
Introduction

A fundamental fact in finance and economics is that money has a time value, mean-
ing that if we want to value an amount of money we get at some future date we
should discount the amount from the future date back to today. When facing a
stream of cash flows occurring at different times we discount each of the cash flows
using suitable discount rates and then sum the contributions. This sum of dis-
counted cash flows defines the value today of this stream. Most future cash flows
that appear in models in finance and economics are assumed to be stochastic (non-
defaultable bonds being a counter example). To be able to value these stochastic
cash flows we also have to take expectations. In some cases even the discount rate
should be modelled as a stochastic object. The purpose of the two papers in this
licentiate thesis (’On the Valuation of Cash Flows – Discrete Time Models’ and ’On
the Valuation of Cash Flows – Continuous Time Models’) is to establish general
properties of the value process. As time passes two things happen. Firstly, the cash
flows that are realised are no more parts of the value and secondly, the information
we can use to determine the expected cash flows and discount rates increases.

The two papers consider discrete time models and continuous time models re-
spectively. Of course any continuous time model is necessarily an idealisation. Thus
one could argue from a modelling point of view that we should use discrete time
models. The main reason for using continuous time models is that we have the
powerful machinery of stochastic calculus at hand. Discrete time models are mostly
used in practice when valuing a firm or a project, while the continuous time setting
is more frequently used in thoretical approaches to valuation. Most of the results
are parallelled in the two papers. A difference is that we discuss some convergence
results for the value in discrete time which do not occur in the continuous time
paper. The reason for not including this in the continuous time paper is because we
find it a more important question in discrete time. On the other hand the Brow-
nian models in continuous time, where the Martingale Representation Theorem is
an important tool, make the analysis much more transparent.

In both papers we first define the underlying objects: the discount process and
the cash flow process. We then define, using these two processes, the value process
(i.e. the expected discounted value of the cash flow stream). We show that the
discounted value tends to zero almost surely, and that there are three equivalent
ways of writing the value process, each of which has its own merits. We also extend
this result to the case when the cash flow process and the value process are evaluated
at a stopping time. The first paper, on discrete time models, then continues by
showing examples from finance, economics, and insurance where the discounted
value process plays an important role. Finally we present two propositions with
necessary conditions for the value process to converge almost surely. The second
paper, on continuous time models, discusses some properties of the local dynamics of
the value process and then continues with Brownian models. We show that the value
process can equivalently be expressed as a solution to a forward-backward stochastic
differential equation. Finally we show that under some additional assumptions there
is a one-to-one correspondance between the cash flow process and the value process.
We also investigate the inverse problem of finding a cash flow process generating a
given value process and discuss applications to real options.
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On the Valuation of Cash Flows – Discrete Time

Models

Fredrik Armerin

Abstract

Discounted cash flow models in discrete time are considered. Under some
general assumptions we show that the value of the cash flow stream can be
written in three equivalent ways. We show that the discounted value tends
to zero a.s. and give two cases of necessary conditions for the value process
to converge a.s. Applications include topics from finance, economics, and life
insurance.
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1 Introduction

Assume that a firm or individual is facing a stream of cash flows. These could
be dividends from a stock, cash flows generated by an investment or project, or
claims faced by an insurance company. But what is the value today of this cash
flow stream? To find the value we discount the cash flows using a suitable discount
rate, take expectations and sum over time. If we call the cash flows C1, C2, . . . and
assume that the discount rate is deterministic, given by r, the discounted value at
time zero is

V0 = E

[ ∞∑

k=1

Ck

(1 + r)k

]

To make this into a dynamic model, introduce the value at time t ≥ 0 as

Vt = Et

[ ∞∑

k=t+1

Ck

(1 + r)(k−t)

]
, (1)

where we let Et [·] denote the expectation given information up to and including
time t. By multiplying this expression with (1 + r)−t and splitting the expectation
into two parts we get

Vt

(1 + r)t
= Et

[ ∞∑

k=0

Ck

(1 + r)k

]
−

t∑

k=0

Ck

(1 + r)k
. (2)

If E
∣∣∣∑∞

k=1
Ck

1+r)k

∣∣∣ < ∞ then the first term on the RHS is a martingale and the
value of the second one is known at time t. Iterating Equation (1) gives the relation

Vt = Et

[
Ct+1 + Vt+1

1 + r

]
,

saying that the value today is the expected discounted value of what we get tomor-
row (Ct+1) plus the expected discounted value of having the right to the cash flow
stream Ct+2, Ct+3, . . . (which is the definition of Vt+1). By continued iterations we
get for any T > t

Vt = Et

[
T∑

k=t+1

Ck

(1 + r)k

]
+ Et

[
CT

(1 + r)T

]
.

If we impose the condition that the last term in the RHS of the previous eqution
goes to zero as T goes to infinity we are back to Eq. (1) We see from Eq. (2) that
if we let t go to infinity, then the discounted value Vt/(1 + r)t tends to 0 a.s. A
subsequent question is now what will happen to the value Vt when we let time go
to infinity. It turns out that this convergence depends on the behaviour of both
the discount factors and the cash flows. The idea of rewritng the value equation
(1) as to identify the martingale embedded within comes from life insurance. There
the expected discounted value of the cash flows is known as the retroperspective
reserve. The fact that we can decompose the discounted value as the difference of a
martingale and an adapted process give us a way to prove Hattendorff’s Theorem.
Recently valuation using real options has gained increasing interest. In these models
either the value or the underlying cash flow is modelled as a stochastic process. In
the latter case the question of how the dynamical properties influence the dynamics
of the value process is important. For references and more concrete examples see
Section 3.1. The purpose of this paper is to prove the results indicated above in
a more general setting. In Section 2 we define the cash flow process as any a.s.
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finite adapted process and the discount process as an adapted process, fulfilling
a consistency relation connected to the absence of arbitrage. While we do not
comment much upon the cash flows, the discount process and its equivalent forms,
is discussed in some detail. In Section 3 we define the value process. We discuss
some properties of it and then state and prove that there are three equivalent forms
in which we can express the value process. These facts are known previously, at
least in some special cases. We then turn to the problem of convergence of the
value process. Although the discounted value tends to 0, the convergence of the
value itself depends on both the the cash flowes and the discount rates. We give
two propositions containing necessary condition for the convergence of the value
process. The last part of Section 3 contains the case when the cash flows and/or
the value process is evaluated at a stopping time. We find that the earlier result
easliy also extends to this situation.
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2 General definitions

Let (Ω, F , P, (Ft)t∈N) be a complete filtered probability space. We will assume that
F0 is the trivial σ-algebra augumented with all null sets and that F∞ = F , where
F∞ =

∨
t≥0 Ft. The fundamental objects are the cash flow process, the discount

process and the value process. The two first of these process are used to to define
the value proces. We will use the convention that N = {0, 1, 2, . . .} and also the
standard notations R+ = [0,∞) and R++ = (0,∞).

2.1 The cash flow process

This subsection contains nothing but the defintion of the cash flow process. This is
due to that we impose very mild restrictions.

Definition 2.1 A cash flow process (Ct)t∈N is a process adapted to the filtration
(Ft) and such that for each t ∈ N, |Ct| < ∞ a.s. A cash flow process that is
non-negative a.s. will be referred to as a dividend process.

2.2 The discount process

The discount process tells us how to discount future payments.

Definition 2.2 A discount process is a process m : N× N× Ω → R satisfying

(i) 0 < m(s, t) < ∞ a.s. for every s, t ∈ N,

(ii) m(s, t, ω) is Fmax(s,t)-measurable for every s, t ∈ N, and

(iii) m(s, t) = m(s, u)m(u, t) a.s for every s, u, t ∈ N.

A discount process fulfilling

(i′) 0 < m(s, t) ≤ 1 a.s. for every s, t ∈ N
will be referred to as a normal discount process.

As a short hand notation we will write m(t) ≡ m(0, t), t ∈ N. Implied by the
assumptions on the discount factors is the fact that m(t, t) = 1. This is seen
by letting s = u = t in (iii) together with the fact that m > 0 a.s. Now let
s < t. We interpret m(s, t) as the (stochastic) value at time s of getting one unit
of currency at t, and analogously we interpret m(s, t) as the growth of one unit of
currency, invested at time t, at time s. In this latter case we should rather call
m an accumulation factor. That we allow m(s, t) with s > t is because we want
to incorporate insurance models into our framework. In life insurance applications
we need to be able to both discount and accumulate cash flows. Condition (iii) in
the definition could be seen as a consistency or no arbitrage condition, see Norberg
[14]. The following two examples of discount factors are ’typical’ (see Lemma 2.5
below).

Example 2.3 Let r ∈ R. Then it is easy to verify that

m(s, t) = e−r(t−s)

is a (deterministic) discount process. It is not difficult to see that m is a normal
discount process if and only if r ≥ 0. 2

We can generalise this example to get a stochastic discount process.
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Example 2.4 Let

m(s, t, ω) = exp

(
−

t∑

k=s+1

fk

)
,

with (fk)k∈N an adapted process that is finite a.s. As in the previous example it is
immediate that m fulfills the requirements of a discount process. The requirement
fk ≥ 0 a.s. will make m a normal discount process. 2

Assumption (iii) in the definition of the discount process gives plenty of structure
to it, as is seen in the following lemma.

Lemma 2.5 Any discount process m can be written

m(s, t) =
Λ(t)
Λ(s)

, a.s. for all s, t ∈ N, (3)

where (Λ(t))t∈N is an a.s. strictly positive and finite adapted process

Proof. We begin with the ’if’ part. Obviously

m(s, u)m(u, t) =
Λ(u)
Λ(s)

· Λ(t)
Λ(u)

=
Λ(t)
Λ(s)

= m(s, t) a.s. for all s, u, t ∈ N.

The fact that Λ(t) > 0 a.s. implies that m(s, t) > 0 a.s. Since Λ(t) is Ft-measurable
for every t ∈ N, m(s, t) will be Fmax(s,t)-measurable for all s, t in N. For the ’only
if’ part we begin by noting that since m(0, t) > 0 a.s. for every t ∈ N we have

m(0, t) = m(0, s)m(s, t) a.s. if and only if m(s, t) =
m(0, t)
m(0, s)

a.s.

Now let Λ(t) := m(0, t). It is easily seen that this choice of Λ(t) fulfills the desired
requirements. 2

The connection to Example 2.4 above becomes more transparent if we write (3) as

m(s, t) = exp (−(lnΛs − lnΛt)) = exp

(
−

t−1∑

k=s

ln
Λk

Λk+1

)
.

The process Λ is known as a deflator. If it is the price of a traded asset, it
is called a numeraire. In the theory of no arbitrage pricing one can show that
the existence of a discount factor is equivalent to a condition ruling out arbitrage
strategies. The exact condition is that the stock price process should satisfy the
condition of ’no free lunch with bounded risk’ (NFLBR). Intuitively this means that
there is no possibility of having strategies such that the profit of the strategy can
be arbitrarily large while the maximium loss of using the strategy is resticted to 1
monetary unit. The definition of (NFLBR) and the fact that it is equvivalent with
the existence of an equivalent martingale measure is discussed in Schachermayer
[18]. See also Section 4.C in Duffie [9] and Chapter 7 in Pliska [17] for no arbitrage
pricing with an infinite discrete time horizon. Since the cash flows generated by a
project or the claims in life insurance are typically not traded, we do not find it
reasonable to model the value of a project or the claims as an ordinary financial
asset. Thus conditions for the existence of a martingale measure are not a relevant
question for us.
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Definition 2.6 The discount rate or the instantanous rate at time t implied by the
discount process, denoted r(t) for t = 1, 2, . . ., is defined as

r(t) =
1

m(t− 1, t)
− 1 =

m(t− 1)
m(t)

− 1 =
Λ(t− 1)

Λ(t)
− 1, t = 1, 2, . . .

where Λ is the deflator associated with m.

The advantage of using the instantanous rates, which uniquely determines the dis-
count process, is that a requirement on the rates is often more easy to interpret
economically than a requirement put on the discount process. The following lemma
contains some facts relating the rate process and discount process.

Lemma 2.7 Let m be a discount process and let r be the discount rate implied by
m. Then the following holds:

(i) −1 < r(t) < ∞, t ∈ N
(ii) r ≥ 0 if and only if m is a normal discount process.

(iii) For any given λ > 0 we have for t ∈ N

0 < λ ≤ r(t) if and only if 0 < m(t) ≤ e−t ln(1+λ).

(iv) The instantanuous rate process and the discount process uniquely determine
each other.

Proof. Facts (i) and (ii) are immediate from the defintion. To get (iii) we have the
following implications for any λ > 0 and t ∈ N:

λ ≤ r(t) ⇒ λ ≤ m(t− 1)
m(t)

− 1 ⇒ m(t) ≤ 1
1 + λ

m(t− 1).

and Gerber [Ref!].Iterating this gives

m(t) ≤
(

1
1 + λ

)t

= e−t ln(1+λ).

To go in the other direction we see that using the definition of r together with the
fact that λ > 0 gives the desired result. For (iv) finally we see that given m the
discount rate process r is determined uniquely. The opposite conclusion is clear
from the following:

m(t, k) =
k∏

`=t+1

m(`− 1, `) =
k∏

`=t+1

1
1 + r(`)

.

2
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3 Valuation

Definition 3.1 Given a cash flow process (Ct)t∈N and a discount process (m(s, t) :
s, t ∈ N) we define for t ∈ N the value process as

V (t) = E

[ ∞∑

k=t+1

C(k)m(t, k)

∣∣∣∣∣Ft

]
.

The value process is defined ex dividend, meaning that we include cash flows from
time t + 1 and onwards in the value at time t. It would be possible to define it
cum dividend, thus also including the cash-flow at time t, but since the ex dividend
version is the most usual in financial texts we prefer it. See e.g. Campbell et al [3]
or Cuthbertson [7] for more details on this issue.

Recall that the only conditions we have put on the cash flow process is that
|Ct| < ∞ a.s. for t ∈ N. A natural question to ask now is when the value process
will be finite a.s. The following lemma offers a sufficient condition for this.

Lemma 3.2 If C is a cash-flow process and E
[∣∣∣∑∞

k=1 Ckmk

∣∣∣
]

< ∞ a.s. then |Vt| <
∞ a.s. for all t ∈ N.

Proof. Since E [|∑∞
k=1 Ckmk|] < ∞, the following conditional expectations are well

defined: For t ∈ N

|Vt| =
∣∣∣∣∣E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]∣∣∣∣∣ ≤ 1
m(0, t)

E

[∣∣∣∣∣
∞∑

k=1

Ckm(0, k)−
t∑

k=1

Ckm(0, k)

∣∣∣∣∣

∣∣∣∣∣Ft

]

≤ 1
mt

(
E

[∣∣∣∣∣
∞∑

k=1

Ckmk

∣∣∣∣∣

∣∣∣∣∣Ft

]
+

∣∣∣∣∣
t∑

k=1

Ckmk

∣∣∣∣∣

)

< ∞ a.s.

2

We immediately get the following corollary for a dividend process.

Corollary 3.3 If C is a discount process such that V0 < ∞, then Vt < ∞ a.s. for
every t ∈ N.

Proof. Since Ct ≥ 0 a.s. for every t ∈ N when C is a cash-flow process and F0 is
the trivial σ-algebra augumented with the null sets

E

[∣∣∣∣∣
∞∑

k=1

Ckmk

∣∣∣∣∣

]
= E

[ ∞∑

k=1

Ckmk

]
= V0 < ∞,

and the previous lemma applies. 2

We now proceed by rewriting the value process. Note that since mt is Ft-measurable
for all t ∈ N we have

Vt = E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]
=

1
mt

E

[ ∞∑

k=t+1

Ckmk

∣∣∣∣∣Ft

]
.

By multiplying the expression for Vt by mt we get

Vtmt = E

[ ∞∑

k=0

Ckmk

∣∣∣∣∣Ft

]
−

t∑

k=0

Ckmk.
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Note that Vtmt is the value at time t discounted back to time 0. It is well known that
if X is a random variable with E|X| < ∞ then E [X|Ft], t = 1, 2, . . . is a uniformly
integrable (UI) martingale. Thus, if E [|∑∞

k=0 Ckmk|] < ∞ then E [
∑∞

k=0 Ckmk|Ft]
is a UI martingale. This and other facts chacterising the discounted value process
are summarised in Proposition 3.5 below. Before its presentation we first recall
the following result from Neveu ([13] p. 172). In this proposition, by an increasing
process we mean a predictable sequence A of finite random variables such that
0 ≤ A0 ≤ A1 ≤ . . . a.s.

Proposition 3.4 For every increasing process (At)t∈N such that E [A∞] < ∞ a.s.,
the formula

Xt = E [A∞|Ft]−At, t ∈ N
defines a finite positive supermartingale (Xt)t∈N which is called the potential of the
increasing process A. This potential X determines the increasing process A uniquely.

For a finite positive supermartingale X to be the potential of an increasing pro-
cess A such that E [A∞|Fn] < a.s., it is necessary and sufficient that

lim
n→∞

E [Xn] ↓ 0 a.s.

Proposition 3.5 Let C and m be a cash flow and discount process respectively. If
E |∑∞

k=1 Ckmk| < ∞ then the discounted value process (Vtmt) can be written

Vtmt = Mt −At, t ∈ N,

where M is a UI martingale and A is an adapted process. Furthermore limt→∞ Vtmt =
0 a.s. If the cash flow process is a dividend process, then V m is the potential of the
increasing process A. The decomposition given in the proposition is then the Riesz
decomposition of a potential into a martingale and an increasing process.

Proof. We notice that |∑∞
k=0 Ckmk| < ∞ a.s. since E [|∑∞

k=0 Ckmk|] < ∞. Now
let

Mt = E

[ ∞∑

k=1

Ckmk

∣∣∣∣∣Ft

]
, t ∈ N,

At =
t∑

k=1

Ckmk, t ∈ N.

It is then immediate that Vtmt = Mt−At. Since E [|∑∞
k=1 Ckmk|] < ∞ M is a UI

martingale and we see that A is adapted. We know that (Williams [19] p. 134) the
UI martingale will converge to E [

∑∞
k=0 Ckmk|F∞] =

∑∞
k=0 Ckmk a.s. as t → ∞.

This yields
lim

t→∞
Vtmt = lim

t→∞
Mt − lim

t→∞
At = 0,

since M∞ = A∞ =
∑∞

k=0 Ckmk is finite a.s. Now let C be a dividend process.
Then A is an increasing process and E [A∞] = E [

∑∞
k=0 Ckmk] < ∞ by assumption.

Using Proposition 3.4 we see that

Vtmt = E

[ ∞∑

k=t+1

Ckmk

∣∣∣∣∣Ft

]
= E [A∞|Ft]−At.

is a potential. 2

The following theorem characterises the relation between C, m and V in terms
of their values and differences, giving three equivalent forms of defining the value
process.
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Theorem 3.6 Let C be a cash flow process and m a discount process such that
E [

∑∞
k=1 |Ck|mk] < ∞. Then the following three statements are equivalent.

(i) For every t ∈ N
Vt = E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]
.

(ii) (a) For every t ∈ N

Mt = Vtmt +
t∑

k=1

Ckmk

is a UI martingale, and

(b) Vtmt → 0 a.s. when t →∞.

(iii) For every t ∈ N
(a) Vt = E [m(t, t + 1)(Ct+1 + Vt+1)|Ft], and

(b) limT→∞E [m(t, T )VT |Ft] = 0.

Proof. First of all we note that E |∑∞
k=1 Ckmk| ≤ E [

∑∞
k=1 |Ck|mk] < ∞, so

|∑∞
k=1 Ckmk| < ∞ a.s. We will show (i) ⇔ (ii) and (i) ⇔ (iii)

(i) ⇔ (ii): The ’if’ part follows from Proposition 3.5. For the ’only if’ part write
the expression in (ii) (a) as −mk+1Ck+1 = mk+1Vk+1 −mkVk −Mk+1 + Mk and
sum from t to T − 1:

−
T∑

k=t+1

mkCk = mT VT −mtVt −MT + Mt.

Letting T → ∞ the term mT VT → 0 a.s. by the assumption and MT → M∞ a.s.
from the convergence result of UI martingales (Williams [19] p. 134). Thus we have

Vtmt =
∞∑

k=t+1

Ckmk −M∞ + Mt a.s.

The convergence result concerning UI martingales also ensures the relation E [M∞|Ft] =
Mt a.s. Taking conditional expectations with respect to Ft and using the definition
of discount factors yields

Vt = E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]
.

(i) ⇔ (iii): We begin with the ’if’ part. Fix a t ∈ N. We get

Vt = E

[
m(t, t + 1)Ct+1 +

∞∑

k=t+2

Ckm(t, k)

∣∣∣∣∣Ft

]

= E

[
m(t, t + 1)Ct + m(t, t + 1)

∞∑

k=t+2

Ckm(t + 1, k)

∣∣∣∣∣Ft

]

= E [m(t, t + 1)(Ct+1 + Vt+1)|Ft] .
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Now let T ≥ t. From VT = E
[∑∞

k=T+1 Ckm(T, k)|FT

]
we get

E [m(t, T )VT |Ft] = E

[ ∞∑

k=T+1

Ckm(t, k)

∣∣∣∣∣Ft

]
=

1
mt

E

[ ∞∑

k=T+1

Ckmk

∣∣∣∣∣ Ft

]
.

Since ∣∣∣∣∣
∞∑

k=T+1

Ckmk

∣∣∣∣∣ ≤
∞∑

k=1

|Ck|mk

and the last random variable is integrable by assumption we get, for every t ∈ N
and A ∈ Ft,

lim
T→∞

E [m(t, T )VT 1A] = E
[

lim
T→∞

m(t, T )VT 1A

]
= 0.

To prove the ’only if’ part we iterate (iii) (a) to get

Vt = E

[
T∑

k=t+1

Ckm(t, k) + m(t, T )VT

∣∣∣∣∣Ft

]

=
1

mt
E

[
T∑

k=t+1

Ckmk

∣∣∣∣∣Ft

]
+ E [m(t, T )VT |Ft] .

When we let T →∞ the the last term tend to 0 a.s. from (iii) (b). Since
∣∣∣∣∣

T∑

k=t+1

Ckmk

∣∣∣∣∣ ≤
∞∑

k=1

|Ck|mk

and the last random variable is integrable by assumption we get

Vt = E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]

by using the Theorem of Dominated Convergence. 2

Remark 3.7 We have written conditions (ii) (a) and (iii) (b) on the form in the
theorem because of its convenient form. A more intuitive way of writing it, from an
economical/financial point of view, would be to write condition (ii) (a) as

∆Vt = rtVt−1 − Ct +
1

mt
∆Mt,

where rt = mt−1/mt − 1 is the instantanuous rate, and Condition (iii) (a) as

Vt = E

[
Vt+1 + Ct+1

1 + rt+1

∣∣∣∣ Ft

]
.

Note that if mt is predictable, then (1/mt)∆Mt is a martingale difference, and we
have E [∆Vt|Ft−1] = rtVt−1 − E [Ct|Ft].

3.1 Exemples

We will now discuss well known relations from finance, economics and insurance
where the use of Theorem 3.6 is needed. In these applications often some assump-
tions on the cash flows and/or the discount processes are usually made. Theorem
3.6 however shows that the reasoning can be made under quite mild assumptions.
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It is a well-known fact from arbitrage pricing that the discounted gains process
should be a martingale under an equivalent martingale measure In our setting the
UI martingale M represents the discounted gains process. See Duffie [9] and Pliska
[17] for theory and applications of no arbitrage pricing in discrete time.

If we define

Lt = Mt −Mt−1 = Vtmt − Vt−1mt−1 + Ctmt,

then L will be a sequence of martingale differences and we will especially have
E [LtLs] = 0 for all s, t ∈ N. If the cash flows are interpreted as losses faced by
an insurance company, then Lt is the discounted annual loss in the time period
(t − 1, t]. The fact that the discounted annual losses are uncorrelated is in life
insurance known as Hattendorff’s Theorem. See Papatriandafylou & Waters [16]
for this result and more on the same theme. One the first to prove Hattendorff’s
Theorem using martingale methods seems to be Bühlmann [1]. We remark that in
life insurance applications the value process V is known as the prospective reserve.
The value at time t of a cash flow stream C of insurance claims is then defined to
be

Qt =
1

mt
E

[ ∞∑

k=1

Ckmk

∣∣∣∣∣Ft

]
=

t∑

k=1

m(t, k)Ck + E

[ ∞∑

k=t+1

Ckmk

∣∣∣∣∣Ft

]
=: At + Rt,

where At is the accumulated payments and Rt is the prospective reserve (i.e. what
we call the value process). See Bühlmann [2] and Bühlmann’s contribution in [15].

In financial economics and econometrics models, the starting point is often the
Relation (ii) (a) in Theorem 3.6. The return of a stock from time t to time t + 1 is
defined as

Rt+1 =
Pt+1 + Dt+1

Pt
− 1,

where Pt and Pt+1 is the price of the stock at time t and t+1 respectively and Dt+1

is the dividend per share at t + 1. Taking the conditional expectation with respect
to Ft gives

Pt = E

[
Pt+1 + Dt+1

1 + Rt+1

∣∣∣∣∣Ft

]
; (4)

which is (ii) (a) with renamed processes. By iterating this we get

Pt = E

[
T∑

k=t+1

Dk

k∏

`=t+1

(
1

1 + R`

) ∣∣∣∣∣Ft

]
+ E

[
PT

k∏

`=t+1

(
1

1 + R`

) ∣∣∣∣∣Ft

]
.

To be able to write the stock price at time t as the disounted sum of all future
dividends the second term in the equation above has to go to zero a.s. This condi-
tion, (ii) (b) in Theorem 3.6, is known as the transversality condition. Now let us
look for solutions to Eq. (4), dropping all other assumptions on the behavior of the
solution. In this case there is no longer a unique solution. Following Campbell et
al [3] we call the solution with the transversality condition imposed PD. Obviously
this will be a solution even when we look for solutions only to (4). Now we have
the following fact: Any solution P to Eq. (4) can be written

Pt = PDt +
Zt

mt
, t ∈ N,

where Z has the martingale property and mt =
∏t

k=1

(
1

1+Rk

)
. To see this, let P

be any solution to (4). Then

Pt − PDt = E

[
Pt − PD(t+1)

1 + Rt+1

∣∣∣∣∣Ft

]
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if and only if

(Pt − PDt)mt = E

[
(
Pt+1 − PD(t+1)

)
mt+1

∣∣∣∣∣Ft

]
,

implying that (P − PD)m has the martingale property. The solution PD is known
as the fundamental value or the bubble free solution (since B ≡ 0 in this case)
and Z/m is called a rational bubble. The process Z/m is called a bubble since its
presence yields prices that are higher than the fundamental value, and it is ’rational’
in the sense that it is not inconsistent with rational expectations. Campbell et al [3]
and Cuthbertson [7] discuss rational bubbles from both a theoretical and empirical
point of view.

Finally we mention the important subclass of Markov models. By assuming an
underlying Markov process driving the cash flows and the discount rate the general
formula for the value process can be further simplified. Much of this can be found
and is commented on in Duffie [10]. There the close connection between Markov
pricing and semigroups is pointed out. For the semigroup approach see also Garman
[12] and references therein. See also the general texts in Duffie [9] and Pliska [17].

3.2 Asymptotic behavior of the value process

We know that Vtmt → 0 a.s., but what will happen to Vt when t → ∞? We will
present two results showing that Vt can, given some conditions, converge to ’almost
anything’ in ways which will be precised below. The essential assumption is that
we have a strong law of large numbers for the sequence log(1 + rt). Roughly this
means that the discount process behaves like mt ∼ e−λt for some λ > 0 when t is
large.

Proposition 3.8 Let C and m be a cash flow process and discount process respec-
tively and let X be an integrable random variable. If

(i) There exists a constant λ > 0 such that

1
t

t∑

k=1

log(1 + r(k)) → λ a.s. as t →∞,

(ii) Ct → X a.s. as t →∞, and

(iii) there exists an integrable random variable Z s.t. for all t ≥ 0
∣∣∣Ct

mt

e−λt

∣∣∣ ≤ Z a.s.

then

Vt → e−λ

1− e−λ
X a.s. as t →∞

Proof. First note that condition (i) above is equivalent to mt → e−λt a.s. as t →∞.

Vt = E

[ ∞∑

k=t+1

Ckm(t, k)

∣∣∣∣∣Ft

]
=

1
mt

E

[ ∞∑

k=t+1

Ckmk

∣∣∣∣∣Ft

]

=
e−λt

mt
E

[ ∞∑

k=1

e−λkCk+t
mk+t

e−λ(k+t)

∣∣∣∣∣Ft

]
(5)
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Now from (iii) above
∣∣∣∣∣
∞∑

k=1

e−λkCk+t
mk+t

e−λ(k+t)

∣∣∣∣∣ ≤
∞∑

k=1

e−λk
∣∣∣Ck+t

mk+t

e−λ(k+t)

∣∣∣ ≤ Z

∞∑

k=1

e−λk = Z
e−λ

1− e−λ

implying that

E

[∣∣∣∣∣
∞∑

k=1

e−λkCk+t
mk+t

e−λ(k+t)

∣∣∣∣∣

]
≤ E [Z]

e−λ

1− e−λ
< ∞

We now use the Dominated Convergence Theorem for conditional expectations (see
for instance Durrett [11] p. 264). To do this, first note that

lim
t→∞

∞∑

k=1

e−λkCk+t
mk+t

e−λ(k+t)
=

∞∑

k=1

e−λkX =
e−λ

1− e−λ
X,

where we have used the Dominated Convergence Theorem. Now it follows from the
theorem of dominated convergence for conditional expectations that when t →∞,

E

[ ∞∑

k=1

e−λkCk+t
mk+t

e−λ(k+t)

∣∣∣∣∣Ft

]
→ E

[
e−λ

1− e−λ
X

∣∣∣∣∣F∞

]
=

e−λ

1− e−λ
X a.s.

Now let t →∞ in Eq. (5). Since e−λt

mt
→ 1 a.s. it follows that Vt → e−λ

1−e−λ X a.s. as
t →∞, and the proposition is proved. 2

Corollary 3.9 Let C and m be a dividend and discount process respectively, and
let X be an integrable random variable. If 0 ≤ Ct ↑ X a.s. as t → ∞ and there
exists a constant λ > 0 such that

1
t

t∑

k=1

log(1 + r(k)) ↓ λ a.s. as t →∞,

then Vt → X a.s. as t →∞.

Proof. That 1
t

∑t
k=1(log(1 + r(k)) decreases to λ implies that mt ≤ e−λt a.s. for

all t ∈ N. Thus,
∣∣Ct

mt

e−λt

∣∣ ≤ X, and since X is integrable the previous proposition
applies. 2

Proposition 3.8 has the unsatisfactory integrability condition (iii). The following
result does not need this, but is on the other hand another kind of result. It says
that given an integrable random variable X, there exists a cash flow process such
that associated value processes converges to X a.s. Thus we can choose the cash
flow process so that it will suit our purposes.

Proposition 3.10 Let X be an integrable random variable. If there exists a con-
stant λ > 0 such that

1
t

t∑

k=1

log(1 + r(k)) → λ a.s. as t →∞

then there exists a cash-flow process such that

Vt → X a.s.
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Proof. Take λ > 0 such that mt → e−λt a.s. and fix t ≥ 0. For k ≥ t let

Ck =
E [X|Fk] e−λk(1− e−λ)

m(k)e−λ
.

Now,

Vt = E

[ ∞∑

k=t+1

E [X|Fk] e−λk(1− e−λ)
m(k)e−λ

m(t, k)

∣∣∣∣∣Ft

]

=
1− e−λ

m(t)e−λ
E

[ ∞∑

k=1

E [X|Ft+k] e−λ(t+k)

∣∣∣∣∣Ft

]

=
1− e−λ

m(t)e−λ
E [X|Ft]

∞∑

k=1

e−λ(t+k)

=
e−λt

m(t)
E [X|Ft] → X a.s.

as t → ∞ since e−λt

m(t) → 1 a.s. and E [X|Ft] → E [X|F∞] = X a.s. when t → ∞.
The interchange of summation and conditional expectation is justified by the Fubini
theorem. To see this first note that for A ∈ Ft

E
∣∣1AE [X|Ft+k]

∣∣ = E
[
E

[
1A|E [X|Ft+k] |∣∣Ft

]]

= E
[
1AE

[|E [X|Ft+k] |
∣∣Ft

]]

≤ E
[
1AE

[
E

[|X|∣∣Ft+k

] ∣∣Ft

]]

= E
[
1AE

[|X|
∣∣Ft

]]
.

Thus for any A ∈ Ft we get

E

[ ∞∑

k=0

∣∣∣1AE [X|Ft+k] e−λ(t+k)
∣∣∣
]

=
∞∑

k=0

E |1AE [X|Ft+k]| e−λ(t+k)

≤
∞∑

k=0

e−λ(t+k)E
[
1AE

[|X|
∣∣Ft

]]

= e−λtE
[
1AE

[|X|
∣∣Ft

]] ∞∑

k=0

e−λk

=
e−λt

1− e−λ
E

[
1AE

[|X|
∣∣Ft

]]
< ∞,

which justifies the interchange of expectation and summation. 2
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3.3 Stopping the cash flow and value process

Theorem 3.6 on the three equivalent representations of the value process concerns
the value at deterministic times. It also assumes that the cash flow stream is defined
for all t ≥ 0. In some cases we would like to consider the value at a stopping time
and/or the cash flow process stopped at some stopping time. Before we proceed
we recall the definition and some basic facts regarding stopping times, see e.g.
Durrett [11], or Neveu [13] for more on stopping times. By utilising the fact that
the martingale Mt = Vtmt +

∑t
k=1 Ckmk from Theorem 3.6 is uniformly integrable

we can get the following result.

Proposition 3.11 Let C be a cash flow process and let m be a discount process
such that E

[∑∞
k=t+1 |Ck|m(t, k)

]
< ∞ for every t ∈ N. Further let τ and σ be

(Ft)-stopping times such that σ ≤ τ a.s. Then the following two statements are
equivalent

(i) We have

Vσ = E

[
τ∑

k=σ+1

Ckm(σ, k) + Vτm(σ, τ)1τ<∞

∣∣∣∣∣Fσ

]
on {σ < ∞}.

(ii) (a) For every t ∈ N

Mt = Vtmt +
t∑

k=1

Ckmk

is a UI martingale, and

(b) Vtmt → 0 a.s. when t →∞.

Proof. We begin with the implication (ii) ⇒ (i). The stopping time τ may be
unbounded so we consider the stopping times τ ∧ n, where n ∈ N. We get

Mτ∧n = Vτ∧nmτ∧n +
τ∧n∑

k=1

Ckmk. (6)

Now,
Vτ∧nmτ∧n

a.s.−→ Vτmτ1τ < ∞,

as n → ∞ since Vnmn1τ=∞ → 0 a.s. By letting n → ∞ in Equation (6) we thus
get

Mτ =
τ∑

k=1

Ckmk + Vτmτ1τ<∞.

Since M is uniformly integrable we can take the conditional expectation of Mτ with
respect to the σ-algebra Fσ to get on {σ < ∞}

σ∑

k=1

Ckmk + Vσmσ = Mσ = E [Mτ |Fσ]

= E

[
τ∑

k=1

Ckmk + Vτmτ1τ<∞

∣∣∣∣∣Fσ

]

=
σ∑

k=1

Ckmk + E

[
τ∑

k=σ+1

Ckmk + Vτmτ1τ<∞

∣∣∣∣∣Fσ

]
.

Since |∑σ
k=1 Ckmk| ≤ |∑∞

k=1 Ckmk| < ∞ a.s. we can cancel the sum
∑σ

k=1 Ckmk

from both sides. Dividing by mσ gives the desired result. To prove (i) ⇒ (ii) we let
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τ = ∞ and σ = t, for t ∈ N. We are now back to Theorem 3.6 and the proof found
there. 2

We know from Theorem 3.6 that (ii) in the previous proposition is equivalent to
the fact that the value process has the form Vt = E

[∑∞
k=t+1 m(t, k)Ck

∣∣∣Ft

]
. Thus

if we replace the infinite horizon and the time t with two stopping times, we still
have the equivalences of Theorem 3.6. We finally remark that the stopping times τ
and σ may be unbounded. For τ this is necessary since we want to generalise the
infinite horizon by replacing it with a stopping time.
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On the Valuation of Cash Flows – Continuous Time

Models

Fredrik Armerin

Abstract

Valuation models where the value at a time is defined as the expected dis-
counted value of a stream of cash flows are considered. We establish three
equivalent formulations of this value process, each of which has its own mer-
its. When considering Brownian models, it is possible to write the value
process as a solution to a forward-backward stochastic differential equation.
Applications include real options and the question of recovering cash flows
from a given value process.
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1 Introduction

When an individual or firm is faced with a stream of future cash flows the immediate
question is: What is the present value of these cash flows? The natural way to
value the cash flows is to discount them using some suitable discount rate and then
sum them up. If the cash flows and/or the discount rates are stochastic we also
have to take expectations. See Brealey & Myers [4] for the basics on valuation
of cash flows Copeland et al [7] for an introduction to corporate valuation. In
life insurance the prospective reserve is the discounted value of future cash flows.
Martin-Löf [19] and Norberg [21] discuss properties of the reserves (prospective and
retrospective), and Norberg [20], with applications to insurance in mind, gives an
axomatic approach to valuation. Norberg [22] gives a general introduction to life
insurance. In the approach of no arbitrage pricing it is a well known fact that
absence of arbitrage will imply the existence of an equivalent martingale measure
under which the expectations are to be taken. The discount rate in this case should
then be taken as the risk-free rate. Björk [3] and Duffie [10] are standard text
books and Delbaen & Schachermayer [8] presents the general theory when the stock
prices are semimartingales. If there is no capital market generating the cash flows
we can not rely on no arbitrage pricing and we have to choose some probabilities
together with a risk-adjusted rate to try to value the cash flows. It could even be
that different individuals have different perceptions of the probability laws ruling
the cash flows and the discount rates. Whatever route we take, the same structure
applies: the value is an expected sum of the discounted cash flows. Recently the
theory of real options has gained interest in the valuation problems. The idea is
to identify an emedded option in the investment and adding this value to the net
present value (calculated as descibred above). There are two general ways of doing
the modelling underlying the real option valuation. Either one models the value
directly, or one models the cash flows generating the value and then uses the this
calculated value as the underlying process in the option valuation. In the latter
case we need to understand how the dynamics of the cash flow process influence the
dynamics of the value process. We will approach this problem as an application in
the Brownian models treated below. In Dixit & Pindyck [9] many examples of the
theory of real options are presented, while Copeland & Antikarov [6] focuse more
on how to apply the theory in practice. Schachermayer & Hubalek [14] discuss the
connection of real options to the theory of no arbitrage pricing.

Although one could argue that the cash flows arrive at discrete times, in this
paper we choose to work in continuous time. The advantage of this approach is
that we can rely on the stochastic calculus of semimartingales, and especially on
the Itô-diffusion models. Assume that a firm is facing the (stochastic) cashflows
(Ct)t≥0. We define the value at time t as

Vt = Et

[∫ ∞

t

Cse
−r(s−t)ds

]
,

where Et [·] denotes that the expectations should be taken with respect to all known
information up to time t, and r is some constant discount rate. We rewrite this
expression as

Vte
−rt = Et

[∫ ∞

0

Cse
−rsds

]
−

∫ t

0

Cse
−rsds.

If we assume that E
∣∣∫∞

0
Cse

−rsds
∣∣ < ∞, then this is a decompostion where the

discounted present value is the sum of a uniformly martingale and a predictable
process. If we denote the martingale by Mt, it is easy to see that the dynamics of
the present value Vt is given by

dVt = (rVt − Ct)dt + ertdMt.
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That is, the value process Vt is also a semimartingale. We can also follow Cochrane
[5], who offers the following heuristic analysis. Define Λt = e−rt, which we call a
deflator, and start with

VtΛt = Et

[∫ ∞

t

CsΛsds

]
= Et

[∫ t+h

t

CsΛsds + Vt+hΛt+h

]
.

Moving VtΛt to the RHS and letting h ↓ 0 we get 0 = CtΛtdt + Et [d(VtΛt)]. The
idea when introducing Λt is of course to allow for more general discount factors,
especially stochastic ones. We also want to generalise the cash flows, allowing
processes of finite variation as integrators with which we integrate the deflator.

The problem of valuation, defined as determining the value process, has connec-
tions to forward–backward stochastic differential equations (FBSDE), especially to
the so called Black’s consol rate conjecture. This conjucture is about the relation
between the value of a bond and the disount rate. The price (value) Yt of the bond
is assumed to be Yt = E

[∫∞
t

e−
R s

t
rududs

∣∣∣Ft

]
and the rate (in this context called

consol rate) is modelled as drt = µ(rt, Yt)dt + α(rt, Yt)dBt. The question in the
consol rate problem is if, given the dynamics of the underlying rate, it is always
possible to find a diffusion term of the price of the bond that is consistent with the
dynamics of the rate. This problem was solved by Duffie et al [11] by using FBSDE
techniques. The idea is to write the value process on differential form and then us-
ing the Martingale Representation Theorem. It can be shown that the consol rate
problem can be formulated as follows: Find a solution (Xt, Yt, Zt) to the following
system of equations:





dXt = b(Xt, Yt)dt + σ(Xt, Yt)dBt, t ∈ [0,∞)
dYt = (h(Xt)Yt − 1)dt− ZtdBt t ∈ [0,∞),

X(0) = x0,
Yt bounded a.s., uniformly in t ∈ [0,∞).

B is here a Brownian motion. We show that the general valuation problem, in the
Brownian model, can equivalently be written as an FBSDE.

The rest of the paper is organized as follows. In Section 2 we precise what
we mean by a cash flow process and deflator. Section 3 contains the definition
and the basic properties of the valuation process. We show that there exists three
equivalent forms on which we can state that the value process is generated by the
cash flows and deflator as discussed above. Some applications are then discussed.
Finally, Section 4 contains the case of Brownian models, where we focus on two
questions. Firstly the connection the valuation problem has to FBSDE. Secondly
we investigate how the dynamics of the cash flow process and the dynamics of the
value process depend on each other. This is then applied to real options. This is
a continuation of the paper Armerin [1] where discrete time models are discussed.
Sections 2 and 3 has counterparts in discrete time models, see Armerin [1].
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2 Preliminaries

Let (Ω, F , P ) be a complete probability space equipped with a filtration (Ft)t≥0.
The filtration is assumed to be right continuous and complete. Any adapted process
will be adapted with respect to this filtration. We also let F∞ denote the σ-algebra∨

t≥0 Ft, and assume that F∞ = F . We say that a process is cadlag if almost
every sample path of the process is right continuous with left limits.

By an increasing process we mean a process which paths a.s. are positive, in-
creasing and right continuous. An increasing function has left limits, and thus any
increasing process is cadlag. We will use the convention A0− = 0 a.s. for every
increasing process A, but we do not require that A0 = 0 a.s. A process is a finite
variation process (or an FV process) if it is cadlag and adapted and if almost every
sample path is of finite variation on each compact subset of [0,∞). A process X is
said to be optional if the mapping X : [0,∞)×Ω → R is measurable when [0,∞)×Ω
is given the optional σ-algebra. Since the optional σ-algebra is generated by the
family of all adapted process which are cadlag (Elliot [13], Theorem 6.35) every
FV process A is optional. If A is an FV process and X is a real valued process
on [0,∞) × Ω that is B ×F -measurable (here B denotes the Borel σ-algebra on
[0,∞)) we define the Stieltjes integral

(X ·A)t(ω) =
∫

[0,t]

Xs(ω)dAs(ω), (1)

whenever it exists. If X ·A exists for all t ∈ [0,∞) and almost all ω ∈ Ω then (X ·A)t

defines a process with (X · A)0 = X0A0. If X is optional then there is an optional
version of (X ·A). If A is an FV process then |A|t(ω) =

∫ t

0
|dAs(ω)| denotes the total

variation of A. |A| is adapted and cadlag and |A|0 = |A0|. If A is an FV process and
X is a measurable process then the integral

∫ t

0
Xs(ω)|dAs(ω)| denotes integration

with respect to d|A|. A semimartingale is an adapted and cadlag process (Xt)t≥0

having a decomposition Xt = X0 +Mt +At, where M is a local martingale and A is
an FV process.1 Assuming that the involved processes are semimartingales is often
general enough. Norberg [22] argues that the generality needed is often gained if we
make the stronger assumption that the cash flow process is piecewise differentiable.
A property is said to hold piecewise if it holds everywhere except possibly at a
finite number of points in every finite interval. Thus, if the set of jump points is not
empty it must be on the form {t0, t1, . . .} with t0 < t1 < . . ., and in the case it is
infinite, limj→∞ tj = ∞. If the piecewise continuous process X, defined on [0,∞),
can be written

Xt(ω) = Xc
t (ω) + Xd

t (ω) =
∫ t

0

xs(ω)ds +
∑

0<s≤t

[Xs(ω)−Xs−(ω)] , (2)

where x is a piecewise continuous process, then X is also piecewise differentiable.
The integral

∫ t

0
is interpreted as

∫
(0,t]

. Eq. (2) can equivalently be written on
differential form:

dXt(ω) = xt(ω)dt + Xt(ω)−Xt−(ω).

2.1 Cash flows and deflators

Definition 2.1 A cash-flow process (Ct(ω))t≥0 is an FV process.
1We prefer to use the ’classical’ definition of semimartingales. There are several equivalent

defintions in the literature, see Protter [24], Chapter III, Theorem 1.
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This definition of the cash flow process makes it trivially a semimartingale. We can
also use it as an integrator, thus making it possible to define processes of the type
as in Eq. (1).

Definition 2.2 A deflator is a strictly positive semimartingale that is finite a.s.

This is a generalisation of the definition of Duffie [10], who defines a deflator to
be a strictly positive Itô process. The reason for demanding the deflator to be a
semimartingale, and not a more general process, is that we want to use the differ-
entiation rule valid for semimartingales. We note here that if Λ is a deflator then
both 1/Λ and lnΛ are well defined, and since 1/x and ln x are twice continuously
differentiable on (0,∞), both 1/Λ and ln Λ are semimartingales (this follows from
Theorem 32 of Chapter II in Protter [24]).

Definition 2.3 Given a deflator Λ, the discount process implied by Λ is defined by

m(s, t) =
Λ(t)
Λ(s)

, s, t ≥ 0.

The following proposition, which proof is an immediate consequence of the defi-
nition of deflator, presents some important properties of the discount process. In
Armerin [1] the properties of m proved in the following proposition were taken as
the definition of the discount process. The reason for this change is that the defi-
nition given in Armerin [1] is the more natural one and works well in dicrete time.
In continuous time, however, it is easier to work with the deflator as the defining
object.

Proposition 2.4 Let m be a discount process implied by the deflator Λ. Then

(i) m(s, t, ω) is Fmax(s,t)-measurable for every s, t ∈ [0,∞).

(ii) 0 < m(s, t) < ∞ a.s. for every s, t ∈ [0,∞).

(iii) m(s, t) = m(s, u)m(u, t) a.s for every 0 ≤ s ≤ u ≤ t.

A discount process fulfilling 0 < m(s, t) ≤ 1 a.s. for every s, t ∈ [0,∞) will be
referred to as a normal discount process. We see that m is normal if and only if Λ
is nondecreasing.

Proposition 2.5 A discount process m, with deflator Λ, can be written in the form

m(s, t, ω) = exp
(
−

∫ t

s

λ(u, ω)du

)

if and only if lnΛ(t, ω) is absolutely continuous in t for almost every ω ∈ Ω, with
density −λ(t, ω).

Proof. Since lnΛ(t, ω) is absolutely continuous if and only if it can be written

ln Λ(t, ω) = ln Λ(s, ω)−
∫ t

s

λ(u, ω)du,

the proposition follows from the defining identity Λ(t, ω) = Λ(s, ω)m(t, s, ω). 2
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3 Valuation

Definition 3.1 Given a cash flow process C and a deflator Λ such that E
[∫

[0,∞)
Λs|dCs|

]
<

∞, the value process is defined for t ∈ [0,∞) as

Vt =
1
Λt

E

[∫

(t,∞)

ΛsdCs

∣∣∣∣∣Ft

]
.

By noting that
∫
[0,∞)

=
∫
[0,t]

+
∫
(t,∞)

and using the fact that every optional process
is adapted (Jacod & Shiryaev [15], Proposition 1.21) we get

VtΛt = E

[∫

[0,∞)

ΛsdCs

∣∣∣∣∣ Ft

]
−

∫

[0,t]

ΛsdCs = Mt − (Λ · C)t. (3)

Since

E|Mt| = E

∣∣∣∣∣E
[∫

[0,∞)

ΛsdCs

∣∣∣∣∣Ft

]∣∣∣∣∣ ≤ E

[∫

[0,∞)

Λs|dCs|
]

< ∞

for every t ∈ [0,∞), Mt = E
[∫

[0,∞)
ΛsdCs

∣∣∣ Ft

]
is a uniformly integrable martin-

gale. The filtration (Ft) is right continuous, thus there exists a modification of M
that is right continuous. We also remark here that M∞ = limt→∞Mt =

∫∞
0

ΛdCs

a.s. These facts immediately follow from Elliot [13], Theorem 4.11. Now, since both
M and Λ ·C are right continuous and adapted the value process is also continuous
and adapted. From this it follows that the value process is optional. Eq. (3) implies
that

Vt =
Mt

Λt
− (Λ · C)t

Λt
.

Since M is a (true) martingale it is especially a semimartingale. C · Λ is a process
of finite variation, and is thus also a semimartingale. Since Λ is a strictly positive
semimartingale it follows that 1/Λ is a stricly positive semimartingale, and since the
product of two semimartingales is again a semimartingale we see finally that V is a
semimartingale. We remark here the fact that Delbaen & Schachermayer [8] show
that it is reasonable to model the price process of an financial asset as a semimartin-
gale. Norberg [21] defines the prospective reserve of a life insurance company in the
same way as we have defined the value here. In life insurance the value at time t

of a cash flow stream is defined as, using our definitions, E
[

1
Λt

∫
[0,∞)

ΛsdCs

∣∣∣ Ft

]
.

For more on the reserves in life insurance see Norberg [21] and references therein
and Norberg [22].

As in the discrete time case (Armerin [1], Theorem 3.6) there exist three equiva-
lent representations of the value processes. The only general assumptions made here
are measurability conditions on C and Λ and the integrability condition making M
into a uniformly integrable martingale. We also need a condition essentially stating
that the discounted value goes to zero as t tends to infinity (see the discussion in
Armerin [1] on rational bubbles, what happens if we disgard this condition).

Theorem 3.2 Let C and Λ be a cash flow process and a deflator respectively, such
that E

[∫
[0,∞)

Λs|dCs|
]

< ∞. Then the following three statements are equivalent.

(i) For every t ∈ [0,∞)

Vt =
1
Λt

E

[∫

(t,∞)

ΛsdCs

∣∣∣∣∣ Ft

]
. (4)
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(ii) (a) For every t ∈ [0,∞)

Mt = VtΛt +
∫

[0,t]

ΛsdCs (5)

is a uniformly integrable martingale, and

(b) VtΛt → 0 a.s. when t →∞.

(iii) For each t ∈ [0,∞) we have

(a) For every h > 0

VtΛt = E

[
Vt+hΛt+h +

∫

(t,t+h]

ΛsdCs

∣∣∣∣∣ Ft

]
, (6)

and

(b) limT→∞E [Vt+T Λt+T |Ft] = 0.

Proof. We will show (i)⇔(ii) and (i)⇔(iii).

(i)⇔(ii): To prove the ’if’ part we rewrite Eq. (4) as Mt = VtΛt +
∫
[0,t]

ΛsdCs,
t ∈ [0,∞). We know from above that M is a uniformly integrable martingale, and
using this together with the fact that Mt

a.s.−→ M∞ =
∫∞
0

ΛsdCs gives

lim
t→∞

VtΛt = lim
t→∞

(
Mt −

∫

[0,t]

ΛsdCs

)
= 0 a.s.

Turning to the ’only if’ part we let t → ∞ in Eq. (5). Using (ii) (b) we get
M∞ =

∫
[0,∞)

ΛdCs. Taking the conditional expectation with respect to the σ-
algebra Ft we get

VtΛt +
∫

[0,t]

ΛsdCs = Mt = E [M∞|Ft]

= E

[∫

[0,∞)

ΛsdCs

∣∣∣∣∣ Ft

]

=
∫

[0,t]

ΛsdCs + E

[∫

(t,∞)

ΛsdCs

∣∣∣∣∣ Ft

]
.

Rearranging this relation gives the desired result.

(i)⇔(iii): For the ’if’ part take h > 0. We get, using Eq. (4),

VtΛt = E

[∫

(t,∞)

ΛsdCs

∣∣∣∣∣ Ft

]

= E

[∫

(t,t+h]

ΛsdCs +
∫

(t+h,∞)

ΛsdCs

∣∣∣∣∣ Ft

]

= E

[∫

(t,t+h]

ΛsdCs + E

[∫

(t+h,∞)

ΛsdCs

∣∣∣∣∣ Ft+h

]∣∣∣∣∣ Ft

]

= E

[∫

(t,t+h]

ΛsdCs + Λt+hVt+h

∣∣∣∣∣ Ft

]
.
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Since ∣∣∣∣∣
∫

(t,∞)

ΛsdCs

∣∣∣∣∣ ≤
∫

(t,∞)

|Λs||dCs| ≤
∫

[0,∞)

|Λs||dCs|

and
∫
[0,∞)

|Λs||dCs| is integrable, we use the Dominated Convergence Theorem to
get for every A ∈ Ft

lim
T→∞

E [Vt+T Λt+T 1A] = lim
T→∞

E

[∫

(t+T,∞)

ΛsdCs1A

]
= E

[
lim

T→∞

∫

(t+T,∞)

ΛsdCs1A

]
= 0,

where the last equality follows from the fact that
∫
[0,∞)

ΛsdCs is finite a.s. To prove
the other direction of the equivalence we let T →∞ in Eq. (6):

VtΛt = lim
T→∞

E [Vt+T Λt+T |Ft] + lim
T→∞

E

[∫

(t,t+T ]

ΛsdCs

∣∣∣∣∣ Ft

]

= lim
T→∞

E

[∫

(t,t+T ]

ΛsdCs

∣∣∣∣∣ Ft

]
.

Again we used the Dominated Convergence Theorem to interchange the limit and
the expectation to get the desired conclusion. 2

3.1 Stopping Times

It is not difficult to see that Theorem 3.2 can be generalised to allow also for stopping
times. The content of the following theorem is that we can strenghten the results
of Theorem 3.2 by replacing both the infinite horizon and the time of valuation
with a stopping time. For the proof we essentially only need to use the Theorem of
Optional Stopping for uniformly intgrable martingales.

Theorem 3.3 Let C and Λ be a cash flow process and a deflator respectively, and
such that E

[∫
[0,∞)

Λs|dCs|
]

< ∞. Then the following two statements are equivalent.

(i) For all stopping times σ and τ such that 0 ≤ σ ≤ τ a.s.

Vσ =
1

Λσ
E

[
Vτ1τ<∞ +

∫

(σ,τ ]

ΛsdCs

∣∣∣∣∣ Fσ

]
on {σ < ∞}.

(ii) (a) For every t ∈ [0,∞)

Mt = VtΛt +
∫

[0,t]

ΛsdCs

is a uniformly integrable martingale, and

(b) VtΛt → 0 a.s. when t →∞.

Proof. We first show (ii)⇒(i). Take n ∈ N, then

Mτ∧n = Vτ∧nΛτ∧n +
∫

[0,τ∧n]

ΛsdCs

a.s.−→ VτΛτ1τ<∞ +
∫

[0,τ ]

ΛsdCs as n →∞
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From this and the Theorem of Optional Stopping we get

VσΛσ1σ<∞+
∫

[0,σ]

ΛsdCs = Mσ = E [Mτ |Fσ] = E

[
VτΛτ1τ<∞ +

∫

[0,τ ]

ΛsdCs

∣∣∣∣∣ Fσ

]
.

Using the fact that
∫
[0,σ]

ΛsdCs is finite a.s. and measurable with respect to Fσ

yields the desired result. To show (i)⇒(ii) we let τ = ∞ and σ = t and then use
the proof of Theorem 3.2. 2

3.2 On the local dynamics of the value process

In this section we will comment on the local behavior of the value process. The
starting point is the relation

VtΛt = Mt − (Λ · C)t.

Since all the processes in this expression are semimartingales we can use the differ-
entiation rule for products of semimartingales (Protter [24], Chapter II, Corollary
2) to get

d(VtΛt) = Vt−dΛt + Λt−dVt + d[V, Λ]t = dMt − ΛtdCt. (7)

To increase the economical interpretation of Eq. (7) note that if we have a cash flow
given by rf

t dt for t ∈ [0,∞), where rf
t is measurable and adapted and such that for

a.e. ω ∈ Ω we have 0 ≤ rf
t (ω) for every t ∈ [0,∞), and if the value process of this

cash flow stream fulfills Vt ≡ 1, then we can think of rf
t as a locally risk-free interest

rate. Inserting this into Eq. (7) yields the relation

rf
t dt = −dΛt

Λt
+

1
Λt

dM̃t,

where M̃ is a martingale. Thus, if the deflator Λ assigns the cash flow stream given
by rf

t dt the value 1 for all t ∈ [0,∞), then, in using the same Λ for valuing another
cash flow stream C, we can express the differential of V in terms of the risk-free
rate. Assuming that Λ is a continuous process and V is continuous and strictly
positive we can write

dVt

Vt
= −dΛt

Λt
− 1

Vt
dCt +

1
VtΛt

dMt − d[V, Λ]t
VtΛt

,

or, replacing −dΛt/Λt by rf
t dt + (1/Λt)dM̃t,

dVt

Vt
= rf

t dt− 1
Vt

dCt +
1

VtΛt
dMt − 1

Λt
dM̃t − d[V, Λ]t

VtΛt
.

In this case we can rewrite the last equation as

dVt + dCt

Vt
= rf

t dt +
1

VtΛt
dMt − 1

Λt
dM̃t − d[V, Λ]t

VtΛt
.

The left hand side of this equation is the instantaneous net return of the value
process at t. Taking expectations conditioned on Ft and also write d[V, Λ]t =
dVtdΛt this equations can be written

E

[
dVt + dCt

Vt

∣∣∣∣ Ft

]
= rf

t dt− E

[
dVt

Vt

dΛt

Λt

∣∣∣∣ Ft

]
.
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We have now decompsed the expected return of the value process into two parts:
the risk-free part (rf

t dt) and a risk premium
(
−E

[
dVt

Vt

dΛt

Λt

∣∣∣ Ft

])
. Thus if dVt

Vt

and dΛt

Λt
are negatively correlated there is a positive risk premium, and if they are

positively correlated the risk premium is negative. Since we expect the value of a
risky investment giving us the cash flow c to have a return strictly greater than the
risk-free rate, we see that we expect dVt/Vt and −dΛt/Λt to be positively correlated.
The intuition is that a risky investment is desirable if its value is high in ’bad’ states
of the world (when we really need money) and low in ’good’ states of the economy
(when everything else is good), where we think of an element ω of the sample space
Ω as a state of the world. An investment with such properties will have a high price
(since demand for this desirable investment opportunity is high), and thus a low
expected return. This allows for the interpretation of dΛt/Λt as a measure of how
’bad’ a state of the economy is. See Cochran ([5] Section 1.5 and Part III) for more
on this type of asset pricing in continuous time.
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4 Brownian models

We will from now on assume that the cash flow process and deflator both are driven
by a (possibly multi-dimensional) Brownian motion. The model we use consists of
a time-homogenuous Itô diffusion X representing some state(s) that influence the
cash flows and the discount factors. Let (Ω,F , P ) be a complete probability space
and let B be an n-dimensional Brownian motion on this space. We will let (Ft)
denote the standard Brownian filtration generated by B augumented with all null
sets of F . We will also assume that F0 is the trivial σ-algebra (with the null sets
of F ) and that F∞ = F . For i = 1, . . . , d and j = 1, . . . , n let bi and σij be Borel
measurable functions from [0,∞)×Rd into R. We write b(t, x) = [bi(t, x)]1≤i≤d and
σ(t, x) = [σij(t, x)]1≤i≤d, 1≤j≤n for the vector of bi’s and matrix of σij ’s respectively.
We let X be given by the SDE

{
dXt = b(t,Xt)dt + σ(t,Xt)dBt

X0 = ξ,
(8)

with ξ being a random variable independent of the Brownian motion B and with
finite second moment: E‖ξ‖2 < ∞. If b and σ fulfill

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖
‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2)

where K > 0 is a given constant, then it is well known (see e.g. Karatzas & Shreve
[17], Theorem 5.2.9) that the SDE (8) posesses a unique strong solution. We remark
that

‖b(t, x)‖2 =
d∑

i=1

b2
i (t, x) and ‖σ(t, x)‖2 =

d∑

i=1

n∑

j=1

σ2
ij(t, x).

To return to the valuation problem, the general model in this Brownian frame-
work can be written





dXt = b(t,Xt, Ct, Λt)dt + σ(t,Xt, Ct,Λt)dBt; Y0 = y
dCt = µC(t,Xt, Ct, Λt)dt + σC(t,Xt, Ct, Λt)dBt; C0 = c
dΛt = α(t, Xt, Ct,Λt)Λtdt + β(t,Xt, Ct, Λt)ΛtdBt; Λ0 = γ,

The process Y is a external process influencing the cash flows and the deflator. It
could be macro economical (e.g. inflation, GDP or some exchange rate) or it could
be a firm specific variable (e.g. the level of knowledge among the workers of the
firm or a measure of progress in the R&D department of the firm). The drifts
and diffusions are assumed to be so nice that the system of equations possesses a
strong solution and such that Λ > 0 a.s. We often make simplifying assumptions,
specifically we almost always assume that the cash flow process and the deflator are
the only processes, and that they are independent from each other.

4.1 The value process as a solution to an FBSDE

The aim of this section is to show the close connection between the value process
and a class of forward–backward stochastic differential equations (FBSDE). We
begin by motivating why one should study backward stochastic differential equations
(BSDE). Consider the problem of finding adapted solutions to equations of the type

{
dYt = −f(t, Yt)dt, 0 ≤ t < T,
YT = ξ,

where T > 0 is a fixed time and ξ ∈ L2(Ω, FT ). If f ≡ 0 then Yt = ξ, 0 ≤ t ≤ T ,
satisfies the equation but it is not adapted to the filtration. The idea is that since
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ξ is square integrable, if we additionally assume that the filtration is generated
by some Brownian motion, then Yt = E [ξ|Ft], 0 ≤ t ≤ T , satisfies the terminal
condition, and since it is a martingale it can be represented as Yt = Y0 +

∫ t

0
ZsdBs

for some a.s. unique adapted and square integrable Z. This Y satisfies for 0 ≤ t ≤ T
{

dYt = ZtdBt

YT = ξ.

Note that if ξ ∈ D1,2 (see Nualart [23] for a definition of this space) then ξ has a
Malliavin derivative Dtξ, t ∈ [0, T ], and we have Zt = E [Dtξ|Ft] by the Clark-
Ocone formula (Nualart [23] Proposition 1.3.5). We now define a solution to this
problem as a pair (Y,Z) of adapted processes. We have thus been able to find an
adapted solution, not to our original problem, but to a similar one. It has been
shown that this is the ’right’ way to do it, see Ma & Yong [18] Chapter 1. Generally
we want solve equations on the form

{
dYt = −f(t, Yt, Zt)dt + ZtdBt,
YT = ξ,

where B is a d-dimensional Brownian motion, ξ ∈ L2(Ω,FT ) and T > 0 is a fixed
time (note that Z also is allowed to be included in f). It has turned out that there
is a variety of problems that be formulated in the context of BSDE; see e.g. Ma
& Yong [18] and references therein for the theory and applications, and El Karoui
et al [12] and El Karoui [2] for applications to finance. The extension to forward-
backward stochastic differential equations (FBSDE) is done by introducing another
state variable X moving ’forward’:





dXt = b(t,Xt, Yt, Zt)dt + σ(t,Xt, Yt, Zt)dBt,
dYt = h(t,Xt, Yt, Zt)dt + ZtdBt,

X(0) = x,
Y (T ) = g(X(T )).

For the technical assumptions on b, σ and h see Ma & Yong [18]. We will be
interested in the case when the time horizon is infinite. There is no immediate
generalisation of the above equation for this case, but Ma & Yong propose the
additional requirement that Y be bounded a.s. uniformly in t ∈ [0,∞). See also
Duffie et al [11] for an application of the infinite horizon case. We will now show
that there is an equivalent formulation of the definition of the value process in
the form of an FBSDE. Let B be an n-dimensional Brownian motion and let b :
[0,∞)×Rd×R→ Rd and σ : [0,∞)×Rd×R→ Rd be Borel measurable function.
Consider the following problems:

(P1) Find a pair of adapted, locally square integrable processes (X, V ) such that
for t ∈ [0,∞)





dXt = b(t,Xt, Vt)dt + σ(t,Xt, Vt)dBt

Vt = E

[
∫∞

t
exp

(− ∫ s

t
λ(u,Xu, Vu)du

)
g(s,Xs, Vs)ds

∣∣∣∣∣Ft

]

X0 = x,

(P2) Find a triplet (X,V, Z) of adapted process such that




dXt = b(t,Xt, Vt)dt + σ(t,Xt, Vt)dBt

dVt = [λ(t,Xt, Vt)Vt − g(t,Xt, Vt)] dt + ZtdBt

X0 = x,

E
[
VT exp

(
− ∫ T

0
λ(s,Xs, Vs)ds

)∣∣∣ Ft

]
→ 0 a.s. asT →∞ for every t ∈ [0,∞).
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Here X is the external process influencing the cash flows and the deflator, given by

dCt = g(t, Xt, Vt)dt

dΛt = −λ(t,Xt, Vt)Λtdt, Λ0 = 1,

where V is the value process. We now precise what we mean by an adapted solution
to the FBSDE (P2). To begin with we let L2(C([0, T ];Rn)) denote the set of (Ft)-
progressively measurable continuous processes X taking values in Rn such that
E

[
supt∈[0,T ] ‖X(t)‖2

]
< ∞, and let L2(0, T ;Rn) denote the set of (Ft)-progessively

measurable processes X taking values in Rn and such that
∫ T

0
E

[‖X(t)‖2] dt < ∞.
Following Ma & Yong [18] we say that (X, Y, Z) is an adapted solution to (P2) if
(X,Y, Z)

∣∣
[0,T ]

∈ L2(C([0, T ]; Rd)) × L2(C([0, T ];R)) × L2(0, T ; Rn). The following
theorem shows the equivalence between (P1) and (P2). It is a generalisation of
Theorem 3.1 in Chapter 8 in Ma & Yong [18].

Theorem 4.1 Assume that

(i)

inf
(t,x,y)∈[0,∞)×Rn×R

λ(t, x, y) = δ > 0 and sup
(t,x,y)∈[0,∞)×Rn×R

λ(t, x, y) = ε < ∞

(ii) There exists constants K > 0 and 0 ≤ δ1 < δ such that

|g(t, x, y)| ≤ Keδ1t for every (t, x, y) ∈ [0,∞)× Rn × R

Under these assumptions if (X, V, Z) is an adapted solution to (P2), then (X, V )
is an adapted solution to (P1). Conversely, if (X, V ) is an adapted solution to
(P1), then there exists an adapted, Rn-valued square integrable process Z such that
(X,V, Z) is an adapted solution to (P2).

Proof. To prove the first statement we assume that (X, V, Z) is an adapted solution
to (P2) and fix a t > 0. Using the integration by parts formula and the property
of the solution to (P2) we get for every T ≥ t

VT ΛT = VtΛt −
∫ T

t

Λsgsds +
∫ T

t

ΛsZsdBs. (9)

We note that the process (ΛtZt)t∈[0,∞) is measurable and adapted, and fulfills

∫ T

0

E
[
Λ2

t Z
2
t

]
dt ≤ e−2δT

∫ T

0

E
[
Z2

t

]
dt < ∞.

Taking conditional expectations with respect to Ft of Eq. (9) we get

E [VT ΛT |Ft] = VtΛt − E

[∫ T

t

Λsgsds

∣∣∣∣∣ Ft

]
. (10)

Now,
∣∣∣∣∣
∫ T

t

Λsgsds

∣∣∣∣∣ ≤
∫ T

t

|Λsgs|ds ≤
∫ T

t

Ke−(δ−δ1)sds

=
K

δ − δ1

[
e−(δ−δ1)t − e−(δ−δ1)T

]
≤ K

δ − δ1
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so letting T →∞ in Eq. (10) and using the Bounded Convergence Theorem yields
the desired conclusion.

For the other direction assume that (X, V ) is an adapted solution to problem
(P1). We get

VtΛt = E

[∫ ∞

0

Λsgsds

∣∣∣∣ Ft

]
−

∫ t

0

Λsgsds. (11)

From assumptions (i) and (ii) it follows that
(∫ ∞

0

Λtgtdt

)2

≤
(∫ ∞

0

Λt|gt|dt

)2

≤
(∫ ∞

0

Ke−(δ−δ1)tdt

)2

=
K2

(δ − δ1)2
< ∞ a.s.,

thus the first processes on the right of Eq. (11) is a square integrable martingale.
Defining it as M we thus have Vt = Mt/Λt −

∫ t

0
Λsgsds/Λt. Integrating by parts

yields

dVt =
1
Λt

dMt − M

Λ2
t

dΛt − Λtgt

Λt
dt +

1
Λ2

t

(∫ t

0

Λsgsds

)
dΛt

= {λtVt − gt} dt +
1
Λt

dMt.

The Martingale Representation Theorem (see e.g. Theorem 4.3.4 in Øksendal [25])
implies that there exists an a.s. unique stochastic process ϕ(s, ω) such that for
every t ∈ [0,∞) Mt = M0 +

∫ t

0
ϕ(s, ω)dBs and E

[∫ t

0
ϕ2(s, ω)ds

]
< ∞. Defining

Zt = ϕt/Λt we see that

dVt = {λtVt − gt} dt + ZtdBt.

Since X and V are locally square integrable and adapted, and
∫ T

0

E
[
Z2

t

]
dt ≤ e2εT

∫ T

0

E
[
ϕ2

t

]
dt < ∞

for every T > 0, (X, V, Z) is an adapted solution to (P2). We only have to check
that E [VT ΛT |Ft] → 0 a.s. For this purpose fix a T > t. The relation VtΛt =
Mt −

∫ t

0
Λsgsds gives

E [VT ΛT |Ft] = VtΛt − E

[∫ T

t

Λsgsds

∣∣∣∣∣ Ft

]
.

Letting T →∞ and again using the Theorem of Dominated Convergence, the right
hand side converges to 0 a.s. 2

4.2 Recovering cash flows from their value process

It is obvious that a given cash flow process uniquely determines a value process.
In this section we want to answer the opposite question: Given a value process V ,
does there always exist a cash flow process generating this process, and if it exists
is it unique? To simplify we will make the following assumption.

Assumption 4.2 The instantanous rate is constant, i.e. the deflator is given by
Λt = e−λt for some λ ∈ R, and the cash flow process is assumed to be absolutely
continuous: dCt = ctdt. The process c is assumed to be an Itô diffusion such that
E

[(∫∞
0

e−λtctdt
)2

]
< ∞.
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Given these assumptions, Mt = E
[∫∞

0
e−λscsds

∣∣ Ft

]
is a square integrable martin-

gale and from the Martingale Representation Theorem we know that there exists
a measurable and adapted process Z fulfilling E

[∫ t

0
Z2

s ds
]

< ∞ for t ∈ [0,∞)

such that Mt = M0 +
∫ t

0
ZsdBs. The dynamics of the value process V under these

assumptions is given by

dVt = (λVt − ct)dt + ZtdBt.

Let µ(x) and σ(x) be two functions such that dVt = µ(Vt)dt + σ(Vt)dBt possesses
a strong solution. Now, given µ and σ we see that in order for the value process
dynamics to be consistent with the dynamics of the value process, in terms of the
cash flow process we must have

{
µ(Vt) = λVt − ct

σ(Vt) = Zt.

Thus the cash flow process generating this value process must fulfill

ct = λtVt − µ(Vt). (12)

If we can invert this relation (i.e. expressing the value process as a function of
the cash flow process) then the program is obvious: Apply Itô’s lemma to Eq.
(12) and then replace Vt by the function of ct. Of course this demands µ to be
regular enough to be an Itô diffusion, and we have to be able to invert the function
f(x) := λx−µ(x). In guaranteeing that the function f is invertible we can demand
either µ′(x) > λ or µ′(x) < λ. The first case, however, will not be interesting as is
seen from the following example. Take α > 0 and let µ(x) = αx and σ(x) =

√
αx.

Further let λ be such that 0 < λ < α/2. Then µ′(x)− λ > 0 for all x ∈ R, but

VtΛt = V0 exp
([

1
2
α− λ

]
t +

√
αBt

)
,

which tends to infinity a.s. as t →∞, contradicting the fact that is should converge
to 0 a.s.

Theorem 4.3 Let µ ∈ C2(R;R) and let σ : R→ (0,∞) be such that

dVt = µ(Vt)dt + σ(Vt)dBt; V0 = v (13)

possesses a strong solution. If there exists a constant λ such that µ′(x) < λ,
then there exists a unique cash flow process generating the value process via Vt =
E

[∫∞
t

cse
−λ(t−s)ds

∣∣ Ft

]
. Further, letting I(x) denote the inverse function of λx−

µ(x), the cash flow process generating V has the dynamics

dct =
[
(λ− µ′(I(ct)) · µ(I(ct))− 1

2
µ′′(I(ct))σ2(I(ct))

]
dt (14)

+(λ− µ′(I(ct))) · σ(I(ct))dBt. (15)

Proof. We know from the earlier disussion that ct = λVt − µ(Vt). Introduce again
f(x) = λx − µ(x). Since f ′(x) = λ − µ′(x) it follows from the assumptions that
f ′(x) > 0 for every x ∈ R. The expression for the dynamics of the cash flow process
follows immediately from an application of Itô’s lemma. 2
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Example 4.4 Assume that we want the value process to have a linear drift term:
dVt = (a+bVt)dt+σ(Vt)dBt. We let σ be unspecified so far. Using Theorem 4.3 we
see that the cash flow process producing this drift must be ct = (λ− b)Vt−a. Since
the derivative of the drift term is b, we see that if we let λ be any constant discount
rate strictly greater than b, then the conditions of the theorem are fulfilled. The
dynamics of c becomes

dct = {a(λ− b) + b(a + ct)} dt + (λ− b)σ
(

a + ct

λ− b

)
dBt.

2

Two of the most commonly used diffusions are the geometric Brownian motion and
the mean reverting Ornstein-Uhlenbeck process.2 Together with having a lognormal
distribution and being strictly positive the first one also has very nice computation-
ally properties. The Ornstein-Uhlenbeck process is the only stationary Gaussian
process.

Proposition 4.5 Let λ > 0 be a constant discount rate. If the derivative of the
drift term (which in both cases below is constant) is strictly less than λ, then the
following holds:

(a) A value process is a geometric Brownian motion if and only if the cash flow
process generating it is a geometric Brownian motion.

(b) A value process is an Ornstein-Uhlenbeck process if and only if the cash flow
process generating it is an Ornstein-Uhlenbeck process.

Proof. For part (a) assume that c has dynamics dct = αctdt+σctdBt, where α < λ
and σ > 0. Then Vt = ct/(λ−α) and dVt = αVtdt+σVtdBt. For the other direction
we assume that Vt has dynamics given by dVt = αVtdt+σVtdBt, where again α < λ
and σ > 0. The drift condition implies that ct = (λ−α)Vt, and we are finished with
part (a). For (b) let a, b and σ be strictly positive real numbers and assume that
the cash flow process solves the Ornstein-Uhlenbeck SDE dct = a(b− ct)dt + σdBt.
(To be precise is this an Ornstein-Uhlenbeck only when b = 0.) It is well known
that the solution to this equation can be written

ct = cse
−a(t−s) + b

(
1− e−a(t−s)

)
+ σ

∫ t

s

e−a(t−u)dBu.

Since
E [cs|Ft] = b + e−a(t−s)(cs − b)

for 0 ≤ t ≤ t we have

Vt = E

[∫ ∞

t

e−λ(s−t)csds

∣∣∣∣ Ft

]
=

b

λ
+

ct − b

λ− a
.

and from this

dVt = a

(
b

λ
− Vt

)
dt +

σ

λ− a
dBt.

Now assume that we want V to be an Ornstein-Uhlenbeck process; specifically
assume that the drift of V is given by a(b−Vt). The cash flow process has to fulfill
ct = λVt − ab + aVt, implying that

dct = a(bλ− ct)dt + σ(λ + a)dBt.
2When we say that X is an Ornstein-Uhlenbeck process we mean that X satisfies the SDE

dXt = a(b − Xt)dt + σdBt for some constants a, b and σ > 0. Strictly speaking, X is only an
Ornstein-Uhlenbeck process if it has b = 0.
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2

One of the consequences of that the cash flows must follow a geometric Brownian
motion if we want the value process to do so, is that if we want to model the stock
price as a geometric Brownian motion and we believe that a discounted cash flow
model give the value of the stock, then the cash flows must also follow a geometric
Brownian motion. Thus the cash flows of the firm must be strictly positive, a fact
that is not reasonable to assume for all firms. On the other hand we could argue
that the value of the firm should be the discounted value of the dividends, and since
dividends are always non-negative, we could model them as a geometric Brownian
motion.

4.3 Applications to real options

We end this section on Brownian models with some examples on how the methods
described earlier can be specifically applied to problems arising in the valuation
of real options. The idea of real options is that added to the net present value
(represented by the value process as specified here) there should be a value coming
from some implict option. A typical example is the case when we own a gold mine.
Suppose that the gold price is as low that it is not profitable (in the sense that the
value process at this instant is negative) to keep it running. There is, however, a
possibility that the gold price will increase in the future, and it is possible that it
eventually will become profitable (i.e. the value process becomes positive) to use
the mine. Thus, we can see the mine as an option with the gold price as the
underlying asset, and as any option it has a value even though it is not presently
in the money. The value added to the mine in this case is the value of waiting to
invest. If we have a ’no-or-never’ choice to make today to deside if should close
the mine down or let it run, we should of course (still assuming that the value
process today is negative) shut the mine down. Examples where there exists an
embedded real option are many, ranging from investment timing (when should an
irrevsible inventment be done), valuation, entering and exiting markets, sequential
investments (often an investment is done in stages with a possibility of interupting
after the first stage if it is no longer profitable, the search for a new drug at a
pharmaceutical company is a typical example) and real estate (where unexploited
land can increase in value if the rents increase and/or the cost of construction
decrease to purely noneconomic applications such as marriage (there is a value of
waiting to marry to see if a better candidate might appear) and legal reforms (since
there is a cost present, both monetary and socially, when some laws are changed,
there is a value in waiting to see what the opinion among the voters is). These
examples (see Dixit & Pindyck [9]) serve to show that the area to which we may
apply real options is indeed vast. In the rest of this section we will focus on the
problem of valuation.

There are two main routes to take when modelling the value of a project. Either
we directly model the diffusion (we will assume henceforth that every stochastic
process occuring in the rest of this section is a time-homogenous Itô diffusion) the
value process follows, or we model the cash flow process generating the value process
and then derive the properties of the value process from the cash flows.

Example 4.6 When modelling the value process directly, the geometric Brownian
motion is often used. As was pointed out above it guarantees among other things
that the value process is strictly positive. To expand the model the following mean-
reverting models are sometimes used

• dVt = η(b− Vt)Vtdt + σVtdBt,
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• dVt = η(b− ln Vt)Vtdt + σVtdBt, and

• dVt = η(b− Vt)dt + σVtdBt

(the second equation describes the dynamics of an exponential Ornstein-Uhlenbeck
pricess; see Sick [16] for these models.) Since Vt > 0 a.s. for t ≥ 0 the cash flow
process generating this process must also be strictly positive. But is it reasonable to
assume that the cash flows always are positive? On the other hand must it always
hold that the value process is strictly positive? We will now, using the theory
presented above, find out how the cash flow process has to look like if we want a
mean-reverting drift of the value process. Again we assume that the discount rate is
a positive constant λ, and that we want V to look like dVt = a(b−Vt)dt+σ(Vt)dBt,
were we wait to specify σ. We thus want to solve λVt−ct = a(b−Vt), a and b being
positive constants, yielding ct = (λ + a)Vt − ab. From this do we get

dct = a(bλ− ct)dt + (λ + a)σ
(

ct + ab

λ + a

)
dBt.

Now c can take both positive and negative values. Assuming that we still want V
to be strictly positive, take a continuous function g : R→ (0,∞) such that g(0) = 0
and let σ(Vt) = g(Vt). As an explicit example we can take g(x) = xγ , γ > 0,
yielding

dct = a(bλ− ct)dt + (λ + a)1−γ(ct + ab)γdBt.

2

In some cases it could be desirable to allow for the value process to take negative
values. Either we let the value process continue, disregarding simply whether it is
positive or negative, or we could start the cash flow process, letting it generate the
value process, but consider the project bancrupt if Vt = 0 for some t.

Another application to real options of the relation between the cash flow process
and the value process concerns estimation of the volatility. Assuming that a cash
flow process is driving the value process (and not assuming the value process itself
as the underlying object) we have to be able to estimate the diffusion term of c.
The problem is that the cash flow process is often not directly observable; what we
observe is the value process. As an example we could think of a pharmaceutical
company which for its survival is dependent on the success of a new drug. Research
on this drug is still done, and it is not certain it will be good enough (from an
economical and/or medical point of view). We could try to value this company using
real options, in which case the dynamics of the cash flow process is needed. But
what we observe, as was said earlier, is the value process. We can assume that the
stock price of this company is equal to value process, use the time series of the stock
price to estimate parameters for V and then, using the relation µ(Vt) − λVt = ct,
estimate the parameters for c.
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