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Abstract—Today multiple frameworks exist for elevating the
task of writing programs for GPGPUs, which are massively data-
parallel execution platforms. These are needed as writing correct
and high-performing applications for GPGPUs is notoriously
difficult due to the intricacies of the underlying architecture.
However, the existing frameworks lack a formal foundation that
makes them difficult to use together with formal verification,
testing, and design space exploration. We present in this paper
a novel software synthesis tool – called f2cc – which is capable
of generating efficient GPGPU code from abstract formal models
based on the synchronous model of computation. These models
can be built using high-level modeling methodologies that hide
low-level architecture details from the developer. The correctness
of the tool has been experimentally validated on models derived
from two applications. The experiments also demonstrate that the
synthesized GPGPU code yielded a 28× speedup when executed
on a graphics card with 96 cores and compared against a
sequential version that uses only the CPU.

Keywords—Analytical models, computational modeling, system-
level design, multicore processing

I. INTRODUCTION

We are experiencing a seemingly never-ending improve-
ment in computational processing capacity. The past decades
have yielded faster, denser, and more complex chips, and
the processing units are increasingly being composed into
multicore platforms which require complicated communication
and scheduling schemes. This results in an incredible challenge
that system developers need to face in managing the growing
complexity of systems. To make matters worse, low-level
implementation details must be considered in order to produce,
not only correct, but efficient systems. This problem is espe-
cially notorious for general purpose graphics processing units
(GPGPUs). GPGPUs are massively parallel execution platforms
that have emerged from the graphics card technology whose
processing capacity have grown to such an extent that they
can be considered affordable small-scale supercomputers. But
the underlying architecture exhibits many intricacies, making
it difficult to exploit. For instance, in order to reach maximum
performance it is paramount that the GPGPUs’s registers, on-
chip memories, and caches are used efficiently, but optimizing
the usage of one resource often has a negative impact on
another. Moreover, the convoluted addressing schemes required
for distributing data across the threads are mechanical, tedious,
and error-prone to manage manually. Hence, to manually write
applications that are both correct and efficient when executed
on a GPGPU is an extremely challenging and error-prone task.

Although there exist several frameworks for elevating
the task of GPGPU programming, they are all based on
programming methodologies that hinder the use of automated
tools for tasks such as verification, testing, and design space
exploration. To mitigate these issues we present in this paper
a novel software synthesis tool – called f2cc1 – that generates
GPGPU code from applications which are represented as
abstract formal models. These models have a solid formal
foundation based on the theory of models of computation [15]
and are devoid of low-level details regarding implementation
and target architecture, which raises the level of abstraction
for the system developer and enables the use of formal system
design tools. In this case we use ForSyDe for modeling the
applications. Hence f2cc promotes an application design flow
that is “correct by construction” [8] by allowing the system
developer to focus on what the system is meant to do rather
than how, which lowers the development cost. Most importantly,
f2cc enables system developers to take advantage of GPGPUs
without needing to have extensive and in-depth knowledge
about the underlying architecture.

The paper makes the following contributions:

• We present a novel software synthesis tool (f2cc) that
is capable of generating GPGPU code from abstract
formal models based on the synchronous model of
computation. Using a formal framework for application
design enables the potential to perform verification,
testing, and design space exploration in an automated
fashion. Other advantages of the tool include:
◦ Modeling framework independence. f2cc pro-

vides a flexible XML + C input format and
frontend support which can be extended to
support models created using different formal
modeling methodologies.

◦ Adaptive and stand-alone code. The GPGPU
code produced by f2cc adapts itself to the
properties of the graphics card at runtime, and
does not depend on any proprietary libraries in
order to be compiled or executed.

◦ Flexible data type support. f2cc allows the
developer to use custom-made structs as data
types in the models, thus facilitating the appli-
cation design.

1Source code is available at http://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc



• We describe the methods and algorithms devised for
f2cc, including an O(n) algorithm for finding a process
schedule for synchronous models containing feedback
loops.

• We present experiments that demonstrate the correct-
ness and efficiency of f2cc for GPGPU code synthe-
sized for a Mandelbrot generator and an industrial-scale
image processor. Compared against the performance
of a hand-written CPU version, the GPGPU code
generated by f2cc yielded a speedup of 28× when
executed on a graphics card equipped with 96 cores.

The rest of the paper is organized as follows. Section II
briefly describes the GPGPU platform and introduces ForSyDe,
the formal modeling methodology currently supported by
f2cc. Section III explains the software synthesis process, the
techniques and methods applied, and its current limitations.
Section IV gives the results from the experiments that were
performed to validate the tool. Section V covers related work
and discusses existing frameworks which elevate the task of
GPGPU programming. Lastly, Section VI concludes the paper
and lists future work.

II. BACKGROUND

A. GPGPUs

GPGPUs are enhanced versions of GPUs [10], [18], which
are processing units specifically designed for rendering image
frames. As image rendering is generally a parallel process
where pixels can be generated independent from one another,
the GPU quickly evolved into a massively data-parallel plat-
form. Recognizing this vast computational resource, program
developers urged the manufacturers to augment the GPU with
functionality that would allow execution of applications written
in general-purpose programming languages such as C. When
adapted to GPGPUs applications have often yielded a significant
performance increase, at times reaching orders of magnitudes
in speedup [9].

A well-known family of GPGPUs is CUDA [10], [14], [17],
[18], which is developed by NVIDIA. The CUDA platform,
as illustrated in Figure 1, consists of clusters of streaming
multiprocessors (SMs) which are connected to a dedicated
DRAM commonly referred to as the global memory. Each
SM contains 8 streaming processors (SPs) or CUDA cores
which share the same fetch/dispatch unit, register file, and

instruction cache. The SM also consists of a set of various
on-chip memories: a shared memory, sometimes denoted as
scratchpad memory, which is an application-controlled cache;
a constant cache, which retains constant values; and a texture
memory, which is used to cache neighboring cells in a 2D data
matrix. With the DRAM bandwidth usually being the main
performance bottleneck, these caches are used to reduce the
amount of traffic to and from the global memory.

After having copied the input data to the global memory, the
GPGPU is accessed through a kernel invocation which spawns
a set of threads to be executed on the GPGPU. These threads
are bundled into thread blocks, which in turn are allocated onto
the SMs. A small set of threads is then randomly selected from
each thread block for execution on the SPs. Thread-context
switches are made with virtually zero overhead, and provided
that there is an abundance of threads the GPGPU can hide long
latency operations through continuous thread switching. This
makes the GPGPU a throughput-oriented architecture [10]. All
thread blocks allocated to an SM share the same register file
and other resources such as caches. This means that if a thread
block uses too much of any resource, the maximum number of
residential thread blocks per SM will be reduced. Fewer thread
blocks means fewer threads to swap in and out to hide long
latency operations, which in turn decreases the performance.
Since the caches are very limited – the sizes are in the order of
tens of kilobytes – meticulous care must be taken to not claim
too much of any cache per thread block, and make optimal use
of the allotted slice. Hence the main challenges of exploiting
GPGPUs are as follows:

• Adapting the application to fit the data-parallel exe-
cution platform. Even algorithms that are inherently
parallel may need to be redesigned in order to avoid
performance-hampering issues such as thread diver-
gence [14], which may occur when the code contains
branch instructions.

• Determining how to layout the input data and thread
configuration. The data needs to be packaged in such
a way that it can be accessed from a thread using its
thread and thread block IDs. Thus, there should be
a correlation between the data layout and the thread
configuration.

• Determining which GPGPU resources to use, and how,
in order to achieve optimal performance. The GPGPU
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Fig. 1. Overview of the NVIDIA CUDA platform [17], [18]



contains several resources such as caches and on-chip
memories that can greatly boost performance. However,
it is not always clear how each can be used for a
particular application, often forcing new algorithms to
be considered.

• Determining whether utilizing the GPGPU is beneficial.
Even if all performance-inhibiting problems related to
the GPGPU itself are dealt with, it is still possible
that the code runs slower on the GPGPU than on the
CPU. For example, the CPU may be relatively more
powerful than the GPGPU, or there may not be enough
computational complexity in the kernel to sufficiently
amortize the GPGPU overhead of moving data between
the main RAM and the GPGPU RAM.

B. ForSyDe

ForSyDe (Formal System Design) [19], [1] is a formal
design methodology for embedded systems. It consists of a
set of libraries, currently available in Haskell and SystemC,
that enable modeling of systems at a high level of abstrac-
tion where the functionality of a system is detached from
its implementation. The libraries support several models of
computation (MoCs), but in the context of this paper only
the synchronous MoC is considered. The synchronous MoC is
based on the perfect synchrony hypothesis [3], which assumes
that data propagation and process execution take zero time
(i.e. processes produce their output values immediately as
their inputs arrive). This assumption leads to a simple and
elegant mathematical model that fits nicely with a large class
of data flow applications and with the underlying mechanisms
of the GPGPU platform. The synchronous MoC is also base
for the family of synchronous languages like Esterel [4]
and Lustre [11], for which mathematical methods exist for
performing verification and testing. Another similar modeling
framework is StreamIt [21], where program hierarchy is
modeled using predefined structures.
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Fig. 2. Example of a ForSyDe model

Systems are modeled in ForSyDe as hierarchical concurrent
process networks, where processes communicate by means of
signals (see Figure 2). Processes are created using predefined
process constructors that take side effect-free functions and
values as arguments. This concept of process constructors leads
to a clean separation between communication and computation:
communication and model of computation is expressed by
the process constructor; and computation is specified by the
arguments of the process constructor. In Figure 3, we see this
exemplified using mooreSY, a process constructor for a Moore
finite state machine that applies the synchronous MoC. As
arguments, mooreSY takes two functions ns and o and a value
s: ns specifies the calculation of the next state; o specifies the
calculation of the output value; and s specifies the initial state.
mooreSY is but one of many process constructors that ForSyDe
provides.

mooreSY

+ ns o + s =

mooreSY

ns o

s

Process constructor Functions Values Process

Fig. 3. Process constructor concept

This separation of concerns is exploited when writing the
ForSyDe models to text files. Using GraphML – the input
format of f2cc (see Section III-A) – the hierarchical structure of
the process network is expressed in XML, and the computation
is given as C code. Hence, the description of the structure is
separated from the description of the computation. We want to
point out that other formalisms that support the synchronous
MoC, and provide a similar separation of communication and
computation as ForSyDe, can be used in conjunction with f2cc
as described in Section III-A.

III. SYNTHESIS PROCESS

f2cc operates by first parsing an input file containing the
model and converted into an internal model representation. Then
a series of semantically-preserving optimizations are applied,
and lastly the model is synthesized into code. This process is
also illustrated in Figure 4. We will begin by discussing the
input format, and then proceed with examining the internals of
f2cc (more details are available in [13]).
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Fig. 4. Overview of the synthesis process

A. Input format

Once a model has been designed, it is passed to f2cc in the
form of a GraphML file. Similar output can be generated from
ForSyDe-SystemC using introspection [1], and converting it
to GraphML is trivial. GraphML [5] is a standardized format
based XML in which graphs can be represented in a formal
manner, and allows the process functions to be provided as data
annotated to the nodes. The process functions are defined as side
effect-free C functions, meaning they must not depend on any
external state such as global variables or dynamically allocated
memory. An example of such an GraphML file is available in
Listing 1, whose model is illustrated in Figure 5. Note that
the input file contains no GPGPU-related information, thereby
completely hiding any implementation-specific details about
the target platform from the developer. Moreover, the input
format does not require data types to be specified for signals
and processes which do not have a C function as argument.
Instead, the data types for these will be automatically inferred
by f2cc during synthesis (see Section III-D). This makes for a



<?xml version="1.0" encoding="UTF-8"?>
<graphml>
<graph id="test" edgedefault="directed">
<node id="in">
<data key="process_type">InPort</data>
<port name="out" />

</node>
<node id="out">
<data key="process_type">OutPort</data>
<port name="in" />

</node>

<!-- Processes -->
<node id="inc">
<data key="process_type">ParallelMapSY</data>
<data key="procfun_arg">
<![CDATA[
int func(const int arg) {
return arg+1;

}
]]>

</data>
<data key="num_processes">3</data>
<port name="in" />
<port name="out" />

</node>

<!-- Signals -->
<edge source="in" sourceport="out"

target="inc" targetport="in" />
<edge source="inc" sourceport="out"

target="out" targetport="in" />
</graph>

</graphml>

Listing 1. Example of an input file to f2cc

#—
i

#—o

Fig. 5. Illustration of the model declared in Listing 1

very versatile format that allows models to be created using
any formal modeling framework, provided the models can be
converted into the expected input format and hold the same
semantic meaning. Since the format is human-readable the input
files can even be written by hand. If desired, f2cc can also be
extended with additional frontends to support for another input
format.

B. Model optimizations

In order to take advantage of the parallel nature of GPGPUs,
the model needs to exhibit a certain level of data parallelism
which can either be declared implicitly or explicitly. Implicit
data parallelism is declared through a network of processes,
known as a data-parallel component, while explicit data
parallelism is declared via a single processes that semantically
entail the functionality of entire data-parallel components.

There are many patterns of data parallelism. One such
pattern is a data-parallel component that accepts an input
array, applies one or more functions on every element or
non-overlapping range of elements, and produces an array
as output (see Figure 6a). While simple, it is an important and
powerful pattern that allows modeling of many embarrassingly
parallel problems. We call this the split-map-merge pattern:
first, the array is split into multiple data sets, then one or
more functions are mapped onto each data set, and lastly
the results are merged. We have devised a special process
constructor called parallelMapSY (see Figure 6b) for explicit
declaration of this pattern (which is equivalent to StreamIt’s
splitjoin construct), and support for exploiting it for efficient
execution on GPGPUs is already available in f2cc. Our tool

f1 . . . fn

...
...

...
...

f1 . . . fn

. . .

(a) Implicit declaration

parallelMapSY

f1 . . . fn

(b) Explicit declaration

Fig. 6. The split-map-merge pattern

is also capable of combining chains of map processes into a
single map process in order to reduce the amount of function
calls, which we refer to as process coalescing.

Since discovering explicitly declared data parallelism is
trivial (the data-parallel component is contained in a single
process), the challenge lies in detecting implicitly declared data
parallelism where a cluster of processes needs to be combined
into a data-parallel component. For the split-map-merge pattern,
this is done using an O(n2) depth-first algorithm which searches
for pairs of split and merge processes. For a given pair, it then
checks whether the data flow is contained between the two
processes, and whether the intermediate processes between the
split and merge processes consist of chains of map processes
only. Once identified, the implicitly declared data-parallel
components are replaced by single processes of the type which
corresponds to the explicit declaration of the patterns (e.g. a
data-parallel component arranged as the split-map-merge pattern
will be replaced by a parallelMapSY process). This simplifies
the later process schedule and code generation stages as each
such process will constitute a complete and separate GPGPU
kernel. It is possible to add support for exploitation of explicitly
declared patterns of data parallelism while leaving out discovery
of implicit declarations. In such instances, models containing
implicit declarations will still be synthesized, however the data-
parallel component will be executed sequentially on the CPU
instead of in parallel on the GPGPU.

C. Process schedule generation

As order of execution has an impact on the final output,
a process schedule must adhere to the effects of the perfect
synchrony hypothesis (i.e. that process execution and data
propagation between processes take zero time). Finding such a
schedule for sequential models is straight-forward – one just
needs to traverse the model along its signals – but diverging
data flows and feedback loops complicates this task.

Listing 2 shows the algorithm which was devised for f2cc.
It is based on a recursive depth-first search approach: starting
from the model outputs, each process P is visited by traversing
the model in the reverse data flow direction until no further
traversing is possible (if the traversal was done in the forward
data flow direction, then no schedule would be generated for
models with no inputs). Partial schedules are then built and
concatenated until the entire model has been traversed, and a set
of visited processes is maintained in order to avoid redundant
search and provide termination when feedback loops (i.e. cyclic
data flow) is encountered. However, the synchronous MoC does
not allow feedback loops without using a kind of delay element,
and the placement of the this element within the loop affects the
final schedule (as illustrated in Figure 7). In this context, a delay
element is a process that for an input sequence 〈v1, . . . , vn〉



function FINDSCHEDULE(M) returns schedule for model M
schedule ← empty list; queue ← empty queue
visitedG ← empty set
for each output signal S of M do

add process of S to head of queue
while queue is not empty do

visitedL ← empty set
P ← head of queue; remove head from queue
{p schedule, ip} ← FINDPARTIALSCHEDULE(P, visitedG,

visitedL, queue)
if ip = “at beginning’’ then

insert p schedule before head in schedule
else

insert p schedule after process ip in schedule
add visitedL to visitedG

return schedule

function FINDPARTIALSCHEDULE(P, visitedG, visitedL, queue)
if P ∈ visitedG then

return {empty list, P}
if P is a delay element then

add preceding process of P to end of queue
return {P, “at beginning’’}

schedule ← empty list
ip ← “at beginning’’
if P 6∈ visitedL then

add P to visitedL
for each preceding process O of P do
{p schedule, new ip} ← FINDPARTIALSCHEDULE(O,

visitedG, visitedL, queue)
append p schedule to schedule
if new ip 6= “at beginning’’ then

ip ← new ip
append P to schedule

return {schedule, ip}

Listing 2. Process scheduling algorithm
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Fig. 7. Examples of two models with corresponding process schedules

shifts the sequence in time by inserting an initial delay value
s, thus producing 〈s, v1, . . . , vn〉 (in ForSyDe this element
is implemented using the delaySY process constructor). Our
scheduling algorithm handles these situations by effectively
acting as if the inbound edges to the delaySY processes had
been removed. Using data structures that can be accessed in
constant time, the algorithm finishes in O(n) time.

D. Signal data type inference

Signals are the vessels in the model through which data
is propagated from one process to another. It is therefore
appropriate to retain the notion of signals by implementing
them as data containers in the synthesized code, typically as
either global or local C variables. However, the data types of
the signals are not immediately available from the formal model
as they are only explicitly specified as part of the C functions,
which only appear in the map processes. Hence the signals
connected to other processes such as delay, split, and merge, the
data types have to be automatically inferred. In f2cc this is done
using an algorithm that recursively traverses the model until

map

map

split merge#—
i

#—o

float fun( int a ) { ...}

float fun( int a ) { ...}

int[2]
int

int

float

float

float[2]

Fig. 8. Example of how the data types propagates along the signals

signal connected to a map process is found. This information
is then propagated backwards to the original signal, and hence
the data types ripple from signal to signal across the model as
shown in Figure 8. By caching the data type found for each
signal, the algorithm takes O(n) time to find the data types of
all signals in a model. Failing to infer the data type for a signal
indicates that the model is invalid, which is also reported by
f2cc.

E. GPGPU code generation

In Listing 3 we provide the CUDA code generated by f2cc
using the GraphML file given in Listing 1 as input. For each
data-parallel component, which at this stage will have been
converted into a single-process equivalents, f2cc will generate
a set of wrapper functions (see Figure 9). The C function
that implements the computational part of the data-parallel
component – we will from now on call this the data function – is
wrapped by a kernel function. The kernel function is responsible
for providing the input data based on the thread block and
thread IDs, managing the shared memory, and preventing out-
of-bound threads from executing. In the case of the split-map-
merge pattern, utilizing shared memory is done by first copying
all the data required by the data function from global memory
to the shared memory, and then passing the appropriate pointer
to the data function. The kernel function is then wrapped inside
an invoker function, which manages memory transfers between
the CPU and GPGPU and sets up the thread configuration. The
thread configuration is decided at runtime such that the size
of the thread blocks is the maximum size supported by the
graphics card (since the number of concurrent thread blocks
per SM is limited to 8 at a time, it is necessary to use as
large thread blocks as possible in order to achieve optimal
performance). However, if the generated code makes use of
shared memory then the threads may require more shared
memory than available, which reduces the number of thread
blocks per SM and thus inhibits performance. To prevent this
an algorithm is employed which incrementally decreases the
thread block size and calculates the amount of unused shared
memory for that size. This continues until either the amount
reaches zero, or until the number of thread blocks per SM
becomes greater than 8 (upon which the configuration with the
least waste is selected). Some GPGPU execution environments
may also enforce a maximum execution time for each kernel
invocation, and f2cc embeds additional code for handling such
situations when generating the invoker function.



__device__ int finc_func1(const int arg) {
return arg+1;

}

__global__ void finc_kernel(const int* in, int* out, int offset) {
unsigned int gi = (blockIdx.x * blockDim.x + threadIdx.x) + offset;
extern __shared__ int in_cached[];
if (gi < 3) { // Prevents out-of-bound threads from executing

int in_i = threadIdx.x * 1; int global_in_i = gi * 1;
in_cached[in_i + 0] = in[global_in_i + 0];
out[gi] = finc_func1(&in_cached[in_i]);

}
}

void finc_kernel_wrapper(const int* in, int* out) {
int* d_in; int* d_out; struct cudaDeviceProp prop;

// Get GPGPU device information
cudaGetDeviceProperties(&prop, 0);
int max_t_per_b = prop.maxThreadsPerBlock;
int smem_per_sm = (int) prop.sharedMemPerBlock;
int full_utc = max_t_per_b * prop.multiProcessorCount;

// Prepare device and transfer input data
cudaMalloc((void**) &d_in, 3 * sizeof(int));
cudaMalloc((void**) &d_out, 3 * sizeof(int));
cudaMemcpy((void*) d_in, (void*) in, 3 * sizeof(int), cudaMemcpyHostToDevice);

// Execute kernel
struct KernelConfig c;
if (prop.kernelExecTimeoutEnabled) {

int num_t_left = 3; int offset = 0;
while (num_t_left > 0) {
int num_t_exec = num_t_left < full_utc ? num_t_left : full_utc;
c = calculateBestKernelConfig(num_t_exec, max_t_per_b, 1 * sizeof(int),

smem_per_sm);
finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out, offset);
int num_executed_threads = c.grid.x * c.threadBlock.x;
num_t_left -= num_executed_threads;
offset += num_executed_threads;

}
}
else {

c = calculateBestKernelConfig(3, max_t_per_b, 1 * sizeof(int), smem_per_sm);
finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out, 0);

}

// Transfer result back to host and clean up
cudaMemcpy((void*) out, (void*) d_out, 3 * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree((void*) d_in);
cudaFree((void*) d_out);

}

void executeModel(const int* in1, int* out1) {
// Declare and alias signal array variables with model input/output arrays
const int* vmodel_in_to_inc_in = in1;
int* vinc_out_to_model_out = out1;

// Execute processes
finc_kernel_wrapper(vmodel_in_to_inc_in, vinc_out_to_model_out);

}

Listing 3. CUDA code generated for the input file given in Listing 1. Note
that the code has been manually edited and shortened in order to fit this paper

Data
function

Kernel

Invoker

Fig. 9. The function stack used by f2cc for executing functions on the GPGPU

F. Process execution and data propagation

Executing the processes is straight-forward: the code simply
needs to invoke the processes’ C functions (if the process is
of such type) with the appropriate parameters according to the
generated process schedule. Data propagation is then done via
a set of C variables – one for each signal – which are passed as
parameters to the C functions. Part of the future work will be
to identify and remove redundant signal variables, which will
reduce the number of signal-to-signal copying operations and
thus increase performance. Delay element values are stored in
static C variables as these need to be retained between model

invocations. For signals consisting of multiple values, the tool
builds the necessary arrays and manages the addressing such
that each process gets the correct input value.

G. Limitations

So far we have focused on supporting discovery and
exploitation of the split-map-merge pattern. Hence f2cc does not
yet provide full support for all process types that are available in
ForSyDe, but the process type support as well as the recognition
and exploitation of additional patterns of data parallelism can
be extended by defining new process types, adding recognition
of the new process types in the frontends, and extending the
backend to synthesize the appropriate C or GPGPU code for
each process type.

The synthesized GPGPU code also does not make full use
of all available CUDA resources. Currently only the shared
memory is considered, but this is simply because the potential
resource usage is dependent on the pattern of data parallelism
being exploited. In the case of the split-map-merge pattern,
there is little or no gain in using the shared memory, or any
other resource for that matter. Hence, these resources can be
put to better use when additional patterns are available.

Another significant drawback is that no cost analysis is
currently performed of whether it is actually beneficial to
offload parallel computations onto the GPGPU. This means
that, depending on the performance of the GPGPU and CPU,
the generated CUDA code may run slower than if had been
executed sequentially on the CPU.

IV. EXPERIMENTS

To validate the correctness and efficiency of f2cc, the
tool was applied on models derived from two applications: a
Mandelbrot generator, and an industrial-scale image processor.
For each model, a pure C implementation of the final code and
multiple implementations where the data-parallel components
are executed on the GPGPU were generated and evaluated.
The output and performance of the synthesized C code was
compared with a hand-written C version which was executed
by a single thread on the CPU. The C code and GPGPU code
was compiled using g++ v.4.6.1 and nvcc release 3.2 v0.2.1221,
respectively, with all optimizations disabled. The test cases
were executed on an Intel Core i7-2600 at 3.40 GHz, 16 GB
DDR3 RAM at 1333 MHz, and an NVIDIA Quadro 600 with
96 CUDA cores, 1 GB DDR3 RAM. Each test case was run
10 times and then an arithmetic mean average was calculated
from the results.

A. Mandelbrot tests

Generating Mandelbrot images is a task exhibiting an
abundance of data parallelism. Each pixel coordinate is con-
verted into a corresponding coordinate within a rectangular
coordinate window in the complex plane. From the complex
coordinate an integer value is computed which determines to
whether the coordinate is part of the Mandelbrot set. In these
tests, the window was bounded by (−1/4,−1/4) and (1/4, 1/4).
Its model consists of a single data-parallel component, and
when expressed using parallelMapSY the model shrinks to
a single process. The performance results of the synthesized
C and GPGPU code are given in Figure 10a. We see that the



Problem
size

(pixels)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. PC PC & SM

10,000 1.33 1.33 0.10 0.10
40,000 5.30 5.30 0.24 0.24
90,000 11.92 11.91 0.47 0.47

160,000 21.19 21.19 0.80 0.80
250,000 33.09 33.10 1.21 1.22
360,000 47.66 47.66 1.72 1.73
490,000 64.87 64.86 2.33 2.34
640,000 84.72 84.72 3.03 3.04
810,000 107.23 107.21 3.82 3.84

1,000,000 132.39 132.42 4.71 4.73
Maximum measured standard deviation: 2.53%
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(a) Test results from the Mandelbrot model

Problem
size

(pixel
domains)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. Basic PC PC & SM

1,000,000 0.38 0.40 0.10 0.08 0.09
2,000,000 0.77 0.81 0.15 0.11 0.13
3,000,000 1.15 1.21 0.21 0.14 0.17
4,000,000 1.53 1.62 0.26 0.17 0.21
5,000,000 1.92 2.02 0.31 0.21 0.25
6,000,000 2.30 2.42 0.36 0.24 0.29
7,000,000 2.68 2.82 0.41 0.27 0.33
8,000,000 3.06 3.22 0.47 0.30 0.37
9,000,000 3.45 3.62 0.52 0.34 0.41

10,000,000 3.83 4.03 0.57 0.37 0.45
Maximum measured standard deviation: 0.86%
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(b) Test results from the image processing model

Fig. 10. Experimental data. HW stands for hand-written, and “Syn.” refers to the code generated by f2cc, where PC and SM indicates whether process coalescing
or shared memory on the GPGPU was used, respectively

synthesized C code performs equally with the hand-written
C version, and the synthesized C + GPGPU code performs
28× better. The relatively low speedup for small input data
sizes is due to the restricted amount of computations which can
be offloaded to the GPGPU. As the input data size increases, so
does the extent to which the GPGPU overhead can be amortized.
Since there is very little input data reuse and no data sharing,
using shared memory has no impact on the performance. The
output of the synthesized C code was exactly equal to that
of the hand-written version, but for the GPGPU code the the
integer values were slightly different for some coordinates. We
believe this discrepancy to be caused by the floating point units
whose architecture differ between the GPGPU and CPU.

B. Image processing tests

The second model was derived from an existing industrial-
scale image processor application provided by XaarJet AB, a
company specializing in piezoelectric drop-on-demand ink-jet
printing. At its core, the model consists of a single data-parallel
component composed of 3 data-parallel segments. Using the
parallelMapSY process constructor and process coalescing, this
model also shrinks to a single process. The details of the
C functions will not be covered as not to disclose any industry
secrets. The performance results are given in Figure 10b.
Again, the synthesized C code is on par with the hand-written
version, and the synthesized C + GPGPU code is 10× faster.
This relatively low speedup is due to lack of computational
complexity in the model, and the continued slope indicates
that greater speedup is achievable with even larger problem

sizes. Furthermore, as the input data size per thread is much
greater than in the Mandelbrot model, the performance of the
synthesized GPGPU code is reduced when the shared memory
is used since doing so will limit the number of thread blocks
that can simultaneously reside in an SM, which in turn lowers
performance. Like with the Mandelbrot tests, the synthesized
code produces slightly different output when executed on the
GPGPU compared to the CPU. Since floating point operations
are involved, we again believe the differing architectures of
FPUs between the CPU and GPGPU to be the cause.

V. RELATED WORK

Existing GPGPU programming frameworks can generally
be divided into three categories: declarative-based frameworks,
where code to execute on the GPGPU is marked by annotations;
library-based frameworks, where the core is implemented as
programming libraries; or domain-specific languages (DSLs),
where the framework is embedded into an existing programming
language.

Declarative-based frameworks include hiCUDA [12] and
OpenMP-to-GPGPU [16]. In hiCUDA parallelizable C code
is annotated with pragma directives which control dynamic
memory allocation, thread configuration, work distribution
per thread over loops, and more. The hiCUDA compiler
then processes the code to generate GPGPU kernels based
on the annotations. The framework therefore relieves the
developer from having to produce the data addressing schemes,
handle the CPU-GPGPU data transfers, and manage the shared



memory. Consequently, hiCUDA relies on the developer to
identify and tweak the code for execution on the GPGPU. In
OpenMP-to-GPGPU the existing OpenMP pragma notations
are used to identify parallelizable code, but these miss the
information about thread blocks and shared memory. In both
cases, the frameworks completely lack a formal foundation and
are thus unsuitable for automated verification and testing.

Library-based frameworks include Thrust [2] and SkePU [7],
which are both implemented in C++ and provide a set of skeletons
(a skeleton is akin to the notion of process constructors used
in ForSyDe, see Section II-B). The developer provides the
computation part to the skeletons, and the skeletons then decide
the appropriate thread configuration, memory management, and
other execution-related details. Unlike Thrust, SkePU is also
capable of generating code for multi-core CPUs, OpenCL, and
single-threaded C code. But although the use of skeletons
provides a more formal base than pragmas, they are not based
on a well-defined model of computation, and can therefore not
be analyzed using existing mathematical tools. Moreover, the
skeletons do not extend into the rest of the application.

Two GPGPU-oriented DSLs, both embedded in Haskell
(a purely functional programming language), include Accel-
erate [6] and Obsidian [20]. Accelerate also uses the notion
of skeletons by providing a collection of arrays and array
operations that can be offloaded on a GPGPU. In order to
compile into an application that can be executed on a GPGPU,
Accelerate comes with a Haskell-to-CUDA compiler which
translates Accelerate-based Haskell programs into CUDA-
annotated C code. Obsidian is similar to Accelerate but instead
provides a collection of combinators that allow array functions
to be converted into GPGPU kernels. Through the combinators,
the developer gains access to use of the shared memory and
insertion of synchronization barriers, but this requires the
developer to know when and how to use the combinators
in order to match the underlying architecture of the GPGPU.
Moreover, neither is based on a well-defined MoC, which again
inhibits automated verification and testing.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented f2cc, a software synthesis
tool which is capable of synthesizing abstract formal models
based on the synchronous model of computation into GPGPU
code. Unlike existing frameworks which elevate the task
of GPGPU programming, f2cc operates on abstract formal
models which enables the potential to apply automated tools
on the applications for verification, testing, and design space
exploration. Through experimental validation, we have shown
that the tool produces correct and high-performing GPGPU
code from its input models.

Future work will primarily focus on integrating the results
of [1] to achieve a completely automated flow from ForSyDe-
SystemC to GPGPU code. In addition, the number of recog-
nizable and exploitable patterns of data parallelism that can
be executed on the GPGPU will be expanded. This in turn
entails making more efficient use of its resources, such as
shared memory, constant cache, and texture memory. Another
consideration is more efficient signal handling methods to
eliminate redundant memory transfers between execution of
separate data-parallel components.
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