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Abstract

Advanced process control and its prevalent enabling technology, model predictive
control (MPC), can today be regarded as the industry best practice for optimizing
production. e strength of MPC comes from the ability to predict the impact of
disturbances and counteract their effects with control actions, and from the ability
to account for constraints. ese capabilities come from the use of models of the
controlled process. However, relying on a model is also a weakness of MPC. e model
used by the controller needs to be kept up to date with changing process conditions for
good MPC performance. In this thesis, the problem of closed-loop system identification
of models intended to be used in MPC is considered.

e design of the identification experiment influences the quality and properties of
the estimated model. In the thesis, an application-oriented framework for designing the
identification experiment is used. e specifics of experiment design for identification
of models for MPC are discussed. In particular, including constraints in the controller
results in a nonlinear control law, which complicates the experiment design.

e application-oriented experiment design problem with time-domain con-
straints is formulated as an optimal control problem, which in general is difficult to
solve. Using Markov decision theory, the experiment design problem is formulated
for finite state and action spaces and solved using an extension of existing linear
programming techniques for constrained Markov decision processes. e method
applies to general noise and disturbance structures but is computationally intensive.
Two extensions of MPC with dual control properties which implement the application-
oriented experiment design idea are developed. ese controllers are limited to output
error systems but require less computations. Furthermore, since the controllers are
based on a common MPC technique, they can be used as extensions of already available
MPC implementations. One of the developed controllers is tested in an extensive
experimental validation campaign, which is the first time that MPC with dual properties
is applied to a full scale industrial process during regular operation of the plant.

Existing experiment design procedures are most often formulated in the frequency
domain and the spectrum of the input is used as the design variable. erefore, a
realization of the signal with the right spectrum has to be generated. is is not
straightforward for systems operating under constraints. In the thesis, a framework for
generating signals, with prespecified spectral properties, that respect system constraints
is developed. e framework uses ideas from stochastic MPC and scenario optimization.
Convergence to the desired autocorrelation is proved for a special case and the merits
of the algorithm are illustrated in a series of simulation examples.





Sammanfattning

Modern processreglering är ofta baserad på modeller av processen som ska regleras.
Modellbaserad prediktionsreglering (MPC) introducerades inom petrokemisk industri
som en reglerstrategi för flervariabla system med bivillkor. Utvecklingen har sedan dess
gått mot att MPC implementeras inom allt fler industrier. Styrkan hos MPC kommer av
att regulatorn kan, med hjälp av modellen, prediktera ett systems framtida beteende
och motverka kommande störningar genom att välja lämplig styrning. Det är viktigt
att den modell som MPC använder för att beräkna styrlagen överensstämmer med
dynamiken hos det system som ska styras. Därför måste modellen hållas uppdaterad om
det reglerade systemet ändras över tid. Systemidentifiering som ett verktyg för sådana
uppdateringar av MPC-modeller behandlas här.

Systemidentifiering används för att modellera dynamiska system utifrån experi-
mentellt uppmätta data. Hur experimentet utförs påverkar vilka systemegenskaper som
kan skattas såväl som den kvalitet som dessa skattningar har. Det är därför viktigt att
systemidentifieringsexperimentet utformas på ett sådan sätt att de egenskaper som är
viktiga för god prediktionsreglering kan skattas väl. Hur ett systemidentifieringsexper-
iment ska utformas brukar benämnas experimentdesign. För system med bivillkor ger
MPC en olinjär styrlag vilket försvårar experimentdesignen, framförallt om hänsyn till
bivillkor ska tas även under systemidentifieringsexperimentet. Experimentdesign där
modeller för MPC skattas utifrån ett applikationsorienterat perspektiv studeras i denna
avhandling.

Applikationsorienterad experimentdesign kan formuleras som ett optimal regler-
problem där systemets bivillkor ingår i formuleringen. Det gör att optimeringsprob-
lemet ofta blir mycket svårt att lösa. Genom att använda Markov-beslutsteori kan
problemet formuleras för system med ändligt antal tillstånd och ändligt antal möjliga
styrsignalsnivåer. En optimal styrlag som även ger signaler med goda egenskaper
för systemidentifiering kan då beräknas genom semidefinit programmering. For-
muleringen innefattar allmänna brus- och störningsprocesser men är ofta mycket
beräkningskrävande. Två MPC-baserade regulatorer där experimentdesign ingår som
ett bivillkor för regulator formuleras. Regulatorerna förutsätter en enklare brusmodell
utan processtörningar men är mindre beräkningskrävande och kan därför appliceras
på större system. Då dessa bygger på en välanvänd MPC-formulering bör de nya
regulatorerna även vara relativt enkla att implementera som utvidgningar av befintliga
MPC-implementeringar. En utförlig experimentell utvärdering av en av regulatorerna
har gjorts på en industriell process under normal produktion.

Experimentdesign har studerats under lång tid inom systemidentifieringsområdet
och ett antal väl utvecklade metoder finns tillgängliga. De är oftast formulerade som



optimeringsproblem i frekvensdomänen där insignalens effektspektrum används som
optimeringsvariabel. För system med bivillkor är det inte rättframt att då generera
en signal med de optimala spektralegenskaperna. Här introduceras en ny metod för
signalgenerering under bivillkor för system med osäkerhet. Metoden bygger på resultat
från stokastisk MPC och scenariooptimering. Garanterad konvergens mot den önskade
autokorrelationen visas för ett specialfall och metodens egenskaper demonstreras i ett
stort antal simuleringsexempel.
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Chapter 1

Introduction

T   models as a tool to better understand, quantify and visualize the world
has always been central in all scientific fields. ere are many types of models with

different aims depending on the field of study. Regardless of the type, all models are
meant to represent physical objects or processes in an objective way. All models are also
simplifications or abstractions of the reality that they are intended to represent. What
characterizes a good model is the ability to abstract away factors that are of little or
no importance to the studied phenomenon while keeping the important factors in the
model. e focus in this thesis is on constructing mathematical models of real-world
physical objects or systems.

Mathematical models of systems have become an integral part of almost all
engineering applications. e ability to simulate a model of a system simplifies the
design, development and analysis of large, complex systems. In automatic control, the
increase of computing power available for control has resulted in new control strategies
that rely on models for computing the future effect of the implemented control. In this
context, it is vital that the model used in the controller is able to capture the properties
of the system that are relevant to achieve good control performance. It is also important
not to model the properties that do not affect control performance as this would make
the model unnecessarily complex. ese issues are considered in this thesis from an
industrial application perspective.

1.1 Advanced process control in industry

Industrial process control is typically designed according to the control hierarchy
pictured in Figure 1.1. On top of the plant level, regulatory control, such as valves and
proportional-derivative-integral (PID) controllers are implemented as a base control
level. e setpoints of the base level controllers have traditionally been controlled
manually by operators but are now increasingly often controlled by an advanced

1
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...
Plant

.

Base-layer, regulatory
control and instrumentation

.

Advanced process control
(APC, MPC)

.

Local real-time
optimization

.

Plant-wide
optimization

Figure 1.1 Industrial control hierarchy. Process control is often structured in a hierarchy
from simpler controls to more advanced controllers. e lower level includes valves and PID
controllers close to the plant. On top of that, APC is implemented to optimize production
on a process level. e optimal setpoints are calculated in real-time optimization, usually
on an hourly to daily basis. e top layer optimizes total plant utilization by scheduling
different production units on a daily to monthly basis.

process control (APC) solution. e APC layer tries to optimize production of individual
production units by driving signals to certain operating points. e time scale of the
APC is in the range of minutes to hours. e real-time optimization layer calculates
the economically optimal operating points for a number of units; here the time scale
is in the range of hours to days. Finally, a top layer with plant-wide optimization is
used to optimize plant production by scheduling production and resources according
to current market trends and demands. is is done on a daily to monthly time scale.
e width of the pyramid in Figure 1.1 reflects the number of individual controllers
at the different levels. If the width instead reflected the computational complexity of
the controllers, the pyramid would be turned upside down.

e focus in this thesis is on the APC level of process control, which since the
introduction in the early 1980s has become accepted as the industry best practice.
Morari and Lee (1997) estimate that all modern refineries use APC in some capacity,
Canney (2003) reports that 5,000 APC applications are in use and two years later,
Canney (2005) reports that the number has grown to more than 6,000. Furthermore,
it is reported that “nearly all [APC] products use Model Predictive Control as the
prevailing underlying technology”—Canney (2005). In fact, Zhu (2009) estimates that
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all petrochemical plants have predictive control implemented in parts of the process.
From a business point of view, Canney (2003) reports that, a typical APC imple-

mentation has a payback period of 3–9 months, each generating around a 3–5 %
capacity increase. In petrochemical industries, this amounts to a profit increase of
$0.05–0.3 per produced barrel. An increased profit of $0.05 per barrel may seem low,
but with a current total crude oil production of 84,820,000 barrels per day,1 it is easy
to see the benefits on the economic side.

Model predictive control (MPC) is an APC strategy that was first proposed by
industry to simplify optimal control for multivariate processes. e ability of MPC to
handle constraints on inputs, outputs and states and the easy application to multivariate
systems are the key technical properties which have lead to the success of the control
strategy.

Industrial challenges

Even though MPC seems like a promising APC technology, a number of industrial
challenges remain. A recurring issue is the fact that MPC performance often drops
after a shorter period than the expected payback time. It is observed that initially an
MPC operates at a high efficiency but due to changes and modifications of processes,
operating strategies, operating conditions or a number of other factors, performance
deteriorates. It is not uncommon that performance is reduced to the point that the
MPC is manually turned off. Maintaining high performance is identified as a central
aspect of APC technology progression by Canney (2003) and Bauer and Craig (2008).
Some suggested developments to improve APC benefits include:

– Performance parameters to isolate the source of degradation.

– Monitoring and diagnosis tools.

– Testing, identification and adaptive control.

– Analysis tools that identify opportunities for performance improvement.

In particular, Canney (2003) says

“Automated testing and identification, and adaptive control. MPC controller
performance is directly related to the accuracy of the process model. ese
technologies increase the accuracy by producing optimally informative process
data and appropriately adjusting the model.”

1Production in 2011, International Energy Agency – Oil Market Report, 2012-03-19.
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Still, 6 years later, Zhu (2009) reports that the most time consuming and costly part of
the commissioning of an industrial MPC deployment is the modeling of the plant. Zhu
(2009) also estimates that modeling efforts can take up to 90 % of the cost and time
in a typical MPC commissioning. Huge benefits can be made if the modeling process
is simplified. Once the MPC is up and running, maintenance of the controller mostly
relies on updating the model to account for changes in the plant. is remodeling
should be done in a intelligent way so that product quality does not suffer.

Commercial MPC

ere are many commercially available implementations of MPC, marketed under
different names. Many of these solutions are targeted for process industry and have
been developed to work as a supporting tool for the process operators rather than to
replace them. Qin and Badgwell (2003) give a survey of the largest commercial MPC
technologies at the time. ese are presented according to the model types employed
in Figure 1.2. Linear models obtained through system identification are the most
frequently used models. However, it is also reported by Qin and Badgwell (2003)
that almost all commercial MPC use PRBS signals in the identification part of the
commissioning. Furthermore, even for MIMO plants, inputs are most often manipulated
one at a time. ere is large room for improvement by tailoring the identification
experiments to the plant.

1.2 A motivating example

Distillation is a central process found in many chemical and petrochemical industries,
illustrated in Figure 1.3. As a simplified example, consider the binary distillation
column, described by Skogestad (1997), without re-boiler and condenser. e column
has two outputs, a top product and a bottom product, which are required to have
a certain purity to be sold. If the average purity of either product drops below the
required level, the product cannot be sold.

e system is modeled using a state space model, which has been estimated in
a system identification experiment. An MPC is designed using the estimated model.
To monitor the performance of the distillation column, a performance indicator
is calculated online. If the performance indicator is above a given threshold, both
products are within the specifications but if it drops below the threshold, money is
lost due to low quality products.

e performance over time is shown in Figure 1.4. Initially, the performance is
high and the system produces products with the desired purities. After a while, the
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Figure 1.2 Different commercially available MPC technologies classified according to the
model type used and the modeling principle. e dominant approach is to use linear models
identified from experimental data (identified models).

system dynamics are changed slightly, which affects the directionality of the column.
is means that the model in the MPC no longer matches the system and product
quality suffers, which is reflected by the drop in the performance indicator.

To restore performance, a closed loop identification experiment is started. Extra
excitation is introduced in the system to give sufficiently informative data to model
the new dynamics. Since the plant is disturbed by the experiment, the performance
drops even more during the identification. However, when the newly identified model
is implemented, performance quickly goes back to the level before the plant change.
is means that profits are back to the desired level again.

e example is implemented in a Matlab simulation environment using the
technologies developed in this thesis. e details of the simulation example are given
at the end of Chapter 5. e take home messages at this point are:

– Performance suffers and money is lost when the model used by the controller
no longer represents the dynamics of the plant.

– Reidentifying the plant is associated with a cost.

– Performance and profits can be restored with a suitable new model.
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Figure 1.3 Distillation columns in operation at an industrial oil refinery. Photo courtesy
of Sasol.

1.3 Problem formulation

A model can never capture all aspects of the system it is meant to represent. Neither
is it desirable that every detail is captured since this increases the model complexity.
What is important is that the relevant aspects are captured; what is relevant depends
on the intended model application.

In this thesis, model estimation from experimental data is considered. In particular,
the problem of system identification for models used in model predictive control is
studied. e quality of the estimated model can be influenced by the design of the
identification experiment and the excitation properties of the applied input signal. e
problem is formulated as an optimal experiment design problem which has three main
goals:

1. e performance when the model is used should with high confidence be good.

2. e cost incurred due to the identification experiment should be as small as
possible.

3. e constraints of normal plant operation should be respected.
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Figure 1.4 Profits from MPC. Initially the MPC results in a high profit level. When the
dynamics of the plant change, performance and profits are reduced. To restore performance,
a closed-loop identification experiment is performed. e experiment does not come for free
and results in further reduction of profit. However, when the new model is used, profits
quickly return to an acceptable level.

ese goals lead to the conceptual optimization problem

minimize
input

Cost of experiment

subject to Performance specifications
System constraints

(1.1)

e bulk of the thesis, Chapters 3–6, is devoted to this problem.
A second problem considered is that of signal generation under time domain

constraints. e motivation is that many currently used optimal experiment design
problems are formulated as optimization problems in the frequency domain. Conse-
quently, when the optimal spectrum has been found, a signal with the right spectral
properties must be generated. is is not straightforward for signals with amplitude
constraints. An MPC based solution to this signal generation problem is presented in
Chapter 7.
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1.4 Contributions and outline

is section gives an overview of the different chapters of the thesis together with the
main contributions and related publications.

Chapter 2 — Background

eoretical background of systems, experimental modeling and model based control
is summarized. First, model predictive control is outlined. Second, the main modeling
tool, system identification, is presented. Experiment design and dual control for
identification and adaptive control in closed loop is also outlined. Related work, in
the field of adaptive and dual MPC is described, as well as reinforcement learning.

Chapter 3 — Experiment design for model predictive control

General considerations on experiment design for system identification of models used
for MPC are presented here. e chapter begins with a formal formulation of the
experiment design problem under industrially relevant assumptions. e formulation
is done in the application-oriented input design framework. A method for MPC relevant
experiment design for open loop experiment is presented. e open loop method was
previously studied in

C. A. Larsson (2011). Toward applications oriented optimal input design with
focus on model predictive control. Licentiate thesis, KTH, Automatic Control.

C. A. Larsson, M. Annergren, and H. Hjalmarsson (2011a). On Optimal
Input Design for Model Predictive Control. In Proceedings of the 50th IEEE
Conference on Decision and Control. Orlando, FL.

C. A. Larsson, C. R. Rojas, and H. Hjalmarsson (2011b). MPC oriented
experiment design. In Proceedings of the 18th IFAC World Congress. Milano,
Italy.

Chapter 4 — Markov decision process formulation of experiment design

e experiment design problem is approached using Markov decision process (MDP)
theory. A controller based on a constrained, finite state and action space MDP is
constructed. e solution to the optimization can be found using a semidefinite
program, which is an extension of the linear programming solution to constrained
MDPs. e chapter is based on
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C. A. Larsson, A. Ebadat, C. R. Rojas, and H. Hjalmarsson (2014a). An
application-oriented approach to optimal control with excitation for closed-
loop identification. European Journal of Control. To be submitted.

Chapter 5 — Model predictive control formulation of experiment design

Model predictive controllers extended to enable closed loop reidentification are for-
mulated. A constraint on the information matrix related to the system identification
experiment is included in the controller formulations, resulting in a controller that
is called Model Predictive Control with eXcitation (MPC-X). e inclusion of this
constraint gives signals suitable for identification. Simulation studies are included to
show the performance of the algorithms and a comparison to existing techniques is
also given. e chapter is based on

C. A. Larsson, A. Ebadat, C. R. Rojas, and H. Hjalmarsson (2014a). An
application-oriented approach to optimal control with excitation for closed-
loop identification. European Journal of Control. To be submitted.

C. A. Larsson, M. Annergren, H. Hjalmarsson, C. R. Rojas, X. Bombois,
A. Mesbah, and P. E. Modén (2013a). Model predictive control with
integrated experiment design for output error systems. In Proceedings of the
2013 European Control Conference. Zürich, Switzerland.

Some of the results and the algorithms have also been reported in

H. Hjalmarsson and C. A. Larsson (2012). Deliverable 3.1 — Novel
algorithms for least-costly closed-loop re-identification. Autoprofit project.

H. Hjalmarsson, C. A. Larsson, and M. Annergren (2013a). Deliverable 3.2
— Matlab software toolbox. Autoprofit project.

H. Hjalmarsson, C. A. Larsson, P. Hägg, and A. Ebadat (2013b). Deliverable
3.3 — Novel algorithms for productivity preserving testing. Autoprofit
project.

M. Annergren, D. Kauven, C. A. Larsson, M. G. Potters, Q. N. Tran, and
L. Özkan (2013). On the Way to Autonomous Model Predictive Control:
A Distillation Column Simulation Study. In Proceedings of the 10th IFAC
International Symposium on Dynamics and Control of Process Sytsems. Mumbai,
India.
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Chapter 6 — Experimental study of MPC-X

An extensive industrial validation campaign of one of the MPC based controllers has
been conducted and is reported on here. e algorithm has been implemented and
tested on a depropanizer distillation column both in a full plant simulator as well as
on the actual plant during normal production. Results from these experiments have
previously been reported in

C. A. Larsson, C. R. Rojas, X. Bombois, and H. Hjalmarsson (2014c).
Experimental evaluation of model predictive control with excitation (MPC-X)
on an industrial depropanizer. Journal of Process Control. Submitted.

H. Guidi, C. A. Larsson, Q. N. Tran, L. Ozkan, and H. Hjalmarsson (2013).
Deliverable 6.4 — results on the Sasol validation case. Autoprofit project.

Chapter 7 — Signal generation for constrained systems

It is often desirable to generate a signal with prespecified second order (autocorrelation)
properties. A receding horizon algorithm for generation of signals with the desired
properties under constraints is presented in this chapter. e algorithm uses ideas from
MPC and scenario optimization to ensure the signal properties. Convergence to the
correct autocorrelation is proven for a special case and the merits of the algorithm
for more general cases are demonstrated in simulation. e chapter is based on the
publications

C. A. Larsson, P. Hägg, and H. Hjamarsson (2014b). Generation of signals
with specified second order properties for constrained systems. International
journal of adaptive control and signal processing. Submitted.

C. A. Larsson, P. Hägg, and H. Hjalmarsson (2013b). Recursive generation
of amplitude constrained signals with prescribed autocorrelation sequence. In
Proceedings of the 2013 American Control Conference. Washington DC, USA.

P. Hägg, C. A. Larsson, and H. Hjalmarsson (2013). Robust and adaptive
excitation signal generation for input and output constrained systems. In
Proceedings of the 2013 European Control Conference. Zürich, Switzerland.
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P. Hägg, C. Larsson, A. Ebadat, B. Wahlberg, and H. Hjalmarsson (2014).
Input signal generation for constrained multiple-input multiple-output
systems. In Proceedings of 19th IFACWorld Congress. Cape Town, South Africa.

An early version of the algorithm has also been published in

H. Hjalmarsson, C. A. Larsson, P. Hägg, and A. Ebadat (2013b). Deliverable
3.3 — Novel algorithms for productivity preserving testing. Autoprofit
project.

Chapter 8 — Conclusions

e thesis is concluded with a summary and discussion of the results. Some future
outlooks and suggestions for further research topics are also presented.

Contributions by the author

e contributions of the thesis are principally the results of the author’s own work,
in collaboration with the respective coauthors. e minimum time controller in
Section 5.4 was intially formulated by Afrooz Ebadat. Chapter 7 is the result of close
collaboration between the author and Per Hägg and the contributions are believed to
be shared equally between the two collaborators.
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1.5 Notation

i Imaginary unit.

N Set of positive integers.
R Set of real numbers.
Rn n-dimensional vector space over R, elements are typically denoted

x, y, z and xi denotes entry i.
Rn×m Set of real matrices of dimensions n×m, elements are typically denoted

A,B,C, . . ., and Ai,j denotes entry j of column i.
S+ Set of positive semidefinite matrices.
X Convex hull of the set X .
U ,X ,Y Constraint sets for inputs, states, and outputs.
U,X,Y Finite sets of of inputs, states, and outputs.

A1/2 Hermitian square root of the matrix A.
detA Determinant of the matrix A.
diagA Vector with diagonal of the matrix A.
diag x Matrix with vector x on the main diagonal.
rankA Rank of the matrix A.
trA Trace of the matrix A.
∥x∥

√
xTx.

∥x∥A
√
xTAx.

λmin(A) Smallest eigenvalue of the matrix A.
λmax(A) Largest eigenvalue of the matrix A.
x ≥ y xi ≥ yi, i = 1, 2, . . . , n for x, y ∈ Rn.
A ⪰ B A−B ∈ S+.

P Probability of an event.
E Expectation operator.
δxy Dirac measure concentrated on x.
Cov x Covariance of x, Cov x ≜ E

{
(x− E {x}) (x− E {x})T

}
.

N (µ,Λ) Gaussian distribution with mean µ and covariance Λ.
χ2(n) χ2 distribution with n degrees of freedom.
IN1 Information matrix for N data.
I Average per-sample information matrix.

θ Parameter vector.
θ̂N Estimated parameter vector from N data samples.
M(θ) Model parameterized by the vector θ.
S System.
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1.6 Acronyms

APC Advanced process control
ARMAX Autoregressive moving-average with exogenous input
ARX Autoregressive with exogenous input
CMDP Constrained Markov decision process
CV Controlled variable
DV Disturbance variable
FCC Fluid catalytic cracker
FIR Finite impulse response
LMI Linear matrix inequality
LTI Linear, time invariant
MDP Markov decision process
MIMO Multiple input, multiple output
MPC Model predictive control
MPC-X Model predictive control with excitation
MPCI Model predictive control for identification
MV Manipulated variable
OE Output error
PE-MPC Persistently exciting model predictive control
PEM Prediction error method
PID Proportional–derivative–integral
PRBS Pseudo random binary sequence
SCC Synfuels catalytic cracker
SDP Semi-definite program
SISO Single input, single output
SP Setpoint





Chapter 2

Background

M    methods have attracted a lot of attention in the auto-
matic control literature and are becoming increasingly popular in industry

as well. Several theoretical concepts are required to formulate a practically viable
predictive control system to be used in an industrial application. In particular, a model
based control theory needs to be formulated and methods for obtaining the models
used in the control design are necessary. e purpose of this chapter is to introduce
the necessary theoretical background for the remainder of the thesis. e chapter also
serves as a survey of related research areas.

2.1 Systems and models

e systems considered in the thesis are linear time invariant (LTI) multiple input,
multiple output (MIMO), discrete-time systems of the form

S :

{
xt+1 = Axt +But + vt,

yt = Cxt + wt,
(2.1)

where xt ∈ Rn is the state, ut ∈ Rm is the input, yt ∈ Rp is the output and
wt ∈ Rp is measurement noise. e general setup is shown in Figure 2.1. e system
is driven by the process disturbances, vt ∈ Rn, which cannot be directly controlled and
the input, which is chosen by the controller. e controller bases the input choice on
information about the plant from feedback measurements of the output and reference
signals. Several different assumptions on the nature of the noise processes are used in
different areas. ree common possibilities, used in the thesis, are given here.

Assumption 2.1 (Constant output disturbance)

vt ≡ 0, wt ≡ w.

15
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Figure 2.1 e general system setup. e system is driven by uncontrollable disturbances
and controllable inputs. e input is chosen by a controller based on feedback information
from the system and reference values.

Assumption 2.2 (Bounded disturbances)

vt ∈ Vt wt ≡ 0,

where Vt is a closed and bounded set containing the origin.

Assumption 2.3 (Gaussian noise and disturbance)[
vt
wt

]
∼ N

([
0
0

]
,

[
Λv 0
0 Λw

])
.

e first assumption is very common in the MPC field, and according to Ma-
ciejowski (2002) it is used in most commercial MPC products. Assumption 2.2 is
typically used in the development of robust MPC and Assumption 2.3 is standard in
system identification theory and many other fields of control theory.

e system is modeled by a state space model of the form

M(θ) :

{
xt+1 = A(θ)xt +B(θ)ut +K(θ)et,

yt = C(θ)xt + et.
(2.2)

e choice of the matrices A,B,C and K, and the properties of et, depend on the
adopted model and noise assumptions. For example, under Assumption 2.3, et is a
zero-mean, Gaussian white noise process which means that the noise covariance Λe (in
the SISO case, λe) and K are given by the Kalman filter.

e model is parameterized by θ ∈ Rnθ , which is a (often unknown) vector of
parameters. It is assumed that the modelM(θ) can capture the true dynamics of the
system. is means that there is a vector θo such that S =M(θo), meaning that the
model and system have the same input–output properties. How an estimate of θ can
be found from measured data is discussed in Section 2.3.
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2.2 Model predictive control

At the core of any MPC implementation is a model of the process that is to be controlled.
Typically, MPC uses a deterministic model for predicting the results of the control action
and disturbances. A common choice is to use a linear, discrete time, state space model
of the form {

xt+1 = Axt +But,

yt = Cxt.
(2.3)

It is possible to use other types of models, for example transfer function or step response
models. Versions of MPC with nonlinear models are also sometimes used. is thesis
exclusively treats the linear, state space formulation.

e model (2.3) is used to predict future outputs and the control signals are
computed based on these predictions. e prediction horizon defines the number of
samples of the output that are predicted and the control horizon defines the number
of free input samples in the optimization. A quadratic cost function, Ct, is commonly
used in the controller, for example

Ct ≜
Ny∑
k=1

∥ŷk − rt+k∥2Q +

Nu−1∑
k=0

(
∥∆ûk∥2R + ∥ûk∥2S

)
, (2.4)

where ŷk and ûk are the predicted output and input signals, rk is the reference signal,
and ∆ûk = ûk − ûk−1 e matrices Q, R and S are tunable weights. e prediction
horizon is denoted Ny and the control horizon Nu. For each time instant t, an input
sequence is found by solving the optimization problem

minimize
{ûk}

Ny−1
k=0

Ct

subject to x̂k+1 = Ax̂k +Bûk, k = 0, 1, . . . , Ny − 1,
ŷk = Cx̂k, k = 1, 2, . . . , Ny,

x̂0 = xt,

û0 = ut−1,

x̂k ∈ X , ûk ∈ U , ŷk ∈ Y.

(2.5)

Here, ut−1 is the input applied to the plant at time t − 1, and X , U and Y are
the constraint sets for the states, outputs and inputs respectively. In the case Nu <
Ny, some assumption on the inputs past the control horizon has to be made. Two
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û

.
Past

.
Future

.
t

.
t+Nu

.
t+Ny

...

Figure 2.2 e receding horizon idea. e MPC is used to control the system to follow the
reference trajectory, r, (. ). At time t, the plant output, y, is predicted, ŷ, (. ) over
the prediction horizon Ny. e predictions depend on the current control input, u, and
the predicted control inputs, û, (. ) over the control horizon Nu. e optimal input
sequence is calculated and the first input is applied to the plant. e procedure is repeated
at time t+ 1.

possibilities are to assume that the input is constant, that is ∆ûk = 0, k > Nu, or to
assume that the input is zero, that is ûk = 0, k > Nu.

e solution to the optimization problem (2.5) gives a sequence of open loop
optimal inputs over the control horizon. However, at time t, only the first input of
the sequence is actually applied to the system, meaning that ut = û1. e horizons are
shifted one sample forward and the optimization starts over in the next time instant.
is principle is illustrated in Figure 2.2.

When the horizons have been shifted one step forward, a measurement of the state
is taken and used in the next optimization. is is the way that feedback enters into
the receding horizon formulation. If the state, xt, is not available for measurement,
an estimate, x̂t|t, can be obtained using an observer and x̂t|t replaces xt in the
optimization (2.5).

e performance of the MPC depends on the quality of the model that is used in the
controller. Imprecise models may result in tracking error due to wrong gain estimates.
is can, to some extent, be handled by incorporating integral action into the MPC.
Modeling errors may also lead to constraint violations. In the worst case, the plant–
model mismatch might even lead to instability. e conclusion is that the quality of
the model is of central importance in MPC applications.
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Disturbances

When the state cannot be directly measured, an observer to estimate the state is needed.
e way this is handled depends on which disturbance model is used. e three
common cases introduced in the previous section are presented below.

Constant output disturbance

e unknown but constant disturbance case is typically handled using a deadbeat
observer. is is achieved by defining the extended state space model

[
xt+1
wt+1

]
=

[
A 0
0 I

] [
xt
wt

]
+

[
B
0

]
ut +

[
0
I

]
et,

yt =
[
C I

] [xt
wt

]
+ et,

(2.6)

and using this model to predict the response of the system. is strategy is also useful
for offset-free tracking when the gain of the model is different from the true system
gain as this introduces integration in the loop.

Gaussian noise and disturbance

In the Gaussian noise and disturbance case, the mean square optimal state estimate is
given by the Kalman filter, outlined, for example, by Söderström (2002). In practice,
however, the observer gain is often used as a tuning parameter in the MPC algorithm.

e predictions for the optimization can be done in a few different ways. One
possibility is to replace the state measurement xt in (2.5) by the estimate x̂t|t and
similarly replace the predictions of the noise and disturbances by their conditional
expectations. Since vt and wt are assumed to be zero mean, this means that the
remaining parts of the optimization (2.5) remain unaltered. is can be seen as a
certainty equivalence formulation of MPC.

Another possibility is to keep the stochastic description of the system and refor-
mulate the optimization (2.5) in terms of expected values. is leads to what is known
as stochastic MPC, which is a very actively researched topic in predictive control. See,
for example, the work by Hokayem et al. (2012) and Schildbach et al. (2013) and the
references therein.

Bounded disturbances

e bounded disturbance case, Assumption 2.2, together with C = I , which means
that the state is directly measurable, is common in the robust MPC formulation. e
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goal is to find a computationally tractable, stabilizing controller such that state and
inputs satisfy constraints for all possible bounded disturbances in the set V . For
an overview of the area, see Mayne et al. (2000) or Maciejowski (2002). Using a
feedback formulation decreases the conservativeness compared to using an open-loop
formulation but leads to more involved optimization. Goulart et al. (2006) provide
a reparameterization of the MPC problem that gives a convex formulation of the state
feedback control problem.

Alternative formulations of predictive control

e MPC formulation (2.5) uses a state space description of the system, which currently
seems to be the prevalent technique. However, other predictive control formulations
have been proposed. e most notable difference between the formulations is in the
system description. e earliest predictive control schemes, MPHC by Richalet et al.
(1978) and DMC by Cutler and Ramaker (1980) use step and impulse response models
of the systems. Predictive control using transfer function models can be found in the
Generalized Predictive Control (GPC) scheme by Clarke et al. (1987). e GPC idea
has become a popular concept, see, for example, the book by Camacho and Bordons
(2004) for a thorough treatment.

2.3 System identification

e field of system identification considers the problem of making models of systems
using experimental data. ere are many methods for identification of the model
M. Such methods can be non-parametric or parametric and can be applied in both
the time and frequency domains. Which method is used depends on the intended
use of the model, the considered system and, to a certain extent, personal taste.
Frequency-domain techniques are well-covered in Pintelon and Schoukens (2001),
while Van Overschee and De Moor (1996) covers subspace identification. is thesis
only considers parametric, time-domain identification. e estimates of the model
parameters θ, are found using the prediction error method (PEM) as presented by Ljung
(1999). is method and the properties of the resulting estimates are described next.

Under Assumption 2.3, when a model of the form (2.2) is used, the stationary one
step ahead predictor is given by{

x̂t+1|t(θ) = A(θ)x̂t|t−1(θ) +B(θ)ut +K(θ)(yt − ŷt|t−1(θ)),

ŷt|t−1(θ) = C(θ)x̂t|t−1(θ).
(2.7)
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From N samples of input–output data, ZN ≜ {yt, ut}Nt=1, the parameter estimate is
most commonly found as

θ̂N = argmin
θ

1
N

N∑
t=1

(
yt − ŷt|t−1(θ)

)T
Λ−1
e

(
yt − ŷt|t−1(θ)

)
. (2.8)

When the noise covariance, Λe, is not known, Goodwin and Payne (1977) suggest to
instead use

θ̂N = argmin
θ

det
1
N

N∑
t=1

(
yt − ŷt|t−1(θ)

)T (
yt − ŷt|t−1(θ)

)
,

which for Gaussian distributed noise gives the Maximum Likelihood estimate of the
parameter vector.

Ljung and Caines (1979) have shown, under very general conditions, that for the
choice (2.8) it holds asymptotically in N that

IN1 (θo)
1/2(θ̂N − θo)

d→ N (0, I), (2.9a)

IN1 (θo) ≜
N∑
t=1

E
{
ψt(θo)Λ

−1
e ψt(θo)

T
}
, (2.9b)

ψi
t(θ) ≜

∂ŷt|t−1(θ)

∂θi
, (2.9c)

ψt(θ) ≜
[
ψ1
t (θ) · · · ψnθ

t (θ)
]T
, (2.9d)

where d→ denotes convergence in distribution and IN1 is the information matrix.
Hence, the PEM estimate is consistent in probability and it achieves the Cramér-Rao
lower bound. Furthermore, the distribution of the estimates implies that, asymptoti-
cally in N ,

θ̂N ∈ U(α) =
{
θ
∣∣∣ [θ − θo]T IN1 (θo) [θ − θo] ≤ χ2

α(nθ)
}
, (2.10)

with probability α. Here χ2
α(n) is the α-percentile of the χ2-distribution with n

degrees of freedom.
e information matrix can be calculated from a state space description of the

sensitivities of the predictor (2.7), shown, for example, by Ljung and Söderström
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(1983). Consider the derivatives of the predictor (2.7), with respect to θ, given by



∂x̂t+1|t

∂θi
=
∂(A−KC)

∂θi
x̂t|t−1 + (A−KC)

∂x̂t|t−1

∂θi

+
∂B

∂θi
ut +

∂K

∂θi
Cxt +

∂K

∂θi
wt,

∂ŷt|t−1

∂θi
=
∂C

∂θi
x̂t|t−1 + C

∂x̂t|t−1

∂θi
.

Introduce the matrices and extended state vector

A ≜


A 0 0 0 0
KC A−KC 0 0 0
∂K
∂θ1
C ∂(A−KC)

∂θ1
A−KC 0 0

...
... 0

. . . 0
∂K
∂θnθ

C ∂(A−KC)
∂θnθ

0 0 A−KC

 ,

B ≜


B
B
∂B
∂θ1
...

∂B
∂θnθ

 , K ≜


I 0
0 K

0 ∂K
∂θ1

...
...

0 ∂K
∂θnθ

 ,

C ≜

0 ∂C
∂θ1

C 0 0
...

... 0
. . . 0

0 ∂C
∂θnθ

0 0 C

 , (2.11)

ξt ≜
[
xt x̂t|t−1

∂x̂t|t−1
∂θ1

· · · ∂x̂t|t−1
∂θnθ

]T
,

ψ̄t ≜
[
ψ1
t (θ)

T · · · ψnθ
t (θ)T

]T
,

then  ξt+1 = Aξt + But +K
[
vt
wt

]
,

ψ̄t = Cξt
(2.12)
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and the terms of IN1 can be found from

E
{
ψt(θ)Λ

−1
e ψt(θ)

T
}
(i,j)

= E
{
ψi
t(θ)

TΛ−1
e ψj

t

}
= tr

[
E
{
ψj
t (θ)ψ

i
t(θ)

T
}
Λ−1
e

]
. (2.13)

For a given data record, ZN , the information matrix can be estimated by

IN1 (θ) =

N∑
t=1

ψt(θ)Λ
−1
e ψt(θ)

T . (2.14)

In fact, it holds under fairly mild conditions that

lim
N→∞

1
N
IN1 (θ) = lim

N→∞

1
N
IN1 (θ), almost surely. (2.15)

When the limit exists,

I(θ) ≜ lim
N→∞

1
N
IN1 (θ) (2.15′)

is the average per-sample information matrix.

Open- versus closed-loop identification

ere is in principle no difference between open- and closed-loop identification from
the data ZN if PEM is used. e consistency results and asymptotic distribution of
the estimates hold for open- and closed-loop experiments as long as the system is in
the model set (there exists θo such that S = M(θo)), the data are informative, and
some technical assumptions on the feedback mechanism and the resulting closed loop.
ese properties may not hold for other methods, for example, nonparametric methods
typically fail due to the correlation between the input and the driving noise resulting
from the feedback.

Informativeness of the data is what often fails in closed-loop identification. A
simple example shows what can go wrong.
Example 2.1 (Closed-loop identification with simple regulator)
e closed-loop system {

yt = −ayt−1 + but−1 + et,

ut = −kyt,
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where et is white noise, is identified. Since the closed-loop system is given by

yt = −(a+ bk)yt−1 + et,

any parameter estimates

â = a− αk, b̂ = b+ α, α ∈ R,

describe the input–output behavior of the closed loop. ♢
e example shows that, even though the input signal is persistently exciting, the

closed-loop data are not informative. e reason is essentially that the proportional
controller is too simple. Fortunately, the situation is easily solved by choosing a more
complex controller or adding a persistently exciting reference signal. e issue of
informative data has been considered by Söderström et al. (1976), for example. More
recently, Gevers et al. (2009) have analyzed the conditions on signal richness and
controller complexity for informative experiments in closed loop.

e assumption that the model set contains the true system is more important in
closed-loop identification than in open-loop identification. For experiments in open
loop, a consistent estimate of the system is obtained when the noise and system models
are independently parameterized. is is not the case in closed loop, where an incorrect
noise model gives biased system estimates. Forssell and Ljung (1999) summarize PEM
in closed-loop identification well.

When the data are informative and the true system is in the model set, there
are situations when closed-loop identification is superior to open-loop identification.
For example, Bombois et al. (2005) show that, under certain conditions and for
independently parameterized plant and noise models, the variance of the estimated
plant model is lower in a closed-loop experiment while the opposite is true for
the estimates noise model. Furthermore, closed-loop identification is shown to be
advantageous when the identified model is used for control design, by Hjalmarsson
et al. (1996), and whenever there are constraints on the output power by Forssell and
Ljung (1998). On the other hand, if there are only constraints on the input power,
open-loop identification is to be preferred. ese issues have also been analyzed by
Agüero and Goodwin (2007), who show that open-loop designs are optimal for any
type of input-constrained experiments.
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2.4 Input design

Optimal design of experiments has a long tradition within the statistics literature. Many
results have an important impact on the field of input design in system identification.
For example, Kiefer (1959), Kiefer and Wolfowitz (1959), Karlin and Studden (1966)
and Fedorov (1972) have all made important contributions in optimal experiment
design for linear regressions.

Experiment design for dynamic systems essentially started to attract attention in
the 1970s. e developments are well described by Mehra (1974), Goodwin and Payne
(1977) and Zarrop (1979). For the experiment design problem in system identification,
it is often assumed that the variance is the only source of error. is is motivated by the
limiting distribution of the prediction error estimates (2.9). e focus was on open loop
experiments and some scalar criterion of the average per-sample information matrix,
I, was maximized. e most common criteria are

A-optimality: min tr I−1,

D-optimality: maxdet I,

E-optimality: maxλmin(I−1).

e optimal experiment design problems were studied both in the time and the
frequency domain. e time domain solutions are finite sequences of input data while
the frequency domain formulation finds the optimal input spectrum. An important
result is that the set of average information matrices for power constrained inputs
is convex in the input spectrum. A second important result is that, if n parameters
are estimated, any average per-sample information matrix, I, can be obtained using a
signal containing no more than n(n+ 1)/2 + 1 sinusoidal components. For specific
systems, the number of components can be reduced further.

Ljung (1985) derived expressions for the variance of transfer function estimates,
asymptotic in both data and model order. For systems of the form

yt = G(q, θ)ut +H(q, θ)et,

the covariance of the estimates can be approximated as

Cov

[
G(eiω, θ̂N )

H(eiω, θ̂N )

]
≈ n

N
λe|H(eiω, θo)|2

[
Φu(ω) Φue(ω)

Φue(−ω) λe

]−1

,

where m is the model order, ϕu is the input spectrum, ϕue is the cross spectrum be-
tween the input and the noise and λe is the variance of e. Based on this approximation,
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input design where the intended use of the model was taken into account appeared.
See for example the works by Gevers and Ljung (1986), Hjalmarsson et al. (1996) and
Forssell and Ljung (2000).

Along the same lines, the area of identification for control emerged. e question
addressed was how to design the experiment and identification criterion when the
model is to be used for model-based control design. Typically, some distance between
nominal performance and what is achieved with the identified model was minimized.
e main realization was that closed loop identification is better and the controller used
during identification should match the model based controller one wants to obtain.

More recent developments in input design are mostly in the least-costly identifica-
tion framework, introduced by Bombois et al. (2004). e framework introduces a cost
for the identification which should be minimized subject to constraints on the model
quality. It can be seen as the dual formulation of the identification for control idea.
Rojas et al. (2008) have established equivalence between the least-costly framework
and the more traditional experiment design. Bombois et al. (2006) developed the idea
further in an H∞ control framework, and Barenthin et al. (2005) and Bombois and
Scorletti (2012) present some nice examples of the framework. Hjalmarsson (2005)
discussed the idea that a good experiment reveals the important process properties while
less important properties and attenuated. Hjalmarsson (2009) extended the least-costly
experiment design paradigm to other control performance measures in the application-
oriented input design framework.

Significant developments have been made in the application-oriented and least-
costly contexts in terms of the possible experiment design criteria and constraints.
Frequency-by-frequency constraints can be handled and solutions exist for open- and
closed-loop design with fixed or free controllers. e identification is assumed to be
performed using an input of the form

ut = rt + C(q)yt, (2.16)

where rt andC(q) are the design variables of the experiment design in the most general
form. It is, however, easier to solve the problem in terms of the spectra Φu and Φue,
which have a one-to-one correspondence to Φr and C(q).

Research has focused on formulations of the optimization problem as semidefinite
programs. In principle, two approaches exist, depending on the parameterization of
the input spectrum. One possibility is a finite-dimensional spectrum parameterization,
which restricts the spectrum to lie in a finite-dimensional subspace of the space of
all spectra and therefore may result in a suboptimal solution. On the other hand,
frequency-by-frequency constraints can be included in the design. e other is a partial
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correlation parameterization, which parameterizes the entire space of spectra in terms
of a finite number of generalized moments and therefore does not result in suboptimal
solutions. Jansson and Hjalmarsson (2005) present a unified framework for convex
optimization formulations of input design problems based finite parameterizations.
ey also show how a number of quality constraints can be included in the design
using a finite-dimensional spectrum parameterization of the input spectrum. e joint
reference–controller input design problem, when the input is given by (2.16), is solved
for finite-dimensional parameterization by Hjalmarsson and Jansson (2008) and for
the partial correlation parameterization by Hildebrand et al. (2010). Hildebrand and
Gevers (2013) further extend the partial correlation parameterization to MIMO systems
and simplify the solution procedure by considering a central extension of the optimal
generalized moments.

A restriction with all the methods based on quasi-stationary signals and spectral
characterizations is their inability to take time domain constraints into consideration
during the design. One possibility is to include such constraints in the generation of
the signal, for example by using binary signals. Liu and Munson (1982), Boufounos
(2007), Rojas et al. (2007) have proposed algorithms for this. However, de Carvalho
and Clark (1983) show that the binary signals cannot have arbitrary covariance
sequence and therefore not all spectra may be realizable using a binary signal.
Manchester (2010) introduces a method for convex relaxations of the time domain
input design problem, which will be used later in the thesis.

2.5 Dual and adaptive MPC

e concept of dual control was introduced by Feldbaum (1960–61). e central idea
is that, if an unknown or uncertain system is to be controlled, the controller necessarily
has two objectives. On the one hand, the controller must probe the system to learn
the dynamics. On the other hand, the controller should control the system as well as
possible. ese two goals are in conflict: probing introduces a disturbance in the system
which gives worse control performance and vice versa. A controller which generates an
input suitable for both probing and control is said to have dual properties.

Adaptive controllers update the parameter estimates used for the control design
online. Although dual controllers facilitate such updates, adaptive controllers do not
necessarily have dual properties. In such cases, the control action is not designed to
reduce the uncertainty of the estimates and any improvement in the estimates is due to
the extra data available for estimation. Wittenmark (1995) and Filatov and Unbehauen
(2000) survey the dual and adaptive control fields.
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Adaptive MPC

Many adaptive versions of predictive controllers without dual properties have been
proposed. e MHPC, DMC and GPC algorithms have all been used in an adaptive setting.
ere are also the Extended Horizon Adaptive Control (EHAC) by Ydstie (1984), the
Extended Prediction Self-Adaptive Control by De Keyser and Van Cauwenberghe
(1979) and the Multistep Multivariable Adaptive Regulator (MUSMAR) by Menga
and Mosca (1980). All these approaches use a certainty equivalence formulation
where recursive least-squares estimates are used as models in the predictions. No dual
properties are added to the controllers. A comparative study of some of the algorithms
has been done by De Keyser et al. (1988).

Dual MPC

Several algorithms which extend MPC with dual properties are based on adding a
constraint which guarantees persistence of excitation in the input calculated by the
controller. ese algorithms are closely related to the developments in this thesis and are
discussed in some detail here. To formulate the algorithms, a definition of a persistently
exciting signal is needed.

Definition 2.1 (Persistence of excitation) A sequence of vectors {ϕk, k = 1, 2, . . . , }
is persistently exciting if there exist real numbers ρ1 > 0 and ρ2 > 0 and an integer P
such that

ρ1I ⪯
P+k−1∑
j=k

ϕjϕ
T
j ⪯ ρ2I, for all k.

For systems of the form

yt =

nb∑
k=1

bkut−k + et = θTϕt + et,

θ =
[
b1 · · · bnb

]T
,

ϕt =
[
ut−1 · · · ut−nb

]
, (2.17)

persistence of excitation guarantees consistent estimation of θ, for example noted by
Bitmead (1984). For systems where past outputs yt are included in the regressors
ϕt, sufficiently rich inputs can often guarantee persistence of excitation. is issue
is investigated by, for instance, Green and Moore (1986). Finally, Lai and Wei (1982)
have derived conditions for consistent estimation of the parameters θ in the case of
stochastic regressors (2.17).
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Based on Definition 2.1, different constraints on the input can be included in MPC.
e upper bound is guaranteed by the amplitude constraints of the input while the
lower bound needs to be considered by the MPC. e exact formulation of the constraint
differs in the different approaches. e choice of the lower bound ρ1 becomes an
application dependent design choice (like the choice of γ in the application-oriented
schemes) and is often a difficult one.

MPCI

Genceli and Nikolaou (1996) have proposed model predictive control with simulta-
neous model identification (MPCI). e MPC is modified to include the constraint

t+Nu∑
k=t

ϕkϕ
T
k ⪰ (ρ1 − µ)I, (2.18)

which forces the input to be persistently exciting over the control horizonNu. Beyond
the control horizon, MPCI constrains the input sequence to be periodic. e extra
tuning parameters are ρ1, which sets the level of the excitation, and µ, which is used for
constraint softening with the ideal value µ = 0. e resulting optimization problem
is nonconvex, but numerical schemes for finding local solutions are proposed.

Multiobjective MPC with identification

Aggelogiannaki and Sarimveis (2006) have formulated a multiobjective MPC where the
excitation is included as the top priority objective. e constraint (2.18) from MPCI is
used but, in a first step, an optimal µ is found as

µ⋆ = argmin
u,µ

µ (2.19)

subject to the regular MPC constraints and the constraint (2.18). e other MPC
objectives are then optimized sequentially with µ⋆ imposed as a constraint. e idea is
to remove the possibility of an infeasible MPC and at the same time get the highest
possible excitation. e problem formulation is nonconvex and is solved using an
evolutionary algorithm.

PE-MPC

Marafioti (2010) introduced persistently exciting model predictive control (PE-MPC),
which in a way reverses the formulation of MPCI. Instead of ensuring persistence of
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excitation over the future control horizon, PE-MPC uses a backward window of P
samples. More formally, the constraint

P−1∑
k=0

ϕt−k+1ϕ
T
t−k+1 ⪰ ρ1I, (2.20)

is added to the MPC formulation at time instant t. From (2.17) it follows that

P−1∑
k=0

ϕt−k+1ϕ
T
t−k+1 =

P−1∑
k=1


ut−k

ut−1−k
...

ut−nb−k




ut−k

ut−1−k
...

ut−nb−k


T

+


ut
ut−1

...
ut−nb




ut
ut−1

...
ut−nb


T

,

and hence ut is the only decision variable in the constraint (2.20), which therefore
applies only to the next input sample. PE-MPC results in a nonconvex optimization
problem but can, for certain systems, be solved using two convex quadratic programs.
e extra tuning parameters of PE-MPC are ρ1 and the horizon length P . Marafioti
(2010) shows that PE-MPC, if feasible, admits a (possibly sub-optimal) P -periodic
solution.

Dual Control by Information Maximization

Rathouský and Havlena (2011) propose adding the constraint

t+M∑
k=t

ϕkϕ
T
k ⪰ ρ1I, nb ≤M ≪ Nu, (2.21)

and consider several numerical schemes for finding approximate solutions to the
resulting optimization. Choosing ρ1 and M is the main concern. An alternative
solution, where the maximum ρ1 is found subject to constraints on the controller
performance loss, is also proposed. Rathouský and Havlena (2013) further develop
the latter idea and propose an approximation of the original nonconvex optimization
problem. e approximation finds an upper bound on the smallest eigenvalue of the
information matrix by considering a set of quadratic forms, which is computationally
simpler than directly computing the eigenvalue and can approximate the original
problem to arbitrary precision. e authors also show the benefit of multi-step
predictions (over single-step predictions) in the constraint (2.21) since this allows for
uniform excitation of the parameter space.
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Other dual MPC formulations

A number of other dual MPC formulations have also been proposed. ree of these MPC
formulations with dual properties are summarized here.

González et al. (2013) propose an MPC formulation suitable for closed-loop
reidentification. Focus is on guaranteeing stability of the closed loop while having a
persistently exciting input. is is achieved by constructing a target invariant set where
excitation is possible.

Žáčeková et al. (2013) consider MPC with persistently exciting inputs specifically
for controllers with zone control, often found in, for example, temperature control.
Informative data is achieved by maximizing the smallest eigenvalue of the information
matrix in the MPC formulation.

Heirung et al. (2013) present yet another MPC with dual effect. e optimization
problem is extended with a constraint relating to the covariance of least-squares
estimates of the model parameters. e dual effect comes from including a term related
to the predicted future parameter error covariance in the optimization objective.

Persistence of excitation versus application-oriented experiments

e dual MPC formulations presented in this section are all algorithms that generate
input signals suitable for estimation of the model parameters. Inputs that are persistently
exciting guarantee consistent parameter estimates. e methods developed in this thesis
are aimed at generating input signals suitable for estimation of a model for control
design. is is in line with the least-costly identification paradigm; the intended use of
the model is explicitly taken into account when designing the experiment. By doing
so, the system is not excited unnecessarily to reveal properties that are not important
for good control performance and thereby the cost of the experiment can be kept low
and the modeling task is simplified.

2.6 Reinforcement learning

e field of reinforcement learning is an area in machine learning that is related to the
field of dual and adaptive control in the area of automatic control. Both fields deal with
the problem of taking the right action while, at the same time, learning the results of
the actions. In reinforcement learning, an agent balances exploration, where the agent
tries to learn about its environment, and exploitation, where the obtained knowledge
is used to achieve the desired result. is is the same balance that a controller with
dual properties aims at achieving between probing and control. e purpose of this
section is not to give a detailed treatment of reinforcement learning but rather to point
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at the similarities and some differences with dual control. e survey by Kaelbling et al.
(1996) is a good introduction to the field.

Reinforcement learning is traditionally formulated for finite state and action spaces
and the process is modeled as a Markov decision process. e agent takes an action
based on the current state and receives an instantaneous reward. Based on the previously
received rewards, the agent must decide on which action to take next. e goal of the
reinforcement learning algorithm is to find a policy that maximizes some long-term
measure of the rewards. As an illustration, consider the k-armed bandit problem, where
an agent in a number of turns has the option of k actions. Each action gives a reward
according to some unknown probability. How should the agent act? On the one hand,
the agent wants to find a good action, that is one with high probability of giving a
reward. On the other hand, trying the different actions, to find the best one, means
that some turns are wasted on bad actions. e strategy of how the exploration of new
arms should be performed can be seen as the experiment design of the reinforcement
learning algorithm. For a deeper and general treatment of bandit problems, the book
by Berry and Fristedt (1985) is suggested.

A notable difference to adaptive control is the use of reinforcement leaning
techniques that do not require a model of the process to find the optimal reward.
For example, the adaptive heuristic critic of Barto et al. (1983) and the Q-learning
algorithm by Watkins (1989) learn a control policy without explicitly learning a model
of the process being controlled. Recently, Lewis et al. (2012) have used reinforcement
learning techniques to formulate adaptive controllers that converge to optimal control
solutions. ey also show how Q-learning can be used to learn an optimal control
solution for discrete-time systems.



Chapter 3

Experiment design for
model predictive control

C    situation of industrial MPC, there is a need for tech-
nologies enabling adaptation to changing operating conditions and plant changes.

Implementations of MPC show promise but benefits are held back by the fact that
control performance degrades before payback on the investment can be made. is
leads to distrust in MPC solutions, both from process operators who experience the
worsened control first-hand, and from managers, who do not see a clear return on
investment.

e recent research interest in the area of dual MPC shows that the academic
community has recognized these issues, and algorithms aimed at maintaining accurate
models have started to appear. Although the algorithms that have appeared so far
enable closed-loop reidentification, the intended use of the model is not explicitly
taken into account. is chapter considers closed-loop reidentification for MPC from an
application-oriented standpoint. is means that the intended use of the model enters
explicitly in the design of the reidentification experiment. e benefit is that the cost
of the experiments can be kept as low as possible while at the same time performance
guarantees on the resulting closed-loop performance can be given.

3.1 Application-oriented experiment design

In this section, the experiment design problem formulated in (1.1) in Section 1.3 is
discussed in a general setting. e experiment design was formulated as

minimize
input

Cost of experiment,

subject to Performance specifications,
System constraints.

(3.1)

33
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Cost of the experiment

In an industrial application it is often desirable to have identification experiments that
disturb normal operation as little as possible. What constitutes a disturbance depends
on the situation at hand. Bombois et al. (2006) give three general situations together
with relevant measures of the experimental cost. Somewhat modified, these are:

Situation 1 e resources consumed by the experiment and/or the resulting degrada-
tion of the product are the important factors.

Situation 2 e length of the experiment is the important factor.

Situation 3 Both resources and time are important factors.

Characterizing good models

e quality of a model can be measured in many ways. When the intended use of the
model is control, one way is to consider the model quality in terms of the resulting
performance when the model is used in the control design. Let the performance
degradation be measured by an application cost, Vapp : R

nθ → R, defined as a function
of the model parameters θ. If the true system parameters were known, the control
design should result in the best possible control performance and no performance
degradation. For other values of the parameters, the control performance may degrade.
Taking these observations into account, the application cost should have the properties

Vapp(θo) = 0, Vapp(θ) ≥ 0, for all θ, (3.2)

which imply, if Vapp(θ) is twice differentiable in a neighborhood of θo, that

V ′
app(θo) = 0, V ′′

app(θo) ⪰ 0, (3.3)

where prime denotes the gradient and double prime denotes the Hessian matrix.
A model is considered good if the performance degradation is sufficiently small.

is gives a set of acceptable models or parameters

Θapp(γ) ≜
{
θ

∣∣∣∣ Vapp(θ) ≤
1
γ

}
,

where γ is an application specific constant which determines the required accuracy of
the model.
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Guaranteed performance for estimated models

e set Θapp contains the model parameters that give acceptable performance and any
θ̂ that lies in Θapp is an acceptable model from the application perspective. Hence, the
goal is to find estimated model parameters that belong to this set. Since the estimates
from the system identification are random variables with (asymptotically in the data-
size) Gaussian distribution (2.9), this can only be guaranteed with some probability.
erefore, the experiment design should be such that

P
{
θ̂ ∈ Θapp

}
≥ α, (3.4)

for some lower bound α close to 1. Calculating the probability in (3.4) is in general
very involved but this chance constraint can be approximately reformulated as follows.

Using the asymptotic Gaussian distribution of the estimates in (2.9), a standard
confidence ellipsoid around the true parameters θo can be constructed as

U(α) ≜
{
θ
∣∣∣ [θ − θo]T IN1 (θo) [θ − θo] ≤ χ2

α(nθ)
}
,

where IN1 (θo) is the information matrix and χ2
α(nθ) is the α-percentile of the χ2

distribution with nθ degrees of freedom. e ellipsoid U(α) contains the estimated
parameters θ̂N with probability α which means that (3.4) can (for sufficiently large
number of data) be approximately enforced by requiring that

U(α) ∈ Θapp.

For general application costs, the set Θapp may be nonconvex, however, it can
be approximated by an ellipsoidal set using a second order Taylor expansion and the
properties (3.3), which results in the ellipsoid

Eapp(γ) ≜
{
θ

∣∣∣∣12 [θ − θo]TV ′′
app(θo)[θ − θo] ≤

1
γ

}
≈ Θapp.

Hence, the chance constraint (3.4) can be further approximated by

U(α) ∈ Eapp. (3.5)

e ellipsoidal inclusion (3.5) can be simplified to

IN1 (θo) ⪰
γχ2

α(nθ)

2
V ′′

app(θo), (3.6)

as shown by Hjalmarsson (2009). e constraint (3.6), which is an LMI in the elements
of IN1 , will be referred to as the experiment design constraint.
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3.2 Optimal experiment design formulation

Based on the considerations in the previous section, an optimal controller for the
application-oriented experiment design problem for systems with constraints can be
formalized. Two principal situations will be considered. e first is the situation where
the cost of the experiment relates to the degradation of product quality. erefore, it
is desired that the control cost is kept small during the identification. e second is
the situation where the time of the experiment is the crucial cost. It is acceptable to
sacrifice some product quality, as long as this results in a shorter experiment.

e experiment designs for the two situations can be formulated as:

1. With the least possible effect on the control cost C, during an experiment of
lengthN , excite the system S enough to accurately model the important system
dynamics needed for acceptable control performance.

2. During the shortest possible experiment timeN , excite the system S enough to
accurately model the important system dynamics needed for acceptable control
performance.

Consider the system S in (2.1) modeled byM(θ) in (2.2) and operating under
the constraints

x ∈ X , u ∈ U , y ∈ Y. (3.7)

e application-oriented experiment design problem can be formulated as the finite-
horizon optimal control problem

min
u


J

∣∣∣∣∣∣∣∣∣∣∣

xt+1 = A(θo)xt +B(θo)ut +K(θo)et,

yt = C(θo)xt + et,

xt ∈ X , yt ∈ Y, ut ∈ U ,

IN1 (θo) ⪰
γχ2

α(nθ)

2
V ′′

app(θo)


. (3.8)

e objective J is the control cost C in situation 1 and the experiment length N in
situation 2. e horizon considered by the controller (3.8) is the experiment length.
Hence, the controller should find an input of length N that satisfies the experiment
design constraint at the lowest cost.

Alternatively, an infinite-horizon controller can be formulated for the application-
oriented experiment design problem. is means that the control cost is calculated
for a control horizon that is infinite. e experiment length N , on the other hand,
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remains finite. In this case, the average per-sample information matrix, scaled by the
experiment lenght, is used to formulate the experiment design constraint. is means
that

I(θo) ⪰
γχ2

α(nθ)

2N
V ′′

app(θo)

replaces the last constraint in (3.8).

Dual properties

Explicitly including the experiment design constraint in the controller gives the
controller dual properties. e minimization of the cost, ensures good control per-
formance while the experiment design constraint ensures that the data contains
enough information for good estimation. e formulation in (3.8) relates to the MPC
with excitation and dual MPC formulations presented in Section 2.5. e significant
difference is that these new formulations explicitly take the intended application into
account when the excitation is designed. e algorithms presented in Section 2.5, on
the other hand, are primarily concerned with persistence of excitation.

Challenges

e input design problem in (3.8) is in general a difficult optimization problem. ere
are a number of challenges that need to be addressed. e solution may be closed-loop
control and therefore the correlation between the input and any noise sources present
must be accounted for. is is further complicated by the possibility that the controller
is nonlinear or gives non-stationary signal distributions. When the system is subject to
time-domain constraints on the signals, it is often observed that the resulting signal
distributions are not Gaussian even when the system is driven by Gaussian sources.

A notable exception is the quasi-stationary case with a linear output feedback
controller such that the input is given by (2.16). When no time-domain constraints
are present, the two experiment design situations have essentially been solved for a
number of frequency-domain constraints, see, for example Hjalmarsson and Jansson
(2008), Hildebrand et al. (2010), or Hildebrand and Gevers (2013).

Finally, quantifying performance is often not straightforward. is is further
elaborated on in the next section.
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3.3 Measuring MPC performance

e central idea in application-oriented experiment design is that control performance
should be guaranteed. Performance can be measured in many ways, even for one
application, and it is often not a clear cut decision which measure to use.

A common approach is to use the performance index by Harris (1989), which
compares the control performance to a minimum variance controller. Huang et al.
(2006) have extended the idea to multivariate controllers. ese type of measures put
a focus on the control performance, in terms of how well the signals are controlled,
and less focus on the overall production performance. Another approach is to measure
MPC performance in economic terms. One such measure, specifically for performance
monitoring, is introduced by Modén and Lundh (2013). Bauer and Craig (2008) have
also studied the general problem of economic assessment of APC implementations.

Performance measures are often used for performance monitoring and diagnosis.
In application-oriented experiment design, the performance measure is the application
cost. e specifics for the application cost in the MPC setting are discussed in the
following sections.

MPC specifics

A significant factor for the success of MPC is the explicit handling of constraints in
the controller. Maciejowski (2002) explains it in the following way, illustrated in
Figure 3.1. If the process is affected by random disturbances, reducing the variance of
the outputs as much as possible means that the process can operate as close as possible to
the constraints without violating them, which is often near the optimal performance.
When a linear controller is used, the variance may be reduced but the shape of the
distribution remains the same. However, an MPC that is aware of constraints can react
differently depending on if a disturbance moves the output toward or away from a
constraint. is reshapes the distribution of the output which may allow the process
to operate closer to the constraints than what is possible with a linear controller. is
effect is central to MPC and the ability to operate closer to constraints should be reflected
by the performance measure.

Control cost

e quadratic control cost,Ct, is the main tuning knob of the MPC in (2.5) and tuning
is done through the choice of the weighting matrices Q,R and S. e importance
of the different outputs is reflected in the choice of the matrix Q and the cost of
using the different inputs is reflected by the matrices R and S. Hence, many different
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...
... Output

Figure 3.1 Setpoint optimization using MPC. e uncontrolled system output distribution
(. ) has a large variance. Using a controller unaware of the constraints (. ), the variance
can be reduced but the shape of the distribution (. ) remains the same. Since MPC is
aware of constraints, the controller skews the distribution (. ), allowing the setpoint to
be closer to the constraint. e setpoints for the three cases are the dashed lines of the
corresponding colors.

considerations are weighted together into a single value. is can make assessing control
performance based on the cost Ct difficult. Several methods have been proposed for
relating some performance measure to the choice of Ct. One such approach, which
uses the sample variance as performance measure, is the practical auto-tuning method
by Annergren et al. (2013). Since, in the thesis, the controller is considered fixed and
tuning is not the main focus, this issue is not discussed further here.

Application cost

e application-oriented experiment design idea requires an application cost which
measures performance degradation related to model plant mismatch. In the MPC
context, a measure that relates the output of the system when the wrong model is
used to the ideal output, is a reasonable choice for the application cost. is is adopted
here and the application cost

Vapp(θ) =
1
T

T∑
t=1

∥yt(θ)− yt(θo)∥2 (3.9)

is used. e application cost compares the output from the system when the controller
uses arbitrary model parameters, yt(θ) to the output when a perfect description of the
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system is used, yt(θo) over a time window T . e cost (3.9) satisfies the requirements
(3.2) and can be approximated by the Taylor expansion

Vapp(θ) ≈ (θ − θo)TV ′′
app(θo)(θ − θo).

e application cost in (3.9) is based on knowledge of the true parameters θo, which
are not available; were they available, there would be no need for system identification.
erefore, the construction (3.9) is mostly of theoretical interest and not practically
applicable. Instead, in practice, the true parameter vector must be replaced by the best
available estimate of θo. By doing so, a simulation based algorithm for calculating the
Hessian of Vapp was presented by Ebadat et al. (2014).

3.4 Open-loop experiment design

In this section, the open-loop experiment design problem for MPC, as presented
by Larsson (2011), is briefly outlined. e problem formulation is for the infinite-
horizon case, assuming stationary signals in open-loop operation of the process with no
active constraints during the identification experiment. is means that the frequency-
domain techniques, for example by Jansson and Hjalmarsson (2005), can be applied.
e outcome of the experiment design is an optimal input spectrum and any time-
domain constraints need to be taken care of in the signal generation.

e input is designed to minimize the input power, which can be expressed as

tr
1
2π

∫ π

−π
Φu(ω) dω.

e goal of the system identification is to estimate a model with accaptable perfor-
mance, as specified by (3.6), after experiment of length N samples. is means that
the the problem can be formally stated as

minimize
Φu(ω)

tr
1
2π

∫ π

−π
Φu(ω) dω

subject to I(θo) ⪰
γχ2

α(nθ)

2N
V ′′

app(θo)

Φu(ω) ⪰ 0 for all ω.

(3.10)

e optimization is done over the trigonometric, matrix polynomial Φu representing
the input spectrum. e last constraint in the optimization ensures that the polynomial
is a spectrum. In the chosen formulation, the cost of the experiment is taken as the



Open-loop experiment design | 41

input power. However, the same principal formulation can be used for the case of
output power, a combination of the two, or for the experiment length.

e last constraint in (3.10) is infinite dimensional but can be treated by using a
finite-dimensional spectrum parameterization. For example, the input can be restricted
to be generated by an Mth order FIR-filter, which gives the input spectral density

Φu(ω) =

M−1∑
k=−(M−1)

cke
iωk, (3.11)

where ck ∈ Rm×m. Positivity of the spectrum defined by (3.11) can be enforced by
the Kalman-Yakubovich-Popov lemma.

Lemma 3.1 (Kalman-Yakubovich-Popov)
Let {A,B,C,D} be a controllable state-space form of

∑M−1
k=0 cke

iωk. en there exists
a matrix Q = QT ⪰ 0 such that[

Q−ATQA −ATQB
−BTQA −BTQB

]
+

[
0 CT

C D +DT

]
⪰ 0, (3.12)

if and only if

Φu(ω) =
M−1∑

k=(M−1)

cke
iωk ⪰ 0 for all ω. (3.13)

Proof. e lemma follows from the positive-real lemma, see for example the work of
Yakubovich (1962).

Furthermore, by Parseval’s theorem, the average per-sample information matrix is
an affine function of the input spectrum. is means that the optimization problem
(3.10) can be approximately reformulated as a finite dimensional SDP in the variables
ck and Q. e approximation comes from the restriction to FIR spectra, which limits
the solution to a subspace of all possible spectra.

Identification algorithm

e complete open-loop application-oriented identification method is presented here.
e method requires an initial model to base the input design on. If no such model is
available, one can be obtained in a first step using, for example, a white noise input.
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Algorithm

Step 0 Set the initial input spectrum to be flat, with equal power at all frequencies, to
obtain a white noise input sequence in the first identification experiment.

Step 1 Generate an input corresponding to the desired input spectrum.

Step 2 Estimate system parameters in an identification experiment.

Step 3 Find the application cost based on simulations of the model with the parameter
estimates.

Step 4 Design the optimal input signal based on the application cost and parameter
estimates.

Step 5 Find a new estimate of the model parameters using the optimal input signal in
the system identification experiment.

e algorithm can be iterated so that the estimate from Step 5 is used in Steps 1 and
2 to calculate a new input design. As more and more data are used in the identification
step and if there exist parameters θo such that S =M(θo), the estimates will converge
to their true values. erefore, one can expect the input design to converge to what
would be obtained had θo been known. Gerencsér et al. (2009) discuss this and give a
formal proof for this for the case of ARX systems in an adaptive input design setting.

Signal generation

e solution to the input design problem (3.10) is an optimal input spectrum. To be
useful in practice, a time domain realization corresponding to the spectrum is required.
Typically this is done by filtering Gaussian white noise through a spectral factor of
the spectrum. Assuming that the spectrum is rational and nonsingular, by spectral
factorization the optimal input spectrum can be factorized as (Söderström, 2002)

Φu(ω) = H(ω)ΛHH(ω). (3.14)

If the input is realized as ut = H(q)Λ1/2et where et is white noise with unit variance,
ut will have the right spectral characteristics. However, this solution cannot impose
time-domain constraints on the inputs. If time domain signal constraints need to be
considered in the signal generation, the framework in Chapter 7 may be useful.
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Experimental evaluation

e method for open loop input design is evaluated on a laboratory four tank system.
e process is described in detail in Example 3 of Chapter 7. e experimental
setup consists of four interconnected tanks and two pumps. e system runs at a
sampling frequency of 1 Hz and the input design, system identification and MPC are
all implemented in MATLAB. e application cost is chosen according to (6.2) and
evaluated using an initial estimate obtained in a white noise experiment.

e procedure for the experiment was:

1. Apply input voltages corresponding to the desired operating point and allow the
water levels in the tanks to settle.

2. Run a 2 minute (120 samples) initial identification experiment. e input used
was Gaussian white noise with variance 0.1.

3. Based on the estimate from 2, calculate V ′′
app(θ̂N ) and find the optimal input

spectrum Φ⋆
u(ω).

4. Run a 10 minute (600 samples) identification experiment using an input with
spectrum Φ⋆

u(ω).

5. Identify a model of the system using all 12 minutes (720 samples) of data.

6. Construct an MPC with the model obtained in step 5 and run a reference tracking
scenario.

To illustrate the advantage of using the optimal input, the same procedure is performed
with the optimal input replaced by a Gaussian white noise input with the same variance
as the optimal input. e reference tracking capabilities of the resulting MPCs are
shown in Figure 3.2. It is evident that using the optimal input during the identification
experiment results in models that are suitable for the intended application. e system
responses when white noise identified models are used are much more spread out
around the desired reference trajectories.

e water levels violate constraints for both cases presented in Figure 3.2. However,
since the responses are closer together for models originating from optimal input
designs, it is in this case possible to operate at references closer to the output constraints.
e references would have to be far from the constraints to guarantee no constraint
violations for the models obtained from white noise excitation experiments. To further
improve on reducing constraint violations, a penalty for this in the application cost,
might be useful.
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(a) Optimal input
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(b) White noise input

Figure 3.2 e trajectories (. ) and references (. ) of the four tank process controlled
by MPC with models based on estimates from 5 identification experiments. In plot (a) the
identification was made with optimal inputs whereas in plot (b) white inputs were used.



Chapter 4

Markov decision process
formulation of experiment design

T -  design problem formulated in Chapter 3
is in general a difficult optimization problem. e nonlinear nature of the

controller and the presence of constraints complicate the calculation of the resulting
signal distributions. When the system is driven by disturbance processes and the
controller is used to counteract the effect of the disturbances, there is always correlation
between the input and the disturbance. Markov decision processes (MDP) offer a
framework for making sequential decisions based on current knowledge when the result
of the decision is uncertain, which is the case for the systems considered here. A good
introductory reference to MDPs is the book by Puterman (1994).

In this chapter, constrained Markov decision processes (CMDPs) are used to
formulate a controller that implements the application-oriented experiment design
problem in (3.8). e problem is formulated using theory for discrete states and
controls (or actions), which often will be an approximation since (3.8) is formulated
for more general cases. e benefit of the approach is that very general noise and
disturbance situations may be considered. e downside is that the approach results in
a new type of controller that is not found in implementations. Furthermore, finding
the controller is computationally expensive.

e chapter starts by recalling the considered problem and an introduction to
the system and control model used in the MDP. en the optimal control problem is
discussed in the expected average and discounted cost cases. e discounted case does
not correspond to the original problem but results in a smaller optimization problem
and may have a simpler solution. e expected average cost case matches the original
problem but it may result in more complicated controllers. A semidefinite program
(SDP) can be used to find the optimal control in both cases. e application-oriented
experiment design problem is implemented as a CMDP in a simulation example.

45
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4.1 The considered problem

e infinite horizon application-oriented experiment design problem

min
u


C(u)

∣∣∣∣∣∣∣∣∣∣∣

xt+1 = Axt +But + vt,

yt = Cxt + wt,

xt ∈ X , yt ∈ Y, ut ∈ U ,

I(θo) ⪰
γχ2

α(nθ)

2N
V ′′

app(θo)


, (4.1)

where C(u) a control objective, is considered. Since the infinite horizon case is
considered, the average per-sample information matrix is used in (4.1). e last
constraint in (4.1) ensures that, after an identification experiment of length N , the
resulting estimates fulfill the application requirements with probability α. As it stands,
the optimization problem in (4.1) is typically intractable. e idea here is to formulated
a finite CMDP corresponding to the original optimization problem. Since the state
and control spaces in (4.1) are more general than the finite, discrete spaces that are
considered for the CMDP, a discretization of the original spaces is typically needed. e
resulting CMDP can then be solved using an SDP. Before reformulating the problem
(4.1), a general framework for CMDPs with matrix constraints is defined. e first step
in the CMDP modeling is to formalize the system and control models used, which is
done in the following section.

4.2 System and control model

e system is observed at discrete times t = 1, 2, . . ., over an infinite horizon. e
evolution of the system from one time instant to the other depends on the state of
the system, the action taken by the controller and the process noise. Depending on the
chosen action, the system transitions randomly from one state to another with different
probabilities. It is assumed that the system has the Markov property, which means that
the probability of transitioning from one state to another depends only on the current
state and not on how the current state was attained.

To each state and action there is an associated cost, and a number of associated
rewards. e goal of the controller is to find a control policy that minimize the cost
while ensuring that the rewards are above some given constraints. To implement the
controller in (4.1), the definition of CMDPs from Altman (1999) is extended to matrix
valued rewards in Definition 4.1.
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Definition 4.1 (Matrix constrained Markov decision process) A finite, matrix
constrained Markov decision process is the tuple {X,U,P, c, d} where:

– X is a discrete state space containing a finite number of states. Generic notation
for states is x, y.

– U is a discrete action space containing a finite number of actions. An individual
action is denoted u and U(x) ⊆ U are the actions available in state x.

– P = {pxy(u)} are the transition probabilities from state x to state y when
action u is taken, that is pxy(u) = P {xt+1 = y |xt = x, ut = u}.

– c : X×U→ R is an immediate cost for state–action pair (x, u) related to the
control objective.

– d =
{
dk : X×U→ Rnk×nk , k = 1, 2, . . . ,m

}
are m symmetric, matrix

valued immediate rewards for state–action pair (x, u) related to the constraints.

Remark 4.1 If nk = 1 for all k in Definition 4.1, d can be taken as the k-dimensional
vector of immediate costs in the standard definition of CMDPs.

A sequence of rules for how an action is chosen at a specific time is called a policy
and is denoted π = (π1, π2, . . .). Policies can be categorized in the following classes:

Markov policies, ΠM : π ∈ ΠM if for any time t, the rule πt depends only on the
state xt and not on how the state was attained. Hence, the rule πt is a mapping
πt : X × U(x) → [0, 1], which gives the conditional probability of taking
control action u in state x at time t, that is πt(x, u) = P {ut = u |xt = x}.

Stationary policies, ΠS : π ∈ ΠS if π1 = π2 = · · · , that is, the rule does not depend
on time. e stationary policies are a subset of ΠM .

Stationary deterministic policies, ΠD: π ∈ ΠD if the action ut is a function of
the state xt. Hence, the rule πt is a mapping πt : X → U(x). e stationary
deterministic policies are a subset of ΠS .

e initial distribution of the states is denoted β, that is, β(x) = P{x0 = x}. A
given policy π, and an initial distribution β determine a unique probability measurePπ

β

for the state and action trajectories. e corresponding expectation operator is denoted
Eπ
β .



48 | Markov decision process formulation of experiment design

Controller with matrix constraints

e objective for the controller is to minimize a cost, Cβ(π), based on the immediate
costs c, while maintaining rewards,Dk

β(π), based on the immediate rewards dk, above
a given level. For the expected average case, given an initial distribution β and policy
π, the cost and rewards are defined as

Cβ(π) ≜ lim sup
T→∞

1
T

T∑
t=1

Eπ
β{c(xt, ut)}, (4.2)

Dk
β(π) ≜ lim inf

T→∞

1
T

T∑
t=1

Eπ
β

{
dk(xt, ut)

}
. (4.3)

For the discounted case, the cost and rewards are defined as

Cα
β (π) ≜ lim sup

T→∞
(1− α)

T∑
t=1

αt−1 Eπ
β{c(xt, ut)}, (4.4)

Dk,α
β (π) ≜ lim inf

T→∞
(1− α)

T∑
t=1

αt−1 Eπ
β

{
dk(xt, ut)

}
, (4.5)

for a fixed discount factor α, 0 < α < 1. Using the cost and rewards, the matrix
constrained Markov decision process (matrix CMDP) can be formulated. e controller
should find a feasible policy π⋆ that is optimal in the sense that

π⋆ = argmin
π

{
Cβ(π)

∣∣∣ Dk
β(π) ⪰ Bk, k = 1, 2, . . . ,m

}
. (4.6)

Here, Bk are matrices, of dimensions commensurate with Dk
β(π), defining the

constraints on the rewards. Comparing (4.1) and (4.6), it is seen that the experiment
design problem has similarities with in the matrix CMDP. Firstly, the state and control
constraints X and U relate to the state and action spaces X and U. Secondly, the
dynamics given by the state space model in (4.1) together with the distribution of
the disturbance process vt is an alternative description of the transition probabilities
pxy(u). irdly, the excitation constraint is a matrix valued reward subject to a lower
constraint. e formulation of the experiment design problem as a matrix CMDP is
formalized later in this chapter. First, a small example is presented to illustrate the
CMDP modeling and how the constraints can be used to give inputs suitable for
reidentification.
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Figure 4.1 e Markov chain considered in Example 4.1. e circles represent the states
and the arcs are the possible transitions. e symbol above an arc indicates the chosen
action. e first value in the bracket below the arc is the cost related to the action and the
second value is the probability of the transition given the action.

Example 4.1 (Matrix constrained Markov chain)
Consider first the two-state unconstrained Markov chain illustrated in Figure 4.1. e
chain is defined by:

States:X = {x, y}.
Actions:U = {u1, u2} withU(x) = {u1} and U(y) = {u1, u2}.
Transition probabilities:

pxx(u1) = 0, pyx(u1) = 1, pyx(u2) = 0.1
pxy(u1) = 1, pyy(u1) = 0, pyy(u2) = 0.9.

Costs:

c(x, u1) = 1, c(y, u1) = 1, c(y, u2) = 0.

e initial state is x or y with equal probability and hence β = [0.5 0.5]T . e
control criterion is to minimize the expected average cost (4.2) (without any constraints),
which can be done using the policy

π⋆uc : u =

{
u1 in state x,
u2 in state y.

e policy π⋆uc is not good in a situation where new information on the effect of action
u1 needed. Since, under π⋆uc, the action u1 is never taken in state y, it is not possible to
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completely model the effect of u1 using this policy. To model that effect, a constraint can be
added to ensure that, on average, the action u1 is taken in state y at least in, for example,
10% of the total control actions. To achieve this, introduce the rewards

d(x, u1) = 0, d(y, u1) = 1, d(y, u2) = 0,

which give a reward for using action u1 in state y. e controller is changed such that the
expected average cost is minimized subject to that the expected average reward is above 0.1,
which can be done using the policy

π⋆c : u =


u1 in state x,
u1 with probability 0.12 in state y,
u2 with probability 0.88 in state y.

In Monte Carlo simulations of the Markov chain, under the policy π⋆c , the state–action pair
(y, u1) occurs in 10% of the total state–action pairs, while under π⋆uc, the pair (y, u1) (of
course) never occurs. ♢

Example 4.1 shows two things. First, the optimal policy in the unconstrained case
does not result in a controller which can be used to fully model the system, since the
effect of action u1 in state y is never explored. Second, suitably chosen constraints gives
the controller dual properties.

To solve the problem (4.6), an SDP can be used. e idea is to introduce a feasible set
for the SDP such that the decision variables correspond to probability measures of pairs
of states and actions in the controlled Markov chain. In the following two sections,
these feasible sets are constructed for the expected average cost and the discounted cost
cases.

4.3 Expected average cost and constraints

In this section, the case with expected average cost and constraints is considered for
general Markov chains. e expected average cost for initial distribution β can be
written as

Cβ(π) = lim sup
T→∞

1
T

T∑
t=1

Eπ
β{c(xt, ut)}

= lim sup
T→∞

1
T

T∑
t=1

∑
x0∈X

∑
x∈X

u∈U(x)

β(x0)Pπ
x0{xt = x, ut = u} c(x, u),
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where Pπ
x0{xt = x, ut = u} is the probability of the state–action pair (x, u) given

initial state x0 and policy π. e expected average rewards can be written as

Dk
β(π) = lim inf

T→∞

1
T

T∑
t=1

Eπ
β

{
dk(xt, ut)

}
= lim inf

T→∞

1
T

T∑
t=1

∑
x0∈X

∑
x∈X

u∈U(x)

β(x0)Pπ
x0{xt = x, ut = u} dk(x, u).

Introduce the finite-horizon expected state–action frequencies

zTxu(π) ≜
1
T

T∑
t=1

∑
x0∈X

β(x0)Pπ
x0{xt = x, ut = u} .

e sets {zTxu(π)}(x∈X,u∈U(x)) can be seen as probability measures (sometimes
denoted occupation measures), which give the probability zTxu(π) to the state–action
pair (x, u).

Let Zπ denote the limit points, z(π), of the vectors zT (π) = {zTxu(π), T =
1, 2, . . .}. e elements of Zπ are the infinite-horizon probability measures assigning
probabilities for the state–action pairs. In general, for a given initial distribution and
policy, there may be an infinite set of limit points. erefore, the notion of a convergent
policy is useful.

Definition 4.2 (Convergent policy) A policy π is convergent if Zπ consists of a single
element. e class of convergent policies is denoted ΠC .

e set Zπ depends on which class the policy belongs to. Introduce the sets L,
LM , LC , LS , and LD defined by

L ≜ {z(π) ∈ Zπ | π is an arbitrary policy.} ,
LM ≜ {z(π) ∈ Zπ | π ∈ ΠM } ,
LC ≜ {z(π) ∈ Zπ | π ∈ ΠC } ,
LS ≜ {z(π) ∈ Zπ | π ∈ ΠS } ,
LD ≜ {z(π) ∈ Zπ | π ∈ ΠD } .

Theorem 4.1
L = L(M) = L(C) = L(S) = L(D), where X is the convex hull of X .
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Proof. See, for example, Hordijk and Kallenberg (1984).

eorem 4.1 shows that, since the limit points for arbitrary policies have a
corresponding convergent policy, there is no restriction in considering only convergent
policies. Furthermore, the theorem shows that, in general, the optimal policy for the
infinite-horizon cost situation may be non-stationary.

For convergent policies, the expected average cost and rewards can be expressed in
terms of the state–action frequencies as

Cβ(π) =
∑
x∈X

u∈U(x)

c(x, u)zxu(π), Dk
β(π) =

∑
x∈X

u∈U(x)

dk(x, u)zxu(π).

Introduce the vector set

Qβ =


z

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
x∈X

u∈U(x)

(δxy − pxy(u))zxu = 0, y ∈ X

∑
u

zyu +
∑
(x,u)

(δxy − pxy(u))z̃xu = β(y)s, y ∈ X

zxu, z̃xu ≥ 0, (x, u) ∈ X×U(x)


.

e set Qβ is a polytope and can be related to the set L by the following theorem.

Theorem 4.2
L = Qβ .

Proof. See, for example, Hordijk and Kallenberg (1984).

e theorem shows that the polytope Qβ corresponds to the set of probability
measures of the state–action pairs for infinite horizon. Hence, it is possible to optimize
over the state–action frequencies by considering vectors z ∈ Qβ . Before formulating
the SDP to solve (4.6), the discounted cost situation is studied.
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4.4 Discounted expected cost and constraints

e discounted expected cost can be written as

Cα
β (π) = lim inf

T→∞
(1− α)

T∑
t=1

αt−1 Eπ
β{c(xt, ut)}

= (1− α)
∞∑
t=1

αt−1
∑
x0∈X

∑
x∈X

u∈U(x)

β(x0)Pπ
x0{xt = x, ut = u} c(x, u),

where the limit exists because of the finite state and action spaces. e discounted
rewards Dk,α

β (π) can be written analogously as

Dk,α
β (π) = lim sup

T→∞
(1− α)

T∑
t=1

αt−1 Eπ
β

{
dk(xt, ut)

}
= (1− α)

∞∑
t=1

αt−1
∑
x0∈X

∑
x∈X

u∈U(x)

β(x0)Pπ
x0{xt = x, ut = u} dk(x, u).

Introduce the discounted state–action frequencies

zαxu(π) ≜ (1− α)
∞∑
t=1

αt−1
∑
x0∈X

β(x0)Pπ
x0{xt = x, ut = u} .

e set {zαxu(π)}(x∈X,u∈U(x)) is again a probability measure that gives the probability
zαxu(π) to the state–action pair (x, u). Contrary to the infinite-horizon situation, for
a given policy and initial distribution, there is only one such probability measure.
erefore, the discounted cost and rewards can be expressed in terms of the discounted
state–action frequencies as

Cα
β (π) =

∑
x∈X

u∈U(x)

c(x, u)zαxu(π), Dk,α
β (π) =

∑
x∈X

u∈U(x)

dk(x, u)zαxu(π).

Introduce the sets of vectors zα(π) = {zαxu(π)}(x∈X,u∈U(x)) defined by

K ≜ {zα(π) | π is an arbitrary policy.} ,
KM ≜ {zα(π) | π ∈ ΠM } ,
KS ≜ {zα(π) | π ∈ ΠS } ,
KD ≜ {zα(π) | π ∈ ΠD } .
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Further introduce the set of vectors

Qα
β ≜

z
∣∣∣∣∣∣∣∣
∑
x∈X

u∈U(x)

(δxy − αpxy)zxu = (1− α)βy, y ∈ X

zxu ≥ 0 (x, u) ∈ X×U(x)


e set Qα

β can be related to the sets of probability measures by the following theorem.

Theorem 4.3
K = KM = KS = KD = Qα

β , where X is the convex hull of X .

Proof. See, for example, Altman (1999, Chapter 3).

e theorem shows that, for the discounted case, it is no restriction to consider
stationary policies, and that optimizing over the vectors z ∈ Qα

β corresponds to
optimizing over the discounted state–action frequencies. In the next section, the SDP
formulation that can be used to solve (4.6) is introduced.

4.5 Semidefinite program

To solve the constrained control problem (4.6), consider the optimization problem

min
z


∑
x∈X

u∈U(x)

c(x, u)zxu

∣∣∣∣∣∣∣∣
z ∈ Q∑

x∈X
u∈U(x)

dk(x, u)zxu ⪰ Bk, k = 1, . . . ,m

 , (4.7)

where Q = Qα
β for the discounted problem and Q = Qβ for the expected average

problem. Comparing Qα
β and Qβ , it is seen that the vector z̃ is not required in the

specification of Qα
β . is means that the optimization problem (4.7) has half the

number of decision variables in the discounted cost case compared to the expected
average case.

Proposition 4.1
e optimization problem (4.7) is an SDP.

Proof. e constraints given by dk(x, u) and Bk are LMIs in the decision variables z
and the set Q is defined by linear constraints on z. Furthermore, the objective is linear.
erefore the problem is an SDP, which proves the proposition.
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Since the problem (4.7) is an SDP, it can be solved by standard techniques, see, for
example, the book by Boyd and Vandenberghe (2003). Given a solution z to the SDP
(4.7), define the stationary policy π∞ by

π∞xu =


zxu/zx, if zx > 0,
z̃xu/z̃x, if zx = 0, z̃x > 0,
arbitrary, otherwise,

(4.8)

zx =
∑

u∈U(x)

zxu, z̃x =
∑

u∈U(x)

z̃xu.

e relationship between the matrix CMDP (4.6) and the SDP (4.7) is formalized in the
following theorem.

Theorem 4.4
e following hold

(i) e semidefinite program (4.7) is feasible if and only if (4.6) is feasible.

(ii) e optimal values of (4.7) and (4.6) are equal.

(iii) If π is an optimal policy for (4.6), then z(π) is optimal for (4.7).

For the discounted case, Q = Qα
β , it further holds that

(iv) If z is an optimal solution of (4.7), then the policy π∞ defined in (4.8) is a stationary
optimal policy for (4.6).

Proof. e proof is analogous to the linear programming case in Altman (1999,
Chapter 3) for the discounted case and Hordijk and Kallenberg (1984) for the expected
average case.
(i)-(iii): For the discounted case, by eorem 4.3,KS = Qα

β and the statements follow.
In the expected average case, by eorems 4.1 and 4.2, LC = Qβ . Furthermore, for
any convergent policy,

Cβ(π) =
∑
x∈X

u∈U(x)

c(x, u)zxu, Dk
β(π) =

∑
x∈X

u∈U(x)

dk(x, u)zxu

and the statements follow.
(iv): See, for example, Altman (1999, Chapter 3).
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e stationary policy π∞ is optimal for the discounted problem but may not be
optimal for the expected average problem. However, optimality can be checked by the
following lemma.

Lemma 4.1
If zxu/zx = z̃xu/z̃x for all u and x ∈ {x|zx > 0, z̃x > 0}, then the stationary policy
π∞ is an optimal policy for the expected average version of problem (4.6).

Proof. See, for example, Hordijk and Kallenberg (1984).

Remark 4.2 It is possible to prove that if (z, z̃) is an optimal solution of (4.7), a
corresponding optimal Markov (but not necessarily stationary) policy always exists.
However, in practice, stationary policies are simpler to work with and therefore only
such policies are considered also in the expected average case.

4.6 MDP with excitation

A matrix CMDP that approximately solves the experiment design problem can now be
formulated. is means that the tuple {X,U,P, c, d} corresponding to the problem
(4.1) needs to be specified. e first step is to find a suitable state space description
for the dynamics of the Markov chain. e superscript c is used to distinguish states
defined on a continuous state space from the states on the discrete state space used by
the CMDP. Definition 4.1 requires that the immediate costs and rewards are functions
of the current state. Since the excitation constraint uses the information matrix, the
state space description

ξct+1 = Aξct + But +K
[
vt
wt

]
, (4.9)

from (2.12) is used. e terms in the information matrix can be calculated from the
state ξct using the relation (2.13).

To simplify notation for the constraints on the information matrix, the single
output case is considered. However, extension to multiple outputs is possible. e
components of the matrix CMDP are described in the following sections.

State and action spaces

e problems (4.6) and (4.7) are formulated for finite state and action spaces while the
experiment design problem in (4.1) is defined for more general spaces. erefore, an
approximation of the state and action spaces by some suitable discretization may be
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needed. is is a well studied problem where a lot of attention has been paid to the
curse of dimensionality. Here, a simple griding technique is employed.

Partition the sets X , U into discrete regions, Xx and Uu, indexed by X =
{1, 2, . . . , nx} and U = {1, 2, . . . , nu}, such that X =

∪
x∈XXx and U =∪

u∈U Uu. A continuous state ξc is categorized as belonging to a certain discrete state
x, for example, by

x = argmin
x∈X
∥ξc − ξx∥, (4.10)

where ξx are the centers of the discretization regions. e continuous input uc is
categorized in the same way. is allows the system to be approximated by a finite
Markov chain on the discrete state space X and the discrete action space U, see,
for example, the work by Lunze (1998) for a discussion on the properties of the
approximation.

Remark 4.3 In modern industrial applications, control is most often implemented
digitally which means that the action space is already discrete.

Transition probabilities

e transition probabilities for the discretized state and action spaces need to be
calculated. is can be done in different ways, resulting in different approximations of
the true state transitions. One possibility is to consider the conditional probability

pxy(u) = P
{
ξct+1 ∈ Xy |ξct = ξx, u

c
t = uu

}
, (4.11)

which means that the starting point for the transitions is considered to always be at the
center of a discretization region. Assuming that the noise sources vt and wt have the
joint Gaussian distribution[

vt
wt

]
∼ N

([
0
0

]
,

[
Λv 0
0 Λw

])
,

the state ξct+1 is, conditioned on ξct = ξx, u
c
t = uu, distributed as

ξct+1 ∼ N
(
Aξx + Buu,K

[
Λv 0
0 Λw

]
KT

)
,

which can be used to calculate the needed transition probabilities (4.11) by evaluating
the resulting multivariate Gaussian integrals. is can, for example, be done numeri-
cally using the Monte Carlo techniques by Hammersley and Handscomb (1964). e
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Monte Carlo techniques are also useful for other distributions of the noise processes.
is and other schemes for discretization of MDPs and calculating the transition
probabilities are discussed by Bertsekas (1975), Chow and Tsitsiklis (1991) and Munos
and Moore (2002), for example.

Control cost

A quadratic immediate cost, similar to the quadratic cost (2.4) used in the MPC, is
introduced according to

c(x, u) = E
{
xTt+1Qxt+1 + uTt Sut +∆uTt R∆ut

∣∣xt = x, ut = u
}

=
∑
y∈X

pxy(u)y
TQy + uTSu+∆uTR∆u, (4.12)

whereQ,R and S are positive, semidefinite matrix weights. e expected average cost
(4.2) or the discounted cost (4.4) can be formulated using the immediate costs c(x, u).

Remark 4.4 e cost (4.12) includes ∆u terms which require memory of the past
input ut−1. is can always be included in the MDP by adding an extra state, x̃, which
evolves as x̃t+1 = ut.

Excitation constraint

e excitation constraint can be formulated using an appropriate immediate reward.
In the single output case, consider

I(x, u) =
1
λv

E
{
Cxt+1x

T
t+1CT

∣∣xt = x, ut = u
}

=
1
λv

∑
y∈X

pxy(u)CyyTCT , (4.13)

where C comes from the extended state space system (2.12) used to calculate the
information matrix. e I(x, u) terms can be interpreted as matrix valued, immediate
rewards for the matrix CMDP, corresponding to the dk(x, u) terms in Definition 4.1.

e average per-sample information matrix can, for convergent policies, be written
in terms of the immediate rewards (4.13) as

I(θo) = lim
T→∞

1
T

T∑
t=1

Eβ
π{I(xt, ut)} =

∑
x∈X

u∈U(x)

zxuI(x, u). (4.14)



MDP with excitation | 59

e expression for I(θo) in (4.14) corresponds to one of the expected average rewards
Dk

β in the general matrix CMDP. In the discounted case, introduce

Iα(θo) =
∑
x∈X

u∈U(x)

zαxuI(x, u), (4.15)

which corresponds to a discounted reward. is is not the actual average per-sample
information matrix but can be used as an approximation thereof as the following lemma
shows.

Lemma 4.2
For any convergent policy π ∈ ΠC

I(π) = lim
α→1−

Iα(π).

Proof. By Hordijk and Kallenberg (1984, eorem 3), zxy(u) = limα→1− z
α
xy(u) for

any convergent policy and the lemma follows.

e right hand side of the excitation constraint, which is given by

γχ2
α(nθ)

2N
V ′′
app(θo),

corresponds to the Bk term in the general matrix CMDP.

Optimal policy

e controller for the application-oriented experiment design problem (4.1) is given
by the optimal policy π⋆ such that

Cβ(π
⋆) = min

π

{
Cβ(π)

∣∣∣∣ I(θo) ⪰ γχ2
α(nθ)

2N
V ′′

app(θo)

}
, (4.16)

for the matrix CMDP defined on the discrete state and action spaces discussed previously
in this section. e problem (4.16) can be solved using the SDP (4.7). Given a solution
to the SDP, a stationary policy πX can be found from (4.8).
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Algorithm

e MDP with excitation is summarized in Algorithm 4.1.

Algorithm 4.1 MDP with excitation
Require: V ′′

app(θo), γ, α,N
1: solve (4.16) to obtain πX .
2: while t < N do
3: measure yt
4: update ξ̂ct using (2.12)
5: find discrete state x using (4.10)
6: find ut from πX
7: apply ut to the system
8: t← t+ 1
9: end while

Remark 4.5 In Algorithm 4.1, the state is estimated using the regular Kalman filter
and then a discrete state is found for the estimate. is is in the certainty equivalence
spirit of MPC and simple to use. However, it is certainly not the optimal estimate in
many cases. An alternative could be to introduce states for the distribution of the state
estimate and, based on these, calculate a distribution over the discrete states.

4.7 Example

is example serves as a simple proof of concept for the presented matrix CMDP
approach to solving the application-oriented experiment design problem. It is also
shown how including the noise model in the design affects the expression for the
information matrix and the resulting estimates. Consider the ARX system{

xt+1 = −θ1xt + θ2ut − θ1vt,

yt = xt + vt,

where vt is Gaussian white noise with variance λv = 1 × 10−3, and the parameter
vector θ = [θ1, θ2] is unknown and needs to be estimated. e true system is given by
θ0 = [0.5, 0.5]T , and the stationary optimal one step ahead predictor is

ŷt+1|t = −θ1yt + θ2ut. (4.17)
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e state space is extended with states for the predictor sensitivities according to (2.12),
which gives

ξt+1 =

 θ1 0 0
−1 0 0
0 0 0

 ξt +
θ2

0
1

ut +
 θ1
−1
0

 vt,
ξt =

[
xt

∂ŷt
∂θ1

∂ŷt
∂θ2

]T
.

e terms (4.14) needed for the excitation constraint are given by

I(x, u) =
1
λv

E

{[
0 1 0
0 0 1

]
ξt+1ξ

T
t+1

[
0 1 0
0 0 1

]T ∣∣∣∣∣xt = x, ut = u

}

=
1
λv

E
{[

(−xt − vt)2 (−xt − vt)ut
(−xt − vt)ut u2

t

]∣∣∣∣xt = x, ut = u

}
=

1
λv

[
x2 + λv −xu
−xu u2

]
.

erefore, no additional states are actually needed to include the excitation constraint.
e state space is discretized into 51 regions, uniformly spaced on the interval

[−1, 1] and the input into 21 regions, uniformly spaced on the interval [−2, 2]. e
transition probabilities are calculated numerically by evaluating the transitions for each
possible pair (x, u) in simulations. A quadratic control cost based on the immediate
costs (4.12) is used with Q = 2, R = 1 and S = 0.

e identification objective is setup such that, after an experiment length of N =
500 samples, the average per-sample information matrix should satisfy

I(θo) ⪰
[

400 −300
−300 800

]
. (4.18)

e resulting SDP (4.7) is solved and a stationary policy πX is found through (4.8).
For comparison, a controller for experiment design (formulated in the next chapter)
assuming that the system is of OE type, is also used. ARX models are estimated using
the predictor (4.17) for the two methods in a Monte Carlo study with 100 trials to
evaluate the performance of the methods. e 99 % confidence ellipses corresponding
to the information matrices calculated from the two methods and the estimates are
plotted in Figure 4.2. Both methods indicate that the performance specifications are
met since the calculated confidence ellipses are inside the performance specification
ellipsoid. However, with the OE model, the calculated ellipse is not the true one. is
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Figure 4.2 e confidence ellipses and estimates using an ARX model and an OE model
for experiment design for the system in the example in Section 4.7. e performance
specification is given by (. ). Using an ARX model results in (. ) and the estimates
(. ), while an OE model gives the confidence ellipse (. ) and results in the estimates (. ) In
both cases, ARX models corresponding to the true system structure are estimated from the
data. e ellipses are scaled to contain 99 % of the estimated parameters.

results in 15 of the estimates not fulfilling the requirements when the output error
assumption is used in the experiment design, while only 1 of the estimates from the
matrix CMDP approach does not satisfy the requirements.

4.8 Summary

In this chapter, a solution to the infinite-horizon application-oriented experiment
design problem was formulated using a finite, matrix constrained Markov decision
process formulation. Since the original problem is formulated for more general state
and action spaces, the finite spaces used in the matrix CMDP formulation typically
results in an approximate solution to the initial problem.

e formulation suffers from the curse of dimensionality if continuous state and
action spaces need to be discretized and is therefore often impractical in applications.
Furthermore, the formulation requires the implementation of a completely new type
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of controller. is is not feasible in many industrial situations. Nevertheless, the
formulation may be of theoretical interest as it allows to study the problem for very
general noise and disturbance processes. e resulting controller may also be used as a
benchmark solution for other approximate schemes. Finally, for systems that inherently
have discrete states and actions, the approach can be viable.





Chapter 5

Model predictive control
formulation of experiment design

M    routinely require maintenance of the predic-
tion models to give acceptable control performance as plant dynamics change

over time. In the previous chapter, an optimal controller with dual properties that
enable such model maintenance was developed. However, in applications where an
MPC is already used, it is desirable to include the dual properties in the formulation
of the MPC. Two controllers along these lines are presented in this chapter. e
controllers are based on the application-oriented experiment framework. e major
benefit of these formulations is that they build on existing MPC controllers. However,
the algorithms are limited to OE models, unlike the MDP solution in Chapter 4, which
works for very general noise structures.

e chapter starts by defining the assumed system and control structure. en,
the MPC from Chapter 2 is reformulated to facilitate the development of the MPC with
excitation. Controllers for the minimum control cost and minimum time problems are
designed and evaluated in simulations.

5.1 System and model

e considered systems are of output error (OE) type. Hence, the system is described
by a state-space model of the form{

xt+1 = Axt +But,

yt = Cxt + wt,
(5.1)

where xt ∈ X ⊆ Rn is the state, ut ∈ U ⊆ Rm is the input, yt ∈ Y ⊆ Rp is the
output and wt ∈ Rp is a zero mean, white, Gaussian noise process with covariance

65
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matrix Λv. e constraint sets X ,U and Y are all convex sets. e system is modeled
using {

x̂t+1|t = A(θ)x̂t|t−1 +B(θ)ut,

yt = C(θ)x̂t|t−1 + et,
(5.2)

where the parameter vector θ is estimated using PEM system identification. e estimate
is based on N samples of input–output data. It is assumed that there exists a θo such
that the model captures the true system and the asymptotic properties (2.9) hold for
the estimate θ̂N .

5.2 Controller

e controller is based on the general MPC formulation in (2.5). e cost is chosen as
the quadratic cost

Ct =

Ny∑
k=1

∥ŷk − rt+k∥2Q +

Nu−1∑
k=0

(
∥∆ûk∥2R + ∥ûk∥2S

)
, (5.3)

and the optimization problem solved at sample t is

minimize
{uk}

Ny−1
k=0

Ct

subject to x̂k+1 = A(θ)x̂k +B(θ)ûk, k = 0, 1, . . . , Ny − 1,
ŷk = C(θ)x̂k, k = 1, 2, . . . , Ny,

x̂0 = xt,

∆u0 = ût − ut−1,

ûk+1 = ûk, k = Nu, Nu + 1, . . . , Ny − 1,
ûk ∈ U , k = 0, 1, . . . , Ny − 1,
x̂k ∈ X , k = 1, 2, . . . , Ny,

ŷk ∈ Y, k = 1, 2, . . . , Ny.
(5.4)

e choice to constrain the input to be constant after the control horizon is purely
for simplicity and imposes no limitation in the formulation. e theory of MPC has
become fairly well established and formal results on stability and robustness exists,
see for example the survey by Mayne et al. (2000). Here, stability is handled by the
following assumption.
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Assumption 5.1 e MPC (5.4) is feasible for each time instant, the closed loop is
stable for all initial states x0 in the set X .

Remark 5.1 e recursive feasibility and stability of Assumption 5.1 can be enforced
using terminal constraints on the states, as discussed by Mayne et al. (2000).

Reformulation of the cost

It is convenient to reformulate the cost function (5.3) by including the dynamics of
the predictions in (5.2). Introduce the notation

x̄ ≜


x̂1
x̂2
...

x̂Ny

 ȳ ≜


ŷ1
ŷ2
...

ŷNy

 , r̄t ≜


rt+1
rt+2

...
rt+Ny

 ,

ū ≜


û0
û1
...

ûNy

 , ū⋆t ≜


ut−1

0
...
0

 , ∆ūt ≜


û0 − ut−1
û1 − û0

...
ûNu − ûNy−1

 ,

for the signals over the prediction horizon. e states and the output can be expressed
as

x̄ = Υ(θ)ū+Ψ(θ)x0,

ȳ = Σ(θ)x̄ = Σ(θ) (Υ(θ)ū+Ψ(θ)x0) ,

where the matrices Ψ(θ), Υ(θ) and Σ(θ) are calculated using the prediction model
(5.2). Further, introduce the matrix Γ such that

∆ūt = Γū− ū⋆t .

By defining

H(θ) ≜ Υ(θ)TΣ(θ)T
(
INy ⊗Q

)
Σ(θ)Υ(θ) + ΓT (INu ⊗R) Γ + (INu ⊗ S) ,

Gt(θ) ≜ 2 [Σ(θ)Ψ(θ)x0 − r̄t]T
(
INy ⊗Q

)
Σ(θ)Υ(θ)− 2ū⋆Tt (INu ⊗R) Γ,
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where In is an identity matrix of dimensions n × n and ⊗ denotes the Kronecker
product, the cost function (5.3) can be written as

Ct = ūTH(θ)ū+ Gt(θ)ū+ constant

= trH(θ)ūūT + Gt(θ)ū+ constant, (5.5)

where the cyclic property of the trace has been used and the constant term does not
influence the optimization. e expressions for the matrices Ψ(θ),Υ(θ), Σ(θ) and Γ
can be found in Appendix 5.A.

Using the expression (5.5) and the remaining constraints, the MPC problem (5.4)
can be written as the optimization problem

minimize
ū

trH(θ)ūūT + Gt(θ)ū

subject to x̂0 = xt,

ū ∈ Û ,

Υ(θ)ū+Ψ(θ)x̂0 ∈ X̂ ,

Σ(θ) (Υ(θ)ū+Ψ(θ)x̂0) ∈ Ŷ,

(5.6)

where Û , X̂ and Ŷ are the constraint sets for the states and the signals over their respec-
tive horizons. is optimization program serves as the basis for the MPC formulations
with dual properties.

5.3 Model predictive control with excitation (MPC-X)

In this section, an extended controller aimed at solving the the finite horizon minimum
cost experiment design problem

min
{ut}Nt=1


C

∣∣∣∣∣∣∣∣∣∣∣

xt+1 = Axt +But,

yt = Cxt + wt,

ut ∈ U , xt ∈ X , yt ∈ Y,

IN1 (θo) ⪰
γχ2

α(nθ)

2
V ′′

app(θo)


, (5.7)

is considered. In this formulation, the control cost C is calculated over a finite
horizon of length N . e corresponding excitation constraint has been added to give
a sufficiently large information matrix after an experiment of the same length N . As
discussed in Chapter 3, this optimization problem can be very involved. erefore, a
receding horizon approach is taken using the controller in (5.6) as a starting point.
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Augmented controller

e excitation constraint in (5.7) is included in the MPC (5.6). e receding horizon
principle is used also for the formulation of the excitation constraint in the augmented
MPC. e idea is to consider the information available from past data plus the predicted
contribution over a suitable horizon, denotedNI . Hence, at time t, the input is found
by solving the optimization problem

minimize
ū

trH(θo)ūūT + Gt(θo)ū

subject to x̂0 = xt,

ū ∈ Û ,

Υ(θo)ū+Ψ(θo)x̂0 ∈ X̂ ,

Σ(θo) (Υ(θo)ū+Ψ(θo)x̂0) ∈ Ŷ,

It+NI
1 (θo) ⪰ κt

γχ2
α(n)

2
V ′′

app(θo).

(5.8)

e controller (5.8) will be called Model Predictive Control with eXcitation, or MPC-X.
A scaling factor κt is introduced to be able to control the excitation level at a given

instant. is is needed since it is not reasonable to require that the excitation constraint
is completely satisfied over the shorter horizon considered in MPC-X. For κt = 1, the
information in the past data plus the contribution predicted by the MPC fulfills the
original excitation constraint. One possible choice for the scaling is

κt =
t+NI

N
,

which should give an even excitation during the experiment. Further aspects of the
choice of κt are discussed later in this section. An optimization based choice for
the scaling, aimed at finding the highest possible excitation in each time instant, is
introduced in Section 5.4.

In practice, the MPC-X controller in (5.8) is not possible to implement since it relies
on knowledge of θo. erefore, one has to rely on the best available model instead of
the true description of the system. is means that in (5.8), the parameters θo would
be replaced by an estimate, which will be denoted θ̂.

Predicted information matrix

e dependence on the input in the predicted information matrix of the excitation
constraint in MPC-X needs to be made explicit for the formulation of the optimization
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problem. Using the fact that the system is OE and the best available estimate of the
parameters, θ̂, the information matrix can be approximated by

It+NI
1 (θo) ≈ It+NI

1 (θ̂) = It1(θ̂) + It+NI
t+1 (θ̂), (5.9)

where also the dependence of past and future data has been made explicit.
e evolution of the information matrix over the horizon can be described by

defining the matrices Σξ, Ψξ and Υξ in the same manner for the system (2.12) as the
matrices Σ, Ψ and Υ are defined for the model (5.2), see Appendix 5.A. en ψ̄t in
(2.12) is given by

[
ψ̄T
t+NI

ψ̄T
t+NI−1 · · · ψ̄T

t+1
]T

= Σξ (Ψξξt +Υξū) . (5.10)

Using (5.10), the matrix

Σξ (Ψξξt +Υξū) (Ψξξt +Υξū)
T ΣT

ξ = ΣξΨξξtξ
T
t Ψ

T
ξ Σ

T
ξ +

ΣξΨξξtū
TΥT

ξ Σξ +ΣξΥξūξ
T
t Ψ

T
ξ Σ

T
ξ +ΣξΥξūū

TΥT
ξ Σ

T
ξ , (5.11)

can be formed. e diagonal blocks of (5.11) are the terms CξtξTt CT , with C defined
in (2.11), and the elements of It+NI

t+1 (θ̂) are sums of the elements of these blocks
according to (2.13) and (2.14). Note that the terms CξtξTt CT are quadratic in the
decision variable ū due to the last term of the right hand side of (5.11). However, by
introducing a lifting variable, U , such that

U = ūūT , (5.12)

and using (5.12) in (5.11), it is seen that the expression is linear in U and ū. As a
result, the experiment design constraint is an LMI in the decision variables U and ū.
It should be pointed out that constraint (5.12) is a nonlinear constraint in the new
decision variables U and ū, which can be rewritten as

[
U ū
ūT 1

]
⪰ 0, rank

[
U ū
ūT 1

]
= 1.
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Lifted optimization problem

e optimization problem in (5.8) can be expressed using the new decision variables
U and ū, and the best available estimate θ̂, as the lifted problem

minimize
U,ū

trH(θ̂)U +Gt(θ̂)ū

subject to x̂0 = xt,

ū ∈ Û ,

Υ(θ̂)ū+Ψ(θ̂)x̂0 ∈ X̂ ,

Σ(θ̂)
(
Υ(θ̂)ū+Ψ(θ̂)x̂0

)
∈ Ŷ,

It1(θ̂) + It+NI
t+1 (θ̂) ⪰ κt

γχ2
α(nθ)

2
V ′′

app(θ̂),[
U ū
ūT 1

]
⪰ 0, rank

[
U ū
ūT 1

]
= 1.

(5.13)

e formulation of the lifted optimization problem in MPC-X is inspired by the input
design problem considered by Manchester (2010). In the lifted problem (5.13), the
constraints should be rewritten in terms of the new decision variables U and ū. How
this is done depends on the nature of the constraints. A very common situation in
practice is that the input and output (or states) are subject to box constraints. How
such constraints can be handled is shown in the following example.
Example 5.1 (Box constraints)
Consider the constraints

ū ∈ Û = {u |umin ≤ u ≤ umax } ,

Σ(Υū+Ψx̂0) ∈ Ŷ = {y |ymin ≤ y ≤ ymax } ,

where umin,umax, ymin and ymax are scalars. In the new decision variables U and ū, the
above constraints can be written as

diagU − ūumax − ūumin ≤ −uminumax,
diagΣΥUΥTΣT − ỹminΣΥū− ỹmaxΣΥū ≤ −ỹminỹmax,

ỹmin = ymin − ΣΨx̂0,

ỹmax = ymax − ΣΨx̂0.

♢
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Proposition 5.1
e optimization problem in (5.13) is nonconvex.

Proof. e constraint

rank

[
U ū
ūT 1

]
= 1,

is nonconvex, since a convex combination of rank 1 matrices need not have rank 1.
erefore, the problem (5.13) is nonconvex.

Remark 5.2 e nonconvexity of the feasible set in (5.13) is concentrated in the rank
constraint. All other constraints are convex in the decision variables.

Convex relaxation

Although (5.13) is nonconvex, a convex relaxation of the problem can be found by
simply dropping the rank constraint. is corresponds to the relaxation introduced by
Shor (1987). e solution to this relaxed problem is the matrix U and the vector ū.
An input can be found by drawing a sample of the random variable

ũ = ū+ βDT ζ, DDT = U − ūūT , ζ ∼ N (0, I), (5.14)

as suggested by Manchester (2010) and Luo et al. (2010). Here, β is a scaling parameter
chosen as large as possible such that the constraints are satisfied. Finally, the input
applied to the process can be extracted from the m first elements of ũ.

Analysis

A complication due to the receding horizon principle used in MPC-X is that the
addition to the information matrix is only a predicted contribution. Since only the
first input from the optimal solution of (5.13) is implemented on the system, only the
corresponding part is added to the information matrix. erefore, it is possible that
a badly tuned MPC-X controller postpones part of the needed excitation indefinitely.
However, under certain conditions, the experiment design constraint is guaranteed
to be fulfilled. First, an assumption on the recursive feasibility of the optimization is
needed.

Assumption 5.2 e optimization problem (5.13) is feasible at each time instant.
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Remark 5.3 e optimization problem (5.13) may be infeasible due to the conflicting
nature of the constraints. In such a case κt can always be adjusted to give a feasible
problem.

Observation 5.1 If κt is chosen such that (5.13) is feasible in each time instant, MPC-X
renders the closed loop system stable, assuming that the MPC (5.4) is used for t > N .
is follows from the fact that recursive feasibility of MPC-X ensures that xN ∈ X and
stability follows from Assumption 5.1.

Proposition 5.2
A necessary condition for feasibility of (5.13) for every time instant t is that NI ≥
rankV ′′

app(θ̂).

Proof. Feasibility of (5.13) requires that

It+NI
t+1 (θ̂) ⪰ κt

γχ2
α(nθ)

2
V ′′

app(θ̂)− It1(θ̂),

where the right hand side has up to rankV ′′
app(θ̂) positive eigenvalues. Since It+NI

t+1 (θ̂)
is the sum ofNI rank 1 matrices, it has at mostNI positive eigenvalues. Hence,NI ≥
rankV ′′

app(θ̂) is required for feasibility for every time instant.

Theorem 5.1
Suppose that Assumption 5.2 holds. If V ′′

app(θ̂) has full rank, κt is deterministic and
increasing such that κt → ∞, and the input is amplitude bounded, then, for a fixed
θ̂, there exists an N such that

IN1 (θ̂) ⪰ γχ2
α(nθ)

2
V ′′
app(θ̂).

If Assumption 5.2 is strengthened so that (5.13) is feasible for all possible x at each time
instant, then also

IN1 (θ̂) ⪰ γχ2
α(nθ)

2
V ′′
app(θ̂).

Proof. Let τ = γχ2
α(nθ)
2 . Assumption 5.2 gives

It−1
1 (θ̂) + Itt (θ̂) ⪰ κtτV ′′

app(θ̂)− I
t+NI
t+1 (θ̂), (5.15)
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where Itt (θ̂N ) is known to be added to the information matrix since the system is OE.
Take the eigenvector z corresponding to the smallest eigenvalue of the right hand side
of (5.15) such that ∥z∥ = 1, then

λmin

(
It−1
1 (θ̂) + Itt (θ̂)

)
≥ zT

[
κtτV

′′
app(θ̂)− I

t+NI
t+1 (θ̂)

]
z

≥ κt min
∥z∥=1

zT τV ′′
app(θ̂)z − max

∥z∥=1
zT It+NI

t+1 (θ̂)z

= κtλmin

(
τV ′′

app(θ̂)
)
− C,

where C < ∞ is an upper bound on the largest eigenvalue of It+NI
t+1 (θ̂N ), which is

bounded since ut and xt are bounded. Hence, for N such that

κN ≥
λmax

(
τV ′′

app(θ̂)
)
+ C

λmin

(
τV ′′

app(θ̂)
) ,

which is bounded since V ′′
app is invertible, λmin

(
IN1 (θ̂)

)
≥ λmax

(
τV ′′

app(θ̂)
)
, which

implies that IN1 (θ̂) ⪰ γχ2
α(nθ)
2 V ′′

app(θ̂).
Under the assumptions, N is deterministic. Furthermore, under the stronger

assumption that (5.13) is feasible for all possible x at each time instant, IN1 (θ̂) ⪰
γχ2

α(nθ)
2 V ′′

app(θ̂) holds for every possible trajectory. Hence

IN1 (θ̂) = E
{
IN1 (θ̂)

}
⪰ E

{
γχ2

α(nθ)

2
V ′′

app(θ̂)

}
=
γχ2

α(nθ)

2
V ′′

app(θ̂).

Remark 5.4 e only stochastic part of the right-hand side of the excitation constraint
is the parameter estimate. For a fixed parameter vector, the right-hand side is completely
deterministic.

Remark 5.5 e bound on κt and the resulting N in eorem 5.1 are very loose
because of the unnecessarily strong requirements on the eigenvalues of the information
matrix. In practice, the constraint is typically fulfilled for much lower values of N .

Remark 5.6 e assumption that (5.13) is feasible for all possible x in every time
instant is a fairly strong requirement on the scaling κt. e possible choices of κt
depend on the assumptions made on the disturbances.



Model predictive control with excitation for minimum time | 75

MPC-X algorithm

e complete MPC-X algorithm is given in Algorithm 5.1.

Algorithm 5.1 MPC with excitation (MPC-X)
Require: θ̂, V ′′

app(θ̂), γ, α, κt.
1: t = 0, ξ0 = 0.
2: while It1 ≺

γχ2
α(nθ)
2 V ′′

app do
3: Measure yt and estimate xt.
4: Solve (5.13) without the rank constraint.
5: Obtain feasible input sequence ũ from (5.14).
6: Apply ũt to the system.
7: t← t+ 1.
8: end while

5.4 Model predictive control with excitation for minimum time

An extension of the controller (5.4) for the minimum time experiment design problem

min
{ut}Nt=1


N

∣∣∣∣∣∣∣∣∣∣∣

xt+1 = Axt +But,

yt = Cxt + wt,

ut ∈ U , xt ∈ X , yt ∈ Y,

IN1 (θo) ⪰
γχ2

α(nθ)

2
V ′′

app(θo)


,

is considered in this section. e idea is to find the maximal allowed excitation in each
time instant and thereby get the shortest experiment time. e idea is inspired by the
work of Žáčeková et al. (2012).

Augmented controller

To get the excitation required to fulfill the excitation constraint in the shortest time,
the controller is formulated to maximize the scaling κt in the augmented controller
(5.8) in each time instant. Hence, at time t, the input is found from the optimization
problem
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maximize
ū,κt

κt

subject to x̂0 = xt,

ū ∈ Û ,

Υ(θo)ū+Ψ(θo)x̂0 ∈ X̂ ,

Σ(θo) (Υ(θo)ū+Ψ(θo)x̂0) ∈ Ŷ,

It+NI
1 (θo) ⪰ κt

γχ2
α(n)

2
V ′′

app(θo),

trH(θo)ūūT + Gt(θo)ū ≤ C⋆
t +∆C.

(5.16)

e controller (5.16) will be called Minimum time MPC-X.
e last constraint in (5.16) is added to limit the control performance degradation

due to the excitation. e optimal value from the solution of the regular MPC problem
(5.4) at time t, denoted C⋆

t in (5.16), is used as a reference value for the control
performance. If maximal excitation is wanted,∆C =∞ can be chosen, or equivalently
the last constraint can be removed. Note that constraints on either u, x, y or the control
cost are needed for a well-defined problem.

Just as in the case for MPC-X, the minimum time MPC-X is not implementable, as it
is formulated in (5.16), since it relies on knowledge of θo. erefore, one again has to
rely on the best available estimate θ̂, and the approximation (5.9) for the information
matrix. To solve the optimization problem (5.16), an upper bound for the scaling κt
is found in the following section.

Adapting κt.

e value of κt can be maximized by considering a suitable upper bound. Introduce
Ṽ = γχ2

α(nθ)
2 V ′′

app(θ̂), which can be written as Ṽ = Ṽ 1/2Ṽ 1/2 since the information
matrix is symmetric and positive semidefinite. en the excitation constraint is
equivalent to

It1(θ̂) + It+NI
t+1 (θ̂) ⪰ κt

γχ2
α(nθ)

2
V ′′

app(θ̂)

⇔ Ṽ
−1/2
[
It1(θ̂) + It+NI

t+1 (θ̂)
]
Ṽ

−1/2 ⪰ κtI

⇔ λmin

{
Ṽ

−1/2
[
It1(θ̂) + It+NI

t+1 (θ̂)
]
Ṽ

−1/2
}
≥ κt. (5.17)
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Equation (5.17) gives an upper bound on the value of κt which can be maximized
by solving the lifted optimization problem

maximize
U,ū

λmin

{
Ṽ

−1/2
[
It1(θ̂) + It+Nu

t+1 (θ̂)
]
Ṽ

−1/2
}

subject to x̂0 = xt,

ū ∈ Û ,

Υ(θ̂)ū+Ψ(θ̂)x̂0 ∈ X̂ ,

Σ(θ̂)
(
Υ(θ̂)ū+Ψ(θ̂)x̂0

)
∈ Ŷ,

trH(θ̂)U + Gt(θ̂)ū ≤ C⋆
t +∆C,[

U ū
ūT 1

]
⪰ 0, rank

[
U ū
ūT 1

]
= 1,

(5.18)

where new decision variables have been introduced in the same way as was done in
(5.13). e optimization problem (5.18) is nonconvex for the same reasons as for
(5.13), see Proposition 5.1. A convex relaxation can be found using the same relaxation
techniques as for (5.13).

Remark 5.7 An alternative interpretation is that (5.18) works as a back-off mecha-
nism. In case there is some unforeseen disturbance in the process, the algorithm finds
the maximal allowed excitation. It thus adapts the level of excitation to the current
operating conditions.

Observation 5.2 Under Assumption 5.1, minimum time MPC-X is feasible in each
time instant and the resulting closed loop is stable. is follows from the fact that,
under the same assumption, MPC is feasible and any feasible solution to (5.4) is also
feasible for (5.18). Furthermore, feasibility of (5.18) ensures x ∈ X which gives
stability by Assumption 5.1.

Minimum time MPC-X algorithm

e complete MPC-X algorithm is given in Algorithm 5.2.

5.5 Examples

Here the performance of the two MPC controllers with excitation developed in this
chapter are evaluated in simulation studies. First, the MPC-X algorithms are compared
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Algorithm 5.2 Minimum time MPC-X
Require: θ̂, V ′′

app(θ̂), γ, α.
1: t = 0, ξ0 = 0.
2: while It1 ≺

γχ2
α(nθ)
2 V ′′

app do
3: Measure yt and estimate xt.
4: Solve (5.4) to obtain C⋆

t .
5: Solve (5.18) without the rank constraint.
6: Obtain feasible input sequence ũ from (5.14).
7: Apply ũt to the system.
8: t← t+ 1.
9: end while

to one of the persistently exciting MPC formulations presented in Section 2.5. Second,
the motivating example in Section 1.2 is revisited and studied in detail.

Example 1 — Comparison with PE-MPC

is example compares the properties of the MPC-X algorithm (5.13) and the minimum
time MPC-X (5.18) to the properties of the PE-MPC by Marafioti (2010), outlined in
Section 2.5. e optimization in the two MPC-X algorithms is implemented in Matlab
using cvx by Grant and Boyd (2011) and the resulting SDP is solved using SDPT3 by Toh
et al. (1999). PE-MPC is implemented as it is presented by Marafioti (2010). e two
resulting quadratic programs are solved using the quadprog function from the Matlab
optimization toolbox.

e example is a simple model of two interconnected tanks. An upper tank is
connected to a pump with input ut. e tank has a hole in the bottom with free flow
into a lower tank, which has a hole with free flow out of the tank. e level in the
lower tank is the output, yt, which can be measured. e system is modeled using the
discrete-time, output error modelxt+1 =

[
θ3 θ4
1 0

]
xt +

[
4.5
0

]
ut,

yt =
[
θ1 θ2

]
xt + et.

(5.19)

e true system is given by the parameter values θo =
[
0.12 0.059 0.74 −0.14

]T
and the noise variance is λe = 0.01. e goal is to control the level in the lower tank
using MPC with the following settings:Ny = Nu = 5,Q = 10,R = 1 andS = 0. e
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considered scenario is such that the identification is started at steady state conditions
of the plant. e input is constrained to be between −1 and 1. No constraints are
imposed on the outputs.

e true parameter values are used for the initial model. In a practical application,
one would instead have to use estimated parameters, for example from a commissioning
identification experiment. e application cost is chosen as

Vapp(θ) =

T∑
t=1

∥yt(θo)− yt(θ)∥22, (5.20)

over a step response of the system with MPC running. Hence, it is desired that, when
the identified model is used in MPC, the step response is close to what it had been if
the true system parameters were available. e desired accuracy is set to γ = 100 and
should be achieved with 99 % probability. e experiments are set up so that they run
until the achieved information matrix fulfills the experiment design constraint. Two
different comparisons are made.

First, the benefit of the experiment design constraint over the persistence of
excitation constraint is investigated in experiments of the same length. MPC-X is
configured with experiment length N = 200 and linear scaling, κt = t

N . e PE-
MPC is configured with ρ = 0.5 and backward horizon P = 5, which gives a similar
evolution of the smallest eigenvalue of the information matrix as with MPC-X and
therefore similar experiment length.

Second, the benefit of the experiment design constraint in a minimum time
experiment is investigated. e PE-MPC is configured with ρ = 1, which is the highest
value that gives a feasible solution to the optimization problem. e minimum time
MPC-X is configured with ∆C = 5, which gives a similar evolution of the information
matrix. For comparison, regular MPC is also used and the resulting information matrix
is calculated.

e results of the simulations are summarized in Table 5.1. First, it is seen that PE-
MPC with ρ = 0.5 satisfies the experiment design constraint after 211 samples which
is approximately the same as the 200 samples required for MPC-X. e input variances
are comparable but the resulting output variance using PE-MPC is 0.12 compared to
0.074 for MPC-X, which is also reflected in the higher control cost for PE-MPC, 287,
compared to 180 for MPC-X. Second, PE-MPC with ρ = 1 requires 162 samples to
fulfill the experiment design constraint compared to 82 samples for the minimum
time MPC-X. is is despite the fact that the PE-MPC results in higher signal variances
and control cost (per sample and total). For the chosen application, MPC-X results in
cheaper experiments in both scenarios. On the other hand, a clear benefit of PE-MPC
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Figure 5.1 Evolution of the smallest eigenvalue of the difference between the information
matrix and the scaled application cost Hessian from simulation where regular MPC (. ),
MPC-X (. ), the PE-MPC algorithm with ρ = 1 (. ) and ρ = 0.5 (. ), and
minimum time MPC-X (. ) are used on the system in Example 1. e algorithms
terminate when the eigenvalue becomes positive.

Table 5.1 Results for the algorithms used in Example 1. e value ct is the average control
cost per sample and

∑
ct is the total cost over the whole experiment length.

Algorithm varu var y N ct
∑
ct

MPC 0.036 0.016 — 0.22 —

MPC-X 0.164 0.074 200 0.90 180
PE-MPC, ρ = 0.5 0.175 0.120 211 1.36 287

MPC-X, minimum time 0.203 0.146 82 1.66 138
PE-MPC, ρ = 1 0.246 0.184 162 2.07 335

is a much lower computational demand. e two convex quadratic programs in PE-
MPC typically require much less time and computations to solve than the SDPs in the
two MPC-X formulations. Figure 5.1 shows the evolution of the smallest eigenvalue of
the experiment design constraint, which should be positive for the constraint to hold.
Clearly, all the dual MPC formulations increase the information in the data and regular
MPC is not useful for identification. Typical signals from the algorithms are shown in
Figures 5.2 and 5.3.
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Figure 5.2 Typical output signals from the system in Example 1, when the input is
generated by regular MPC (. ), PE-MPC with ρ = 1 (. ), MPC-X (. ), and minimum
time MPC-X (. ).
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Figure 5.3 Typical input signals generated by regular MPC (. ), PE-MPC (. ) with ρ =
1, MPC-X (. ), and minimum time MPC-X (. ) for the system in Example 1.
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Example 2 — Distillation column simulation

e example from Section 1.2 is revisited and studied in more detail. e MPC-X
algorithm is applied to a nonlinear model of the binary distillation column presented
by Skogestad (1997). e column is configured with 110 trays. e feed is located at
tray 39 and the nominal feed rate is 219 kmol/min. e relative volatility of the two
substances is α = 1.35 and the liquid holdup, M , is constant at 30 kmol. e
feed composition, zF , is set to 0.65 mole fraction. e column is controlled in LV-
configuration, using the liquid flow, L, and vapor flow, V , as control inputs while the
feed rate and composition are considered unmeasured disturbances. e outputs are
the top and bottom compositions, denoted yt and yb, respectively. e setpoints of the
outputs are rt = 0.95 and rb = 0.05. For the example, only the distillation column
is modeled, while auxiliary systems such as reboiler and condenser are not included in
the model. Disturbances are introduced in the system by adding low-pass filtered noise
to the nominal values of the feed rate and composition, such that var(F ) = 64 and
var(zF ) = 2.5 × 10−3. White measurement noise with variance 0.1 is added to the
outputs.

Model and controller

A linear state space model with two states, two inputs and two outputs is used to model
the process for control purposes. Each element of the state space matricesA,B andK
corresponds to one of the parameters in the parameter vector θ and the measurement
matrix C is considered to be known. e linear model can be written asxt+1 =

[
θ1 θ2
θ3 θ4

]
xt +

[
θ5 θ6
θ7 θ8

]
ut +

[
θ9 θ10
θ11 θ12

]
et,

yt = Cxt + et,

(5.21)

where C is known and θ needs to be estimated. Since MPC-X assumes that the system
is of OE type, the input design is made assuming θ9, . . . , θ12 = 0 in (5.21). However,
in the identification, the parameters inK are estimated. e initial model is found by
system identification of the nonlinear model.

e MPC-X is configured with prediction and control horizons Ny = Nu = 8. A
practical auto-tuning method proposed by Annergren et al. (2013) is used to find the
tuning weights Q and R. Since the MPC is used for reference tracking the matrix S is
set to zero. e tuning finds a trade-off between robustness to modeling errors, and
closed-loop bandwidth.
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e performance of the controller is measured according to the ideas in Section 3.3
and the performance measure is defined as

p(θ) =

N∑
t=1

{
I (yt

t < yt
min) + I

(
yb
t > yb

max
)

N
+ |yt

t − rt|+ |yb
t − rb|

}
. (5.22)

In the first two terms of the sum, I is the indicator function and used to estimate
the probability of constraint violations, where yt

min = 0.92 and yb
max = 0.08 are the

constraints on the top and bottom products of the column. e two last terms of the
sum penalize deviations from the setpoint values. Both components are considered
equally important and weighted equally. e performance measure is calculated over a
window of N = 400 samples.

e Hessian, V ′′
app, needed for the specification of the experiment design constraint

is calculated numerically based on the performance measure (5.22).

Simulation scenario

e simulation is setup to show the benefit of MPC-X when closed-loop reidentification
is necessary to restore controller performance. e simulation is divided into four
phases, each lasting for 400 samples. e phases are:

1. Normal operation using initial model.

2. Operation under plant change.

3. Reidentification phase.

4. Operation using MPC based on the new model from the third phase.

e performance measure (5.22) is calculated for each phase. A Monte Carlo study
with 310 trials is made to evaluate the identification capabilities. e benefit of the
extra excitation added in MPC-X is evaluated by running simulations using the same
noise sequences but without the excitation constraint active in the MPC.

e plant change is made by making a small rotation in the input gain on the
process. is choice is motivated by the well-known fact that the directionality is a
nuisance of distillation columns. e effect is similar to the situation with uncertainty
presented by Skogestad et al. (1988). e rotation is achieved by multiplying the input
signals calculated by the controller by the matrix[

cos (−π
5 ) sin (−π

5 )

− sin (−π
5 ) cos (−π

5 )

]
,
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Figure 5.4 Box plots of the performance measures of the four phases of the 310 Monte
Carlo trials when regular MPC (. ) and MPC-X (. ) is used. During the excitation phase
3, the cost of using MPC-X is higher than for regular MPC where no extra excitation is added.
However, when the new models are used in the controllers in phase 4 the number of models
with acceptable performance is significantly higher for the MPC-X case. e acceptable level
is below the dashed line.

An explanation of the plant change and resulting performance drop is given in more
detail by Tran et al. (2012).

Results

e performance index for the four different phases of the two simulation setups are
illustrated in Figure 5.4. It is clear that adding the constraint results in degradation
of performance during the reidentification phase. However, the new model results in
acceptable performance in 94 % of the cases. Note that the spread of the resulting
performance measure is small. is should be compared to the case without the
excitation constraint, where the reidentification does not degrade performance, but the
resulting models are able to restore performance in only 62 % of the cases. Furthermore,
while the median performance measure is reasonable, the spread is very large. Another
observation is that when the model has been identified from normal closed loop data,
13 % of the cases result in a closed loop that is unstable, while this happened for only
2 % of the models identified data generated by MPC-X. One typical simulation is shown
in Figure 5.5.
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Figure 5.5 e top (. ) and bottom (. ) compositions for the plant change scenario
when MPC-X with extra excitation during phase 3 is used. e performance measures for
the different phases are 0.08, 0.15, 0.20, 0.07, respectively. e setpoints for the top and
bottom compositions are shown as (. ).

Discussion

e goal of 99 % reidentified models giving acceptable performance is not reached.
ere are a number of reasons that contribute to the discrepancy. Firstly, the model
in the controller cannot fully capture the plant, which is nonlinear. Secondly, MPC-X
calculates the excitation based on an OE model, while the plant is not OE. It is seen in
Figure 4.2 that not using the true noise model can lead to too little excitation and a
higher number of models which give unsatisfactory performance. However, the results
are still clearly better when the extra excitation is added using MPC-X compared to when
no excitation is added.

5.6 Summary

e application-oriented experiment design problem has been added to existing
formulations for MPC to formulate two new controllers: MPC-X and Minimum time
MPC-X. e inclusion of the experiment design constraint ensures that closed loop data
can be used for reidentification of the process model. e MPC-X controllers have dual
properties and the intended use of the model is explicitly taken into account in the
generation of the excitation. e controllers are limited to OE models for the calculation
of the needed excitation, which is the major restriction of these methods at present.
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It was shown, that under stability assumptions on the closed loop, the generated
excitation is sufficient to reidentify a model which satisfies the application performance
demands. e merits of the two controllers in comparison to PE-MPC, where the use
of the model is not explicitly considered, was shown in simulation examples. e
two proposed MPC-X controllers generate data that result in models with acceptable
performance in cheaper experiments than when only persistently exciting inputs are
generated by the controller. is is not surprising since PE-MPC is not designed to take
the experiment design constraint into account. e price to be paid for the cheaper
experiment is higher computational complexity: MPC-X requires the solution of an SDP
while PE-MPC is solved by two convex quadratic programs.
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5.A MPC matrices

Using the model (5.2), the output at time t can be predicted by

ŷt = C(θ)A(θ)tx0 +

t∑
k=1

C(θ)A(θ)t−kB(θ)uk−1.

Introducing the matrices Ψ ∈ RnNy×n, Σ ∈ RpNy×nNy , and Υ ∈ RpNy×mNu

defined by

Σ(θ) ≜ INy ⊗ C(θ),

Ψ(θ) ≜


A(θ)
A(θ)2

...
A(θ)Ny

 ,

Υ(θ) ≜



B(θ) 0 · · · 0
A(θ)B(θ) B(θ) · · · 0

...
...

...
...

A(θ)Ny−NuB(θ) A(θ)Ny−Nu−1B(θ) · · · B(θ)
A(θ)Ny−Nu−1B(θ) A(θ)Ny−Nu−2B(θ) · · · A(θ)B(θ) +B(θ)

...
...

...
...

A(θ)Ny−1B(θ) A(θ)Ny−2B(θ) · · ·
∑Ny

k=Nu
A(θ)Ny−kB(θ)


,

where ut+Nu = · · · = ut+Ny is used to construct the last columns of Υ(θ), gives

x̄ = Ψ(θ)x0 +Υ(θ)ū

ȳ = Σ(θ)x0 = Σ(θ) (Ψ(θ)x0 +Υ(θ)ū) .

e matrix

Γ ≜


1 0 · · · 0
−1 1 · · · 0
...

. . . . . .
...

0 · · · −1 1

 ,
gives

∆ūt = Γū− ū⋆t .



Chapter 6

Experimental study of MPC-X
on an industrial distillation column

T MPC-X  developed in Chapter 5 has been implemented and evalu-
ated in experiments on an industrial process at the Sasol Synthetic Fuels refinery

in Secunda, South Africa. e experiments were conducted during two separate,
four weeks long site visits in April and October 2013. e considered test process
is a distillation column, a depropanizer, where propane and lighter hydrocarbons are
separated from butane and heavier components. e depropanizer is part of the cold
side of the Synfuels Catalytic Cracker (SCC) unit where high-boiling, high-molecular
weight hydrocarbon fractions of synthetic crude oil are converted to gasoline, alkene
gases and other products similar to an FCC unit in a conventional refinery. e SCC unit
and the depropanizer are shown in Figure 6.1.

e goal of the experiments was to demonstrate the capabilities of MPC-X for gen-
erating signals useful for closed-loop reidentification in a typical industrial application.
e experiments include initial process identification, an MPC commissioning, and
controller tuning. ereafter, a performance drop is induced by creating a plant–model
mismatch. Control performance is restored by updating the model in the MPC by means
of closed-loop reidentification.

e experiments were first conducted on a full-plant simulator built for operator
training, which is implemented in the Honeywell UniSim Operations Suite. e
simulator is believed to represent the dynamics of the actual plant well. Experiments
were also performed on the actual depropanizer. ese experiments were conducted
during regular production. is means that the conditions represent the intended
application of MPC-X well. It also means that it was vital that any experiments did not
disrupt the normal operations of the plant or degrade product quality. e experiments
show that by using MPC-X, it is possible to improve performance by reidentification
after a performance drop has been observed.

89
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Figure 6.1 e SCC unit of the Sasol Synfuels plant in Secunda, South Africa. e
depropanizer is the middle column in the background. Photo courtesy of Sasol.

6.1 Depropanizer

e depropanizer is a total reflux distillation column used to separate three-carbon
hydrocarbons (C3) and lighter components, such as propane and propene, from four-
carbon hydrocarbons (C4) and heavier components, such as butane and butene. e
distillation is possible using a 56 tray column because of the significant difference in
molecular weight of the two components. A schematic overview of the depropanizer is
shown in Figure 6.2. ere are four upstream units which supply the depropanizer feed
and a feed surge drum is used to even out the feed to the column. To allow for further
control of the feed to the depropanizer, part of the flow from the drum can be sent
to another downstream unit, referred to as CatPoly. e feed enters the depropanizer
on tray 34 and product is taken from the depropanizer at a side draw on tray 39.
Water is removed from the product in the liquid dryer stage before being sent further
downstream to the C3 splitter. e C4 rich bottom product of the depropanizer is
cooled and sent to CatPoly. On tray 19, vapor for pressurizing the feed surge drum
is drawn from the depropanizer. e description of the depropanizer is based on
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Figure 6.2 Schematic overview of the depropanizer system. Green indicates control points,
where circles are low level controllers, typically PID, solid lines are controller outputs and
dashed lines are feedback measurements. e set-points that are controlled by MPC are
indicated as MV 1–4. e inputs to the feed surge drum come from four upstream units.

information from Kotze et al. (2011) and Pieterse et al. (2011).

Base layer control

Several PID loops are used to achieve the base level control for the depropanizer.

Feed surge drum level is controlled using a set of cascaded PID loops and maintained
by regulating the flow from the drum to CatPoly. e setpoint of the PID control
is given by operators by changing SP 1 or by MPC by directly changing SP 2.
When the level is set by the operator, SP 2 is a measurable disturbance in the
MPC.

Feed flow to the depropanizer is controlled by a PID loop. e setpoint of the PID is
SP 3 which can be controller by MPC or by the operator, in which case it becomes
a measurable disturbance in the MPC.
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Feed surge drum pressure is controlled by a PID loop where the setpoint SP 4 is set
by the operator.

Side draw flow is controlled by two cascaded PID loops and MPC controls the setpoint
of the outer loop, SP 5.

Differential pressure between the top and bottom of the depropanizer is controlled
by two cascaded PID loops which control the flow to the reboiler. e setpoint
of the outer PID loop, SP 7, is set by MPC.

MPC objectives

e control objective of the MPC for the depropanizer is to maximize the side draw flow,
which maximizes the C3 production rate, while keeping product within specifications.
In this case, the specifications are reflected in the amount of remaining C4 components
in the side draw. Secondary objectives include prevention of column flooding, excess
flaring and sudden C4 breakthrough by maintaining variables within their limits.
e MPC uses 11 controlled variables (CVs) and 4 manipulated variables (MVs). e
variables and their constraints are summarized in Tables 6.1 and 6.2.

e MPC is setup to move CV 1 to a setpoint value to maintain product specifica-
tions, while all other controlled variables are maintained within their limits. erefore,
level control of the feed drum (CV 2) is maintained by lower level controllers and
MV 4 (which is mostly used to control the feed drum level) is not used for control but
instead considered to be a measurable disturbance. It is desirable to have a steady flow
through the process and therefore MV 1 should be used only to prevent flooding of
the column. Consequently, MV 2 and MV 3 are left to control the distillation process.
For technical reasons, CV 7 is not available to the MPC, however, an increase in MV 2
increases the product yield. erefore, a setpoint of 69.5 % is introduced for MV 2.
ese considerations are reflected in the choice of the tuning matrices of the MPC,
which are set to

Q = diag
[
qy 0 · · · 0

]
,

R = diag
[
25 1 1

]
,

S = diag
[
5 2× 10−5 0

]
.

e value of qy is used to tune the bandwidth of the controller based on the practical
auto tuning method presented by Annergren et al. (2013). e goal is to find a balance
between high bandwidth and good robustness properties.
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Table 6.1 Manipulated and controlled variables of the depropanizer and their limits.

Variable Low High Unit

MV 1 Column feed flow 45 65 ×c

MV 2 Side draw to feed ratio 40 70 %
MV 3 Column differential pressure 30 39 kPa
MV 4 Feed to C3 header 1 70 ×c

CV 1 C4 in side draw — 2 000 ppm
CV 2 Feed drum level 40 70 %
CV 3 Feed drum level ROCa — — %
CV 4 Column pressure 1 170 1 400 kPa
CV 5 Bottom temperature — 90 ◦C
CV 6 Feed flow OPb 1 99 %
CV 7 Side draw flow OPb 1 99 %
CV 8 Reboil 0 14 ×c

CV 9 Reboil flow OPb 1 99 %
CV 10 Reflux flow OPb 1 99 %
CV 11 Feed to C3 header OPb 1 99 %
aRate of change, bValve opening percentage, cNot shown for confidentiality reasons

Performance measures on the depropanizer

Two performance measures are used to evaluate the performance of the MPC on the
depropanizer. e key process variable for the depropanizer is CV 1, which is also the
only output that is controlled to a setpoint value. erefore, both measures use only
the signal CV 1.

e first measure is a variance based measure, which will be the main performance
measure for the depropanizer. e chosen measure is

p(θ) =
1
T

T∑
t=1

yt(θ)
2 =

1
T
∥ỹ(θ)∥2, (6.1)

where ỹ =
[
y1(θ) y2(θ) · · · yT (θ)

]T and yt(θ) is the deviation of CV 1 around
the steady state value when the depropanizer is controlled using MPC with a model
based on the parameters θ.

e second measure is an application cost used for the specification of the
excitation constraint in MPC-X. e application cost measures the degradation resulting
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Table 6.2 Allowed move sized of the manipulated variables.

Variable Up Down

MV 1 Column feed flow 0.3 0.3
MV 2 Side draw to feed ratio 0.5 0.25
MV 3 Column differential pressure 0.2 0.2
MV 4 Feed to C3 header 5 5

from using a controller based on model parameters θ ̸= θo. For the depropanizer, the
cost is chosen to be

Vapp(θ) =
1
T

T∑
t=1

(yt(θ)− yt(θo))2 =
1
T
∥ỹ(θ)− ỹ(θo)∥2. (6.2)

e application cost can be seen as one of the tuning knobs of MPC-X, which
controls the excitation added to the system. It is a means for achieving the ultimate
goal of good performance, as measured by p(θ). e application cost, Vapp(θ), and the
performance measure, p(θ), can be related through√

p(θ) =
1√
N
∥ỹ(θ)− ỹ(θo) + ỹ(θo)∥

≤ 1√
N
∥ỹ(θ)− ỹ(θo)∥+

1√
N
∥ỹ(θo)∥

≤
√

1
γ
+
√
p(θo),

which implies that

p(θ) ≤
(√

1
γ
+
√
p(θo)

)2

. (6.3)

Hence, the choice of the application cost and the related upper bound γ result in
a corresponding upper bound for the performance measure. Since, in practice, θo is
not available, it is replaced by the best current estimate, θ̂, see Section 3.3. For the
depropanizer this estimate is taken from the initial commissioning identification.

6.2 Experimental setup

e goal of the experiments is to demonstrate the capabilities of MPC-X on a full scale,
typical, distillation column found in petrochemical refineries. is is done by setting
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up an MPC-X controller for the plant, inducing a performance drop and restoring
performance to acceptable levels by reidentifying a new model from closed-loop data
where MPC-X has excited the system. e experiments are set up to be as similar as
possible on the simulator as on the plant; any significant differences between the tests
are explained when necessary. e main steps of the experiment are now outlined.

1. Initial identification

e initial model needed for setting up the MPC-X controller is identified on the open-
loop system in various identification experiments, both using step inputs and using
random, binary signals. On the plant, due to limited experiment time, only tests using
random, binary signals are conducted.

2. Controller design and tuning

Based on the model from the initial identification, an MPC-X controller is setup and
tuned for the optimal closed-loop bandwidth according to the control objectives in
Section 6.1.

3. Induced drop in performance

On the simulator, it would be possible to change the dynamics of the plant to
emulate the system degrading over time or a sudden change in the plant characteristics.
However, on the real plant this is not possible since the system is used in production.
erefore, a change in system dynamics is made by modifying the dynamics of the
model used by the MPC-X controller. In other words, a model-plant mismatch is caused
by keeping the plant dynamics unchanged while altering the prediction model of the
controller.

e chosen strategy is to scale the state transition matrix by a factorα, which moves
the poles of the model. at is, the two models are related through

Aα = αA, (6.4)

where Aα is the state transition matrix of the degraded model.

4. Closed-loop reidentification

e excitation mode of MPC-X is turned on to excite the system to give signals rich
enough for closed-loop identification. e data is used to identify new models to be
used in the controller.
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5. Performance assessment

e control performance using the new model from the closed-loop identification
is assessed by running the MPC-X in regular control mode without excitation and
evaluating the resulting output variances and application costs.

Results

e results on the simulator and plant are presented in the following two sections. e
focus in this chapter lies on the results of the reidentification experiments where MPC-X
is the enabling technology. For an in depth discussion on the tuning, performance
measure and diagnosis results, see Guidi et al. (2013) or Annergren et al. (2013).

6.3 Simulator experiments

Summary

Two experiments with excitation from MPC-X and closed-loop reidentification were per-
formed. e change in the controller model resulted in an increase in the performance
measure, p(θ), from the nominal value 0.0082 to 0.043 in the degraded case, which is
considered unacceptable performance. In both cases, MPC-X restores performance to an
acceptable level when the new model is used. e scaling factor, κt in MPC-X is changed
in a different manner in the two experiments, resulting in different excitation signals
and final bounds on the achievable performance. In Table 6.4 it is seen that p(θ) is
reduced to 0.012 and 0.018 in the two experiments. Both results are below the bound
(6.3) and the resulting application costs are below 1/γ. e experiments are described
in more detail in the following sections.

Operating point

One operating point is chosen for all the experiments on the simulator. e cor-
responding manipulated variables values and the resulting steady state values of the
controlled variables are presented in Table 6.3.

Initial model

e model structure chosen for the simulator is a state space model with 11 states, 3
inputs (MV 1 – MV 3) and 1 measured disturbance (MV 4). Due to the physics of the
depropanizer, the model is fitted to the logarithm of the first output, CV 1. is is a
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Table 6.3 Operating point of the manipulated variables and corresponding steady state
values of the controlled variables for the simulator experiments.

Variable Value Unit

MV 1 Feed flow 55 ×c

MV 2 Side draw to feed ratio 47 %
MV 3 Column differential pressure 32.78 kPa

CV 1 C4 in side draw 5.44 log ppm
CV 2 Feed drum level 50 %
CV 4 Column pressure 1 302.4 kPa
CV 5 Bottom temperature 81.96 ◦C
CV 6 Feed flow OPb 58.0 %
CV 8 Reboil 10.48 ×c

CV 9 Reboil flow OPb 89.6 %
CV 10 Reflux flow OPb 63 %
CV 11 Feed to C3 header OPb 3.19 %
bValve opening percentage, cNot shown for confidentiality reasons

common technique in modeling of distillation columns. erefore, the model is
xt+1 = A(θ)xt +B(θ)ut +Bd(θ)dt,

yt = C(θ)xt + et,

zt =
[
exp y1,t y2,t · · · y9,t

]T
,

where zt is the output, ut the input and dt the measured disturbance.
In the open-loop identification experiments, the simulator is excited using a

random, binary signal. A white Gaussian signal is filtered through an eight-order, non-
causal Butterworth low-pass filter and the sign of the resulting signal, appropriately
scaled, is used. e amplitudes used are ±2000 for MV 1, ±2.25 for MV 2 and
±1.25 for MV 3.e values of the parameters are obtained using PEM in the System
identification toolbox of Matlab. e resulting fit is shown in Figure 6.3 and the step
responses from the MVs to CV 1 are shown in Figure 6.4.

Controller setup

Based on the initial model, the sampling time of the controller is chosen to be 0.5 Hz.
e prediction and control horizons are chosen asNy = 50, such that the predictions
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Figure 6.3 e simulator output (. ) and the data from simulation of the model
obtained from open-loop identification (. ). e achieved fit is 53.4 %.

cover the main dynamics of the process, and Nu = 10, which is a trade-off between,
on the one hand, sufficiently long horizon for good control and fulfillment of the
excitation constraint and, on the other hand, computational tractability. e controller
is tuned to give good disturbance rejection, which is a balance between bandwidth and
robustness to modeling errors. In Figure 6.5, where the spectrum of CV 1 is shown, it
can be seen that the two main low frequency oscillations in the output are removed by
the controller. However, it is also seen that some new, high frequency oscillations have
appeared in the closed loop.

Induced performance drop

e model of the MPC is modified according to (6.4) with α = 0.98. is increases the
variance of CV 1 from 0.0082 to 0.043 as shown in Table 6.4. is is an increase of
420 % in the main performance measure p(θ) and considered to be a significant drop
in performance. e resulting application cost is 0.062.

MPC-X reidentification

Two closed-loop reidentification experiments are performed using excitation from
MPC-X. e value of the scaling factor κt, which controls the excitation level, is adjusted
manually in the experiments and an a priori performance level, 1/γ, can therefore not
be guaranteed. Instead the experiments run for a pre-determined number of samples
and the resulting application cost bound is calculated at the end of the experiments.
e excitation signals from both experiments are shown in Figure 6.6.
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Figure 6.4 e step responses to CV 1 of the model fitted to the logarithmically scaled
open-loop data (. ) and MPC-X data from experiment 1 (. ) and experiment 2 (. ).
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First experiment

e first closed-loop identification experiment ran for 1 530 samples, which is approx-
imately 12 hours of experiment time. e factor κt was increased in a quite aggressive
way. e value is pushed until infeasibility and then reduced just enough to give a
feasible problem. e value was then kept for a number of samples. Consequently,
the level of required excitation in each sample is reduced. e procedure was repeated
when the excitation level became too low.

Second experiment

e second experiment ran for 1 430 samples, which again correspond to 12 hours of
experiment time. e factor κt was increased less aggressively compared to what was
done in experiment 1. e value was changed such that a clear “disturbance” was seen
in the signals, this value was kept until the disturbance was no longer visible and the
procedure repeated.

Comparison

e step responses from the manipulated variables to CV 1 of the models resulting
from the two MPC-X experiments are shown in Figure 6.4. MV 2 and MV 3 are the
important signals for the control and the models for these channels are hence most
important. is is reflected in the excitation produced by MPC-X which can be seen in
Figure 6.6. MV 2 and 3 are excited a lot, while MV 1 remains mostly unexcited.

In both experiments, the excitation has large peaks which result in peaks also in the
output. e reason for these peaks is not completely understood. e less aggressive
tuning of κt in Experiment 2 may be the reason for the smaller peaks. However, there
is a random element in the excitation which complicates the comparison.

From the step responses in Figure 6.4, it can be seen that the general dynamics are
the same for all the identified models but time constants and gains differ. In particular,
the gain from MV 2 to CV 1 is lower for both models obtained from closed-loop data
than for the model obtained from open-loop data. Note that the channel from MV 1
is expected to not be very accurately modeled since it is considered less important
for control and hence not excited by MPC-X. Furthermore, since MV 4 is a measured
disturbance, it is not excited by MPC-X at all and the model quality in that channel can
therefore not be influenced.

Residual analysis is also used to validate the obtained models, shown in further
detail in Appendix 6.A. Notice that, because MV 3 is important for the chosen control
setup, it is considered important to model the channel from MV 3 to CV 1. e
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correlation plots of the residuals in Figures 6.12–6.14 show that the models from the
MPC-X experiments have captured this channel better than the model identified from
open-loop data. In Figure 6.12 the cross-correlations between MV 3 and the residuals
are outside the confidence bounds, indicating that there is information in the data that
is not captured by the model from the open-loop experiments. In Figures 6.13 and
6.14, the cross-correlations indicate that the effects of MV 2 are well captured by the
model from the MPC-X experiments.

Performance analysis

e two models obtained using the MPC-X data are tested for controlling the process
using the same tuning as was used with the model from open-loop data. In Table 6.4
it is seen that the new models improve performance compared to when the degraded
model is used. In Experiment 1, the variance p(θ) is reduced from 0.043 to 0.012 and
in Experiment 2 it is reduced to 0.018. e resulting variances in both experiments are
below their respective bounds (6.3) given by γ and p(θ0). Looking at the application
cost, it is reduced to 0.020 in Experiment 1 and 0.026 in Experiment 2, compared
to 0.062 when the degraded model is used. In both cases, the cost is below the 1/γ
bound. Analyzing the excitation shows that there is less information in the data from
Experiment 2, which is reflected by the lower γ value in that experiment. e highest
γ value such that the excitation constraint is still fulfilled is 32 in Experiment 1, and
16 in Experiment 2.

Conclusions

e two experiments were successful in generating excitation that leads to identified
models that restore performance to acceptable levels. e major issue in setting up the
experiments is the choice of the scaling κt. is scaling influences the aggressiveness of
the excitation and the choice has consequences for the achievable performance when
the identified model is used in the controller. e generated excitation, shown in
Figure 6.6, also indicates that too large increases in κt may give very large excursions
from the operating point.
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Figure 6.6 e excitation signals generated by MPC-X in experiment 1 (. ) and
experiment 2 (. ) on the simulator. e two signals important for the control, MV 2
and 3, are excited while MV 1, which is typically not used by the controller, is not excited.
e scale for MV 1 covers the full variable range in the MPC.
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Table 6.4 e resulting performance using the different models for predictions in the
MPC. e models obtained from the MPC-X experiments result in acceptable performance
according to the defined specification bound.

Model pθ Vapp 1/γ Bound (6.3)

Open-loop identification 0.0082 — — —
Open-loop identification, degraded 0.043 0.062 — —
Closed-loop MPC-X, Experiment 1 0.012 0.020 0.031 0.11
Closed-loop MPC-X, Experiment 2 0.018 0.026 0.063 0.17

6.4 Plant experiments

Summary

One experiment with excitation from MPC-X and closed-loop reidentification was
performed. e degraded controller model resulted in a significant drop in perfor-
mance. After the MPC-X reidentification, the performance is improved. Changes in
the operating conditions between the experiments — most significantly an increased
disturbance level — complicates the comparison. e performance measure is modified
to account for this. However, a clear connection to the application cost is lost and
therefore the γ value is not used. e need for correct disturbance modeling is
highlighted by the experiments. e details of the experiment are given in the following
sections.

Effects not on simulator

e setup of the plant differs in some ways from the simulator, which gives some
different considerations in the modeling and controller setup. Firstly, on the plant the
C4 in the side draw (CV 1) cannot be measured directly, instead a soft sensor is used.
e bias of the sensor is corrected by an analyzer measurement every 20 minutes. is
soft sensor can give negative values even though this is not physically possible, therefore
the logarithm of CV 1 was not used in the model of the plant.

Secondly, C4 content in the feed to the depropanizer varies which affects the
distillation. is does not happen on the simulator where the C4 content in the feed is
constant. On the plant, measurements of the feed compositions are available and can
be included as a measured disturbance in the model and used for feed forward. is
could improve the control performance if included in the MPC.

irdly, the plant has noise and disturbances, which are not implemented on the
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Table 6.5 Operating point and corresponding steady state values for the plant experiments.

Variable Value Unit

MV 2 Side draw to feed ratio 56.9 %
MV 3 Column differential pressure 34.0 kPa

CV 1 C4 in side draw 250 ppm
CV 2 Feed drum level 70 %
CV 4 Column pressure 1 219 kPa
CV 5 Bottom temperature 62.8 ◦C
CV 6 Feed flow OPb 95 %
CV 8 Reboil 12.05 ×c

CV 9 Reboil flow OPb 75.3 %
CV 10 Reflux flow OPb 73.6 %
CV 11 Feed to C3 header OPb 13.8 %
bValve opening percentage, cNot shown for confidentiality reasons

simulator. One such disturbance is the feed variation mentioned earlier. Other sources
are, for example, down and up stream changes in demand or production, impact
of outside the temperature and weather, and measurement noises in all sensors, to
name a few. erefore, a model which includes a noise model was used in the plant
experiments.

Finally, the experiments are performed during normal operations of the plant and
care has to be taken to make sure that the added excitation does not disturb production
in downstream units which rely on the output of the depropanizer. Such considerations
could be included in the constraints of the MPC during the identification experiment.
However, only the constraints from regular operation are included in this case.

Operating point

e values of the manipulated variables and the resulting values of the controlled
variables at the operating point at the beginning of the plant experiments are presented
in Table 6.5.

Initial model

e model of the plant is{
xt+1 = A(θ)xt +B(θ)ut +Bd(θ)dt +Ket,

yt = C(θ)xt + et,
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where yt is the output, ut the input, dt the measured disturbance and et unmeasured
disturbances. e benefit of including the feed variation as a measured disturbance
is investigated by using two different models, one with MV 4 as the only measured
disturbance and one model with two measured disturbances, MV 4 and C4 in feed
(henceforth MV 5).

For the open-loop identification experiments, low-pass filtered, random, binary
excitation is added to the manipulated variables. A Gaussian white noise signal is
filtered through an eighth-order, non-causal Butterworth filter and the sign of the
resulting signal, appropriately scaled, is used. e amplitudes are ±2000 for MV 1,
±2.25 for MV 2 and ±1.25 for MV 3. No excitation is added to the two signals
considered to be measured disturbances. e values of the parameter vector are
obtained using PEM in the System identification toolbox of Matlab. e resulting fit is
shown in Figure 6.7 and the step responses from the manipulated variables to CV 1 are
shown in Figure 6.8. e benefit of including the second measured disturbance is not
visible in these data. However, residual analysis in Appendix 6.B shows that including
the extra disturbance whitens the residuals of the output. e figures also include the
currently used model for reference. is model follows the slower trends well but does
not capture the faster dynamics in the process.

Control setup

Based on the initial model, the sampling time of the controller is chosen to be 0.5 Hz.
e prediction and control horizons are chosen as Ny = 60 and Nu = 10. e
controller is tuned to give good disturbance rejection, which is a balance between
bandwidth and robustness to modeling errors.

MPC-X reidentification

e application cost (6.2) is used also for the performance specifications on the actual
depropanizer. e level κt is again manually tuned such that the optimization problem
is feasible. e strategy for updating the scaling is similar to the one used in Experiment
2 on the simulator. e excitation is increased so that it is visible but intentionally kept
small not to upset down stream production units. e signals during the experiment are
shown in Figure 6.9. Note that, even though the model structure includes aK matrix
and therefore is not of output error type, the experiment design part of MPC-X uses an
output error model where K is removed. Implications of this are further discussed in
the conclusions.
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Figure 6.7 Measured data and simulated responses. e plant output (. ) and data from
simulation of the model with feed forward (. ), the model without feed forward (. )
and the model used by the current MPC (. ).
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Figure 6.9 e excitation signals generated by MPC-X in the experiment closed-loop
reidentification experiment of the plant. e two signals important for the control, MV 2
and 3, are excited while MV 1, which is typically not used by the controller, is not excited.
e scale for MV 1 covers the full variable range in the MPC and the changes in the signal
value are due to operator manipulations and not to MPC-X.
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Step responses

e step responses from the manipulated variables to CV 1 of the models resulting from
the MPC-X experiment are shown in Figure 6.10. MV2 and MV3 are the important
signals for the control and the models for these channels are hence most important.
e obtained model differs significantly from the model obtained from the open-loop
experiments, both in terms of gains and response times of the model. At this point it
is difficult to find the reasons for these results.

Feed forward effects

In Figure 6.10, the step response from a model obtained from MPC-X data generated
without the feed forward from MV 5 is also shown. Due to the correlation between
MV 5 and the inputs generated by MPC-X the resulting gains for MV 2 and MV 3
have the wrong sign. is issue is resolved when the feed forward is included in the
model. is shows that including the effects of disturbances is not only beneficial for
the control, it is also of importance for correct closed-loop modeling, as expected.

Residual analysis

e residual analysis in Appendix 6.B shows that the model obtained from MPC-X
closed-loop reidentification has picked up the dynamics from all manipulated variables
to CV 1 as all residuals in Figure 6.17 are within the confidence bounds. e residuals
of the output are not completely white but show similar behavior as for the model from
open-loop experiments.

Cross validation

To further validate the new model, it is used in simulation with MVs from open-loop
operation as inputs. e resulting output is compared to the results using the model
from open-loop identification. is is presented in Figure 6.11. e fit to data is 19 %
for the MPC-X model and 32 % for the open-loop identification. e models are also
tested on closed-loop data, as shown in Figure 6.11 where it is seen that the model
from MPC-X fits closed-loop data much better than the open-loop model. e fit to
data is 42 % for the MPC-X model and −200% for the open-loop identification. e
achieved fit to data is poor for all the models, which indicates that there is still a high
degree of errors in the models. Note that more data than what is shown in the figures
is used to calculate the numerical values of the fits.
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Performance analysis

e model obtained from the MPC-X experiments is used in the MPC for controlling
the depropanizer. e resulting performance is presented in Table 6.6. e main
disturbance affecting the distillation is the C4 level in the feed, MV 5, and a more
fair comparison is made by normalizing the variance of CV 1, p(θ), by the variance of
MV 5, which is shown in the last column of Table 6.6. e results show that including
the extra measured disturbance has a positive effect on the control performance. e
normalized variance reduces from 6.3 × 10−5 to 3.1 × 10−5 by using feed forward
from MV 5.

Using the degraded model for control in MPC-X increases the normalized variance to
27×10−5, almost a 9 fold increase. When the reidentified model from the closed-loop
MPC-X experiment was implemented, the normalized variance is reduced to 9.7×10−5.
Although it is not possible to relate the normalized variance to the application cost and
find a suitable upper bound, this is considered a significant performance improvement.

Fit to data and control performance

A curious result is that the model obtained from the MPC-X experiments results in worse
closed-loop performance than when the model from open-loop identification is used.
e normalized variance when using the model from MPC is 9.7× 10−5 compared to
3.1× 10−5 when the model from open-loop identification is used. is is unexpected
since Figure 6.11 shows that the model from MPC-X has relatively good fit to both
open- and closed-loop data while the model obtain from open-loop identification has
a very poor fit to closed-loop data. Furthermore, the residual analysis of the models, see
Appendix 6.B, indicates that the MPC-X model has captured more of the information in
the data than the models from open-loop experiments. It is important to note that this
does not indicate that there is a problem with the MPC-X formulation but rather that
there seems to be some interplay between model and controller that is not completely
understood at this moment. is should be investigated further.
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Table 6.6 e variances of CV 1 and the main disturbance signal MV 5 for different cases
of models used in the MPC controlling the depropanizer. Feed forward means that the model
uses the feed composition signal, MV 5, as a measured disturbance

Variance

Model CV 1 MV 5 CV 1 / MV 5

Open-loop 4.54×103 7.2×107 6.3×10−5

Open-loop, feed forward 7.3×103 23 ×107 3.1×10−5

Open-loop, feed forward degraded 95×103 34×107 27×10−5

MPC-X, feed forward 36×103 37 ×107 9.7×10−5
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Figure 6.10 e step responses to CV1 for the model with feed forward (. ) and the
model obtained in the MPC-X experiment (. ). One model obtained from MPC-X data
without feed forward from MV 5 (. ) is also shown, note that the gains from MV 2 and
MV 3 have changed signs.
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(a) Open-loop data
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(b) Closed-loop data

Figure 6.11 e plant output (. ) and data from simulations using the model with feed
forward (. ) and the model obtained in the closed-loop MPC-X experiment (. ).

6.5 Summary

e MPC-X algorithm of Chapter 5 has been implemented and tested on an industrial
process during regular production. An extensive experimental campaign evaluated the
algorithm, both on a Honeywell UniSim simulator and on a depropanizer distillation
column. e tests included initial MPC commissioning using open-loop identification
and tuning of the controller. Initial identification was performed using binary random
signals and the collected data were used to identify state space models of the simulator
and plant. e identified models were used to construct MPC controllers, which were
tuned for robust performance rejection. e initial models were changed to give a
plant–model mismatch and MPC-X reidentification was used to restore performance.
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e results show that MPC-X is able to generate an input signal that gives excitation
to the plant while satisfying the signal constraints of the process. e models obtained
from the closed-loop reidentification improve performance in all cases. On the
simulator the performance after the model was updated satisfied the theoretical bound
in both experiments. However, some issues regarding the implementation and use of
the method were discovered. e experiments on the actual depropanizer emphasize
the importance of correct noise modeling in closed-loop identification.
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6.A Residual analysis of simulator models

e residuals are investigated to validate the models obtained from open-loop data
and the closed-loop, MPC-X generated, data. e residuals are calculated using separate
sets of validation data. e correlations for the model from open-loop data are plotted
in Figure 6.12, and for the models from MPC-X data in Figures 6.13 and 6.14. e
residuals are not white for any of the models, which can be explained by the fact that
the output error model used cannot capture colored noise. It is also seen that there is still
information about the dynamics from the MVs that has not been completely captured
by the model. is is, in particular, true for MV 3 in the open-loop experiments. In
the closed-loop experiments, however, MV 3 is much better modeled. is indicates
that since this MV is important for the control, MPC-X has excited that channel
appropriately.
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Figure 6.12 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtained from open-loop experiments
on the simulator. e residuals are not white, which can be explained by the fact that an
output error model is used. e cross-correlations indicate that there are still effects from
manipulated variables that are not captured by the model.
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Figure 6.13 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtained from MPC-X experiment
1. e residuals are not white, which can be explained by the fact that an output error
model is used. e cross-correlations indicate that the effect of MV 3 is better captured
than when using open-loop data.
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Figure 6.14 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtained from MPC-X experiment
2. e residuals are not white, which can be explained by the fact that an output error
model is used. e cross-correlations indicate that the effect of MV 3 is better captured
than when using open-loop data.
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6.B Residual analysis of plant models

e residuals are investigated to validate the models obtained from open-loop data and
the closed-loop, MPC-X generated data. e residuals are calculated using separate sets
of validation data. e correlations for the open-loop model without feed forward are
plotted in Figure 6.15, for the open-loop model with feed forward in Figure 6.16, and
for the MPC-X model in Figures 6.17. e residuals are close to being white, which
shows that the inclusion of the process noise models helps in the identification. e
cross-correlations are reasonable, in particular for the MPC-X data in Figure 6.17, where
they indicate that most of the information in the data is explained by the model.
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Figure 6.15 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtained from open-loop experiments
on the plant. e residuals are not white, which can be explained by the fact that an
output error model is used. e cross-correlations indicate that there are still effects from
manipulated variables that are not captured by the model.
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Figure 6.16 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtained from open-loop
identification with five inputs. e residuals are close to white because a disturbance model
has been added. e cross-correlations indicate that there are still effects from manipulated
variables that are not captured by the model.
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Figure 6.17 e autocorrelation of the residuals and the cross-correlation between
manipulated variables and the residuals for the model obtain from closed-loop MPC-X
experiments on the plant. e residuals are almost white and the model seems to capture
the information available in the data.



Chapter 7

Signal generation for
constrained systems

G    with specific autocorrelation properties is a problem
which arises in many fields. For example, in system identification the choice

of input signal can greatly impact the statistical properties of the estimates and the
required experimental effort. Another example is radar applications where completely
white signals are desirable, see He et al. (2012) for a discussion on this and further
examples where white signals are desirable.

A complicating issue when generating signals in practice is that many systems
have restrictions on signal amplitudes or rates of change. If these are not taken into
account in the signal design the resulting signal may not have the right autocorrelation
properties. is happens, for instance, if a Gaussian signal is filtered to have the
right correlation and then “clipped” to get the right amplitude, shown by Hannan
(1970). A more sophisticated method is to limit the design to binary signals where
it is easy to enforce constraints on the amplitudes, for example, Liu and Munson
(1982), Boufounos (2007), and Rojas et al. (2007) have proposed algorithms for this.
Schoukens et al. (1991) and Pintelon and Schoukens (2001) instead propose using
sums of sinusoids and then controlling the signal amplitude by adjusting the phases of
the components.

In this chapter, an algorithm for designing a signal directly in the time domain
is presented. e idea is to try to match the autocorrelation of the signal to a desired
autocorrelation while guaranteeing constraint satisfaction. e problem is formulated
as an optimal control problem and approximated using the receding horizon idea.

121
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7.1 Problem formulation

e system and model assumptions are presented and the considered signal constraints
are discussed. e constrained signal generation problem is also formalized.

System and model

Consider a discrete-time, dynamic, LTI system modeled by

M(θ) :


xt+1 = A(θ)xt +B(θ)ut + vt,

zt = C(θ)xt

yt = zt + et,

(7.1)

where xt ∈ Rn, ut ∈ Rm, zt,yt ∈ Rp. zt is the system output while yt is the output
measured with noise. e noises vt and et are zero mean, independent, identically
distributed sequences. In general, no assumption on the noise distribution is needed,
all that is required is that it is possible to draw samples of the noise, either from a
random number generator or real data. e vector θ ∈ Rnθ represents the parameters
of the system, which may be uncertain. For example, the parameters used in the model
could be estimated by system identification, which results in estimates that are random
variables. Another example is that it is known, for instance from physical insight, that
one parameter of the true system has a value between 0.5 and 0.7. In both cases, the
uncertainties in the system can be represented by some probability distribution of the
parameters. In the former case, the distribution for PEM estimates in (2.9) may be used
and, in the latter case, a uniform distribution over [0.5 0.7] is suitable. It is assumed
that, regardless of how the model parameters are obtained, it is possible to draw samples
from their distribution.

Signal constraints

e input and output signals of the system (7.1) are subject to constraints such that

ut ∈ U , (7.2a)
zt ∈ Z. (7.2b)

e sets U and Z are prespecified convex sets representing the input and output
constraints. Such constraints include, for example, signal amplitude constraints which
are often encountered in practice.

In many cases, guaranteed satisfaction of the output constraint for every time
instant is very conservative. In fact, in the case of noise with unbounded support, as for



Problem formulation | 123

the common Gaussian noise case, it is impossible to guarantee hard output constraints;
any hard output or state constraints will be violated almost surely. erefore, a
probabilistic constraint on the signal zt is more suitable. For example, the constraint

P{zt ̸∈ Z} ≤ ε, (7.3)

which guarantees that the violation probability is small if ε is small. A complicating
factor is that the chance constraint (7.3) is typically non-convex, even if the set Z is
convex.

Signal generation

e goal for the signal generation algorithm is to generate N samples of the input
vector

ut =
[
u
(1)
t u

(2)
t · · · u

(m)
t

]T
,

such that the resulting signal has sample autocorrelation matching the first nτ lags of
the prescribed autocorrelation

Rd(τ) = E
{
utu

T
t−τ

}
, τ = 0, 1, . . . , nτ .

e motivation for matching a fixed number of autocorrelation lags nτ is that, in many
optimal input design problems, only a finite number of correlation lags affect the result,
see, for example, Bombois et al. (2006) or Lindqvist and Hjalmarsson (2001).

Defining the (biased) sample autocorrelation at time t for time lag τ as

Rt(τ) =
1
t

t∑
i=τ+1

uiu
T
i−τ (7.4)

=
t− 1
t

Rt−1(τ) +
1
t
utu

T
t−τ , (7.5)

the constrained signal generation can be formulated as the optimization problem

minimize
{uk}Nk=1

nτ∑
τ=0

∥RN (τ)−Rd(τ)∥2Fw(τ),

subject to xt+1 = A(θ)xt +B(θ)ut + vt,

zt = C(θ)xt,

ut ∈ U ,
P{zt ̸∈ Z} ≤ ε,
t = 0, . . . , N − 1,

(7.6)
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where ∥ ·∥F denotes the Frobenius norm, and w(τ) are positive weighting factors that
can be used to add flexibility in the algorithm. e idea of adding a weighting factor
to the fit of the autocorrelations has also been suggested by Agüero et al. (2007). For
simplicity, w(τ) = 1 for all τ in the following treatment.

e signal generation can be seen as a constrained, stochastic optimal control
problem. is problem, even though in principle solvable, is in practice a very
complicated optimization problem, as is the case with many optimal control problems.
One possibility is to consider the open loop control problem and search over a sequence
of inputs. However, due to the uncertainties and the constraints, this will most likely
result in a very conservative solution. Furthermore, the resulting cost function is a
quartic polynomial in the decision variables {ut}N−1

t=0 and the chance constraint is in
general non convex even if Z is convex.

For systems with only input constraints, a possibility is to use the result for the
autocorrelation function of a “clipped” Gaussian process found in Hannan (1970).
e result is presented here in the following theorem.

Theorem 7.1
Let {xt} be a strictly stationary Gaussian process with E {xt} = 0, E

{
x2
t

}
= 1 and

autocorrelationE {xt+τxn}.en the autocorrelation of the “clipped” process ut = sgnxt
is given by

E {ut+τut} =
2
π
arcsinE {xt+τxt}.

It is however known that a binary signal cannot have arbitrary covariance sequence,
see, for example de Carvalho and Clark (1983), and hence the obtained signal spectrum
can be suboptimal. Another approach is a receding horizon implementation of the
problem (7.6). e receding horizon strategy has proven to be very successful for many
other problems.

7.2 Signal generation algorithm

A computationally viable formulation for the signal generation problem (7.6), based
on the algorithm by Rojas et al. (2007), is developed in the following sections. In
this development, the model parameters θ can be uncertain but are not updated
online in the algorithm. A fully adaptive formulation, where the model parameters
and their probability distribution are re-estimated as more and more data are available,
is developed in Section 7.3.
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Receding horizon formulation

To simplify the optimization, a receding horizon approximation of the original
problem (7.6) is formulated. e new problem is inspired by recent developments
in stochastic model predictive control. e simplification comes from considering an
open loop optimization problem over a shorter horizon which reduces the optimization
to a significantly shorter sequence of inputs. Robustness and reduced conservativeness
come from feedback of the current state, measured or estimated, in each time instant.
To formalize, at sample t, the following problem is solved

minimize
{uk}Nu

k=1

nτ∑
τ=0

∥Rt+Nu−1(τ)−Rd(τ)∥2F ,

subject to xk+1 = A(θ)xk +B(θ)uk + vk,

zk = C(θ)xk,

x1 = xt,

uk ∈ U ,
P{zk ̸∈ Z} ≤ ε, k = 1, . . . , Ny

(7.7)

Here, Nu is the input horizon and Ny is the output horizon, that is, how far in the
future we consider that the output should satisfy the constraints. e optimization is
performed over the whole input horizon but only the first sample, u⋆1, is implemented,
that is ut = u⋆1, and the optimization is performed iteratively, in a receding horizon
fashion. If the output horizon is longer than the input horizon, that is Ny > Nu, the
input is set to uk+Nu+1 = · · · = uk+Ny = 0. e problem (7.7) can be seen as
an MPC where the goal is to follow a reference for the autocorrelation while satisfying
input and output constraints. When the state is not directly measurable, an estimate
x̂t is used instead.

Larsson et al. (2013b) proved convergence of the algorithm (7.7) for generation of
white noise in the case of one input under certain conditions, which is summarized in
the following theorem.

Theorem 7.1
For a sequence {ui}ti=1 generated by Algorithm (7.7) with, Nu = 1,m = 1,

rd =
[
σ2 0 . . . 0

]T
,

U = {ut : −umax ≤ ut ≤ umax, umax ≥ σ, } ,
Z = Rp,
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that is, for generation of amplitude-constrained, pseudo-random white noise with variance
σ2, it holds that

lim
t→∞

1
t

t∑
i=τ

uiui−τ = rd(τ), τ = 0, . . . , n.

Proof. e proof comes from Rojas et al. (2007). Introduce

r̃t =
[
r̃t(0) · · · r̃t(n)

]T
,

where

r̃t(τ) =

t∑
i=τ+1

(uiui−τ − rd(τ)), 0 ≤ τ ≤ min(t− 1, nτ ),

are scalar because a single input is considered. en

r̃t+1(τ) = r̃t(τ) + utut−τ − rd(τ),

allowing the dynamics of r̃t to be written as

r̃t+1 = r̃t + utut − rd,

where ut =
[
ut ut−1 . . . ut−nτ

]T , with initial condition r̃0 = 0nτ+1. Note that
ut = argminut ∥r̃t+1∥22 and hence

∥r̃t+1∥22 = min
ut

∥r̃t+1∥22

= min
ut

{
(r̃t(0) + u2

t − σ2)2 +

nτ∑
τ=1

(r̃t(τ) + utut−τ )
2

}

≤ min
ut∈{−σ,σ}

{
(r̃t(0) + u2

t − σ2)2 +

nτ∑
τ=1

(r̃t(τ) + utut−τ )
2

}

= r̃t(0)2 + min
ut∈{−σ,σ}

nτ∑
τ=1

(r̃t(τ) + utut−τ )
2

≤ ∥r̃t∥22 +
nτ∑
τ=1

σ2u2
max

≤ ∥r̃t∥22 + nτu
4
max, t > nτ . (7.8)
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Iterating (7.8) over t ∈ N using that r̃0 = 0n+1 gives

∥r̃t∥22 ≤ nτu4
maxt+ c, t > nτ , (7.9)

where c is an upper bound on
∑nτ

t=1 ∥r̃t∥22. Noting that

∥r̃t∥22 =

(
t∑

i=1

(u2
i − σ2)

)2

+

nτ∑
τ=1

(
t∑

i=τ+1

(uiui−τ )

)2

≤

(
t∑

i=τ+1

u2
i

)2

+

(
t∑

i=τ+1

σ2

)2

+

nτ∑
τ=1

(
tu2

max
)2

≤ t2u4
max + nτ t

2u4
max = (nτ + 1)t2u4

max,

the bound, c, can be derived from
nτ∑
t=1

∥r̃t∥22 ≤ (nτ + 1)u4
max

nτ∑
t=1

t2 =
nτ (nτ + 1)2(2nτ + 1)

6
u4

max.

Dividing (7.9) by t2 gives for t ≥ nτ + 1,

nτ∑
τ=0

[
1
t

t∑
i=τ+1

(uiui−τ − rd(τ))

]2

≤ nτu
4
max
t

+
c

t2
,

and consequently∣∣∣∣∣1t
t∑

i=τ+1

(uiui−τ − rd(τ))

∣∣∣∣∣ ≤
√
nτu4

max
t

+
c

t2
−→ 0, as t→∞

by which it is concluded that

lim
t→∞

1
t

t∑
i=τ+1

uiui−τ = rd(τ).

Remark 7.1 While the above theorem only guarantees convergence of the algorithm
for generation of white noise with input constraints, simulations indicate convergence
of the algorithm for most autocorrelation sequences, see the numerous simulations in
Larsson et al. (2013b), Hägg et al. (2013) and Hägg et al. (2014), and the simulation
study in Section 7.4.
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Randomized algorithm

While the receding horizon formulation of the signal generation simplifies the objective
function by considering a sequence of inputs over a reduced horizon, the constraint set
is in general still non-convex due to the chance constraint (7.3). However, for a fixed
value of the parameters, the constraint set is convex. From this observation, it seems
appropriate to use the scenario approach by Calafiore and Campi (2004) to solve the
chance constrained optimization. e idea is to draw samples (scenarios) of the noise
sequences, system parameters, and the initial state and then solve the optimization
under these sampled constraints. Each scenario correspond to one convex constraint set
on the inputsuk. If a sufficiently large number of samples are used, the original problem
is satisfied with high probability. e scenario approach has previously been applied to
stochastic MPC problems by, for example, Schildbach et al. (2013) and Calafiore and
Fagiano (2013).

Assume that i = 1, . . . , Ni independent and identically distributed samples,{
v1, v2, . . . , vNy , x̂t, θt

}(i), of the process noise, the initial state and the parameter
values are drawn from their joint distribution. ese scenarios are used for the
predictions of the system trajectories for k = 1, . . . , Ny in the optimization. e
scenario based signal generation formulation becomes

minimize
{uk}Nu−1

k=1

nτ∑
τ=0

∥Rt+Nu−1(τ)−Rd(τ)∥2F ,

subject to x
(i)
k+1 = A(θ

(i)
t )x

(i)
k +B(θ

(i)
t )uk + v

(i)
k ,

z
(i)
k = C(θ

(i)
t )x

(i)
k ,

x
(i)
1 = x̂

(i)
t ,

uk ∈ U , k = 1, . . . , Ny,

z
(i)
k ∈ Z, i = 1, . . . , Ni

(7.10)

e problem (7.10) has Ni + 1 convex constraints on ut. e accuracy of scenario
based optimization has been studied by, for example, Calafiore and Campi (2006) and
Campi and Calafiore (2009).

Sampling and discarding

In the proposed randomized algorithm (7.10), the chance constraint is replaced by a
number of convex, deterministic constraints. is greatly simplifies the optimization.
However, it is possible that the solution may sometimes show unwanted behavior due
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to unlikely scenarios being drawn. Calafiore and Fagiano (2013) suggested a sampling
and discarding scheme for the scenarios to remedy this problem. e idea is to remove
a small number of the drawn scenarios according to some deterministic removal rule.
Unfortunately this typically increases the computational burden of the algorithm and
therefore becomes prohibitive for the problem considered here.

Convex relaxation

e last step in achieving a computationally tractable problem is a convex relaxation of
the objective. Since the sample autocorrelationR(τ) is quadratic in u, the optimization
problem (7.10) corresponds to minimizing a constrained, multivariate, fourth-order
polynomial under convex constraints. Larsson et al. (2013b) showed that, for the
SISO case with input horizon Nu = 1, the optimization problem (7.10) can be
solved analytically. However, in the general case, the problem has no analytic solution.
However, by choosingNu sufficiently small, the multivariate polynomial optimization
can be solved numerically. Hägg et al. (2014) proposed two different numerical
approaches to solve the optimization problem (7.10). One of the approaches, an LMI
based relaxation scheme proposed by Lasserre (2000) is used here. is method has the
benefit that it can certify that the global optimum has been found. In fact, the global
optimum is guaranteed to be found but possibly at the price of very high computational
burden.

State estimator

To be able to predict the future state trajectory, an estimate of the current state
is needed. Furthermore, in the scenario based optimization, an estimate of the
distribution of the state estimate is also needed. For linear systems and models, the
standard filter by Kalman (1960) can be used. In the Kalman filter, the estimate of the
state at time t is given by

x̂t|t−1 = A(θ)x̂t−1|t−1 +B(θ)ut,

Pt|t−1 = A(θ)Pt−1|t−1F (θ)
T + Λv,

Kt = Pt|t−1C(θ)
T (C(θ)Pt|t−1C(θ)

T + Λe)
−1,

x̂t|t = x̂t|t−1 +Kt(yt − C(θ)x̂t|t−1),

Pt|t = Pt|t−1 −KtC(θ)Pt|t−1.

Above, Λv = E
{
vtv

T
t

}
is the covariance matrix of the process noise and Λe =

E
{
ete

T
t

}
is the covariance matrix of the measurement noise. In addition to the
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state estimate x̂t|t, an estimate of the covariance of the estimated state, Pt|t =

E
{
(xt − x̂t)(xt − x̂t)T

}
, is also given. ese two can be used to generate the samples

of x̂t needed for the scenarios in (7.10).
For linear systems with Gaussian noise sources, the Kalman filter gives the

means square optimal estimate. For non-Gaussian noises or nonlinear systems, other
estimators may give better results. For example, sequential Monte Carlo method based
filters, such as particle filters could be used. Such techniques are discussed, for instance,
by Del Moral et al. (2006).

Remark 7.2 In the above Kalman filter, it is assumed that the process and measure-
ment noises are uncorrelated. Kalman filter equations for the correlated case also exist,
but are somewhat more involved.

Scenario signal generation algorithm

e complete scenario based algorithm for generation of the input signal is summarized
in Algorithm 7.1.

Algorithm 7.1 Scenario signal generation
Require: desired Rd

1: t← 1
2: Rt(τ)← 0, τ = 0, 1, . . . , nτ
3: while t ≤ N do
4: measure yt
5: calculate x̂t and Pt|t
6: draw Ni scenarios of v1, . . . , vNy , x̂t and θt.
7: solve the optimization problem (7.10). If the solution is non unique, arbitrarily

choose u⋆
8: ut ← u⋆1
9: update Rt(τ) using (7.5)

10: t← t+ 1
11: end while

7.3 Adaptive signal generation

e method described in Algorithm 7.1 can be used to generate signals that satisfy
constraints in a general setting for systems where only uncertain models are available.
However, in a recursive application of the algorithm, more and more data are available
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Figure 7.1 Adaptive signal generation. e parameters of the signal generation are updated
online, based on the currently best available model information. e System identification
block and the state estimator give model and state estimates along with the distributions
needed for scenario generation. e input design can also be updated to reflect the new
model information.

to the user. ese data could be used to reduce the uncertainties and improve the
performance of the algorithm. Specifically, in situations where little is known about the
system initially, large uncertainty can lead to very conservative signals. is means that
the systems is not excited as much as it could be which often means longer experiment
times than necessary.

Extending the original algorithm to an adaptive version is straightforward thanks
to the recursive formulation that comes naturally in the receding horizon framework.
Such an adaptive scheme is sketched in the block diagram in Figure 7.1. e algorithm
generates input samples online using the best available model and state estimates. As
more data are collected, the model is re-estimated using system identification, reducing
the uncertainty. Model updates can be performed at every time instant or on batches
of data, where the model would be updated when a new batch has been processed.
is choice is up to the user and is dictated by the available computational power in
relation to the time constants of the true system.

e following sections describe the particulars of each of the blocks in the adaptive
signal generation algorithm.

Initialization

Initialization is formally not a block in the algorithm presented in Figure 7.1.
Nevertheless, some parameters in the algorithm have to be initialized before the
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signal generation is started. An initial model M(θ̂) together with the distribution
of the model parameters is needed. In practice, this could come from a short, initial
identification experiment. Another possibility could be to obtain a model from first
principles modeling. e Kalman filter also needs to be initialized by choosing the
initial state estimate x̂0|0 and the corresponding uncertainty P0|0.

System Identification

e system identification block is used to estimate the distribution of the parameters of
M(θ) using dataZt up to the current time t. Using PEM, both a parameter estimate, θ̂t,
and a corresponding covariance estimate, P̂θ, can be found from data, see, for example,
the book by Ljung (1999). Using the (asymptotic) Gaussian distribution of the estimate
in (2.9), the scenarios needed in the optimization can be drawn.

State estimator

e state estimation block is used to estimate the distribution of the current state based
on data Zt up to the current time t and using the best available model. In the linear
framework, the modelM(θ̂t) can be used in the Kalman filter equations (7.11).

Ideally, the knowledge that the model is uncertain should be used also in the
state estimation. e process noise covariance Λv reflects the certainty in the model.
Unfortunately, to the best of the author’s knowledge, there is no good method
of transforming the parameter uncertainty P̂θ to a corresponding process noise
covariance. One possibility would be to use a Kalman filter that is robust to model
uncertainties, such a filter is discussed by Ruckdeschel (2010).

Signal generation

e signal generation block is the main block of the algorithm, where an input sample
to be applied to the system using Algorithm 7.1 is generated. e algorithm uses the
estimated model of the system, the states and their respective uncertainties from the
state estimator and the system identification blocks. e desired autocorrelation of the
generated signal Rd

t (τ) comes from either a user choice, an initial input design, or
from an adaptive input design.

Input Design

e input design block is used to calculate the desired input autocorrelation sequence,
Rd

t (τ). is can be done using the application-oriented ideas used in Chapters 3-5.
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is is, however, not necessary as any input design algorithm that delivers a desired
input autocorrelation sequence can be used.

One inherent problem with input design is that the solution typically depends on
the unknown true system. Here, this is solved by using the latest identified model as
a substitute for the true system in the design. e desired autocorrelation, Rd

t (τ), is
calculated from the identified model,M(θ̂t).

Termination

e termination criterion is left to the user as it often depends on the application.
Sometimes a given number of samples should be generated. Other times, the algorithm
should run until the estimated parameters are sufficiently accurate. In the applications
oriented input design framework, for example, this would mean that the achieved
information matrix is large enough.
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Figure 7.2 Error between the sample autocorrelation of the generated signal and the
desired autocorrelation for 3,300 randomly chosen test spectra in. Group 1 is the presented
algorithm without constraints, group 2 is the algorithm with input constraints, which forces
the signal to be binary, and group 3 is filtered white noise. In (b), spectra with at least
one pole of magnitude greater than 0.95 are considered, in (a) the remaining spectra are
considered.

7.4 Comparison with filtered noise

Algorithm 7.1 is tested on 3,300 randomly chosen test spectra. e spectra are found
by generating random 2 × 2 systems of random order between 1 and 25 using the
drss command in Matlab; systems with poles on the unit circle are discarded. e
systems are approximated by an FIR system with 26 coefficients and the autocorrelations
corresponding to the resulting FIR spectra, normalized to have variance 1, are used.

For each test spectrum, 1,000 input samples are generated using three different
methods. In the first case, the proposed algorithm is used without any constraints. In
the second case, the proposed algorithm is used with the input constrained between−1
and 1, which forces the signal to be binary. Finally, in the third case, a spectral factor is
used to filter white Gaussian distributed noise to get the correct autocorrelation. e
results are presented in Figure 7.2. It can be seen that the proposed algorithm performs
better than if white noise is filtered, even under input amplitude constraints. For 1,000
samples, the difference in the error between the sample autocorrelation and the desired
autocorrelation is about one order of magnitude, in favor for the new algorithm.
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7.5 Examples

In this section, simulation examples are used to illustrate the key points of the
algorithm. In a first example, the convergence of the algorithm for generation of white
noise is illustrated. In the second example, the algorithm is applied in an adaptive
setting for estimating the gain of a system using the optimal input. e last example
shows an experimental application of the algorithm on a four tank laboratory process.

Example 1 — White noise generation

Two properties of the algorithm are illustrated here. e convergence for white noise
generation in the unconstrained and constrained cases is illustrated. e importance
of the output horizon for satisfaction of output constraints is also shown.

e goal is to apply white noise to a system while satisfying constraints on the
output. e system is randomly generated using the drss command in Matlab, the
direct term from input to output is removed and the system is scaled to have unit
gain. e input is constrained to the interval [−2 2] and the output to the interval
[−1.5 1.5]. e input horizon is set to Nu = 1, the first nτ = 50 autocorrelation
coefficients are matched, and N = 105 samples are generated. ree output horizons
are used: Ny = 0, Ny = 1, and Ny = 5. For Ny = 0, output constraints are not
taken into account, which correspond to the situation in eorem 7.1. e system is
considered known and noise free, therefore, no scenarios, state estimation or adaptation
is used.

e resulting outputs and the convergence of the algorithm are shown in Fig-
ure 7.3. For the first case, Ny = 0, the constraint is violated in 130 of the first 1000
samples, for Ny = 1 constraints are violated 70 times and for the horizon, Ny = 5
there are no constraint violations.

Convergence is measured in terms of the error

εt =

√√√√ nτ∑
τ=0

(rtu(τ)− rd)
2

where rtu(τ) is the autocorrelation sequence calculated with data up to time t. It is seen
in Figure 7.3 that the cost of using a longer output horizon is a slower convergence rate.
However, in this case the cost is quite low and a longer horizon results in satisfaction
of the output constraints.
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Figure 7.3 Performance of the algorithm for white noise generation. e signal generation
algorithm is used to generate pseudo-random white noise while maintaining input and
output constraints on a randomly generated system. ree different output horizons,Ny =
0 (. ), Ny = 1 (. ) and Ny = 5 (. ), are used. e output constraints are only
satisfied in the last case, when a longer output prediction horizon is used.
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Example 2 — L2-gain estimation

e convergence of the algorithm when used in adaptive input design is illustrated.
Gerencsér et al. (2009) presented the example of adaptive input design for estimation
of the L2-gain of a dynamic system. e performance of the adaptive signal generation
scheme, compared to what would be obtained if the optimal autocorrelation had been
known at the beginning of the experiment, is studied.

An identification experiment of length N = 200 is used to estimate the L2-gain
of the fourth order FIR system given by

φt =
[
ut−1 ut−2 ut−3 ut−4

]T
,

θ =
[
θ1 θ2 θ3 θ4

]T
,

yt = φT
t θ + et, (7.12)

where et is zero mean white Gaussian noise with variance σ2. e input is designed
to have the lowest possible power that guarantees the variance of the gain estimate to
be less than γ at the end of the experiment. Gerencsér et al. (2009) showed that the
autocorrelation of this input signal is given by the solution to the optimization problem

minimize
rd

rd(0)

subject to rd defines a spectrum,[
R(rd) 2θ
2θT γN

σ2
e

]
⪰ 0,

(7.13)

where R(rd) is a Toeplitz matrix with first row given by [rd(0) · · · rd(nτ )]. is
problem can be transformed into an SDP, as shown by Gerencsér et al. (2009).

e model structure is assumed to be known but the parameters are recursively
estimated using the rarx command from the System Identification Toolbox (Ljung,
2012). e noise variance is estimated as

σ̂2
t =

t− 1
t

σ̂2
t−1 +

1
t
(yt − φT

t θ̂t)
2.

e parameters of the true system are set to θ = [0.9 0.6 0.2 0.3]T , the variance
bound to γ = 0.001, and the number of autocorrelation lags is set to nτ = 3. e
optimization (7.13) is solved in each sample using the newly identified model and
noise variance. In this case there are no input or output constraints, which means that
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Figure 7.4 Variance of the estimated L2-gain of the FIR system (7.12), averaged over 200
Monte-Carlo simulations (. ) and the theoretical, asymptotic variance if the true optimal
input was known (. ).

a state estimator is not needed. e performance of the adaptive identification scheme
is evaluated in a Monte Carlo simulation with 200 trials.

Figure 7.4 shows the sample variance of the squared estimate of the L2-gain,
calculated over the Monte Carlo trials. e input was design to give a variance of
the estimated gain below γ = 0.001 after N = 200 samples. e sample variance
at N = 200 is indeed very close to the desired variance. In Figure 7.4 also shows
the theoretical asymptotic variance if the true optimal input signal is known from the
beginning. After around 100 samples, the variance using the adaptive signal generation
is very close to the optimal variance.
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Example 3 — Identification of water tank system

e algorithm with adaptive signal generation and identification is tested on the four
tank laboratory process suggested by Johansson et al. (1999). e layout of the process
is illustrated in Figure 7.5. e process consists of four interconnected tanks, two
pumps and a water reservoir. Tubes connect pump 1 to tanks 1 and 4 while pump
2 is connected to tanks 2 and 3. e ratio of water flow into the upper and lower tanks
is decided by the parameters γ1 and γ2 for the two pumps, respectively. e water
flows freely through holes at the bottom of each tank, from the upper tanks to the
lower tanks and from the lower tanks into the reservoir. e system is controlled using
the voltages applied to the two pumps as inputs and the water levels in the two lower
tanks, tanks 1 and 2, are the system outputs.

A system identification experiment is used to identify a linear model of the system
around a given operating point. e input used in the experiment is designed to be
white while satisfying constraints on the input and output.

Model

e process can be modeled in continuous time by a linear model around an
equilibrium point h0 =

[
h0

1 h0
2 h0

3 h0
4
]

as

ẋ(t) =


−τ1 0 τ3 0
0 −τ2 0 τ4
0 0 −τ3 0
0 0 0 −τ4

x(t) +


k1γ1
A 0
0 k2γ2

A

0 k2(1−γ2)
A

k1(1−γ1)
A 0

ut + v(t),

y(t) =

[
1 0 0 0
0 1 0 0

]
x(t) + e(t),

where v(t) is process noise and e(t) measurement noise and τi is given by

τi =
ai
A

√
g

2h0
i

. (7.14)

e system is sampled at 1 Hz using zero order hold and the corresponding discrete
time model is used in the identification. e resulting discrete time noises are assumed
to be Gaussian distributed, white noise with covariances Λv and Λe.

e parameters of the model are explained in Table 7.1. In this setup the parameter
vector is θ =

[
a1 a2 a3 a4 k1 k2

]T and the noise covariances Λv and Λe are
unknown and also need to be estimated.
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Figure 7.5 e four tank process. Water is pumped from the lower reservoir into the four
tanks. e flow from pump 1 fills tanks 1 and 4 while the flow from pump 2 fills tanks 2
and 3. e flow is divided between the tanks according to the settings of the two valves, γ1
and γ2. e water levels of the tanks are xi, i = 1, 2, 3, 4. e inputs to the process are
the voltages u1 and u2.

Input design

e system is excited using a white input signal with variance 0.16 and the first
nτ = 11 autocorrelation matrices of the input are matched in the signal generation
algorithm. is gives the desired autocorrelation

Rd(0) =
[
0.16 0
0 0.16

]
Rd(τ) = 0, τ = 1, . . . , 10.

It is also desired that the water levels in the two lower tanks are kept within±0.5 cm
of the operating point. e input is also constrained and should be within±3 V of the
operating point.
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Table 7.1 Parameters of the four tank process and the numerical values of known
parameters. e parameters without numerical values are unknown and need to be
estimated in the system identification experiment.

Parameter Value Description

ai — outlet area of tank i = 1, 2, 3, 4.
ki — volumetric flow constant of pump i = 1, 2.
A 15.15 cm2 cross-sectional area of tanks
g 103 cm/s2 gravitational constant
γ1 0.6 flow ratio of tank 1 and 4
γ2 0.6 flow ratio of tank 2 and 3

Identification experiment

As initial model for the algorithm, a known model of the water tank process with
increased parameter uncertainties is used. is mimics the case with a short initial
identification experiment. e estimated model and noise covariances are used to find
a stationary Kalman filter for state estimation and to calculate the needed stationary
estimation error covariance P . e operating point during the experiment is

h0 =
[
10.2 15.4 15 10

]T cm,

u0 =
[
3.75 3.75

]T V.

e horizons in algorithm are chosen as Nu = 1 and Ny = 6, and Ni = 200
scenarios are used in the optimization. e sampling time is chosen as Ts = 1 s and a
total of N = 300 samples are generated.

e identification of a new model takes about 2-3 samples to perform and
therefore it is not possible to reidentify the model in every sample. Instead, the
experiment is divided into 3 batches of 100 samples each. After each batch, the model
is reidentified and the Kalman filter is updated accordingly. e full state trajectory
is also re-estimated using the new model. During the 3 samples that it takes to do
the reidentification, it is not possible in this setup to change the input or measure
the output. is is a limitation of the experimental equipment and not the algorithm.
During this outage, the input is set to zero (around the operating point) and a multi
step prediction of the output is used instead of the measured output.
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Results

e generated input signals and the resulting measured outputs from the experiment
are shown in Figure 7.6. It is seen that all the constraints are satisfied. During the first
100 samples of the experiment, the initial model is used and the algorithm is cautious,
keeping the output further from the constraints. After the first reidentification, the
process is operated closer to the constraints on the outputs. e model is further
improved after the second reidentification, although this is hard to see in the resulting
outputs. In Figure 7.6 the 99 % confidence interval of the one step ahead predictions
from the Kalman filter is shown. Note that the uncertainties in the model are not
reflected by this confidence interval. However, the initial conservativeness of the
algorithm shows that model uncertainties are indeed taken into account.

e final covariance matrix of the generated input is

RN (0) =
[
0.158 0.000
0.000 0.156

]
,

and the total error between the achieved autocorrelation and the desired sequence is

nτ∑
τ=0

∥RN (τ)−Rd(τ)∥2F = 8.25 · 10−5.

e whiteness of the generated input is also reflected by the periodograms of the two
generated input signals, plotted in Figure 7.7.

For reference, an experiment where a pseudo random, white Gaussian noise signal
with the desired variance is used as excitation is performed. e measured output
during this experiment is shown in Figure 7.8. ere is no way to account for signal
constraints and several violations can be observed. Identifying a model using this input
signal gives a model that is similar to the model identified with data generated by
Algorithm 7.1. is is expected since the autocorrelation properties of the input signals
are almost equal. e pseudo random, white signal achieves a total error

nτ∑
τ=0

∥RN (τ)−Rd(τ)∥2F = 3.3 · 10−3.

In conclusion, the proposed signal generation algorithm offers no apparent perfor-
mance loss compare to using random signals while it offers the possibility to take both
input and output constraints into consideration during the identification experiment.
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Figure 7.6 e measured outputs and generated inputs. e signals from the experiment
are plotted as (. ). e 99 % confidence interval for the one step ahead prediction from
the Kalman filter is also plotted as (. ) around the measured outputs. e constraints
are shown as (. ) and the reidentification times are shown as (. ). e effect of model
uncertainties is not reflected by the confidence intervals.
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Figure 7.7 Frequency content in the inputs. e periodograms of the generated signals,
u1(t) (above) and u2(t) (below), show that both signals have power evenly distributed over
the whole frequency range.
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when a pseudo-random, white Gaussian input is used. e outputs are plotted as (. )
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violations are observed.
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7.6 Conclusions

A framework for generating an input signal with prespecified autocorrelation under
time domain signal constraints has been formulated. Using a model of the system
the signal is to be applied to, the algorithm can account for both input and output
constraints. e method is based on stochastic optimal control and the optimization
is solved using techniques from stochastic MPC. In particular, the scenario approach is
used to find a relaxed, deterministic optimization problem. e framework is general
and allows for use of arbitrary state estimators and identification methods. e only
requirement is that distributions of the uncertain elements are available to sample from.

e framework can be used for generation of white signals with amplitude
constraints with proven convergence, asymptotically in the number of generated
samples. For generation of signals with short samples sizes, the methods by He et al.
(2012) are often more suitable. In simulations, the algorithm shows good convergence
properties also for other autocorrelations and under more general constraints.

Furthermore, examples show the usefulness of the framework as the signal genera-
tion component of adaptive input design in system identification. e full robust and
adaptive version of the framework was also successfully applied to a laboratory process
in a real experiment.





Chapter 8

Conclusions

N    where MPC has improved product quality, increased
process efficiency and raised profits have been reported by industry. Unfortu-

nately, it is also often reported that, even if an MPC implementation initially performs
well, after a while the control performance of MPC is significantly reduced to the point
that the controller has to be turned off. is issue has been addressed in this thesis
by considering the problem of updating the model used by the controller to reflect
plant changes and thereby maintaining high performance. e developed ideas are
summarized in the first section of this chapter and ideas for future research directions
are discussed. In the second section of this chapter, the method for generating
signals presented in Chapter 7 is summarized and some future research directions are
suggested.

8.1 Experiment design for MPC

Model predictive control is an advanced control strategy. e controller uses an internal
model of the controlled process to predict future behavior. Optimization is used to find
the best control input with respect to a given control cost while respecting signal and
state constraints. Feedback is introduced by using a receding horizon implementation.
As a result, MPC is often a robust and flexible control strategy but also complex and
difficult to analyze theoretically. From an experiment design perspective, the correlation
between input and disturbances, which is introduced by the feedback and the nonlinear
nature of the controller are the complicating factors. e general application-oriented
experiment design problem for MPC was formulated as an optimal control problem
with constraints.
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MDP formulation

A matrix constrained Markov decision process formulation of the application-oriented
experiment design for MPC was formulated. e system and controller models assume
finite state and action spaces, which typically is an approximation since many industrial
processes have states and actions in infinite spaces. e formulation can be of
theoretical interest as it allows for study of the experiment design problem for general
noise structures and may offer some insight into the solution to the optimal control
problem. e resulting solution can also be used as a benchmark for alternative,
approximate solutions. e problem was solved using an SDP, which is an extension of
the linear programming solution that is used for CMDPs.

In practice, the formulation suffers from the curse of dimensionality whenever
state and action spaces have to be discretized. However, it may be an interesting route
for experiment design for systems that inherently have a finite number of states and
actions.

As a final comment, similar problems are considered in the reinforcement learning
community. ere the controller tries to learn the behavior of the system while it is
controlling it. e methods used are, however, very different. An interesting future
research direction could be to merge the learning approaches and the application-
oriented paradigm.

MPC formulations

Two controllers based on MPC where the application-oriented experiment design
is included as an explicit constraint were developed. is results in an MPC with
dual properties that is called MPC-X. ese controllers are restricted to OE models,
contrary to the MDP based controller. However, MPC-X is much less computationally
demanding as it results in significantly smaller optimization problems. erefore,
MPC-X is implementable on much larger systems.

e restriction to OE models is somewhat limiting in a closed-loop experiment
design setting. e inevitable correlation between the input from the controller and
the disturbances can result in very bad estimates if it is disregarded in the experiment
design. is becomes clear in the industrial experimental validation of MPC-X presented
in Chapter 6. A possible route to extending MPC-X to more general noise models is to
consider a stochastic MPC formulation. is is interesting for future research.

e choice of the scaling parameterκ, which controls the level of excitation remains
a difficulty and a badly chosen value may result in an infeasible optimization problem.
is problem is shared by MPC and the persistently exciting MPC algorithms. e
problem of infeasibility can be avoided by softening the requirements on excitation,
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as is done in the minimum time MPC-X. However, then there are no guarantees on
excitation in the input. Suitable choices of κ should be further investigated.

Finally, MPC-X, as it is formulated in this thesis, generates excitation such that
a good model can be estimated after a batch of data has been collected. However,
changing the algorithm to allow for a truly adaptive MPC formulation seems fairly
straightforward. is is a very interesting idea of future research, well in line with
current trends in the MPC community.

Industrial validation

e MPC-X algorithm developed in the thesis was implemented and evaluated on an
industrial depropanizer in an oil refinery during normal operation of the plant. e
experiments were performed on a simulator of the depropanizer as well as on the real
production unit. is seems to be the first time that an MPC with dual properties has
been tested on a full scale industrial process.

On the simulator, the resulting accuracy, or γ values, is low compared to the
achieved performance. is could partly be explained by the fact that the information
matrix is calculated based on the model used by the MPC, which is sampled at a 2
minutes interval. For the identification however, 30 seconds sampling is used, resulting
in more samples. is should have a positive effect on the model quality and hence also
on the performance when the model is used.

Choosing the scaling κ is a major issue in the presented formulation, a too fast
increase easily results in an infeasible optimization problem while a too slow increase
gives poor excitation, which wastes experimentation time. e suggested scaling with
a linear increase in each sample was not possible to use in practice and instead,
κ was manually adjusted after a batch of data had been collected. e resulting
information available in the data was not as high as wanted, resulting in low values
for γ. is explains why the performance after reidentification is not as good as the
initial performance.

e experiments on the actual depropanizer showed the importance of correct
noise modeling in closed loop identification. e initial attempts with a model without
feed forward from the C4 content in the feed resulted in models that were completely
wrong. e reason for this was that not including this signal results in an input which
is highly correlated to the disturbance since the controller is trying to counteract the
effect of changes in the feed composition through feedback. e high correlation means
that it is virtually impossible to separate the effect of the input and the disturbance,
resulting in useless models. Including the disturbance in the model allows for MPC-X to
take the correlation into account through the information matrix. is is an indication
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that MPC-X should be extended to models with more complex noise models than output
error.

Changes in operating point and the level of the main disturbance, the feed
composition, makes fair comparison of the cases on the actual depropanizer more
challenging. is also shows that one should probably include the effect of disturbances
in a more direct way in the application cost.

e results emphasize the need for extending MPC-X to more general model classes
where the correlation between input and noise can be taken into account and this
should be further investigated. e difficulty in choosing the level of excitation through
the scaling factor also shows the merits of a scheme like the minimum time MPC-X in
Section 5.4. A similar experiment using that algorithm would be of interest to conduct.
Finally, the observed results, where good model fit does not correspond to better
controller performance, indicate an intricate interplay between models and controllers
that should be better understood.

8.2 Signal generation

A method for generating signals with prescribed autocorrelation under time domain
constraints was developed in Chapter 7. e motivation was that many optimal
experiment design methods give the optimal spectrum of the input to be used during
the identification. erefore, any time domain constraints need to be accounted
for during the signal generation. e method was formulated as an optimization
problem which was simplified using the receding horizon principle. Consequently, the
experiment design problem can be seen as a nonlinear, stochastic MPC. e stochastics
were handled using scenario optimization and the resulting optimization problem was
approximately solved using an LMI based approximation technique.

e algorithm has proven convergence, as the sample size grows, for generation of
white noise. However, no proof exists for more general autocorrelations. Simulations
show good convergence also for the general case. Future research should focus on
investigating for which autocorrelations the algorithm converges. Formal proofs of
more general convergence would also be useful.
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