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Abstract

Stochastic simulation is a popular method for computing probabilities or expecta-
tions where analytical answers are difficult to derive. It is well known that standard
methods of simulation are inefficient for computing rare-event probabilities and there-
fore more advanced methods are needed to those problems.

This thesis presents a new method based on Markov chain Monte Carlo (MCMC)
algorithm to effectively compute the probability of a rare event. The conditional distri-
bution of the underlying process given that the rare event occurs has the probability of
the rare event as its normalising constant. Using the MCMC methodology a Markov
chain is simulated, with that conditional distribution as its invariant distribution, and
information about the normalising constant is extracted from its trajectory.

In the first two papers of the thesis, the algorithm is described in full generality and
applied to four problems of computing rare-event probability in the context of heavy-
tailed distributions. The assumption of heavy-tails allows us to propose distributions
which approximate the conditional distribution conditioned on the rare event. The
first problem considers a random walk Y1 + · · · + Yn exceeding a high threshold,
where the increments Y are independent and identically distributed and heavy-tailed.
The second problem is an extension of the first one to a heavy-tailed random sum
Y1+· · ·+YN exceeding a high threshold, where the number of incrementsN is random
and independent of Y1, Y2, . . .. The third problem considers the solution Xm to a
stochastic recurrence equation, Xm = AmXm−1 + Bm, exceeding a high threshold,
where the innovations B are independent and identically distributed and heavy-tailed
and the multipliersA satisfy a moment condition. The fourth problem is closely related
to the third and considers the ruin probability for an insurance company with risky
investments.

In last two papers of this thesis, the algorithm is extended to the context of light-
tailed distributions and applied to four problems. The light-tail assumption ensures the
existence of a large deviation principle or Laplace principle, which in turn allows us
to propose distributions which approximate the conditional distribution conditioned on
the rare event. The first problem considers a random walk Y1 + · · · + Yn exceeding
a high threshold, where the increments Y are independent and identically distributed
and light-tailed. The second problem considers a discrete-time Markov chains and the
computation of general expectation, of its sample path, related to rare-events. The
third problem extends the the discrete-time setting to Markov chains in continuous-
time. The fourth problem is closely related to the third and considers a birth-and-death
process with spatial intensities and the computation of first passage probabilities.

An unbiased estimator of the reciprocal probability for each corresponding prob-
lem is constructed with efficient rare-event properties. The algorithms are illustrated
numerically and compared to existing importance sampling algorithms.
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Sammanfattning

Stokastisk simulering är polulär metod för beräkning av sannolikheter eller vän-
tevärde när analytiska svar är svåra att härleda. Det är känt att standard metoder inom
simulering är ineffektiva för att beräkna sannolikheter av en sällsynta händelser och
därför behövs det mer avancerade metoder till de typen av problem.

I denna avhandling presenteras en ny metod baserad på Markov chain Monte Carlo
(MCMC) för att effektivt beräkna sannolikheten av en sällsynt händelse. Den betingade
fördelningen för den underliggande processen givet att den sällsynta händelsen inträffar
har den sökta sannolikheten som sin normaliseringskonstant. Med hjälp av MCMC-
metodiken skapas en Markovkedja med betingade fördelningen som sin invarianta
fördelning och en skattning av normaliseringskonstanten baseras på den simulerade
kedjan.

I de två första pappren i avhandlingen, beskrivs algoritmen i full generalitet och
tillämpas på fyra exempelproblem för beräkning av små sannolikheter i tungsvansade
sammanhang. Det tungsvansade antagandet innebär att vi kan föreslå en fördelning
som approximerar den betingade fördelningen givit den sällsynta händelsen. Första
problemet handlar om en slumpvandring Y1+ · · ·+Yn som överskrider en hög tröskel,
då stegen Y är oberoende, likafödelade med tungsvansad fördelning. Andra problemet
är en utvidgning av det första till summa av ett stokastiskt antal termer Y1 + · · · +
YN som överskrider en hög tröskel, då antalet steg N är stokastiskt och oberoende
av Y1, Y2, . . .. Tredje problemet behandlar sannolikheten att lösningen Xm till en
stokastisk rekurrensekvation, Xm = AmXm−1 + Bm, överskrider en hög tröskel då
innovationerna B är oberoende, likafördelade med tungsvansad fördelning och mul-
tiplikatorerna A satisfierar ett moment villkor. Sista problemet är nära kopplat till
det tredje och handlar om ruinsannolikhet för ett försäkringsbolag med riskfyllda in-
vesteringar.

I de två senare pappren i avhandlingen, utvidgas algoritmen till lättsvansade sam-
manhang och tillämpas på fyra exempelprolem. Det lättssvansade antagandet säker-
ställer existensen av stora avvikelse princip eller Laplace princip som i sin tur in-
nebär att vi kan föreslå fördelningar som approximerar den betingade fördelningen
betingad på den sällsynta händelsen. Första problemet handlar om en slumpvandring
Y1 + · · · + Yn som överskrider en hög tröskel, då stegen Y är oberoende, likaförde-
lade med lättsvansad fördelning. Andra problemet handlar om Markovkedjor i diskret
tid och beräkning på almänna väntevärde, av dess trajektoria, relaterad till sällsynta
händelser. Det tredje problemet utvidgar den diskreta bakgrunden till Markovkedjor
i kontinuerlig tid. Det fjärde problemet är nära kopplat till det tredje och handlar om
en födelse-och-döds process med rumsberoende intensiteter och beräkning av första
övergångs sannolikheter.

För varje exempelproblem konstrueras en väntevärdesriktig skattning av den re-
ciproka sannolikheten. Algoritmerna illustreras numeriskt och jämfös med existerande
importance sampling algoritmer.
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Introduction

The theme of this thesis is the study of efficient stochastic simulation algorithms, consisting
of four scientific papers. It considers the special case when the property under investiga-
tion is governed by an event which is thought of as rare in the sense it occurs with a small
probability. This case is of particular interest as the standard tools within stochastic simu-
lation fail in the rare-event setting. The method presented in this thesis uses the theory of
Markov chain Monte Carlo (MCMC) which, to the best of the author’s knowledge, has not
been applied in the rare event simulation context before. The main contribution is a new
stochastic simulation method which we will name the MCMC method. The thesis has a
natural split into two parts. The first two papers which are presented in Chapter 2 and 3
assume the setting of heavy-tailed random variables, whilst the latter two papers which are
presented in Chapter 4 and 5 assume the setting of light-tailed random variables.

It is therefore important for the reader to be familiar with some of the underlying theory
such as rare event simulation and Markov chain Monte Carlo before embarking on reading
the thesis. The introduction starts with a motivation for simulation in real-world applica-
tions, presented in Section 1.1. In Section 1.2 we present key concepts to this thesis such
as Markov chain Monte Carlo, rare-event simulation and importance sampling. In Sec-
tion 1.3 we present the primary contribution of this thesis, namely, a general description
to estimating rare-event probabilities using Markov chain Monte Carlo methodology. The
method is explained and the crucial design choices which determine its performance are
highlighted. Finally, in Section 1.4 we provide summaries of the four papers which build
up the thesis.

1.1 Background

Mathematical modelling has been an fundamental part of scientific progress. We model
complex phenomena to enhance our understanding and to better predict properties cur-
rently unknown to us. The possible applications of modelling are endless and come up in
fields such as physics, chemistry, economics and finance to name but few. More often than
not the structure of the model depends on unknown factors, parameters which specify the
detailed behaviour of the model. These factors need to be assigned some values to use the
model for numerical purposes. This assignment is usually done by estimating the value
of the factors but it introduces the possibility of an error due to the stochastic fluctuation
in the estimation. It is natural to take the random error into account when modelling and
expanding the framework accordingly. These types of models are called stochastic models.
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2 RARE-EVENT SIMULATION WITH MCMC

The computational capacity has increased significantly in recent decades with the rel-
ative easy access to supercomputers. This has in turn allowed for more and more com-
plicated stochastic models for applications. Finer components, which previously were not
included, can now incorporated in the models, thus increasing the complexity. Researchers
and practitioners alike strive to enhance the current models and introduce more and more
details to it. This has had a positive effects on modern modelling, albeit not without some
cost. Many stochastic models today have become so involved that it is becoming diffi-
cult to derive any analytical answers to the questions posed to the model. This has given
rise to alternative approach to handling such complex stochastic models, namely stochastic
simulation.

Briefly, simulation is the process of sampling the underlying random factors to gener-
ate many instances of the model. These multiple instances of the model, called the sample,
gives the investigator an insight into the object being modelled and is used to make infer-
ences about its properties. This has proved to be a powerful tool for computation. Gen-
erating instances of highly advanced models, multi-dimensional, non-linear and stochastic
models can be done in a few milliseconds. Stochastic simulation has thus played its part in
the scientific progress of recent decades and simulation itself has grown into an academic
field in its own right.

In physics, hypothesis are often tested and verified via a number of experiments. One
experiment is carried out after another, and if sufficiently many of the experiments support
the hypothesis then it acquires a certain validity and becomes a theory. This was for in-
stance the case at CERN in the summer of 2012, when the existence of the Higgs boson
was confirmed through experiments which supported the old and well known hypothesis.
However, one can not always carry out experiments to validate hypotheses. Sometimes it is
simply impossible to replicate the model in reality, as is the case when studying the effects
of global warming. Obviously, since we can only generate a single physical instance of
the Earth, any simulations need to be done via computer modelling. To better reflect real-
ity, the resolution needs to be high and many different physical and meteorological factors
need to be taken into account. The surface of the Earth is broken into 10km times 10km
squares, each with its temperature, air pressure, moisture and more. The dynamics of these
weather factors need to be simulated with small time steps, perhaps many years into the
future. The Mathematics and Climate Research Network (MCRN) carries out extensive
stochastic simulations, replicating the Earth using different types of scenarios to forecast
possible climate changes. Clearly, this type of stochastic simulation is immensely compu-
tationally costly. This scientific work alone justifies the importance of continuing research
and improvement in the field of stochastic simulation.

In some contexts the properties being investigated are highly affected by the occurrence
of so-called rare-events. This is for instance the case for evaluation of most risk measures
in finance or insurance. The capital requirements or Value-at-Risk typically represent how
much money needs to be set aside to serve as a buffer in the worst case scenario. The stan-
dard methods of stochastic simulation have had problems handling these unlikely events
of small probability. This is because generating an instance of a very unlikely event in a
model typically involves generating a very large number of instances and thus requiring
prohibitive amount of computer time. As a consequence the investigation of rare-events



INTRODUCTION 3

is both time-consuming and ineffective, motivating the need for further research for these
rare-event problems. The field of stochastic simulation which focuses on these problems is
called rare-event simulation. The importance of expanding our boundaries to understand-
ing rare-event simulation is ever present as the usage of stochastic simulation continues to
increase. Effective simulation methods for rare-events could be highly beneficial in areas
such as finance and insurance.

1.2 Stochastic simulation

In this section we give introduction to some of the key building blocks of stochastic simu-
lation with emphasis on those topics important for this thesis.

1.2.1 Sampling a random variable

The foundations of stochastic simulation in computers is the generation of a pseudo random
number. We present the general theory and how it can be used to sample a random variable
via the inversion method, which is central to the Markov chain Monte Carlo method.

Most statistical software programs provide methods for generating a uniformly dis-
tributed pseudo random number on the interval, say, [0, 1]. These algorithms are determin-
istic, at its core, and can only imitate the properties and behaviour of a uniformly distributed
random variable. The early designs of such algorithms showed flaws in the sense that the
pseudo random numbers generated followed a pattern which could easily be identified and
predicted. Nowadays there exists many highly advanced algorithms that generate pseudo
random numbers, mimicking a true random number quite well. For the purposes of this
thesis we assume the existence of an algorithm producing a uniformly distributed pseudo
random number, and ignore any deficiencies and errors arising from the algorithm. In
short, we assume that we can sample a perfectly uniformly distributed random variable in
some computer program. For a more thorough and detailed discussion we refer to [29].

Now consider a random variableX and denote by F its probability distribution. Say we
would like, via some computer software, to sample the random variable X . One approach
is the inversion method. The inversion method involves only applying the quantile function
to uniformly random variable. The algorithm is as follows.

1. Sample U from the standard uniform distribution.

2. Compute Z = F−1(U),

where F−1(U) = infx∈U{x | F (x) ≥ p}. The random variable Z has the same distribu-
tion as X as the following display shows.

P(Z ≤ x) = P(F−1{U} ≤ x) = P(U ≤ F (x)) = F (x).

The method can easily be extended to sampling X conditioned on being larger than some
constant c. Meaning that we want to sample from the conditional distribution

P(X ∈ · | X > c).
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The algorithm is formally as follows.

1. Sample U from the standard uniform distribution.

2. Compute Z = F−1
((

1− F (c)
)
U + F (c)

)
.

The distribution of Z is given by,

P(Z ≤ x) = P
(
(1− F (c))U + F (c) ≤ F (x)

)
= P

(
U ≤ F (x)− F (c)

1− F (c)

)
=

F (x)− F (c)

1− F (c)
=

P(c ≤ X ≤ x)

P(X > c)
= P(X ≤ x | X > c).

Thus the inversion method provides a simple way of sampling a random variable, condi-
tioned on being larger than c, based solely on the generation of a uniformly distributed
random number.

1.2.2 Rare-event simulation

In stochastic simulation there are two convergence properties which determine if an esti-
mator is efficient or not. Firstly we require the estimator to be large-sample efficient which
means that the variance of the estimator tends to zero as the sample size increases. Sec-
ondly we want the estimator to be rare-event efficient meaning that the estimate is accurate
even when the sought probability is very small. To be more precise let us consider the
canonical example of stochastic simulation, the standard Monte Carlo estimator.

The power of Monte Carlo is its simplicity but it lacks rare-event efficiency. To explain
this, let us describe what is meant by rare-event simulation. Consider a sequence of random
variables X(1), X(2), . . . where each can be sampled repeatedly by a simulation algorithm.
Suppose we want to compute the probability p(n) = P(X(n) ∈ A) for some Borel set A
and large n where it is assumed that p(n) → 0 as n → ∞. The idea of Monte Carlo is
to sample independent and identically distributed copies of the random variable X(n) and
count the number of times it hits the set A. For a sample X(n)

0 , . . . , X
(n)
T−1 the Monte Carlo

estimator is given by

p̂
(n)
MC =

1

T

T−1∑
t=0

I{X(n)
t ∈ A}.

Of course, the variance Var(p̂(n)) = 1
T p

(n)(1 − p(n)) tends to zero as T → ∞, ensuring
the large-sample efficiency of the Monte Carlo estimator but that is not main concern here.
For an unbiased estimator p̂(n) of p(n) the natural rare-event performance criteria is that
the relative error is controlled as n→∞. In the case of the Monte Carlo estimator

Var(p̂
(n)
MC)

(p(n))2
=
p(n)(1− p(n))

T (p(n))2
=

1

T

( 1

p(n)
− 1
)
→∞, as n→∞,

indicating that the performance deteriorates when the event is rare. For example, if a
relative error at 1% is desired and the probability is of order 10−6 then we need to take T
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such that
√

(106 − 1)/T ≤ 0.01. This implies that T ≈ 1010 which is infeasible on most
computer systems.

In Section 1.2.5 we give description to alternative rare-event simulation algorithms
that are rare-event efficient. But before presenting these algorithms we first give a brief
summary of what is meant by an efficient algorithm. Moreover, we explain the difference
between the two classes of problems considered in this thesis, namely the heavy-tailed
class and the light-tailed class.

1.2.3 Efficiency properties

There are roughly two types of efficiency properties desirable in the rare-event simulation
context. Firstly there is the strong efficiency, which is characterised by the estimator’s
relative error RE(p̂(n)) = Std(p̂(n))/p(n). An estimator is said to have vanishing relative
error if

RE(p̂(n))→ 0, as n→∞,

and bounded relative error if

RE(p̂(n)) <∞, as n→∞.

Secondly there is the slightly weaker performance criteria, called logarithmic efficiency.
An estimator is said to be logarithmically efficient if

1

n
log

E
[
(p(n))2

]
(p(n))2

→ 0, as n→∞.

The interpretation is that the exponential rate of decay of the second moment of p̂(n) coin-
cides with that of (p(n))2. From a practical perspective bounded relative error implies that
sample size needs to be increased by n to obtain a certain accuracy whereas logarithmic
efficiency implies that samples size increases at most sub exponentially with n.

1.2.4 Heavy and light tails

In the first two chapters of this thesis we assume the heavy-tailed setting as opposed to the
latter two chapters where we assume the light-tailed setting. This types of probabilistic
assumptions is important as it determines how we approach the problem and design the
algorithm. We use the asymptotic properties, derived from the tail assumption, to ensure
the rare-event performance is good.

The notion of heavy tails refers to the rate of decay of the tail F = 1 − F of a proba-
bility distribution function F . A popular class of heavy-tailed distributions is the class of
subexponential distributions. A distribution function F supported on the positive axis is
said to belong to the subexponential distributions if

lim
x→∞

P(X1 +X2 > x)

P(X1 > x)
= 2,
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for independent random variablesX1 andX2 with distribution F . A subclass of the subex-
ponential distributions is the regularly varying distributions. F is called regularly varying
(at∞) with index −α ≤ 0 if

lim
t→∞

F (tx)

F (t)
= x−α, for all x > 0.

The heavy-tailed distributions are often described with the one big jump analogy, mean-
ing that the event of a sum of heavy-tailed random variables being large is dominated by
the case of one of the variables being very large whilst the rest are relatively small. This is
in sharp contrast to the case of light-tails, where the same event is dominated by the case of
every variable contributing equally to the total. As a reference to the one big jump analogy
we refer the reader to [19, 21, 11].

This one big jump phenomenon has been observed in empirical data. For instance,
when we consider stock market indices such as Nasdaq, Dow Jones etc. it turns out that
the distribution of daily log returns typically has a heavy left tail, see Hult et al. in [20].
Another example is the well studied Danish fire insurance data, which consists of real-life
claims caused by industrial fires in Denmark. While the arrivals of claims is showed to be
not far from Poisson, the claim size distribution shows clear heavy-tail behaviour. The data
set is analysed by Mikosch in [27] and the tail of the claim size is shown to be fit well with
a Pareto distribution.

Stochastic simulation in the presence of heavy-tailed distributions has been studied
with much interest in recent years. The conditional Monte Carlo technique was applied on
this setting by Asmussen et al. [1, 3]. Dupuis et al. [12] used importance sampling algo-
rithm in a heavy-tailed setting. Finally we mention the work of Blanchet et al. considering
heavy-tailed distributions in [8, 7].

Turning to the second class of tail probabilities, a distribution function F is said to
be light-tailed if its tail decays at an exponential rate or faster. A more formal descrip-
tion is as follows. A random variable X is said to have light-tailed distribution F if
Λ(θ) = logE[eθX ] < ∞ for some θ > 0. Typical light-tailed distributions are the nor-
mal distribution, exponential distribution, gamma distribution and the compound Poisson
process.

Closely related to the light-tailed assumption is the theory of large deviation principles.
The sequence {X(n)} is said to satisfy the large deviation principle on E with rate function
I if for each closed F ⊆ E

lim sup
n→∞

1

n
logP(X(n) ∈ F ) ≤ −I(F ),

and for each open G ⊆ E

lim inf
n→∞

1

n
logP(X(n) ∈ G) ≥ −I(G).
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1.2.5 Importance sampling

We take up the thread left in Section 1.2.2 and present an alternative to the Monte Carlo
method for efficiently running rare-event simulation.

Many simulation techniques have been presented to the scientific community to im-
prove the poor rare-event properties of the Monte Carlo. The main idea of the variance
reduction methods is to introduce a control mechanism that steers the samples towards
the relevant part of the state space, thereby increasing the relevance of each sample. Few
have had same popularity as importance sampling which is undoubtedly one of the more
successful rare-event simulation techniques explored until today. The method was first in-
troduced by Siegmund in 1976, see [31] and has since been widely developed. The control
mechanism behind importance sampling is the change of sampling distribution.

A formal description of importance sampling is as follows. Let X(1), X(2), . . . be a
sequence of random variables each of which can be sampled repeatedly and suppose that
we want to compute the probability p(n) = P(X(n) ∈ A) for some large n and that
p(n) → 0 as n→∞. Denote by F (n) the distribution of a random variable X(n). Instead
of sampling from the original distribution F (n) then theX(n)

0 , . . . , X
(n)
T−1 are sampled from

a so-called sampling distribution denoted by G(n) such that F (n) � G(n) on A. The
sampling distributionG(n) is chosen such that we obtain more samples where {X(n) ∈ A}.
The importance sampling estimator is the average of the hitting probabilities, weighted
with the respective Radon-Nikodym derivative,

p̂
(n)
IS =

1

T

T−1∑
t=0

dF (n)

dG(n)
(X

(n)
t )I{X(n)

t ∈ A}.

This is an unbiased and consistent estimator since

EG(n) [p̂IS] =

∫
A

dF (n)

dG(n)
(X(n))dG(n)(X(n)) = P(X(n) ∈ A).

The difficult task of importance sampling is the design of the sampling distribution G(n).
Informally G(n) is chosen with two objectives in mind, apart from the necessary condition
that F (n) needs to be absolutely continuous with respect to G(n). Firstly we want many
more samples hitting the event, meaning that {X(n) ∈ A} is more likely under G(n) than
F (n). Secondly the Radon-Nykodym derivative dF (n)/dG(n) may not become too large
and thereby ruining the stability of the method. Choosing the sampling distribution to be
equal to the conditional distribution

F
(n)
A (·) = P(X(n) ∈ · | X(n) ∈ A),

implies that p̂(n)
IS has zero variance and is therefore called the zero-variance distribution.

The problem of choosing F (n)
A as a sampling distribution is that the likelihood ratio is p(n)

which is unknown. Therefore F (n)
A is infeasible in practice but we want to to choose G(n)

as an approximation of F (n)
A .



8 RARE-EVENT SIMULATION WITH MCMC

Importance sampling quickly gained approval for problems in light-tailed setting, using
a technique named exponential tilting or exponential change of measure. To better explain
the solution let us consider the problem of computing the probability that random walk
Sn = Y1 + · · ·+Yn exceeds a high threshold a, that is p(n) = P(Sn/n > a). Suppose that
the increment Y has light-tailed distribution in the sense that Λ(θ) = logE[eθY ] <∞, for
some θ > 0 and there exists a large deviation principle of the form

− lim
n→∞

1

n
log p(n) = Λ∗(a),

where Λ∗(a) = supθ∈R{θa − Λ(θ)} is the Fenchel-Legendre transform of Λ. The inter-
pretation is that p(n) ≈ e−nΛ∗(a). Consider sampling the Y ’s from the exponentially tilted
probability distribution

Fθ(dy) = eθy−Λ(θ)F (dy).

Then the second moment of the estimator is

EFθ
[
(p̂

(n)
IS )2

]
= EF

[
I{Sn/n > a}

n∏
i=1

eΛ(θ)−θYi
]

=

∫ ∞
a

enΛ(θ)−nθyF (dy)

≈
∫ ∞
a

e−n[θy−Λ(θ)+Λ∗(y)]dy

≈ e−n[θa−Λ(θ)+Λ∗(a)],

where the approximations are made precise asymptotically by Varadhan’s theorem [10][Thm
4.3.1, p. 137]. Thus we obtain an upper bound

1

n
logEFθ

[
(p̂

(n)
IS )2

]
≤ − sup

θ∈R
{θa− Λ(θ) + Λ∗(a)} = −2Λ∗(a).

By Jensen’s inequality we have a lower bound

lim inf
n→∞

− 1

n
logEFθ

[
(p̂

(n)
IS )2

]
≥ lim inf

n→∞
− 1

n
log(p(n))2 ≥ −2Λ∗(a).

Combining the upper and lower bound shows us that EFθ
[
(p̂

(n)
IS )2

]
≈ e−2Λ∗(a), meaning

that the exponential rate of growth coincides with the sought probability squared, ensuring
logarithmic efficiency.

In the context of importance sampling for light-tailed problems then two main ap-
proaches have been developed recently; the subsolution approach, based on control theory,
by Dupuis, Wang, and collaborators, see e.g. [14, 15, 13], and the approach based on Lya-
punov functions and stability theory by Blanchet, Glynn, and others, see [4, 5, 6, 8].

The technique of using exponential tilting for the class of heavy-tailed problems has
had limited success as the exponential moments in such context do not exist. Additionally,
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the heavy-tailed setting is more complicated as the conditional distribution F (n)
A typically

becomes singular with respect to F (n) as n → ∞. The efficient importance sampling
algorithms for heavy-tailed setting was developed much later.

The technique of conditional Monte Carlo simulation was presented by Asmuessen
and Kroese, see [3], and was shown to always provide variance reduction in the estimator.
An importance sampling algorithm using hazard rate twisting was introduced in 2002 by
Juneja and Shahabuddin [23]. In the heavy-tailed case this method becomes equivalent to
changing the tail index of the distribution. An efficient importance sampling estimator for
the heavy-tailed case for random walk was presented in 2007 by Dupuis et al. [12], based
on mixture and sequential sampling.

The only drawback of the importance sampling approach is that despite its efficiency
the mathematical proofs are lengthy and complex. In this thesis we suggest a different
approach using Markov chain Monte Carlo which is more simple and easier to implement
while still equally efficient as the importance sampling in the models which we have con-
sidered.

1.2.6 Markov chain Monte Carlo

In this section we present a sampling technique called Markov chain Monte Carlo (MCMC)
for sampling a random variable X despite only having limited information about its distri-
bution. MCMC is typically useful when sampling a random variable X having a density f
that is only known up to a constant, say

f(x) =
π(x)

c
,

where π is known but c =
∫
π(x)dx is unknown. An example of this type of setup can be

found in Bayesian statistics and hidden Markov chains.
In short, the basic idea of sampling via MCMC is to generate a Markov chain (Yt)t≥0

whose invariant density is the same as X , namely f . There exists plentiful of MCMC
algorithms but we shall only name two in this thesis, the Metropolis-Hastings algorithm
and the Gibbs algorithm.

The method first laid out by Metropolis [25] and then extended by Hastings [18] is
based on a proposal density, which we shall denote by g. Firstly the Markov chain (Yt)t≥0

is initialised with some Y0 = y0. The idea behind the Metropolis-Hastings algorithm is
to generate a proposal state Z using the proposal density g. The next state of the Markov
chain is then assigned the value Z with the acceptance probability α, otherwise the next
state of the Markov chain stays unchanged (i.e. retains the same value as before). More
formally the algorithm is as follows.

Algorithm 1.2.1. Set Y0 = y0. For a given state Yt, for some t = 0, 1, . . ., the next state
Yt+1 is sampled as follows

1. Sample Z from the proposal density g(Yt, ·).
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2. Let

Yt+1 =

{
Z with probability α(Yt, Z)
Yt otherwise

where α(y, z) = min{1, r(y, z)} and r(y, z) = π(z)g(z,y)
π(y)g(y,z) .

This algorithm produces a Markov chain (Yt)t≥0 whose invariant density is given by
f . Fore more details on the Metropolis-Hastings algorithm we refer to [2] and [17].

Another method of MCMC sampling is the Gibbs sampler, which was originally intro-
duced by Geman and Geman in [16]. If the random variable X is multi-dimensional X =
(X1, . . . , Xd), the Gibbs sampler updates each component at the time by sampling from
the conditional marginal distributions. Let fk|6k(xk | x1, . . . , xk−1, xk+1, . . . , xd), k =
1, . . . , d, denote the conditional density of Xk given X1, . . . , Xk−1, Xk+1, . . . , Xd. The
Gibbs sampler can be viewed as a special case of the Metropolis-Hastings algorithm where,
given Yt = (Yt,1, . . . , Yt,d), one first updates Yt,1 from the conditional density f1|61(· |
Yt,2, . . . , Yt,d), then Yt,2 from the conditional density f2|62(· | Yt+1,1, Yt,3, . . . , Yt,d), and
so on. Until at last one updates Yt,d from fd|6d(· | Yt+1,1, . . . , Yt+1,d−1). By sampling from
these proposal densities the acceptance probability is always equal to 1, so no acceptance
step is needed.

An important property of a Markov chain is its ergodicity. Informally, ergodicity mea-
sures the how quickly the Markov chain mixes and thus how soon the dependency of the
chain dies out. This is a highly desired property since good mixing speeds up the conver-
gence of the Markov chain.

1.3 Markov chain Monte Carlo in rare-event simulation

In this section we describe a new rare-event simulation methodology based on Markov
chain Monte Carlo (MCMC). The new methodology results in a new estimator for com-
puting probabilities of rare events, called the MCMC estimator. This technique is the main
contribution of this thesis and the estimator is proved to be efficient in several different
settings.

1.3.1 Formulation

Let X be a real-valued random variable with distribution F and density f with respect to
the Lebesgue measure. The problem is to compute the probability

p = P(X ∈ A) =

∫
A

dF . (1.1)

The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA be the
conditional distribution of X given X ∈ A. The density of FA is given by

dFA
dx

(x) =
f(x)I{x ∈ A}

p
. (1.2)
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Consider a Markov chain (Xt)t≥0 with invariant density given by (1.2). Such a Markov
chain can be constructed by implementing an MCMC algorithm such as a Gibbs sampler
or a Metropolis-Hastings algorithm, see e.g. [2, 17].

To construct an estimator for the normalising constant p, consider a non-negative func-
tion v, which is normalised in the sense that

∫
A
v(x)dx = 1. The function v will be chosen

later as part of the design of the estimator. For any choice of v the sample mean,

1

T

T−1∑
t=0

v(Xt)I{Xt ∈ A}
f(Xt)

,

can be viewed as an estimate of

EFA

[
v(X)I{X ∈ A}

f(X)

]
=

∫
A

v(x)

f(x)

f(x)

p
dx =

1

p

∫
A

v(x)dx =
1

p
.

Thus,

q̂T =
1

T

T−1∑
t=0

u(Xt), where u(Xt) =
v(Xt)I{Xt ∈ A}

f(Xt)
, (1.3)

is an unbiased estimator of q = p−1. Then p̂T = q̂−1
T is an estimator of p.

The expected value above is computed under the invariant distributionFA of the Markov
chain. It is implicitly assumed that the sample size T is sufficiently large that the burn-in
period, the time until the Markov chain reaches stationarity, is negligible or, alternatively,
that the burn-in period is discarded. Another remark is that it is theoretically possible that
all the terms in the sum in (1.3) are zero, leading to the estimate q̂T = 0 and then p̂T =∞.
To avoid such nonsense one can simply take p̂T as the minimum of q̂−1

T and one.
There are two essential design choices that determine the performance of the algo-

rithm: the choice of the function v and the design of the MCMC sampler. The function v
influences the variance of u(Xt) in (1.3) and is therefore of main concern for controlling
the rare-event properties of the algorithm. It is desirable to take v such that the normalised
variance of the estimator, given by p2 Var(q̂T ), is not too large. The design of the MCMC
sampler, on the other hand, is crucial to control the dependence of the Markov chain and
thereby the convergence rate of the algorithm as a function of the sample size. To speed up
simulation it is desirable that the Markov chain mixes fast so that the dependence dies out
quickly.

1.3.2 Controlling the normalised variance

This section contains a discussion on how to control the performance of the estimator q̂T
by controlling its normalised variance.

For the estimator q̂T to be useful it is of course important that its variance is not too
large. When the probability p to be estimated is small it is reasonable to ask that Var(q̂T ) is
of size comparable to q2 = p−2, or equivalently, that the standard deviation of the estimator
is roughly of the same size as p−1. To this end the normalised variance p2 Var(q̂T ) is
studied.
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Let us consider Var(q̂T ). With

u(x) =
v(x)I{x ∈ A}

f(x)
,

it follows that

p2 VarFA(q̂T ) = p2 VarFA

( 1

T

T−1∑
t=0

u(Xt)
)

= p2
( 1

T
VarFA(u(X0)) +

2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA(u(Xs), u(Xt))
)

, (1.4)

Let us for the moment focus our attention on the first term. It can be written as

p2

T
VarFA

(
u(X0)

)
=

p2

T

(
EFA

[
u(X0)2

]
−EFA

[
u(X0)

]2)
=

p2

T

(∫ ( v(x)

f(x)
I{x ∈ A}

)2

FA(dx)− 1

p2

)
=

p2

T

(∫ v2(x)

f2(x)
I{x ∈ A}f(x)

p
dx− 1

p2

)
=

1

T

(∫
A

v2(x)p

f(x)
dx− 1

)
.

Therefore, in order to control the normalised variance the function v must be chosen
so that

∫
A
v2(x)
f(x) dx is close to p−1. An important observation is that the conditional density

(1.2) plays a key role in finding a good choice of v. Letting v be the conditional density in
(1.2) leads to ∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ A}
p2f(x)

dx =
1

p2

∫
A

f(x)dx =
1

p
,

which implies,
p2

T
VarFA

(
u(X)

)
= 0.

This motivates taking v as an approximation of the conditional density (1.2). This is similar
to the ideology behind choosing an efficient importance sampling estimator.

If for some set B ⊂ A the probability P(X ∈ B) can be computed explicitly, then a
candidate for v is

v(x) =
f(x)I{x ∈ B}
P(X ∈ B)

,

the conditional density of X given X ∈ B. This candidate is likely to perform well if
P(X ∈ B) is a good approximation of p. Indeed, in this case∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ B}
P(X ∈ B)2f(x)

dx =
1

P(X ∈ B)2

∫
B

f(x)dx =
1

P(X ∈ B)
,
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which will be close to p−1.
Now, let us shift emphasis to the covariance term in (1.4). As the samples (Xt)

T−1
t=0

form a Markov chain the Xt’s are dependent. Therefore the covariance term in (1.4) is
non-zero and may not be ignored. The crude upper bound

CovFA(u(Xs), u(Xt)) ≤ VarFA(u(X0)),

leads to the upper bound

2p2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA(u(Xs), u(Xt)) ≤ p2
(

1− 1

T

)
VarFA(u(X0))

for the covariance term. This is a very crude upper bound as it does not decay to zero as
T →∞. But, at the moment, the emphasis is on small p so we will proceed with this upper
bound anyway. As indicated above the choice of v controls the term p2 VarFA(u(X0)). We
conclude that the normalised variance (1.4) of the estimator q̂T is controlled by the choice
of v when p is small.

1.3.3 Ergodic properties

As we have just seen the choice of the function v controls the normalised variance of the
estimator for small p. The design of the MCMC sampler, on the other hand, determines
the strength of the dependence in the Markov chain. Strong dependence implies slow
convergence which results in a high computational cost. The convergence rate of MCMC
samplers can be analysed within the theory of ϕ-irreducible Markov chains. Fundamental
results for ϕ-irreducible Markov chains are given in [26, 28]. We will focus on conditions
that imply a geometric convergence rate. The conditions given below are well studied in the
context of MCMC samplers. Conditions for geometric ergodicity in the context of Gibbs
samplers have been studied by e.g. [9, 32, 33], and for Metropolis-Hastings algorithms by
[24].

A Markov chain (Xt)t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt = x) is
ϕ-irreducible if there exists a measure ϕ such that

∑
t p

(t)(x, ·)� ϕ(·), where p(t)(x, ·) =
P(Xt ∈ · | X0 = x) denotes the t-step transition kernel and� denotes absolute continu-
ity. A Markov chain with invariant distribution π is called geometrically ergodic if there
exists a positive function M and a constant r ∈ (0, 1) such that

‖p(t)(x, ·)− π(·)‖TV ≤M(x)rt, (1.5)

where ‖ · ‖TV denotes the total-variation norm. This condition ensures that the distribution
of the Markov chain converges at a geometric rate to the invariant distribution. If the
function M is bounded, then the Markov chain is said to be uniformly ergodic. Conditions
such as (1.5) may be difficult to establish directly and are therefore substituted by suitable
minorisation or drift conditions. A minorisation condition holds on a set C if there exist a
probability measure ν, a positive integer t0, and δ > 0 such that

p(t0)(x,B) ≥ δν(B),
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for all x ∈ C and Borel sets B. In this case C is said to be a small set. Minorisation
conditions have been used for obtaining rigorous bounds on the convergence of MCMC
samplers, see e.g. [30].

If the entire state space is small, then the Markov chain is uniformly ergodic. Uniform
ergodicity does typically not hold for Metropolis samplers, see Mengersen and Tweedie
in [24] Theorem 3.1. Therefore useful sufficient conditions for geometric ergodicity are
often given in the form of drift conditions [9, 24]. Drift conditions, established through
the construction of appropriate Lyapunov functions, are also useful for establishing central
limit theorems for MCMC algorithms, see [22, 26] and the references therein.

1.3.4 Efficiency of the MCMC algorithm

Roughly speaking, the arguments given above lead to the following desired properties of
the estimator.

1. Rare event efficiency: Construct an unbiased estimator q̂T of p−1 according to (1.3)
by finding a function v which approximates the conditional density (1.2). The choice
of v controls the normalised variance of the estimator.

2. Large sample efficiency: Design the MCMC sampler, by finding an appropriate
Gibbs sampler or a proposal density in the Metropolis-Hastings algorithm, such that
the resulting Markov chain is geometrically ergodic.

1.4 Summary of papers

Paper 1: Markov chain Monte Carlo for computing rare-event probabilities
for a heavy-tailed random walk

In this paper we provide the general framework of the Markov chain Monte Carlo sim-
ulation to effectively compute rare-event probabilities. The two design choices are high-
lighted, which determine the performance of the MCMC estimator. The first one is the
design of the MCMC sampler which ensures the large sample efficiency and the second
one is the choice of the distribution

∫
v(x)dx for the v described earlier in Section 1.3.

The MCMC methodology is exemplified in the paper with two applications. The first
application is the heavy-tailed random walk Sn = Y1 + · · · + Yn and the problem of
computing

p(n) = P(Sn/n > an),

where an → ∞ sufficiently fast so that the probability tends to zero and the distribution
of the increments Y is assumed to be heavy-tailed. We present a Gibbs sampler which
generates a Markov chain (Y(n)

t )t≥0, where Y(n)
t = (Yt,1, . . . , Yt,n), whose invariant dis-

tribution is the conditional

F (n)
an = P

(
(Y1, . . . , Yn) ∈ · | Sn/n > an

)
.

The Markov chain is proved to preserve stationarity and to be uniformly ergodic.
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For a given sample (Y(n)
t )t≥0 the MCMC estimator q̂(n)

T is by construction defined by

q̂
(n)
T =

1

T

T−1∑
t=0

u(Yt), u(Y(n)) =
dV (n)

dF (n)
(Y(n)),

where the distribution V (n) is defined as

V (n)(·) = P
(
(Y1, . . . , Yn) ∈ · | max{Y1, . . . , Yn} > an

)
.

This choice of V (n) is motivated by the heavy-tail assumption of Y since that implies
that P(Sn/n > an)/P(max{Y1, . . . , Yn} > an) → 1 as n → ∞, making V (n) a good
asymptotic approximation of the zero-variance distribution F (n)

an . The MCMC estimator is
rewritten as

q̂
(n)
T = P

(
max{Y1, . . . , Yn} > an

)−1 1

T

T−1∑
t=0

I
{ n∨
i=1

Yt,i > an

}
,

where the first factor can be interpreted as the asymptotic approximation of 1/p(n) and the
second factor is the stochastic correction term.

The ergodicity of the Markov chain produced by the Gibbs sampler implies that

Var
F

(n)
a

(q
(n)
T )→ 0, as T →∞,

thus ensuring the estimator’s large sample efficiency. Moreover, the main result Theorem
2.4.6 shows that the estimator has vanishing relative error and is thereby rare-event effi-
cient. Numerical experiments are performed on the MCMC estimator and compared to
importance sampling algorithms and standard Monte Carlo.

The second application is the heavy-tailed random sum SN = Y1 + · · ·YN and the
problem of computing

p(n) = P(Y1 + · · ·+ YNn > an),

where N is a random variable and an → ∞ sufficiently fast so that the probability tends
to zero. The distribution of the increments Y is assumed to be heavy-tailed. The solution
approach is similar to that of random walk save for the design of the Gibbs sampler and
the choice of V (n). The Gibbs sampler takes into the account the new random number
N and an extra step is inserted into the algorithm sampling N correctly such that the
resulting Markov chain both preserves stationarity and is uniformly ergodic. The V (n) in
this application is chosen to be

P
(
(N,Y1, . . . , YN ) ∈ · | max{Y1, . . . , YN} > an

)
.

The ergodicity of the Markov chain again ensure that the variance of the estimator tends
to zero as sample size increase. By Theorem 2.4.11 the estimator has vanishing relative
error. Numerical experiments are performed and compared to that of importance sampling
and standard Monte Carlo. From viewing the numerical results we draw the conclusion
that for small probabilities, around 10−2 and smaller, the MCMC estimator outperforms
the importance sampling estimator.
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Paper 2: Markov chain Monte Carlo for rare-event simulation for stochastic
recurrence equations with heavy-tailed innovations

This paper continues the development of rare-event simulation techniques based on MCMC
sampling. Motivated by the positive results from Paper 1, we investigate the MCMC
methodology for broader set of models. Although, the application in this paper restrict
itself to the heavy-tailed setting as in the previous paper.

The MCMC methodology is developed to the setting of solutions to stochastic recur-
rence equations with heavy-tailed innovations. The MCMC methodology is applied to the
problem of computing p(n) = P(Xm > an), where

Xk = AkXk−1 +Bk, for k = 1, . . . ,m,
X0 = 0,

and an →∞ as n→∞. The tail of the increments B are assumed to be regularly varying
of index −α < 0 and E[Aα+ε] < ∞ for some ε > 0. We present a Gibbs sampler which
generates a Markov chain (At,Bt)t≥0, where (At,Bt) = (At,1, . . . , At,m, Bt,1, . . . , Bt,m),
whose invariant distribution is the conditional distribution

F (n)
an = P

(
(A2, . . . , Am, B1, . . . , Bm) ∈ · | Xm > an

)
.

The sampler updates the variables sequentially, ensuring in each step that the updating
preserves Xm > an. The Markov chain is shown to be stationary and uniformly ergodic.

Motivated by the heavy-tail assumption on the distribution of the innovationsB and the
light-tail behaviour of A we use the following as an asymptotic approximation of {Xm >
an},

R(n) =

m⋃
k=1

R
(n)
k , where R

(n)
k = {Am · · ·Ak+1Bk > cn, Am, . . . , Ak+1 > a}.

The probability of this event r(n) = P
(
(A,B) ∈ R(n)

)
can be computed explicitly

using the inclusion-exclusion formula and for a given sample from the Markov chain
(A0,B0), . . . , (AT−1,BT−1), the MCMC estimator is given by

q̂
(n)
T = (r(n))−1 1

T

T−1∑
t=0

I
{

(At,Bt) ∈ R(n)
}

.

The interpretation is again that the first term is the asymptotic approximation of the prob-
ability 1/p(n) and the second term is the stochastic correction factor.

The ergodicity of the Markov chain ensures that the variance of the estimator tends to
zero as sample size increases and the main result, Theorem 3.3.5, shows that the MCMC
estimator has vanishing relative error as n tends to infinity. Numerical experiments are
performed on the MCMC estimator and compared to existing importance sampling algo-
rithms for the problem. The numerical performance of the MCMC estimator is reasonable
but displays some problem with the burn-in of the MCMC sampling.
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Moreover, this paper presents an example in the context of the capital requirements
for an insurance company with risky investments. The company’s reserves are modelled
using a stochastic recurrence equations where the As are interpreted as the random return
on the company’s capital and the Bs are the claim amounts. The discounted loss process
is described in terms of A and B and the MCMC methodology is applied to the problem
of computing the probability of ruin.

Paper 3: Markov chain Monte Carlo for rare-event simulation for
light-tailed random walk

Motivated by the success of designing effective MCMC algorithms for computing rare-
event probabilities in the heavy-tailed context we considered how the methodology can be
extended to cover the light-tailed setting. In the light-tailed setting we rely on logarith-
mic large deviations and therefore emphasis is on logarithmic efficiency rather than strong
efficiency.

The application considered in this paper is a light-tailed random walk Sn = Y1 + · · ·+
Yn and the problem of efficiently computing

p(n) = P(Sn/n > a),

as n → ∞. We consider two cases in this paper; when the increments are supported
on RÊand when they are supported only on R+. The distribution of the increments Y
is assumed to be light-tailed such that Λ(θ) = logE[eθY ] < ∞ for some θ > 0 which
implies the existence of a large deviation principle. In particular we assume that

− lim
n→∞

1

n
log p(n) = I(a),

where I is the Fenchel-Legendre transform of the Λ, namely I(a) = supθ∈R{θa−Λ(θ)}.
We identify the zero-variance distribution as the conditional distribution given by

F (n)
a (·) = P

(
(Y1, . . . , Yn) ∈ · | Sn/n > a

)
,

and we present a Gibbs sampler that generates a Markov chain (Y(n)
t )t≥0, where Y(n)

t =

(Yt,1, . . . , Yt,n), whose invariant distribution is F (n)
a . The Markov chain is shown to pre-

serve stationarity and be uniformly ergodic.
The MCMC estimator is defined in terms of a distribution V (n) as follows,

q̂
(n)
T =

1

T

T−1∑
t=0

u(Y(n)
t ), u(Y(n)) =

dV (n)

dF (n)
(Y(n)).

As motivated in Section 1.3 the distribution V (n) is chosen as an asymptotic approximation
of F (n)

a . For the case when the support of the increments is R then we define

V (n)(·) = P
(
(Z1, . . . , Zn) ∈ · | (Z1 + · · ·+ Zn)/n > a

)
,
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where the Z’s are independent and identically normal distributed variables with mean µ
and standard deviation σ. The normalising constant of V (n) can be computed explicitly

r(n) = P
(
(Z1 + · · ·+ Zn)/n > a

)
= 1− Φ

( a− µ
σ/
√
n

)
,

where Φ is the standard normal probability distribution. The parameters are set such that
µ = E[Y ] and σ such that

− lim
n→∞

1

n
log r(n) = I(a),

that is, the rate function of {Zi} coincides with that of {Yi}. The MCMC estimator is
rewritten as

q̂
(n)
T = (r(n))−1 1

T

T−1∑
t=0

n∏
i=1

φµ,σ(Yt,i)

fY (Yt,i)
I
{ 1

n

n∑
i=1

Yt,i > a
}

.

For the case when the support of the increments is R+ we follow a similar procedure save
theZ’s are chosen as gamma distributed because the normalising constant can be computed
explicitly since the sum of gamma distributed variables is itself gamma distributed.

The ergodicity of the Markov chain ensures that the variance of the MCMC estima-
tor tends to zero as T → ∞ and the main results, Theorem 4.3.4 and Theorem 4.3.5,
characterise the efficiency of the MCMC estimator, giving exact which conditions need to
be fullfilled to ensure logarithmic efficiency. Numerical experiments are performed and
compare the output of the MCMC estimator to importance sampling estimator and Monte
Carlo. The MCMC estimator performs comparably with the strongly efficient importance
sampling algorithm, both for the R support case and the R+ support case.

Paper 4: Markov chain Monte Carlo for rare-event simulation for Markov
chains

In this paper we continue the study of the MCMC methodology in the light-tailed setting.
The models considered in this paper are discrete-time Markov chains and continuous-time
Markov chains.

In the first part of the paper we consider the implementation of the MCMC methodol-
ogy for a discrete-time Markov chain (X

(n)
i )i≥0 with a given initial value X(n)

0 = x0. The
problem considered is the computation of expectations on the form

θ(n) = E[e−nh0(X(n))],

where X(n) is the linearly interpolated version of (X
(n)
i )ni=0 and h0 is a bounded continu-

ous mapping C ([0, 1];Rd)→ R. We identify the zero-variance distribution given by

F
(n)
h0

(·) =
E[I{X(n) ∈ ·}e−nh0(X(n))]

θ(n)
,
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and present a Metropolis-Hastings algorithm which generates a C ([0, 1];Rd)-valued Markov
chain whose invariant distribution is F (n)

h0
.

Under certain conditions it follows that the Markov chain X(n) satisfies a Laplace
principle which is used to define the MCMC estimator. By construction of the Metropolis-
Hastings algorithm the estimator is large sample efficient and Theorem 5.3.2 characterise
the efficiency of the estimator.

In the second part of the paper a similar analysis is completed for continuous-time
Markov chain. A Metropolis-Hastings algorithm is designed such that it constructs a
Markov chain having the zero-variance distributions as its invariant distribution. Then
an MCMC estimator is defined and its efficiency is characterised.

The paper is conclude with the example of a birth-and-death process in continuous-time
and spatial dependent intensities. We consider the first passage problem

p(n) = P( sup
t∈[0,T ]

X(n)(t) > a),

as n → ∞. Numerical experiments are performed on an example of birth-and-death pro-
cess and compared to standard Monte Carlo estimates.
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Abstract

In this paper a method based on a Markov chain Monte Carlo (MCMC) algorithm
is proposed to compute the probability of a rare event. The conditional distribution of
the underlying process given that the rare event occurs has the probability of the rare
event as its normalising constant. Using the MCMC methodology a Markov chain is
simulated, with that conditional distribution as its invariant distribution, and informa-
tion about the normalising constant is extracted from its trajectory. The algorithm is
described in full generality and applied to the problem of computing the probability
that a heavy-tailed random walk exceeds a high threshold. An unbiased estimator of
the reciprocal probability is constructed whose normalised variance vanishes asymp-
totically. The algorithm is extended to random sums and its performance is illustrated
numerically and compared to existing importance sampling algorithms.

2.1 Introduction

In this paper a Markov chain Monte Carlo (MCMC) methodology is proposed for comput-
ing the probability of a rare event. The basic idea is to use an MCMC algorithm to sample
from the conditional distribution given the event of interest and then extract the probability
of the event as the normalising constant. The methodology will be outlined in full gen-
erality and exemplified in the setting of computing hitting probabilities for a heavy-tailed
random walk.

A rare-event simulation problem can often be formulated as follows. Consider a se-
quence of random elements X(1), X(2), . . . , possibly multidimensional, each of which
can be sampled repeatedly by a simulation algorithm. The objective is to estimate p(n) =

P(X(n) ∈ A), for some large n, based on a sample X(n)
0 , . . . , X

(n)
T−1. It is assumed that
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the probability P(X(n) ∈ A) → 0, as n → ∞, so that the event {X(n) ∈ A} can be
thought of as rare. The solution to the problem consists of finding a family of simulation
algorithms and corresponding estimators whose performance is satisfactory for all n. For
unbiased estimators p̂(n)

T of p(n) a useful performance measure is the relative error:

RE(n) =
Var(p̂

(n)
T )

(p(n))2
.

An algorithm is said to have vanishing relative error if the relative error tends to zero as
n→∞ and bounded relative error if the relative error is bounded in n.

It is well known that the standard Monte Carlo algorithm is inefficient for computing
rare-event probabilities. As an illustration, consider the standard Monte Carlo estimate

p̂
(n)
T =

1

T

T−1∑
t=0

I{X(n)
t ∈ A},

of p(n) = P(X(n) ∈ A) based on independent replicates X(n)
0 , . . . , X

(n)
T−1. The relative

error of the Monte Carlo estimator is

Var(p̂
(n)
T )

(p(n))2
=
p(n)(1− p(n))

T (p(n))2
=

1

Tp(n)
− 1

T
→∞,

as n→∞, indicating that the performance deteriorates when the event is rare.
A popular method to reduce the computational cost is importance sampling, see e.g.

[3]. In importance sampling the random variables X(n)
0 , . . . , X

(n)
T−1 are sampled indepen-

dently from a different distribution, sayG(n), instead of the original distribution F (n). The
importance sampling estimator is defined as a weighted empirical estimator,

p̂
(n)
T =

1

T

T−1∑
t=0

L(n)(X
(n)
t )I{X(n)

t ∈ A},

where L(n) = dF (n)/dG(n) is the likelihood ratio, which is assumed to exist on A. The
importance sampling estimator p̂(n)

T is unbiased and its performance depends on the choice
of the sampling distribution G(n). The optimal sampling distribution is called the zero-
variance distribution and is simply the conditional distribution,

F
(n)
A (·) = P(X(n) ∈ · | X(n) ∈ A) =

P(X(n) ∈ · ∩A)

p(n)
.

In this case the likelihood ratio weights L(n) are equal to p(n) which implies that p̂(n)
T has

zero variance. Clearly, the zero-variance distribution cannot be implemented in practice,
because p(n) is unknown, but it serves as a starting point for selecting the sampling dis-
tribution. A good idea is to choose a sampling distribution G(n) that approximates the
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zero-variance distribution and such that the random variable X(n) can easily be sampled
from G(n), the event {X(n) ∈ A} is more likely under the sampling distribution G(n)

than under the original F (n), and the likelihood ratio L(n) is unlikely to become too large.
Proving efficiency (e.g. bounded relative error) of an importance sampling algorithm can
be technically cumbersome and often requires extensive analysis.

The methodology proposed in this paper is also based on the conditional distribution
F

(n)
A . Because F (n)

A is known up to the normalising constant p(n) it is possible to sample
from F

(n)
A using an MCMC algorithm such as a Gibbs sampler or Metropolis-Hastings

algorithm. The idea is to generate samples X(n)
0 , . . . , X

(n)
T−1 from a Markov chain with

stationary distribution F (n)
A and construct an estimator of the normalising constant p(n).

An unbiased estimator of (p(n))−1 is constructed from a known probability density v(n)

on A and the original density f (n) of X(n) by

q̂
(n)
T =

1

T

T−1∑
t=0

v(n)(X
(n)
t )I{X(n)

t ∈ A}
f (n)(X

(n)
t )

. (2.1)

The performance of the estimator depends both on the choice of the density v(n) and on the
ergodic properties of the MCMC sampler used in the implementation. Roughly speaking
the rare-event properties, as n → ∞, are controlled by the choice of v(n) and the large
sample properties, as T → ∞, are controlled by the ergodic properties of the MCMC
sampler.

The computation of normalising constants and ratios of normalising constants in the
context of MCMC is a reasonably well studied problem in the statistical literature, see e.g.
[11] and the references therein. However, such methods have, to the best of our knowledge,
not been studied in the context of rare-event simulation.

To exemplify the MCMC methodology we consider the problem of computing the
probability that a random walk Sn = Y1 + · · · + Yn, where Y1, . . . , Yn are nonnegative,
independent, and heavy-tailed random variables, exceeds a high threshold an, as number
of summands n increases. This problem has received some attention in the context of
conditional Monte Carlo algorithms [2, 4] and importance sampling algorithms [15, 10, 6,
5], most notably in the setting of fixed number of summands.

In this paper a Gibbs sampler is presented for sampling from the conditional distri-
bution P((Y1, . . . , Yn) ∈ · | Sn > an). The resulting Markov chain is proved to be
uniformly ergodic. An estimator for (p(n))−1 of the form (2.1) is suggested with v(n) as
the conditional density of (Y1, . . . , Yn) given max{Y1, . . . , Yn} > an. The estimator is
proved to have vanishing normalised variance when the distribution of Y1 belongs to the
class of subexponential distributions. The proof is elementary and is completed in a few
lines. This is in sharp contrast to efficiency proofs for importance sampling algorithms for
the same problem, which require more restrictive assumptions on the tail of Y1 and tend
to be long and technical [10, 6, 5]. An extension of the algorithm to a sum with a random
number of steps is also presented.

Here follows an outline of the paper. The basic methodology and a heuristic efficiency
analysis for computing rare-event probabilities is described in Section 2.2. The general



26 RARE-EVENT SIMULATION WITH MCMC

formulation for computing expectations is given in Section 2.3 along with a precise for-
mulation of the efficiency criteria. Section 2.4 contains the design and efficiency results
for the estimator for computing hitting probabilities for a heavy-tailed random walk, with
deterministic and random number of steps. Section 2.5 presents numerical experiments
and compares the efficiency of the MCMC estimator against an existing importance sam-
pling algorithm and standard Monte Carlo. The MCMC estimator has strikingly better
performance than existing importance sampling algorithms.

2.2 Computing rare-event probabilities by Markov chain Monte
Carlo

In this section an algorithm for computing rare-event probabilities using Markov chain
Monte Carlo (MCMC) is presented and conditions that ensure good convergence are dis-
cussed in a heuristic fashion. A more general version of the algorithm, for computing
expectations, is provided in Section 2.3 along with a precise asymptotic efficiency criteria.

2.2.1 Formulation of the algorithm

Let X be a real-valued random variable with distribution F and density f with respect to
the Lebesgue measure. The problem is to compute the probability

p = P(X ∈ A) =

∫
A

dF . (2.2)

The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA be the
conditional distribution of X given X ∈ A. The density of FA is given by

dFA
dx

(x) =
f(x)I{x ∈ A}

p
. (2.3)

Consider a Markov chain (Xt)t≥0 density is given by (2.3). Such a Markov chain can be
constructed by implementing an MCMC algorithm such as a Gibbs sampler or a Metropolis-
Hastings algorithm, see e.g. [3, 12].

To construct an estimator for the normalising constant p, consider a non-negative func-
tion v, which is normalised in the sense that

∫
A
v(x)dx = 1. The function v will be chosen

later as part of the design of the estimator. For any choice of v the sample mean,

1

T

T−1∑
t=0

v(Xt)I{Xt ∈ A}
f(Xt)

,

can be viewed as an estimate of

EFA

[
v(X)I{X ∈ A}

f(X)

]
=

∫
A

v(x)

f(x)

f(x)

p
dx =

1

p

∫
A

v(x)dx =
1

p
.
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Thus,

q̂T =
1

T

T−1∑
t=0

u(Xt), where u(Xt) =
v(Xt)I{Xt ∈ A}

f(Xt)
, (2.4)

is an unbiased estimator of q = p−1. Then p̂T = q̂−1
T is an estimator of p.

The expected value above is computed under the invariant distributionFA of the Markov
chain. It is implicitly assumed that the sample size T is sufficiently large that the burn-in
period, the time until the Markov chain reaches stationarity, is negligible or alternatively
that the burn-in period is discarded. Another remark is that it is theoretically possible that
all the terms in the sum in (2.4) are zero, leading to the estimate q̂T = 0 and then p̂T =∞.
To avoid such nonsense one can simply take p̂T as the minimum of q̂−1

T and one.
There are two essential design choices that determine the performance of the algo-

rithm: the choice of the function v and the design of the MCMC sampler. The function v
influences the variance of u(Xt) in (2.4) and is therefore of main concern for controlling
the rare-event properties of the algorithm. It is desirable to take v such that the normalised
variance of the estimator, given by p2 Var(q̂T ), is not too large. The design of the MCMC
sampler, on the other hand, is crucial to control the dependence of the Markov chain and
thereby the convergence rate of the algorithm as a function of the sample size. To speed up
simulation it is desirable that the Markov chain mixes fast so that the dependence dies out
quickly.

2.2.2 Controlling the normalised variance

This section contains a discussion on how to control the performance of the estimator q̂T
by controlling its normalised variance.

For the estimator q̂T to be useful it is of course important that its variance is not too
large. When the probability p to be estimated is small it is reasonable to ask that Var(q̂T ) is
of size comparable to q2 = p−2, or equivalently, that the standard deviation of the estimator
is roughly of the same size as p−1. To this end the normalised variance p2 Var(q̂T ) is
studied.

Let us consider Var(q̂T ). With

u(x) =
v(x)I{x ∈ A}

f(x)
,

it follows that

p2 VarFA(q̂T ) = p2 VarFA

( 1

T

T−1∑
t=0

u(Xt)
)

= p2
( 1

T
VarFA(u(X0)) +

2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA(u(Xs), u(Xt))
)

. (2.5)
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Let us for the moment focus our attention on the first term. It can be written as

p2

T
VarFA

(
u(X0)

)
=

p2

T

(
EFA

[
u(X0)2

]
−EFA

[
u(X0)

]2)
=

p2

T

(∫ ( v(x)

f(x)
I{x ∈ A}

)2

FA(dx)− 1

p2

)
=

p2

T

(∫ v2(x)

f2(x)
I{x ∈ A}f(x)

p
dx− 1

p2

)
=

1

T

(∫
A

v2(x)p

f(x)
dx− 1

)
.

Therefore, in order to control the normalised variance the function v must be chosen
so that

∫
A
v2(x)
f(x) dx is close to p−1. An important observation is that the conditional density

(2.3) plays a key role in finding a good choice of v. Letting v be the conditional density in
(2.3) leads to ∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ A}
p2f(x)

dx =
1

p2

∫
A

f(x)dx =
1

p
,

which implies,
p2

T
VarFA

(
u(X)

)
= 0.

This motivates taking v as an approximation of the conditional density (2.3). This is similar
to the ideology behind choosing an efficient importance sampling estimator.

If for some set B ⊂ A the probability P(X ∈ B) can be computed explicitly, then a
candidate for v is

v(x) =
f(x)I{x ∈ B}
P(X ∈ B)

;

the conditional density of X given X ∈ B. This candidate is likely to perform well if
P(X ∈ B) is a good approximation of p. Indeed, in this case∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ B}
P(X ∈ B)2f(x)

dx =
1

P(X ∈ B)2

∫
B

f(x)dx =
1

P(X ∈ B)
,

which will be close to p−1.
Now, let us shift emphasis to the covariance term in (2.5). As the samples (Xt)

T−1
t=0

form a Markov chain the Xt’s are dependent. Therefore the covariance term in (2.5) is
non-zero and may not be ignored. The crude upper bound

CovFA(u(Xs), u(Xt)) ≤ VarFA(u(X0)),

leads to the upper bound

2p2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA(u(Xs), u(Xt)) ≤ p2
(

1− 1

T

)
VarFA(u(X0))
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for the covariance term. This is a very crude upper bound as it does not decay to zero as
T →∞. But, at the moment, the emphasis is on small p so we will proceed with this upper
bound anyway. As indicated above the choice of v controls the term p2 VarFA(u(X0)). We
conclude that the normalised variance (2.5) of the estimator q̂T is controlled by the choice
of v when p is small.

2.2.3 Ergodic properties

As we have just seen the choice of the function v controls the normalised variance of the
estimator for small p. The design of the MCMC sampler, on the other hand, determines
the strength of the dependence in the Markov chain. Strong dependence implies slow
convergence which results in a high computational cost. The convergence rate of MCMC
samplers can be analysed within the theory of ϕ-irreducible Markov chains. Fundamental
results for ϕ-irreducible Markov chains are given in [18, 19]. We will focus on conditions
that imply a geometric convergence rate. The conditions given below are well studied in the
context of MCMC samplers. Conditions for geometric ergodicity in the context of Gibbs
samplers have been studied by e.g. [7, 21, 22], and for Metropolis-Hastings algorithms by
[17].

A Markov chain (Xt)t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt = x) is
ϕ-irreducible if there exists a measure ϕ such that

∑
t p

(t)(x, ·)� ϕ(·), where p(t)(x, ·) =
P(Xt ∈ · | X0 = x) denotes the t-step transition kernel and� denotes absolute continu-
ity. A Markov chain with invariant distribution π is called geometrically ergodic if there
exists a positive function M and a constant r ∈ (0, 1) such that

‖p(t)(x, ·)− π(·)‖TV ≤M(x)rt, (2.6)

where ‖ · ‖TV denotes the total-variation norm. This condition ensures that the distribution
of the Markov chain converges at a geometric rate to the invariant distribution. If the
function M is bounded, then the Markov chain is said to be uniformly ergodic. Conditions
such as (2.6) may be difficult to establish directly and are therefore substituted by suitable
minorisation or drift conditions. A minorisation condition holds on a set C if there exist a
probability measure ν, a positive integer t0, and δ > 0 such that

p(t0)(x,B) ≥ δν(B),

for all x ∈ C and Borel sets B. In this case C is said to be a small set. Minorisation
conditions have been used for obtaining rigorous bounds on the convergence of MCMC
samplers, see e.g. [20].

If the entire state space is small, then the Markov chain is uniformly ergodic. Uniform
ergodicity does typically not hold for Metropolis samplers, [17] Theorem 3.1. Therefore
useful sufficient conditions for geometric ergodicity are often given in the form of drift
conditions [7, 17]. Drift conditions, established through the construction of appropriate
Lyapunov functions, are also useful for establishing central limit theorems for MCMC
algorithms, see [14, 18] and the references therein. When studying simulation algorithms
for random walks, in Section 2.4, we will encounter Gibbs samplers that are uniformly
ergodic.
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2.2.4 Heuristic efficiency criteria

To summarise, the heuristic arguments given above lead to the following desired properties
of the estimator.

1. Rare event efficiency: Construct an unbiased estimator q̂T of p−1 according to (2.4)
by finding a function v which approximates the conditional density (2.3). The choice
of v controls the normalised variance of the estimator.

2. Large sample efficiency: Design the MCMC sampler, by finding an appropriate
Gibbs sampler or a proposal density in the Metropolis-Hastings algorithm, such that
the resulting Markov chain is geometrically ergodic.

2.3 The general formulation of the algorithm

In the previous section an estimator, based on Markov chain Monte Carlo, was introduced
for computing the probability of a rare event. In this section the same ideas are applied to
the problem of computing an expectation. Here the setting is somewhat more general. For
instance, there is no assumption that densities with respect to Lebesgue measure exist.

Let X be a random variable with distribution F and h be a non-negative F -integrable
function. The problem is to compute the expectation

θ = E
[
h(X)

]
=

∫
h(x)dF (x).

In the special case when F has density f and h(x) = I{x ∈ A} this problem reduces to
computing the probability in (2.2).

The analogue of the conditional distribution in (2.3) is the distribution Fh given by

Fh(B) =
1

θ

∫
B

h(x)dF (x), for measurable sets B.

Consider a Markov chain (Xt)t≥0 having Fh as its invariant distribution. To define an
estimator of θ−1, consider a probability distribution V with V � Fh. Then it follows that
V � F and it is assumed that the density dV/dF is known. Consider the estimator of
ζ = θ−1 given by

ζ̂T =
1

T

T−1∑
t=0

u(Xt), where u(x) =
1

θ

dV

dFh
(x). (2.7)

Note that u does not depend on θ because V � Fh and therefore

u(x) =
1

θ

dV

dFh
(x) =

1

h(x)

dV

dF
(x),

for x such that h(x) > 0. The estimator (2.7) is a generalisation of the estimator (2.4)
where one can think of v as the density of V with respect to Lebesgue measure. An
estimator of θ can then constructed as θ̂T = ζ̂−1

T .
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The variance analysis of ζ̂T follows precisely the steps outlined above in Section 2.2.
The normalised variance is

θ2 VarFh(ζ̂T ) =
θ2

T
VarFh

(
u(X0)

)
+

2θ2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFh
(
u(Xs), u(Xt)

)
, (2.8)

where the first term can be rewritten, similarly to the display below (2.5), as

θ2

T
VarFh

(
u(X0)

)
=

1

T

(
EV

[ dV
dFh

]
− 1
)

.

The analysis above indicates that an appropriate choice of V is such that EV [ dVdFh ] is close
to 1. Again, the ideal choice would be taking V = Fh leading to zero variance. This
choice is not feasible but nevertheless suggests selecting V as an approximation of Fh. As
already noted this is similar to the ideology behind choosing an efficient importance sam-
pling estimator. The difference being that here V � F is required whereas in importance
sampling F needs be absolutely continuous with respect to the sampling distribution. The
crude upper bound for the covariance term in (2.8) is valid, just as in Section 2.2.

2.3.1 Asymptotic efficiency criteria

Asymptotic efficiency can be conveniently formulated in terms of a limit criteria as a large
deviation parameter tends to infinity. As is customary in problems related to rare-event
simulation the problem at hand is embedded in a sequence of problems, indexed by n =
1, 2, . . . . The general setup is formalised as follows.

Let (X(n))n≥1 be a sequence of random variables with X(n) having distribution F (n).
Let h be a non-negative function, integrable with respect to F (n), for each n. Suppose

θ(n) = E
[
h(X(n))

]
=

∫
h(x)dF (n)(x)→ 0,

as n→∞. The problem is to compute θ(n) for some large n.
Denote by F (n)

h the distribution with dF (n)
h /dF (n) = h/θ(n). For the nth problem,

a Markov chain (X
(n)
t )T−1

t=0 with invariant distribution F (n)
h is generated by an MCMC

algorithm. The estimator of ζ(n) = (θ(n))−1 is based on a probability distribution V (n),
such that V (n) � F

(n)
h , with known density with respect to F (n). An estimator ζ̂(n)

T of ζ
is given by

ζ̂
(n)
T =

1

T

T−1∑
t=0

u(n)(X
(n)
t ),

where

u(n)(x) =
1

h(x)

dV (n)

dF (n)
(x).

The heuristic efficiency criteria in Sections 2.2 can now be rigorously formulated as
follows:
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1. Rare-event efficiency: Select the probability distributions V (n) such that

(θ(n))2 Var
F

(n)
h

(u(n)(X))→ 0, as n→∞.

2. Large sample size efficiency: Design the MCMC sampler, by finding an appropriate
Gibbs sampler or a proposal density for the Metropolis-Hastings algorithm, such
that, for each n ≥ 1, the Markov chain (X

(n)
t )t≥0 is geometrically ergodic.

Remark 2.3.1. The rare-event efficiency criteria is formulated in terms of the efficiency
of estimating (θ(n))−1 by ζ̂(n)

T . If one insists on studying the mean and variance of θ̂(n)
T =

(ζ̂
(n)
T )−1, then the effects of the transformation x 7→ x−1 must be taken into account. For

instance, the estimator θ̂(n)
T is biased and its variance could be infinite. The bias can be

reduced for instance via the delta method illustrated in [3, p. 76]. We also remark that even
in the estimation of (θ(n))−1 by ζ̂(n)

T there is a bias coming from the fact that the Markov
chain not being perfectly stationary.

2.4 A random walk with heavy-tailed steps

In this section the estimator introduced in Section 2.2 is applied to compute the probability
that a random walk with heavy-tailed steps exceeds a high threshold.

Let Y1, . . . , Yn be nonnegative independent and identically distributed random vari-
ables with common distribution FY and density fY with respect to some reference mea-
sure µ. Consider the random walk Sn = Y1 + · · ·+ Yn and the problem of computing the
probability

p(n) = P(Sn > an),

where an →∞ sufficiently fast that p(n) → 0 as n→∞.
It is convenient to denote by Y(n) the n-dimensional random vector

Y(n) = (Y1, . . . , Yn)T,

and the set

An = {y ∈ Rn : 1Ty > an},

where 1 = (1, . . . , 1)T ∈ Rn and y = (y1, . . . , yn)T. With this notation

p(n) = P(Sn > an) = P(1TY(n) > an) = P(Y(n) ∈ An).

The conditional distribution

F
(n)
An

(·) = P(Y(n) ∈ · | Y(n) ∈ An),

has density

dF
(n)
An

dµ
(y1, . . . , yn) =

∏n
j=1 fY (yj)I{y1 + · · ·+ yn > an}

p(n)
. (2.9)
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The first step towards defining the estimator of p(n) is to construct the Markov chain
(Y

(n)
t )t≥0 whose invariant density is given by (2.9) using a Gibbs sampler. In short, the

Gibbs sampler updates one element of Y(n)
t at a time keeping the other elements constant.

Formally the algorithm proceeds as follows.

Algorithm 2.4.1. Start at an initial state Y
(n)
0 = (Y0,1, . . . , Y0,n)T where Y0,1 + · · · +

Y0,n > an. Given Y
(n)
t = (Yt,1, . . . , Yt,n)T, for some t = 0, 1, . . ., the next state Y

(n)
t+1 is

sampled as follows:

1. Draw j1, . . . , jn from {1, . . . , n} without replacement and proceed by updating the
components of Y(n)

t in the order thus obtained.

2. For each k = 1, . . . , n, repeat the following.

a) Let j = jk be the index to be updated and write

Yt,−j = (Yt,1, . . . , Yt,j−1, Yt,j+1, . . . , Yt,n)T.

Sample Y ′t,j from the conditional distribution of Y given that the sum exceeds
the threshold. That is,

P(Y ′t,j ∈ · | Yt,−j) = P
(
Y ∈ · | Y +

∑
k 6=j

Yt,k > an

)
.

b) Put Y′t = (Yt,1, . . . , Yt,j−1, Y
′
t,j , Yt,j+1, . . . , Yt,n)T.

3. Draw a random permutation π of the numbers {1, . . . , n} from the uniform distribu-
tion and put Y(n)

t+1 = (Y ′t,π(1), . . . , Y
′
t,π(n))

T.

Iterate steps (1)-(3) until the entire Markov chain (Y
(n)
t )T−1

t=0 is constructed.

Remark 2.4.2. (i) In the heavy-tailed setting the trajectories of the random walk leading
to the rare event are likely to consist of one large increment (the big jump) while the other
increments are average. The purpose of the permutation step is to force the Markov chain
to mix faster by moving the big jump to different locations. However, the permutation step
in Algorithm 2.4.1 is not really needed when considering the probability P(Sn > an).
This is due to the fact that the summation is invariant of the ordering of the steps.

(ii) The algorithm requires sampling from the conditional distribution P(Y ∈ · | Y >
c) for arbitrary c. This is easy whenever inversion is feasible, see [3, p. 39], or accep-
tance/rejection sampling can be employed. There are, however, situations where sampling
from the conditional distribution P(Y ∈ · | Y > c) may be difficult, see [13, Section 2.2].

The following proposition confirms that the Markov chain (Y
(n)
t )t≥0, generated by

Algorithm 2.4.1, has F (n)
An

as its invariant distribution.
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Proposition 2.4.3. The Markov chain (Y
(n)
t )t≥0, generated by Algorithm 2.4.1, has the

conditional distribution F (n)
An

as its invariant distribution.

Proof. The goal is to show that each updating step (Step 2 and 3) of the algorithm preserves
stationarity. Since the conditional distribution F (n)

An
is permutation invariant it is clear that

Step 3 preserves stationarity. Therefore it is sufficient to consider Step 2 of the algorithm.
Let Pj(y, ·) denote the transition probability of the Markov chain (Y

(n)
t )t≥0 cor-

responding to the jth component being updated. It is sufficient to show that, for all
j = 1, . . . ,m and all Borel sets of product form B1 × · · · × Bn ⊂ An, the following
equality holds:

F
(n)
An

(B1 × · · · ×Bn) = E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)].

Observe that, because B1 × · · · ×Bn ⊂ An,

F
(n)
An

(B1 × · · · ×Bn) = E
[ n∏
k=1

I{Yk ∈ Bk} | Sn > an

]
=

E[I{Yj ∈ Bj}I{Sn > an}
∏
k 6=j I{Yk ∈ Bk}]

P(Sn > an)

=

E
[
E[I{Yj∈Bj}|Yj>an−Sn,−j ,Y(n)

−j ]
∏
k 6=j I{Yk∈Bk}

P(Yj>an−Sn,−j |Y(n)
−j )

]
P(Sn > an)

=
E[Pj(Y

(n), B1 × · · · ×Bn)
∏
k 6=j I{Yk ∈ Bk}]

P (Sn > an)

= E[Pj(Y
(n), B1 × · · · ×Bn) | Sn > an]

= E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)],

with the conventional notation of writing Y(n) = (Y1, . . . , Yn)T, Sn = Y1 + · · · + Yn,
Y

(n)
−j = (Y1, . . . , Yj−1, Yj+1, Yn)T and Sn,−j = Y1 + · · ·+ Yj−1 + Yj+1 + · · ·+ Yn.

As for the ergodic properties, Algorithm 2.4.1 produces a Markov chain which is uni-
formly ergodic.

Proposition 2.4.4. For each n ≥ 1, the Markov chain (Y
(n)
t )t≥0 is uniformly ergodic. In

particular, it satisfies the following minorisation condition: there exists δ > 0 such that

P(Y
(n)
1 ∈ B | Y(n)

0 = y) ≥ δF (n)
An

(B),

for all y ∈ An and all Borel sets B ⊂ An.
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Proof. Take an arbitrary n ≥ 1. Uniform ergodicity can be deduced from the following
minorisation condition (see [19]): there exists a probability measure ν, δ > 0, and an
integer t0 such that

P(Y
(n)
t0 ∈ B | Y

(n)
0 = y) ≥ δν(B),

for every y ∈ An and Borel set B ⊂ An. Take y ∈ An and write g( · | y) for the density
of P(Y

(n)
1 ∈ · | Y(n)

0 = y). The goal is to show that the minorisation condition holds
with t0 = 1, δ = p(n)/n!, and ν = F

(n)
An

.
For any x ∈ An there exists an ordering j1, . . . , jn of the numbers {1, . . . , n} such

that

yj1 ≤ xj1 , . . . , yjk ≤ xjk , yjk+1
> xjk+1

, . . . yjn > xjn ,

for some k ∈ {0, . . . , n}. The probability to draw this particular ordering in Step 1 of the
algorithm is at least 1/n!. It follows that

g(x | y) ≥ 1

n!

fY (xj1)I{xj1 ≥ an −
∑
i 6=j1 yi}

FY (an −
∑
i6=j1 yi)

×
fY (xj2)I{xj2 ≥ an −

∑
i 6=j1,j2 yi − xj1}

FY (an −
∑
i 6=j1,j2 yi − xj1)

...

×
fY (xjn)I{xjn ≥ an − xj1 − . . . xjn−1

}
FY (an − xj1 − . . . xjn−1)

.

By construction of the ordering j1, . . . , jn all the indicators are equal to 1 and the expres-
sion in the last display is bounded from below by

1

n!

n∏
j=1

fY (xj) =
p(n)

n!
·
∏n
j=1 fY (xj)I{x1 + · · ·+ xn > an}

p(n)
.

The proof is completed by integrating both sides of the inequality over any Borel set B ⊂
An.

Remark 2.4.5. To keep the proof of Proposition 2.4.4 simple, we have not used the per-
mutation step of the algorithm in the proof and not tried to optimise δ. By taking advantage
of the permutation step we believe that the constant δ could, with some additional effort,
be increased by a factor n!.

Note that so far the distributional assumption of steps Y1, . . . , Yn of the random walk
have been completely general. For the rare-event properties of the estimator the design of
V (n) is essential and this is where the distributional assumptions become important. In this
section a heavy-tailed random walk is considered. To be precise, assume that the variables
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Y1, . . . , Yn are nonnegative and that the tail of FY is heavy in the sense that there is a
sequence (an) of real numbers such that

lim
n→∞

P(Sn > an)

P(Mn > an)
= 1, (2.10)

whereMn denotes the maximum of Y1, . . . , Yn. The class of distributions for which (2.10)
holds is large and includes the subexponential distributions. General conditions on the
sequence (an) for which (2.10) holds are given in [9], see also [8]. For instance, if FY is
regularly varying at∞ with index β > 1 then (2.10) holds with an = an, for a > 0.

Next consider the choice of V (n). As observed in Section 2.2 a good approximation to
the conditional distribution F (n)

An
is a candidate for V (n). For a heavy-tailed random walk

the “one big jump” heuristics says that the sum is large most likely because one of the
steps is large. Based on the assumption (2.10) a good candidate for V (n) is the conditional
distribution,

V (n)(·) = P(Y(n) ∈ · |Mn > an).

Then V (n) has a known density with respect to F (n)(·) = P(Y(n) ∈ ·) given by

dV (n)

dF (n)
(y) =

1

P(Mn > an)
I{y : ∨nj=1yj > an} =

1

1− FY (an)n
I{y : ∨nj=1yj > an}.

The estimator of q(n) = P(Sn > an)−1 is then given by

q̂
(n)
T =

1

T

T−1∑
t=0

dV (n)

dF (n)
(Y

(n)
t ) =

1

1− FY (an)n
· 1

T

T−1∑
t=0

I{∨nj=1Yt,j > an} (2.11)

where (Y
(n)
t )t≥0 is generated by Algorithm 2.4.1. Note that the estimator (2.11) can be

viewed as the asymptotic approximation (1 − FY (an)n)−1 of (p(n))−1 multiplied by the
random correction factor 1

T

∑T−1
t=0 I{∨nj=1Yt,j > an}. The efficiency of this estimator is

based on the fact that the random correction factor is likely to be close to 1 and has small
variance.

Theorem 2.4.6. Suppose that (2.10) holds. Then the estimator q̂(n)
T in (2.11) has vanishing

normalised variance for estimating (p(n))−1. That is,

lim
n→∞

(p(n))2 Var
F

(n)
An

(q̂
(n)
T ) = 0.
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Proof. With u(n)(y) = 1
1−FY (an)n I{∨

n
j=1yj > an} it follows from (2.10) that

(p(n))2 Var
F

(n)
An

(u(n)(Y(n)))

=
P(Sn > an)2

P(Mn > an)2
Var

F
(n)
An

(I{Y : ∨nj=1Yj > an})

=
P(Sn > an)2

P(Mn > an)2
P(Mn > an | Sn > an)P(Mn ≤ an | Sn > an)

=
P(Sn > an)

P(Mn > an)

(
1− P(Mn > an)

P(Sn > an)

)
→ 0.

This completes the proof.

Remark 2.4.7. Theorem 2.4.6 covers a wide range of heavy-tailed distributions and even
allows the number of steps to increase with n. Its proof is elementary. This is in sharp
contrast to the existing proofs of efficiency (bounded relative error, say) for importance
sampling algorithms that cover less general models and tend to be long and technical,
see e.g. [10, 6, 5]. It must be mentioned, though, that Theorem 2.4.6 proves efficiency
for computing (p(n))−1, whereas the authors of [10, 6, 5] prove efficiency for a direct
computation of p(n).

2.4.1 An extension to random sums

In application to queueing and ruin theory there is particular interest in sums consisting
of a random number of heavy-tailed steps. For instance, the stationary distribution of the
waiting time and the workload of an M/G/1 queue can be represented as a random sum,
see [1, Theorem 5.7, p. 237]. The classical Cramér-Lundberg model for the total claim
amount faced by an insurance company is another standard example of a random sum.
In this section Algorithm 2.4.1 is modified to efficiently estimate hitting probabilities for
heavy-tailed random sums.

Let Y1, Y2, . . . be non-negative independent random variables with common distribu-
tion FY and density fY . Let (N (n))n≥1 be integer valued random variables independent
of Y1, Y2, . . . . Consider the random sum SN(n) = Y1 + · · · + YN(n) and the problem of
computing the probability

p(n) = P(SN(n) > an),

where an →∞ at an appropriate rate.

Denote by Y
(n)

the vector (N (n), Y1, . . . , YN(n))T. The conditional distribution of

Y
(n)

given SN(n) > an is given by

P(N (n) = k, (Y1, . . . , Yk) ∈ · | SN(n) > an)

=
P((Y1, . . . , Yk) ∈ · , Sk > an)P(N (n) = k)

p(n)
.
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A Gibbs sampler for sampling from the above conditional distribution can be con-
structed essentially as in Algorithm 2.4.1. The only additional difficulty is to update the
random number of steps in an appropriate way. In the following algorithm a particular dis-
tribution for updating the number of steps is proposed. To ease the notation the superscript
n is suppressed in the description of the algorithm.

Algorithm 2.4.8. To initiate, draw N0 from P(N ∈ ·) and Y0,1, . . . , Y0,N0 such that
Y0,1 + · · · + Y0,N0 > an. Each iteration of the algorithm consists of the following steps.
Suppose Yt = (kt, yt,1, . . . , yt,kt) with yt,1 + · · · + yt,kt > an. Write k∗t = min{j :
yt,1 + · · ·+ yt,j > an}.

1. Sample the number of steps Nt+1 from the distribution

p(kt+1 | k∗t ) =
P(N = kt+1)I{kt+1 ≥ k∗t }

P (N ≥ k∗t )
.

If Nt+1 > Nt, sample Yt+1,kt+1, . . . , Yt+1,Nt+1
independently from FY and put

Y
(1)
t = (Yt,1, . . . , Yt,kt , Yt+1,kt+1, . . . , Yt+1,Nt+1

).

2. Proceed by updating all the individual steps as in Algorithm 2.4.1.

a) Draw j1, . . . , jNt+1 from {1, . . . , Nt+1} without replacement and proceed by
updating the components of Y(1)

t in the order thus obtained.

b) For each k = 1, . . . , Nt+1, repeat the following.

i. Let j = jk be the index to be updated and write

Y
(1)
t,−j = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

).

Sample Y (2)
t,j from the conditional distribution of Y given that the sum

exceeds the threshold. That is,

P(Y
(2)
t,j ∈ · | Y

(1)
t,−j) = P

(
Y ∈ · | Y +

∑
k 6=j

Y
(1)
t,k > an

)
.

ii. Put Y(2)
t = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(2)
t,j , Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)T.

c) Draw a random permutation π of the numbers {1, . . . , Nt+1} from the uniform
distribution and put Yt+1 = (Nt+1, Y

(2)
t,π(1), . . . , Y

(2)
t,π(Nt+1)).

Iterate until the entire Markov Chain (Yt)
T−1
t=0 is constructed.

Proposition 2.4.9. The Markov chain (Yt)t≥0 generated by Algorithm 2.4.8 has the con-
ditional distribution P((N,Y1, . . . , YN ) ∈ · | Y1 + . . . YN > an) as its invariant distribu-
tion.
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Proof. The only essential difference from Algorithm 2.4.1 is the first step of the algorithm,
where the number of steps and possibly the additional steps are updated. Therefore, it is
sufficient to prove that the first step of the algorithm preserves stationarity. The transition
probability of the first step, starting from a state (kt, yt,1, . . . , yt,kt) with k∗t = min{j :
yt,1 + · · ·+ yt,j > an}, can be written as follows.

P (1)(kt, yt,1, . . . , yt,kt ; kt+1, A1 × · · · ×Akt+1
)

= P
(
Nt+1 = kt+1, (Yt,1, . . . , Yt,kt+1

) ∈ A1 × · · · ×Akt+1

| Nt = kt, Yt,1 = yt,1, . . . , Yt,kt = yt,kt
)

=

{
p(kt+1 | k∗t )

∏kt+1

k=1 I{yt,k ∈ Ak}, kt+1 ≤ kt,
p(kt+1 | k∗t )

∏kt
k=1 I{yt,k ∈ Ak}

∏kt+1

k=kt+1 FY (Ak), kt+1 > kt.

Consider the stationary probability of a set of the form {kt+1}×A1×· · ·×Akt+1
. With π

denoting the conditional distribution P((N,Y1, . . . , YN ) ∈ · | Y1 + . . . YN > an), it holds
that

Eπ[P (1)(Nt, Yt,1, . . . , Yt,Nt ; kt+1, A1 × · · · ×Akt+1)]

=
1

P(SN > an)
E[P (1)(N,Y1, . . . , YN ; kt+1, A1 × · · · ×Akt+1

)I{SN > an}]

By conditioning on N and using independence of N and Y1, Y2, . . . the expression in the
last display equals

1

P(SN > an)

∞∑
kt=1

P(N = kt)

×E
[
P (1)(kt, Y1, . . . , Ykt ; kt+1, A1 × · · · ×Akt+1

)I{Skt > an}
]
.

With Bk∗ = {(y1, y2, . . . ) ∈ ∪∞q=k∗Rq : min{j : y1 + · · · + yj > a} = k∗}, A⊗kt =

A1 × · · · × Akt , and A⊗kt+1
= A1 × · · · × Akt+1 the expression in the last display can be

written as

1

P(SN > an)

(
kt+1∑
kt=1

P(N = kt)

×E
[ kt∑
k∗=1

I{(Y1, . . . , Ykt) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt ; kt+1, A
⊗
kt+1

)
]

+

∞∑
kt=kt+1+1

P(N = kt)

×E
[ kt+1∑
k∗=1

I{(Y1, . . . , Ykt+1) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt ; kt+1, A
⊗
kt+1

)
])
.
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Inserting the expression for P (1) the last expression equals

1

P(SN > a)

(
kt+1∑
kt=1

P(N = kt)

×
kt∑

k∗=1

P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩A⊗kt

)
p(kt+1 | k∗)

kt+1∏
j=kt+1

FY (Aj)

+

∞∑
kt=kt+1+1

P(N = kt)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.

Changing the order of summation the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt)

×P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩A⊗kt

)
p(kt+1 | k∗)

kt+1∏
j=kt+1

FY (Aj)

+

kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.

Since P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩ A⊗kt

)∏kt+1

j=kt+1 FY (Aj) = P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩
A⊗kt+1

)
the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

+

kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.

Summing over kt the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P(k∗ ≤ N ≤ kt+1)

+

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P(N ≥ kt+1 + 1)

)
.
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From the definition of p(kt+1 | k∗) it follows that the last expression equals

1

P(SN > an)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P (N ≥ k∗)

=
1

P(SN > an)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
P (N = kt+1)

=
1

P(SN > an)
P
(
(Y1, . . . , Ykt+1

) ∈ A⊗kt+1

)
P (N = kt+1)

= P
(
N = kt+1, (Y1, . . . , Ykt+1

) ∈ A⊗kt+1
| Y1 + · · ·+ YN > an

)
,

which is the desired invariant distribution. This completes the proof.

Proposition 2.4.10. The Markov chain (Yt)t≥0 generated by Algorithm 2.4.8 is uniformly
ergodic. In particular, it satisfies the following minorisation condition: there exists δ > 0
such that

P(Y1 ∈ B | Y0 = y) ≥ δP((N,Y1, . . . , YN ) ∈ B | Y1 + · · ·+ YN > an),

for all y ∈ A = ∪k≥1{(k, y1, . . . , yk) : y1 + · · ·+ yk > an} and all Borel sets B ⊂ A.

The proof requires only a minor modification from the non-random case, Proposition
2.4.4, and is therefore omitted.

Next consider the distributional assumptions and the design of V (n). The main focus is
on the rare event properties of the estimator and therefore the large deviation parameter n
will be suppressed to ease notation. Let the distribution of the number of steps P(N (n) ∈ ·)
to depend on n. By a similar reasoning as in the case of non-random number of steps the
following assumption are imposed: the variables N (n), Y1, Y2, . . . and the numbers an are
such that

lim
n→∞

P(Y1 + · · ·+ YN(n) > an)

P(MN(n) > an)
= 1, (2.12)

where Mk = max{Y1, . . . , Yk}. Note that the denominator can be expressed as

P(MN(n) > an) =

∞∑
k=1

P(Mk > an)P(N (n) = k)

=

∞∑
k=1

[1− FY (an)k]P(N (n) = k)

= 1− gN(n)(FY (an)),

where gN(n)(t) = E[tN
(n)

] is the generating function of N (n). Sufficient conditions for
(2.12) to hold are given in [16], Theorem 3.1. For instance, if FY is regularly varying at
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∞ with index β > 1 and N (n) has Poisson distribution with mean λn → ∞, as n → ∞,
then (2.12) holds with an = aλn, for a > 0.

Similarly to the non-random setting a good candidate for V (n) is the conditional distri-
bution,

V (n)(·) = P(Y
(n) ∈ · |MN(n) > an).

Then V (n) has a known density with respect to F (n)(·) = P(Y
(n) ∈ ·) given by

dV (n)

dF (n)
(k, y1, . . . , yk) =

1

P(MN(n) > an)
I{(y1, . . . , yk) : ∨kj=1yj > an}

=
1

1− gN(n)(FY (an))
I{(y1, . . . , yk) : ∨kj=1yj > an}.

The estimator of q(n) = P(Sn > an)−1 is given by

q̂
(n)
T =

1

T

T−1∑
t=0

dV (n)

dF (n)
(Y

(n)

t ) =
1

gN(n)(FY (an))
· 1

T

T−1∑
t=0

I{∨Ntj=1Yt,j > an}, (2.13)

where (Y
(n)

t )t≥0 is generated by Algorithm 2.4.8.

Theorem 2.4.11. Suppose (2.12) holds. The estimator q̂(n)
T in (2.13) has vanishing nor-

malised variance. That is,

lim
n→∞

(p(n))2 Varπn(q̂
(n)
T ) = 0,

where πn denotes the conditional distribution P(Y
(n) ∈ · | SN(n) > an).

Remark 2.4.12. Because the distribution ofN (n) may depend on n Theorem 2.4.11 covers
a wider range of settings for random sums than those studied in [10, 5] where the authors
present provably efficient importance sampling algorithms.

Proof. Since p(n) = P(SN(n) > an) and

u(n)(k, y1, . . . , yk) =
I{∨kj=1yj > an}
P(MN(n) > an)

,

it follows that

[p(n)]2 Varπn(u(n)(Y
(n)

))

=
P(SN(n) > an)2

P(MN(n) > an)2
Varπn(I{∨N

(n)

j=1 Yj > an})

=
P(SN(n) > an)2

P(MN(n) > an)2
P(MN(n) > an | SN(n) > an)P(MN(n) ≤ an | SN(n) > an)

=
P(SN(n) > an)

P(MN(n) > an)

(
1− P(MN(n) > an)

P(SN(n) > an)

)
→ 0,

by (2.12). This completes the proof.
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2.5 Numerical experiments

The theoretical results guarantee that q̂(n)
T is an efficient estimator of (p(n))−1. However,

for comparison of existing algorithms the numerical experiments are based on p̂
(n)
T =

(q̂
(n)
T )−1 as an estimator for p(n). The literature includes numerical comparison for many

of the existing algorithms. In particular, in the setting of random sums. Numerical results
for the algorithms by Dupuis et al. [10], the hazard rate twisting algorithm by Juneja and
Shahabuddin [15], and the conditional Monte Carlo algorithm by Asmussen and Kroese [4]
can be found in [10]. Additional numerical results for the algorithms by Blanchet and Li
[5], Dupuis et al. [10], and Asmussen and Kroese [4] can be found in [5]. From the existing
results it appears as if the algorithm by Dupuis et al. [10] has the best performance. There-
fore, we only include numerical experiments of the MCMC estimator and the estimator in
[10], which is labelled IS.

By construction each simulation run of the MCMC algorithm only generates a single
random variable (one simulation step) while both importance sampling and standard Monte
Carlo generate n number of random variables (n simulation steps) for the case of fixed
number of steps (N + 1 in the random number of steps case). Therefore the number of
runs for the MCMC is scaled up by a factor of n so that all of the algorithms (MCMC,
Monte Carlo and importance sampling) generate essentially the same number of random
numbers. Thus getting a fairer comparison of the computer runtime between the three
approaches.

First consider estimating P(Sn > an) where Sn = Y1 + · · · + Yn with Y1 having a
Pareto distribution with density fY (x) = β(x + 1)−β−1 for x ≥ 0. Let an = an. Each
estimate is calculated using b number of batches, each consisting of T simulations in the
case of importance sampling and standard Monte Carlo and Tn in the case of MCMC.
The batch sample mean and sample standard deviation is recorded as well as the average
runtime per batch. The results are presented in Table 2.1. The convergence of the algo-
rithms can also be visualised by considering the point estimate as a function of number
of simulation steps. This is presented in Figure 2.1. The MCMC algorithm appears to
perform comparably with the importance sampling algorithm for p up to order 10−4 which
is a relevant range in, say, insurance and finance. However for smaller p the MCMC ap-
pears to performs better. The improvement over importance sampling appears to increase
as the event becomes more rare. This is due to the fact that the asymptotic approximation
becomes better and better as the event becomes more rare.

Secondly consider estimating P(SN > aρ) where SN = Y1 + · · · + YN with N
geometrically distributed P(N = k) = (1− ρ)k−1ρ for k = 1, 2, . . . and aρ = aE[N ] =
a/ρ. The estimator considered here is p̂T = (q̂T )−1 with q̂T as in (2.13). Again, each
estimate is calculated using b number of batches, each consisting of T simulations in the
case of importance sampling and standard Monte Carlo and TE[N ] in the case of MCMC.
The results are presented in Table 2.2. Also in the case of random number of steps the
MCMC algorithm appears to outperform the importance sampling algorithm consistently
for different choices of the parameters.

We remark that in our simulation with ρ = 0.2, a = 5 · 109 the sample standard
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deviation of the MCMC estimate is zero. This is because we did not observe any indicators
I{∨nj=1yt,j > aρ} being equal to 0 in this case.

Table 2.1: The table displays the batch mean and standard deviation of the estimates of
P(Sn > an) as well as the average runtime per batch for time comparison. The number
of batches run is b, each consisting of T simulations for importance sampling (IS) and
standard Monte Carlo (MC) and Tn simulations for Markov chain Monte Carlo (MCMC).
The asymptotic approximation is pmax = P(max{Y1, . . . , Yn} > an).

b = 25, T = 105, β = 2, n = 5, a = 5, pmax = 0.737e-2
MCMC IS MC

Avg. est. 1.050e-2 1.048e-2 1.053e-2
Std. dev. 3e-5 9e-5 27e-5

Avg. time per batch(s) 12.8 12.7 1.4
b = 25, T = 105, β = 2, n = 5, a = 20, pmax = 4.901e-4

MCMC IS MC
Avg. est. 5.340e-4 5.343e-4 5.380e-4
Std. dev. 6e-7 13e-7 770e-7

Avg. time per batch(s) 14.4 13.9 1.5
b = 20, T = 105, β = 2, n = 5, a = 103, pmax = 1.9992e-7

MCMC IS
Avg. est. 2.0024e-7 2.0027e-7
Std. dev. 3e-11 20e-11

Avg. time per batch(s) 15.9 15.9
b = 20, T = 105, β = 2, n = 5, a = 104, pmax = 1.99992e-9

MCMC IS
Avg. est. 2.00025e-9 2.00091e-9
Std. dev. 7e-14 215e-14

Avg. time per batch(s) 15.9 15.9
b = 25, T = 105, β = 2, n = 20, a = 20, pmax = 1.2437e-4

MCMC IS MC
Avg. est. 1.375e-4 1.374e-4 1.444e-4
Std. dev. 2e-7 3e-7 492e-7

Avg. time per batch(s) 52.8 50.0 2.0
b = 25, T = 105, β = 2, n = 20, a = 200, pmax = 1.2494e-6

MCMC IS MC
Avg. est. 1.2614e-6 1.2615e-6 1.2000e-6
Std. dev. 4e-10 12e-10 33,166e-10

Avg. time per batch(s) 49.4 48.4 1.9
b = 20, T = 105, β = 2, n = 20, a = 103, pmax = 4.9995e-8

MCMC IS
Avg. est. 5.0091e-8 5.0079e-8
Std. dev. 7e-12 66e-12

Avg. time per batch(s) 53.0 50.6
b = 20, T = 105, β = 2, n = 20, a = 104, pmax = 5.0000e-10

MCMC IS
Avg. est. 5.0010e-10 5.0006e-10
Std. dev. 2e-14 71e-14

Avg. time per batch(s) 48.0 47.1
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Table 2.2: The table displays the batch mean and standard deviation of the estimates of
P(SN > aρ) as well as the average runtime per batch for time comparison. The number of
batches run is b, each consisting of T simulations for importance sampling (IS) and stan-
dard Monte Carlo (MC) and T E[N ] simulations for Markov chain Monte Carlo (MCMC).
The asymptotic approximation is pmax = P(max{Y1, . . . , YN} > aρ).

b = 25, T = 105, β = 1, ρ = 0.2, a = 102, pmax = 0.990e-2
MCMC IS MC

Avg. est. 1.149e-2 1.087e-2 1.089e-2
Std. dev. 4e-5 6e-5 35e-5

Avg. time per batch(s) 25.0 11.0 1.2
b = 25, T = 105, β = 1, ρ = 0.2, a = 103, pmax = 0.999e-3

MCMC IS MC
Avg. est. 1.019e-3 1.012e-3 1.037e-3
Std. dev. 1e-6 3e-6 76e-6

Avg. time per batch(s) 25.8 11.1 1.2
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 107, pmax = 2.000000e-8

MCMC IS
Avg. est. 2.000003e-8 1.999325e-8
Std. dev. 6e-14 1114e-14

Avg. time per batch(s) 385.3 139.9
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 109, pmax = 2.0000e-10

MCMC IS
Avg. est. 2.0000e-10 1.9998e-10
Std. dev. 0 13e-14

Avg. time per batch(s) 358.7 130.9
b = 25, T = 105, β = 1, ρ = 0.05, a = 103, pmax = 0.999e-3

MCMC IS MC
Avg. est. 1.027e-3 1.017e-3 1.045e-3
Std. dev. 1e-6 4e-6 105e-6

Avg. time per batch(s) 61.5 44.8 1.3
b = 25, T = 105, β = 1, ρ = 0.05, a = 5 · 105, pmax = 1.9999e-6

MCMC IS MC
Avg. est. 2.0002e-6 2.0005e-6 3.2000e-6
Std. dev. 1e-10 53e-10 55,678e-10

Avg. time per batch(s) 60.7 45.0 1.3

helped improve the manuscript. The authors are is grateful to Tobias Rydén for his helpful
discussion throughout the work of this paper.
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Figure 2.1: The figure illustrates the point estimate of P(Sn > an) as a function of the
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Markov chain Monte Carlo
for rare-event simulation

for stochastic recurrence equations
with heavy-tailed innovations

by

Thorbjörn Gudmundsson and Henrik Hult

Abstract

This paper extends a rare-event simulation technique based on sampling via Markov
chain Monte Carlo (MCMC) introduced in [13]. Consider a stochastic recurrence equa-
tion of the form

Xk+1 = Ak+1Xk +Bk+1, X0 = 0,

where (Ak)
m
k=1 and (Bk)

m
k=1 are independent sequences of non-negative independent

and identically distributed random variables. The innovations B’s are assumed to have
regularly varying distribution with index −α < 0 and that the A’s satisfy the Breiman
condition E[Aα+ε] < ∞ for some ε > 0. The problem considered is to efficiently
compute P(Xm > c) for large c using Markov chain Monte Carlo techniques. The
paper presents an estimator with uniformly bounded relative error as c tends to infinity.

The technique is also developed in the context of the risk reserves of an insurance
company investing in risky investments and the problem of computing the probability
of ruin.

3.1 Introduction

One of the key objectives of rare-event simulation is the design of efficient estimators
for computing small probabilities. The ultimate goal is to construct a strongly efficient
estimator meaning that its relative error is bounded as the probability tends to zero. Such
an estimator thus provides a uniform variational bound on the desired probability.

The classic example of stochastic simulation is the standard technique of Monte Carlo.
Its inefficiency for computation of rare-event probabilities is well documented and can be
illustrated as follows. Consider the problem of computing p = P(X ∈ A) for a ran-
dom variable X having probability distribution F . Given an independent random sample
X0, . . . , XT−1 from F a Monte Carlo estimator is defined by

p̂MC
T =

1

T

T−1∑
t=0

I{Xt ∈ A}.
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The Monte Carlo estimator is both simple and unbiased and its variance is given by

Var(p̂MC
T ) =

1

T
p(1− p).

While the variance tends to zero, for fixed p as T → ∞, the normalised variance is un-
bounded, for fixed T as p→ 0:

Var(p̂MC
T )

p2
=

1

T

(1

p
− 1
)

.

This makes the Monte Carlo technique costly when it comes to rare-event simulation. For
example, if a relative error at 1% is desired and the probability is of order 10−6 then we
need to take T such that

√
(106 − 1)/T ≤ 0.01. This implies that T ≈ 1010 which

is infeasible on most computer systems. The intuitive reason for the inefficiency of the
Monte Carlo is that very few hits are registered when the event is rare.

This paper assumes a heavy-tailed settings for the rare-event simulation. Heavy-tailed
settings have been carefully investigated in recent years in the context of random walks and
random sums and a number of methods have been suggested for efficient simulation. A
variance reduction technique based on conditional Monte Carlo was presented in 1997 by
Asmussen and Binswanger in [1] and later improved in 2006 by Asmussen and Kroese in
[4]. However, the most popular technique for designing efficient estimators is importance
sampling.

In importance sampling the random variables X0, . . . , XT−1 are sampled indepen-
dently from a different probability distribution, say G, instead of the original distribution
F , with G � F on A. The new distribution G is called the sampling distribution. The
basic idea behind the importance sampling technique is to shift the probability mass, via
the sampling distribution G, to the area where it is more likely that the rare event occurs
and multiply with a weight function to correct for the change of measure. The importance
sampling estimator is given by

p̂IS
T =

1

T

T−1∑
t=0

dF

dG
I{Xt ∈ A}.

The importance sampling estimator is unbiased and its performance depends on the choice
of sampling distribution G. Choosing the sampling distribution to be equal to the condi-
tional distribution

FA(·) = P(X ∈ · | X ∈ A),

implies that p̂IS
T has zero variance and is therefore called the zero-variance distribution. It

serves as guidance in choosing a sampling distribution. A good candidate for G fullfills
the following:

(i) The sampling distribution G approximates FA and is such that that the random vari-
able X can be easily sampled from G.

(ii) The event {X ∈ A} is more likely under G than the original distribution F .
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(iii) The likelihood ratio dF/dG is unlikely to become too large.

The standard importance sampling technique for the light-tailed case is based on an expo-
nential change of measure, see for instance [3] or [8], but that approach has had limited
success in the heavy-tailed case since the exponential moments do not exist. Moreover, as
illustrated by Asmussen et al. in [2] the situation in the heavy-tailed setting is more com-
plicated because the conditional distribution FA(·) typically becomes singular with respect
to the original distribution as the desired probability tends to zero.

An efficient importance sampling estimator in a heavy-tailed settings for a random walk
was presented in 2007 by Dupuis et al. [10], based on mixtures and sequential sampling.
Efficient importance sampling techniques have also been presented in e.g. [6], [7] and
[15]. However, proving efficiency for an importance sampling estimator can be technically
cumbersome and often requires extensive analysis.

A new technique for computing rare-event probabilities based on sampling via Markov
chain Monte Carlo is proposed in [13]. The main idea of this method is to use MCMC al-
gorithm to sample from the conditional distribution given the event of interest and then ex-
tract the probability of the event as the normalising constant. In [13] we apply the MCMC
method on the examples of random walk and random sum. The goal of this paper is to con-
tinue the development of the MCMC method by extending it to the solution of a recurrence
equation.

Consider the solution (Xk)mk=0 of the stochastic recurrence equation

Xk+1 = Ak+1Xk +Bk+1, X0 = 0, (3.1)

where A = (Ak)mk=1 and B = (Bk)mk=1 are independent sequences of non-negative inde-
pendent and identically distributed random variables. The innovations B’s are assumed to
have regularly varying distribution with index −α < 0,

P(B > tx)

P(B > t)
→ x−α, as t→∞, for x > 0,

and the A’s satisfy the Breiman condition

E[Aα+ε] <∞, for some ε > 0.

Thorough studies of the solution (Xk)mk=0 can be found in the literature, e.g. in [17],
in the setting of insurance company with risky investment [21], and in an economic en-
vironment with focus on financial processes [9]. The MCMC method presented in this
paper will be exemplified in that context as well. Recently an efficient importance sam-
pling estimator for computing the probability that the solution exceeds a high threshold
was introduced by Blanchet, Hult and Leder in [14].

This paper extends the MCMC methodology first established in [13] to study a rare-
event simulation based on MCMC for a solution to a stochastic recurrence equations given
by (3.1). An estimator q̂ of the reciprocal of the rare-event probability that the solution
Xm exceeds a high threshold is presented, namely 1/p = P(Xm > c)−1. The estimator
is unbiased and proven to be rare-event efficient in the sense that

p2 Var(q̂)→ 0, as c→ 0.



52 RARE-EVENT SIMULATION WITH MCMC

The technique introduced here is also applied to compute the ruin probability for the setting
of an insurance company with risky investments.

The proof of efficiency is elementary and completed in in just a few lines. This is
in sharp contrast to efficiency proofs for importance sampling algorithms for the same
problem, which require more restrictive assumptions and tend to be long and technical, see
for instance [14].

Here follows the outline of the paper. In Section 3.2 the fundamental idea of the MCMC
technique is presented. The key design choices that control the efficiency of the algorithm
are highlighted. In Section 3.3 the MCMC method is applied to a solution of a stochastic
recurrence equation and an efficient MCMC estimator derived. Numerical experiments
demonstrate the performance and the algorithm is compared to existing importance sam-
pling techniques. Finally, in Section 3.4 the method is applied to compute the ruin proba-
bility of an insurance company with risky investments.

3.2 Markov chain Monte Carlo methodology

In this section the Markov chain Monte Carlo (MCMC) methodology in rare-event sim-
ulation is introduced and the important design choices highlighted. The approach is later
used in Section 3.3 to develop efficient estimator for the solution to stochastic recurrence
equations and in Section 3.4 for an example of an insurance company.

Let X(1), X(2), . . . be a sequence of random elements, each of which can be sampled
via a simulation algorithm, and consider the problem of computing p(n) = P(X(n) ∈ C)

where the event {X(n) ∈ C} is rare in the sense that p(n) → 0 as n → ∞. Let p̂(n)
T

be an estimator of p(n) based on a sample X(n)
0 , . . . , X

(n)
T−1. The efficiency of p̂(n)

T is
characterised by its relative error. An estimator is said to be strongly efficient if it has
bounded relative error. An efficient estimator p̂(n)

T of p(n) is said to have bounded relative
error if

Var(p̂
(n)
T )(

p(n)
)2 <∞, as n→∞.

An estimator has vanishing relative error if

Var(p̂
(n)
T )(

p(n)
)2 → 0, as n→∞.

Consider a Markov chain (X
(n)
t )t≥0 constructed via an MCMC algorithm, such as a

Gibbs sampler or Metropolis-Hastings sampler, whose invariant distribution is the condi-
tional distribution

F
(n)
C (·) = P(X(n) ∈ · | X(n) ∈ C).

To construct an unbiased estimator q̂(n)
T of 1/p(n), consider a probability distribution

V (n) with V (n) � F
(n)
C and define u, a function of the Markov chain (X

(n)
t )t≥0, as
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follows

u(X(n)) =
dV (n)

dF (n)
(X(n)). (3.2)

Taking expectation with respect to the conditional distribution of the sample

E
F

(n)
C

[u(X(n))] =

∫
dV (n)

dF (n)
(X(n))dF

(n)
C (X(n)) =

1

p(n)
,

thus motivating taking the MCMC estimator to be given by

q̂
(n)
T =

1

T

T−1∑
t=0

u(X
(n)
t ). (3.3)

There are two important design choices that determine the performance of this method:
the choice of the distribution V (n) and the design of the MCMC algorithm. The distribution
V (n) controls the variance of u(X(n)) in (3.2) and is thus crucial when ensuring good
rare-event properties of the method. It is desirable to take V (n) such that the normalised
variance of the estimator, given by

(
p(n)

)2
Var(q̂

(n)
T ), is not too large. The design of the

MCMC algorithm , on the other hand, controls the dependence of the Markov chain and
thereby the convergence rate of the algorithm as sample size grows. In order to speed up
convergence it is desirable that the Markov chain mixes fast so that the dependence dies
out quickly.

Firstly consider the choice of the probability distribution V (n) which determines the
rare-event efficiency. The variance of the estimator under the invariant distribution F (n)

C of
the Markov chain is controlled by

Var
F

(n)
C

(
u(X(n))

)
= . . . =

1

(p(n))2

(
EV (n)

[dV (n)

dF
(n)
C

]
− 1

)
,

for detailed computations, the reader is referred to [13]. Observe that letting V (n) be equal
to the conditional distribution F (n)

C implies Var
F

(n)
C

(
u(X(n))

)
= 0. This motivates taking

V (n) as an approximation of F (n)
C , similar to the ideology behind choosing an efficient

importance sampling estimator.
For any R ⊂ C, for which P(X(n) ∈ R) can be computed explicitly, a candidate for

V (n) is given by
V (n)(·) = P(X(n) ∈ · | X(n) ∈ R).

Such a choice is likely to perform well if P(X(n) ∈ R) is close to P(X(n) ∈ C) since
then

EV (n)

[dV (n)

dF
(n)
C

]
=

P(X(n) ∈ C)

P(X(n) ∈ R)2
EV (n)

[
I{X(n) ∈ R}

]
=

P(X(n) ∈ C)

P(X(n) ∈ R)
,

which will be close to 1.
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Secondly, consider the design choice of the MCMC-sampler which determines the
strength of the dependence in the Markov chain. High dependence implies slow conver-
gence and therefore high computational cost. The algorithm should thus be designed so
that the Markov chain mixes fast and that the dependence dies out quickly. The minimum
requirement is that the Markov chain is geometric ergodic, which guarantees large-sample
efficiency. Again, the reader is referred to [13] for more details.

To summarise, the following are desired properties of the estimator.

(i) Rare event efficiency: Construct an unbiased estimator q̂(n)
T of 1/p(n) according to

(3.3) by finding a probability distribution function V (n) which approximates the con-
ditional distribution F (n)

C . The choice of V (n) controls (p(n))2 Var
F

(n)
C

(
u(X(n))

)
,

which in turn controls the normalised variance of the estimator.

(ii) Large sample efficiency: Design the MCMC sampler, by finding an appropriate
Gibbs sampler or a proposal density in the Metropolis-Hastings algorithm, such that
the resulting Markov chain is geometrically ergodic.

3.3 Stochastic recurrence equation

In this section the MCMC estimator introduced in Section 3.2 is applied for computing the
probability that a solution to a stochastic recurrence equation exceeds a high threshold. The
estimator has vanishing normalised variance and the associated Markov chain is uniformly
ergodic.

Fix a positive integer m and let A = (A1, . . . , Am) and B = (B1, . . . , Bm) be inde-
pendent sequences of independent and identically distributed random variables. Let A be
a generic random variable for an element of the sequence A and likewise B for an element
of the sequence B. Observe that (A,B) plays the role of X in the previous section.

Consider the solution (Xk)mk=0 of the stochastic recurrence equation of the form

Xk = AkXk−1 +Bk, for k = 1, . . . ,m,
X0 = 0,

and the problem of computing

p(n) = P(Xm > cn),

where cn →∞ as n→∞.
The solution (Xk)mk=0 can be written as a randomly weighted random walk

Xk = Bk +AkBk−1 + · · ·+AkAk−1 · · ·A2B1, for k = 1, . . . ,m. (3.4)

The first step is to design a Gibbs sampler that produces a Markov chain with the
conditional distribution

Fcn(·) = P
(
(A,B) ∈ · | Xm > cn

)
,
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as its invariant distribution. In addition, a probability distribution V (n) will be suggested
having good asymptotic properties.

The Markov chain (At,Bt)t≥0 is constructed by the following algorithm, where the
elements are updated sequentially in such a way that the weighted random walk exceeds
the threshold after each individual update. Formally the algorithm is given as follows. An
empty product, such as

∏m
j=m+1Aj , is interpreted as 1.

Algorithm 3.3.1. Start with initial state (A0,B0) = (A0,1, . . . , A0,m, B0,1, . . . , B0,m)

where X(m)
0 = B0,m +

∑m−1
i=1 B0,i

∏m
j=i+1A0,j > cn. Given (At,Bt), for some t ≥ 0,

the next state (At+1,Bt+1) is sampled as follows:

1. Draw a randomised ordering j1, . . . , j2m of {1, . . . , 2m} and proceed updating (At,Bt)
in the order thus obtained.

2. For l = 1, . . . , 2m, set k = jl and do the following:

i. If k ∈ {1, . . . ,m} then At,k is to be updated. Sample A′ from the conditional
distribution

P(A′ ∈ · | A′ > s),

where

s = max

{
cn −

∑m
i=k Bt,i

∏m
j=i+1At,j∑k−1

i=1 Bt,i
∏m
j=i+1,6=k At,j

, 0

}
.

Put At+1 = (At,1, . . . , At,k−1, A
′, At,k+1, . . . , At,m) and Bt+1 = Bt.

ii. If k ∈ {m + 1, . . . , 2m} then Bt,k∗ , where k∗ = k − m, is to be updated.
Sample B′ from the conditional distribution

P(B′ ∈ · | B′ > s),

where

s = max

{
cn −

∑m
i=1,6=k∗ Bt,i

∏m
j=i+1At,j

At,m · · ·At,k∗+1
, 0

}
.

Put At+1 = At and Bt+1 = (Bt,1, . . . , Bt,k∗−1, B
′, Bt,k∗+1, . . . , Bt,m).

Iterate steps 1 and 2 until the entire Markov chain (At,Bt)T−1
t=0 is constructed.

Proposition 3.3.2. The Markov chain (At,Bt)t≥0 generated by Algorithm 3.3.1, has the
conditional distribution Fcn as its invariant distribution.

Proof. Note that it is sufficient to show that each updating step (Step 2i and 2ii in the
Algorithm) preserves stationarity.

Consider the updating steps (Step 2i and 2ii). Let m be given and set PAk (a,b, ·) and
PBk (a,b, ·) to be the transition probability of the Markov chain (At,Bt)t≥0 where the kth
element of At and Bt is updated, respectively. Let

C(n) =
{

(A1, . . . , Am, B1, . . . , Bm) | Xm > cn},
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and observe that if Ak is to be updated conditioned on Xm > cn then

Ak >
cn −

∑m
i=k Bt,i

∏m
j=i+1At,j∑k−1

i=1 Bt,i
∏m
j=i+1,6=k At,j

=: sAk ,

and similarly, if Bk is to be updated conditioned on Xm > cn then

Bk >
cn −

∑m
i=1,6=(k−m)Bt,i

∏m
j=i+1At,j

At,m · · ·At,(k−m)+1
=: sBk .

To prove that stationarity is preserved under updating via Step 2i it is sufficient to show
that for arbitrary k ∈ {1, . . . ,m} and D1 × · · · × Dm × E1 × · · · × Em ⊂ C(n) then it
holds that

Fcn(D1 × · · · ×Dm × E1 × · · · × Em)

= EFcn
[
PAk (A1, . . . , Am, B1, . . . , Bm, D1 × . . .×Dm × E1 × . . .× Em)

]
. (3.5)

Similarly to prove that stationarity is preserved under updating via Step 2ii it is sufficient
to show

Fcn(D1 × · · · ×Dm × E1 × · · · × Em)

= EFcn
[
PBk (A1, . . . , Am, B1, . . . , Bm, D1 × · · · ×Dm × E1 × · · · × Em)

]
. (3.6)

The following computation shows that (3.5) holds.

Fcn(D1 × · · · ×Dm × E1 × · · · × Em)

= EFcn

[ m∏
j=1

I{Aj ∈ Dj}
m∏
i=1

I{Bi ∈ Ei}
]

=
E
[
I{Ak ∈ Dk}I{Xm > cn} ·

∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

=
E
[
E[I{Ak∈Dk}|Ak>sAk ,A−k,B]

P(Ak>sAk ) ·
∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

= E
[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em)

×
∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

= E
[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em) | Xm > cn

]
= EFcn

[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em)

]
,

with the conventional notation A−k = (A1, . . . , Ak−1, Ak+1, . . . , Am).
The proof is completed by showing that (3.6) holds with similar computation as above.
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Proposition 3.3.3. For any m ≥ 1, the Markov chain (At,Bt)t≥0 is uniformly ergodic.

Proof. Let m ≥ 1 be given and set

C(n) =
{

(A1, . . . , Am, B1, . . . , Bm) | Xm > cn}.

Uniform ergodicity follows from the minorisation condition, see [20]: there exists a prob-
ability measure ν, δ > 0 and t0 ∈ N such that

P
(
(At0 ,Bt0) ∈ D × E | (A0,B0) = (a,b)

)
≥ δν(D × E),

for any (a,b) and D × E ⊂ C(n). The goal is to prove this inequality for t0 = 1,
δ = p(n)/(2m)! and ν = Fcn .

Take c = (a,b) and let g(· | a,b) be the density of P(A1,B1 ∈ · | A0,B0 = a,b).
Observe that for any z = (x, y) ∈ C(n) there exists an ordering j1, . . . , j2m of {1, . . . , 2m}
such that

cj1 ≤ zj1 , . . . , cjk ≤ zjk
cjk+1

≥ zjk+1
, . . . , cj2m ≥ zj2m ,

for some k. When updating from c to z using this particular ordering, then first all of
elements in z which are larger than their counterparts in c are updated, and then all of the
elements in z which are smaller are updated. This guarantees that after every updating step,
the updated vector belongs to C(n).

The probability for this particular ordering is 1/(2m)!. To simplify notation, introduce

Zk =

{
Ai if update jk corresponds to updating Ai for some i
Bi if update jk corresponds to updating Bi for some i

and

sZk =

{
sAi if update jk corresponds to updating Ai for some i
sBi if update jk corresponds to updating Bi for some i

Therefore

g(x, y) =
1

(2m)!

fZ1
(zj1)I{Z1 > sZ1

}
P(Z > sZ1)

×fZ2
(zj2)I{Z2 > sZ2

}
P(Z > sZ2

)

...

×fZ2m
(zj2m)I{Z2m > sZ2m

}
P(Z > sZ2m)

.

By construction all of the indicator functions are equal to 1 and the normalising probabili-
ties are bounded by 1 so the last display is bounded from below by

1

(2m)!

2m∏
k=1

fZk(zk) =
p(n)

(2m)!
·
∏2m
k=1 fZk(zk)I{z ∈ C(n)}

p(m)
.

The proof is completed by integrating both sides.
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Remark 3.3.4. In order to keep the proof of Proposition 3.3.3 simple and short the choice
of δ is not optimised. Taking advantage of the permutation step (Step 1 of the Algorithm
3.3.1) the constant δ could, with some additional effort, be chosen to be larger.

As mentioned in Section 3.2 a good candidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A,B) ∈ R(n)

)
,

where r(n) = P
(
(A,B) ∈ R(n)

)
is asymptotically close to p(n) = P(Xm > cn) in the

sense that r(n)/p(n) → 1 as n→∞.
Observe that so far no limitation have been set on the probabilistic properties of A

and B. The distributional assumptions have been very general. For the design of V (n)

the probabilistic properties of A and B are of central importance and here they come into
play. This paper considers the setting where the innovations B are most likely responsible
for extreme values of the solution to the stochastic recurrence equation. The following is
assumed.

1. The generic random variables A and B are nonnegative.

2. The generic random variable B has a regularly varying tail, with index −α < 0.
Formally,

lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.

3. The Breiman condition holds for the generic random variableA. That is, there exists
ε > 0 such that

E[Aα+ε] <∞.

Under the assumptions (1)-(3) it is possible to derive the asymptotic decay of p(n). Indeed,
observe that by the weighted random walk representation of (3.4) it follows from [5], that

P(Xm > cn)

P(B > cn)
→

m−1∑
k=0

E[Aα]k, as n→∞,

so that

p(n) ∼ FB(cn)

m−1∑
k=0

E[Aα]k, as n→∞. (3.7)

Now consider the choice of V (n). Let V (n) be defined as the probability distribution

V (n)(·) = P
(
(A,B) ∈ · | (A,B) ∈ R(n)

)
,

with

R(n) =

m⋃
k=1

Rk, where Rk = {Am · · ·Ak+1Bk > cn, Am, . . . , Ak+1 > a},
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for some constant a > 0. The probability of this conditioning event can be computed
explicitly using the inclusion-exclusion formula

r(n) =

m∑
k=1

P(Rk)−
m−1∑
k1=1

m∑
k2=k1+1

P(Rk1 ∩Rk2)

+

m−2∑
k1=1

m−1∑
k2=k1+1

m∑
k3=k2+1

P(Rk1
∩Rk2

∩Rk3
)

+ . . . +(−1)mP(R1 ∩ · · · ∩Rm),

where each term can be computed as follows

P
( ⋂
j∈J

Rkj

)
= FA(a)m−k

∏
j∈J

FB(cn/a
m−kj ), where k = min{kj : j ∈ J}.

From the regular variation property of the distribution of B, assumption (2), it follows
that

r(n) ∼ FB(cn)

m−1∑
k=0

FA(a)kakα, as n→∞. (3.8)

A convenient choice of the level a = an is such that r(n)/p(n) → 1, as n→∞. Compar-
ing equation (3.7) and (3.8), a may be chosen as the solution to

m−1∑
k=0

FA(a)kakα =

m−1∑
k=0

E[Aα]k. (3.9)

The distribution V (n) has a known density with respect to F (·) = P
(
(A,B) ∈ ·

)
given

by
dV (n)

dF
(a,b) =

1

r(n)
I
{

(a,b) ∈ R(n)
}

.

Thus the MCMC estimator q̂(n)
T of 1/p(n) is given by

q̂
(n)
T =

1

r(n)

1

T

T−1∑
t=0

I
{

(At,Bt) ∈ R(n)
}

, (3.10)

where (At,Bt)T−1
t=0 is generated via Algorithm 3.3.1 and r(n) given explicitly by equation

(3.8). Observe that the estimator first factor of the estimator q̂(n)
T may be interpreted as the

asymptotic approximation 1/r(n) multiplied by a stochastic correction factor.

Theorem 3.3.5. The estimator q̂(n)
T given by 3.10 has vanishing normalised variance for

estimating 1/p(n),
lim
n→∞

(
p(n)

)2
VarFcn (q̂

(n)
T )→ 0.
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Proof. With u(n)(a,b) = 1
r(n) I{(a,b) ∈ R} it follows from assumptions (1)-(3) above

that

(p(n))2 VarFcn

( 1

r(n)
I{(a,b) ∈ R}

)
=

(p(n))2

(r(n))2
VarFcn

(
I{(a,b) ∈ R}

)
=

(p(n))2

(r(n))2
P
(
I{(a,b) ∈ R} | Xm > cn

)
P
(
I{(a,b) /∈ R} | Xm > cn

)
=
p(n)

r(n)
P
(

1− r(n)

p(n)

)
→ 0.

This completes the proof.

3.3.1 Numerical experiments

The theoretical results guarantee that q̂(n)
T is an efficient estimator of 1/p(n). However,

for comparison with existing importance sampling algorithms the numerical experiments
are based on p̂(n)

T = (q̂
(n)
T )−1 as an estimator for p(n). The literature includes numerical

experiments for the technique proposed by Blanchet, Hult and Leder in [14], who propose
a sequential importance sampling algorithm based on conditional mixtures.

We consider the problem of computing P(Xm > c) where Xm is the solution to the
recurrence equation Xk = AkXk−1 + Bk, for k ≥ 1 with X0 = 0. The innovation B is
assumed to be non-negative Pareto distributed variable with tail, FB(x) = (x + 1)−2 for
x ≥ 0.

The performance of the MCMC estimator is compared to the importance sampling es-
timator in [14], which is labeled IS. By construction each simulation run of the MCMC
algorithm only generates a single random variable (one simulation step) while the impor-
tance sampling algorithm generate 2m number of random variables (2m simulation steps).
Therefore the number of runs for the MCMC is scaled up by a factor of 2m so that the two
algorithms generate essentially the same number of random numbers, and thus getting a
fairer comparison of the computer runtime.

Table 3.1 presents the estimates based on 10 batches, each consisting of 105 simulations
in the case of the importance sampling and 2m · 105 in the case of MCMC. The results
are divided into two classes. In the first one, the log-normal setting, the A is assumed to
be log-normally distributed with σ = 0.1 and µ = log(1.05) − σ2/2. In the second one,
the exponential setting, the A is assumed to be exponentially distributed with mean 0.25.
Table 3.1 shows that MCMC appears to perform reasonably well compared to importance
sampling, but there seems to be a bias, which is believed to come from slow convergence
of the MCMC sampler.

The numerical experiments show that the convergence of the MCMC algorithm is
sensitive to the asymptotic choice of a in equation (3.9). In addition burn-in time tends
to be extensive because the chain gets stuck where Bm is large. The slow convergence
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due to long burn-in time is illustrated in Table 3.2 which presents the estimates based on
10 batches, each consisting of T simulations. This problem could be overcome with an
MCMC sampler with better mixing properties than the one given by Algorithm 3.3.1.

Table 3.1: Numerical comparison of computing P(X4 > c).

Log-normal setting Exponential setting
c = 10 MCMC IS MCMC IS
Estimate 2.390e-02 6.645e-02 1.044e-02 1.042e-02

Std. deviation 5.033e-04 15.422e-04 2.477e-04 1.838e-04
Rel. error 0.0211 0.0232 0.0237 0.0176

Comp. time(s) 4.79 4.09 4.29 4.63
c = 100 MCMC IS MCMC IS
Estimate 1.788e-04 4.947e-04 1.148e-04 1.134e-04

Std. deviation 1.984e-05 1.614e-05 18.290e-06 5.744e-06
Rel. error 0.1109 0.0326 0.1593 0.0507

Comp. time(s) 4.71 4.08 4.14 4.53
c = 1, 000 MCMC IS MCMC IS

Estimate 1.084e-06 4.756e-06 1.045-06 1.140e-06
Std. deviation 21.184e-08 3.921e-08 8.880e-08 1.459e-08

Rel. error 0.1953 0.0082 0.0850 0.0128
Comp. time(s) 4.09 4.02 4.04 4.53
c = 10, 000 MCMC IS MCMC IS

Estimate 1.017e-08 4.734e-08 1.034e-08 1.142e-08
Std. deviation 4.169e-10 4.037e-10 8.487e-13 1100.195e-13

Rel. error 0.0410 0.0085 8.205e-05 963.3e-05
Comp. time(s) 4.17 4.15 4.02 4.53
c = 100, 000 MCMC IS MCMC IS

Estimate 1.012e-10 4.738e-10 1.034e-10 1.143e-10
Std. deviation 7.822e-15 4053.249e-15 1.983e-15 1390.922e-15

Rel. error 7.726e-05 855.431e-05 1.917e-05 1217.112e-05
Comp. time(s) 4.15 4.16 4.16 4.67

Table 3.2: Burn-in time effect of computing P(X4 > c) in Exponential setting.

MCMC IS MCMC IS MCMC IS
c = 1, 000 T = 10, 000 T = 100, 000 T = 1, 000, 000

Estimate 1.033e-06 1.144e-06 1.033e-06 1.141e-06 1.197e-06 1.141e-06
Std. deviation 2.405e-10 1.154e-08 1.044e-10 3.531e-09 1.734e-07 1.009e-09

Rel. error 2.327e-04 1.008e-02 1.010e-04 3.094e-03 1.449e-01 8.840e-04

Finally, the convergence of the MCMC technique is visualised in Figure 3.1 which
illustrates the point estimate of P(X4 > 25) as a function of number of simulation steps.
In the figure, the A is assumed to be log-normally distributed with σ = 0.1 and µ =
log(1.05)− σ2/2.

3.4 Insurance company with risky investments

In this section the MCMC estimator introduced in Section 3.2 is applied for computing the
probability of ruin for an insurance company with risky investments.

The ruin problem with investment is reasonably well studied. A recent overview is
given by Paulsen in [22]. In the infinite horizon setting there are two asymptotic regimes.
Power tail asymptotics can arise either as the cumulative effect of negative returns on the
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Figure 3.1: The point estimate of P(X4 > 25) as a function of simulations (solid line)
compared to the Monte Carlo estimate (dotted line) using 107 simulations.
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investment asset or because of power tails of the claim size distribution. In the first case
the power tail asymptotics can be derived by expressing the risk reserve as the solution
to a stochastic recurrence equation whose stationary solution has a power tail, see e.g.
[21], [16], [11], [23] and [18]. In the second case the power tail asymptotics of the ruin
probability is more directly inferred from the power tail of the claim size distribution, see
e.g. [12] and [18]. This paper assumes the latter of the two settings and in finite time. Here
the occurrence of the ruin event is dominated by the power tail asymptotics of the claim
size distribution.

Consider a discrete time model for the risk reserve of an insurance company motivated
by the Solvency II regulatory framework. Given a fixed integer m ≥ 1, let 0 = t0 < t1 <
· · · < tm = 1 be a partition of the time interval [0, 1]. Assume that the company receives
its premium c at the start of the period t = 0 and is therefore not affected by the stochastic
return during the period. Denote by Bk the claim loss during the kth subperiod (tk−1, tk].
Suppose that the insurance company invests the risk reserve in a risky asset and denote by
Rk the stochastic return on the risky asset over the kth subperiod (tk−1, tk]. It is assumed
that {Bk}mk=1 and {Rk}mk=1 are independent sequences, each consisting of independent
and identically distributed random variables. The risk reserve, Uk, at the end of the kth
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period, given an initial wealth of U0 = un, is modeled as

Uk = Rk(Zk−1 −Bk), for k = 1, . . . ,m,
U0 = un.

Iterating the relation above yields

Um = Rm · · ·R1un −
(
Rm · · ·R1B1 +Rm · · ·R2B2 + · · ·+RmBm

)
.

Assume that Rk > 0 almost surely for all k = 1, . . . ,m and put Ak = 1/Rk. The last
display is equivalent to

A1 · · ·AmUm = un −Wm,

where
Wm = B1 +A1B2 + · · ·+A1 · · ·Am−1Bm.

Observe that Wm represents the discounted losses that have accumulated up until time
tm = 1. Since the only difference between the losses Wm, and Xm from the previous
section, is the labeling of the identically distributed and independent B’s, then it holds that
Wm

d
=Xm. The event of ruin up until time tm = 1 is equivalent to{

inf
0≤k≤m

Uk < 0

}
=

{
sup

0≤k≤m
Wk > un

}
= {Wm > un}.

The objective is to compute the ruin probability

p(n) = P(Wm > un),

where the last display is equal to P(Xm > un). Applying the method presented in Section
3.3 thus enables us to compute the probability of ruin with minor notational adjustments.

3.4.1 Numerical experiments

In this section the MCMC estimator from Section 3.3 is exemplified on the the problem of
computing the probability of ruin p(n) = P(Wm > un).

It is assumed that the premium c is received at the start of the period t = 0 and hence
not affected by the stochastic return. This translates into the condition that un ≥ c. Let the
accumulated claim size distribution be given by,

Bk = λZk, for k = 1, . . . ,m,

where λ ∈ (0,∞) represents the intensity of the number of claims and Zk the claim
amount. Assume that the distribution of Z, the generic representative of the collection
{Zk}, has the following distribution

P(Z ≤ z) = 1− κα(κ+ z)−α, for z ≥ 0. (3.11)
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Then the distribution of B has a regularly varying tail with index −α < 0. More precisely,

lim
t→∞

P(B > t)

P(Z > t)
= λ.

For the annual returns R, a log-normal distribution will be assumed with mean µ− σ2

2
and standard deviation σ. In this case, for a standard normal variable Y :

E[R−α] = E
[

exp
{
− α

(
µ− σ2

2
− σY

)}]
= exp

{
α
(σ2

2
(α+ 1)− µ

)}
.

In the numerical experiments the time interval is one year, partitioned into m = 12
time units. The intensity of the number of claims is λ = 197 per year, and the parameters
for the claim size distribution (3.11) are κ = 2.20, α = 1.7. These parameter values
are consistent with the well studied Danish Fire Insurance data, see [19], where the claim
amounts are in Million Danish Kroner. Let the stochastic return be specified with yearly
return µ = 1.06 and yearly standard deviation of σ = 0.2.

The results of the numerical experiments using the MCMC technique are provided
in Table 3.3. All the simulations are based on 10 batches, each consisting of 10, 000
replications.

From the table it is clear that the relative error stays bounded and that the computational
runtime is not correlated to the threshold u.

Table 3.3: Estimation of P(W12 > u) Log-normal setting.

u Estimate Std. deviation Rel. error Comp. time(s)
1,000 4.381e-03 1.766e-04 0.0403 20.03
5,000 3.180e-04 9.472e-05 0.2978 20.17
10,000 9.085e-05 3.789e-05 0.4171 19.55
100,000 1.406e-06 2.482e-10 0.0002 17.77

In addition, the convergence of the MCMC technique for computing the probability is
visualised in Figure 3.2 which illustrates the point estimate of P(W12 > 103) as a function
of number of simulation steps.
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Figure 3.2: The point estimate of P(W12 > 103) as a function of simulations (solid line)
compared to the Monte Carlo estimate (dotted line) using 106 simulations.
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Abstract

In this paper the Markov chain Monte Carlo (MCMC) algorithm for computing
rare-event probabilities is developed and extended to the setting of light-tailed random
walk. A Markov chain is generated using a Gibbs sampler, having as its invariant
distribution the conditional distribution given that the event of interest occurs. The
sought probability is the normalising constant of that conditional distribution and is
estimated from the sample of the Markov chain.

The MCMC algorithm is presented for two light-tailed random walk problems,
when the support of the distribution of the increments is R and R+, respectively. The
logarithmic efficiency of the estimator is characterised and the main result of this pa-
per is theorem which states that under certain condition the MCMC estimator is log-
arithmically efficient. Numerical experiments are performed to compare the MCMC
algorithm to an existing strongly efficient importance sampling algorithm.

4.1 Introduction

This paper provides a Markov chain Monte Carlo (MCMC) algorithm for computing rare-
event probabilities for a light-tailed random walk. The fundamental idea is to construct a
Markov chain via an MCMC sampler, having as its invariant distribution the conditional
distribution given that the event of interest occurs. The probability of the event of interest
then appears as the normalising constant of that conditional distribution and it is estimated
from a sample of the Markov chain.

The importance of evaluating the risk of disastrous events grows in many areas such as
economics, finance and insurance. The evaluation often boils down to the computation of
probabilities or estimation of quantiles. For complex models, there is often no analytical
solution known to calculate such probabilities. This has motivated the use of stochastic
simulation as an alternative for computing probabilities.
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Consider a sequence of random variables X(1), X(2), . . . , each of which can be sam-
pled repeatedly by a simulation algorithm. The objective is to compute p(n) = P(X(n) ∈
A) for some large n and it is assumed that p(n) → 0 as n → ∞. In this sense the event
{X(n) ∈ A} can be thought of as a rare-event. For a sample X(n)

0 , . . . , X
(n)
T−1 the Monte

Carlo estimate is p̂(n)
T = 1

T

∑T−1
t=0 I{X(n)

t ∈ A} and has the relative error

Var(p̂(n))

(p(n))2
=
p(n)(1− p(n))

T (p(n))2
=

1

T

( 1

p(n)
− 1
)
→∞, as n→∞,

thus indicating that the performance deteriorates when the event is rare.
The rare-event performance of an estimator is quantified by its relative error. A desired

property is strong efficiency. An estimator is said to be strongly efficient if its relative
error is bounded or tends to zero as n → ∞. A slightly weaker property is logarithmic
efficiency. Suppose, for simplicity, {p(n)} satisfies a large deviation principle with rate
function I , in particular

lim
n→∞

− 1

n
log p(n) = I(A).

Informally this can interpreted that p(n) ≈ e−nI(A). Logarithmic efficiency means that the
variance of the estimator (dominated by its second moment) is roughly of the same size as
the probability squared, that is E[(p̂(n))2] ≈ e−2nI(A). More formally, an estimator is said
to be logarithmically efficient if

lim
n→∞

1

n
log

E[(p̂(n))2]

(p(n))2
= 0.

Importance sampling (IS) is a popular method for improving the rare-event efficiency
of the standard Monte Carlo algorithm. The basic idea is to sample the variables X(n)

0 , . . .,
X

(n)
T−1 from a different distribution, say G(n), rather than the original distribution F (n).

The IS estimate is p̂(n)
T = 1

T

∑T−1
t=0

dF (n)

dG(n) (X
(n)
t )I{X(n)

t ∈ An} and its performance is
determined by the choice of the sampling distribution G(n). The optimal sampling distri-
bution is the conditional distribution

F
(n)
A (·) = P(X(n) ∈ · | X(n) ∈ A).

For this choice of a sampling distribution, the indicators in the IS estimate are all equal
to one, thus implying that p̂(n)

T has zero variance. But F (n)
A is infeasible as a sampling

distribution since it requires the knowledge of p(n). This motivates choosing for a sampling
distribution G(n) a distribution which is ’close to’ F (n)

A . It has long been known that the
design of the sampling distribution is closely related to the large deviations asymptotics of
the underlying model in the sense that the change of measure should be such that under the
sampling distribution the system tends to follow the most likely trajectory to the rare event.
Recent developments have lead to a more systematic approach towards designing efficient
IS algorithms. Indeed, the design of an efficient sampling distribution for an IS algorithm
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is closely related to finding a classical subsolution to the partial differential equation, of
Hamilton-Jacobi type, that characterises the rate function, see e.g. [3] and [4].

In previous papers we have presented the MCMC methodology for problems in heavy-
tailed settings such as random walk and random sums with increments having heavy-
tailed distributions and stochastic recurrence equations with heavy-tailed innovations. The
MCMC method has proven to be very efficient, in particular for random walk and random
sums. In addition, efficiency proofs for these examples have been short and simple, in
contrast to the lengthy and technical proofs of the IS counterpart. The motivation for this
paper is to investigate the applicability of the MCMC methodology in light-tailed settings.
A natural starting point is to consider light-tailed random walk. Since efficient importance
sampling algorithms exists and are well established the setting of random walks allows for
comparison with state-of-the-art techniques.

This paper presents the MCMC methodology for computing rare-event probabilities
and how logarithmic efficiency can be attained. The algorithm is exemplified by consider-
ing the problem of computing the probability that a random walk exceeds a high threshold.
The probabilistic assumptions made in this paper are that the increments of the random
walk are independent and identically light-tailed distributed random variables. The log-
arithmic efficiency is characterised for two separate cases, when the distribution of the
increments is supported on R and R+, respectively. Numerical experiments are performed
on the proposed MCMC algorithm and compared to the strongly efficient IS algorithm
presented in [1]. Comparison shows that MCMC estimator performs comparably with the
importance sampling algorithm, both when the increments are supported on R and on R+.

The literature includes several examples of logarithmically efficient importance sam-
pling algorithms. These techniques are based on finding the optimal exponential tilting of
the sampling distribution, from which all of the summands are sampled, see for instance
Siegmund [7] and Sadowsky [6]. Blanchet, Leder and Glynn [1], provide an importance
sampling algorithm for a light-tailed random walk which is proved to be strongly efficient.
This is acquired by designing a state-dependent optimal exponential tilting, whereas the
summands need not to be sampled from the same tilted sampling distribution.

The paper is organised as follows. The general MCMC methodology for computing
rare-event probabilities and the first steps for proving logarithmic efficiency is presented in
Section 4.2. Section 4.3 provides two examples of the algorithm in the setting of a light-
tailed random walk, where the increments have support on the whole R and where the
increments only have support on R+. Numerical experiments are presented in Section 4.4
to compare the numerical efficiency of the MCMC estimator against the strongly efficient
IS estimator provided in [1].

4.2 Logarithmically efficient MCMC simulation

In this section the MCMC simulation method for computing rare-event probabilities is
presented and the first steps towards for proving logarithmic efficiency explained.

Let X(n) be a random element with probability distribution F (n) and let A be a mea-
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surable set. Consider the problem of computing

p(n) = P(X(n) ∈ A),

where {X(n) ∈ A} is rare-event in the sense that p(n) is small. Denote by F
(n)
A the

probability distribution conditioned on the rare-event, namely

F
(n)
A (·) = P(X(n) ∈ · | X(n) ∈ A).

The first step is designing an MCMC sampler which produces a Markov chain (X
(n)
t )t≥0

havingF (n)
A as its invariant distribution. Assuming that such a sampler exists, letX(n)

0 , . . . , X
(n)
T−1

be given having F (n)
A as its invariant distribution.

The next step is to construct an unbiased estimator q̂(n)
T of 1/p(n) based onX(n)

0 , . . . , X
(n)
T−1.

Consider a probability distribution V (n), such that V (n) � F
(n)
A , and define u, a function

of X(n), by

u(X(n)) =
dV (n)

dF (n)
(X(n)).

Taking expectation with respect to FA then

E
F

(n)
A

[
u(X(n))

]
=

∫
dV (n)

dF (n)
(X(n))dF

(n)
A (X(n)) =

1

p(n)

∫
dV (n)(X(n)) =

1

p(n)
,

thus motivating the following definition of the MCMC estimator q̂(n)
T of 1/p(n)

q̂
(n)
T =

1

T

T−1∑
t=0

u(X
(n)
t ),

based on the sample of a Markov chain (X
(n)
t )T−1

t=0 having F (n)
A as its invariant distribution.

For an unbiased estimator q̂(n)
T of 1/p(n) we emphasise two efficiency concepts. Firstly,

it is desirable that the relative error of the estimator is controlled. In the light-tailed setting
of this paper the estimator q̂(n)

T of 1/p(n) is said to be logarithmically efficient if

lim
n→∞

1

n
log(p(n))2E

[
(q̂

(n)
T )2

]
= 0,

Secondly, it is desirable that the variance of the estimator tends to zero as the sample size
increases. An estimator q̂(n)

T is said to be large sample efficient if

lim
T→∞

Var(q̂
(n)
T ) = 0.

Two key choices arise that determine the convergence performance of the algorithm.
The design of the MCMC sampler and the choice of V (n). The design of the MCMC
sampler is essential for the mixing properties of the Markov chain (X

(n)
t )t≥0 and thereby
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the convergence of the estimator as the sample size increases. The higher the mixing
rate of the MCMC sampler, the quicker the Markov chain will converge to its invariant
distribution. It has been shown, for instance in [5], that it is sufficient that the Markov chain
is geometric ergodic to guarantee large sample efficiency, in the sense that Var

F
(n)
A

(q̂
(n)
T ) =

O(1/T ).
The choice of V (n) controls the normalised variance of the estimator

(p(n))2 Var
F

(n)
A

(q̂
(n)
T ),

thus determining the rare-event efficiency of the algorithm. Suppose that the increments Y
are light-tailed, meaning that E[eθY1 ] < ∞ for some θ > 0. Then it follows by Cramér’s
theorem that {X(n)} satisfies the large deviation principle

I(Å) ≤ lim inf
n→∞

− 1

n
log p(n) ≤ lim sup

n→∞
− 1

n
log p(n) ≤ I(Ā), (4.1)

where Å and Ā are the interior and closure of A, respectively, and I(A) = infx∈A I(x)
where

I(x) = sup
θ∈R

{
θx− Λ(θ)

}
,

is the rate-function and Λ(θ) = logE[eθY1 ] is the moment generating function of the
increment. The objective is to prove logarithmic efficiency, that is

lim sup
n→∞

1

n
log
{

(p(n))2E
F

(n)
A

[
(q̂

(n)
T )2

]}
= 0.

The second moment of the estimator can be rewritten

E
F

(n)
A

[
(q̂

(n)
T )2

]
= E

F
(n)
A

[( 1

T

T−1∑
t=0

u(X
(n)
t )

)2]
=

1

T
E
F

(n)
A

[
u(X(n))2

]
+

2

T 2

T−1∑
t=0

T−1∑
s=t+1

E
F

(n)
A

[
u(X

(n)
t )u(X(n)

s )
]

The crude upper bound E
F

(n)
A

[
u(X

(n)
t )u(X

(n)
s )

]
≤ E

F
(n)
A

[
u(X(n))2

]
implies that

E
F

(n)
A

[
(q̂

(n)
T )2

]
≤
( 2

T
+ 1
)
E
F

(n)
A

(
u(X(n))2

)
.

Therefore it is clear that the normalised variance of the estimator is controlled by the second
moment of u. Now consider,

(p(n))2E
F

(n)
A

(
u(X(n))2

)
= EV (n)

[dV (n)

dF
(n)
A

(X(n))
]
,
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thus motivating taking V (n) as an approximation of F (n)
A . Observe that

1

n
logEV (n)

[dV (n)

dF
(n)
A

(X(n))
]

=
1

n
log p(n) +

1

n
logEV (n)

[dV (n)

dF (n)
(X(n))

]
,

so it follows from the large deviation assumption in (4.1) that the objective can be rewritten,
so to prove logarithmic efficiency it is sufficient to show that

lim sup
n→∞

1

n
logEV (n)

[dV (n)

dF (n)
(X(n))

]
≤ I(A). (4.2)

In the next section we consider a specific problem and provide a complete characterisation
of logarithmic efficiency.

4.3 Light-tailed random walk

In this section the MCMC simulation technique is developed for computing the probability
that a light-tailed random walk exceeds a high threshold. Two cases are considered, firstly,
when the distribution of the increments is supported on the whole R and, secondly, when
the distribution of the increments is supported on R+. To start, a Gibbs sampler is presented
which generates a Markov chain with desirable invariant distribution. The Gibbs sampler
is common for both cases and is therefore presented first before the section is split where
each case is presented separately.

Let Y(n) = (Y1, . . . , Yn) be a vector of independent and identically distributed random
variables with joint probability distribution function F (n). Denote by FY the probability
distribution for a generic Y and fY for its density function with respect to the Lebesgue
measure, which is assumed to exist. Consider the problem of computing the probability
that the sample mean Sn = (Y1 + · · ·+ Yn)/n is larger than E[Y1],

p(n) = P(Sn > a),

for a > E[Y1].
The first step is designing a Gibbs sampler that produces a Markov chain (Y(n)

t )t≥0

having the conditional distribution

F (n)
a (·) = P(Y(n) ∈ · | Sn > a),

as its invariant distribution. In the following algorithm the steps are updated sequentially,
such that the sample mean is conditioned on exceeding the threshold after the update. To
simplify notation, write Sn,−k = Y1 + · · ·+ Yk−1 + Yk+1 + · · ·+ Yn.

Algorithm 4.3.1. Start with an initial state Y(n)
0 = (Y0,1, . . . , Y0,n) where

S0,n =
1

n

n∑
k=1

Y0,k > a.

Given Y(n)
t for some t ≥ 0, the next state Y(n)

t+1 is sampled as follows.
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1. Draw a randomised ordering j1, . . . , jn of {1, . . . , n} and proceed updating Y(n)
t in

the order thus obtained.

2. For l = 1, . . . , n set k = jl and proceed updating Yk as follows. Sample Y ′ from
the conditional distribution

P(Y ′ ∈ · | Y ′ > s),

where
s = a− St,n,−k. (4.3)

Put Y(n)
t+1 = (Yt,1, . . . , Yt,k−1, Y

′, Yt,k+1, . . . , Yt,n).

Iterate steps 1 and 2 until the entire Markov chain (Y(n)
t )T−1

t=0 is constructed.

Remark 4.3.2. In the case when the increments can only take positive values, then the
threshold parameter s in (4.3) is (a− St,n,−k, 0) ∨ 0.

Proposition 4.3.3. The Markov chain (Y(n)
t )t≥0 constructed by Algorithm 4.3.1 has the

conditional distribution F (n)
a as its invariant distribution and is uniformly ergodic.

The proof of this proposition is identical to the proofs of Propositions 3.1 and 3.2 in
[5] and is therefore omitted.

This section now splits into two cases, firstly, when the support of the increments Y is
R and, secondly, when the support of the increments is R+. In the first case, we choose
V (n) to be the joint distribution of n normal variables conditioned on the average being
larger than the threshold a. The reason for this choice is that the probability of the event
conditioned on can easily be computed explicitly. In the second case, we choose V (n) to
be the joint distribution of n gamma variables conditioned on the average being larger than
a. Again, the reason for this choice is that the probability of the event conditioned on is
easily computed explicitly.

4.3.1 Real-valued increments

Assume that Y1, Y2, . . . are independent and identically distributed random variables with
density fY supported on the whole of R. Let V (n) be the probability distribution given by

V (n)(·) = P
(
(Z1, . . . , Zn) ∈ · | (Z1, . . . , Zn) ∈ R(n)

)
,

forR(n) = {(Z1 + · · ·+Zn)/n > a}, where the Z1, Z2, . . . are independent and normally
distributed variables with mean µ = E[Y1] and standard deviation σ. The probability of
the event R(n) can be computed explicitly as

r(n) = P
(
(Z1, . . . , Zn) ∈ R(n)

)
= P

(
(Z1 + · · ·+ Zn)/n− µ

σ/
√
n

>
a− µ
σ/
√
n

)
= 1− Φ

( a− µ
σ/
√
n

)
,
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where Φ is the standard normal probability distribution.
Let (Y(n)

t )T−1
t=0 be generated via Algorithm 4.3.1 with invariant distribution F (n)

a . For
the given choice of V (n) it follows that

u(Y(n)) =
1

r(n)

n∏
i=1

φµ,σ(Yt,i)

fY (Yt,i)
I
{ 1

n

n∑
i=1

Yt,i > a
}

,

where φµ,σ is the density of a normal distribution with mean µ and standard deviation σ.
The MCMC estimator is given by

q̂
(n)
T =

1

r(n)

1

T

T−1∑
t=0

n∏
i=1

φµ,σ(Yt,i)

fY (Yt,i)
I
{ 1

n

n∑
i=1

Yt,i > a
}

. (4.4)

Observe that the estimator can be viewed as the asymptotic approximation 1/r(n) of the
true 1/p(n) times the stochastic correction factor. The reason for the good efficiency of
the MCMC estimator relies on the fact that the asymptotic approximation is good and the
stochastic correction factor has small normalised variance.

Recall that the distribution V (n) should be chosen so that r(n) is close to p(n) on a
logarithmic scale. The standard deviation σ of the normal variable Z1 is therefore set so
that the large deviation rate of r(n) match the large deviation rate of p(n).

From the assumption that Λ(θ) = logE[eθY ] < ∞ for some θ > 0 it follows from
Cramér’s theorem, see [2], that

lim
n→∞

− 1

n
log p(n) → I(a),

where I(a) = supθ∈R{θa− Λ(θ)}; the Fenchel-Legendre transform of Λ.
Similarly, the normalising constant of V (n) satisfies limn→∞− 1

n log r(n) = supθ∈R
{
θa−

Λ(θ)
}

, where Λ(θ) = logE[eθZ ] = θµ + (θσ)2

2 . It follows, by performing the maximisa-
tion, that

lim
n→∞

− 1

n
log r(n) =

(a− µ)2

2σ2
. (4.5)

An appropriate choice of the standard deviation σ is therefore the solution to

I(a) =
(a− µ)2

2σ2
.

We proceed with the first main result of this paper, the characterisation of our proposed
estimator.

Theorem 4.3.4. Suppose that a > E[Z log
φµ,σ(Z)
fY (Z) ] and

H(p) = logE

[
φµ,σ(Z)

fY (Z)
epZ
]
<∞, for some p > 0. (4.6)
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Then, the estimator q̂(n)
T given by equation (4.4) satisfies

lim sup
n→∞

1

n
log
(

(p(n))2E
F

(n)
a

[(q̂
(n)
T )2]

)
≤ I(a)− J(a),

where J(a) = supp>0{pa−H(p)}.

Theorem 4.3.4 characterises the rare-event efficiency of the algorithm. If J(a) ≥ I(a)

then q̂(n)
T is logarithmically efficient. It follows from Jensen’s inequality that I(a) ≥ J(a),

therefore the efficiency is obtain precisely when J(a) = I(a).

Proof. The calculations leading up to (4.2) shows that

lim sup
n→∞

1

n
log
(

(p(n))2E
F

(n)
a

[(q̂
(n)
T )2]

)
≤ −I(a) + lim sup

n→∞

1

n
logE

(n)

V (n)

[
I
{ n∑
i=1

Yi > na
}dV (n)

dF (n)
(Y(n))

]
.

Since

lim sup
n→∞

1

n
logE

(n)
V

[
I
{ n∑
i=1

Yi > na
}dV (n)

dF (n)
(Y(n))

]
= lim sup

n→∞

1

n
log

∫
I
{ n∑
i=1

zi > na
} 1

r(n)

n∏
i=1

φµ,σ(zi)

fY (zi)

1

r(n)

n∏
i=1

φµ,σ(zi) dz1, . . . dzn

= lim sup
n→∞

− 2

n
log r(n) + lim sup

n→∞

1

n
logE

[
I
{ n∑
i=1

Zi > na
} n∏
i=1

φµ,σ(Zi)

fY (Zi)

]
= 2I(a)− lim inf

n→∞
− 1

n
logE

[
I
{ n∑
i=1

Zi > na
}
e
∑n
i=1− log

fY (Zi)

φµ,σ(Zi)

]
,

it follows that it is sufficient to prove that

lim inf
n→∞

− 1

n
logE

[
I

{
n∑
i=1

Zi > na

}
n∏
i=1

φµ,σ(Zi)

fY (Zi)

]
≥ sup

p
{pa−H(p)}. (4.7)

To show (4.7), take p ≥ 0 such that

E

[
epZ

φµ,σ(Z)

fY (Z)

]
<∞.
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By Chebyshev’s inequality

− 1

n
logE

[
I

{
n∑
i=1

Zi > na

}
n∏
i=1

φµ,σ(Zi)

fY (Zi)

]

≥ − 1

n
logE

[
I

{
n∑
i=1

Zi > na

}
ep(

∑n
i=1 Zi−na)

n∏
i=1

φµ,σ(Zi)

fY (Zi)

]

≥ pa− 1

n
logE

[
ep

∑n
i=1 Zi

n∏
i=1

φµ,σ(Zi)

fY (Zi)

]
= pa− logE

[
epZ

φµ,σ(Z)

fY (Z)

]
= pa−H(p).

Taking supremum over p ≥ 0 yields

− 1

n
logE

[
I

{
n∑
i=1

Zi > na

}
n∏
i=1

φµ,σ(Zi)

fY (Zi)

]
≥ sup

p≥0
{pa−H(p)} = J(a).

4.3.2 Positive valued increments

Suppose that the Y1, Y2, . . . are independent and identically distributed random variables
with density fY with support on R+. Let V (n) be the probability distribution given by

V (n)(·) = P
(
(Z1, . . . , Zn) ∈ · | (Z1, . . . , Zn) ∈ R(n)

)
,

for R(n) = {(Z1 + · · ·+ Zn)/n > a} where Z1, Z2, . . . are independent and gamma dis-
tributed variables with shape parameter α and rate β. The sum of n gamma variables with
shape α and rate β is itself gamma with shape nα and rate β and therefore the probability
of the event R(n) can be computed explicitly.

Let (Y(n)
t )T−1

t=0 be generated via Algorithm 4.3.1 with invariant distribution F (n)
a . For

the given choice of V (n) it follows that the MCMC estimator is given by

q̂
(n)
T =

1

r(n)

1

T

T−1∑
t=0

n∏
i=1

gZ(Yt,i)

fY (Yt,i)
I
{ 1

n

n∑
i=1

Yt,i ≥ a
}

, (4.8)

where gZ is the gamma density function with shape α and rate β.
Observe as previously, that the estimator can be viewed as the asymptotic approxi-

mation 1/r(n) of the true probability 1/p(n) times the stochastic correction factor. The
reason for the good efficiency of the MCMC estimator relies on the fact that this stochastic
correction factor has small normalised variance.
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The shape α is set such that E[Z1] = α/β equals E[Y1]. The rate β is set so that the
large deviation rate of r(n) match the large deviation rate of p(n).

Assuming that Λ(θ) = logE[eθY ] < ∞ for some θ > 0 it follows from Cramér’s
theorem, see [2], that

lim
n→∞

− 1

n
log p(n) → I(a),

where I(a) = supθ∈R{θa − Λ(θ)}; the Fenchel-Legendre transform of Λ. Similarly, by
performing the maximisation, then

lim
n→∞

− 1

n
log r(n) = sup

θ∈R
{θa− Λ(θ)} = aβ − α+ α log

( α
aβ

)
.

A good choice for the standard deviation λ is hence the solution to

I(a) = aβ − α+ α log
( α
aλ

)
.

We proceed with the second main result of this paper, the characterisation of our pro-
posed estimator.

Theorem 4.3.5. Suppose that a > E[Z log gZ(Z)
fY (Z) ] and

H(p) = logE

[
gZ(Z)

fY (Z)
epZ
]
<∞, for some p > 0. (4.9)

Then, the estimator q̂(n)
T given by equation (4.8) satisfies

lim sup
n→∞

1

n
log
(

(p(n))2E
F

(n)
a

[(q̂
(n)
T )2]

)
≤ I(a)− J(a),

where J(a) = supp>0{pa−H(p)}.

The proof is very similar to the proof of Theorem 4.3.4 is therefore skipped.

4.4 Numerical experiments

This paper presents an MCMC estimator q̂(n)
T of (p(n))−1. However for comparison rea-

sons the numerical experiments are based on p̂(n)
T = (q̂

(n)
T )−1 as an estimator for p(n). The

MCMC algorithm provided in this paper is compared to the strongly efficient importance
sampling algorithm provided by Blanchet, Leder and Glynn [1].

Consider the problem of computing the probability that the sample mean exceeds the
threshold larger than its mean. The sought probability is

P(Sn > a),

where Sn = (Y1 + · · · + Yn)/n for independent and identically distributed Y ’s and a >
E[Y1]. We provide numerical experiments for both cases presented in this paper. Firstly
where the Y ’s are real-valued and secondly where the Y ’s only take positive values.
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4.4.1 Real-valued increments

Table 4.1: Numerical results for computing P(Sn > 1.50), where the increments are real-
valued. The performance of the MCMC estimator is compared to the IS estimator.

n = 2 MCMC IS Monte Carlo
Estimate 2.653e-02 2.695e-02 2.694e-02

Std. deviation 2.910e-04 13.501e-04 53.387e-04
Rel. error 0.01097 0.0501 0.1982

Comp. time(s) 0.13 0.29 0.06
n = 5 MCMC IS Monte Carlo

Estimate 1.434e-03 1.516e-03 1.320e-03
Std. deviation 9.901e-05 11.007e-05 116.237e-05

Rel. error 0.0691 0.0726 0.8806
Comp. time(s) 0.41 0.71 0.29
n = 10 MCMC IS Monte Carlo
Estimate 1.367e-05 1.524e-05 1.000e-05

Std. deviation 2.583e-06 3.834e-06 100.000e-06
Rel. error 0.1890 0.2515 10.0000

Comp. time(s) 1.10 1.43 1.04
n = 15 MCMC IS
Estimate 1.486e-07 1.543e-07

Std. deviation 4.759e-08 1.296e-08
Rel. error 0.3196 0.0840

Comp. time(s) 2.10 2.14
n = 20 MCMC IS
Estimate 1.773e-09 1.758e-09

Std. deviation 7.165e-10 3.975e-10
Rel. error 0.4042 0.2261

Comp. time(s) 3.53 2.85
n = 25 MCMC IS
Estimate 2.152e-11 1.933e-11

Std. deviation 10.305e-12 1.593e-12
Rel. error 0.4788 0.0824

Comp. time(s) 5.28 3.56

Suppose that the increments Y are independent and identically distributed normal mix-
tures given by

Y1 =

{
W1 with probability 0.40,
W2 with probability 0.60,

where (W1,W2) are independent normally distributed with mean 1.20 and 0.80 respec-
tively and standard deviation 0.20 and 0.50 respectively. The parameters are chosen in this
way to imitate the behavior of a volatile economic climate, shifting from good to bad and
vice versa.

By Theorem 4.3.4 the MCMC estimator is logarithmically efficient if J(a) = I(a).
For the normal mixture example we compute numerically

J(a) = 0.78, against I(a) = 1.50.

Therefore the estimator is not logarithmically efficient.
Since the MCMC algorithm only generates a single random variable per simulation,

while the IS algorithm generates the entire random walk, the number of simulations for
the MCMC is scaled up by n so that the computational runtime between the techniques is
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Figure 4.1: The point estimate of P(S5 > 1.50) as a function of simulations (red line)
compared against the true probability (solid line), where the increments are real-valued.
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roughly the same. This gives a fairer comparison of the relative error between the algo-
rithms.

Table 4.1 displays the numerical results based on computation using 102 batches, each
IS batch consisting of 103 simulations and MCMC 103n simulations. The batch sample
mean, sample standard deviation and sample relative error are recorded, as well as the aver-
age computational runtime per batch. Figure 4.1 illustrates the convergence of the MCMC
algorithm, by recording the point estimate of the probability P(S5 > 1.50) as function of
number of simulations. The point estimate is compared to the true probability, determined
by the standard Monte Carlo estimate using 109 simulations. Figure 4.2 illustrates the per-
formance difference between the MCMC algorithm and the IS algorithm, in terms of the
relative error as a function of n, the number of increments.

Comparing the numerical results between MCMC and IS shows that the former algo-
rithm outperforms the latter for probabilities in the range from 10−2 to 10−5 where the
IS takes over and is thereafter more efficient. That does not come as a surprise since this
particular IS algorithm is strongly efficient against our logarithmically efficient MCMC
algorithm.



80 RARE-EVENT SIMULATION WITH MCMC

Figure 4.2: The relative error for estimating P(Sn > 1.50) as number of increments n
increases, where the increments are real-valued. The relative error of the MCMC estimator
(red line) compared to the relative error of the IS estimator (solid line).
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4.4.2 Positive valued increments

Suppose that the increments Y are independent and identically Weibull distributed with
shape γ = 1.5 and scale µ = 0.9. Since the shape parameter γ > 1 then it can be shown
that H in Theorem 4.3.5 is not finite for any p > 0. Therefore the MCMC estimator is
not logarithmically efficient. Nevertheless, we illustrate the performance of the MCMC
estimator in this case, which turns out to be comparable with the importance sampling
algorithm.

Since the MCMC algorithm only generates a single random variable per simulation,
while the IS algorithm generates the entire random walk, the number of simulations for the
MCMC is scaled up so that the computational runtime between the techniques is roughly
the same. This gives a fairer comparison of the relative error between the algorithms.

Table 4.2 displays the numerical results based on computation using 10 batches, each IS
batch consisting of 103 simulations and MCMC 103n simulations. The batch sample mean,
sample standard deviation and sample relative error are recorded, as well as the average
computational runtime per batch. Figure 4.3 illustrates the convergence of the MCMC
algorithm, by recording the point estimate of the probability P(S10 > 1.30) as function of
number of simulations. The point estimate is compared to the true probability, determined
by the standard Monte Carlo estimate using 109 simulations. Figure 4.2 illustrates the
performance difference between the MCMC algorithm and the IS algorithm, in terms of
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Table 4.2: Numerical comparison of computing P(Sn > 1.30), where the increments are
positive-valued.

n = 2 MCMC IS Monte Carlo
Estimate 1.138e-01 1.153e-01 1.135e-01

Std. deviation 2.661e-03 15.658e-03 9.941e-03
Rel. error 0.0234 0.1358 0.0876

Comp. time(s) 0.1030 0.3219 0.0102
n = 5 MCMC IS Monte Carlo

Estimate 3.556e-02 3.564e-02 3.524e-02
Std. deviation 1.654e-03 5.618e-03 5.523e-03

Rel. error 0.0465 0.1576 0.1567
Comp. time(s) 0.1013 0.7635 0.0106
n = 10 MCMC IS Monte Carlo
Estimate 6.075e-03 5.226e-03 5.970e-03

Std. deviation 5.650e-04 11.137e-04 24.472e-04
Rel. error 0.0930 0.2131 0.4099

Comp. time(s) 0.1030 1.6570 0.0116
n = 20 MCMC IS Monte Carlo
Estimate 2.247e-04 1.458e-04 2.300e-04

Std. deviation 3.507e-05 6.522e-05 50.960e-05
Rel. error 0.1561 0.4473 2.2157

Comp. time(s) 0.1033 3.4275 0.0132
n = 30 MCMC IS Monte Carlo
Estimate 8.745e-06 3.926e-06 1.000e-05

Std. deviation 2.046e-06 1.282e-06 100.000e-06
Rel. error 0.2340 0.3266 10.0000

Comp. time(s) 0.1032 5.2188 0.0146
n = 40 MCMC IS
Estimate 3.204e-07 1.382e-07

Std. deviation 9.929e-08 8.834e-08
Rel. error 0.3099 0.6394

Comp. time(s) 0.1029 6.9282

the relative error as a function of n, the number of increments.
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Figure 4.3: The point estimate of P(S10 > 1.30) as a function of simulations (red
line) compared against the true probability (solid line), where the increments are positive-
valued.
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Figure 4.4: The relative error for estimating P(Sn > 1.30) as number of increments
n increases, where the increments are positive-valued. The relative error of the MCMC
estimator (red line) compared to the relative error of the IS estimator (solid line).
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Markov chain Monte Carlo
for rare-event simulation

for Markov chains

by

Thorbjörn Gudmundsson and Henrik Hult

Abstract

Recently, a method for computing the probability of rare events based on Markov
chain Monte Carlo has been developed in [7]. The basic idea is to construct a Markov
chain via an MCMC sampler, having as its invariant distribution the conditional distri-
bution given that the event of interest occurs. The probability of the event of interest
appears as the normalising constant of that conditional distribution. The normalising
constant is estimated from a simulated trajectory of the MCMC sampler.

The purpose of this paper is to investigate the applicability of the MCMC method-
ology for computing rare-event probabilities in Markov chains that are light-tailed in
the sense that they satisfy a logarithmic large deviations principle. Both Markov chains
in discrete time and continuous time are treated. The main results gives the exponential
rate of decay of the normalised second moment of the estimator. As an illustration the
method is applied to a birth-and-death process with state dependent rates.

5.1 Introduction

Efficient computation of probabilities of rare events is a challenging problem that is be-
coming increasingly important in many areas to quickly and reliably evaluate the risk of
disastrous events. When properly designed, stochastic simulation has proven to be a re-
liable tool to compute such probabilities. The standard Monte Carlo method, where the
underlying system is sampled independently and the probability is estimated by the ob-
served frequency of the event, typically fails in the context of rare events. The reason is
that when the probability of the event is small a large sample size is needed in order to
obtain reliable estimates. To overcome the problems with standard Monte Carlo a number
of variance reduction methods have been developed: importance sampling [1], multi-level
splitting [2], genealogical particle methods [3], etc. The success of such methods relies on
the construction of appropriate changes of measures, related to the large deviations of the
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system. In [4] the authors present a importance sampling algorithm based on the construc-
tion of subsolutions and illustrate the method for birth-and-death processes.

Recently, a method for computing the probability of rare events that is based on Markov
chain Monte Carlo (MCMC) has been developed, see [7]. The basic idea is to construct a
Markov chain via an MCMC sampler, having as its invariant distribution the conditional
distribution given that the event of interest occurs. The probability of the event of inter-
est appears as the normalising constant of that conditional distribution. The normalising
constant is estimated from a trajectory, simulated with the MCMC sampler. The estima-
tor, to be described in detail below, can be viewed as an asymptotic approximation of the
sought probability multiplied by a stochastic correction factor. The MCMC methodology
has proven to be efficient for computing the probability that a heavy-tailed random walk or
random sum exceeds a high threshold. It has also been extended to stochastic recurrence
equations with heavy-tailed innovations. In the light-tailed setting it has been developed
for computing the probability that a random walks exceeds a high threshold.

The purpose of this paper is to investigate the applicability of the MCMC methodology
for computing rare-event probabilities in Markov chains that are light-tailed in the sense
that they satisfy a logarithmic large deviations principle. Both Markov chains in discrete
time and continuous time are treated. The main results gives the exponential rate of decay
of the normalised second moment of the estimator. As an illustration the method is applied
to a birth-and-death process with state dependent rates.

The paper is organised as follows. The general MCMC methodology for computing
rare-event probabilities and the first steps for proving logarithmic efficiency is presented
in Section 5.2. In Section 5.3 discrete-time Markov chains are treated whereas Section
5.4 treats continuous-time Markov chains. An application to a birth-and-death process,
including numerical experiments, is presented in Section 5.5.

5.2 Markov chain Monte Carlo in rare-event simulation

In this section the MCMC methodology for rare-event simulation is recaptured and the first
steps for proving logarithmic efficiency are explained.

Let (X(n))n≥1 be a sequence of random elements (e.g. random variables, random vec-
tors, stochastic processes) with X(n) taking values in the state space E and having proba-
bility distribution F (n). Let h0 be a bounded continuous function from E to R. Consider
the problem of computing the expectation

θ(n) = E[exp{−nh0(X(n))}],

which is a rare-event problem in the sense that θ(n) is small and tends to 0 as n → ∞.
Denote by F (n)

h0
the distribution

F
(n)
h0

(·) =
E[I{X(n) ∈ ·} exp{−nh0(X(n))}]

θ(n)
.

Note that F (n)
h0

is the zero-variance distribution when computing θ(n) by importance sam-
pling.
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The first step is to design an MCMC sampler which produces an E -valued Markov
chain (X

(n)
t )t≥0 having F (n)

h0
as its invariant distribution. Assuming that such a sampler

exists, let X(n)
0 , . . . , X

(n)
T−1 be a sample having F (n)

h0
as its invariant distribution.

The second step is to construct an unbiased estimator q̂(n)
T of 1/θ(n) in the following

way. Consider a probability distribution V (n) on E , such that V (n) � F
(n)
h0

, and define

u(n)(x) = enh0(x) dV
(n)

dF (n)
(x).

Taking expectation with respect to F (n)
h0

gives

E
F

(n)
h0

[u(n)(X(n))] =

∫
enh0(x) dV

(n)

dF (n)
(x)F

(n)
h0

(dx) =
1

θ(n)

∫
V (n)(dx) =

1

θ(n)
.

The above calculation motivates the following definition of the MCMC estimator q̂(n)
T of

1/θ(n)

q̂
(n)
T =

1

T

T−1∑
t=0

u(n)(X
(n)
t ).

Two key design choices arise which determine the performance of the algorithm. The
design of the MCMC sampler and the choice of V (n). The design of the MCMC sampler
is essential for the mixing properties of the Markov chain (X

(n)
t )t≥0 and thereby the con-

vergence of the estimator as the sample size increases. The higher the mixing rate of the
MCMC sampler, the quicker the Markov chain will converge to its invariant distribution.
A reasonable criteria is to require that the Markov chain is geometrically ergodic, although
it should be noted that geometric ergodicity gives limited information of the finite sample
properties of the Markov chain.

The choice of V (n) controls the normalised variance of the estimator:

(θ(n))2 Var
F

(n)
h0

(q̂
(n)
T ),

which determines the rare-event efficiency of the algorithm. Let us assume that θ(n) decays
exponentially in n in such a way that there is a γ ∈ (0,∞) such that

lim
n→∞

− 1

n
log θ(n) = γ. (5.1)

The estimator q̂(n)
T is said to be logarithmically efficient if

lim sup
n→∞

1

n
log(θ(n))2E

F
(n)
h0

[(q̂
(n)
T )2] = 0.

The interpretation of logarithmic efficiency is that the exponential rate of growth of the
second moment of q̂(n)

T coincides with that of (θ(n))−2.
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For the normalised variance, we have

(θ(n))2 Var
F

(n)
h0

(q̂
(n)
T )

= (θ(n))2
( 1

T
Var

F
(n)
h0

(u(n)(X
(n)
0 ) +

2

T 2

T−1∑
t=0

T−1∑
s=t+1

Cov
F

(n)
h0

(
u(n)(X(n)

s ), u(n)(X
(n)
t )

))
≤ (θ(n))2

( 1

T
+
T (T − 1)

T 2

)
Var

F
(n)
h0

(u(n)(X
(n)
0 ))

= (θ(n))2 Var
F

(n)
h0

(u(n)(X
(n)
0 )),

where we have used the crude upper bound

Cov
F

(n)
h0

(
u(n)(X(n)

s ), u(n)(X
(n)
t )

)
≤ Var

F
(n)
h0

(u(n)(X
(n)
0 )).

Next we see that

(θ(n))2 Var
F

(n)
h0

(u(n)(X
(n)
0 ))

= (θ(n))2E
F

(n)
h0

[
(u(n)(X

(n)
0 ))2

]
− 1

= (θ(n))2

∫
e2nh0(x)

(dV (n)

dF (n)
(x)
)2

F
(n)
h0

(dx)− 1

= θ(n)

∫
enh0(x) dV

(n)

dF (n)
(x)V (n)(dx)− 1

= θ(n)EV (n)

[
enh0(X(n)) dV

(n)

dF (n)
(X(n))

]
− 1.

Note that, taking V (n) = F
(n)
h0

implies that

Var
F

(n)
h0

(u(n)(X
(n)
0 )) = 0,

thus motivating taking V (n) as an approximation of F (n)
h0

. Observe that

1

n
log
{
θ(n)EV (n)

[
enh0(X(n)) dV

(n)

dF (n)
(X(n))

]}
=

1

n
log θ(n) +

1

n
logEV (n)

[
enh0(X(n)) dV

(n)

dF (n)
(X(n))

]
,

so it follows from the large deviation assumption in (5.1) that to prove logarithmic effi-
ciency it is sufficient to show that

lim sup
n→∞

1

n
logEV (n)

[
enh0(X(n)) dV

(n)

dF (n)
(X(n))

]
≤ γ. (5.2)
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5.3 Markov chains in discrete time

In this section the MCMC methodology is developed to compute the probability of rare
events for Markov chains in discrete time. We present a Metropolis-Hastings sampler and
characterise the rare-event efficiency of the estimator.

For each n ≥ 1, let (X
(n)
i , i ≥ 0), where X(n)

0 = x0 for all n ≥ 1, be a Markov chain
satisfying the updating mechanism

X
(n)
i+1 = X

(n)
i +

1

n
υi(X

(n)
i ),

where the distribution of the independent and identically distributed random vector fields
υi(x) are given by the stochastic kernel µ(· | x). The piecewise linear interpolation of
X

(n)
1 , . . . , X

(n)
n , is given by X(n) = (X(n)(s); 0 ≤ s ≤ 1), where X(n)(0) = x0 and

X(n)(s) = X
(n)
i +

(
s− i

n

)
(X

(n)
i+1 −X

(n)
i ),

i

n
≤ s ≤ i+ 1

n
.

The state space of X(n) is the space of continuous functions C ([0, 1];Rd). In this paper
we will be concerned with the computation of expectations of the form

θn = E[exp{−nh0(X(n))}],

where h0 is a bounded continuous mapping C ([0, 1];Rd)→ R.
The first step is designing an MCMC sampler which produces a Markov chain (X

(n)
t (s); 0 ≤

s ≤ 1)t≥0 where, for each t ≥ 0, X(n)
t takes values in C ([0, 1];Rd) and such that X(n)

t (·)
has an invariant distribution F (n)

h0
given by the conditional distribution

F
(n)
h0

(·) =
E[I{X(n) ∈ ·} exp{−nh0(X(n))}]

θn
.

5.3.1 Metropolis-Hastings algorithm for sampling from F
(n)
h0

In this section the MCMC algorithm is presented which generates a C ([0, 1];Rd)-valued
Markov chain (

X
(n)
t (s), s ∈ [0, 1]

)
t≥0

,

whose invariant distribution is F (n)
h0

.
Briefly the algorithm is as follows. In each step, a window of random size is selected

and the process is updated by a random walk Metropolis-Hastings step within the selected
window.

Algorithm 5.3.1. The transition from X
(n)
t (·) to X(n)

t+1(·), t ≥ 0, is sampled as follows.
Take h ∈ (0, 1), possibly at random.
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1. Sample u uniformly on [0, 1 − h] and suppose i − 1 ≤ nu < i and j ≤ n(u +

h) < j + 1. Proceed by proposing a new trajectory of s 7→ X
(n)
t (s) in the interval

[i/n, j/n]. The part of the process which is to be re-sampled is

S(t, u, u+ h) =
{
X

(n)
t (i/n), X

(n)
t ((i+ 1)/n), . . . , X

(n)
t (j/n)

}
.

2. Generate the proposal

Ŝ(t, u, u+h) =
{
X

(n)
t (i/n), X̂

(n)
t ((i+ 1)/n), . . . , X̂

(n)
t ((j−1)/n), X

(n)
t (j/n)

}
,

by sampling X̂(n)
t ((i + 1)/n), . . . , X̂

(n)
t ((j − 1)/n) from a proposal density q(· |

X
(n)
t (i/n), X

(n)
t (j/n)). Let X̂(n)

t be the trajectory such that

X̂
(n)
t (k/n) = X

(n)
t (k/n),

for 0 ≤ k ≤ i and j ≤ k ≤ n, and determined by Ŝ(t, u, u+ h) for i < k < j.

3. The proposed trajectory X̂(n)
t is accepted with probability α given by

α = 1∧

(
e−nh0(X̂

(n)
t )

∏n−1
k=0 dµ(υ̂k(X̂

(n)
t (k/n)) | X̂(n)

t (k/n))

e−nh0(X
(n)
t )

∏n−1
k=0 dµ(υk(X

(n)
t (k/n)) | X(n)

t (k/n))

× q(X
(n)
t ((i+ 1)/n), . . . , X

(n)
t ((j − 1)/n) | X̂(n)

t (i/n), X̂
(n)
t (j/n))

q(X̂
(n)
t ((i+ 1)/n), . . . , X̂

(n)
t ((j − 1)/n) | X(n)

t (i/n), X
(n)
t (j/n))

)

= 1 ∧

(
e−nh0(X̂

(n)
t )

∏j−1
k=i dµ(υ̂k(X̂

(n)
t (k/n)) | X̂(n)

t (k/n))

e−nh0(X
(n)
t )

∏j−1
k=i dµ(υk(X(n)(k/n)) | X(n)(k/n))

× q(X
(n)
t ((i+ 1)/n), . . . , X

(n)
t ((j − 1)/n) | X̂(n)

t (i/n), X̂
(n)
t (j/n))

q(X̂
(n)
t ((i+ 1)/n), . . . , X̂

(n)
t ((j − 1)/n) | X(n)

t (i/n), X
(n)
t (j/n))

)
,

where υ̂k(X̂
(n)
t (k/n)) = n(X̂

(n)
t ((k + 1)/n) − X̂

(n)
t (k/n)). If accepted, put

X
(n)
t+1 = X̂

(n)
t , otherwise put X(n)

t+1 = X
(n)
t .

Iterate steps 1− 3 until the entire Markov chain (X
(n)
t )T−1

t=0 is constructed.

5.3.2 Analysis of rare-event efficiency

Given a sample X(n)
0 , . . . , X

(n)
T−1 via Algorithm 5.3.1, let us proceed with the design of

V (n) and the corresponding analysis of rare-event efficiency for the estimator q̂(n)
T .

For each x ∈ Rd, let H(x, ·) denote the cumulant generating function of the stochastic
kernel µ(· | x), that is,

H(x, p) = log

∫
Rd
e〈p,y〉µ(dy | x),
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and L(x, ·) denote the Fenchel-Legendre transform of H(x, ·),

L(x, v) = sup
p∈Rd
{〈p, v〉 −H(x, p)}.

Condition A.

(a) For each p ∈ Rd, supx∈Rd H(x, p) <∞.

(b) The mapping x 7→ µ(· | x) ∈P(Rd) is continuous in the weak topology on P(Rd).

Let ri(conv Sµ(·|x)) denote the relative interior of the convex hull of the support of
µ(· | x).

Condition B.

(a) The sets ri(conv Sµ(·|x)) are independent of x ∈ Rd.

(b) 0 ∈ ri(conv Sµ(·|x)).

Under Condition A and Condition B it follows from Theorem 6.3.3 in [5] that the
Markov chain {X(n)} satisfies the Laplace principle

lim
n→∞

− 1

n
logE[exp{−nh(X(n))}]

= inf
{∫ 1

0

L(ψ(s), ψ̇(s))ds+ h(ψ);ψ ∈ A C ([0, 1];Rd), ψ(0) = x0

}
,

for each bounded continuous h : C ([0, 1];Rd) → R. Here A C ([0, 1];Rd) denotes the
space of absolutely continuous functions ψ : [0, 1]→ Rd.

Let V (n) be the probability distribution given by

V (n)(·) =
E
[
I
{

(X̄
(n)
1 , . . . , X̄

(n)
n ) ∈ ·

}
exp{−nh1(X̄(n))}

]
θ̄(n)

,

where θ̄(n) = E[exp{−nh1(X̄(n))}] and the X̄(n)
1 , X̄

(n)
2 , . . . is a Markov chain of the

form

X̄
(n)
i+1 = X̄

(n)
i +

1

n
ῡi(X̄

(n)
i ),

where the independent and identically distributed random vector fields ῡi(x̄) has distribu-
tion µ̄(· | x̄) and h1 : C ([0, 1];Rd)→ R is bounded and continuous.

We will assume that h1 and µ̄ are such that V (n) � F
(n)
h0

and sufficiently simple so
that θ̄(n) can be computed explicitly. The latter assumption is restrictive and enforces that
the Markov chain X̄(n) is rather simple.
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We will assume that the kernel µ̄(· | x̄) satisfies Condition A and Condition B so that
the Laplace principle holds for X̄(n) as well. In addition we assume that µ̄(· | x̄) is taken
such that the large deviations rate of θ̄(n) coincides with that of θ(n). More precisely, that

Ī(h1) := inf
{∫ 1

0

L̄(ψ(s), ψ̇(s))ds+ h1(ψ);ψ ∈ A C ([0, 1];Rd), ψ(0) = x0

}
= − 1

n
log θ̄(n)

= − 1

n
log θ(n)

= inf
{∫ 1

0

L(ψ(s), ψ̇(s))ds+ h0(ψ);ψ ∈ AC[0, 1], ψ(0) = x0

}
=: I(h0),

We proceed with the characterisation of efficiency of the proposed MCMC estimator.
For each x̄ ∈ Rd, p1 ∈ Rd, p2 ∈ R let

H(x̄, p1, p2) = log

∫
Rd
e〈p,y〉

(dµ̄(· | x̄)

dµ(· | x̄)
(y)
)p2

µ̄(dy | x̄),

L(x̄, v1, v2) = sup
p1∈Rd,p2∈R

{
〈p1, v1〉+ p2v2 −H(x̄, p1, p2)

}
.

Theorem 5.3.2. Suppose that

sup
x̄∈Rd

H(x̄, p1, p2) <∞, for every p1 ∈ Rd, p2 ∈ R. (5.3)

Then
lim
n→∞

1

n
log
(

(θ(n))2E
F

(n)
h0

[u(n)(X(n))2]
)
≤ I(h0)− J(2h1 − h0),

where, for any bounded continuous h : C ([0, T ];Rd)→ R,

J(h) = inf
{∫ 1

0

L(ψ(s), ψ̇1(s),−ψ̇2(s))ds+ h(ψ1) + ψ2(1),

ψ ∈ AC([0, 1];Rd × R), ψ(0) = (x0, 0)
}

.

Proof. The calculation leading up to (5.2) shows that

lim sup
n→∞

1

n
log
(

(θ(n))2E
F

(n)
h0

[(q̂
(n)
T )2]

)
≤ −I(h0) + lim sup

n→∞

1

n
logEV (n)

[
exp{nh0(X(n))}dV

(n)

dF (n)
(X(n))

]
.

Let F̄ (n) denote the distribution of (X̄
(n)
0 , . . . , X̄

(n)
n ) and note that

dV (n)

dF̄ (n)
(x) =

e−nh1(x)

θ̄(n)
.
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Since

lim sup
n→∞

1

n
logEV (n)

[
exp{nh0(X(n))}dV

(n)

dF (n)
(X(n))

]
= lim sup

n→∞

1

n
log
{ 1

(θ̄(n))2
E
[

exp
{
n(h0(X̄(n))− 2h1(X̄(n)))

}dF̄ (n)

dF (n)
(X̄(n))

]}
≤ lim sup

n→∞
− 2

n
log θ̄(n)

+ lim sup
n→∞

1

n
logE

[
exp{−n(2h1(X̄(n))− h0(X̄(n)))}

n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

]
= 2I(h0)

− lim inf
n→∞

− 1

n
logE

[
exp{−n(2h1(X̄(n))− h0(X̄(n)))}

n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

]
,

it follows that it is sufficient to prove that

lim inf
n→∞

− 1

n
logE

[
exp{−n(2h1(X̄(n))− h0(X̄(n)))}

n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

]
≥ J(h1). (5.4)

Let us introduce the notation Z̄(n)
i = (X̄

(n)
i , Ȳ

(n)
i ) where

Ȳ
(n)
i = − 1

n

i−1∑
j=0

log
(dµ̄(· | X̄(n)

i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)
, n ≥ 1, i = 0, . . . , n− 1.

Note that Z̄(n) is also a Markov chain of the form

Z̄
(n)
i+1 = Z̄

(n)
i +

1

n
ζ̄i(Z̄

(n)
i ),

where ζ̄i(x̄, ȳ) = ζ̄i(x̄) = (ῡi(x̄),− log dµ̄(·|x̄)
dµ(·|x̄) (ῡi(x̄))) has distribution ν̄(· | x̄) given by∫

Rd×R
f(ζ̄)ν̄(dζ | x̄) =

∫
Rd
f
(
z,− log

dµ̄(· | x̄)

dµ(· | x̄)
(z)
)
µ̄(dz | x̄),

for every bounded measurable function f : Rd × R → R. Note also that the log moment
generating function of ζ̄i(x̄) is

Hζ̄(x̄, p1, p2) = log

∫
Rd

exp{〈p1, z〉 − p2 log
dµ̄(· | x̄)

dµ(· | x̄)
(z)}µ̄(dz | x̄) = H(x̄, p1,−p2).
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Consequently,

Lζ̄(x̄, v1, v2) = sup
p1∈Rd,p2∈R

{〈p1, v1〉+ p2v2 −Hζ̄(x̄, p1, p2)} = L(x̄, v1,−v2).

The assumption (5.3) implies that the stochastic kernel ν̄(· | x̄) satisfies Condition A
and hence, by Proposition 6.2.2 in [5], the Laplace principle upper bound holds for Z̄(n):

lim
n→∞

− 1

n
logE

[
e−nh̄(Z̄(n))

]
≥ inf

{∫ 1

0

Lζ̄
(
ψ(s), ψ̇1(s),−ψ̇2(s)

)
ds+ h̄(ψ);

ψ ∈ AC([0, 1]× Rd+1), ψ(0) = (x0, 0)
}

= inf
{∫ 1

0

L
(
ψ(s), ψ̇1(s),−ψ̇2(s)

)
ds+ h̄(ψ);ψ ∈ AC([0, 1];

Rd+1), ψ(0) = (x0, 0)
}

, (5.5)

for each bounded continuous function h̄ : C ([0, 1];Rd × R) → R. We would like to
apply the Laplace principle with the function h̄(x) = 2h1(x1)− h0(x1) + x2(1), but this
function is not bounded. It is, nevertheless, possible to apply the Laplace principle with
this function. Indeed, by Theorem 1.3.4 in [5], (5.5) holds for this choice of h̄ if

lim
C→∞

lim sup
n→∞

1

n
logE

[
I
{
Ȳ (n)
n < −C

}
e−nȲ

(n)
n

]
= −∞.

To see that this is indeed true, write

lim
C→∞

lim sup
n→∞

1

n
logE

[
I
{
Ȳ (n)
n < −C

}
e−nȲ

(n)
n

]
= lim
C→∞

lim sup
n→∞

1

n
logE

[
I

{
n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i )) > eCn

}

×
n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

]
.

For any p2 > 0, by Chebyshev’s inequality, the expression in the last display is less than
or equal to

lim
C→∞

lim sup
n→∞

1

n
logE

[
e−p2Cn

( n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)p2
n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

]

= lim
C→∞

−p2C + lim sup
n→∞

1

n
logE

[( n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)p2+1
]

.
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For the second term we have the upper bound

1

n
logE

[( n−1∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)p2+1
]

=
1

n
logE

[( n−2∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)p2+1

× E
[(dµ̄(· | X̄(n)

n−1)

dµ(· | X̄(n)
n−1)

(ῡn−1(X̄
(n)
n−1))

)p2+1

| X̄(n)
1 , . . . , X̄

(n)
n−1

]]

≤ 1

n
logE

[( n−2∏
i=0

dµ̄(· | X̄(n)
i )

dµ(· | X̄(n)
i )

(ῡi(X̄
(n)
i ))

)p2+1
]

sup
x̄∈Rd

E
[(dµ̄(· | x̄)

dµ(· | x̄)
(ῡn−1(x̄))

)p2+1]
≤ . . .

≤ 1

n
log
(

sup
x̄∈Rd

E
[(dµ̄(· | x̄)

dµ(· | x̄)
(ῡ0(x̄))

)p2+1])n
= log

(
sup
x̄∈Rd

E
[(dµ̄(· | x̄)

dµ(· | x̄)
(ῡ0(x̄))

)p2+1])
= sup
x̄∈Rd

H(x̄, 0, p2 + 1) <∞.

Combining the last three displays gives

lim
C→∞

lim sup
n→∞

1

n
logE

[
I
{
Ȳ (n)
n < −C

}
e−nȲ

(n)
n

]
≤ lim
C→∞

−p2C + sup
x̄∈Rd

H(x̄, 0, p2 + 1) = −∞,

since p2 > 0. This completes the proof of (5.4) and the theorem.

5.4 Markov processes in continuous time

In this section the MCMC simulation technique is developed to compute the probability of
rare events of pure-jump Markov chains in continuous time.

For every ε > 0, let {X(ε)(t); t ≥ 0} be a pure-jump Markov chain in continuous time
with generator A ε given by

A εf(x) =
1

ε

∫
Rd
f(x+ εy)− f(x)νx(dy),

where {νx, x ∈ Rd} is a family of measures such that for each Borel set A ⊂ Rd, x 7→
νx(A) is a measurable function and for each x ∈ Rd

νx({0}) = 0, νx(Rd) <∞, and
∫
Rd
|y|2νx(dy) <∞. (5.6)
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The stochastic kernel associated with X(ε) is given by

Θ(ε)(dt dy | x) =
1

ε
e−νx(Rd)tdt νx(dy), x ∈ Rd.

In this section we will be concerned with the computation of expectations of the form

θε = E[exp{−1

ε
h0(X(ε))}],

where h0 is a bounded continuous mapping D([0, 1];Rd) → R. Here D([0, 1];Rd) → R
denotes the space of càdlàg functions equipped with Skorohod’s J1-metric.

The first step is designing an MCMC sampler which produces a Markov chain (X
(ε)
t (s); 0 ≤

s ≤ 1)t≥0, having the conditional distribution

F
(ε)
h0

(·) =
E[I{X(ε) ∈ ·} exp{−nh0(X(ε))}]

θε
,

as its invariant distribution.

5.4.1 Metropolis-Hastings algorithm for sampling from F
(n)
h0

In this section the MCMC algorithm is presented which generates a D([0, 1];Rd)-valued
Markov chain (X

(ε)
t (s), s ∈ [0, 1])t≥0 whose invariant distribution is F (ε)

h0
.

Briefly the algorithm is as follows. In each step, a window of random length is selected
and the process is updated by a random walk Metropolis-Hastings step within the selected
window.

Algorithm 5.4.1. The algorithm describes the transition from X
(ε)
t (·) to X(ε)

t+1(·), t ≥ 0.
Denote by 0 = T

(ε)
0 < T

(ε)
1 < T

(ε)
2 < · · · < T

(ε)
m the jump-times of s 7→ X

(ε)
t (s). The

trajectory s 7→ X
(ε)
t (s) is described entirely by{

(T
(ε)
0 , x0), (T

(ε)
1 , X

(ε)
t (T

(ε)
1 )), . . . , (T (ε)

m , X
(ε)
t (Tm)), (T,X

(ε)
t (T (ε)

m ))
}

.

Take h ∈ (0, 1), possibly at random.

1. Sample u uniformly on [0, 1− h] and proceed by proposing a new trajectory of s 7→
X

(ε)
t (s) in the interval [u, u+h]. Suppose that i and j are such that T (ε)

i < u < T
(ε)
i+1

and T (ε)
j < u+ h < T

(ε)
j+1. The part of the process which is to be re-sampled is

S(t, u, u+ h) =
{

(u,X
(ε)
t (u)), (T

(ε)
i+1, X

(ε)(T
(ε)
i+1)), . . . , (T

(ε)
j , X(ε)(T

(ε)
j )),

(u+ h,X(ε)(T
(ε)
j ))

}
.
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2. Generate the proposal

Ŝ(t, u, u+ h) =
{

(u,X
(ε)
t (u)), (T̂

(ε)
i+1, X̂

(ε)(T̂
(ε)
i+1)), . . . , (T̂

(ε)

ĵ
, X

(ε)
t (u+ h)),

(u+ h,X
(ε)
t (u+ h))

}
,

by sampling from a proposal density q(· | X(ε)
t (u), X

(ε)
t (u + h)) that depends on

X
(ε)
t (·) only through X(ε)

t (u) and X(ε)
t (u + h). Let X̂(ε) be the trajectory that is

equal to s 7→ X
(ε)
t (s) for s ∈ [0, u] ∪ [u + h, T ] and determined by Ŝ(t, u, u + h)

on the interval [u, u+ h].

3. The proposed trajectory is accepted with probability α given by

α = 1∧

[e− 1
εh0(X̂

(ε)
t ) exp{−ν

X̂
(ε)
t (T̂

(ε)

N̂(ε)(T )
)
(Rd)(T − T̂ (ε)

N̂(ε)(T )
)}

e−
1
εh0(X

(ε)
t ) exp{−ν

X
(ε)
t (T

(ε)

N(ε)(T )
)
(Rd)(T − T (ε)

N̂(ε)(T )
)}

×

∏N̂(ε)(T )
l=1 exp{−ν

X̂
(ε)
t (T̂

(ε)
l )

(Rd)(T̂ (ε)
l+1 − T̂

(ε)
l )}∏N(ε)(T )

l=1 exp{ν
X

(ε)
t (T

(ε)
l )

(Rd)(T (ε)
l+1 − T

(ε)
l+1)}

×

∏N̂(ε)(T )
l=1 dν

X̂
(ε)
t (T̂

(ε)
l )

(
1
ε (X̂

(ε)
t (T̂

(ε)
l+1)− X̂(ε)

t (T̂
(ε)
l ))

)
∏N(ε)(T )
l=1 dν

X
(ε)
t (T

(ε)
l )

(
1
ε (X

(ε)
t (T

(ε)
l+1)−X(ε)

t (T
(ε)
l ))

)
× q(S(t, u, u+ h) | X(ε)

t (u), X(ε))

q(Ŝ(t, u, u+ h) | X(ε)
t (u), X(ε))

]
,

where T̂ (ε)
k , k ≥ 1, denotes the jump times of X̂(ε)

t (·) and N̂ (ε)(T ) = sup{n :

T̂
(ε)
n ≤ T}. If accepted, put X(ε)

t+1 = X̂
(ε)
t , otherwise, put X(ε)

t+1 = X
(ε)
t .

Iterate steps 1− 3 until the entire Markov chain (X
(ε)
t )T−1

t=0 is constructed.

5.4.2 Design and rare-event efficiency

The Hamiltonian H is defined by

H(x, p) =

∫
Rd

(e〈p,y〉 − 1)νx(dy), x, p ∈ Rd.

The following condition will be assumed throughout this section.

Condition C.

(i) For each p ∈ Rd, supx∈Rd H(x, p) <∞.
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(ii) The function (x, p) 7→ H(x, p) is continuous.

For each x ∈ Rd let and L(x, ·) denote the Fenchel-Legendre transform of H(x, ·),

L(x, v) = sup
p∈Rd
{〈p, v〉 −H(x, p)}.

Condition D. [c.f. Condition 10.2.4. in Dupuis/Eliis [5]]. Let Tx consist of all points of
the form bx + y where bx = −

∫
zνx(dz) and y belongs to the smallest convex cone that

contains the support of νx. Suppose that

(a) the sets Tx are independent of x ∈ Rd,

(b) 0 belongs to the interior of Tx.

Under Condition C and Condition D it follows from Theorem 10.2.6 in [5] that the
Markov chain X(ε) satisfies the Laplace principle

− ε logE[exp{−1

ε
h(X(ε))}]

= inf
{∫ 1

0

L(ψ(s), ψ̇(s))ds+ h(ψ);ψ ∈ A C ([0, T ];Rd), ψ(0) = x0

}
,

for each bounded continuous h : C ([0, 1];Rd)→ R and so in particular for h0.
Let V (ε) be the probability distribution given by

V (ε)(·) =
E
(
I{X̄(ε) ∈ ·} exp{− 1

εh1(X̄(ε))}
)

θ̄(ε)
,

where h1 : D([0, 1];Rd)→ Rd is bounded and continuous, θ̄(ε) = E[exp{− 1
εh1(X̄(ε))}]

and the {X̄(ε)
t ; t ≥ 0} is a Markov chain with generator Ā given by

Ā f(x) =
1

ε

∫
Rd
f(x+ εy)− f(x)ν̄x(dy),

where {ν̄x, x ∈ Rd} is a family of measures satisfying (5.6). We assume that h1 and
ν̄x are taken such that V (ε) � F

(ε)
h0

and sufficiently simple so that the expectation θ̄(ε)

can be computed explicitly. This assumption is crucial for the applicability of the MCMC
methodology and clearly limits the choice of V (ε) considerably. In fact, in the examples
that follow ν̄x will be state-independent in the sense that ν̄x(dy) = ν̄(dy).

The corresponding stochastic kernel is given by

Θ̄(dt dy | x̄) =
1

ε
e−ν̄x̄(Rd)tdt ν̄x̄(dy).

We define the associated Hamiltonian H̄ by

H̄(x̄, p) =

∫
Rd

(e〈p,y〉 − 1)ν̄x̄(dy).
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We will assume that Condition C and Condition D are satisfied for H̄ so that the
Laplace principle holds for X̄(ε) as well. In addition we assume that h1 and ν̄x̄ are taken
such that the large deviations rate of θ̄(ε) coincides with that of θ(ε). More precisely, that

I(h0) := inf
{∫ 1

0

L(ψ(s), ψ̇(s))ds+ h0(ψ);ψ ∈ A C [0, 1], ψ(0) = x0

}
= −ε log θ(ε)

= −ε log θ̄(ε)

= inf
{∫ 1

0

L̄(ψ(s), ψ̇(s))ds+ h1(ψ);ψ ∈ AC[0, 1], ψ(0) = x0

}
=: Ī(h1).

Let T (ε)
0 = 0 < T

(ε)
1 < T

(ε)
2 . . . denote the jump times ofX(ε)and τ (ε)

k = T
(ε)
k −T

(ε)
k−1,

k ≥ 1, the times between the jumps. With N (ε) = sup{n : Tn < T}, and F̄ (ε) denoting
the distribution of X̄(ε) on D([0, 1];Rd), it follows that the likelihood ratio can be written
as

dV (ε)

dF (ε)
(X(ε))

=
e−

1
εh1(X(ε))

θ̄(ε)

dF̄ (ε)

dF (ε)
(X(ε))

=
e−

1
εh1(x)

θ̄(ε)
exp

{∫ 1

0

(
νX(ε)(t)(Rd)− ν̄X(ε)(t)(Rd)

)
dt

+

N(ε)∑
k=1

log
(dν̄X(ε)(Tk−1)

dνX(ε)(Tk−1)

(1

ε
∆X

(ε)
k

)}
,

where ∆X
(ε)
k = X(ε)(Tk)−X(ε)(Tk−1), k ≥ 1.

For each x̄ ∈ Rd, p1 ∈ Rd, p2 ∈ R let

H(x̄, p1, p2) =
(
ν̄x̄(Rd)− νx̄(Rd)

)
p2 +

∫
Rd

[
e〈p1,z〉

(dν̄x̄
dνx̄

(z)
)p2

− 1
]
ν̄x̄(dz),

and define L as the Fenchel-Legendre transform of H:

L(x, v1, v2) = sup
p1∈Rd,p2∈R

{〈p1, v1〉+ p2, v2 −H(x, p1, p2)}.

Theorem 5.4.2. Suppose that

sup
x∈Rd

H(x, p1, p2) <∞, for every p ∈ Rd, p2 ∈ R. (5.7)

Then
lim sup
ε→0

ε log
(

(θ(ε))2E
F

(ε)
h0

[u(X(ε))2]
)
≤ I(h0)− J(2h1 − h0),
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where, for each bounded continuous h : D([0, 1];Rd)→ R,

J(h) = inf
{∫ 1

0

L(ψ(s), ψ̇1(s),−ψ̇2(s))ds+ h(ψ1) + ψ2(1),

ψ ∈ AC([0, 1];Rd+1), ψ(0) = (x0, 0)
}

.

Proof. The calculation leading up to (5.2) shows that

lim sup
ε→0

ε log
(

(θ(ε))2E
F

(ε)
h0

[(q̂
(ε)
T )2]

)
≤ −I(h0) + lim sup

ε→0
ε logEV (ε)

[
exp{1

ε
h0(X(ε))}dV

(ε)

dF (ε)
(X(ε))

]
.

Since

lim sup
ε→0

ε logEV (ε)

[
exp{1

ε
h0(X(ε))}dV

(ε)

dF (ε)
(X(ε))

]
= lim sup

ε→0
ε log

1

(θ̄(ε))2
E
[

exp
{1

ε

(
h0(X̄(ε))− 2h1(X̄(ε))

)}dF̄ (ε)

dF (ε)
(X̄(ε))

]
≤ lim sup

ε→0
−2ε log θ̄(ε)

+ lim sup
ε→0

ε logE

[
exp

{
− 1

ε

(
2h1(X̄(ε))− h0(X̄(ε))

)}
× exp

{∫ 1

0

(νX̄(ε)(t)(Rd)− ν̄X̄ε(t))(Rd))dt

+

N̄(ε)∑
k=1

log
(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))}]

= 2I(h0)− lim inf
ε→0

−ε logE

[
exp

{
− 1

ε

(
2h1(X̄(ε))− h0(X̄(ε))

)}
× exp

{∫ 1

0

(νX̄(ε)(t)(Rd)− ν̄X̄ε(t))(Rd))dt

+

N̄(ε)∑
k=1

log
(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))}]
,



MCMC FOR MARKOV CHAINS 101

it follows that it is sufficient to prove that

lim inf
n→∞

−ε logE

[
exp

{
− 1

ε

(
2h1(X̄(ε))− h0(X̄(ε))

)}
(5.8)

× exp
{∫ 1

0

(
νX̄(ε)(t)(Rd)− ν̄X̄ε(t))(Rd)

)
dt

+

N̄(ε)∑
k=1

log
(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))}]
≥ J(2h1 − h0). (5.9)

Let us introduce the notation Z̄(ε)(t) = (X̄(ε)(t), Ȳ (ε)(t)) where

Ȳ (ε)(t) = −ε
∫ 1

0

(
νX̄(ε)(t)(Rd)− ν̄X̄ε(t))(Rd)

)
dt

− ε
N̄(ε)∑
k=1

log
(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))
.

Note that Z̄(ε) is a continuous time Markov chain with generator

AZ̄(ε)f(x, y) = (ν̄x(Rd)− νx(Rd))
∂f

∂y
(x, y)

+
1

ε

∫
Rd

(
f(x+ εz, y − ε log

dν̄x
dνx

(z))− f(x, y)
)
ν̄x(dz).

The Hamiltonian associated with Z̄(ε) is given by HZ̄(x̄, p1, p2) = H(x̄, p1,−p2).
The assumption (5.7) implies that HZ̄ satisfies Condition C and hence, by Theorem

10.2.6 in [5] the Laplace principle upper bound holds for Z̄(ε) (it may be observed that
only Condition C is used in the proof of the Laplace principle upper bound):

lim
ε→0
−ε logE

[
e−n

1
ε h̄(Z̄(ε))

]
≥ inf

{∫ 1

0

LZ̄
(
ψ(s), ψ̇1(s), ψ̇2(s)

)
ds+ h̄(ψ);ψ ∈ AC[0, 1], ψ(0) = (x0, 0)

}
= inf

{∫ 1

0

L
(
ψ(s), ψ̇1(s),−ψ̇2(s)

)
ds+ h̄(ψ);ψ ∈ AC[0, 1], ψ(0) = (x0, 0)

}
,

(5.10)

for each bounded continuous function h̄ : D([0, 1];Rd × R) → R. We would like to
apply the Laplace principle with the function h̄(x, y) = 2h1(x) − h0(x) + y(1), but this
function is not bounded. It is, nevertheless, possible to apply the Laplace principle with
this function. Indeed, by Theorem 1.3.4 in [5] (5.5) holds for this choice of h̄ if

lim
C→∞

lim sup
ε→0

ε logE
[
I
{
Ȳ (ε)(1) < −C

}
e−

1
ε Ȳ

(ε)(1)
]

= −∞. (5.11)
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To see that this is indeed true, write

lim
C→∞

lim sup
ε→0

ε logE
[
I
{
Ȳ (ε)(1) < −C

}
e−

1
ε Ȳ

(ε)(1)
]

= lim
C→∞

lim sup
ε→0

ε logE

[
I

{
−1

ε
Ȳ (ε)(1) >

C

ε

}
e−

1
ε Ȳ

(ε)(1)

]
.

For any p > 0, by Chebyshev’s inequality, the expression in the last display is less than or
equal to

lim
C→∞

lim sup
ε→0

ε logE
[
e−

pC
ε e−

p+1
ε Ȳ (ε)(1)

]
= lim
C→∞

−pC + lim sup
ε→0

ε logE
[
e−

p+1
ε Ȳ (ε)(1)

]
.

Condition C implies that the latter term is finite, the argument follows shortly, and we
conclude that the limit is −∞. This proves (5.11) and completes the proof.

To show that lim supε→0 ε logE
[
e−

p+1
ε Ȳ (ε)(1)

]
<∞, let us introduce the notation

θ1 = (p+ 1) sup
x̄
{ν̄x̄(Rd)− νx̄(Rd)} <∞,

θ2 = sup
x̄

∫ (dν̄x̄
dνx̄

(z)
)p+1

ν̄x̄(dz).
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Both quantities are finite by Condition C. It follows that

lim sup
ε→0

ε logE
[
e−

p+1
ε Ȳ (ε)(1)

]
= lim sup

ε→0
ε logE

[
exp

{
(p+ 1)

∫ 1

0

(
νX̄(ε)(t)(Rd)− ν̄X̄ε(t))(Rd)

)
dt
}

×
( N̄(ε)∏
k=1

(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))p+1


≤ lim sup

ε→0
ε logE

eθ1( N̄(ε)∏
k=1

(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))p+1


≤ lim sup

ε→0
ε logE

[( N̄(ε)(1)−1∏
k=1

(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))p+1

×E
[(dν̄X̄(ε)(T

N̄(ε)(1)−1
)

dνX̄(ε)(T
N̄(ε)(1)−1

)

(1

ε
∆X̄

(ε)

N̄(ε)(1)−1

))p+1

| X̄(ε)(TN(ε)(1)t)
]]

≤ lim sup
ε→0

ε logE
[( N̄(ε)(1)−1∏

k=1

(dν̄X̄(ε)(Tk−1)

dνX̄(ε)(Tk−1)

(1

ε
∆X̄

(ε)
k

))p+1

θ2

]
≤ . . .

≤ lim sup
ε→0

ε logE[θ
N(ε)(1)
2 ].

The number of jumps, N (ε)(T ), of the Markov chain is stochastically bounded above by
a Poisson distributed random variable N∗ with parameter 1

ε supx̄ ν̄x̄(Rd). Therefore, the
expression in the last display is bounded above by

lim sup
ε→0

ε logE[θN
∗

2 ] = lim sup
ε→0

ε
1

ε
sup
x̄
ν̄x̄(Rd)(θ2 − 1) <∞.

This completes the proof.

5.5 An application to a birth-and-death process

Let {Q(n)(t); t ≥ 0}, Q(n)(0) = nx0 ∈ {1, 2, . . . , n}, denote a one-dimensional birth-
and-death process, taking values in {0, . . . , n} and let 0 = T

(n)
0 < T

(n)
1 < . . . denote

the jump times of Q(n). That is, Qn(Tk+1) = Qn(Tk) ± 1, for every k ≥ 0. The birth
intensity is given by nλ(x) and the death intensity by nµ(x) where λ and µ are bounded
Lipschitz continuous function on [0, 1], with µ(0) = λ(0) = 0 so that 0 is an absorbing
state. Let εn = n−1 and put X(εn)(t) = Q(n)(t)/n. Then X(εn) = (X(εn)(t); t ≥ 0),
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X(εn)(0) = x0, is a continuous time Markov chain with values in [0, 1] with generator

A (εn)f(x) =
1

εn

∫
R
f(x+ εny)− f(x)νx(dy),

where νx(dy) = λ(x)δ1(dy) + µ(x)δ−1(dy) and δy(A) = 1 if y ∈ A and 0 otherwise.
The stochastic kernel associated with X(εn) is given by

Θ(εn)(dy, dy | x) =
1

εn

(
λ(x)δ1(dy) + µ(x)δ−1(dy)

)
e−(µ(x)+λ(x))tdt.

Let a > x0 and τ (εn)
a = inf{t > 0 : X(εn)(t) ≥ a} be the first time the process

exceeds a. We will be interested in computing a rare-event probability of the form

p(εn) = P(τ (εn)
a ≤ 1).

Define the Hamiltonian H by

H(x, p) = λ(x)(ep − 1) + µ(x)(e−p − 1),

and L as the Fenchel-Legendre transform of H:

L(x, v) = sup
p∈Rd

[
〈p, v〉 −H(x, p)

]
.

Since λ and µ are assumed to be bounded and Lipschitz continuous Condition C is
satisfied. Since the smallest convex cone containing−1, 1 is R Condition D is also satisfied
and we conclude that the Laplace principle holds for X(εn).

The sought probability p(εn) can be written as an expectation of the form

Ex0
[exp{− 1

εn
h0(X(εn))}],

where

h0(x) =

{
0, if x(t) ≥ a, for some t ∈ [0, 1],
∞, otherwise.

In Section 5.4 we treated expectations of this form for bounded and continuous h. By ap-
proximating h0 by a sequence of bounded continuous functions standard arguments show
that the results in Section 5.4 can be extended to cover this case, see e.g. [5], proof of
Theorem 1.2.3, pp. 10-11.

5.5.1 The design of V (εn)

Let us use the methodology in Section 5.4 and specify the MCMC estimator by proposing
a probability distribution V (εn) as follows. Let {X̄(εn)(t); t ≥ 0}, X̄(εn)(0) = x0, be a
Markov chain with generator Ā given by

Ā f(x) =
1

εn

∫
Rd
f(x+ εny)− f(x)ν̄x(dy),
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and ν̄x(dy) = λ̄δ1(dy) + µ̄δ−1(dy). That is, X̄(εn) is a continuous time random walk with
intensity nλ̄ for upwards jumps and nµ̄ for downwards jumps. Put τ̄ (εn)

a = inf{t > 0 :
X̄(εn)(t) ≥ a} and let

V (εn)(·) = P
(
X̄(εn) ∈ · | τ̄ (εn)

a ≤ 1
)
.

The corresponding stochastic kernel is given by

Θ̄(dt dy) =
1

εn
(λ̄δ1(dy) + µ̄δ−1(dy))e−(λ̄+µ̄)tdt,

the associated Hamiltonian H̄ is given by

H̄(p) = λ̄(ep − 1) + µ̄(e−p − 1).

Given a trajectory t 7→ X(εn)(t), 0 ≤ t ≤ 1, which is described entirely by{
(T

(εn)
0 , x0), (T

(εn)
1 , X(εn)(T

(εn)
1 ), . . . , (T (εn)

m , X(εn)(Tm)), (1, X(εn)(T (εn)
m ))

}
,

the likelihood ratio is given by

dV (εn)

dF (εn)
(X(εn)) =

1

p̄(εn)

m∏
k=1

exp
{
−
(
ν̄
X(εn)(T

(εn)
k−1 )

(R)− ν
X(εn)(T

(εn)
k−1 )

(R)
)(
T

(εn)
k − T (εn)

k−1

)}
×

m∏
k=1

dν̄
X(εn)(T

(εn)
k−1 )

dν
X(εn)(T

(εn)
k−1 )

(
X(εn)(T

(εn)
k )−X(εn)(T

(εn)
k−1 )

)
× exp

{
−
(
ν̄
X(εn)(T

(εn)
m )

(R)− ν
X(εn)(T

(εn)
m )

(R)
)(

1− T (εn)
m

)}
,

where

p̄(εn) = P(τ̄ (εn)
a ≤ 1).

Denote by uz,n the probability that a simple random walk, starting at z, with absorption
in 0 and a, ends up at 0 after exactly n increments. The explicit formula for uz,n, as derived
by Feller [6][Ch. XIV, Sec. 5, p. 353], is given by

uz,n = a−12np
1
2 (n−z)q

1
2 (n+z)

a−1∑
j=1

cosn−1
(πj
a

)
sin
(πj
a

)
sin
(πzj
a

)
,

where p is the probability to jump up and q is the probability to jump down. The explicit
formula for the probability of ruin at the nth trial, uz,n, goes back to Lagrange and can be
found in the literature from the 19th century.

In our continuous time setting, consider a birth-and-death process with absorption in 0
and a, starting at x0, with birth intensity λ̄ and death intensity µ̄. Let N be the number of
jumps taken until it ends up at a after exactly N increments. Then,

P(N = n) = ua−x0,n,
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with p = µ̄/(λ̄ + µ̄) and q = λ̄/(λ̄ + µ̄). Note that because we want to end up at a we
have to flip the "Feller random walk" upside down.

Letting Z1, Z2, . . . be iid Exp(λ+ µ) we get that the time τ̄ (εn)
a until exit at a satisfies

p̄(εn) = P(τ̄ (εn)
a ≤ 1) =

∞∑
n=1

P
( n∑
k=1

Zk ≤ 1
)
P(N = n)

=

∞∑
n=1

P(γn,λ̄+µ̄ ≤ 1)ua−x0,n,

where γα,β denotes a random variable with gamma(α, β)-distribution.

5.5.2 The MCMC algorithm

In this section the MCMC algorithm is presented which generates a Markov chain (X
(εn)
t (s), 0 ≤

s ≤ 1)t≥0 whose invariant distribution is F (εn)
h0

(·) = P(X(εn) ∈ · | τ (εn)
a ≤ 1).

Algorithm 5.5.1. The transition from X
(εn)
t (·) to X(εn)

t+1 (·), t ≥ 0. Denote by 0 = T
(ε)
0 <

T
(ε)
1 < T

(ε)
2 < · · · < T

(ε)
m the jump-times of s 7→ X

(εn)
t (s). The trajectory s 7→ X

(εn)
t (s)

is described entirely by{
(T

(εn)
0 , x0), (T

(εn)
1 , X

(εn)
t (T

(εn)
1 ), . . . , (T (εn)

m , X
(εn)
t (Tm)), (1, X

(εn)
t (T (εn)

m ))
}

.

Take h ∈ (0, 1), possibly at random.

1. Sample u uniformly on [0, 1 − h] and proceed by proposing a new trajectory of
s 7→ X

(εn)
t (s) in the interval [u, u + h]. Suppose that T (εn)

i < u < T
(εn)
i+1 and

T
(εn)
j < u+ h < T

(εn)
j+1 . The part of the process which is to be re-sampled is

S(t, u, u+ h) =
{

(u,X
(εn)
t (T

(εn)
i ), (T

(εn)
i+1 , X

(εn)(T
(εn)
i+1 )), . . . , (T

(εn)
j , X(εn)(T

(εn)
j ),

(u+ h,X(εn)(T
(ε)
j )
}

.

2. Generate the proposal

Ŝ(t, u, u+ h) =
{

(u,X
(εn)
t (u), (T̂

(εn)
1 , X̂(εn)(T̂

(εn)
1 )), . . . , (T̂

(εn)
k , X

(εn)
t (u+ h)),

(u+ h,X
(εn)
t (u+ h))

}
,

as follows.

a Let xi = X
(εn)
t (u), xj = X

(εn)
t (u + h) and k = ε−1

n (xj − xi). Let B and
D be the proposed number of births and deaths. Let B and D be independent
Poisson(λB) and Poisson(µD), respectively, where λB = λ([xi + xj ]/2) and
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µD = µ([xi + xj ]/2). Sample B and D conditioned on B −D = k. That is,
if k ≥ 0, sample B from

P(B = l | B −D = k) =
e−λB

λlB
l! e
−µD µ

(l−k)
D

(l−k)!∑
l≥k e

−λB λ
l
B

l! e
−µD µ

(l−k)
D

(l−k)!

,

and set D = k −B. Otherwise, if k < 0, sample D from

P(D = l | D −B = −k) =
e−µD

µlD
l! e
−λB λ

(l+k)
B

(l+k)!∑
l≥k e

−µD µlD
l! e
−λB λ

(l+k)
B

(l+k)!

,

and set B = k −D.

b Given the number of births B and deaths D, sample the corresponding jump
times independently from the uniform distribution on (u, u+ h).

c Let Ŝ(t, u, u + h) be the trajectory that is determined by (u, xi), (u + h, xj),
B, D, and the associated jump times on the interval [u, u+ h].

3. Let s 7→ X̂εn
t (s), 0 ≤ s ≤ 1, be the trajectory that is equal to s 7→ X

(εn)
t (s) for

s ∈ [0, u] ∪ [u + h, 1] and determined by Ŝ(t, u, u + h) on the interval [u, u + h]

and put τ̂ (εn)
a = inf{s > 0 : X̂

(εn)
t (s) ≥ a}. Denote by g the proposal density, as

described in Step 2 above. The proposed trajectory is accepted with probability α
given by

α =

∏k
l=1 r

(
X̂

(ε)
t (T̂

(ε)
l−1); X̂

(ε)
t (T̂

(ε)
l )− X̂(ε)

t (T̂
(ε)
l−1)

)∏j
l=i r

(
X

(ε)
t (T

(ε)
l−1);X

(ε)
t (T

(ε)
l )−X(ε)

t (T
(ε)
l−1)

)
×
∏k
l=1 e

−R
(
X̂

(ε)
t (T̂

(ε)
l−1)
)

(T̂
(ε)
l −T̂

(ε)
l−1)∏j

l=i e
−R
(
X

(ε)
t (T

(ε)
l−1)
)

(T
(ε)
l −T

(ε)
l−1)

× e−R
(
X̂

(ε)
t (T̂

(ε)
k )
)

(1−T̄ (ε)
k )

e−R
(
X

(ε)
t (T

(ε)
j )
)

(1−T (ε)
j )

× g(S(t, u, u+ h) | X(ε)
t (u), X

(ε)
t (u+ h))

g(Ŝ(t, u, u+ h) | X(ε)
t (u), X

(ε)
t (u+ h))

I{τ̂ (εn)
a ≤ 1} ∧ 1

where T (ε)
0 = u and

r(x; 1) = λ(x), r(x;−1) = µ(x), R(x) = λ(x) + µ(x).

If accepted, we put X(εn)
t+1 = X̂

(εn)
t . Otherwise, X(εn)

t+1 = X
(εn)
t .

Iterate steps 1− 3 until the entire Markov chain (X
(εn)
t )T−1

t=0 is constructed.
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5.5.3 Numerical experiments

This section illustrates numerical experiments for the first passage problem

p(εn) = P(τ (εn) ≤ 10),

where τ (εn) = inf{t > 0 : X(εn) ≥ 0.75} where {X(εn)} is a birth-death process with
intensities λ(x) = ρx(1−x) and µ(x) = x, and starts at X(εn)(0) = 0.67. The size of the
population is denoted by n.

We set λ̄ =
∫ 0.75

0.67
λ(x)dx ≈ 0.5625813 and compute µ̄ = 0.648999.

Table 5.1 shows the simulation estimates for computing p(εn) using the MCMC esti-
mator. The estimates are recorded based on 10 batches each consisting of 104 simulations.

Table 5.1: Batch estimates, standard deviation, relative error and computer runtime for
computing p(εn).

n Estimate Std. deviation Rel. error Comp. time(s)
50 2.111e-01 2.539e-03 0.0120 8.08
100 1.106e-02 6.449e-05 0.0058 9.25
150 1.925e-04 1.477e-06 0.0076 11.77
200 1.684e-06 1.067e-08 0.0063 13.32
250 9.496e-09 5.490e-11 0.0057 16.15

Table 5.2 shows the comparison between the simulation estimates for computing p(εn)

using the MCMC estimator against the standard Monte Carlo estimator. The estimates are
recorded based on 10 batches each consisting of 104 simulations.

Table 5.2: Numerical comparison of computing p(εn) between the MCMC and standard
Monte Carlo.

n = 110 MCMC Monte Carlo
Estimate 4.200e-03 3.700e-03

Std. deviation 3.666509e-05 266.875e-05
Rel. error 0.0087 0.7213

Comp. time(s) 0.9706 0.3396
n = 140 MCMC Monte Carlo
Estimate 2.261e-04 8.000e-04

Std. deviation 7.062e-06 918.937e-06
Rel. error 0.0312 1.1487

Comp. time(s) 1.0757 0.3390
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