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Abstract

The TASEP (totally asymmetric simple exclusion process) studied
here is a Markov chain on cyclic words over the alphabet {1, 2, . . . , n}
given by at each time step sorting an adjacent pair of letters chosen
uniformly at random. For example, from the word 3124 one may go to
1324, 3124, 3124, 4123 by sorting the pair 31, 12, 24, or 43.

Two words have the same type if they are permutations of each
other. If we restrict TASEP to words of some particular type m we
get an ergodic Markov chain whose stationary distribution we denote
by ζm. So ζm(u) is the asymptotic proportion of time spent in the state
u if the chain started in some word of type m. The distribution ζ is
the main object of study in this thesis. This distribution turns out to
have several remarkable properties, and alternative characterizations.
It has previously been studied both from physical, combinatorial, and
probabilitistic viewpoints.

In the first chapter we give an extended summary of known results
and results in this thesis concerning ζ. The new results are described
(and proved) in detail in Papers I - IV.

The new results in Papers I and II include an explicit formula for
the value of ζ at sorted words and a product formula for decomposable
words. We also compute some correlation functions for ζ. In Paper
III we study of a generalization of TASEP to Weyl groups. In Paper
IV we study a certain scaling limit of ζ, finding several interesting
patterns of which we prove some. We also study an inhomogenous
version of TASEP, in which different particles get sorted at different
rates, which generalizes the homogenous version in several aspects. In
the first chapter we compute some correlation functions for ζ.
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Sammanfattning

TASEP är en markovkedja på cykliska ord över alfabetet {1, 2, ...},
som ges av att i varje tidssteg sortera ett likformigt slumpmässigt valt
par av närliggande positioner i ordet. Från ordet 1342 kan man exem-
pelvis nå orden 2341, 1342, 1342, och 1324 beroende på om man väljer
paret 21, 13, 34 eller 42.

Vi säger att två ord har samma typ, om de är permutationer av
varandra. TASEP begränsad till ord av en given typ m är ergodisk
och har därför en väldefinierad stationärfördelning ζm. Så ζm(u) för
ett ord (tillstånd) u av typ m är den asymptotiska proportionen av
tidssteg spenderade i u om kedjan startar på något ord av typ m.
I denna avhandling fokuserar vi på frågor om ζm (för allmänt m).
Fördelningen ζ visar sig ha många oväntade egenskaper och alternativa
karakteriseringar.

Avhandlingen börjar med en längre introduktion som beskriver re-
dan kända resultat samt resultat i avhandlingen om ζm. De nya resul-
taten beskrivs utförligt i artikel I - IV.

Bland de nya resultaten finns en explicit formel för stationärför-
delningen för sorterade ord (som t.ex. 12233344), en produktformel
för ord som är direkta summor (dvs. alla bokstäver till vänster om en
viss position är mindre än alla bokstäver till höger om positionen), och
generaliseringar av några av egenskaper för TASEP till en generali-
sering av TASEP till allmänna Weylgrupper. Vi beräknar också kor-
relationsfunktioner för markovkedjan. I artikel IV studerar vi en viss
skalningsgräns av ζ, och noterar många intressanta mönster (av vilka
några bevisas). Vi undersöker också en inhomogen variant av kedjan,
som generaliserar många av den homogena variantens egenskaper.
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Chapter 1

Introduction

This first part of the thesis consists of an exposition of the results in the
thesis and of relevant background material. In Section 1.12 we prove a new
result not contained anywhere else. The thesis consists of this summary and
the following papers.

• Paper A: Stationary probability of the identity for TASEP on a ring [1]

• Paper B: A product formula for the TASEP on a ring (joint with Jonas
Sjöstrand) [4]

• Paper C: TASEP in any Weyl group [2]

• Paper D: Continuous multi-line queues and TASEP (joint with Svante
Linusson) [3]

The summary is organized as follows. We first describe the homogenous
TASEP in some detail. In Sections 1.1 - 1.5 we review the well-known mul-
tiline queues, the Matrix Ansatz and the concept of intertwining matrices.
In Sections 1.6 - 1.9 we give some useful identities satisfied by the station-
ary distribution of the TASEP. In Section 1.10 we describe a generalization
of the TASEP to general Weyl groups. The correlation functions for the
homogenous TASEP are described in Section 1.11 and 1.12.

1



2 CHAPTER 1. INTRODUCTION

Then, in Section 1.13, we introduce an inhomogenous version and de-
scribe to what extent properties of the homogenous TASEP generalize to
the inhomogenous case. Paper D studies a certain limit of the stationary
distribution of the TASEP. This is described in Section 1.14. Finally in
Section 1.15 we list the contributions of the thesis in a concise way.

1.1 TASEP on a ring
Given any word w of length n, let σi(w) denote the word obtained by sorting
the letters wi and wi+1, taking the indices modulo n. The totally asymmetric
simple exclusion process (TASEP) on a ring is the Markov chain on words
where we apply a random σi at each time step. In the homogenous case,
which we consider first, we take the σi’s with equal rate, say 1.

In general, we will assume that our words have letters from the ordered
alphabet {1, 2, . . . , r} (for varying r), with mi occurrences of letter i. We
typically assume that mi > 0 for all i. The vector m = (m1, . . . ,mr) is the
type of the word. The set of words of type m is denoted Ωm. Thus the
length n of the words in Ωn satisfies n = m1 + . . . + mr. If wi = j we will
say that a particle of class j occupies site i in w.

As an example, consider words of type (1, 1, 1), i.e. permutations of
{1, 2, 3}. The transition diagram is given in Figure 1.1. The Ω(1,1,1)×Ω(1,1,1)
transition matrix (ordering rows and columns lexicographically), scaled to
have all column sums equal to 3, is

Mm =



2 1 1 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 1 0 2 0 1
0 0 1 0 2 1
1 0 0 0 0 1


.

The stationary probabilities ζ = ζm (the asymptotic proportion of time
spent in each state) in this case become ζ(123) = ζ(231) = ζ(312) = 2/9
and ζ(132) = ζ(321) = ζ(213) = 1/9. We may define ζm as the unique
solution to Mmζm = n · ζm whose components sum up to 1.

It will be convenient to rescale these to amplitudes [u] = [u]m by letting
[u]m = ζm(u)/minu ζm(u). We will omit the index m when this unlikely
to lead to confusion. Finally, the chain has a cyclic symmetry, so we can
express the probabilities above more succinctly as [123] = 2, [132] = 1.
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321

231 312

213 132

123

Figure 1.1: Transition diagram for TASEP on Ω(1,1,1).

The following fact will be a consequence of Theorem 1.3.1. I don’t know
of a simpler derivation.

Proposition 1.1.1. ([7], [14]) Suppose u ∈ Ωm. Then [u]m = Zmζm(u),
where we define Zm =

( n
m1

)( n
m1+m2

)
. . .
( n
m1+...+mr−1

)
. Furthermore, the am-

plitudes are integers.

The number Zm is referred to as the partition function. Let us also make
the following important observation.

Proposition 1.1.2. (Projection Principle) Fix some class i. For any word
u, we have ζm1(u) =

∑
v ζm2(v), where the sum is taken over all v such that

merging classes i and i+ 1 in v gives u.

It is probably easier to explain what we mean by "merge" with an example
rather than a formal definition: the result of merging classes 2 and 3 in
1523425 is 1422324.

This in particular means that one way to compute ζm for some type of
length n is to compute the distribution ζ(1,1...,1) for permutations of that
length and then take a sum.

Proposition 1.1.3. (Duality) Suppose w ∈ Ωm and let w′ ∈ Ωm′ be the
word obtained from w by reversing values and positions; w′i = r+1−wn+1−i
(so that m′ is m reversed). Then ζm(w) = ζm′(w′).
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The main object of this thesis is to study the probabilities ζ. In the
course of doing so, we will introduce more general models which reduce to
the case already described.

1.2 Small cases

How does one go about studying a process like the TASEP? A priori, there’s
no obvious reason why there should be anything to study. However, looking
at small examples, one finds many remarkable patterns (of which Proposi-
tion 1.1.1 is one example).

We already considered the chain on Ω(1,1,1). If we do the same thing
for permutations of length 4, then we get [1234] = 9, [1243] = [1324] =
[1342] = 3, [1423] = 5, [1432] = 1. The only non-self-dual pair of words in
this case is 1342 and 1243. They have the same amplitude, as they should,
by Proposition 1.1.2.

If we look at the case r = 2, m = (m1,m2), the stationary distribution is
not very interesting; every state has the same probability, and there are

( n
m1

)
states in total. To see that the stationary distribution is uniform, note that
for each state, the number of in-arrows equals the number of out-arrows.

Nevertheless, this observation has an interesting consequence, using Propo-
sition 1.1.2: in the general case (with an arbitrary number of classes), for any
k, the set of positions occupied by particles of class k or lower is a uniformly
distributed subset of [n] of size m1 + . . . + mk. However, varying k, these
subsets are of course strongly dependent (for example they are nested).

The case m = (m1,m2,m3) was studied in [7]. This case is much more
interesting, even if it does not have all the complexities of the general case.
Namely, for the 3-class system there are especially simple recursion relations
for the amplitudes. To describe them, let u be any word with letters from
{1, 2, 3} containing at least one letter 2. Then the following recursions hold,

[31u] = [3u] + [1u],
[32u] = [2u],
[21u] = [2u].

(1.2.1)

Finally we define [u] = 1 for any word u containing only 2’s. Using these
recursions and cyclic invariance ([u1 . . . un] = [u2u3 . . . unu1]) it is easy to
compute, for example, that [231323131] = 10, as the reader is invited to
check!
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To prove the correctness of these two recursions one needs to check two
things. First, we need to check that they are consistent with each other
(if we think of the amplitudes as variables and the recursions as equations
then there are many more equations than variables when considering words
of length at most some given bound). Second, we need to plug the recur-
sions into the equilibrium equation to show that it is consistent with the
recursions. In any particular example this is of course a simple but tedious
calculation. For the general case one needs some bookkeeping device, such
as the so-called Matrix Ansatz. A proof along these lines (for a slightly
modified TASEP) can be found in Paper C 1. We will come back to the
Matrix Ansatz in Section 1.5.

A useful and non-trivial consequence of the recursions above is that
for words u1, . . . , um with letters from {1, 3}, we have [2u12u2 . . . 2um] =
[2u1] · [2u2] · . . . · [2um]. So to compute amplitudes it suffices to be able to
compute amplitudes of words of the form [2u] for words u with letters from
{1, 3} (i.e. excluding 2) with m1 1’s and m3 3’s. These numbers have a nice
combinatorial interpretation, first pointed out to me by Henrik Eriksson
[12]. In fact, for such a word 2u, its amplitude [2u] counts the number of
subpartitions of the partition λu, obtained as follows. To draw the diagram
of λu, draw a polygonal line starting at (m1, 0) (in matrix notation) and
going to (0,m3), taking a step (0, 1) for each letter 3 in u and a step (−1, 0)
for each letter 1 in u, when reading u from left to right. It is easy to see
that this combinatorial construction satisfies the recursions above.

The interpretation of amplitudes as subdiagram counts does not appear
to generalize. Instead, the next section describes a combinatorial interpre-
tation for the amplitudes of arbitrary words.

1.3 Multiline queues

The most useful device for computing amplitudes are the multiline queues,
which were discovered by Ferrari and Martin [14], building on a simpler
variant of Angel’s [7].

A queue is given by a subset of [n] of some size k. The size k is referred
to as the capacity of the queue. Let m = (m1, . . . ,mr) be a type and m′ =
(m1, . . . ,mr−2,mr−1+mr). We think of a queue q of capacitym1+. . .+mr−1
as a function on words u of type m′ to words of type m as follows. Create

1The method is not original with this paper.
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1 1 1 1 1 1 1

2 2 2 2 21 1

1 2 1 3 33 3

3 1 1 24 4 4

Figure 1.2: A multiline queue. The output of this queue is 3414142. There
are 161 multiline queues with this output, which means that [3414142] =
161.

a 2 × n array, writing u in the top row. Place empty circles in the second
row at the sites in the subset associated to q. Write r in the non-circled
spots. Now go through the letters that are strictly less than r − 1 in the
first row in any order such that small letters come before larger ones. When
considering a letter l, find the first empty circle in the second row weakly
cyclically to the right and fill it with l. This fills all but mi empty circles.
Fill these remaining circles with r − 1. We then define the output q(u) of q
with respect to u as the word obtained by reading the labels in the second
row from left to right.

Now, a multiline queue of type m = (m1, . . . ,mr) is simply a sequence
of r−1 queues, where the ith queue has capacity m1 + . . .+mi. The output
b(q) of a multiline queue q is the result of composing the individual queues
as functions, in order, with the first taking the all-ones word of length n as
input. Clearly, the number of multiline queues of type m is Zm. See Figure
1.3 for an example of a (2, 1, 1, 3)-multline queue.

We can now state the main result in [14].

Theorem 1.3.1. ([14]) For any word u of type m, the amplitude [u] equals
the number of multiline queues q of type m such that b(q) = u.

There are two independent proofs of this theorem (in [14] and [5]). The
original one by Ferrari and Martin goes by constructing a Markov chain on
the set of multiline queues of type m and showing that (i) that chain has
a uniform stationary distribution (ii) the map b projects (probabilistically)
the chain to the TASEP. We will say more about the other proof in Section
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1.4.
It follows easily (see [14]) from Theorem 1.3.1 that minu∈Ωm ζ(u) is at-

tained for those words u ∈ Ωm satisfying ui ≥ ui+1 − 1 for all i (mod n).
This includes in particular the reverse sorted word ←−u , for which we have
[←−u ] = 1.

1.4 Intertwining matrices
There is a stronger, more illuminating, version of Theorem 1.3.1. Let m,
m′ be as before, and let U = Um′,m be the Ωm × Ωm′ -matrix whose (u, v)
entry is the number of queues q such that v = q(u) (this number is clearly
0 or 1).

Let Ψ be the vector of amplitudes for m-words and Ψ′ that for m′-
words. Then the claim of the Theorem 1.3.1 is equivalent with the following
equation between vectors,

Ψ = UΨ′. (1.4.1)

A stronger statement is that the following matrix equation holds.

Theorem 1.4.1. ([5]) In the notation above, we have

UMm′ = MmU. (1.4.2)

Indeed, since Ψ′ satisfiesMm′Ψ′ = nΨ′, we see that if (1.4.2) holds, then
UΨ′ satisifies Mm(UΨ′) = n · UΨ′. Therefore (since Mm is ergodic), UΨ′
is parallel to Ψ and by looking more carefully at U it is easy to see that in
fact UΨ′ = Ψ.

More general than [14], where only equation (1.4.1) is proved, in [5]
(where U is defined in a very different way) equation (1.4.2) is proved.
However the proof of [5] is less combinatorial than that of [14]. It is proved
in [13] and [6] that the definition of U given here and the definition in
[5] are indeed equivalent. The way we have defined U , equation (1.4.2) is
a purely combinatorial statement: for each word v ∈ Ωm′ and u ∈ Ωm,
the number of ways to obtain u from v by first going through a queue of
capacity of m1 + . . . + mr−1 and then taking one step in the TASEP on
Ωm should equal the number of ways to obtain u from v by first taking a
step in the TASEP on Ωm′ and then going through a queue of capacity of
m1 + . . .+mr−1. To my knowledge there is no proof of Theorem 1.3.1 along
these lines in the literature.



8 CHAPTER 1. INTRODUCTION

Even without knowing the particular structure of U (other than not
being of too low rank – clearly, U = 0 is a solution), equation (1.4.2) is a
very strong statement about the relation betweenMm andMm′ . If we think
of U as unknown then there are as many equations as variables in (1.4.2).
Furthermore, an eigenvector v of Mm′ gives an eigenvector Uv of Mm′ with
the same eigenvalue whenever Uv 6= 0. In particular, Mm and Mm′ have
many shared eigenvalues.

However, we should already have suspected this! There is a more obvious
Ωm′ × Ωm-matrix D = Dm,m′ defined by D(v, u) = 1 if v is obtained from
u by replacing all occurrences of r by r − 1, and 0 otherwise. Then

Mm′D = DMm. (1.4.3)
Equation (1.4.3) is a more general version of the Projection Principle

in the case of merging classes r − 1 and r, and it tells us that indeed,
Mm′ andMm have many shared eigenvalues. So, heuristically, the existence
of the (obvious) map D should make us optimistic about finding a (more
complicated) map U . This is a key observation. It would probably be
valuable to make the correspondence between D and U more rigorous.

Merging other classes

Of course, we can merge any pair of adjacent classes (not necessarily the
highest pair r−1 and r) and obtain a relation like (1.4.3). In [5], queues are
generalized to construct a corresponding U operator. To describe these it
will be convenient to briefly leave our convention to consider only standard-
ized words aside. Thus suppose m is a type and thatm′i = mi for i 6= k, k+1
and thatm′k+1 = 0, m′k = mk+mk+1. Similar to queues, a generalized queue
q is determined by a subset S of sites. If |S| = m1 + . . .+mk we think of q
as a function from Ωm′ to Ωm. Let u ∈ Ωm′ . We construct q(u) as follows.
Write u in the top row of a 2× n array. Go through the letters in u which
are between 1 and k−1 inclusive in any order and put them in the sites of S
as before. This leaves mk empty circles. Fill these with k. Now, go through
the letters in u which are between k+ 2 and r inclusive in decreasing order.
When considering a letter l, put it in the first empty non-circled site, going
weakly cyclically left from l. This leaves mk+1 empty non-circled sites. Fill
these with k+1. In [5] it is proven that the corresponding map Um′,m (with
the (u, v) entry counting the number of generalized queues with top row v
and bottom row u) satisfies MmUm′,m = Um′,mMm′ . Thus, if u is picked
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1 3 5 2 6 3 3 5 1 2 3

5 1 3 4 6 2 4 5 1 2 4

Figure 1.3: A generalized queue, mapping 13526335123 ∈ Ω(2,2,4,0,2,1) to
51346245124 ∈ Ω(2,2,2,2,2,1).

(1, 1, 1, 1)

(2, 1, 1) (1, 2, 1) (1, 1, 2)

(3, 1) (2, 2) (1, 3)

(4)

Figure 1.4: A node labelled m represents TASEP on Ωm. For each edge
going up from m′ to m we have operatorsDm,m′ (given by Proposition 1.1.2)
and Um′,m given by (generalized) queues satisfying intertwining relations.
Dashed edges correspond to ordinary queues.

from ζm′ and if q is the queue given by a uniformly random m1 + . . .+mk-
subset of [n], then q(u) is distributed according to ζm.

An example of a generalized queue is given in Figure 1.4. The generalized
queues provide us with a system of pairs of intertwining matrices, which we
have illustrated in Figure 1.4 for n = 4.

1.5 The Matrix Ansatz

As mentioned earlier, the proof of [5] is quite indirect compared to how
Theorem 1.3.1 is described here. It is based on the Matrix Ansatz, of which
we will give a brief account here. Like multiline queues, the Matrix Ansatz
is a heavily used tool for proving statements about the TASEP.
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Let R∞ = span(e0, e1, . . .) be an countably infinite dimensional vector
space with basis e0, e1, . . ., and define linear maps δ, ε and A by letting
δei = ei−1 for i > 0, δe0 = 0, εei = ei+1 for i ≥ 0, Aei = 0 for i > 0
and Ae0 = e0. Further let 1 denote the identity map on this space, and let
D = 1 + δ, E = 1 + ε. These maps satisfy
DE = D + E,
DA = A,
AE = A.

Furthermore, the trace of any positive power of A equals 1. Thus, from
the recursion relations (1.2.1), we see that for any word u = u1u2 . . . un with
letters in {1, 2, 3} with at least one letter 2, we have

tr(X(3)
u1 . . . X

(3)
un

) = [u], (1.5.1)

if we let X(3)
1 = E, X(3)

2 = A, and X(3)
3 = D. This argument goes back

to [11], where the Matrix Ansatz was first introduced (for a slightly different
process).

Let E be the set of linear maps on R∞, and let R =
⊗•E be the

corresponding algebra of tensors.
There are two notions of multiplication on R. The first one, ·, is defined

on each graded piece Rd, and is induced by composition of maps. For
example (1⊗D⊗E)·(E⊗E⊗A) = E⊗DE⊗EA = E⊗D⊗EA+E⊗E⊗EA
in R3. The second one is simply the tensor product: (1⊗D)⊗E = 1⊗D⊗E
gives the product of an element in R2 and an element in R1, resulting in an
element in R3.

The method (1.5.1) for computing amplitudes has been extended to ar-
bitrary words in [13].

For each r, we define X(r)
i ∈ R for 1 ≤ i ≤ r by letting

X
(r)
i =

j−1∑
j=1

a
(r)
ij ⊗X

(r−1)
j ,

for a certain explicitly defined matrix a(r)
ij with entries in R.

The result of [13] is then that for any word u1 . . . un with 1 ≤ ui ≤ r, we
have2

[u1 . . . un] = tr
(
X(r)
u1 · . . . ·X

(r)
un

)
.

2In [13], smaller particles jump to the right rather than to the left so if we were more
explicit we would have to reverse u to get conventions right.
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1.6 The jump operator

If w is a word and j0 is a position in w, we define a new word wj0→ as follows.
Let r be the largest class in w. First define a sequence j1, j2, . . . by letting
jk+1 be the first position to the right (cyclically) of jk such that wjk < r
and wjk+1 > wjk . If there is no such jk+1, then we stop and consider the
thus obtained sequence j0, . . . , jk. Now wj0→ is obtained from w by putting
the letter wjt at jt+1 instead, for t = k − 1, k − 2, . . . , 0. The letter wj0 is
replaced by a new letter r (the letter wjk = r − 1 disappears).

This is simpler than it sounds. For example,

˙
1

˙
321532

˙
454151→ = 512153235415.

The following recursion is the key lemma in Paper B.

Lemma 1.6.1. ([4]) Suppose u is a word of type (m1, . . . ,mr−2,mr−1 −
1,mr + 1) such that u1 = r.

[u] =
∑

v∈Ωm:v1→=u
[v]

This is proved in Paper B. Here’s a proof synopsis: look at a multiline
queue whose bottom row starts with r and ask: what happens if we add a
box to this position? The answer is that if the bottom row was u it will
become u1→.

A (very) special case of Lemma 1.6.1 appears in Paper A. We state it
explicitly for later reference.

Proposition 1.6.2. ([1]) Suppose the word u is of the form u = r(r− 1)u′,
where all letters in u′ are at most r. Then

[r(r − 1)u′] = [(r − 1)(r − 1)u′].

Since the proof of Lemma 1.6.1 focuses on the last queue of a multi-line
queue rather than the entire queue, it seems possible to generalize the jump
operator to one modifying only classes in some range {i, i+ 1, . . . , j} using
the generalized queues described above. Since we will not have use for such
relations we omit the details.
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1.7 Process of the last row
Recall from Theorem 1.3.1 that if u is a random word picked from the
distribution ζm′ , and S is a random subset of [n] of size n−mr, then q(u) is
a random word picked from ζm, where q is the queue associated to S. This
is true even in the somewhat degenerate case when mr−1 = 0 (both proofs
of Theorem 1.3.1 that we have mentioned generalize to this setting). In this
case we may rename all letters r in v to r− 1 and thus obtain again a word
τS(u) in Ωm′ , which will be distributed according to ζm′ . The conclusion is
that the chain on Ωm′ obtained by at each step applying τS where S is a
uniformly random (n −mr)-subset of [n], is again distributed according to
ζm′ .

1.8 Sorted words
Lam conjectured an interesting formula for the amplitude of the sorted per-
mutation of length n. The formula is extended to arbitrary words in Paper
A.

Theorem 1.8.1. ([1]) Let −→u be the sorted word of type m. Then

[−→u ] =
r∏
i=1

(
n−mi

m1 + . . .+mi−1

)
.

For permutations, this takes the form [12 . . . n] =
∏n
i=1

(n−1
i

)
, which

happens to equal the partition function Z(1,...,1) for permutations of size one
smaller, n − 1. Considering the general formula, this appears to be merely
a coincidence.

Lam also conjectured that among all permutations of any length n, the
amplitude of the sorted word (and its cyclic shifts) should be the largest. It
seems reasonable this should hold for arbitrary type.

Conjecture 1.8.2. ([15]) Let u ∈ Ωm be any word, and −→u be the sorted
word. Then

[u] ≤ [−→u ].

(Equivalently, ζ(u) ≤ ζ(−→u ).)

In fact, for r ≥ 3, it seems that the maximum is uniquely attained for the
sorted permutation and its cyclic shifts. We will come back to Conjecture
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1.8.2. Although it might not be a very important conjecture in itself, I think
of it as a good guide for understanding ζ better.

1.9 The k-TASEP

We have already defined the sorting operators σi in Section 1.1. A natural
extension of this definition is to define an operator σS , for any proper subset
S ⊂ [n], as the product of all σi for i ∈ S, where we take σi−1 before σi
when both i− 1 and i belong to S. Clearly, σi and σj commute when i and
j are further apart, so this is well-defined.

Fix any k < n. The k-TASEP is the chain on all words of length n
where at each step we apply a random σS , picking a uniformly random
subset S ⊂ [n] of size k. The 1-TASEP is clearly the TASEP we have
already considered.

The following surprising theorem was proved in [18].3

Theorem 1.9.1. ([18]) The k-TASEP has the same stationary distribution
for all k = 1, 2, . . . , (n− 1).

Note that for small k, the transition matrix of the k-TASEP is similar
but not identical to the kth power of the transition matrix of the 1-TASEP.
Of course, the kth power of the transition matrix has the same stationary
distribution for all k, but this fact is not used in the two known proofs of
this theorem ([18] and [2]).

Recall the map τS of Section 1.7. Here’s a mystery:

Proposition 1.9.2. Suppose u is a word of type m where mr = 1 (i.e.
there is only one particle of class r). Then, τS(u) and σS(u) differ only by
a rotation by one step, for every subset S of [n] of size n− 1.

Proof. When |S| = n−1, τS is similar to the jump operator wj→ (except the
jump operator changes the type of the word whereas τS does not) where {j}
is the complement of S in [n]. It is easy to see that the ’jumping’ happening
in τS is simulated by the ’pushing’ in σS .

3It is phrased slightly differently in that paper. Let Ak be the transition matrix of
the k-TASEP. In [18] it is shown that the unique positive eigenvector with sum 1 of∑n−1

k=0

(
n
k

)
pk(1 − p)n−kAk is independent of p ∈ (0, 1). This is clearly equivalent to the

statement here.
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This seems to be a coincidence, since for smaller |S|, τS and σS are essen-
tially different functions. Nevertheless we have showed that the operators
τS for |S| = n−1 are essentially just σS , that is, built up from much simpler
operators σi which already generate the same stationary distribution as τS .

It would be very interesting to see if this could be extended to the type-
changing operators wj→ of Proposition 1.1.2 (which of course give a Markov
chain with stationary distribution ζ). That is, could these operators be
expressed as compositions of some simpler (type-changing) operators σ̃i that
generate the stationary distribution ζ?

One amusing consequence of Theorem 1.9.1 is the following. Let A2 be
the transition matrix of the 2-TASEP, and Ã2 that of the ’dual’ process,
where we sort the operators the other way (taking σi before σi−1). It fol-
lows from Theorem 1.9.1 and Proposition 1.1.3 that Ã2 also has stationary
distribution ζ. Of course, A2 and Ã2 have significantly many more non-zero
transitions than A1. Now consider the matrix A2 − Ã2. It also has ζ as
an eigenvector4, and it has few non-zero transitions. Yet it is significantly
different from A1. The fact that A2−Ã2 has negative rates makes it difficult
to interpret it as a transition matrix.

1.10 Weyl groups

In this section, we will assume some background knowledge of Weyl groups.
Fix some affine Weyl group Ŵ with root system Φ, and let W the corre-

sponding finite Weyl group. We assume that Φ lies in Rd, which is equipped
with the standard inner product. The arrangement corresponding to Ŵ ,
whose hyperplanes are Hϕ,k = {x ∈ Rd : (x, α) ∈ k} for integers k and
positive roots ϕ, divides space into regions called alcoves. See Figure 1.5.
We choose some simple system ∆ = {αi}i∈I of roots and denote the simple
reflections by si, i ∈ I. Further let ϑ be the longest root with respect to this
choice.

Lam [15] defined a random walk (X0, X1, . . .) on the set of alcoves (or,
equivalently, on Ŵ ) as follows. Let X0 be the fundamental alcove. For
i ≥ 1, let Xi be a uniformly chosen neighbour of Xi−1 which is farther away
from X0 than Xi−1 (with respect to the length function ` = `Ŵ of Ŵ ).
Another way of saying this is that at each step, the walk crosses an adjacent
hyperplane that has not already been crossed. Let v(Xi) be the unit vector

4I don’t know if it has non-trivial multiplicity.
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Figure 1.5: The affine Coxeter arrangement B̃2. The fundamental alcove is
shaded and the Weyl chamber are delineated by heavier lines. The dashed
path shows one possible evolution of (X0, X1, . . .). This walk is stuck in the
upper of the two leftmost chambers.

pointing from the center of X0 to the center of Xi. This means that any
outcome of the process X corresponds to an infinite reduced word of Ŵ .

Next, we define a random walk (Y0, Y1, . . .) on the finite group W . For
w ∈ W , there is a transition w → wsi with rate 1 for each i ∈ I such that
`(wsi) < `(w). Finally there is a transition w → rϑ(w) with rate 1 whenever
`(rϑw) > `(w). Here rϑ denotes reflection in the longest root ϑ.

The connection between X and Y is given by the following theorem.

Theorem 1.10.1. ([15]) There exists vector Ψ such that the limit of v(Xi)
as i→∞ almost surely equals one of the images wΨ, w ∈W of Ψ under the
finite Weyl group W . Furthermore, the probability of equalling wΨ is ζ(w),
where ζ(w) is the stationary distribution of Y .

We have been intentionally vague about the labelling of the alcoves and
chambers by Ŵ and W . For details, see [15].

Type A

For W of type A, it’s easy to see that Y is nothing but the TASEP on
permutations of length n. Now we can see Figure 1.1 in new light: we are
simply going down randomly in the weak order of Sn, occasionally going up
with rϑ (for type A, rϑ corresponds to the transposition (1 n) in the stan-
dard permutation representation in which si corresponds to (i i + 1)). In
this case, Lam conjectured explicit coordinates for the vector Ψ in Theorem
1.10.1. This conjecture was proved in [8], as we will come back to in Section
1.11.
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Other types

For W of type other than A, the chain Y does not appear to have the
same nice properties as it does for type A. For example, the stationary
distribution can not be scaled to integers with minimum value 1. Lam
suggested the following weighted variant Ỹ , which indeed seems to have this
property for types B, C, and D.

Express the longest root ϑ with respect to ∆ as ϑ =
∑
i∈I aiαi. Then

define Ỹ like Y , making the following modification. In the definition of Y ,
let the transitions w → wsi occur with rate ai and w → rϑ(w) with rate 1
(as before).

The connection to reduced words is now lost, since Theorem 1.10.1 is a
statement about Y and not about Ỹ . Nevertheless Ỹ appears to be a nice
generalization of the TASEP. In Paper C, this chain is studied in particular
for type C.

As we have seen in Section 1.4, to study the type A chain, it was useful
to consider the extended chain on arbitrary words, which does not have an
obvious counterpart in the type A Weyl group consisting of permutations.
The right generalization (generalizing to types other than A) turns out to
be to think of words as left cosets of parabolic subgroups (i.e. subgroups
of W generated by a subset of simple generators); for example, the word
1332 corresponds to the left coset {id, (34)} · 1342. In Paper C we prove
that the discussion in Section 1.4 generalizes to Ỹ for any Coxeter type.
This does not use the particular choice of weights for Ỹ . Then we restrict
attention to type C, where the corresponding rates ai find a combinatorial
interpretation. It seems that the analysis in type B and D are similar, but
type C is simplest so we describe only that case. Now we can look at Figure
1.4 again: we have simply drawn the poset of parabolic subgroup of the type
AWeyl group under inclusion. In Paper C we show that all the D operators
in the corresponding diagram generalize to any Weyl group. Moreover we
construct some corresponding U operators for groups of type C. They are
similar to the queues in type A, yet interestingly different.

Note that for the type A chain, the product of the partition functions
corresponding to maximal parabolic (proper) subgroups equals the partition
function for the trivial group. In Paper C we conjecture that this holds for
the type C chain and give formulas for these numbers. Though we have not
examined the type B and D cases in detail, they seem to be simple variations
of the type C case.
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The weights

For the root systems A, B, C, and D, the coefficients ai are all 1 or 2, and, at
least in case C (see Paper C), they are shown to have a direct combinatorial
meaning.

For F4, for example, the coefficients are not so simple (they are given by
(a1 . . . , a4) = (2, 2, 4, 2)) and the stationary measure ζ of Ỹ on this group
does not seem to have the desired integrality property.5

1.11 Correlations and independences

In [8], the vector Ψ of Theorem 1.10.1 is computed for Weyl groups of type A.
This is done by computing the 2-point correlation functions of the TASEP.
The relation is roughly that each jump . . . ji . . . → . . . ij . . . in the chain Y
of Section 1.10 corresponds to movement of X in a direction which depends
only on i and j. We make the following general definition, which contains
the 2-point correlation functions as the case k = 2.

Definition 1.11.1. Consider the homogenous TASEP on permutations of
length n, i.e. of type m = (1n). For a given word u, denote by Eu the
probability that a TASEP distributed word starts with the word u.

Of course, if we know say all Eu’s for words of length k then it is easy to
compute the probability that a TASEP distributed word of any type starts
with any given word of length k, by using Proposition 1.1.2.

In [8], the case of words of length at most 3 is studied in detail. It is
shown that for words u = ij of length 2,

Eij =


1
n2 i+ 1 < j

1
n2 + i(n−i)

n2(n−1) i+ 1 = j
2(i−j)
n2(n−1) i > j

.

Further, formulas are found6 for Eijk for all i, j, k. The proofs go by
close study of multiline queues; clearly, computing Eu can be phrased as
counting the number of multiline queues satisfying certain requirements.

5If my computation is correct!
6The formulas for the cases u = ijk with i < j < k appears as conjectures in [8].

However they follow from the special case of Conjecture 1.11.3 proved in the Section 1.12
together with the fact that the conjectured formulas together with the proved formulas
for Eijk add up to Eij when one fixes i, j and lets k run over all possible values.
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It turns out that for a fixed ordering of i, i − 1, j, j − 1, k, k − 1, Eijk is
of the form

poly(i, j, k, n)
n3(n− 1)2(n− 2) ,

where poly(i, j, k, n) is an integer-valued polynomial in i, j, k, n. This ap-
pears to be the case in general, so let us state it more explicitly.

Conjecture 1.11.2. For any u = u1 . . . uk, Eu equals some integer tu di-
vided by nk(n− 1)k−1 . . . (n− k+ 1). Moreover tu is a piecewise polynomial
function in u1, . . . , uk and n.

The following conjecture appears in [8].

Conjecture 1.11.3. ([8]) Suppose u, v are words satisfying max(u) + 1 <
min(v). Then Euv = EuEv.

It follows from the main result of Paper B that this holds for words u,
v with |u| + |v| = n, with the weaker restriction max(u) < min(v) (clearly,
we cannot have max(u) + 1 < min(v) if uv is a permutation of [n] and
|u| + |v| = n). The result actually precedes the conjecture. Let us state it
explicitly for later reference.7

Theorem 1.11.4. ([4]) Suppose u, v are words such that each letter in v is
larger than each letter in u. Then

[uv] = [ũv] · [uṽ],

where ũv denotes the word obtained from uv by merging the classes repre-
sented in u to one class, and uṽ that obtained by merging all classes repre-
sented in v to one class.

As an example, for u = 121 and v = 3534, the theorem asserts that
[1213534] = 70 = 14 · 5 = [1112423] · [1213333]. Using Proposition 1.1.1, it
is easy to see that Theorem 1.11.4 implies the formula in Conjecture 1.11.3
for |u|+ |v| = n, even with the weaker restriction max(u) < min(v).

In Section 1.12, we will prove Conjecture 1.11.3 in the case of words v of
length 1. This contains the most interesting consequence of the conjecture,
namely that for a ’strongly increasing’ word u, satisfying u1 < u2 − 1 <

7The version here is slightly more explicit than that in Paper B; using Proposition
1.6.2 it is easy to see that they are equivalent.
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u3 − 2 < · · · < uk − (k − 1), we have Eu = 1
nk . This was already known for

k = 2 (and, trivially, for k = 1).
In general, the formulas for the Eu become less and less tractable as the

length of u increases. There are, however, two general cases that appear to
have elegant answers. First, that of increasing words u1 < u2 < · · · < uk.
Here the pieces of the piecewise polynomial function tu of Conjecture 1.11.2
appear to be indexed by subsets S ⊆ [k−1] by letting i ∈ S if ui = ui+1−1.
Assuming Conjecture 1.11.3, it suffices to describe the case S = [k−1], that
is, to describe the function Ei(i+1)(i+2)...(i+k−1). The first two interesting
cases are given (see [8]) by

Eij = 1
n2 + i(n− i)

n2(n− 1) ,

and
Eijk = 1

n3 + i(n− i)
n3(n− 1) + j(n− j)

n3(n− 1) + i(n− i)j(n− j)
n2(n− 1)2(n− 2) ,

where we let j = i+ 1 and k = j + 1 [8].
Second, when u is a decreasing word, Eu is given by a Vandermonde

determinant. This is proved in Paper D.

Theorem 1.11.5. ([3]) For a decreasing word u = u1 . . . uk, we have

Eu =
k!
∏
i<j(ui − uj)

nk(n− 1)k−1 . . . (n− k + 1) .

1.12 Proof of Conjecture 1.11.3 for |v| = 1
It will be convenient to have special notation for certain sums of amplitudes.
If u, v, w are arbitrary words, we define [uw v] to be the sum of [uw′v] for
all permutations w′ of w. Thus this sum does not change if permute w
itself (of course we could specify that w should be written in increasing
order, but it will be convenient not to do so). So, for example, [4 131 28] =
[411328] + [413128] + [431128]. We also sometimes insert delimiters | into
words for readability.

First, we rephrase Conjecture 1.11.3 in terms of amplitudes. It is easy
to prove that the following conjecture is stronger than Conjecture 1.11.3,
using Proposition 1.1.2.
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Conjecture 1.12.1. Let w be any word, and u, v such that there is exactly
one class represented in w which is greater than all classes represented in u
and smaller than all classes represented in v. Further, assume that min(u)−
1 ≤ min(w) and max(w) ≤ max(v) + 1. Then

[v|w |u] = [v| w̃u] · [ ˜vw |u],

where w̃u denotes the result of merging all classes strictly greater than
all classes represented in v into one class, and all classes strictly smaller
than all classes represented in v to one class. (Similarly, ˜vw is wv merged
as much as possible without merging classes between the smallest and largest
class represented in u.)

Proof when |v| = 1

When v has length 1, it consists of a single letter, which we assume to be
2. Then w (up to permutation) can be written as a concatentation s1a2b3c
for some word s all of whose letters are strictly smaller than 1, and integers
a > 0, b ≥ 0, c ≥ 0. Allowing for words whose smallest letter is not
necessarily 1 will simplify our notation. So we want to prove that

[2| s1a2b3c |u] = [2| 1|s|+|u|+a2b3c] · [s1a+b+c+1 |u].

To do this, we will successively apply recursions to the left hand side.
When this is done, we will obtain a numerical factor (coming from the
coefficients in the recursions) times [s1a+b+c+1 |u]. We then compute both
the numerical factor and [2| 1|s|+|u|+a2b3c] and observe that they are equal.

First we modify the word so that we have a letter 3 at the leftmost site.
This will then allow us to use Lemma 1.6.1. For integers x, we will use the
notation x+ = x+ 1 and x− = x− 1.

Note that

[2| s1a2b3c |u] + [3| s1a2b+3c− |u] =
(
n

c

)
[2| s1a2b+c |u].

Here we have used Proposition 1.1.2 to merge classes 2 and 3, and Propo-
sition 1.1.1. The factor

(n
c

)
is Zm/Zm′ , where m is the type of the words on

the left and m′ is the type of the word on the right.
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Similarly, by merging classes 1 and 2,

[3| s1a2b+3c− |u] =
(

n

b+ c+ 1

)
[2| s1a+b+12c− |u].

It remains to investigate expressions on the form [2| s1α2β |u] with α > 0
and β ≥ 0.

Lemma 1.12.2. For any α > 0, β ≥ 0 such that 2s1α2βu has length n,

[2| s1α2β |u] =
(
n− 1
β

)
[s1α+β+1 |u].

Proof. We first prove the formula(
n

β

)
[s1α+β+1 |u] = [s1α+2β |u] = [2| s1α2β |u] + [2| s1α+2β− |u].

The first equality is clear, so we focus on the second one. By applying
Lemma 1.6.1 to each term in the sum denoted by [2| s1α2β |u] we get the sum
over [w|u] for all words w obtained by putting the letters in s1α+ anywhere,
and the letters in 2β anywhere except for the first position. If we add to this
sum the sum [2| s1α+2β− |u] we get simply [s1α+2β− |u], which is the second
equality.

Now, let f(α, β) = [2| s1α2β |u] and A = [s1α+β+1 |u]. Again, from
Lemma 1.6.1 we see that f(α+β, 0) = A. Thus f(α, β) =

(n
β

)
A−f(α+1, β−

1) =
(n
β

)
A−

( n
β−1

)
A+ f(α+ 2, β − 2) = · · · =

((n
β

)
−
( n
β−1

)
+ · · · ±

(n
0
))
A =(n−1

β

)
A, as claimed.

Therefore,

[2| s1a2b3c |u] =
(
n

c

)
[2| s1a2b+c |u]−

(
n

b+ c+ 1

)
[2| s1a+b+12c− |u] =

((
n

c

)(
n− 1
b+ c

)
−
(

n

b+ c+ 1

)(
n− 1
c− 1

))
[s1a+b+c+1 |u].

There we have the numerical factor! We now compute [2| 1|s|+|u|+a2b3c].
But this is easy, since it’s simply

( n
b+c+1

)(n
c

)
times the probability that a
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ζ(a,b+1,c) distributed word starts with 2 (which is b+1
n ). So we need to show

that

(
n

c

)(
n− 1
b+ c

)
−
(

n

b+ c+ 1

)(
n− 1
c− 1

)
= b+ 1

n

(
n

b+ c+ 1

)(
n

c

)
,

which is an easy exercise.

Remark 1.12.3. In the proof above, we repeatedly applied Lemma 1.6.1
(and Propostions 1.1.1 and 1.1.2) to [v|w |u] to eventually arrive at some
multiple of [ ˜vw |u]. In general, for |v| > 1, it seems that the same approach
does indeed yield a multiple of [ ˜vw |u], though the computation becomes pro-
gressively more involved. One could also apply the dual version of Lemma
1.6.1 to arrive at a multiple of [v| w̃u], or mix these two approaches. Of
course, a proof not relying on this kind of computation would be more desir-
able.

1.13 Inhomogenous versions

So far we have given the transitions w = . . . ji . . . → σk(w) = . . . ij . . .
(i < j) the same rate 1. An interesting weighted variant was suggested in
[16], where instead the transition above occurs at rate xi, where x1, . . . , xn
are indeterminates.8 We will refer to this as the (singly) inhomogenous
chain.

Knutson and Lam also suggested giving weight xi + yj to the general
transition above. We will refer to this as the doubly inhomogenous chain.

In this section, we will go through results already mentioned in previous
sections and explain to what extent they generalize to the these two in-
homogenous cases. Since the doubly inhomogenous case contains the singly
inhomogenous case, we omit the singly inhomogenous version of a statement
if there is a doubly inhomogenous version.

Placing this section last in the summary helps the exposition, but for
several properties of the TASEP, the homogenous case was found only after
specializing the inhomogenous case.

8In that paper, attention is restricted to permutations w, and the moves in the chain
are described in terms of w−1. The version for arbitrary words appears in [9].
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The singly inhomogenous case

We must first generalize the definition of amplitudes. The most commonly
used one, which is the one we’ll use here9, is to scale the stationary distribu-
tion so that the amplitudes are polynomials in the xi’s without a common
factor.

In [8], a monomial is assigned to each multiline queue such that [u]
conjecturally is the sum of the weights of all multiline queues whose bottom
row is labelled u. The conjecture is proved in [6] and [17]. The first proof
generalizes the proof of Theorem 1.3.1 by [5] and the second proof generalizes
the original proof in [14]. We summarize this in the following theorem.

Theorem 1.13.1. ([6], [17]) There is a function w mapping multi-line
queues of type m to monomials in x1, . . . , xr−1 such that for words u ∈ Ωm,
the singly inhomogenous amplitude [u] equals the sum of w(q) over all multi-
line queues q whose bottom row is u.

We will not give the definition of w in this summary. It can be found in
Paper B, where we use it to prove an inhomogenous generalization of Lemma
1.6.1. Similarly, we prove an inhomogenous version of Theorem 1.11.4 there.

The generalized Matrix Ansatz proof of Theorem 1.13.1 in [6] proves a
generalized version of the intertwining relation (1.4.2) mentioned in Section
1.4. It is interesting to note that the matrix D corresponding to merging the
two highest classes of Section 1.4 still satisfies DMm = Mm′D with respect
to the inhomogenous transition matrices. Now, however, merging the two
highest classes becomes essential; the matrix D corresponding to merging
any other pair of adjacent classes will not satisfy this intertwining property.
It also appears difficult to generalize the generalized queues of Section 1.4 to
the inhomogenous case (as should be expected, by the discussion in Section
1.4). The reason that the highest pair of classes is special is that the variable
xr−1 only occurs in transitions involving classes r − 1 and r (and these
transitions become loops when we merge the classes).

Here are the amplitudes for words in Ω(1,1,1,1) in the singly inhomogenous
case.

[1234] = (x2
1 + x1x2 + x2

2)(x1x2 + x1x3 + x2x3)
[1243] = x1x2(x2

1 + x1x2 + x2
2)

[1324] = x2
1x2(x1 + x2 + x3)

9Except in Paper B!
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[1342] = x2
1(x1x2 + x1x3 + x2x3)

[1423] = x1(x2
1x2 + x1x

2
2 + x2

2x3 + x2
1x3 + x1x2x3)

[1432] = x3
1x2

The partition function Z(1,1,1,1) = [1234] + [1243] + . . . + [4321] is given
by 4(3x2

1 + 2x1x2 + x2
2)(2x1x2 + x1x3 + x2x3).

A general formula for Zm (generalizing Proposition 1.1.1) is given in
Papers A and B. To state it, let hk(y1, . . . , ym) be the complete symmetric
polynomial of degree k in m variables.

Theorem 1.13.2. ([1], [4]) The sum of the amplitudes of all words in Ωm
is

n
r−1∏
i=1

(x1 . . . xi)n−m1−...−mihn−m1−...−mi(
1
x1
, . . . ,

1
x1︸ ︷︷ ︸

m1

, . . . ,
1

xi−1
, . . . ,

1
xi−1︸ ︷︷ ︸

mi−1

,
1
xi
, . . . ,

1
xi︸ ︷︷ ︸

mi+1

).

The product formula for sorted words (see Theorem 1.8.1) generalizes as
follows.

Theorem 1.13.3. ([1]) Let −→u be the sorted word in Ωm. Then amplitude
[−→u ] is given by
r−1∏
i=1

(x1 . . . xi)n−m1−...−mihn−m1−...−mi(
1
x1
, . . . ,

1
x1︸ ︷︷ ︸

m1

, . . . ,
1

xi−1
, . . . ,

1
xi−1︸ ︷︷ ︸

mi−1

,
1
xi

).

Theorem 1.13.3 was conjectured10 in [16] and proved in Paper A.
Theorem 1.9.1 on the k-TASEP is extended 11 to the inhomogenous case

in Paper C. The proof method in Paper C is different from that in [18]. The
proof in [18] builds on the ideas of the original proof [14] of Theorem 1.3.1.
However, it does not appear to extend to the inhomogenous case.

Instead, in Paper C, we prove that the (inhomogenous) transition matrix
of the k-TASEP commutes with that of the k′-TASEP for any k, k′. This
proves in particular that they have the same stationary distribution.

A natural question is whether the correlations studied in Section 1.11
generalize. To take a prototypical case, we have E135 = 1

53 for n = 5 in the
homogenous case. In the inhomogenous case we have instead to consider

10The conjecture is formulated in terms of Schubert polynomials, but by well-known
properties of these it is easy to show that that formula is equivalent to the one given here.

11Here the rate of a transition w → σSw is given by
∏

i∈S
xwi .
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[13524] + [13542]
Z5

= x4
1x2x3(2x2

1x
2
2 + . . .)

5(4x3
1 + . . .)(3x2

1x
2
2 + . . .)(2x1x2x3 + . . .)

,

where the part in the parentheses in the numerator is a certain irreducible
polynomial in x which evaluates to 20 when letting x = 1 and the denomi-
nator is given by Theorem 1.13.2 (and evaluates to 2500). It seems difficult
to find a way to express this in a way analogous to 1

53 .

The doubly inhomogenous case

This weighting seems to retain many of the properties of the singly inhomge-
nous case, but there is no known generalization of multiline queues to this
case, or of the Matrix Ansatz. The transition matrixM(1,1,1) for x3 = y1 = 0
in this case is

x2 + y2 x2 + y3 x1 + y2 0 0 0
0 0 0 0 x1 + y3 0
0 0 0 x1 + y3 0 0
0 x1 + y2 0 x2 + y2 0 x2 + y3
0 0 x2 + y3 0 x2 + y2 x1 + y2

x1 + y3 0 0 0 0 0


.

(Note that x3 and y1 only occur on the diagonal, so there is no loss in
restricting to the case x3 = y1 = 0.) If we rescale the stationary distribution
to get polynomials without a common factor we get [123] = x1 + x2 + y2 +
y3, [132] = x1 + y3.

In general, for permutations of length n, the scaling that achieves poly-
nomial amplitudes without common factors appears to be the one which
assigns [←−u ] =

∏
i+1<j(xi + yj)j−i−1 for the reverse permutation [←−u ]. This

way we get the amplitudes for the singly inhomogenous case from the doubly
inhomogenous case simply by letting y = 0.

There appears to be no product formula generalizing Zm of Proposition
1.13.2 in the doubly inhomogenous case; the sum of all the amplitudes of all
permutations is an irreducible polynomial for each length 3, 4, 5.

However, in the case of three types, the recursions (1.2.1) do generalize,
and allow us to compute the amplitudes in this case.
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[31u] = (x1 + y2)[3u] + (x2 + y3)[1u],
[32u] = (x1 + y3)[2u],
[21u] = (x1 + y3)[2u].

(1.13.1)

These recursion relations can be proved in the same way as the original
recursions (1.2.1). A proof can be found in the excellent survey paper [10].

The amplitude of the sorted word (a polynomial in the xi’s and yj ’s) ap-
pears to factor in the same number of factors as in the singly inhomogenous
case (see Theorem 1.13.3). It would be interesting to identify these factors
explicitly.

Duality is elegant in the doubly inhomogenous case.

Proposition 1.13.4. As functions of x = (x1, . . . , xn) and y = (y1, . . . , yn),
we have

[w](x; y) = [w′](y′; x′),

for any w when w′ is the word gotten from w by reversing values and posi-
tions, and x′, y′ from reversing x and y.

Since, as a function of x and y, the transition matrix satisfies Mm(x +
a,y) = Mm(x,y+a), the corresponding invariance ζm(x+a,y) = ζm(x,y+
a) holds for the stationary distribution ζm (and consequently also the am-
plitudes). Here, x + a means (x1 + a, . . . , xn + a).

Proposition 1.13.5. Let p(x,y) ∈ Q[x,y] be a polynomial. The following
are equivalent. (i) For each a, p(x+a; y) = p(x; y+a) (ii) p is a polynomial
in Q[xi + yj ]1≤i,j≤n.

Proof. We give a proof sketch. Fix some integer d ≥ 0. The vector space of
polynomials of degree at most d described in (ii) is clearly a vector subspace
of those described in (i) of degree at most d. It is easy to show that the
dimension of these two spaces is the same. Since d was general, this proves
the proposition.

So all the amplitudes can be written as polynomials in (xi + yj). Sur-
prisingly, it seems there is always a positive expression. This in particular
means (assuming the conjectural normalization of the amplitudes above)
that the total number of (xi + yj)-monomials occurring in a doubly inho-
mogenous amplitude is the same as the number of xi-monomials occurring



1.13. INHOMOGENOUS VERSIONS 27

in the corresponding singly inhomogenous amplitude. This gives some hope
for the existence of a generation rule of these monomials in the doubly inho-
mogenous case which is not much more complicated than that in the singly
inhomogenous case (given by Theorem 1.13.1).

So, to find such a rule, one should wonder what is the right way to
express the polynomials. Here are the polynomials for type (1, 1, 1, 1).

[1234] =
(
(x1+y2)(x1+y4)+(x1+y2)(x2+y3)+(x2+y3)(x2+y4)

)(
(x1+

y4)(x3 + y4) + (x2 + y3)(x3 + y4) + (x1 + y3)(x2 + y3)
)

[1243] = (x1 +y4)(x2 +y4)
(
(x1 +y2)(x1 +y4)+(x1 +y2)(x2 +y3)+(x2 +

y3)(x2 + y4)
)

[1324] = (x1 + y4)(x2 + y4)(x1 + y3)
(
(x1 + y2) + (x2 + y3) + (x3 + y4)

)
[1342] = (x1 +y4)(x1 +y3)

(
(x1 +y4)(x3 +y4)+(x2 +y3)(x3 +y4)+(x1 +

y3)(x2 + y3)
)

[1423] = (x1 + y4)
(
(x1 + y2)(x1 + y3)(x2 + y3) + (x1 + y2)(x1 + y3)(x3 +

y4)+(x1 +y3)(x2 +y3)(x2 +y4)+(x1 +y2)(x2 +y4)(x3 +y4)+(x2 +y3)(x2 +
y4)(x3 + y4)

)
[1432] = (x1 + y4)2(x1 + y3)(x2 + y4)
Above, we have first of all factored the polynomials as much as possible,

then tried to express them in terms of (xi + yj) for i < j. In the singly
inhomogenous case, there is one monomialM (equal to the amplitude of the
reverse sorted word) appearing in each amplitude. If we want to generalize
this property, we run into trouble; the monomial M should be generalized
by [1432] for m = (1, 1, 1, 1), but [1243] − [1432] has a factor (x2 + y2). So
the expressions cannot have both of these desired properties.

What happens to Lam’s conjecture 1.8.2 in the doubly inhomogenous
case? Based on evidence for n ≤ 5 for general x, y and for n ≤ 10 for y = 0,
I conjecture the following.

Conjecture 1.13.6. Fix a word u of type m. Let −→u and ←−u be u in sorted
respectively reverse sorted order Then [−→u ] − [u] and [u] − [←−u ] have only
positive coefficients.

Setting all the xi’s to 1 and the yj ’s to 0, this recovers Lam’s conjecture
1.8.2. For y = 0, it is easy to show using Theorem 1.13.1 that [u] − [←−u ]
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15234

13524 14253 12534 12435 12354 14235 13425 13452 14523 13245 12453

15243 12543 13542 13254 15342 14352 15423 14532 15324

14325

Figure 1.6: An arrow going up from a node labelled u to a node labelled v
means that [v] − [u] is a polynomial with positive coefficients. The reverse
permutation 15432 and the sorted permutation 12345 have been omitted
(they should be smallest respectively largest elements in this poset). So
whatever the values of xi and yj , the state v is more likely than state u in
the doubly inhomogenous TASEP.

have positive coefficients. If one is looking for an injective map on multiline
queues to prove Conjecture 1.8.2, then it would be reasonable to look for
one that preserves the weight of the queue in the singly inhomogenous case.
In fact, there seem to be more domination relations between the amplitudes
than those mentioned in Conjecture 1.13.6. See figure 1.13

The formula in Paper B can conjecturally be generalized to the doubly
inhomogenous case.

Conjecture 1.13.7. Let u, v be any words, u′ and v′ permutations of u
and v respectively. Then

[uv][u′v′] = [u′v][uv′],

where the amplitudes are taken with respect to the doubly inhomogenous
chain.

Theorem 1.9.1 does not seem to extend to the doubly inhomogenous
case. Indeed, if it did, then, by duality, the mirrored operator σ̃S which
sorts the product the other way (by taking σi−1 before σi) would give the
same stationary distribution in the inhomogenous case for each k. But this
is not true, as can be seen already for words of type (1, 1, 1).
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We finish with some remarks on possible ways to generalize Theorem
1.13.1 to the doubly inhomogenous case. A first step would be to be find
an up-operator corresponding to the down-operator merging the two lowest
classes in the singly inhomogenous case. (We would be able to do this if we
were able to unmerge the highest pair of classes with an up-operator in the
doubly inhomogenous case.)

Let m = (m1, . . . ,mr) and m′ = (m1 + m2,m3, . . . ,mr). Consider the
(singly inhomogenous) transition matrices Mm, Mm|x1=x2 , Mm′ . It is easy
to see that the same matrix U going from Mm′ to Mm in the homogenous
case x = 1 again satisfies Mm|x1=x2U = UMm′ .

So the difficult part is to find a matrix U satisfying

MmU = UMm|x1=x2 . (1.13.2)

We do have a down-operator D, which however is linear only over Q (and
not Q[x1, . . . , xr−1] as those considered previously have been). It is given
by setting x2 equal to x1. It is then clear that

MmD = DMm|x1=x2 .

So, by the discussion in Section 1.4 we should expect a map U as in
(1.13.2) to exist. It will however be a linear map on Q[x1, . . . , xr−1](Ωm
over Q rather than on Q[x1, . . . , xr−1](Ωm over Q[x1, . . . , xr−1]. It is easy
to find such maps at least for m = (1, 1, 1).

Very inhomogenous case

One could consider giving completely independent weights xij to the transi-
tions . . . ij . . .→ . . . ji . . .. However, as noted already by Lam, in this case,
the amplitudes do not have positive coefficients, and hence might be very
difficult to describe combinatorially. In the case r = 3, this case is equivalent
to the doubly inhomogenous case, for which we have described a positive
rule (1.13.1).

1.14 Paper D
In paper D we study the TASEP on Ωm with mr going to infinity and
the other mi (and r) staying fixed. More precisely, fix a permutation π of
[n] and numbers 1 ≤ b1 < b2 < · · · < bn ≤ N , and consider the number
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Gπ(b1, . . . , bn;N) of multiline queues of type (1, 1, . . . , 1, N − n) whose bot-
tom row has the letter πi at position bi for i = 1, . . . , n (thus the remaining
letters in the bottom row are all n+1). It turns out that Gπ is a polynomial
in the bi’s for each π. The most striking result on the Gπ’s is the following.

Theorem 1.14.1. Let π0 = n(n− 1) . . . 21 be the reverse permutation on n
letters. Then

Gπ0(x1, . . . , xn) =
n−1∏
i=1

1
i!
∏
i<j

(xj − xi).

Curiously, this expression is very similar to the formula in Theorem
1.11.5 (which is also proven in Paper D). We show that for some π close
to π0, the polynomial Gπ can be expressed as a certain operator applied to
Gπ0 .

In the limit, we get a process which can be described as follows. Choose
a continuous multi-line queue of some type, where the circles in each row
now are chosen uniformly at random from the real interval [0, 1). Label
the boxes as before. Then the labels in the bottom row, excluding those of
highest class, are well-defined (except on a set of measure 0).

We can take a limit of the polynomial Gπ to obtain the probability
density gπ(p1, . . . , pn) that the ith box in the bottom row occurs at position
pi ∈ [0, 1) and is labeled πi.

We find some recursion relations among the gπ’s for fixed n. We con-
jecture there are more relations, inspired by a similar system of recursion
relations for a related-in-spirit Markov chain, the Razumov-Stroganov (RS)
chain.

1.15 Contributions in this thesis

Paper A

In this paper, we prove Lam’s conjectured formula for ζ(1,...,1)(12 . . . n) and
introduce the simple version Proposition 1.6.2 of Lemma 1.6.1 to do so.
The same method also proves Lam and Williams’ conjectured inhomogenous
generalization (stated in Theorem 1.13.3). Theorem 1.13.2 is claimed in
Paper A, and proved more carefully in Paper B.
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Paper B

In this paper we prove the (previously unknown) product formula 1.11.4 and
the jumping lemma (Lemma 1.6.1), which is the essential ingredient in the
proof.

Paper C

We study Lam’s chain Ỹ in type C. In particular, the ’strange’ weights
1, 2, . . . , 2, 1 for type C are given a combinatorial interpretation. We con-
jecture an explicit form of the partition function for type C, and describe
the stationary distribution of some projections of the type C chain. We also
prove an inhomogenous version of Theorem 1.9.1.

Paper D

We introduce the polynomials Gπ in Section 1.14, and prove some relations
among these. We also show that conjecturally, the independences in 1.11
extend to some extent to the limit TASEP. Theorem 1.11.5 is proved.

This summary

Section 1.12 contains a proof of [8, Conjecture 8.3], which implies Conjec-
tures 8.2 and 7.4 in the same paper.
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