of the Object mod-
eler/Sources of impact
tracing

Input Configuration
• User interface

Inference Engine
• Distinct function-

ality of the Class
modeler/P2AMF
validation

• Architecture of the
tool/The resulting tool
architecture

• Design Decision IV: In-
ference engine

Probabilistic Reasoning
• Design Decision IV: In-

ference engine

Continued on next page

7.4. THE AREAS OF CONTRIBUTION IN RELATION TO THE
PRESENTED ARTIFACT 151

Table 7.2 – continued from previous page
Area The author’s

contribution
Discussed
in section

Knowledge Base
• n/a

Actual Specification of Anal-
ysis Framework • User interface

• Architecture of the
tool/The used data
model

Modeling Templates
• Distinct function-

ality of the Class
modeler/Complexity
reduction using tem-
plates

• Distinct function-
ality of the Object
modeler/Complexity
reduction using tem-
plates

Automatic Model Instantia-
tion • Distinct function-

ality of the Object
modeler/Automatic
instantiation of the
class diagram

User Interface
• User interface

Usability
• User interface
• Distinct function-

ality of the Object
modeler/Creation of
filtered views based on
viewpoints

Continued on next page

152 CHAPTER 7. ARTIFACT

Table 7.2 – continued from previous page
Area The author’s

contribution
Discussed
in section

Result Visualization
• Distinct function-

ality of the Class
modeler/Result visual-
ization

Model Creation & Editing
• User interface

Actual Model Creation
• User interface

Table 7.2: Mapping between the areas in which work was performed and the sections
describing the outcome of this work

Chapter 8

Demonstration of the usability of
the tool

Following the applied research method, this chapter continues with the demonstra-
tion of the developed artifact (cf. Chapter 2). Unlike the previous chapter, which
dealt with the demonstration of the technical aspects, this chapter describes the us-
ability of the tool. The usability of the tool is described by discussing different use
cases in which the tool has been applied. A theoretical demonstration of the tool
without discussing practical applications of the presented tool was not considered
to be equally meaningful.

First, the usability of the tools component to specify the Class modeler for the
analysis of Enterprise Architecture models is presented. Next, a subsection reports
on the tool usage by practitioners and mainly non-theory experts to analyze real
or realistic cases. This demonstrates the usability of the Object modeler.

8.1 Usage of the tool to specify theory

This section reports on the usage of the tool to specify analysis frameworks and
the verification of the specified theory. More than 10 different analysis frameworks
have been specified over a 6-year period. Using the tool for the specification of
analysis frameworks was especially helpful in identifying the requirements of the
Class modeler. It also contributed to the validation of the implementation of the
inference engine, as many authors of frameworks have started to implement simple
test cases. The calculation results for those test cases could then be compared to
manual calculations to verify that inference was performed properly.

During the presented research, it was beneficial that the developers of the dif-
ferent frameworks were employed at the same department as the author, fostering
spontaneous assessments of the tool.

153

154 CHAPTER 8. DEMONSTRATION OF THE USABILITY OF THE TOOL

8.2 Specification of a cyber security analysis language

In [248], a language for conducting cyber security analysis (CySeMol) is presented.
This framework is an extended version of the framework presented in [246]. Both
frameworks were implemented using the PRM formalism, the only inference engine
supported at that time. The framework presented in [246] consists of more than
20 concepts that are relevant for cyber security analyses. These concepts are as
follows:

• Access Control Point
• Application Client
• Application Server
• Data Flow
• Data Store
• Deep Packet Inspection
• Firewall
• IDS Sensor
• Network Interface
• Network Vulnerability Scanner
• Network Zone
• Operating System
• Password Account
• Password Authentication Mechanism
• Person
• Protocol
• Security Awareness Program
• Software Product
• Social Zone
• Web Application
• Web Application Firewall
• Zone Management Process

The authors of [246] describe these concepts with regards to whether they are
assets, possible attacks or defense mechanisms. By applying CySeMoL, a user
creates an attack graph (cf. Section 5.6) that can be used to analyze the likelihood
of a successful attack. The analysis framework is visualized in Figure 8.1.

8.2. SPECIFICATION OF A CYBER SECURITY ANALYSIS LANGUAGE 155

Figure 8.1: The Cyber Security Analysis Language (CySeMol)

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Data Flow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

ApplicationServer

OperatingSystem

Access

DenialOfService

FindCriticalVulnerability

ConnectToService

ExecutionOfArbitaryCode

HasAllSecurityPatches

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

AntiMalwareSolution

USBAutoRunDisabled

Person

SecurityAwarenessProgram

PasswordAccount

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAuthentication

Mechanism

AllowedDF

Protocol

Read

Write

Owner

AwarenessProgram

HIDS

Owner

Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

ManagedByAntiMalwareSolution

USBAutorunDisabledInDomain

DeepPacketInspection

DPI

ExtractPasswordRepository

BackoffTechnique

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCode

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCodeInUnknownServices

AccessThroughPortableMedia

AccessTroughUI

FindUnknownService

ARPspoof

ExecuteMaliciousPayload

Firewall

Firewall

AccessControlPoint

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

TerminalService

Functioning

KnownRuleSet

Functioning

Functioning

HasAllSecurityPatches

HasAllSecurityPatches
Product

Zone

WebApplicationFirewall

Functioning
MonitoredByOperator
TunedUsingBlackBoxTool
TunedByExperiencedProfessional
TunedWithSignificantManualEffort

MonitoredBy

WebServer

AccessControl

AccessControl

OperatingSystem

Owner

Client Server

AuthenticationMechanism

NetworkVulnerabilityScanner

Functioning

PhysicalZone

Access

PhysicalZone

UntrustedZone

Owner

Product

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopZeroDayExploit

FindPublicPatchableCriticalVulnerability

FindPublicUnpatchableCriticalVulnerability

FindPublicExploitForPublicPatchableCriticalVulnerability

FindPublicExploitForPublicUnpatchableCriticalVulnerability

DevelopExploitForPublicPatchableCriticalVulnerability

DevelopExploitForPublicUnpatchableCriticalVulnerability

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicExploitForPublicPatchableCriticalVulnerability

HasPublicExploitForPublicUnpatchableCriticalVulnerability

DaysSinceReleaseOfSoftware

WebApplication

TypeSafeAPI
DeveloperSecurityTraining
BlackBoxTesting
StaticCodeAnalysis
HasPublicCommandInjection
HasPublicCrossSiteScripting
HasPublicRemoteFileInclusion
HasPublicSQLInjection

FindPublicCommandInjection
FindPublicCrossSiteScripting
FindPublicRemoteFileInclusion
FindPublicSQLInjection
DiscoverVulnerability
ExploitCommandInjection
ExploitCrossSiteScripting
ExploitRemoteFileInclusion
ExploitSQLInjection

UnauthenticatedScanOfZone

AuthenticatedScanOfZone

OSNotpartOfScanPolicy

SocialZone

PhysicalZone

PartOfSocialZone

Product

OperatingSystem

Zone

Zone

Proxy

UnauthenticatedScanOfOS

AuthenticatedScanOfOS

TrustedZone

AccessControl

ManagementProcess

ProxyGateway

AccessControl

PerimeterIDS

AccessControl

AccessControl

AccessControl

AccessControl

RemoteAccessOf

The authors of CySeMoL validated it using the tool in four case studies con-
ducted in the power domain and at a large infrastructure provider. These case
studies led to four enterprise models, two consisting of 50 to 100 objects, one with
100 to 200 objects and one with more than 500 modeled objects. The reworked
version of CySeMoL, presented in [119], was verified in a case study conducted in
collaboration with an electric power company. In this study, a model with more
than 100 objects was created. The entire object diagram consisted of 143 assets,
571 attack steps, 341 defenses and 1780 connections between attack steps. The

156 CHAPTER 8. DEMONSTRATION OF THE USABILITY OF THE TOOL

likelihood of an attacker on the internet obtaining administrator access to one of
the modeled business systems was among the possibilities analyzed. It was iden-
tified that the likelihood increased significantly in relation to the effort applied by
the attacker. If an attacker spent one hour on this endeavor, his or her likelihood
of success, as defined by obtaining administrator access, would be 8 percent. An
investment of 40 hours would increase the likelihood to 85 percent. Finally, spend-
ing 80 hours would lead to a likelihood of 98 percent. A subset of this model is
visualized in Figure 8.2.

Figure 8.2: An anonymized subset depicting the network topology of the studied
enterprise (where DMZ means demilitarized zone).

8.3. OTHER ANALYSIS FRAMEWORKS 157

8.3 Other analysis frameworks

In [186], a framework for the analysis of business performance and organizational
structure was presented. The author of the framework used the tool to implement it.
Additionally, she validated the framework using three case studies in collaboration
with the automotive industry. This resulted in three models that were implemented
using the tool, each consisting of 200 to 500 modeled objects.

The authors of [182] used the presented tool to specify a framework for the
enterprise-wide analysis of service availability. This framework was implemented
based on the PRM formalism. Once the framework was in place, the authors
conducted four case studies: one within the financial sector, one at a travel agency
and one at a company that preferred to remain anonymous. This resulted in five
applications of the tool, leading to five models with approximately 50 objects each.

In [180], a combined framework for the analysis of several system properties is
presented. This framework makes use of the insights gained during the implemen-
tation of frameworks in PRM but is based on P2AMF. The framework presented
in [182] was later further developed into an even more powerful framework [136].
A verification of the availability component of the framework in collaboration with
the financial industry was presented in [209]. The conducted availability analysis
resulted in a model consisting of 201-500 modeled objects.

[260] presents a framework for the analysis of enterprise-wide interoperability
that was specified using the tool. This framework was implemented based on
P2AMF. It was verified, using the tool, in five case studies that were carried out in
the power domain, health care sector and defense sector. In total, five models, two
with fewer than 50 modeled objects, two with 50 to 100 model elements and one
with 200 to 500 objects, resulted from this verification endeavor.

In [205] , a framework for the analysis of application modifiability was presented.
This framework was implemented in the tool. The framework was validated using
the tool once again, this time in an educational institution. The resulting model
contained between 200 and 500 objects [223].

A framework for the analysis of data accuracy was implemented in the tool based
on that presented in [184]. This framework was then further developed and, similar
to [182], integrated into a combined framework [182] . After another iteration of
fine-tuning, it was even added to [136].

[183] presents a framework for the prediction of application usage. This frame-
work and its successor, presented in [182] were implemented in the tool. To valid
the frameworks, five case studies were conducted, and the results were implemented
in the tool.

A framework for the analysis of enterprise profitability was presented in [263]
and [134]. Yet again, this framework was implemented in the tool. The tool was
also used to validate the framework in a case study and resulted in a model with
50 to 100 modeled objects.

To compare the analysis results for numerous system properties, [204] illustrated
the usage of utility theory. This was implemented using the tool for Enterprise

158 CHAPTER 8. DEMONSTRATION OF THE USABILITY OF THE TOOL

Architecture analysis as well, both as a stand-alone framework and as part of [136].
As already mentioned, a combined framework for the integrated analysis of

application modifiability, data accuracy, application usage, service availability, in-
teroperability, cost and utility was presented in [136]. This framework was also
implemented in the tool.

The described tool applications are summarized in 8.1.

Considered
system
property

Publication Number of
included
entities

Model(s)
based on case
studies used
for validation

Cyber security [246, 119] 23/22
• 2* 50

to 100
entities

• 2* 100
to 200
entities
one model

• 1 * more
than 500
entities

Business perfor-
mance and orga-
nizational struc-
ture

[186] 13
• 3* 200

to 500
entities

Service avail-
ability

[182] 14
• 5* 50 enti-

ties

Enterprise inter-
operability

[260] 12
• 2 * less

than 50
entities

• 2 * 50
to 100
entities

• 1 * 200
to 500
entities

Continued on next page

8.3. OTHER ANALYSIS FRAMEWORKS 159

Table 8.1 – continued from previous page
Considered
system
property

Publication Number of
included
entities

Model(s)
based on case
studies used
for validation

Application
modifiability

[205] 15
• 1 * 200

to 500
entities

Data accuracy [184] 6
• Validated

using
test cases
instead
of case
studies

Application us-
age

[183] 8
• 5 case

studies

Enterprise prof-
itability

[263, 134] 14
• 1 * 100

to 200
entities

Utility theory
applied on ser-
vice availability
and cost

[204] 12
• Validated

using
test cases
instead
of case
studies

Continued on next page

160 CHAPTER 8. DEMONSTRATION OF THE USABILITY OF THE TOOL

Table 8.1 – continued from previous page
Considered
system
property

Publication Number of
included
entities

Model(s)
based on case
studies used
for validation

Service avail-
ability, Data
accuracy, Ser-
vice Response
Time, Applica-
tion usage

[180] 24
• Validated

using
test cases
instead
of case
studies

Application
modifiability,
data accuracy,
application
usage, service
availability,
interoperability,
cost, and utility

[136] 29
• Validated

using
test cases
instead
of case
studies

Table 8.1: Implemented analysis frameworks

8.4 Usage of the tool to perform analysis

The tool was also presented to the second intended user group. This group consists
of typical Enterprise Architecture tool users who want to use the tool to perform
architecture modeling and analysis and lack interest in developing analysis frame-
works themselves. These typical Enterprise Architecture tool users were students
taking courses in the author’s department or industry practitioners.

Over a period of three years and spread over three courses, a total number of
29 students used the tool to perform analyses of different scenarios. The students
made use of the frameworks mentioned in the previous section. Mostly [136] was
used; however, in one course, [260] was applied by the students. The students
taking that course were typically studying various fields of engineering and had in
common that they were in their penultimate or final year of education.

The students had a good understanding of the analysis frameworks and the
overall approach. Collaborating with them helped identify potential improvements
in the usability in terms of workflow, user interface, tool documentation and model
visualization.

8.4. USAGE OF THE TOOL TO PERFORM ANALYSIS 161

The students conducted 10 case studies in groups of two to four students.
They worked closely with Swedish and international companies, including insur-
ance providers, energy and automation companies, providers of air and railway
technology and aerospace and defense companies. The case studies included a
scoping of the project, data collection for Enterprise Architecture analysis, analy-
sis, result interpretation, suggestions of alternatives and to-be scenarios as well as
result presentation.

The tool was also presented to practitioners involved in IT decision-making
as part of their job. This audience was taking an evening course on the topic of
Enterprise Architecture as a means for decision-making in the author’s department.
As part of the course, the participants used the tool to conduct analyses in their
field of their daily work. The practitioners used the tool both on their own and
under the supervision of the author and his colleagues. A total of 20 participants
used the tool to conduct analyses, most of whom had a background in the financial
industry, defense sector, telecommunication sector or governmental sector. The
practitioners used the analysis framework presented in [136]. They often focused
on the analysis of availability, data accuracy or application modifiability.

Presenting the tool to this audience helped assess the tools from an end-user
perspective. Some of the practitioners were experienced users of other Enterprise
Architecture tools and could therefore provide valuable suggestions with regards
to the functionality that they considered to be lacking. This group was also very
conscious regarding the time spent creating a model in the tool. Therefore, several
suggestions were made that helped to accelerate the tool’s workflow and support
the automatic generation of models.

The described applications are summarized in 8.2.

User group Number of users Year
Students 7 2011
Students 8 2012
Students 14 2013
Practitioners 4 2012
Practitioners 16 2013

Table 8.2: Users of the presented tool performing analysis

Chapter 9

Evaluation

In this chapter, an evaluation of the tool is presented. Specifically, whether the
Enterprise Architecture analysis tool actually fulfills the objectives it was meant
to fulfill is investigated. Following the used research method (cf. Chapter 2), the
requirements described in Chapter 4 are used to perform this evaluation. The final
section of Chapter 4 (cf. Section 4.4) summarizes the requirements derived from
Enterprise Architecture tool evaluations, the supported Enterprise Architecture
analysis method and theoretical thoughts on CAD tools and expert systems. The
fulfillment of these requirements is dependent on the design decisions made, which
are described in Chapter 5. This chapter is separated into two parts. First, the
presented tool will be evaluated against each of the nine elicited requirements (cf.
Section 4.4). Second, a general evaluation will be presented. The fact that the tool
focuses on the analysis of Enterprise Architecture models is reflected upon as well.
The evaluation of the criterion analysis is performed comprehensively and in detail.
Before considering the nine elicited requirements, it is important to understand the
context of the evaluation: neither the specified analysis frameworks nor the models
created by the tool users to perform analyses are the focus. Instead, the evaluation
focuses on the tool as such, decoupled from a specific analysis framework or a
selected scenario that should be analyzed with regards to a certain system property.
It was the intent that the tool should be usable; capable of performing proper
analysis; have administration and presentation capabilities; feature an extendable
metamodel; support importing, editing, and validating of external data; feature a
repository; offer an expressive metamodel; and support modeling independent of
its input. The goal of this chapter is therefore to evaluate whether this endeavor
was successful.

9.1 The tool shall offer a high degree of usability

[214] suggests evaluating the usability of software artifacts according to five di-
mensions: effectiveness, efficiency, level of engagement, error tolerance and ease

163

164 CHAPTER 9. EVALUATION

of learning. To evaluate the usability of the tool presented in this thesis, a ques-
tionnaire was used and sent to the different user groups of the tool. In total, 35
samples were collected. Ten of the respondents were theory experts using the tool
to specify analysis frameworks, 15 were practitioners, and 12 were students who
used the tool as part of their education to both define analysis frameworks and use
these frameworks during case studies.

The answers received from the theory experts describe to a large extent how this
group experienced the usability of the Class modeler. This was the tool component
that this group typically used the most, mainly to specify analysis frameworks.
However, as the members of this group typically performed case studies to validate
the created analysis framework in practice, this group also made use of the Object
modeler. Therefore, the answers received from the members of this group can be
considered to provide a complete picture of the usability of the tool resulting from
the research work described in this thesis.

The practitioners only used the Object modeler component. The members of
this group only applied the tool to perform analyses. They never specified or even
studied the used analysis frameworks. Their answers regarding their perception of
the usability are therefore only valid for the Object modeler.

The students used both components of the discussed tool. As parts of their
coursework, they specified and modified analysis frameworks and applied these
frameworks to evaluate Enterprise Architecture models. Their perception of the
usability therefore covers both components of the tool.

In total, seven claims were used to evaluate the five previously mentioned di-
mensions. These claims are visualized in Table 9.1. A five-point Likert scale ranging
from 1 (“strongly agree”) to 5 (“strongly disagree”) was used. An additional cate-
gory (“no opinion”) was added to reduce arbitrary answers. It must be mentioned
that the seven claims were each followed by a short set of instructions indicating
that the answers should be given based on the individual background of the user.
Thus, theory experts were to express whether they agreed with the claims to eval-
uate the usability with regards to the specification of analysis frameworks. On the
other hand, practitioners were to give their opinion on the same claims with the
goal of evaluating the usability of the tool from a scenario-analysis perspective.
This approach allowed the reuse of the same claims for all user groups, comparison
of the answers and the synthesis of a holistic perspective of the usability.

A final question was included to ensure that the respondents were familiar with
the latest version of the tool and were not describing the usability of one of the
prototypical predecessors. This question was “When did you use KTH’s Enterprise
Architecture analysis tool most recently”, with the possible answers of 2011, 2012,
2013 and 2014.

The questionnaire was realized as an online survey. During a 10-day period,
answers could be submitted, and a reminder was sent after the first seven days.
In total, 12 theory experts, 28 practitioners and 22 students were asked for their
opinion.

The questionnaire can be found in the appendix (cf. Appendix).

9.1. THE TOOL SHALL OFFER A HIGH DEGREE OF USABILITY 165

Dimension Definition Question
number

Claim

Effectiveness The completeness
and accuracy with
which users achieve
specified goals

1 My goals for the Enterprise
Architecture Analysis Tool
were met

2 I received the results I ex-
pected from the Enterprise
Architecture Analysis Tool

Efficiency The speed with
which work can be
done

3 I completed the task within
the Enterprise Architecture
Analysis Tool quicker com-
pared to using other tools
that I have at my disposal

Level of Engage-
ment

How pleasant, satis-
fying or interesting
an interface is to use

4 I had a pleasant experience
with the Enterprise Architec-
ture Analysis Tool when us-
ing it

Error Tolerance How well the prod-
uct prevents errors
and helps the user
recover from any er-
rors that do occur

5 The user interface of the En-
terprise Architecture Anal-
ysis Tool helped me avoid
making errors

6 I was able to recover when I
made an error

Ease of Learning How well the Enter-
prise Architecture
analysis tool sup-
ports both initial
orientation and
deeper learning

7 The user interface of the En-
terprise Architecture Analy-
sis Tool was predictable

Table 9.1: The claims used to evaluate the usability

The answers to claim 1 are depicted in Figure 9.1. It can be seen that more
than two-thirds (26 out of 35) of the respondents agreed or strongly agreed that
the tool met their goals. In addition, eight answers of “neutral” were received, two
of disagreement and one of no opinion.

Considering Figure 9.2, it can be identified that more than two-thirds (26 of
37) of the users agreed or strongly agreed that they received the results that they
expected from the tool. Furthermore, eight participants responded with “neutral”,
two respondents disagreed with the statement, and one selected “no opinion”.

166 CHAPTER 9. EVALUATION

Figure 9.1: The answers for claim 1

Figure 9.2: The answers for claim 2

In Figure 9.3, the answers for the third claim are visualized. Here, thirteen
respondents agreed or strongly agreed that they completed their tasks faster using
the tool discussed in this thesis compared to other tools. Five respondents answered
“neutral”, seven “disagree” and twelve “no opinion”.

Fourteen respondents agreed and three strongly agreed that they had a pleasant
experience using the tool. Thirteen respondents chose to answer “neutral” for this

9.1. THE TOOL SHALL OFFER A HIGH DEGREE OF USABILITY 167

Figure 9.3: The answers for claim 3

Figure 9.4: The answers for claim 4

claim (cf. Figure 9.4). Seven respondents disagreed or strongly disagreed that they
had a pleasant experience.

The answers to claim 5 are depicted in Figure 9.5. Here, it can be seen that
thirteen respondents either agreed or strongly agreed that the user interface helped
them avoiding errors. Thirteen respondents answered “neutral”, nine disagreed or
strongly disagreed, and two had no opinion.

168 CHAPTER 9. EVALUATION

Figure 9.5: The answers for claim 5

Figure 9.6: The answers for claim 6

In total, twenty-four respondents either agreed or strongly agreed that they
were able to recover after making an error (cf. Figure 9.6). Seven of the respon-
dents answered “neutral”, five answered “disagree” or “strongly disagree”, and one
answered “no opinion”.

In total, nineteen of the respondents either agreed or strongly agreed that the
tool interface was predictable (cf. Figure 9.7). The answer “neutral” was given by

9.1. THE TOOL SHALL OFFER A HIGH DEGREE OF USABILITY 169

Figure 9.7: The answers for claim 7

ten respondents, and disagreement was expressed by seven respondents.

Figure 9.8: The answers to the control question

The collected answers to the previously mentioned control questions are visual-
ized in Figure 9.8. Three questionnaires were submitted by users who most recently
applied the tool in 2012. The tool was most recently used in 2013 by twenty-seven
respondents and in 2014 by seven participants.

170 CHAPTER 9. EVALUATION

Based on the answers given to the control question, all collected samples were
relevant and based on the latest version of the tool. The answers given in response
to the first claim (cf. Table 9.1) indicated that most users consider the tool to be
effective, or at least not ineffective, with thirty-four respondents either in agree-
ment with or neutral towards the claim “My goals for the Enterprise Architecture
analysis tool were met”. The experienced effectiveness or the absence of experi-
enced ineffectiveness is also reflected by the answers to the second claim. In total,
thirty-four participants in the survey agreed with or were neutral toward the claim
“I received the results I expected from the Enterprise Architecture analysis tool”.

Thirteen respondents indicated that the tool is efficient in response to the third
claim. Twelve did not an express an opinion of the claim “I completed the task
within the Enterprise Architecture analysis tool more quickly than I would have
using other tools I have at my disposal”.

With regards to the fourth question, thirty participants reported having had a
pleasant or a not unpleasant experience. These answers attest that the tool provides
a satisfying level of engagement.

Most of the asked tool users expressed that they were satisfied or at least not
dissatisfied by the tools error tolerance. They also indicated that they appreciated
how the tool prevents errors and helps them recover from errors made during the
application of the tool. In total, twenty-sex tool users either agreed or did not
disagree that the tool helped them avoid making errors. Furthermore, thirty-one
users reported being able to recover after making an error.

Only seven respondents reported that the user interface was unpredictable; in
comparison, thirty expressed their agreement with or neutrality toward the claim
“The user interface of the Enterprise Architecture analysis tool was predictable”.
Based on these answers to claim seven, the tool can be considered to be fairly easy
to learn.

In conclusion, considering all seven claims, it can be realized that the users
generally perceive the tool to be usable or at least not unusable.

As described in the beginning of this section, the answers received from the
practitioners only describe their experience with the Object modeler; this group
did not use the Class modeler component of the tool. However, the other two
groups, theory experts and students, utilized both components and were therefore
capable of judging the usability on a holistic level. Regarding the seven evaluated
claims, the answers received from the practitioners never significantly deviated from
those received from the other two groups. Thus, the perceived usabilities of the
two components are fairly similar.

During development, a clear user interface with intuitive menu navigation was
sought. The screenshots included in Chapter 7 show how this concern was ad-
dressed.

From a technical perspective, usability was also supported, as well-known and
frequently used development platforms were used. The selected platform (Eclipse
Rich Client Platform) is widely known and integrates into the user’s desktop envi-

9.2. THE TOOL SHALL POSSESS ANALYSIS CAPABILITIES 171

ronment. Therefore, he or she experiences the application as being, from a visual
perspective, similar to the other software programs that he or she uses.

Additionally, a structured workflow was developed, also presented in Chapter
7, which is covered by the tool. Following this workflow, the usage of the tool is
eased. Additional support material in terms of a manual, a tutorial and interactive
screencasts illustrating the usage of the tool were created as well.

The fact that students, practitioners and theory experts were able to use the
tool without help (cf. Chapter 8) also provides evidence that the tool has a certain
level of usability. Table 9.2 summarizes the different user groups.

Users Task
14 Theory specification
49 Analysis of scenarios
28 Education using fictitious scenarios

Table 9.2: User groups applying the tool

9.2 The tool shall possess analysis capabilities

The presented tool was developed with the goal of supporting the analysis of En-
terprise Architecture models. Therefore, it was equipped with several features
to support analysis. Even more importantly, analysis of architecture descriptions
was not considered as an add-on but is deeply reflected in the tool’s architecture.
The tool has one separate component, the Class modeler, with the single task of
supporting the specification of analysis frameworks. Analysis frameworks can be
specified based on P2AMF (cf. Section 5.4), allowing the expression of the im-
pact of attributes on one another in terms of calculation rules. The Class modeler
allows specifying how the analysis results should be visualized. This feature also
contributes to the usability of the tool. The Object modeler, the second tool compo-
nent, was developed with the goal of supporting the usage of the previously specified
analysis framework. The Object modeler features a probabilistic inference engine,
allowing the values of attributes to be derived based on provided evidence [235](cf.
Section 5.4). This inference engine can also be used to conduct impact analysis
with the goal of identifying the cause of a certain attribute value (cf. Section 7.2).

Another feature connecting the Class modeler and Object modeler and sup-
porting analysis at the same time is the Object modeler’s ability to update analysis
frameworks. As described in Section 7.2, the Object modeler allows a given object
diagram to be updated to the latest version of an analysis framework without the
need for recreating the model.

As reported in the demonstration chapter (cf. Chapter 8), the tool has been
used to specify roughly a dozen analysis frameworks, which have been used to

172 CHAPTER 9. EVALUATION

analyze more than 50 scenarios. The considered system properties are summarized
in Table 9.3 , whereas Table 9.4 reports on the conducted analysis.

Considered system property
Cyber security
Business performance and organizational structure
Service availability
Enterprise interoperability
Application modifiability
Data accuracy
Application usage
Enterprise profitability
Service Response Time
Cost

Table 9.3: Evaluated properties

Number of conducted analysis
(on real scenarios)

Size of the models

25 <50 entities
6 50 to 100 entities
4 101 to 200 entities
14 201 to 500 entities
1 >500 entities

Table 9.4: Number of conducted analyses

Supporting analysis with functionality and in terms of the tool architecture
is not enough. It must also be ensured that the analysis is conducted properly.
Keeping in mind that analysis should be performed independently of the used class
diagram or created object diagram, general test cases were created. These test
cases were meaningless from an Enterprise Architecture analysis perspective. How-
ever, they were extremely valuable from a development perspective. The test cases
described neither analysis frameworks nor scenarios of interest. Instead, fictitious,
controllable subsets of typical class diagrams and instantiating object diagrams were
used to evaluate whether the analysis-related tool functionality and particularly the
inference engine (cf. Section 5.4) of the tool worked as expected.

9.2. THE TOOL SHALL POSSESS ANALYSIS CAPABILITIES 173

The test cases covered the following aspects in particular, presented in the order
of usage as described in the previous chapter (cf. Section 7.1):

1. Specification of attribute derivation
2. Specification of invariants
3. Modeling of objects
4. Relating of objects
5. Provision of data for object attributes
6. Configuration of sampling
7. Evaluation of the model
8. Modification of the model
The steps that were not considered with test cases were preparations of the

analysis that could be evaluated by visually considering the tool, including the
modeling of classes, relation of classes and relevant attributes. Here, it is possible
to determine whether the tool works properly by comparing the visual result to
the model that the user intended to create. The tool works properly if a class is
created, a relation between two classes is created and attributes are added to a
class when the user intends to perform each respective action.

The other steps of the workflows that were not covered using the test cases are
the steps that do not contribute to Enterprise Architecture analysis from a tool
perspective but are manually carried out by the user, namely, the understanding
of the real situation and interpretation and comparison. These steps cannot be
directly performed by the tool; instead, the tool user has to ensure that he or she
understands the considered situation properly. He or she can receive support from
the creator of the used class diagram, as it can incorporate uncertainty (cf. Section
3.2). The interpretation and comparison step addresses the comparison of different
analyzed scenarios and the decision-making based on this comparison. This step is
not directly supported by the tool; instead, it needs to be performed manually.

To determine whether the step specification of attribute derivation was carried
out properly, numerous test cases consisting of various numbers of classes with one
or more attributes were created. Next, attribute derivations were assigned to the
included attributes. In this step, whether the attribute specification was stored cor-
rectly so that it could be used in the later steps of the workflow was evaluated, both
in terms of instantiation (the modeling of objects step) and inference of attribute
values (the evaluation of the model step). Proper storage was evaluated directly
using a debugger and indirectly by comparing the outcome of the later steps to
the included attribute specifications. Finally, it was also checked whether the Class
modeler would allow the use of incorrect OCL code for the specification of attribute
derivations.

During this evaluation, it was found out that this step was carried out correctly
for the used test cases. Proper OCL code was stored to be used in the Object mod-
eler. The tool also identified the erroneous specified attribute derivation contained
in the test cases and informed the user.

To evaluate the step specification of invariants, it was investigated whether
invariants were stored correctly so that they could be used in the later steps of

174 CHAPTER 9. EVALUATION

the workflow (the evaluation of the model step). Yet again, the proper storage
was evaluated directly using a debugger and indirectly by comparing the outcome
of the later steps to the included attribute specifications. As for the specification
of attribute derivations, it was also investigated whether the tool only accepted
well-formed OCL code.

Based on the results, this step was performed properly for the used test cases.
The invariants included in the test cases were saved as they were specified if the
specifications followed the OCL syntax.

The proper performance of a step-by-step modeling of objects was considered by
evaluating the handling of model creation in the Object modeler. Specifically, the
instantiation process of changing class diagrams into object diagrams was evaluated.

An investigation was performed on whether the tool ensures that the object
diagrams are valid instantiations of the used class diagrams, i.e., if only the instan-
tiations that are in accordance with the used class diagrams are possible.

For the test cases that were used, it was realized that the tool allowed the cre-
ation of only those objects that were previously defined for the used class diagram.
It was not possible to create objects that did not have a foundation in the class
diagram. The instantiated objects reflect the class diagrams correctly because they
possess the described attributes, including the specified attribute derivations.

To evaluate the step that is related to the objects, the author investigated
whether it was possible to relate the objects based on the used class diagram. In
addition, the tool’s capabilities were challenged by relating objects even when the
class diagram did not feature a connection between them. Additionally, the capa-
bility for handling multiplicities was evaluated. An attempt was made to create
models that either exceeded the multiplicities that were specified in the class dia-
gram or undercut them. The result of this evaluation was that for the used test
cases, the Object modeler allowed only the creation of object diagrams that followed
the used class diagram. The Object modeler identified all of the discrepancies that
were tested, and it reported them to the user in such a way that he or she could
correct the object diagrams.

After having evaluated the two-step modeling of the objects and the relating of
the objects, the invariants were considered again. An investigation was performed
on whether the Object modeler identified the violated invariants. To accomplish
this task, the creation of the models that were not following the invariants that
were specified for the used class diagrams was attempted. The result was that the
Object modeler was reliable and identified all of the tested violations.

The step provision of the data for the object attributes was evaluated by inves-
tigating whether the Object modeler considers model-specific data for the included
objects correctly. Evidence was provided for some of the attributes that were in-
cluded in the set of test models. Test data were chosen in such a way that it led to
different results than the included default values for the attribute derivations that
were included in the used class diagram. Then, the inferred attribute values were
compared, to ensure that the Object modeler considered the provided evidence.
The data set that is described below was used for the step evaluation of the model,

9.2. THE TOOL SHALL POSSESS ANALYSIS CAPABILITIES 175

to enable the values of the included attributes to be inferred manually. These man-
ually inferred values were compared to the values that the object modeler derived
automatically.

After performing this evaluation, the result showed that the tool could be con-
sidered to have provided evidence that it produced the results that were intended
for the used test cases. Instead of using default values that were specified in the
class diagram, the Object modeler makes use of the user’s input, when this input
was included in the test cases.

To evaluate the step configuration, a sampling of two activities was performed.
On the one hand, an inference that used the test cases was performed, which led
to different results based on the configurations of the sampling algorithms. On the
other hand, a debugger was used to follow the internal performance of the sampling
algorithms. This action was performed to ensure that the Object modeler provided
the implemented sampling algorithms with the correct configuration parameters,
based on the user’s input.

Both of the activities led to the conclusion that, for the performed tests and
the used test cases, the tool considers the configuration parameters in the way that
was intended by the user.

The second and last step of the evaluation of the model was considered by using
a number of test cases. Following the OCL standard, atomic attribute derivations
were implemented that represented the different defined OCL operations. Fur-
thermore, mechanisms for aggregating atomic OCL derivations into more complex
derivations were used. This approach was selected because it is not possible to
implement every possible attribute derivation. Following the OCL standard, the
possible combinations are endless. This approach resulted in a number of object di-
agrams of various sizes and complexities. The test cases had in common that it was
possible to manually perform inferences of the included attributes in parallel with
the inference that the Object modeler had the capability. The manual calculations
were compared to the inferred values that the Object modeler derived.

It was realized that the tool performed inferences correctly for the considered
test cases. The attribute values that the tool derived automatically corresponded
to the values that were calculated using pen and paper.

Finally, the step modification of the models was evaluated. Consideration was
given to whether the tool handled modifications on the provided input, i.e., the
object diagrams during the performance of the inferencing. The used test cases
were modified, both with regard to the structures of the models, i.e., less or more
instantiated objects and relations, and with regard to the provided evidence. Then,
the test cases were recalculated. Again, manual calculations were compared with
the values that the Object modeler derived automatically.

The result was that the tool considered modifications of the models properly for
the tested scenarios. The derived values for the included attributes matched the
modifications and were in line with the manual inference that was performed.

This result concludes the present section on the requirement “the tool shall
possess analysis capabilities”. This section reported that the tool was successfully

176 CHAPTER 9. EVALUATION

used to perform analysis in several test cases. Additionally, for use in the test cases,
an evaluation showed that the analysis was performed correctly, i.e., it leads to the
same results as manual analysis.

9.3 The tool shall possess administrative capabilities

As described in Chapter 4, the focus of this requirement is twofold. On the one
hand, the tool’s capabilities for handling and presenting large-scale models are
investigated, and on the other hand, support for collaborative usage of the software
is considered.

In the demonstration chapter (cf. Chapter 8), usage of the tool was reported.
In some cases, large models, which consist of more than 500 objects, were created.
On the one hand, tool users created models of this size based on real scenarios, and
on the other hand, test models were created automatically. The tool was able to
handle models of this size. Table 9.4 reflects this finding.

[119] reports on the tool’s analysis capabilities with regard to the handling of
large-scale models. They conclude that their implementation of the cyber security
modeling language CySeMoL using the presented tool “scales rather linearly with
the number of modeled attack steps”. Table 9.5 shows their findings.

Assets Attack Steps Attack Step
connections

Computational time (seconds)
CySeMoL P2CySeMoL

5 25 52 0.1 8.6
50 241 598 2.59 47.6
100 482 1203 1689.5 83.4
150 723 1808 α 45921 115.6
200 964 2413 α 3.35 ∗ 106 145.1
500 2410 6037 α 5.07 ∗ 1017 355.2
1000 4820 11212 α 2.18 ∗ 1036 874.7

Table 9.5: Performance of P2CySeMoL (attack steps and attack step connections
refer to P2CySeMoCySeMoL) and α inticates estimations

To visually aid the user, the tool offers several types of support functionality
(cf. Section 7.2). These include views that follow viewpoints for visualizing only
subsets of the model and also the usage of templates as a means of providing an
abstraction model . Furthermore, the automatic instantiation of class diagrams is
supported and is also discussed as part of the fulfillment of the requirement “the
tool shall support the import, editing and validation of data from external sources”.

In the case of the large models that were mentioned before, the resulting ob-
ject diagrams consisted of more than 20 views. For the considered cases, the tool
still performed as expected. The other aspect of the requirement of administrative

9.4. THE TOOL SHALL POSSESS PRESENTATION CAPABILITIES 177

capabilities is, however, not addressed in the current tool. The tool does not sup-
port web-based collaboration mechanisms, versioning systems, role management or
access to the created models from mobile platforms.

9.4 The tool shall possess presentation capabilities

This requirement addresses information visualization and how insights gained from
using the tool are made accessible for different audiences.

The tool supports the creation of tailored depictions of the model that are
dependent on the audience. On the one hand, the author of the analysis frameworks
can define viewpoints that he or she considers to be relevant (cf. Chapter 7). For
example, in the case of MAP [136], the user defining the class diagram added
viewpoints that represent the different included system properties. On the other
hand, the user of the Object modeler has the possibility of creating user-defined
views. These views do not necessarily need to be based on viewpoints. In addition,
the user can create reports that describe the results of the analysis. Of particular
interest for such reports are the calculation results, which can be exported, also.

An additional feature that the tool possesses to provide different stakeholders
with the needed information is the impact analysis that was mentioned earlier.
The decision maker can, using this functionality, identify sources for changes and
specifically trace the cause for a certain analysis outcome.

9.5 The tool shall feature an extendable metamodel

This requirement addresses the Enterprise Architecture tool’s capability of adapting
the metamodel (called the class diagram in the tool) to cater to company-specific
needs.

The presented tool addresses this requirement in several ways. The tool’s com-
ponent Class modeler includes an editor for creating, modifying and tailoring class
diagrams. As was described in the previous chapter (cf. Chapter 8), it is possible
to cover a variety of different topics, i.e., frameworks for the analysis of different
system properties, which can be expressed using class diagrams. These topics are
summarized in Table 9.3. By creating frameworks for the analysis of one or several
properties, theoretical descriptions of those system properties are created; these
descriptions correspond to a knowledge base in CAD terminology (cf. Section 4.3).
It is possible to assign default values to the attributes that are included in a class
diagram. These default values can be company specific. For example, to express
that the employees at a certain company are more aware of cyber security aspects,
because they took advanced training, the defaults can be overridden.

As was described in Chapter 7 when the distinct functionality of the tool was
discussed, the object diagram can be updated, and in doing so, the user can utilize
the latest version of an analysis framework. This capability goes beyond the re-

178 CHAPTER 9. EVALUATION

quirement that is posed in the Enterprise Architecture tool evaluations (cf. Section
7).

During the elicitation of the requirements of a tool for Enterprise Architecture
analysis (cf. Chapter 4), the requirement “the tool shall support an extendable
metamodel” was used even to describe the need for support for Enterprise Ar-
chitecture “frameworks and standards” (cf. Table 4.2). This simplification was
made based on the assumption that frameworks and standards in general and their
included metamodels in particular can be captured by extended metamodels. How-
ever, the tool presented here, which is the result of the research presented in this
thesis, does not have any built-in standards and frameworks. It does, however, sup-
port the manual specification for class diagrams that correspond to the metamodels
found in Enterprise Architecture standards and frameworks. Additional support for
the usage of standards and frameworks is not provided.

9.6 The tool shall support the import, editing and
validation of data from external sources

This requirement addresses the capability of the Enterprise Architecture tool to
make use of data from a third party tool. The tool is capable of doing so, in case
the other tool can generate an XML-based export. This feature was illustrated in
[42] and [118] . The user can define a mapping that specifies the import process, i.e.,
the classes that should be instantiated based on the XML file. Both a user of the
Class modeler and a tool applicant of the Object modeler component can establish
such a mapping. When an instantiation is performed following such a mapping, the
user of the Object modeler can customize the outcome of the import. It is possible
to add or remove objects and relations that connect them as well as to provide
input for the values of the included attributes. Table 5 contains an evaluation that
was performed by the authors of [118]. In this evaluation, a comparison between
a manually created model and two automatically instantiated models is described.
Considering this evaluation, it can be observed that the presented approach for the
automatic creation of the architecture models has a better performance compared
to the manual creation of the models.

Compared to other tools, the presented software has the weakness of supporting
only XML files. Other Enterprise Architecture tools often support many of the file
formats that are typically used in an office environment [166]. Some of the other
available Enterprise Architecture tools also have extended validation mechanisms,
which are used to identify the quality of the import data.

Table 9.6 illustrates how the tool’s import capabilities can be used for faster
model generation. The results were originally published in [118].

9.7. THE TOOL SHALL SUPPORT THE STORAGE OF MODELS, IN-
STANTIATING A METAMODEL, IN A REPOSITORY 179

Variable Time (hh:mm) Entities Relations
Modeling by [184] 05:12 20 19
Modeling using an authenticated
scan

03:08 1 558 679

Modeling using an unauthenti-
cated scan

01:23 558 462

Table 9.6: Comparison of modeling effort in hours (hh) and minutes (mm) for the
proposed approach and results by Närman et al [184]

9.7 The tool shall support the storage of models, in-
stantiating a metamodel, in a repository

This requirement addresses the Enterprise Architecture tools support for the storage
of models based on metamodels.

In the tool, only local storage of the created files is supported. As was described
in 9.4, the tool has been used to create models of various sizes. These models were
used to evaluate the storage capabilities of the tool. An investigation was performed
on whether the tool successfully saved the models and the views that were used to
structure them as files. Thereafter, an evaluation was performed on whether the
tool could load these files again. These tests were performed successfully for all
possible models.

However, the tool has the limitation that it is not possible that two or more
users create a model simultaneously or even edit one model file in parallel. This
limitation makes collaborative work difficult because synchronization must be per-
formed manually. The tool does not actively support the model evolution, i.e., it
is not possible to save different versions of the models into one file. Instead, the
user must actively create different models to represent different states of the model.
Collaborative work is possible in such a way that several users of the Object mod-
eler can use the same class diagram, utilizing an analysis framework in parallel.
Their individual models can then be combined into a larger description using copy
and paste.

9.8 The tool shall support the creation of metamodels that
cover the domains of business architecture, information
architecture, technology or technical architecture and
solution architecture

To investigate the fulfillment of this requirement, consideration must be given to
whether it is possible to create analysis frameworks that cover the enterprise con-

180 CHAPTER 9. EVALUATION

text, including the business architecture, information architecture, technology or
technical architecture and the solution architecture.

In regard to the expressiveness of the metamodel, the tool has strengths com-
pared to other available tools. Class diagrams, i.e., the metamodels that are used
within the analysis frameworks, cannot cover only the domains that Gartner (cf.
Section 4.1) requires but additionally must cover every other aspect that is relevant
(for an analysis) that can be expressed in terms of a UML Class diagram [55](cf.
Section 10.3). For example, the class diagram for cyber security analysis presented
in [119] includes the social zone concept.

The ability to cover the business architecture, information architecture, tech-
nology or technical architecture and solution architecture was demonstrated in the
analysis frameworks that were specified using the tool. In the following table (cf.
Table 9.7) , the classes of some of the analysis frameworks that were specified using
the tool were mapped according to the domains suggested by Gartner, to illustrate
the fulfillment of this requirement 1.

Analysis
frame-
work

Business
archi-
tecture

Information
archi-
tecture

Technical
archi-
tecture

Solution
archi-
tecture

CySeMol
[119]

Person Data flow Application
server

Person Application
client

Security
awareness
program

Data store

Security
awareness
program

Firewall

Social zone IDS sensor
Zone manage-
ment process

Network inter-
face
Network vul-
nerability
scanner
Network zone
Operating sys-
tem
Password
account

Continued on next page

1This mapping does not contain all of the classes that are included in the frameworks

9.8. THE TOOL SHALL SUPPORT THE CREATION OF
ORGANIZATIONAL-WIDE METAMODELS 181

Table 9.7 – continued from previous page
Analysis
frame-
work

Business
archi-
tecture

Information
archi-
tecture

Technical
archi-
tecture

Solution
archi-
tecture

Password au-
thentication
mechanism
Protocol
Software prod-
uct
Web applica-
tion
Web applica-
tion firewall

The
frame-
work for
interop-
erability
analysis
presented
[260]

Actor Language Communication
need

Reference lan-
guage
Language
translation

The
Multi-
Attribute
Prediction
(MAP)
class di-
agram
[136]

Business pro-
cess

Data set Application
component

Service re-
quirement

Business
service

Information
requirement

Application
function

Stakeholder

Customer Language Application
service

Organizational
unit

Representation
set

Infrastructure
function

Product Process service
interface

Continued on next page

182 CHAPTER 9. EVALUATION

Table 9.7 – continued from previous page
Analysis
frame-
work

Business
archi-
tecture

Information
archi-
tecture

Technical
archi-
tecture

Solution
archi-
tecture

Role Node
Availability
Frame-
work
presented
in [80]

Business pro-
cess

Application
component

Requirements
and procure-
ment

Process solu-
tion of backup

Application
function

Operations Application
service

Change con-
trol

Communication
path
Infrastructure
service
Node

Utility
Frame-
work
presented
in [204]

Attribute
requirement

Class require-
ment
Decision
maker

Table 9.7: Ability to consider Business architecture, Information architecture, Tech-
nical architecture and Solution architecture

As described above, the class diagram can also be adapted by the user, to
specifically represent the described analysis framework in the way that he or she
perceives it.

9.9 The tool shall support the creation of models

The requirement “the tool shall support the creation of models” addresses the
aspect of creating descriptions of enterprises. More specifically, the capability of
creating an organization-wide model that covers everything from the strategy of
the company down to the technical solutions (cf. Chapter 4) is addressed.

9.10. GENERAL EVALUATION 183

As described above, the presented tool can create models that describe almost
any topic, as long as that topic can be expressed in a class diagram. In [136], an
analysis framework is presented that covers the strategic dimension of organizations
as well as the infrastructure and several aspects that are typically found between
them. That it is possible to specify such a class diagram illustrates that the tool
can fulfill the requirement that “the tool shall support the creation of models”.
Table 9.8 illustrates the number of models that have been created to cover either
the analysis frameworks or the scenario descriptions.

Models that are created with the tool can represent organizations at a more
detailed level, beyond the scope of this requirement. The resulting models not
only reflect the organizations but also illustrate how the attributes of the described
objects relate to one another.

Type Number of created models
Class Diagrams specifying analysis theory >10
Object Diagrams based on Class Dia-
grams capturing scenarios

>60

Table 9.8: Created models using the presented tool

9.10 General evaluation

Evaluation of the presented tool shows that the presented software tool has both
weaknesses and strengths. The purpose of the research project documented in this
thesis was to develop and demonstrate an Enterprise Architecture modeling and
analysis tool. In this chapter, an evaluation of the tool against the requirements
specified for such a tool was presented.

While evaluating the tool, it was determined that most of the users who ap-
plied the tool thus far were satisfied with its usability. Additionally, it was realized
that the tool can be used for the conduct of Enterprise Architecture analyses and
therefore possesses analysis capabilities. It was also determined that the tool was
partly able to fulfill the requirement “the tool shall possess administrative capabili-
ties” because it could address large-scale Enterprise Architecture models. However,
the tool failed to offer a multiuser environment. During the evaluation, it was
concluded that the tool possesses some presentation capabilities. This finding was
realized because it was possible to fulfill the information demands of some of the
stakeholders by visualizing subsets of the Enterprise Architecture models that they
considered to be relevant. The evaluation also concluded that the tool allows the
creation of extended metamodels that be used not only for descriptive purposes
but also to conduct analysis based on those purposes. However, the tool does not
feature any built-in Enterprise Architecture standards or frameworks. The tool’s

184 CHAPTER 9. EVALUATION

ability to specify extended metamodels can be used to model the metamodels that
are included in such approaches.

It was additionally realized that the tool allows for importing data from external
sources, provided that these data are available in XML format. The evaluation
of the requirement “the tool shall support the storage of models, instantiating a
metamodel, in a repository” concluded that it is possible to save and load models
that instantiate a metamodel. However, at present, the model files are stored locally
and not in a data repository. The evaluation also identified that the tool allows
creating metamodels that cover the domains of business architecture, information
architecture, technology or technical architecture and solution architecture. Finally,
the evaluation concluded that the tool could meet the requirement “the tool shall
support the creation of models” because this capability helps the user to draw
enterprise-wide models. In summary, the tool was able to partly or completely
meet the stated requirements. Therefore, the conclusion can be drawn that the
tool is a tool for Enterprise Architecture analysis.

Two requirements were clearly not met completely. The tool does not offer a
multiuser environment and, in addition, does not contain a repository for storing
and accessing the created models. These capabilities should, therefore, be consid-
ered to be complementary to the tool and to be part of the expected future work
(cf. Chapter 12).

Chapter 10

Discussion

The result of the research described in this thesis is a tool for the analysis of
Enterprise Architecture models. In the previous (cf. Chapter 9), an evaluation
of this tool was presented. This evaluation used specific requirements that were
elicited in the initial phase of the research project, to investigate the quality of the
tool.

This research project follows a defined Design Science method that was pre-
sented in Chapter researchmethod. [33] suggests evaluating the general aspects of
validity, reliability and generalizability as part of the evaluation step when follow-
ing the Design Science approach. This procedure should be performed to determine
the relevance and rigor of the created artifact. Again, it is important to stress the
fact that the validity, reliability and generalizability of the performed research are
discussed. This tool is a platform that can be used to evaluate many of the sys-
tem’s properties. To discuss the validity, reliability and generalizability of a specific
analysis framework that describes one or several system properties is the task of
the individual author and is out of the scope of the research that is documented in
this thesis.

Following [33], this chapter is composed of three sections, each of which contains
a discussion of one of the following qualities: validity, reliability and generalizability.

10.1 Validity

Validation is the extent to which an instrument measures what it is supposed to
measure and performs as it is designed to perform [159, 187]. [14] identified four
types of validity as criteria for measuring the quality, which are the following: face
validity, criterion validity, construct validity and content validity. Consequently,
validation is the process that determines how well the intended concept is actually
being measured by an instrument.

In the context of this thesis, an evaluation of the validity of the performed work
translates into a determination of whether the resulting, designed artifact is in fact

185

186 CHAPTER 10. DISCUSSION

a tool for the analysis of the system’s properties in terms of the organization-wide
architecture models.

Even though the previous chapter (cf. Chapter 9) evaluates the outcome of the
research that is documented in this thesis, there are several threats to the validity
of the performed work:

Requirements
The goal of the described research project was to develop and demonstrate an En-
terprise Architecture modeling tool that has a focus on system property analysis.
Ideally, an already existing requirements catalog, which would preferably be pro-
vided by a third party, should have been used to identify the characteristics that
such a tool should possess. However, such a catalog did not exist before this re-
search project was conducted, and a different approach had to be selected. The
tool was evaluated against a set of requirements that were derived from three dif-
ferent domains (cf. Chapter 4), to ensure that the goal of the research described in
this thesis was achieved. First, surveys that evaluate the Enterprise Architecture
tools were used because the presented tool should be comparable to other available
Enterprise Architecture tools. Second, the method for the performance of Enter-
prise Architecture analysis was considered, to incorporate the perspective of system
property analysis on the Enterprise Architecture models. Third, the architectures
of the CAD tools were considered because this type of tool has a similar goal, i.e.,
the analysis of (architecture) models.

Only two surveys ([166] and [88]) that evaluate the Enterprise Architecture tools
were used in the described research. The validity of the performed work could have
been increased if a larger number of tool surveys had been considered that could
have been used to identify the requirements. Additionally, only one method for
the analysis of the Enterprise Architecture models was considered. The availability
and consideration of several methods would have added validity to the requirements
that were elicited in the domain of Enterprise Architecture analysis.

Elicitating requirements from scientific publications on CAD tools brings threats
to the validity. Until now, the domain of Enterprise Architectures is not a typical
area of application for CAD tools. Therefore, no CAD tool that can be used as an
object of study could be identified. Moreover, CAD tools can be used for a variety
of purposes (cf. Section 4.3). However, no generic CAD tool exists that can be
utilized in all areas of application. Such a tool would be valuable for identifying
the general requirements for a CAD tool. Instead, a consideration that is based
on different areas of applications, e.g., expert systems in production planning and
scheduling, had to be made (cf. Section 4.3). Deriving requirements on a CAD tool
for an Enterprise Architecture from, for example, tools for production planning and
scheduling, however, comes with the drawback of not establishing a perfect match.
This consideration bears the risk of not identifying the relevant characteristics of
a CAD tool for Enterprise Architecture or focusing on characteristics that are, in
fact, less important than perceived. Moreover, the requirements were aggregated

10.1. VALIDITY 187

during the elicitation process. Performing such an aggregation bears the risk of
oversimplifying the mechanism that is used to evaluate the created research out-
come. Such an aggregation might also have the consequence that some aspects are
prioritized because of their assumed importance whereas other requirements are
not considered adequately.

In summary, the considered sources that were used to identify the requirements
of an Enterprise Architecture analysis tool might threaten the validity of the per-
formed research. None of the considered domains contains an explicit, validated
catalog that has the requirements for a tool for the analysis of the system properties
of organization-wide architecture models that could have been used. Therefore, the
threat exists that the tool does not meet all of the requirements on an Enterprise
Architecture analysis tool because eventually not all of the requirements have been
identified. This limitation is a threat to the fulfillment of the goal of the research
that is documented in this thesis, i.e., to develop a tool for Enterprise Architecture
analysis.

Evaluation

The other threat to the validity concerns the evaluation of the tool discussed in the
previous chapter (cf. Chapter 9). The evaluation concluded that the presented re-
search project succeeded and resulted in a tool for Enterprise Architecture analysis.
However, there are threats to the validity of each of the eight areas that were con-
sidered when evaluating the tool. These evaluations might have been incomplete or
incorrect. Next, each of the eight requirements that the tool was evaluated against
in the previous chapter will be discussed with regard to the validity.

The tool shall offer a high degree of usability

In Chapter 9 the usability was evaluated. This evaluation was performed using a
questionnaire that was sent to the users of the tool. The validity of this evaluation is
threatened by the small sample size because only 37 users shared their experiences.
A low number of samples might give too much weight to the subjective opinions.
Another threat to the validity of the performed evaluation is the fact that more
than one fourth (10 of 37) of the submitted answers came from (former) colleagues
of the author. Additionally, 12 answers came from former students of the author.
These answers might have been biased.

The tool shall possess administrative capabilities

Chapter 9 also contains a description of the tool’s analysis capabilities and the
proper performance of the analysis. As was described, a number of test cases were
used to ensure that the tool properly infers the values of the modeled attributes.
However, the number of used test cases was limited, and not all theoretically pos-
sible scenarios were covered. Instead, representative scenarios were used to ensure

188 CHAPTER 10. DISCUSSION

that the tool and, in particular, the tool’s inference engine perform analysis as ex-
pected. This procedure bears the risk that not all of the relevant scenarios were
covered and that analysis in some of the cases might lead to wrong results.

The tool shall possess presentation capabilities

The tool’s capabilities of addressing large models were also investigated in Chapter
9. This task was accomplished based on several tool applications that resulted
in specific complex models that had many included objects and relations between
them. The tool fulfilled this requirement because it could handle such large models.
However, there is no upper limit for the size of an Enterprise Architecture model.
Creating a model that is too large to be handled by the tool is possible. The validity
of the fulfillment of this evaluation criterion is threatened if the models that were
used for the evaluation are not sufficiently large.

The tool shall possess presentation capabilities

The evaluation presented in Chapter 9 continued by discussing the tool’s presenta-
tion capabilities for varying groups or stakeholders. It was concluded that the tool
has presentation capabilities that allow it to illustrate information for various, inter-
ested audiences. Here, the validity of the evaluation is threatened because it is not
possible to predict all of the possible needs of eventual stakeholders. In addition,
a subjective prioritization had to be made regarding the presentation capabilities
that were offered by the tool. This arrangement was necessary due to the limited
available resources, which restricted the presented project. These subjective choices
also threaten the validity of the evaluation.

The tool shall support an extendable metamodel

In the evaluation chapter, it was concluded that the tool has an extendable meta-
model. The term extended metamodels in the context of this thesis means not
only extended to fit a specific organization but also extended to incorporate anal-
ysis theory. Using the tool, metamodels, which are class diagrams that follow the
wording of the tool, can be defined and used in such a way that they are capable
of describing organizations and also evaluating the systems properties of those or-
ganizations. The above conclusion was drawn because many extended frameworks
were specified, with each including a metamodel that was extended by a number
of authors. The validity of this evaluation is threatened because it is difficult to
estimate all of the potential areas that are worthwhile considering when creating
an extendable metamodel. This aspect is further discussed in the third section (cf.
Section 10.3) of this chapter, which discusses the generalizability of the presented
result.

10.1. VALIDITY 189

The tool shall support the import, editing and validation of data from
external sources

In the previous chapter, it was concluded that the tool possesses capabilities for
importing, editing and validating information from external sources. As was de-
scribed, this set of capabilities is achieved using files that follow the XML standard.
The validity here is threatened because, thus far, only this file format has been sup-
ported. Although XML is an accepted standard that is used by many tools, it is
not ensured that interesting external information is available in this file format. For
some third party data sources, an import might therefore be possible.

The tool shall support the storage of models that instantiate a
metamodel in a repository

The evaluation of the tool also concluded that the creation of models within the
tool follows metamodels. These metamodels can be defined in the Class modeler
of the tool and instantiated in the Object modeler. The evaluation additionally
noted that a repository is missing. The validity of this evaluation is threatened in
the sense that, given that a user is interested in a certain system property, it is not
ensured that a metamodel exists that captures that specific property. Moreover, it
might not be possible to use the tool’s Class modeler and create a class diagram,
i.e., a metamodel that describes that system property. This limitation might arise
from generalization issues (cf. Section 10.3).

The tool shall support the creation of metamodels that cover the
domains of business architecture, information architecture, technology
or technical architecture and solution architecture

The evaluation of the tool resulted in the conclusion that this requirement was met
because several authors specified analysis frameworks in terms of metamodels using
the tool. These metamodels covered some or all of the 4 domains, namely, business
architecture, information architecture, technology or technical architecture and so-
lution architecture. The validity of this conclusion is threatened because these
domains are not unambiguously defined. Gartner describes these areas vaguely in
[89], however, but does not specify exactly the concepts that are considered to be
part of each of the 4 domains. It is therefore not possible to exactly determine
whether all of the concepts that Gartner regards to be included in the domains
business architecture, information architecture, technology or technical architec-
ture and solution architecture can actually be expressed by metamodels. It might
be possible that someone associates a certain concept that cannot be captured in
a metamodel using the tool.

190 CHAPTER 10. DISCUSSION

The tool shall support the creation of models

Finally, in the evaluation presented in the previous chapter, it was assessed that
the tool supports the creation of models. This capability was shown among others
by discussing successful tool applications that led to the models. However, the
conclusion might be threatened in a way that is similar to the previous requirement.
It was not possible to test all of the possible models. There might be some scenarios
that, using the presented tool, cannot be captured in terms of a model.

Final comments on validity
During the evaluation of the tool, investigation was performed as to whether each
of the identified requirements was in fact met. It was concluded that this goal
was met and that, therefore, the presented artifact is actually a tool for Enterprise
Architecture analysis. As was discussed in this section, threats to the fulfillment of
each of the requirements could be identified. These findings bear the consequence
that the achievement of the overall goal of the research project is threatened, i.e.,
that no Enterprise Architecture modeling tool with a focus on system property
analysis was actually developed and demonstrated.

10.2 Reliability

Investigating the reliability of a result aims at identifying the extent to which the
research can be replicated. To attest that the research is reliable requires that a
researcher using the same methods can obtain the same results as those of a prior
research endeavor [275]. In the context of this thesis, the research at hand is the
creation of a tool for the analysis of Enterprise Architecture models with regard to
system properties. The question that must be answered is, therefore, the following:

Would a researcher with the task of designing and developing a tool
for Enterprise Architecture analysis obtain the same result?

Would a researcher with the task of designing and developing a
tool for Enterprise Architecture analysis obtain the same result?
Typically, the initial step when performing research is to select a method to be
followed. Choosing the Design Science approach to create a tool for Enterprise
Architecture analysis is auspicious because it is commonly used in Enterprise Ar-
chitecture research. Following a Design Science approach usually results in a re-
quirement elicitation activity in the initial stage of the conducted project. With the
given task, a consideration of common, classic Enterprise Architecture tools is used
to elicit the requirements. Another area that must be considered is the analysis
domain, in particular, model analysis, and even more specifically, the Enterprise

10.2. RELIABILITY 191

Architecture analysis domain, to ensure that the designed and developed tool meets
its goal.

To elicitate the requirements while considering the existing Enterprise Archi-
tecture tools, documents that describe the requirements for those tools could be
used. An alternative would be to compare the existing tools and thereby derive
requirements based on identified commonalities. For the described tool, the first
alternative was selected. This alternative was satisfactory. However, the second
alternative could be selected, too, and would likely lead to comparable results.

To elicitate the requirements on the analysis capabilities, the available methods
and approaches for Enterprise Architecture analysis and general analysis approaches
that utilized architecture models are sources that could be considered.

For this research project, a subset of the available literature was considered. A
threat to the reliability of the performed research is that other sources would lead
to the identification of other requirements. Another threat is that an aggregation
of the identified requirements was performed. A threat to the reliability is that no
explicit method was followed while performing this aggregation.

However, there would likely be several common denominators between the elicited
requirements on a tool for Enterprise Architecture analysis and the requirements
identified in the described research work:

1. There should be a possibility to specify analysis theory for the purpose of
ensuring scientifically correct and reproducible analysis of system properties

2. The attributes of modeled objects and their impact on each other should be
captured to consider the enterprises as holistic systems.

3. It should be possible to consider the structure of the models
4. There should be a possibility of considering the uncertainty. This option

should be possible for the analysis theory, the structure of the model, and the
information used to describe a certain organization.

5. There should be a component to calculate thus far unknown values of included
attributes, based on other known attribute values, to evaluate the system
properties of Enterprise Architectures.

In the discussed research project, these requirements raised the need to make
decisions in the following areas (cf. Chapter 5.4):

• Overall tool architecture
• Platform
• Modeling language
• Inference engine
• Level of abstraction
• Cyber security modeling
These areas were useful for providing guidance during the design of the tool.

However, the reliability of the performed research is threatened. It is not guaranteed
that these are all of the relevant areas for decision making.

192 CHAPTER 10. DISCUSSION

There are additional threats to the reliability that concern the decisions made
for each of the identified areas. These threats will be discussed next.

Design option I: Overall tool architecture
There are many possible alternatives for the design of a complex application such
as the tool that is the result of the research activity described in this thesis. Often,
it is difficult to compare different architectures [253].

However, deciding on the architecture of the software is fundamental and has a
strong impact on the characteristics of the resulting tool. Furthermore, the overall
architecture is generally fixed and cannot be modified or even replaced, which is
the case for features that are built on top of a specific architecture.

In the context of the performed research, a decision regarding the software
architecture must be made with regard to the context of the performed research,
its goal and, in particular, the requirements posed against the tool that should be
the outcome of the research endeavor.

While deciding on the tool’s architecture, the aspect of having two separated
user groups who are applying the tool must be considered (cf. Section 7.3). Another
relevant factor is the project dynamics. These needs create the requirement for a
flexible architecture that allows the fast and uncomplicated addition or modification
of features to the tool.

For the tool, an architecture that is composed of two components was selected.
Each user group is supported with one of these two components. The components
share a core, where common functionality is implemented. Specific functionality
that supports one specific user group is offered solely by the dedicated component.
Using this architecture satisfied the research project’s needs.

The reliability of the performed research is threatened here because the architec-
ture of a tool for the analysis of Enterprise Architecture models could be designed in
many different ways. The presented architecture was derived based on experience
from previous prototypical implementations of the tool, and avoiding redundant
code was prioritized. However, there might be alternative architectures that out-
class the used design. Especially, the focus on redundancy reduction threatens the
reliability of the project. There might be other aspects that are of greater impor-
tance. Prioritizing those aspects might result in a different overall tool architecture.

Design option II: Platform
There are several rich client development platforms that are available that could
have been used to realize a tool for Enterprise Architecture analysis. The Eclipse
Rich Client platform was selected due to the platform’s powerful features and lively
and supportive community. During the performance of the research project, this
decision had a positive impact on the outcome because the platform turned out
to provide useful components. Additionally, bugs that were found were often fixed
within a short period of time.

10.2. RELIABILITY 193

The reliability of the performed research is threatened because the powerfulness
and the supportiveness of a platform are criteria that are difficult to quantify.
There are other platforms, especially when not limiting oneself to the consideration
of Java-based platforms. One of those platforms could be chosen, also. Eventually,
these platforms possess more suitable features or an even more active community.
The fact that it is theoretically possible to implement a platform from scratch is
also a threat.

Design option III: Modeling language

Enterprise Architecture is an approach that makes heavy use of metamodels, pro-
viding a general modeling language and models that instantiate those metamodels,
to describe a specific scenario. In the tool that was the outcome of the research de-
scribed in this thesis, extended metamodels are used that describe analysis theory
for system property analysis. These extended metamodels are specified as UML
Class diagrams and are instantiated as models in terms of UML Object diagrams.

UML is most likely the most common modeling language to be used within a
variety of domains. However, it is by far not the only possible language that could
be used for Enterprise Architecture analysis. There are a number of Enterprise
Architecture modeling languages, and the number of general purpose modeling
languages is even larger. It is, therefore, difficult to obtain a complete overview
and even more difficult to compare all of the possible candidates to each other.
Identifying the best modeling language for the presented tool is difficult if not
impossible.

The reliability of the performed research is threatened because alternatives other
than UML might be selected. UML was selected because it is frequently used and
offers a balance between the usability and expressive power. However, there might
be modeling languages that offer an even better balance. It also might be possible
that there are languages that have the same usability and expressive power and that
possess additional features that are useful within a tool for Enterprise Architecture
analysis compared to UML. Such languages were not found during the design of the
tool. A researcher who has the task of redesigning and redeveloping an Enterprise
Architecture analysis tool might, however, be able to identify such a language.

Design option IV: Inference engine

The tool has a built-in inference engine that utilizes the Predictive, Probabilistic
Architecture Modeling Framework (P2AMF) (cf. Section 5.4) to derive unknown
attribute values. This engine processes input that is specified in an extended version
of the Object Constraint Language OCL. This arrangement allows the consideration
of dependencies between the attributes of the modeled objects as well as structural
aspects of the model. Moreover, because OCL was extended to support prob-
abilistic reasoning, uncertainty, in particular definitional uncertainty, theoretical

194 CHAPTER 10. DISCUSSION

heterogeneity, causal uncertainty, empirical uncertainty and structural uncertainty
can be considered during the performance of the inferencing.

Regarding the inference engine, the reliability of the performed research is
threatened for several reasons. It might not be sufficient to evaluate the attributes
based on other attributes and the structure. There might be other, additional
characteristics of the model that are relevant to consider during the inferencing
performance. Additionally, there might be aspects that are relevant for Enterprise
Architecture analysis that cannot be captured using OCL. This possibility might,
for example, be due to unsupported data types, insufficient expressiveness or im-
precision that might be identified.

Uncertainty might also not be addressed sufficiently, which is another threat to
the reliability. Eventually, it is not sufficient to consider definitional uncertainty,
theoretical heterogeneity, causal uncertainty, empirical uncertainty and structural
uncertainty while performing Enterprise Architecture analysis.

Even though the inference engine might consider the relevant aspects of the
models that ought to be evaluated, i.e., the dependencies between the attributes
and structure of the model, the relevant aspects with regard to uncertainty in
the reliability is still threatened. There might be alternative ways of realizing the
inference engine. Instead of an extended version of OCL, other languages, which
allow querying models and derive unknown attribute values, might be used. During
the performed research project, a better language was not identified compared with
the chosen language. However, the reliability is threatened because such a language
might exist. Such a language might possess advantages over the selected, extended
OCL, such as allowing faster inferences or a more user-friendly specification of the
rules to infer attribute values.

Finally, the selection of the supported inference algorithms (cf. Section 5.4):
forward sampling, rejection sampling and Metropolis Hastings sampling is also a
threat to the reliability of the performed research. There are a number of alternative
sampling algorithms, and it might be the case that one or several other sampling
algorithms could be selected.

Design option V: Level of abstraction
A balance must be found between high expressive power accompanied by large
and complex models and simplified scenario descriptions that have more easily
understood models. The field of Enterprise Architecture especially aims at finding
a good compromise, to cover organizations on a holistic level and still provide
valuable information for interested stakeholders. This challenge was relevant for
the presented tool. A tool for Enterprise Architecture analysis must address the
question of how complex models can be presented in such a way that the contained
model is easy to grasp. The tool supports the use of templates as a means of
reducing the visual complexity.

The reliability of the performed research is threatened because the selected level
of abstraction was chosen without any scientific foundation. Instead, the usage of

10.2. RELIABILITY 195

templates was identified to be convenient and supportive for the creation of large
models. However, because these are subjective criteria, they threaten the reliability
of the project. For the tool presented in this thesis, the decision was made based
on the request by the tool users. Other users might have other opinions.

It might be identified that there is no need for the templates at all. The reliabil-
ity is furthermore threatened because the offered templates might be on the wrong
level of abstraction. It might be the case that it is necessary to visually aggregate
the models even more, to ensure understandable models. On the other hand, it
might be the case that the supported templates are abstracting too much. Tem-
plates might visually concentrate the models to such an extent that the depictions
are less usable. This process could lead to a decreased usability of the tool.

Another design decision made for the tool presented was to reduce the visual
complexity and thereby the tool’s usability by allowing the definition of the view-
points and creating views that confirm these viewpoints. This decision is another
threat to the reliability. It might be the case that the viewpoints and views do
not increase the usability and instead cause confusion. The decision to support
viewpoints and views was made because these concepts are commonly used within
the field of Enterprise Architecture. However, the reliability of the presented work
is threatened because it was not scientifically evaluated if the support for the view-
points and views is actually appreciated by the users of the tool.

Design option VI: Cyber security modeling

The need to explicitly support cyber security modeling arose because the research
documented in this thesis was partly conducted in the context of a larger research
project that aimed to provide decision support with regard to the design of indus-
trial control systems from a cyber security perspective (cf. Chapter 1). One of the
outcomes of this cyber security research project was CySeMoL, the Cyber Security
Modeling Language and its successor, P2CySeMoL, the Predictive, Probabilistic
Cyber Security Modeling Language. Parallel to the development of this language,
an investigation was performed on how the tool that is presented in this thesis could
be designed and extended to provide support for CySeMoL.

The decision was made to support CySeMoL by providing a means for attack
graphs. This decision, however, is a threat to the reliability. As was described
in Section 5.6, there are other approaches that can be used for organization-wide
security modeling. It might be the case that attack graphs are not the best way
for accomplishing this goal. Compared to the functionality that is currently avail-
able, other modeling techniques have, for example, better usability, more insightful
analyses or consideration of organizations on a level of detail that has thus far not
been possible but could exist.

196 CHAPTER 10. DISCUSSION

Final comments on reliability

The final component of the tool that must be discussed is the design of the user
interface. The layout, design and structure of the menus, the canvas holding the
model and other components that allow the user to interact with the tool can be
realized in a variety of ways. The user interface of the presented tool was strongly
inspired by other modeling tools, specifically other modeling tools that were built
on the same platform. A threat to the reliability is that there is no standard for
the design of the user interfaces. In particular, there is no document that defines
the explicit requirements on the user interface of the Enterprise Architecture tools.
A researcher who uses the same methods might therefore develop a different design
and layout for the user interface.

In summary, it can be realized that many threats to the reliability of the pre-
sented research exist. The elicited requirements on a tool for Enterprise Architec-
ture analysis are threatened as well as the areas for the design decisions. Even for
all of the areas of decision making that were considered during the design of the
tool, there are many threats. Finally, even the reliability of the creation of the user
interface is threatened.

10.3 Generalizability

Discussing the generalizability of a scientific contribution aims at investigating
whether the research results can be extrapolated to the larger population [252, 275].

In the context of the research that is described in this thesis, evaluating the
generalizability translates into identifying other domains in which the presented
tool can be applied. As was described, that tool was successfully used to evaluate
more than 10 different system properties (cf. Chapter 8). In additional frameworks
that were used to evaluate other system properties, such as the properties identified
in [269] , [93] or [222] could be realized, also. This arrangement can be accomplished
if the system properties can be expressed in terms of class diagrams and instantiated
in terms of object diagrams to evaluate a specific scenario. It was also reported that
the tool allows describing technical systems such as computer networks and social
systems that describe the organizational structure of the enterprises (cf. Section
9.8). In general, all of the aspects that can be perceived as objects and that can be
described with characterizing attributes can be captured by the tool.

The present tool does not allow for analysis considering the temporal aspects 1

. In general, it cannot describe that the value of attribute Y at t=1 depends on the
value of attribute X at t= 0. In [180] and [184] , a framework for the analysis of the

1It is important to understand that temporal analysis is not the same as sampling according to
Metropolis-Hastings, which uses a Markov Chain. The tool is able to perform the latter; however,
it fails on the former. Using a Markov Chain adds a time perspective, which however is global,
i.e., from sample to sample. For one specific sample, all of the attributes are in the same time
step, whereas the temporal analysis would require that even within one sample, different time
steps could be considered.

10.3. GENERALIZABILITY 197

data accuracy is presented. The authors of this framework attempted to overcome
the mentioned weakness by describing several points in time within the same model.
These points in time are related using a predecessor-successor relation. In this way,
consideration over time is made possible. However, this solution is not dynamic
compared to simulations in which a model updates itself incrementally. Instead,
the framework that is presented in [180] and [184] considers all of the time steps at
once. The described limitation restricts the applicability of the tool to static areas
in which there is no need to consider any of the system dynamics.

Another aspect that the tool cannot handle is circular relationships among at-
tributes of the created object diagram. It is not possible to express that attribute
A impacts attribute B, which in turn impacts attribute C, and C then has an im-
pact on A (cf. Figure 10.1). Instead, the tool expects the object diagrams to have
a directed graph structure for the attributes. Class diagrams do not necessarily
need to have this characteristic. It is important to ensure, using multiplicities and
invariants, that their instantiating object diagrams fulfill this criterion.

Figure 10.1: The not supported circular relationships between attributes

Chapter 11

Information of relevant audiences

This chapter describes the communication step of the used method. As described
in Chapter 2, the final step is to inform the relevant audiences about the problem
and its importance, the artifact, its utility and novelty, the rigor of its design, and
its effectiveness.

11.1 Information of relevant audiences

The relevant audiences can be divided into two groups. On the one hand, this group
consists of the community of scientists who have similar research interests. Research
groups that are developing tools for the analysis of Enterprise Architecture models
naturally have the highest interest because their topic is fairly close. Groups that
perform research in the field of Enterprise Architecture analysis in general can also
fairly easily relate to the presented tool. Further academics who are investigating
other aspects of Enterprise Architecture or architecture analysis for other domains
are relevant audiences, also.

The remaining relevant group to be informed is the tool users who actually
apply the tool presented in this thesis. This group should not only take notice of
the presented artifact but also start using it, after having identified its utility.

11.2 Presentation of the tool for academic audiences

This section describes how the tool has been presented to scientific audiences.
[135] is the first presentation of an idea for the tool-based analysis of Enterprise

Architecture models. This article presents the software on a theoretical level, with-
out discussing any implementation details. The first publication that illustrates
the architecture of the tool is [64], which also describes how the tool can be used
for the analysis of maintainability. A more detailed presentation of the underlying
formalisms and technical aspects was then published in [40] . In [44] the implemen-
tation of the PRM, a formalism for supporting Enterprise Architecture analysis was

199

200 CHAPTER 11. INFORMATION OF RELEVANT AUDIENCES

illustrated for the first time. [259] sketched the idea of using the P2AMF for the
first time, referring to it as pi-OCL.

The tool’s capabilities for automatically creating architecture models were pre-
sented in [42] . [43] builds on top of [259] and actually illustrates the P2AMF
component of the tool. Finally [119] demonstrates the usage of templates.

11.3 Presentation of the tool for tool users

As was described in the demonstration of usability chapter, the tool was presented
to possible tool users who were interested in either the specification of analysis
frameworks or the usage of such frameworks to analyze Enterprise Architectures.
In total, more than 15 theory experts used the tool to specify more than 10 analysis
frameworks [246, 119, 186, 182, 260, 205, 184, 183, 263, 134, 204, 180, 136] . On
the other hand, almost 50 users applied the analysis component. These users were
either students (29) or practitioners (20).

Chapter 12

Future Work

This chapter describes topics for future work that were identified during the per-
formance of the research work described in this thesis. These topics were, on the
one hand, identified during the evaluation of the tool, as was described in the eval-
uation chapter (cf. Chapter 9). On the other hand, topics were identified during
the demonstration phase (cf. Chapter 8). More specifically, the theory experts who
used the tool for the specification of analysis frameworks had ideas that have not
yet been implemented. Future research that regards the presented tool can be sep-
arated into four categories. The first category is further development based on the
evaluation of the tool (cf. Chapter 9). The second category is future work within
the tool’s focus, i.e., providing decision support using the Enterprise Architecture
analysis. The third category arises because the tool was developed in the context of
a research project that aims to support the analysis of enterprise-wide cyber security
analysis; this domain should be considered specifically. For the fourth category, an
investigation could be perform on whether the functionality that is offered by other
Enterprise Architecture tools should be added to the presented implementation.

12.1 Future work based on the evaluation of the presented
tool

While evaluating the tool (cf. Chapter 9) against the previously elicited require-
ments, it was realized that the tool failed to completely meet the two requirements.
It was identified that the tool neither offers a multiuser environment nor contains
a repository for storing and accessing the created models. Complementing the
tool based on this realization, as part of the future work, is therefore worthwhile
considering.

For both of the identified weaknesses, generic solutions are available that could
be integrated into the tool. SVN [178], CVS [50], Maven [74] and Mercurial [175]
are well-proven approaches for version management that are successfully used in
large-scale software development projects such as the development of the Linux

201

202 CHAPTER 12. FUTURE WORK

Kernel [160]. The used rich client platform (Eclipse Rich Client Platform) offers
components that can be used to realize integration with these version management
solutions. Any current operating system features multiuser management [218], and
there is plenty of literature available, provided by operating system vendors, which
describes these aspects [172, 189, 198]. By more deeply integrating the tool with
the operating systems, multiuser management could be achieved.

12.2 Future work with regards to Enterprise Architecture
analysis

Pertaining to the analysis of architecture models, potential domains of extensions
include results visualization, modeling techniques, analysis techniques, and auto-
mated data collection. The tool, in its current implementation, has some ability
to visualize the results of the architecture analysis. However, future work might
investigate how the results can be depicted when adjusted for different involved
stakeholders and how the understanding of the analysis results can be eased.

Concerning the area of the modeling techniques for the analysis of certain system
properties, some of the tailored visualizations are common. An example is the
attack graphs [145] that the tool already supports. These are a common means in
the field of cyber security analysis to visualize sequences of attacks. In the future,
it might be considered to support such specific ways to model information for other
system properties, also.

Another aspect in the area of modeling is support for a conditional existence
[177]. If the tool and the used inference engine would allow the user to describe that
certain modeled entities exist only when other systems are in place, the analysis
process could be sped up and could deliver more realistic results. For example, in
the case of cyber security analysis, it would be meaningful to capture that a firewall
exists only if it is provided by an operating system.

In the field of modeling, it would in addition be helpful if the tool’s capabilities
for specifying P2AMF-based analysis frameworks would be improved. Currently,
the tool provides capabilities for specifying P2AMF equations; however, it is easy to
lose the big picture. Information is spread over many dialogs and, in particular, the
reuse of code is difficult. Because the tool is built on top of the Eclipse Rich Client
Platform, the Eclipse Integrated Development Environment would be a natural
source of inspiration for generating a simplified and unified environment for the
specification of P2AMF-based analysis frameworks.

Finally, the modeling of alternatives based on a given scenario could be fostered.
The tool could, for example, provide suggestions for variations that are based on
the used class diagram. Similar to software development, it could be interesting to
support branching and eventually the future merging of models. This capability
would enable the user to focus on a certain aspect of the model. He or she could
investigate this aspect and, when obtaining satisfactory analysis results, merge it
into the main model branch.

12.2. FUTURE WORK WITH REGARDS TO ENTERPRISE
ARCHITECTURE ANALYSIS 203

In the field of analysis techniques, several areas can be considered to be a part
of future research. The capabilities of the inference engine can be extended to help
the tool users draw better conclusions and obtain better decision support. The
possibility of performing sensitivity analysis [154] would allow the user to identify
the strength of impact that certain attributes have on a specific outcome. This
arrangement would help to identify the most rewarding decision.

The inference algorithms that are provided by the inference engine could also
be regarded with respect to their potential for optimization or redesign. It might
be worthwhile considering alternatives to the inference algorithms that are already
in place. Currently, the sampling process often requires a large number of samples,
which results in a significant duration, to deliver accurate calculation results. It
would be possible to investigate whether the inference algorithms could be par-
allelized and, in the specific case of the Metropolis-Hastings algorithm, might be
worthwhile evaluating how the first good sample could be identified in a faster way.
Moreover, a scenario comparison is an interesting analysis feature that could be
offered by the tool. This approach could be insightful when comparing object dia-
grams with regard to their structure. Here, the tool could help to visually identify
the differences among several models. Even more interesting might be to compare
the values of the included attributes after an inference has been performed. The
tool could offer a tabular comparison among the evaluation results of the considered
scenarios. In such a comparison, the tool could help to identify significant differ-
ences and thereby potentially interesting scenarios. On the other hand, irrelevant
or unsatisfactory alternatives could also be found.

Finally, in the area of analysis techniques, simulation of the model and auto-
matic identification of the best solution is an interesting topic for future research.
With the help of utility functions [204], the tool could evaluate the usefulness of
an object diagram according to the user’s perception. Once one initial object di-
agram was created, the tool could automatically generate alternatives by varying
the included objects and attribute values. The generation of the alternatives could
be constrained by the tool’s user to ensure that only plausible scenarios would be
considered. Evaluating the utility of all of the generated reasonable alternatives
would allow the tool to find the best solution(s).

In addition, work on the tool’s capability of automatically generating models
based on data from external sources has been performed (e.g., using a vulnerability
scanner, as demonstrated in [42]). This area might be further investigated as well.
In [70] a process for the automatic generation of Enterprise Architecture models
was outlined. This approach could be considered to support this process or a
similar process. Other potential sources include ERP systems, as was proven in
[41] and [106]. Furthermore, [71] mentions configuration management databases,
project portfolio management tools, enterprise service buses, change management
tools and license management tools as possible contributors. Additionally, access
control lists and UDDI registries contain information that might be relevant in
many Enterprise Architecture models. How information about business processes
and organizational structure can be gathered might be considered also because most

204 CHAPTER 12. FUTURE WORK

of the data sources that have been mentioned are on a technical level.

12.3 Future work supporting cyber security analysis

To support the performance of cyber security analysis in general and using CySeMol
(cf. Section 8.2) in particular, several areas for future work were identified.

To simplify the data collection, consideration could be given to in-depth inte-
gration of vulnerability scanners and other software tools that assess computers,
computer systems, networks or applications. This approach should be invested in
if, based on the results of these tools, models for cyber security analysis can be
created completely automatically. This finding would be interesting from both a
cost and data quality perspective.

The modeling language CySeMol could also be directly integrated into the tool.
Specific wizards, tutorials and helping functionality that describe the theoretical
foundations of CySeMol to ease its application and make the tool usage more intu-
itive could be added.

Currently, the tool supports the generation of attack graphs. In the future,
consideration could be given to supporting other cyber security modeling notations,
also.

12.4 Enhancement of the tool inspired by other Enterprise
Architecture tools

Topics for the third category of future work, the enhancement of the tool in ar-
eas other than decision support and architecture analysis, can be identified based
on the Enterprise Architecture tool surveys that were considered as parts of the
requirements elicitation process (cf. Chapter 4).

One area of improvement is usability. This area includes the eased model cre-
ation, manuals, tutorials and guides, online communities and white papers that
describe successful applications. These aspects are already covered to a certain ex-
tent; however, for commercial tools, these topics must be continuously considered
to attract new audiences.

Making the tool available for platforms other than MAC OS X and Windows,
which are currently supported, can also foster usability. Mobile platforms such as
IOS, Windows Mobile and Android could be considered, as was proven in [20] . On
the other hand, Linux might also be an option.

In the evaluation of the tool (cf. Chapter 9), it was discussed that the current
tool versions possess some weaknesses with regard to their repository functionality.
For now, only very limited capabilities for version handling are available. In a future
tool, version support for different historical states of the created models might be
added. Using a repository to store the models could also support the collaborative
work of physically separated teams. Especially because Enterprise Architecture is
an interdisciplinary field, it would be meaningful to provide a tool-based solution for

12.4. ENHANCEMENT OF THE TOOL INSPIRED BY OTHER
ENTERPRISE ARCHITECTURE TOOLS 205

different departments or domain specialists to contribute to one holistic Enterprise
Architecture model. Additionally, user management that includes different roles
could be of interest. This construct would allow dividing the tool users into different
categories. For example, only selected users could have privileges to edit the models,
and others could only conduct analysis; a third group could only consider the
models.

From the perspective of creating presentations, there are several more advanced
visualization techniques that could be employed in the tool. The field of software
cartography [146, 152] aims to support decision making on an Enterprise Archi-
tecture level using visual representations that depict only the information that is
currently needed. The authors of [37] describe how software cartography can be
used in an Enterprise Architecture tool. The authors create visualizations using
model transformations, an approach that could be utilized in the tool also, specif-
ically because the implementation presented in [37] also uses components of the
Eclipse Modeling Framework (cf. Section 7.3).

Another aspect that is worthwhile considering in the future is the interaction
with other tools. On the one hand, the import of existing information can be im-
proved. The use of models created in other Enterprise Architecture tools would
be helpful and would speed up the model creation process. Additionally, the reuse
of information that is available in the other tools contributes to having faster gen-
eration of the models. Relevant sources can, for example, be modeling tools for
specific aspects, such as business modeling tools or software with a focus on the
modeling of network topologies. Supporting the import of data that is available
in spreadsheets, presentations or even text documents could be helpful capabilities
to develop. One critical task for the tool, which a future implementation should
address, is to check for redundant or conflicting information, to ensure a high level
of data quality. However, topics of interest are not limited to the import of infor-
mation; also, the export of both the models and the calculation results should be
considered in the future. It would be helpful if the tool could create presentations
based on views that the tool user creates.

Chapter 13

Conclusions

The purpose of the research described in this thesis was to develop and demon-
strate an Enterprise Architecture modeling and analysis tool. Fulfilling
this goal included the following subgoals (cf. Section 1.2):

1. Eliciting requirements on a tool for Enterprise Architecture analysis
2. Designing and developing a tool that considers these requirements
3. Evaluating the quality of the created tool with regard to the identified re-

quirements
4. Demonstrating this tool for both academics and practitioners
The research presented in this thesis was performed following the Design Sci-

ence approach. In Chapter 4, the requirements for a tool for Enterprise Architecture
analysis are presented as a fulfillment of subgoal 1. These requirements were derived
while considering the evaluation criteria for the evaluation of Enterprise Architec-
ture tools and while studying a method for Enterprise Architecture analysis as well
as regarding CAD tools and expert systems.

Chapter 5 describes design decisions that were made to fulfill these require-
ments. These decisions concerned the overall tool architecture, the used develop-
ment platform, the modeling language, the offered inference engine, and the level
of abstraction. Additionally, a decision regarding the support for cyber security
was necessary because the presented tool was partly developed in the context of
a research project that aims to evaluate industrial control systems from a cyber
security perspective. Chapter 6 illustrates the development process that is used to
develop the tool for Enterprise Architecture analysis, and Chapter 7 discusses the
resulting artifact and its software architecture. In combination, Chapter 5, 6 and
7 describe the fulfillment of subgoal 2.

Chapter 9 and 10 discuss how the presented research meets subgoal 3. Chap-
ter 9 describes the evaluation of the tool against the requirements described in
Chapter 54. Chapter 10 discusses the validity, reliability and generalizability of the
performed research.

207

208 CHAPTER 13. CONCLUSIONS

Finally, Chapter 8 and Chapter 11 describe the fulfillment of subgoal 4. In Chap-
ter 8, the practical usage of the tool is discussed. More than 10 analysis frameworks
were specified using the tool. Additionally, more than 50 users conducted archi-
tecture analysis using the tool. Chapter 11 elaborates on the presentation of the
performed research in terms of scientific publications.

The tool for Enterprise Architecture analysis was one of the outcomes of a
larger research project that aims for decision support with regard to the design of
industrial control systems from a cyber security perspective. However, even though
the tool was partly developed in this project setup, this tool is not limited to the
analysis of cyber security aspects and is also not limited to the analysis of industrial
control systems. Instead, the tool can be used to analyze a broad range of system
properties on an enterprise-wide level (cf. Section 10.3).

The result of the research described in this thesis is the development of an En-
terprise Architecture tool that has an inverse focus compared to most of the other
available software products that are available to support Enterprise Architecture
endeavors. Many of the available Enterprise Architecture tools have a strong focus
on the modeling and documentation aspects [166]. Within those tools, the perfor-
mance of the analysis is more a bonus feature than a part of the core uses that
are supported. The users are given comparably less powerful analysis functionality.
On the other hand, the creation of models is fairly easy. Those tools often feature
several ways of creating architecture visualizations and documenting the state of
the enterprise.

The tool that is the outcome of the research presented in this thesis has com-
parably weak modeling capabilities, if the model should be used only as a means
of documentation. Instead, in the presented tool, models cater to the input of the
analysis. The tool does not consider analysis to be something that a user might
eventually perform. Instead, it assumes that a tool user already, from the start, in-
tends to conduct an evaluation of the described Enterprise Architecture. This focus
is reflected in the tool architecture, specifically in its separation into two compo-
nents, the features that the tool offers and the recommended workflow. Instead of
using a standardized metamodel, which eventually might be slightly adapted to fit
a company’s needs, the tool is built on the idea of defining the analysis frameworks
by extended metamodels that incorporate analysis theory. This approach results
in two components: one component for the specification of extended metamodels,
which are class diagrams that follow the UML nomenclature, and another compo-
nent for the application of the analysis frameworks and the usage of the included
metamodels. The tool features a powerful inference engine, which is to be used
to derive unknown attribute values. Moreover, several other features are available
that either simplify the specification of the analysis frameworks or simplify their
application (cf. Chapter 7). Compared to other tools, the tool developed here is
not tailored to support one or several selected fixed system properties. Instead,
it provides interested audiences with a platform that can be used to describe and
analyze a variety of different system properties (cf. Section 10.3).

209

The author, as described in the process section, performed multiple roles in the
described research project. He elicited requirements and designed the architecture
of the Enterprise Architecture analysis tool. Following the communication step
of the applied method, relevant audiences were informed about the tool and the
development process. In this way, the author acted as an interface between the
groups that were interested in the usage of the tool and the development team. As
part of the requirements elicitation and architecture derivation step, he contributed
to many research projects that led to the implementation of multiple tool features.
This approach results in the fact that the author is the main author of some features
that can be found implemented in the tool. For other features, he had only a
supporting role or primarily worked as a mediator between the developers and
users who demanded new features or functionality.

The questionnaire used for the
usability evaluation (cf. section
9.1)

Powered by

Evaluation of KTH's Enterprise Architecture
Analysis Tool
Please contribute to the improvement of KTH's Enterprise Architecture Analysis Tool and my
Ph.D. thesis in particular. I would appreciate if you could share your experience regarding the
usability of our tool.
The questionnaire only consists of 7 questions and you will be done within less than 5 minutes.

Your answers will be kept confidential.
In case of questions please contact me at markusb@ics.kth.se
Thank you for your contribution

* Required

My goals for the Enterprise Architecture Analysis Tool were met *
Did the tool provide you with what you needed to achieve your goal? Did the tool offer you
support for analysis of a scenario when you wanted to do so? Did the tool support you when
you wanted to specify an analysis framework?
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

211

I received the results I expected from the Enterprise Architecture Analysis Tool *
Did your tool application generate analysis results if you used the tool for analysis? Did you
create an analysis framework if that was your goal?
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

I completed the task within the Enterprise Architecture Analysis Tool quicker
compared to using other tools that I have at my disposal *
Did you get results faster using the Enterprise Architecture Analysis Tool compared to if you
would have used other available software products.
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

I had a pleasant experience with the Enterprise Architecture Analysis Tool when using
it *
Did the tool appeal to you?
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

Powered by

The user interface of the Enterprise Architecture Analysis Tool helped me avoid
making errors *
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

I was able to recover when I made an error *
Were you able to correct mistakes that you made?
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

The user interface of the Enterprise Architecture Analysis Tool was predictable *
Mark only one oval.

 strongly agree

 agree

 neutral

 disagree

 strongly disagree

 no opinion

0.

When did you use KTH's Enterprise Architecture Analysis Tool the last time? *
Mark only one oval.

 2014

 2013

 2012

 2011

0.

Bibliography

[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. 2002.
Agile software development methods: Review and analysis. 6.1

[2] Software AG. 2014. ARIS architect & designer. URL http:
//www.softwareag.com/corporate/products/aris/bpa/products/
architect_design/overview/default.asp. Accessed: May 2014. 3.2

[3] Software AG. 2014. ARIS business process analysis platform. URL
http://www.softwareag.com/corporate/products/aris/bpa/overview/
default.asp. Accessed: May 2014. 1.1

[4] Stephan Aier, Sabine Buckl, Ulrik Franke, Bettina Gleichauf, Pontus Johnson,
Per Närman, Christian M Schweda, and Johan Ullberg. 2009. A survival
analysis of application life spans based on enterprise architecture models. In
EMISA, pages 141–154. 3.3

[5] David H Akehurst and Behzad Bordbar. 2001. On querying uml data models
with ocl. In UML 2001 The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, pages 91–103. Springer. 5.3, 5.3, 7.3

[6] alfabet. 2014. alfabet planningIT. URL http://www.alfabet.com/en/
it-planning-reality/. Accessed: May 2014. 3.2

[7] Agile Alliance. 2001. Agile manifesto. Online at http://www. agilemanifesto.
org. 6.1, 6.1

[8] OSGi Alliance. 2014. OSGi release 5. URL http://www.osgi.org/
Specifications/HomePage. Accessed: May 2014. 7.3

[9] David J Anderson. 2004. Feature-driven development. Microsoft Corporation,
October. 6.1

[10] Niklas Arnel, Kristina Ernsell, Christian Wemstad, and Hobrik Wärnegård.
2013. Approaches to calculate it costs at amf using models - student report.
Technical report, Kungliga Tekniska Högskolan. 3.3

215

http://www.softwareag.com/corporate/products/aris/bpa/products/architect_design/overview/default.asp
http://www.softwareag.com/corporate/products/aris/bpa/products/architect_design/overview/default.asp
http://www.softwareag.com/corporate/products/aris/bpa/products/architect_design/overview/default.asp
http://www.softwareag.com/corporate/products/aris/bpa/overview/default.asp
http://www.softwareag.com/corporate/products/aris/bpa/overview/default.asp
http://www.alfabet.com/en/it-planning-reality/
http://www.alfabet.com/en/it-planning-reality/
http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/Specifications/HomePage

216 BIBLIOGRAPHY

[11] Michael Lyle Artz. 2002. Netspa: A network security planning architecture.
PhD thesis, Massachusetts Institute of Technology. 1.1

[12] avolution. 2012. The abacus enterprise architecture methodology - 9 steps to
architecture success. 3.2

[13] avolution. 2012. Ea management (eam) suite. URL http://avolution.com.
au/resources/resource-center/resource-files?dfID=239. Accessed:
May 2014. 3.2

[14] Earl R Babbie. 2013. The practice of social research. Cengage Learning. 10.1

[15] Pavel Balabko and Alain Wegmann. 2006. Systemic classification of concern-
based design methods in the context of enterprise architecture. Information
Systems Frontiers, 8(2):115–131. 3.2

[16] Joseph Barjis. 2007. Automatic business process analysis and simulation
based on demo. Enterprise Information Systems, 1(4):365–381. 5.3

[17] David Garduno Barrera and Michel Diaz. 2013. Communicating Systems with
UML 2: Modeling and Analysis of Network Protocols. John Wiley & Sons.
5.3, 5.5

[18] Len Bass, Paul Clements, and Rick Kazman. 2003. Software architecture in
practice. Addison-Wesley Professional. 3.3

[19] Jeremy Bentham. 2007. An introduction to the principles of morals and leg-
islation. Read Books. 3.3

[20] Maxime Bernaert, Joeri Maes, and Geert Poels. 2013. An android tablet tool
for enterprise architecture modeling in small and medium-sized enterprises.
In The Practice of Enterprise Modeling, pages 145–160. Springer. 12.4

[21] A-J Berre, Brian Elvesæter, Nicolas Figay, Claudia Guglielmina, Svein G
Johnsen, Dag Karlsen, Thomas Knothe, and Sonia Lippe. 2007. The athena
interoperability framework. In Enterprise Interoperability II, pages 569–580.
Springer. 1.1

[22] Graham Berrisford and Marc Lankhorst. 2009. Using archimate with togaf.
Retrieved October, 20:2010. 5.3

[23] Anandhi Bharadwaj, Mark Keil, and Magnus Mähring. 2009. Effects of in-
formation technology failures on the market value of firms. The Journal of
Strategic Information Systems, 18(2):66–79. 3.3

[24] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele
Taentzer, and Eduard Weiss. 2006. Graphical definition of in-place trans-
formations in the eclipse modeling framework. In Model Driven Engineering
Languages and Systems, pages 425–439. Springer. 7.3

http://avolution.com.au/resources/resource-center/resource-files?dfID=239
http://avolution.com.au/resources/resource-center/resource-files?dfID=239

BIBLIOGRAPHY 217

[25] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele
Taentzer, and Eduard Weiss. 2007. Emf model refactoring based on graph
transformation concepts. Electronic Communications of the EASST, 3. 7.3

[26] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. 2006. Defense trees
for economic evaluation of security investments. In Availability, Reliabil-
ity and Security, 2006. ARES 2006. The First International Conference on,
pages 8–pp. IEEE. 5.6

[27] BiZZdesign. 2014. BiZZdesign architect. URL http://www.bizzdesign.
com/tools/bizzdesign-architect/. Accessed: May 2014. 3.2

[28] Grady Booch. 2006. Object Oriented Analysis & Design with Application.
Pearson Education. 5.3

[29] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. 2000. Omg unified mod-
eling language specification. Object Management Group ed: Object Manage-
ment Group, page 1034. 1.2

[30] Tim Boudreau, Jaroslav Tulach, and Geertjan Wielenga. 2007. Rich client
programming: plugging into the netbeans platform. Prentice Hall Press. 5.2

[31] J2EE Brain. 2013. Applications on eclipse. URL http://www.j2eebrain.
com/java-J2ee-applications-on-eclipse.html. Accessed: May 2014.
7.23

[32] Statistic Brain. 2012. Computer sales statistics | statistic brain. URL http://
www.statisticbrain.com/computer-sales-statistics/. Accessed: May
2014. 1.1

[33] Tonia De Bruin, Ronald Freeze, Uday Kaulkarni, and Michael Rosemann.
2005. Understanding the main phases of developing a maturity assessment
model. In B Campbell, J Underwood, and D Bunker, editors, Australasian
Conference on Information Systems (ACIS), pages 8–19, Australia, New
South Wales, Sydney. Australasian Chapter of the Association for Informa-
tion Systems. URL http://eprints.qut.edu.au/25152/. 10

[34] Joop FLM Brukx and Ger L Wackers. 2005. Vulnerability profiling in complex
socio-technological systems. ECCON 2005. 3.3

[35] Erik Brynjolfsson. 1993. The productivity paradox of information technology.
Communications of the ACM, 36(12):66–77. 3.3

[36] Sabine Buckl, Markus Buschle, Pontus Johnson, Florian Matthes, and Chris-
tian M Schweda. 2011. A meta-language for enterprise architecture analysis.
In Enterprise, Business-Process and Information Systems Modeling, pages
511–525. Springer. 5.3

http://www.bizzdesign.com/tools/bizzdesign-architect/
http://www.bizzdesign.com/tools/bizzdesign-architect/
http://www.j2eebrain.com/java-J2ee-applications-on-eclipse.html
http://www.j2eebrain.com/java-J2ee-applications-on-eclipse.html
http://www.statisticbrain.com/computer-sales-statistics/
http://www.statisticbrain.com/computer-sales-statistics/
http://eprints.qut.edu.au/25152/

218 BIBLIOGRAPHY

[37] Sabine Buckl, Alexander M Ernst, Josef Lankes, Christian M Schweda, and
André Wittenburg. 2007. Generating visualizations of enterprise architectures
using model transformations. In EMISA, pages 33–46. Citeseer. 12.4

[38] Sabine Buckl, Florian Matthes, and Christian M Schweda. 2009. Classifying
enterprise architecture analysis approaches. In Enterprise Interoperability,
pages 66–79. Springer. 5.4

[39] Frank Budinsky. 2004. Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional. 7.3, 7.3

[40] Markus Buschle, Torsten Derlat, and Daniel Feller. 2009. Scenario-based
architectural decision support within enterprise architectures. 6.2, 11.2

[41] Markus Buschle, Mathias Ekstedt, Sebastian Grunow, Matheus Hauder, Flo-
rian Matthes, and Sascha Roth. 2012. Automating enterprise architecture
documentation using an enterprise service bus. In AMCIS. 12.2

[42] Markus Buschle, Hannes Holm, Teodor Sommestad, Mathias Ekstedt, and
Khurram Shahzad. 2012. A tool for automatic enterprise architecture mod-
eling. In IS Olympics: Information Systems in a Diverse World, pages 1–15.
Springer. 6.2, 7.2, 9.6, 11.2, 12.2

[43] Markus Buschle, Pontus Johnson, and Khurram Shahzad. 2013. The en-
terprise architecture analysis tool–support for the predictive, probabilistic
architecture modeling framework. Association for Information Systems Con-
ference, AMCIS 2013 Proceedings. 3.2, 5.4, 6.2, 7.1, 11.2

[44] Markus Buschle, Johan Ullberg, Ulrik Franke, Robert Lagerström, and
Teodor Sommestad. 2011. A tool for enterprise architecture analysis using the
prm formalism. In Information Systems Evolution, pages 108–121. Springer.
5.2, 5.4, 6.2, 11.2

[45] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. 2007. Pattern-
oriented Software Architecture: On Patterns and Pattern Language, volume 5.
John Wiley & Sons. 7.3

[46] Heiko Böck. 2011. The Definitive Guide to NetBeans Platform 7. Apress. 5.2

[47] Sven A Carlsson. 2007. Developing knowledge through is design science re-
search. Scandinavian Journal of Information Systems, 19(2):75–86. 2.1

[48] Nicholas G Carr. 2003. It doesn’t matter. Educause Review, 38:24–38. 1.1

[49] Chris K Carter and Robert Kohn. 1994. On gibbs sampling for state space
models. Biometrika, 81(3):541–553. 5.4

[50] Per Cederqvist, Roland Pesch, et al. 1992. Version management with cvs.
Available online with the CVS package. Signum Support AB. 12.1

BIBLIOGRAPHY 219

[51] Moustafa Chenine, Johan Ullberg, Lars Nordström, Yiming Wu, and Göran
Ericsson. 2013. A framework for wide area monitoring and control systems
interoperability and cyber security analysis. submitted. 7.2

[52] Matthew Chu, Kyle Ingols, Richard Lippmann, Seth Webster, and Stephen
Boyer. 2010. Visualizing attack graphs, reachability, and trust relationships
with navigator. In Proceedings of the Seventh International Symposium on
Visualization for Cyber Security, pages 22–33. ACM. 1.1

[53] David Cohen, Mikael Lindvall, and Patricia Costa. 2004. An introduction to
agile methods. Advances in computers, 62:1–66. 6.1

[54] CIO Council. 1999. Federal enterprise architecture framework version 1.1.
Retrieved from, 80. 3.1, 5.3

[55] Stephen Cranefield. 2006. Networked knowledge representation and exchange
using uml and rdf. Journal of Digital information, 1(8). 9.8

[56] Nigel Cross. 2006. Design as a discipline. Designerly Ways of Knowing, pages
95–103. 2.1

[57] Krzysztof Czarnecki and Simon Helsen. 2003. Classification of model transfor-
mation approaches. In Proceedings of the 2nd OOPSLA Workshop on Gener-
ative Techniques in the Context of the Model Driven Architecture, volume 45,
pages 1–17. 7.3

[58] GC Dalton, Robert F Mills, John M Colombi, and Richard A Raines. 2006.
Analyzing attack trees using generalized stochastic petri nets. In Information
Assurance Workshop, 2006 IEEE, pages 116–123. IEEE. 5.6

[59] Arnaud de Borchgrave, Frank J Cilluffo, Sharon L Cardash, and Michèle M
Ledgerwood. 2000. Cyber threats and information security. In Meeting the,
volume 2. 1.1

[60] Deloitte. 2013. Deloitte announces 2013 technology fast 500 rankings. URL
http://www.deloitte.com/view/en_US/us/Industries/technology/
5f0c69032e4fa310VgnVCM1000003156f70aRCRD.htm. Accessed: May 2014.
1.1

[61] Jan LG Dietz. 2001. Demo: Towards a discipline of organisation engineering.
European Journal of Operational Research, 128(2):351–363. 5.3

[62] Kyle Dunsire, Tim O’Neill, Mark Denford, and John Leaney. 2005. The
abacus architectural approach to computer-based system and enterprise evo-
lution. In Engineering of Computer-Based Systems, 2005. ECBS’05. 12th
IEEE International Conference and Workshops on the, pages 62–69. IEEE.
3.2

http://www.deloitte.com/view/en_US/us/Industries/technology/5f0c69032e4fa310VgnVCM1000003156f70aRCRD.htm
http://www.deloitte.com/view/en_US/us/Industries/technology/5f0c69032e4fa310VgnVCM1000003156f70aRCRD.htm

220 BIBLIOGRAPHY

[63] Charles M Eastman. 1999. Building product models: computer environments,
supporting design and construction. CRC press. 1.1

[64] Mathias Ekstedt, Ulrik Franke, Pontus Johnson, Robert Lagerström, Teodor
Sommestad, Johan Ullberg, and Markus Buschle. 2009. A tool for enter-
prise architecture analysis of maintainability. In Software Maintenance and
Reengineering, 2009. CSMR’09. 13th European Conference on, pages 327–
328. IEEE. 6.2, 11.2

[65] Gregor Engels, Jochen M Küster, Reiko Heckel, and Marc Lohmann. 2003.
Model-based verification and validation of properties. Electronic Notes in
Theoretical Computer Science, 82(7):133–150. 7.2

[66] Wilco Engelsman, Henk Jonkers, and Dick Quartel. 2011. Archimate® ex-
tension for modeling and managing motivation, principles, and requirements
in togaf®. 3.1, 5.3

[67] PHISHING FACTS. 2006. Phishing mongers and posers. Communications of
the ACM, 49(4):21. 3.3

[68] Gerald E. Farin, Josef Hoschek, and Myung-Soo Kim, editors. 2002. Handbook
of computer aided geometric design. Elsevier, Amsterdam ; Boston, Mass.
ISBN 0444511040. 4.3

[69] A Farooq, DH Owens, B Lokowandt, and B-M Pfeiffer. 1991. Model-based
expert system for computer aided design of feedback controllers. In Control
1991. Control’91., International Conference on, pages 1246–1250. IET. 4.3,
4.4

[70] Matthias Farwick, Berthold Agreiter, Ruth Breu, Steffen Ryll, Karsten Voges,
and Inge Hanschke. 2011. Automation processes for enterprise architecture
management. In Enterprise Distributed Object Computing Conference Work-
shops (EDOCW), 2011 15th IEEE International, pages 340–349. IEEE. 4.1,
7.2, 12.2

[71] Matthias Farwick, Ruth Breu, Matheus Hauder, Sascha Roth, and Florian
Matthes. 2013. Enterprise architecture documentation: Empirical analysis of
information sources for automation. In System Sciences (HICSS), 2013 46th
Hawaii International Conference on, pages 3868–3877. IEEE. 12.2

[72] Fortune. 2014. 7 fastest-growing tech companies - baidu (1) - FOR-
TUNE. URL http://money.cnn.com/gallery/technology/2013/08/
29/fastest-growing-tech-companies-2013.fortune/index.html?iid=
FGCos_sp_lead2. Accessed: May 2014. 1.1

[73] The Apache Software Foundation. 2013. Math - commons math: The apache
commons mathematics library. URL http://commons.apache.org/proper/
commons-math/. Accessed: May 2014. 7.3

http://money.cnn.com/gallery/technology/2013/08/29/fastest-growing-tech-companies-2013.fortune/index.html?iid=FGCos_sp_lead2
http://money.cnn.com/gallery/technology/2013/08/29/fastest-growing-tech-companies-2013.fortune/index.html?iid=FGCos_sp_lead2
http://money.cnn.com/gallery/technology/2013/08/29/fastest-growing-tech-companies-2013.fortune/index.html?iid=FGCos_sp_lead2
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/

BIBLIOGRAPHY 221

[74] The Apache Software Foundation. 2014. Maven. URL http://maven.
apache.org/. Accessed: May 2014. 12.1

[75] The Eclipse Foundation. 2014. Eclipse modeling framework 2.9. documen-
tation. URL http://download.eclipse.org/modeling/emf/emf/javadoc/
2.9.0/org/eclipse/emf/ecore/package-summary.html. Accessed: May
2014. 7.28

[76] The Eclipse Foundation. 2014. Eclipse modeling framework project - EMF
- home. URL http://www.eclipse.org/modeling/emf/. Accessed: May
2014. 5.2

[77] Ulrich Frank. 2011. The memo meta modelling language (mml) and language
architecture. Technical report, ICB-Research Report. 5.3

[78] Ulrich Frank, David Heise, Heiko Kattenstroth, and Hanno Schauer. 2008.
Designing and utilising business indicator systems within enterprise models-
outline of a method. In MobIS, pages 89–105. 5.3

[79] Ulrik Franke, Mathias Ekstedt, Robert Lagerström, Jan Saat, and Robert
Winter. 2010. Trends in enterprise architecture practice–a survey. In Trends
in Enterprise Architecture Research, pages 16–29. Springer. 3.3

[80] Ulrik Franke, Pontus Johnson, and Johan König. 2013. An architecture frame-
work for enterprise it service availability analysis. Software & Systems Mod-
eling, pages 1–29. 9.7

[81] Ulrik Franke, Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson.
2008. Defense graphs and enterprise architecture for information assurance
analysis. Technical report, DTIC Document. 5.6, 5.6

[82] Rune Fredriksen, Monica Kristiansen, Bjørn Axel Gran, Ketil Stølen,
Tom Arthur Opperud, and Theo Dimitrakos. 2002. The coras framework
for a model-based risk management process. In Computer Safety, Reliability
and Security, pages 94–105. Springer. 5.6

[83] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2011. A practical guide
to SysML: the systems modeling language. Elsevier. 7.2

[84] Shudi Gao, C Michael Sperberg-McQueen, Henry S Thompson, Noah Mendel-
sohn, David Beech, and Murray Maloney. 2009. W3c xml schema definition
language (xsd) 1.1 part 1: Structures. W3C Candidate Recommendation, 30.
7.2

[85] Aditya Garg, Rick Kazman, and Hong-Mei Chen. 2006. Interface descriptions
for enterprise architecture. science of Computer Programming, 61(1):4–15. 7.2

http://maven.apache.org/
http://maven.apache.org/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://www.eclipse.org/modeling/emf/

222 BIBLIOGRAPHY

[86] Gartner. 2007. It spending and staffing survey, western europe, 2006-2007.
Gartner Research. 3.3

[87] Gartner. 2011. Enterprise architecture tools are positioned to deliver business
value. Accessed: May 2014. 1.1

[88] Gartner. 2011. Gartner assessment of enterprise architecture tool capabili-
ties. URL http://my.gartner.com/portal/server.pt?open=512&objID=
260&mode=2&PageID=3460702&docCode=211294&ref=docDisplay. Ac-
cessed: May 2014. 1.1, 3.2, 4, 10.1

[89] Gartner. 2011. Understanding the eight critical capabilities of en-
terprise architecture tools. URL http://my.gartner.com/portal/
server.pt?open=512&objID=260&mode=2&PageID=3460702&resId=
1622120&ref=QuickSearch&sthkw=Understanding+the+Eight+Critical+
Capabilities+of+Enterprise+Architecture+Tools. Accessed: May 2014.
4.1, 4.1, 10.1

[90] Gartner. 2013. Hype cycle for enterprise architecture, 2013. URL
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=
2&PageID=3460702&docCode=248891&ref=docDisplay. Accessed: May
2014. 1.1

[91] Gartner. 2013. Research by topic. URL http://www.gartner.com/it/
products/research/topics/topics.jsp#ITM. Accessed: May 2014. 1.1

[92] David Gilbert. 2002. The jfreechart class library. Developer Guide. Object
Refinery. 7.3

[93] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, Mirco Tribas-
tone, and Dániel Varró. 2011. Non-functional properties in the model-driven
development of service-oriented systems. Software & Systems Modeling, 10
(3):287–311. 10.3

[94] Martin Gogolla and Mark Richters. 2002. Expressing uml class diagrams
properties with ocl. In Object Modeling with the OCL, pages 85–114. Springer.
5.3

[95] Jaap Gordijn and Hans Akkermans. 2001. Designing and evaluating e-
business models. IEEE intelligent Systems, 16(4):11–17. 3.3

[96] Shirley Gregor. 2006. The nature of theory in information systems. MIS
Quarterly, 30(3):611–642. 2.1

[97] Shirley Gregor and David Jones. 2004. The formulation of design theories for
information systems. In Constructing the Infrastructure for the Knowledge
Economy, pages 83–93. Springer. 2.1

http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&docCode=211294&ref=docDisplay
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&docCode=211294&ref=docDisplay
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&resId=1622120&ref=QuickSearch&sthkw=Understanding+the+Eight+Critical+Capabilities+of+Enterprise+Architecture+Tools
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&resId=1622120&ref=QuickSearch&sthkw=Understanding+the+Eight+Critical+Capabilities+of+Enterprise+Architecture+Tools
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&resId=1622120&ref=QuickSearch&sthkw=Understanding+the+Eight+Critical+Capabilities+of+Enterprise+Architecture+Tools
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&resId=1622120&ref=QuickSearch&sthkw=Understanding+the+Eight+Critical+Capabilities+of+Enterprise+Architecture+Tools
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&docCode=248891&ref=docDisplay
http://my.gartner.com/portal/server.pt?open=512&objID=260&mode=2&PageID=3460702&docCode=248891&ref=docDisplay
http://www.gartner.com/it/products/research/topics/topics.jsp#ITM
http://www.gartner.com/it/products/research/topics/topics.jsp#ITM

BIBLIOGRAPHY 223

[98] DoDAF Architectures Framework Working Group et al. 2009. Dodaf archi-
tecture framework version 2.0. Department of Defense United States. 1.1

[99] Object Managment Group. 1999. Unified modeling language, UML 1.3. 5.3

[100] Object Managment Group. 2003. Object constraint language (OCL). OMG
document ptc/03-10-14. Specification (2003). 5.3

[101] Object Managment Group. 2008. Meta object facility (mof) 2.0
query/view/transformation specification. Final Adopted Specification
(November 2005). 5.3, 7.3

[102] Object Managment Group. 2014. Unified modeling language, UML 2.4.1.
URL http://www.omg.org/spec/UML/2.4.1/. Accessed: May 2014. 5.3,
5.3, 7.3

[103] The Open Group. 2013. ArchiMate 2.1 specification. URL http://pubs.
opengroup.org/architecture/archimate2-doc/. Accessed: May 2014. 5.3

[104] T.O. Group. 2013. ArchiMate 2.1 Specification. The Open group series.
Haren Publishing, Van. ISBN 9789401805094. URL http://books.google.
lu/books?id=w3deAgAAQBAJ. 3.1

[105] Olivier Gruber, BJ Hargrave, Jeff McAffer, Pascal Rapicault, and Thomas
Watson. 2005. The eclipse 3.0 platform: adopting osgi technology. IBM
Systems Journal, 44(2):289–299. 7.3

[106] Sebastian Grunow, Florian Matthes, and Sascha Roth. 2013. Towards auto-
mated enterprise architecture documentation: Data quality aspects of sap pi.
In Advances in Databases and Information Systems, pages 103–113. Springer.
12.2

[107] Inge Hanschke. 2009. Strategic IT Management: A Toolkit for Enterprise
Architecture Management. Springer. 1.1

[108] V. Haren and Van Haren Publishing. 2012. ArchiMate 2. 0 Specification.
The Open Group. Van Haren Publishing. ISBN 9789087536923. URL http:
//books.google.lu/books?id=THB_tgAACAAJ. 3.1

[109] Van Haren. 2011. TOGAF Version 9.1, 10th edition. Van Haren Publishing.
ISBN 9087536798, 9789087536794. 3.1

[110] Robert Harris and Rob Warner. 2004. The definitive guide to SWT and JFace.
Apress. 7.3

[111] R. Harrison and The Open Group. 2007. TOGAF Version 8.1.1 Enterprise
Edition. Togaf Series. Van Haren Publishing. ISBN 9789087530938. URL
http://books.google.se/books?id=a3MPmyUlLHUC. 3.1

http://www.omg.org/spec/UML/2.4.1/
http://pubs.opengroup.org/architecture/archimate2-doc/
http://pubs.opengroup.org/architecture/archimate2-doc/
http://books.google.lu/books?id=w3deAgAAQBAJ
http://books.google.lu/books?id=w3deAgAAQBAJ
http://books.google.lu/books?id=THB_tgAACAAJ
http://books.google.lu/books?id=THB_tgAACAAJ
http://books.google.se/books?id=a3MPmyUlLHUC

224 BIBLIOGRAPHY

[112] Yujing He. 2006. Comparison of the modeling languages alloy and uml. In
Software Engineering Research and Practice, pages 671–677. Citeseer. 5.3

[113] David R Heffelfinger. 2005. Getting started with jasperreports. 7.3

[114] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004.
Design science in information systems research. MIS quarterly, 28(1):75–105.
2.1, 2.1, 2.1

[115] Rich Hilliard. 2000. Ieee-std-1471-2000 recommended practice for architec-
tural description of software-intensive systems. IEEE, http://standards. ieee.
org. 7.2

[116] Rich Hilliard et al. 2001. Viewpoint modeling. In Proceedings of 1st ICSE
Workshop on Describing Software Architecture with UML. 7.2

[117] Hannes Holm. 2013. A large-scale study of the time required to compromise a
computer system. IEEE Transactions on Dependable and Secure Computing,
11. 1.1

[118] Hannes Holm, Markus Buschle, Robert Lagerström, and Mathias Ekstedt.
2012. Automatic data collection for enterprise architecture models. Software
& Systems Modeling, pages 1–17. 7.2, 9.6

[119] Hannes Holm, Khurram Shahzad, Markus Buschle, and Mathias Ekstedt.
2014. P2cysemol : Predictive, probabilistic cyber security modeling language.
To be published. 5.5, 5.6, 5.6, 7.2, 7.2, 8.2, 8.1, 9.3, 9.8, 9.7, 11.2, 11.3

[120] Michael Howard and David LeBlanc. 2009. Writing secure code. O’Reilly
Media, Inc. 5.6

[121] John Hunt. 2006. Feature-driven development. Agile Software Construction,
pages 161–182. 6.1, 6.1

[122] Maria-Eugenia Iacob and Henk Jonkers. 2006. Quantitative analysis of en-
terprise architectures. In Interoperability of Enterprise Software and Appli-
cations, pages 239–252. Springer. 3.2

[123] Maria-Eugenia Iacob and Henk Jonkers. 2007. Quantitative analysis of
service-oriented architectures. International Journal of Enterprise Informa-
tion Systems (IJEIS), 3(1):42–60. 5.3

[124] IBM. 2014. IBM - rational system architect. URL http://www-03.ibm.com/
software/products/en/ratisystarch. Accessed: May 2014. 3.2

[125] Mega International. 2014. MEGA system blueprint | MEGA. URL http://
www.mega.com/en/product/mega-system-blueprint. Accessed: May 2014.
5.3

http://www-03.ibm.com/software/products/en/ratisystarch
http://www-03.ibm.com/software/products/en/ratisystarch
http://www.mega.com/en/product/mega-system-blueprint
http://www.mega.com/en/product/mega-system-blueprint

BIBLIOGRAPHY 225

[126] Alessio Ishizaka and Philippe Nemery. 2013. Multi-attribute utility theory.
Multi-Criteria Decision Analysis: Methods and Software, pages 81–113. 3.3

[127] Stanislav Ivanov. 2011. A master thesis on porting the enterprise architecture
analysis tool to eclipse modeling project. 5.2

[128] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 11(2):
256–290. 5.3

[129] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis.
MIT press. 5.3

[130] Ivar Jacobson. 1992. Object-oriented software engineering: a use case driven
approach. Pearson Education. 5.3

[131] Somesh Jha, Oleg Sheyner, and Jeannette Wing. 2002. Two formal analy-
ses of attack graphs. In Computer Security Foundations Workshop, 2002.
Proceedings. 15th IEEE, pages 49–63. IEEE. 5.6

[132] Erik Johansson. 2005. Assessment of Enterprise Information Security - How
to make it Credible and Efficient. PhD thesis, Royal Institute of Technology
(KTH). TRITA-ICS-0502. 6.2

[133] P. Johnson and M. Ekstedt. 2007. Enterprise Architecture: Models and Anal-
yses for Information Systems Decision Making. Lightning Source Incorpo-
rated. ISBN 9789144027524. URL http://books.google.lu/books?id=
2LdxPQAACAAJ. 3.2

[134] Pontus Johnson, Maria Eugenia Iacob, Margus Välja, Marten van Sinderen,
Christer Magnusson, and Tobias Ladhe. 2013. Business model risk analysis:
Predicting the probability of business network profitability. In Enterprise
Interoperability, pages 118–130. Springer. 8.3, 8.1, 11.3

[135] Pontus Johnson, Erik Johansson, Teodor Sommestad, and Johan Ullberg.
2007. A tool for enterprise architecture analysis. In Enterprise Distributed
Object Computing Conference, 2007. EDOC 2007. 11th IEEE International,
pages 142–142. IEEE. 6.2, 11.2

[136] Pontus Johnson, Robert Lagerström, Mathias Ekstedt, and Magnus Öster-
lind. 2012. It management with enterprise architecture. 3.2, 3.3, 3.3, 7.2, 8.3,
8.1, 8.4, 9.4, 9.7, 9.9, 11.3

[137] Pontus Johnson, Robert Lagerström, Per Närman, and Mårten Simonsson.
2007. Enterprise architecture analysis with extended influence diagrams. In-
formation Systems Frontiers, 9(2-3):163–180. 3.2, 5.4

http://books.google.lu/books?id=2LdxPQAACAAJ
http://books.google.lu/books?id=2LdxPQAACAAJ

226 BIBLIOGRAPHY

[138] Pontus Johnson, Robert Lagerström, Per Närman, and Mårten Simonsson.
2007. System quality analysis with extended influence diagrams. In CSMR
2007 Workshop and Special Session papers. 3.2, 4.2, 5.3

[139] Pontus Johnson, Lars Nordström, and Robert Lagerström. 2007. Formalizing
analysis of enterprise architecture. In Enterprise Interoperability, pages 35–44.
Springer. 3.1, 5.4

[140] Pontus Johnson, Johan Ullberg, Markus Buschle, Ulrik Franke, and Khur-
ram Shahzad. 2013. P2amf: Predictive, probabilistic architecture modeling
framework. In Enterprise Interoperability, pages 104–117. Springer Berlin
Heidelberg. 5.4, 5.4, 5.7

[141] Jan Jürjens. 2002. Umlsec: Extending uml for secure systems development.
In UML 2002 The Unified Modeling Language, pages 412–425. Springer. 5.6

[142] Ralph L Keeney and Howard Raiffa. 1993. Decisions with multiple objectives:
preferences and value trade-offs. Cambridge university press. 3.3

[143] Daphne Koller. 1999. Probabilistic relational models. In Inductive logic pro-
gramming, pages 3–13. Springer. 5.4, 6.2

[144] Johan König, Ulrik Franke, and Lars Nordstrom. 2010. Probabilistic avail-
ability analysis of control and automation systems for active distribution net-
works. In Transmission and Distribution Conference and Exposition, 2010
IEEE PES, pages 1–8. IEEE. 5.3

[145] Igor Kotenko and Mikhail Stepashkin. 2006. Attack graph based evaluation
of network security. In Communications and Multimedia Security, pages 216–
227. Springer. 5.6, 12.2

[146] Klaus Krogmann, Christian M Schweda, Sabine Buckl, Michael Kuperberg,
Anne Martens, and Florian Matthes. 2009. Improved feedback for architec-
tural performance prediction using software cartography visualizations. In
Architectures for Adaptive Software Systems, pages 52–69. Springer. 12.4

[147] Manfred Kudlek. 2005. Probability in petri nets. Fundamenta Informaticae,
67(1):121–130. 5.3

[148] Stephan Kurpjuweit and Robert Winter. 2007. Viewpoint-based meta model
engineering. In EMISA, volume 143, page 2007. 3.2

[149] Robert Lagerström, Ulrik Franke, Pontus Johnson, and Johan Ullberg. 2009.
A method for creating enterprise architecture metamodels–applied to sys-
tems modifiability analysis. International Journal of Computer Science and
Applications, 6(5):89–120. 5.3

BIBLIOGRAPHY 227

[150] Robert Lagerström, Pontus Johnson, and Per Närman. 2007. Extended in-
fluence diagram generation. In Enterprise Interoperability II, pages 599–602.
Springer. 5.4

[151] Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. Security
& Privacy, IEEE, 9(3):49–51. 3.3

[152] Joscf Lankes, Florian Matthes, and André Wittenburg. 2005. Softwarekar-
tographie: systematische darstellung von anwendungslandschaften. In
Wirtschaftsinformatik 2005, pages 1443–1462. Springer. 12.4

[153] M Lankhorst. 2009. Enterprise architecture at work: Modelling, communica-
tion and analysis. 1.1, 3.1, 3.2, 5.3, 5.5

[154] Kathryn Blackmond Laskey. 1995. Sensitivity analysis for probability assess-
ments in bayesian networks. Systems, Man and Cybernetics, IEEE Transac-
tions on, 25(6):901–909. 12.2

[155] Jong Seok Lee, Jan Pries-Heje, and Richard Baskerville. 2011. Theorizing in
design science research. In Service-Oriented Perspectives in Design Science
Research, pages 1–16. Springer. 2.1

[156] Edward Lewis. 2011. Annl: The tool for planning for viable enterprises. In
CAiSE Forum, pages 121–130. 3.2

[157] Yu Liu and Hong Man. 2005. Network vulnerability assessment using bayesian
networks. In Defense and Security, pages 61–71. International Society for
Optics and Photonics. 5.6

[158] Torsten Lodderstedt, David Basin, and Jürgen Doser. 2002. Secureuml: A
uml-based modeling language for model-driven security. In UML 2002 The
Unified Modeling Language, pages 426–441. Springer. 5.6

[159] Kathleen N Lohr, Neil K Aaronson, Jordi Alonso, M Audrey Burnam, Don-
ald L Patrick, Edward B Perrin, and James S Roberts. 1996. Evaluating
quality-of-life and health status instruments: development of scientific review
criteria. Clinical therapeutics, 18(5):979–992. 10.1

[160] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and An-
drzej Wąsowski. 2010. Evolution of the linux kernel variability model. In
Software Product Lines: Going Beyond, pages 136–150. Springer. 12.1

[161] Scott M Lynch. 2007. Modern model estimation part 1: Gibbs sampling. In
Introduction to Applied Bayesian Statistics and Estimation for Social Scien-
tists, pages 77–105. Springer. 5.4

[162] David A. Madsen. 2012. Engineering drawing & design, 5th ed edition. Del-
mar, Cengage Learning, Clifton Park, NY. ISBN 9781111309572. 4.3

228 BIBLIOGRAPHY

[163] Miroslaw Malek, Bratislav Milic, and Nikola Milanovic. 2008. Analytical
availability assessment of it services. In Service Availability, pages 207–224.
Springer. 1.1

[164] Ignacio J Martinez-Moyano, SH Conrad, Eliot H Rich, and David F Andersen.
2006. Modeling the emergence of insider threat vulnerabilities. In Simulation
Conference, 2006. WSC 06. Proceedings of the Winter, pages 562–568. IEEE.
3.3

[165] José Ramón San Cristóbal Mateo. 2012. Multi-attribute utility theory. In
Multi Criteria Analysis in the Renewable Energy Industry, pages 63–72.
Springer. 3.3

[166] Florian Matthes, Sabine Buckl, Jana Leitel, and Christian M Schweda.
2008. Enterprise Architecture Management Tool Survey 2008. Techn. Univ.
München. 1.1, 3.2, 4, 4.1, 5.2, 7.2, 9.6, 10.1, 13

[167] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. 2010. Eclipse rich
client platform. Addison-Wesley Professional. 5.2, 6.2, 7.3, 7.3

[168] Jeff McAffer, Paul VanderLei, and Simon Archer. 2010. OSGi and Equinox:
Creating highly modular Java systems. Addison-Wesley Professional. 7.3

[169] Alan McLucas and Ed Lewis. 2008. A multi-methodology approach to ad-
dressing ict skill shortages in a government organization: Integration of sys-
tem dynamics modeling and risk management. In Proceedings of the 2008
International Conference of the System Dynamics Society. 3.2

[170] Lucas O Meertens, Maria-Eugenia Iacob, Lambert JM Nieuwenhuis,
MJ Van Sinderen, Henk Jonkers, and D Quartel. 2012. Mapping the busi-
ness model canvas to archimate. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1694–1701. ACM. 5.3

[171] KS Metaxiotis, Dimitris Askounis, and John Psarras. 2002. Expert systems
in production planning and scheduling: a state-of-the-art survey. Journal of
Intelligent Manufacturing, 13(4):253–260. 4.3, 4.5

[172] Microsoft. 2005. Lab 1: Implementing user management and authentica-
tion. URL http://msdn.microsoft.com/en-us/library/ee810314(v=cs.
20).aspx. Accessed: May 2014. 12.1

[173] Jason Milletary and CERT Coordination Center. 2005. Technical trends in
phishing attacks. Retrieved December, 1:2007. 3.3

[174] Henry Mintzberg. 1979. The structuring of organization: A synthesis of the
research. Prentice-Hall. 3.3

http://msdn.microsoft.com/en-us/library/ee810314(v=cs.20).aspx
http://msdn.microsoft.com/en-us/library/ee810314(v=cs.20).aspx

BIBLIOGRAPHY 229

[175] Audris Mockus. 2009. Amassing and indexing a large sample of version control
systems: Towards the census of public source code history. InMining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Conference on,
pages 11–20. IEEE. 12.1

[176] OPNET Modeler. 2009. Opnet technologies inc. 1.1

[177] Robert Muetzelfeldt and Jon Massheder. 2003. The simile visual modelling
environment. European Journal of Agronomy, 18(3):345–358. 12.2

[178] William Nagel. 2005. Subversion Version Control: Using the Subversion Ver-
sion Control System in Development Projects. Prentice Hall PTR. 12.1

[179] K. Lalit Narayan, K. Mallikarjuna Rao, and M. M. M Sarcar. 2008. Computer
aided design and manufacturing. Prentice-Hall of India, New Delhi. ISBN
9788120333420 812033342X. 4.3

[180] Per Närman, Markus Buschle, and Mathias Ekstedt. 2013. An enterprise ar-
chitecture framework for multi-attribute information systems analysis. Soft-
ware & Systems Modeling, pages 1–32. 8.3, 8.1, 10.3, 11.3

[181] Per Närman, Markus Buschle, Johan König, and Pontus Johnson. 2010. Hy-
brid probabilistic relational models for system quality analysis. In Enterprise
Distributed Object Computing Conference (EDOC), 2010 14th IEEE Inter-
national, pages 57–66. IEEE. 5.4, 7.2

[182] Per Närman, Ulrik Franke, Johan König, Markus Buschle, and Mathias Ek-
stedt. 2014. Enterprise architecture availability analysis using fault trees and
stakeholder interviews. Enterprise Information Systems, 8(1):1–25. URL
http://dx.doi.org/10.1080/17517575.2011.647092. 3.2, 5.3, 5.5, 8.3,
8.1, 11.3

[183] Per Närman, Hannes Holm, David Höök, Nicholas Honeth, and Pontus John-
son. 2012. Using enterprise architecture and technology adoption models to
predict application usage. Journal of Systems and Software, 85(8):1953–1967.
8.3, 8.1, 11.3

[184] Per Närman, Hannes Holm, Pontus Johnson, Johan König, Moustafa Che-
nine, and Mathias Ekstedt. 2011. Data accuracy assessment using enterprise
architecture. Enterprise Information Systems, 5(1):37–58. 8.3, 8.1, ??, 9.6,
10.3, 11.3

[185] Per Närman, Pontus Johnson, Mathias Ekstedt, Moustafa Chenine, and
Johan König. 2009. Enterprise architecture analysis for data accuracy as-
sessments. In Enterprise Distributed Object Computing Conference, 2009.
EDOC’09. IEEE International, pages 24–33. IEEE. 5.3

http://dx.doi.org/10.1080/17517575.2011.647092

230 BIBLIOGRAPHY

[186] Pia Närman, Pontus Johnson, and Liv Gingnell. 2014. Using enterprise archi-
tecture to analyze how organizational structure impact efficiency and quality
of products and services. To be published. 8.3, 8.1, 11.3

[187] Nada Nassar, Nancy Helou, and Chantal Madi. 2013. Predicting falls using
two instruments (the hendrich fall risk model and the morse fall scale) in an
acute care setting in lebanon. Journal of clinical nursing. 10.1

[188] Steven Noel and Sushil Jajodia. 2004. Managing attack graph complexity
through visual hierarchical aggregation. In Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pages 109–
118. ACM. 5.6

[189] Novell. 2014. Novell doc: OES 2 SP3: planning and implemen-
tation guide - linux user management: Access to linux for eDirec-
tory users. URL http://www.novell.com/documentation/oes2/oes_
implement_lx/data/lum.html. Accessed: May 2014. 12.1

[190] William L Oberkampf and Timothy G Trucano. 2002. Verification and vali-
dation in computational fluid dynamics. Progress in Aerospace Sciences, 38
(3):209–272. 7.2

[191] Department of Defense Architecture Framework Working Group et al. 2009.
Department of defense architecture framework version 1.0. Volume I: Defini-
tions and Guidelines, February, 9. 3.1

[192] Bureau of Economic Analysis. 2007. National economic accounts, table: 5.5.6.
real private fixed investment in equipment and software by type, chained
dollars. URL http://www.bea.gov. Accessed: May 2014. 3.3

[193] Pragmatic Enterprise Family of Frameworks. 2013. PEFF - enterprise frame-
works. URL http://www.pragmaticef.com/frameworks.htm. Accessed:
May 2014. 3.1

[194] Department of the Treasury Chief Information Officer Council. 2000. Treasury
enterprise architecture framework version 1. 3.1

[195] Philipp Offermann, Sören Blom, Olga Levina, and Udo Bub. 2010. Proposal
for components of method design theories. Business & Information Systems
Engineering, 2(5):295–304. 2.1, 2.1

[196] Philipp Offermann, Olga Levina, Marten Schönherr, and Udo Bub. 2009.
Outline of a design science research process. In Proceedings of the 4th Inter-
national Conference on Design Science Research in Information Systems and
Technology, page 7. ACM. 2.1

[197] Oracle. 2009. Oracle buys sun - oracle press release. URL http://www.
oracle.com/us/corporate/press/018363. Accessed: May 2014. 5.2

http://www.novell.com/documentation/oes2/oes_implement_lx/data/lum.html
http://www.novell.com/documentation/oes2/oes_implement_lx/data/lum.html
http://www.bea.gov
http://www.pragmaticef.com/frameworks.htm
http://www.oracle.com/us/corporate/press/018363
http://www.oracle.com/us/corporate/press/018363

BIBLIOGRAPHY 231

[198] Oracle. 2010. Oracle supplier management implementation and admin-
istration guide. URL http://docs.oracle.com/cd/E18727_01/doc.121/
e16533/T553628T553633.htm. Accessed: May 2014. 12.1

[199] Oracle. 2014. Learn about java technology. URL http://www.java.com/en/
about/. Accessed: May 2014. 7.3

[200] Oracle. 2014. NetBeans. URL https://netbeans.org/. Accessed: May
2014. 5.2

[201] Oracle. 2014. NetBeans IDE - swing GUI builder (matisse) features. URL
https://netbeans.org/features/java/swing.html. 5.2

[202] Oracle. 2014. NetBeans visual library. URL https://platform.netbeans.
org/graph/. Accessed: May 2014. 5.2

[203] Oracle. 2014. Oracle JDeveloper - official home page. URL http://www.
oracle.com/technetwork/developer-tools/jdev/overview/index.html.
Accessed: May 2014. 5.2

[204] Magnus Osterlind, Pontus Johnson, Kiran Karnati, Robert Lagerström, and
Margus Valja. 2013. Enterprise architecture evaluation using utility theory. In
Enterprise Distributed Object Computing Conference Workshops (EDOCW),
2013 17th IEEE International, pages 347–351. IEEE. 7.3, 8.3, 8.1, 9.7, 11.3,
12.2

[205] Magnus Österlind, Robert Lagerström, and Peter Rosell. 2012. Assessing
modifiability in application services using enterprise architecture models–a
case study. Trends in Enterprise Architecture Research and Practice-Driven
Research on Enterprise Transformation, pages 162–181. 8.3, 8.1, 11.3

[206] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. 2005. Mulval:
A logic-based network security analyzer. In 14th USENIX Security Sympo-
sium, pages 1–16. 1.1

[207] Oxford University Press. 1989. The Oxford English dictionary, 2nd ed edition.
Clarendon Press ; Oxford University Press, Oxford : Oxford ; New York.
ISBN 9780198611868. 1

[208] Joseph Pamula, Sushil Jajodia, Paul Ammann, and Vipin Swarup. 2006. A
weakest-adversary security metric for network configuration security analysis.
In Proceedings of the 2nd ACM workshop on Quality of protection, pages 31–
38. ACM. 5.6

[209] Konstantinos Pantazis. 2014. Enterprise architecture at the financial sector
with the eaat tool. Master thesis. 8.3

http://docs.oracle.com/cd/E18727_01/doc.121/e16533/T553628T553633.htm
http://docs.oracle.com/cd/E18727_01/doc.121/e16533/T553628T553633.htm
http://www.java.com/en/about/
http://www.java.com/en/about/
https://netbeans.org/
https://netbeans.org/features/java/swing.html
https://platform.netbeans.org/graph/
https://platform.netbeans.org/graph/
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

232 BIBLIOGRAPHY

[210] Ken Peffers, Tuure Tuunanen, Charles E Gengler, Matti Rossi, Wendy Hui,
Ville Virtanen, and Johanna Bragge. 2006. The design science research pro-
cess: a model for producing and presenting information systems research. In
Proceedings of the first international conference on design science research in
information systems and technology (DESRIST 2006), pages 83–106. 2.1, 2.1

[211] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.
2007. A design science research methodology for information systems research.
Journal of management information systems, 24(3):45–77. 2.1, 2.1

[212] Jan Pries-Heje, Richard Baskerville, and John R Venable. 2008. Strategies
for design science research evaluation. ECIS 2008 Proceedings. 2.1

[213] The TREsPASS Project. 2014. The TREsPASS project: Technology-
supported risk estimation by predictive assessment of socio-technical security.
URL http://www.trespass-project.eu/. Accessed: May 2014. 3.1

[214] Whitney Quesenbery. 2003. The five dimensions of usability. Content and
complexity: Information design in technical communication, pages 81–102.
9.1

[215] Jane Radatz, Anne Geraci, and Freny Katki. 1990. Ieee standard glossary of
software engineering terminology. IEEE Std, 610121990:121990. 3.3, 3.3

[216] Thomas C Redman and A Blanton. 1997. Data quality for the information
age. Artech House, Inc. 3.3

[217] Trygve Reenskaug. 1979. Models-views-controllers. Technical note, Xerox
PARC, 32:55. 6.2

[218] Allan Reid and Cisco Systems, Inc. 2008. Networking for home and small busi-
nesses: CCNA discovery learning guide. Cisco Networking Academy Program
series. Cisco Press, Indianapolis, Ind. ISBN 9781587132094. 12.1

[219] VE van Reijswoud and Jan LG Dietz. 1999. Demo modelling handbook. Delft
University of Technology, Dept. of Information Systems. 5.3

[220] Mark Richters and Martin Gogolla. 2002. Ocl: Syntax, semantics, and tools.
In Object Modeling with the OCL, pages 42–68. Springer. 5.3

[221] Gerold Riempp and Stephan Gieffers-Ankel. 2007. Application portfolio man-
agement: a decision-oriented view of enterprise architecture. Information
Systems and E-Business Management, 5(4):359–378. 3.3

[222] Nelson S Rosa, Paulo RF Cunha, and George RR Justo. 2002. Process nfl: A
language for describing non-functional properties. In System Sciences, 2002.
HICSS. Proceedings of the 35th Annual Hawaii International Conference on,
pages 3676–3685. IEEE. 10.3

http://www.trespass-project.eu/

BIBLIOGRAPHY 233

[223] Peter Rosell. 2012. Enterprise architecture modeling of core administrative
systems at kth : A modifiability analysis. Master’s thesis, KTH, Industrial
Information and Control Systems. 8.3

[224] Jeanne W Ross, Peter Weill, and David C Robertson. 2006. Enterprise ar-
chitecture as strategy: Creating a foundation for business execution. Harvard
Business Press. 3.3

[225] Sascha Roth, Matheus Hauder, Matthias Farwick, Ruth Breu, and Florian
Matthes. 2013. Enterprise architecture documentation: Current practices
and future directions. In Wirtschaftsinformatik, page 58. 4.1

[226] Dan Rubel. 2006. The heart of eclipse. Queue, 4(8):36–44. 5.2

[227] Dan Rubel, Jaime Wren, and Eric Clayberg. 2011. The eclipse graphical
editing framework (gef). Addison-Wesley Professional. 7.3

[228] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William E. Lorensen, et al. 1991. Object-oriented modeling and design, volume
199. Prentice hall Englewood Cliffs (NJ). 5.3

[229] I Sabuncuoglu and DL Hommertzheim. 1989. Expert simulation systems: re-
cent developments and applications in flexible manufacturing systems. Com-
puters & Industrial Engineering, 16(4):575–585. 4.3, 4.3

[230] Stuart Edward Schechter. 2004. Computer security strength & risk: A quan-
titative approach. PhD thesis, Citeseer. 5.6

[231] Jaap Schekkerman. 2003. How to Survive in the Jungle of Enterprise Archi-
tecture Framework: Creating or Choosing an Enterprise Architecture Frame-
work. Trafford. ISBN 141201607X. 3.1

[232] Akos Schmidt and Dániel Varró. 2003. Checkvml: A tool for model checking
visual modeling languages. In «UML» 2003-The Unified Modeling Language.
Modeling Languages and Applications, pages 92–95. Springer. 5

[233] Bruce Schneier. 1999. Attack trees. Dr. Dobbs journal, 24(12):21–29. 5.6

[234] Marten Schöenherr. 2009. Towards a common terminology in the discipline of
enterprise architecture. In Service-Oriented Computing–ICSOC 2008 Work-
shops, pages 400–413. Springer. 7.2

[235] David A Schum. 1994. The evidential foundations of probabilistic reasoning.
Northwestern University Press. 9.2

[236] D Scott. 2009. How to assess your it service availability levels. Gartner, Inc.,
Tech. Rep. 3.3

[237] IBM Global Services. 1998. Improving systems availability. IBM. 3.3

234 BIBLIOGRAPHY

[238] Glenn Shafer. 1976. A mathematical theory of evidence, volume 1. Princeton
university press Princeton. 5.4

[239] Hanifa Shah and Mohamed El Kourdi. 2007. Frameworks for enterprise ar-
chitecture. It Professional, 9(5):36–41. 1.1

[240] Jianlin Shi and Martin Törngren. 2005. An overview of uml2 and brief as-
sessment from the viewpoint of embedded control systems development. Rap.
tech., Mechatronics Lab, Dpt. of Machine Design, Royal Institute of Technol-
ogy, Stockholm, 21. 5.3

[241] Anna Sidorova, Nicholas Evangelopoulos, Russell Torres, and Vess Johnson.
2013. It and organizations. In A Survey of Core Research in Information
Systems, pages 33–49. Springer. 2.1

[242] Vladimir Silva. 2009. Practical Eclipse Rich Client Platform Projects. Apress.
7.3

[243] Kevin Lee Smith and Tom Graves. 2011. An Introduction to PEAF: Pragmatic
Enterprise Architecture Framework. Pragmatic EA Limited. 5.3

[244] Manfred Soeffky. 1998. Data warehouse: Prozess-und systemmanagement.
IT Research, Höhenkirchen. 5.1

[245] Powersim Software. 2014. Powersim - studio 9. URL http://www.powersim.
com/info/about/news/new-product-edition-studio-9-express/. Ac-
cessed: May 2014. 3.2

[246] Teodor Sommestad, Mathias Ekstedt, and Hannes Holm. 2013. The cyber
security modeling language: A tool for assessing the vulnerability of enterprise
system architectures. Systems Journal, IEEE, 7(3):363–373. 5.3, 5.6, 8.2, 8.1,
11.3

[247] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. 2010. A proba-
bilistic relational model for security risk analysis. Computers & Security, 29
(6):659–679. 5.6, 5.6, 5.6

[248] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. 2010. A proba-
bilistic relational model for security risk analysis. Computers & Security, 29
(6):659–679. 8.2

[249] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
2011. Metamodelling. In Model-Based Engineering of Embedded Real-Time
Systems, pages 57–76. Springer. 7.3

[250] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008.
EMF: eclipse modeling framework. Pearson Education. 5.2, 5.3, 6.2, 7.3

http://www.powersim.com/info/about/news/new-product-edition-studio-9-express/
http://www.powersim.com/info/about/news/new-product-edition-studio-9-express/

BIBLIOGRAPHY 235

[251] Cook Steve and Daniels John. 1994. Designing object systems: object-
oriented modelling with syntropy. 5.3

[252] Mark CJ Stoddart. 2004. Generalizability and qualitative research in a post-
modern world. Graduate Journal of Social Science, 1(2):303–317. 10.3

[253] Christoph Stoermer, Felix Bachmann, and Chris Verhoef. 2003. Sacam: The
software architecture comparison analysis method. Technical report, DTIC
Document. 10.2

[254] Diane M Strong, Yang W Lee, and Richard Y Wang. 1997. Data quality in
context. Communications of the ACM, 40(5):103–110. 3.3

[255] Sparx Systems. 2014. Enterprise architect. URL http://www.sparxsystems.
com/products/ea/. Accessed: May 2014. 5.3

[256] Troux Technologies. 2014. Troux architect. URL http://www.troux.com/
products/troux_software/. Accessed: May 2014. 3.2

[257] Tetsuo Tomiyama, Takashia Kiriyama, Hideaki Takeda, Deye Xue, and Hi-
royuki Yoshikawa. 1989. Metamodel: a key to intelligent cad systems. Re-
search in engineering design, 1(1):19–34. 4.4

[258] Ambrosio Toval, Víctor Requena, and José Luis Fernández. 2003. Emerging
ocl tools. Software and Systems Modeling, 2(4):248–261. 5.3

[259] Johan Ullberg, Ulrik Franke, Markus Buschle, and Pontus Johnson. 2010.
A tool for interoperability analysis of enterprise architecture models using
pi-ocl. In Enterprise Interoperability IV, pages 81–90. Springer. 5.4, 6.2, 11.2

[260] Johan Ullberg, Pontus Johnson, and Markus Buschle. 2011. A modeling lan-
guage for interoperability assessments. In Enterprise Interoperability, pages
61–74. Springer. 5.3, 5.4, 7.2, 8.3, 8.1, 8.4, 9.7, 11.3

[261] Vijay K Vaishnavi and William Kuechler Jr. 2007. Design science research
methods and patterns: innovating information and communication technol-
ogy. CRC Press. 2.1

[262] Carlos Valcarcel. 2004. Eclipse kick start. Sams. 7.3

[263] Margus Valja, Magnus Osterlind, Maria-Eugenia Iacob, Marten van Sinderen,
and Pontus Johnson. 2013. Modeling and prediction of monetary and non-
monetary business values. In Enterprise Distributed Object Computing Con-
ference (EDOC), 2013 17th IEEE International, pages 153–158. IEEE. 8.3,
8.1, 11.3

http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://www.troux.com/products/troux_software/
http://www.troux.com/products/troux_software/

236 BIBLIOGRAPHY

[264] John Venable, Jan Pries-Heje, and Richard Baskerville. 2012. A comprehen-
sive framework for evaluation in design science research. In Design Science
Research in Information Systems. Advances in Theory and Practice, pages
423–438. Springer. 2.1

[265] TOGAF Version. 2009. 9, the open group architecture framework (togaf).
The Open Group. 1.1

[266] Lingyu Wang, Sushil Jajodia, Anoop Singhal, and Steven Noel. 2010. k-zero
day safety: Measuring the security risk of networks against unknown attacks.
In Computer Security–ESORICS 2010, pages 573–587. Springer. 1.1

[267] Jos B Warmer and Anneke G Kleppe. 2003. The object constraint language:
getting your models ready for MDA. Addison-Wesley Professional. 5.3

[268] Michel Wermelinger and Yijun Yu. 2008. Analyzing the evolution of eclipse
plugins. In Proceedings of the 2008 international working conference on Min-
ing software repositories, pages 133–136. ACM. 5.2

[269] Brian Whitworth and Michael Zaic. 2003. The wosp model: Balanced infor-
mation system design and evaluation. Communications of the Association for
Information Systems, 12. 10.3

[270] Leevar Williams, Richard Lippmann, and Kyle Ingols. 2008. GARNET: A
graphical attack graph and reachability network evaluation tool. Springer. 1.1

[271] Robert Winter. 2008. Design science research in europe. European Journal
of Information Systems, 17(5):470–475. 2.1

[272] Robert Winter and Joachim Schelp. 2008. Enterprise architecture governance:
the need for a business-to-it approach. In Proceedings of the 2008 ACM
symposium on Applied computing, pages 548–552. ACM. 3.3

[273] AJ Wright, D Bloomfield, and TJ Wiltshire. 1992. Building simulation and
building representation: Overview of current developments. Building Services
Engineering Research and Technology, 13(1):1–11. 4.3, 4.2

[274] Jian-Bo Yang. 2001. Rule and utility based evidential reasoning approach
for multiattribute decision analysis under uncertainties. European Journal of
Operational Research, 131(1):31–61. 5.4

[275] Robert K Yin. 2009. Case study research: Design and methods, volume 5.
sage. 10.2, 10.3

[276] John A Zachman. 1987. A framework for information systems architecture.
IBM systems journal, 26(3):276–292. 1.1, 3.1

[277] Marin Zec. 2014. Enterprise architecture visualization tool survey 2014. 3.2

[278] Ibrahim Zeid. 1991. CAD/CAM theory and practice. McGraw-Hill Higher
Education. 4.3

List of publications

[1] M. Ekstedt, U. Franke, P. Johnson, R. Lagerström, T. Sommestad, J. Ull-
berg, and M. Buschle, “A tool for enterprise architecture analysis of maintain-
ability,” in Software Maintenance and Reengineering, 2009. CSMR’09. 13th
European Conference on. IEEE, 2009, pp. 327–328.

[2] P. Närman, M. Buschle, J. König, and P. Johnson, “Hybrid probabilistic re-
lational models for system quality analysis,” in Enterprise Distributed Object
Computing Conference (EDOC), 2010 14th IEEE International. IEEE, 2010,
pp. 57–66.

[3] J. Ullberg, U. Franke, M. Buschle, and P. Johnson, “A tool for interoper-
ability analysis of enterprise architecture models using pi-ocl,” Enterprise
Interoperability IV, pp. 81–90, 2010.

[4] U. Franke, O. Holschke, M. Buschle, P. Närman, and J. Rake-Revelant, “IT
consolidation: An optimization approach,” in Enterprise Distributed Object
Computing Conference Workshops (EDOCW), 2010 14th IEEE International.
IEEE, 2010, pp. 21–26.

[5] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad, “A tool
for enterprise architecture analysis using the prm formalism,” Information
Systems Evolution, pp. 108–121, 2011.

[6] R. Lagerström, T. Sommestad, M. Buschle, and M. Ekstedt, “Enterprise
architecture management’s impact on information technology success,” in
System Sciences (HICSS), 2011 44th Hawaii International Conference on.
IEEE, 2011, pp. 1–10.

[7] M. Buschle and D. Quartel, “Extending the method of bedell for enterprise
architecture valuation,” in Enterprise Distributed Object Computing Confer-
ence Workshops (EDOCW), 2011 15th IEEE International. IEEE, 2011, pp.
370–379.

[8] S. Buckl, M. Buschle, P. Johnson, F. Matthes, and C. M. Schweda, “A meta-
language for enterprise architecture analysis,” in Enterprise, Business-Process

237

238 LIST OF PUBLICATIONS

and Information Systems Modeling. Springer Berlin Heidelberg, 2011, pp.
511–525.

[9] J. Ullberg, P. Johnson, and M. Buschle, “A modeling language for interoper-
ability assessments,” Enterprise Interoperability, pp. 61–74, 2011.

[10] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K. Shahzad, “A tool
for automatic enterprise architecture modeling,” in IS Olympics: Information
Systems in a Diverse World. Springer, 2012, pp. 1–15.

[11] P. Närman, U. Franke, J. König, M. Buschle, and M. Ekstedt, “Enterprise
architecture availability analysis using fault trees and stakeholder interviews,”
Enterprise Information Systems, no. ahead-of-print, pp. 1–25, 2012.

[12] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth,
“Automating enterprise architecture documentation using an enterprise ser-
vice bus.” in AMCIS, 2012.

[13] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt, “Automatic data col-
lection for enterprise architecture models,” Software & Systems Modeling, pp.
1–17, 2012.

[14] J. Ullberg, P. Johnson, and M. Buschle, “A language for interoperability
modeling and prediction,” Computers in Industry, vol. 63, no. 8, pp. 766–
774, 2012.

[15] N. Honeth, M. Buschle, R. Lagerström, K. K. Sasi, and S. Nithin, “An ex-
tended archimate metamodel for microgrid control system architectures,” in
:, 2012.

[16] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth,
“Amcis 2012 proceedings,” in Proceedings of the 18th Americas Conference
on Information Systems (AMCIS), 2012.

[17] P. Närman, M. Buschle, and M. Ekstedt, “An enterprise architecture frame-
work for multi-attribute information systems analysis,” Software & Systems
Modeling, pp. 1–32, 2013.

[18] P. Johnson, J. Ullberg, M. Buschle, U. Franke, and K. Shahzad, “P2amf:
Predictive, probabilistic architecture modeling framework,” in Enterprise In-
teroperability. Springer Berlin Heidelberg, 2013, pp. 104–117.

[19] M. Buschle, P. Johnson, and K. Shahzad, “The enterprise architecture analy-
sis tool–support for the predictive, probabilistic architecture modeling frame-
work,” in Proceedings of the 19th Americas Conference on Information Sys-
tems (AMCIS), 2013.

LIST OF PUBLICATIONS 239

[20] U. Franke, M. Buschle, and M. Österlind, “An experiment in sla decision-
making,” in Economics of Grids, Clouds, Systems, and Services. Springer
International Publishing, 2013, pp. 256–267.

[21] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt, “P2cysemol : Predictive,
probabilistic cyber security modeling language,” 2014, to be published.

[22] P. Johnson, J. Ullberg, M. Buschle, U. Franke, and K. Shahzad, “An architec-
ture modeling framework for probabilistic prediction,” Information Systems
and e-Business Management, pp. 1–28, 2014.

	List of Figures
	List of Tables
	Introduction
	Research motivation
	Research contribution and delimitation
	Applications to cyber security
	Remaining structure of the thesis

	Research method
	Design Science
	The resulting Design Science methodology

	Enterprise Architecture and system property analysis
	Enterprise Architecture
	Enterprise Architecture analysis
	Properties for Enterprise Architecture analysis

	Requirements on a tool for Enterprise Architecture analysis
	Requirements derived from Enterprise Architecture tool evaluations
	Requirements derived from an Enterprise Architecture analysis method
	Requirements derived from CAD tools
	Requirements summary

	Design decisions
	Design option I: Overall tool architecture
	Design option II: Platform
	Design option III: Modeling language
	Design option IV: Inference engine
	Design option V: Level of abstraction
	Design option VI: Cyber security modeling
	Summarized design decisions

	Tool development process
	Development process
	Important milestones

	Artifact
	User interface
	Distinct functionality
	Architecture of the tool
	The areas of contribution in relation to the presented artifact

	Demonstration of the usability of the tool
	Usage of the tool to specify theory
	Specification of a cyber security analysis language
	Other analysis frameworks
	Usage of the tool to perform analysis

	Evaluation
	The tool shall offer a high degree of usability
	The tool shall possess analysis capabilities
	The tool shall possess administrative capabilities
	The tool shall possess presentation capabilities
	The tool shall feature an extendable metamodel
	The tool shall support the import, editing and validation of data from external sources
	The tool shall support the storage of models, in- stantiating a metamodel, in a repository
	The tool shall support the creation of metamodels that cover the domains of business architecture, information architecture, technology or technical architecture and solution architecture
	The tool shall support the creation of models
	General evaluation

	Discussion
	Validity
	Reliability
	Generalizability

	Information of relevant audiences
	Information of relevant audiences
	Presentation of the tool for academic audiences
	Presentation of the tool for tool users

	Future Work
	Future work based on the evaluation of the presented tool
	Future work with regards to Enterprise Architecture analysis
	Future work supporting cyber security analysis
	Enhancement of the tool inspired by other Enterprise Architecture tools

	Conclusions
	Appendices
	Bibliography
	List of publications

