
Quantification and Maximization of Performance

Measures for Photon Counting Spectral Computed

Tomography

MOA YVEBORG

Doctoral Thesis
Stockholm, Sweden 2015



TRITA-FYS 2015:08
ISSN 0280-316X
ISRN KTH/FYS/–15:08–SE
ISBN 978-91-7595-465-3

KTH FYSIK
SE-106 91 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till o�entlig granskning för avläggande av teknologie doktorsexamen i fysik fredagen
den 27 mars 2015 klockan 10.00 i D3, Lindstedtsvägen 5, Kungl Tekniska högskolan,
Stockholm.

© Moa Yveborg, januari 2015

Tryck: Universitetsservice US AB, typsatt i LATEX



Till Mattias och Liv.



iv

Abstract

During my time as a PhD student at the Physics of Medical Imaging
group at KTH, I have taken part in the work of developing a photon counting
spectrally resolved silicon detector for clinical computed tomography. This
work has largely motivated the direction of my research, and is the main rea-
son for my focus on certain issues. Early in the work, a need to quantify
and optimize the performance of a spectrally resolved detector was identi-
fied. A large part of my work have thus consisted of reviewing conventional
methods used for performance quantification and optimization in computed
tomography, and identifying which are best suited for the characterization of
a spectrally resolved system. In addition, my work has included comparisons
of conventional systems with the detector we are developing. The collected
result after a little more than four years of work are four publications and
three conference papers.

This compilation thesis consists of five introductory chapters and my four
publications. The introductory chapters are not self-contained in the sense
that the theory and results from all my published work are included. Rather,
they are written with the purpose of being a context in which the papers
should be read.

The first two chapters treat the general purpose of the introductory chap-
ters, and the theory of computed tomography including the distinction be-
tween conventional, non-spectral, computed tomography, and di�erent prac-
tical implementations of spectral computed tomography. The second chapter
consists of a review of the conventional methods developed for quantification
and optimization of image quality in terms of detectability and signal-to-noise
ratio, part of which are included in my published work. In addition, the the-
ory on which the method of material basis decomposition is based on is pre-
sented, together with a condensed version of the results from my work on the
comparison of two systems with fundamentally di�erent practical solutions
for material quantification. In the fourth chapter, previously unpublished
measurements on the photon counting spectrally resolved detector we are de-
veloping are presented, and compared to Monte Carlo simulations. In the
fifth and final chapter, a summary of the appended publications is included.

Keywords: spectral computed tomography, silicon detector, detectability
index, photon counting, Hotelling SDNR, material basis decomposition
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Sammanfattning

Under min tid som doktorand på Medicinsk Bildfysik, KTH, har jag tagit
del i arbetet med att utveckla en fotonräknande detektor med spektral up-
plösning för klinisk datortomografi. Detta arbete har till stor del motiverat
inriktningen på min forskning, och de frågeställningar jag har valt att be-
handla. Tidigt i arbetet uppstod ett behov av att kvantifiera och optimera
de egenskaper som karakteriserar en spektral detektor. Stor vikt har lagts
på att revidera konventionella metoder för kvantifiering av prestanda med
anpassning till spektrala system, samt hur ett sådant system ska jämföras
med de detektorer som för närvarande används kliniskt. Det sammanställda
resultatet av drygt fyra års arbete är fyra stycken publikationer samt tre
konferensbidrag.

Denna avhandling består av en kappa och mina fyra publikationer. Kap-
pan syftar till att sätta publikationerna i ett sammanhang, och är i sig inte
självständig i den meningen att alla resultat från min forskning är inklud-
erade. Det två första avsnitten går kort igenom syftet med kappan, samt
teorin bakom datortomografi och skillnaden mellan konventionell (dvs. icke
energi-upplöst) datortomografi och olika tillämpningar av spektral datorto-
mografi. Tredje avsnittet består av en revidering av konventionella metoder
för kvantifiering och optimering av bildkvalitet i termer av detekterbarhet
samt signal-brusförhållande. Utöver detta framförs teorin som ligger till
grund för metoden materialbasdekomposition, vilken möjliggör för kvanti-
fiering av material. I samband med detta presenteras en kort sammanfat-
tning av resultaten från mitt arbete med att jämföra två olika system med
spektral upplösning vars egenskaper i praktiken leder till fundamentalt olika
tillvägagångssätt för att utföra materialbasdekomposition. I det fjärde avs-
nittet presenteras icke tidigare publicerade mätningar som utförts på den
fotonräknande kiselbaserade detektorn som vår grupp har utvecklat, vilka
även jämförs med Monte Carlo simuleringar. Det femte och sista kapitlet
av kappan består av en sammanfattning av de fyra bifogade publikationerna.

Nyckelord: spektral datortomografi, kiseldetektor, detekterbarhet, foton-
räknande, signal-brusförhållande, materialbasdekomposition
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Chapter 1

Purpose

This compilation thesis concerns the optimization and performance quantification
of a spectrally resolved photon counting detector for computed tomography. It
consists of five introductory chapters, followed by four appended papers based on
simulations and theoretical modeling of X-ray imaging detectors. The introductory
chapters are not self-contained in the sense that the theory and results from all my
published work are included. Rather, they are written with the purpose of being a
context in which the papers should be read. Hopefully, it supports the published
work by providing some clarity to why I have chosen certain performance metrics
and models when comparing and evaluating di�erent systems.

For readers not familiar with the topic of computed tomography, the thesis starts
with a chapter containing a short introduction to the subject of X-ray imaging and
CT detector technology, followed by a chapter covering some di�erent metrics of
performance quantification and optimization. As an illustration to the topics of
system comparison and optimization, a somewhat condensed account of parts of
my published work is also included.

In theory there is no di�erence between theory and practice. In practice how-
ever, there is [1]. To emphasize the importance of comparing theoretical models
with measurements, previously unpublished results from physical measurements on
a spectrally resolved detector developed by the Physics of Medical Imaging group
at KTH are presented in the final introductory chapter, and compared with simu-
lations.
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Chapter 2

Introduction

2.1 X-ray imaging

Working as a professor of physics at the university of Würzburg, Bavaria, in 1895,
Wilhelm Röntgen was studying the phenomena accompanying the passage of an
electric current through a tube filled with gas of extremely low pressure. Although
he covered the tube in black paper and the room was completely dark, he noticed
that a screen covered in fluorescent material placed as far as two meters from the
tube was illuminated. By placing the hand of his wife in the path of the rays over a
photographic plate, he observed after development of the plate an image displaying
the bones of the hand. This image was the first “roentgenomgram” ever taken and
Röntgen, not knowing the nature of these new rays, named them X-rays [2]. The
discovery of X-rays, for which Röntgen in 1901 received the first Nobel prize in
physics, truly came to revolutionize medicine. For the first time ever, the body’s
interior could be made visible without surgical intervention.

2.2 Computed Tomography

In 1917, Johann Radon provided the mathematical basis for computed tomography
(CT) image construction by introducing the integral transform (now denoted Radon
transform), demonstrating that the image of a 2-dimensional object can be recon-
structed from an infinite number of 1-dimensional projections of that object [3]. The
basic principle behind CT consists of acquiring a large number of X-ray projection
images at di�erent angles through the object under investigation. As compared to
classical radiographs where only the relative distribution of the X-ray intensity is
recorded, both the intensity attenuated by the object being examined and the pri-
mary, unattenuated intensity, are recorded. From these measurements, a computer
can reconstruct digital format images which represent slices of the of the body’s
interior [4].

One of the most important feature of CT is the increased contrast as com-

3
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pared to radiographs. Contrast is defined as the di�erence in intensity between two
neighboring elements [5]. In radiographs, the overlapping of many fine anatomical
structures along the X-ray beam (denoted “anatomical noise”) is a major limiting
factor, and cannot be overcome using this method [6]. With slice imaging, contrast
is given by the di�erence in attenuation values of volume elements and not by val-
ues representing the attenuation through a line passing the whole object. Contrast
is thus decided by the local composition and the problem of hidden structures is
largely eliminated [5].

2.2.1 CT system and parameters

The first computed tomography system was built by Godfrey Hounsfield in 1971 [7].
It consisted of a pencil beam which was translated and rotated around the patient to
generate an image. To speed up image acquisition time, detectors were eventually
added allowing the use of a small fan beam. Despite this, scan times were several
minutes long, causing artifacts and loss of image sharpness due to patient motion.
In the 1980’s, continuously rotating CT system were introduced, based on the “slip
ring technology” which dramatically reduced the amount of time needed for image
acquisition, also providing the basis for fast volume scanning using spiral CT [5].

A modern clinical CT systems consists in short of a fan-beam geometry with an
X-ray tube acting as source, and a detector. In a measurement, the source emits a
beam which is attenuated by the object. The attenuated intensity is recorded by
the detector from which an attenuation profile (projection) consisting of the natural
logarithm of the ratio of the primary (unattenuated) and attenuated intensity is
constructed. Next, the source and detector is moved and another projection is
performed. Typically in modern CT systems, the rotation is performed continuously
over 360 degrees providing slice image acquisition times of less than 1 second [7].

2.2.2 CT applications

CT is a widely used imaging method, both for patient diagnosis, treatment and
follow-up. Two commonly reasons for using CT is to look for haeammorhages in
the brain [8–11] or for detecting tumors, both in adult and pediatric CT. Another
important application widely used is CT angiography (see e.g. [12]). In these ex-
aminations a contrast agent, commonly iodine, is injected into the patient. The
high-attenuation contrast agent absorbs X-rays strongly and is used in order to
provide detailed images of the blood vessels. Since coronary heart diseases is a
major cause of death in today’s society [13, 14], it is of great interest to be able
to early diagnose patients in the danger-zone of atherosclerois. One indication of
coronary heart diseases is considered to be calcifications in the coronary arteries.
With CT angiography, the possibility of displaying these calcifications and thereby
evaluating the severity and extent of atherosclerosis, has been facilitated.
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2.2.3 Dose
Computed tomography is considered to be a relatively high dose examination pro-
cedure. The major health risk known currently from the doses delivered in a CT
scan is radiation-induced carcinogenesis. Only in the United States, it is estimated
that 85 million CT scans are done every year (2011), where about 4 to 9 million of
these are performed on children [15]. The number of CT scans has increased dra-
matically in only twenty year, from about 3 million (1981) (in the United states)
to today’s number. This increased use is mostly due to the development of CT as
a fast and user-friendly examination.

The patient dose naturally depends on several parameters. Among these is not
only the output from the X-ray tube (mAs, kVp, filtration) but also the patient
size, volume being scanned and which part of the body that is being examined.
Children are more sensitive to radiation-induced carcinogenesis and have, compared
to adults, many remaining years left for cancer to develop. Since CT undoubtedly
is an essential and powerful tool for imaging and diagnosis it is of high importance
to continue the development of new CT techniques that have the capability of
producing equal or higher image quality than today’s system while delivering a
lower dose, especially in pediatric CT. Several methods have been suggested to
reduce the radiation dose associated with CT [16–18], for example using automatic
exposure control or lowering the kVp [19].

2.2.4 CT detector technology
The detector records the attenuated radiation and constitutes one of the most im-
portant and technically complex part of the CT system. Its purpose is to transform
the incident intensity to a signal. The most commonly used detector type in clini-
cal CT systems is scintillator detectors [5,20] which emit light in proportion to the
amount of X-rays absorbed in the detector. The light is collected by a photodiode
which converts it to an electrical current. Next, the electrical current is passed to an
analog to digital converter which integrates the current from the photodiode over a
certain sampling time [21]. A digital-to-analog converter (DAC) produces a digital
number which represents the detected signal during the sampling time. Gadolin-
ium oxysulfide (GOS) ceramic, ultra fast ceramic (UFC) and Gemstone are three
common scintillator materials presently used in modern high-end, so called energy
integrating, CT scanners [22–25]. In this type of detector, the energy information
in terms of the energy dependent di�erence in linear attenuation coe�cients, is lost
as a result of the integration process. In addition, the electronic noise produced by
readout electronics and detector sensors is also integrated into the signal.

The use of energy discriminating photon-counting detectors in clinical CT has
been made feasible due to recent advances in detector technology and application
specific integrated circuits (ASICs). In this type of detector, the X-ray photons
interacting in the semiconductor sensors are converted to electron hole pairs without
any intermediate process which ensures a superior intrinsic energy resolution [26,
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27]. To retain a good energy resolution and process each pulse originating from
photon conversion, an ultra fast photon-counting ASIC with energy discriminating
capabilities is needed [28]. In practice, the energy-discrimination can be realized
by the use of multiple energy thresholds which may also be used to reject electronic
noise by setting the lowest threshold above the noise floor.

Two main types of materials have been proposed for photon-counting CT detec-
tors: cadmium telluride/cadmium zink telluride (CdTe/CZT) [29–33] and silicon
(Si) [34–36]. The major drawback using silicon is the relatively low atomic number
compared to CdTe/CZT which makes it a worse photoelectric absorber. The result
is a high fraction of Compton interactions, which in turn deteriorates its energy
resolution as well as spatial resolution. CZT on the other hand, has been shown
to su�er from pileup already at flux rates ten times lower than those encountered
in clinical practice [37]. Silicon, compared to CZT, has short collection times of
induced charge carriers and is thus less prone to intrinsic pile-up of signals at high
detection rates [28].

2.2.5 Other imaging modalities
The most common alternatives to CT scans are ultrasound and Magnetic Resonance
Imaging (MRI) (see e.g. [12, 38, 39]). Each method uses di�erent principles to
generate an image, and subsequently has its own areas where it is most e�ective.
In ultrasound, high frequency sound waves are used for imaging, with the benefit
of no radiation dose. However, ultrasounds are blocked by bone, thus limiting
the cases where it can be used [40, 41]. In MRI, images are constructed based on
measurements of how the hydrogen atom absorb and emit electromagnetic energy
using powerful magnets [41].

An obvious advantage of both MRI and ultrasound compared to CT, is that
the former do not involve exposing the patient to ionizing radiation. A major
drawback with MRI is the time needed for image acquisition, often 45 minutes or
more, making MRI less suitable for trauma patients. In addition, MRI cannot be
used for patients with metal implants (e.g. pacemaker or metal clips in the head).
Because of the long time needed for an MRI examination, children are often sedated
to reduce artifacts from movement, which also is a risk factor. MRI is generally
considered better at visualizing subtle di�erences between di�erent kinds of soft
tissues compared to CT, and CT to be better at providing details about bony
structures [41].

2.3 Interactions of photons with matter

As photons traverse an object they can be scattered, absorbed or transmitted undis-
turbed [42]. For a certain material, photons with distinct energies will be attenu-
ated di�erently. The linear attenuation coe�cient (denoted µ with units of inverse
length, cm≠1) is a measure of how photons interact with matter. It represents the
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exponential probability per unit path length in the absorber that an X-ray photon
will be absorbed or scattered. In Fig. 2.1, examples of the attenuation coe�cients
of bone and soft tissue are shown as a function of photon energy E in the range of
1 to 80 keV [43].
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Figure 2.1: Figure showing the linear attenuation coe�cient (µ) of soft tissue and
bone as a function of photon energy E (keV).

The linear attenuation coe�cient µ can be written as the sum of the individ-
ual linear attenuation coe�cients for each photon interaction type, very briefly
described below, according to [41]:

µ = µ
Compton scatter

+ µ
photoelectric e�ect

+ µ
Rayleigh scatter

+ µ
pair production

. (2.1)

2.3.1 Rayleigh scattering
Rayleigh scattering occurs mainly with very low energy photons ranging from 15 to
30 keV. In this type of interaction, the incident photons cause the electrons in the
scattering atom to oscillate in phase, whereby a photon is emitted with the same
energy as the incident but in a slightly di�erent direction. Since no electronics are
ejected, no ionization of matter occur [41].

2.3.2 Compton scattering
Compton scattering is the dominating interaction of X-ray photons with soft tissue
in the diagnostic imaging range, from 26 keV to approximately 30 MeV. In this
event, an electron is ejected from the atom and the photon is scattered with a
reduction in kinetic energy, resulting in an ionization of the absorbing matter. The
angles of the scattered photon and electron depend on the energy of the incident
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photon. The probability of Compton scattering increases as the incident photon
energy increases. The probability does not solely depend on the energy however,
but also on electron density (number of electrons/g · density). Since the number of
electrons/g is fairly constant in tissue, the probability of Compton scattering/unit
volume can be approximated as to being proportional to the density of the object
in X-ray imaging of tissue [41].

2.3.3 The photoelectric e�ect
When all of the incident photon energy is transferred to an electron and this electron
is ejected from the atom, the process is called photoelectric absorption [41]. For
this type of event, the energy of the incident photon must be greater than or equal
to the binding energy of the electron. Since an electron is ejected, the absorbing
matter is ionized. The probability of photoelectric absorption per unit mass is
approximately proportional to Z3/E3, where E equals the energy of the incident
photon and Z is the atomic number of the atom being ionized.

2.3.4 Pair production
Pair production only occurs when the energies of the X-rays exceed 1.02 Mev [41].
Since for a regular CT examination, the tube voltage normally does not exceed 140
keV, it is as such not a typically occurring event.

2.4 Limitations of current detector technology

A beam of mono-energetic photons with energy E and incident flux �
0

(photons per
unit time and area) passing along a line l through a material with linear attenuation
coe�cient µ(x, y) will have an emerging photon flux � as given by an application
of Lambert-Beer’s law [42] :

� = �
0

e≠
s

l

µ(x,y)ds

. (2.2)

In CT, the projection value p(t, ◊) at position t for a single view taken at angle
◊ for a parallel-beam geometry, is then defined as [44]

p(t, ◊) = ln
3

�
�

0

4
= ≠

⁄

l(t,◊)

µ(x, y)ds. (2.3)

In Eqs. (2.2) and (2.3), the integrals are along a line l that is at distance t from the
origin and at angle ◊ o� the x-axis as illustrated in Fig. 2.2. The value of t onto
which the point (x, y) is projected with an angle ◊, can be written as

t = x cos(◊) + y sin(◊). (2.4)
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P(x,y)

t’

t

l

T

detector

Object

x ray source

Figure 2.2: Figure illustrating a parallel-beam projection through an object.

Using Eq. (2.4), Eq. (2.3) can be formulated as

p(t, ◊) =
⁄ Œ

≠Œ

⁄ Œ

≠Œ
µ(x, y)”(x cos(◊) + y sin(◊) ≠ t)dxdy. (2.5)

The function above in Eq. (2.5), is the Radon transform. The projection slice
theorem tells us that for an infinite number of projections, µ(x, y) can be perfectly
reconstructed [45]. This is equal to finding the inverse Radon transform. In practice,
most CT systems utilize a stabilized and discretized version of the inverse Radon
transform, known as the filtered back projection algorithm, to reconstruct µ(x, y)
[44].

For the case of mono-energetic photons as in the example above, a CT image
would consist of cross-sectional map of the linear attenuation coe�cient µ(x, y) at
energy E of the patients anatomy. The X-ray beam emitted from the tubes used
in computed tomography is however polychromatic, meaning that the photons are
distributed over a range of energies which is illustrated in Fig. 2.3, showing a
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typical (normalized) CT spectrum of photons filtered with 5 mm of aluminum
and a tube peak voltage of 80 kVp [46]. Conventional CT systems use a detector
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Figure 2.3: Figure shows a typical (normalized) photon spectrum used in CT. The
tube peak voltage is 80 kVp and the spectrum is filtered with 5 mm of aluminum.

which rather than counting each photon separately, uses charge integrating methods
where the signal is proportional to the amount of energy deposited in the detector.
Detectors of this type are largely insensitive to the spectral information contained
in the attenuated beam since it is not the linear attenuation coe�cient at a certain
energy that is measured, but rather an average taken over the spectrum being used
[5]. Since the measured e�ective attenuation coe�cient for such a system depends
strongly on the spectrum shape, comparison between di�erent values obtained from
various systems is di�cult. To mitigate this, a so called CT value in Hounsfield
units (HU) has been defined (for compactness here denoted ›) [5]:

› = 1000µ
t

≠ µ
w

µ
w

. (2.6)

In Eq. (2.6), µ
t

is equal to the reconstructed e�ective linear attenuation coe�cient
for the object being studied and µ

w

the reconstructed e�ective linear attenuation
coe�cient of water.

In practice, the spectrum averaging means that two distinct materials such as
calcified plaque and iodine-contrast-media-filled blood may result in the same range
of attenuation values in a reconstructed CT image [7, 47]. This e�ect is illustrated
in Fig. 2.4, showing a tomographic image of a PMMA phantom containing five
columns of drilled holes of various sizes filled with iodine dissolved in water in
concentrations of 1, 2, 4, 8 and 16 mg ml≠1, taken using clinical energy integrating
CT (GE Lightspeed VCT, Milwaukee, USA) with a tube potential of 120 kV [47].
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For the middle column containing 4 mg ml≠1 of iodine, the contrast between the
iodine solution and background material (PMMA) is zero. When increasing or
decreasing the amount of iodine, i.e. the second and fourth columns containing 2
mg ml≠1 and 8 mg ml≠1, respectively, the contrast increases and the iodine solution
becomes visible.

Figure 2.4: Tomographic image of a PMMA phantom containing drilled holes filled
with iodine solution acquired using a clinical energy integrating detector at a tube
potential of 120 kV. From right to left, the iodine concentrations are 1, 2, 4, 8 and
16 mg/ml. Note that full contrast cancellation occurs for 4 mg/ml.

Clinical examples of contrast cancellation include hypervascular hepatic tumors
which can be hypodense to the surrounding liver prior to contrast enhancement
but change into isodense or hyperdense lesions with increasing amount of iodine
uptake [48]. Similarly a renal hemorrhage, normally hyperdense, might become
hypodense once the kidney is filled with iodine. Common for these examples is the
transition from a hypodense to hyperdense volume (or the reverse) following the
uptake of contrast agent. At some point during this conversion, i.e. for some iodine
concentrations, the e�ective linear attenuation coe�cient of the enhancing region
will equal the e�ective linear attenuation coe�cient of the non-enhancing region.

2.5 Spectral computed tomography

By adding information on the energy dependent attenuation properties of the ob-
ject, the problem with distinct tissues displaying similar CT values may be over-
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come. The spectral information can be used to determine the local area density
of an objects constituent tissue equivalent materials, a method denoted material
basis decomposition. In addition, the spectral resolution enables energy weighting
methods [49, 50] di�erent from the conventional integrating scheme which can be
used to increase the detectability of a certain target structure.

The potential benefits of using X-ray spectral information in medical imaging
was realized early [51, 52]. Today, various technical solutions whereby energy in-
formation can be extracted exist. One category is dual energy CT where there
presently are three di�erent approaches clinically and commercially available [53];
the dual source system [54] using two X-ray sources running at distinct voltages
with two corresponding detectors, fast switching kVp systems [55,56] based on only
one source and a tube voltage that follows a pulsed curve, and dual layer detector
systems [57]. Dual energy CT has shown promising results in terms of material
discrimination [54,58] and a range of of clinical applications exists. Some examples
include bone removal from the carotid [59], reconstruction of virtual noncontrast-
enhanced images (thus reducing patient dose with a factor of two in cases were
such images are required), quantification of iodine enhancement in lesions of solid
organs [60], identification of gout tophi [61] and di�erentiation of kidney stones [62].
In addition, image quality can be increased by optimizing contrast [63], or alterna-
tively by generating mono-energetic images [64]. As the second and most technically
advanced category of spectrally resolved detectors are photon counting systems ca-
pable of detecting the individual photons and measuring the corresponding energy,
described in Sec. 2.2.4.

2.5.1 Quantification of performance of a spectrally resolved
detector

When developing new digital detectors for CT, one important step is to compare
the new technology with current state-of-the-art. In contrast to conventional en-
ergy integrating detectors, using photon counting spectrally resolved detectors elec-
tronic noise can be removed, beam hardening artifacts eliminated [51], materials
be separated and quantified [65–67] and lesion detectability increased using proper
weighting of the photons [49,50]. Not only the capability of measuring the energies
of the detected photons may di�er between distinct systems, but also properties
such as detector element size which a�ects the systems ability to detect small le-
sions. Depending on detector material, charge sharing and scattering in the detec-
tor induce noise correlations and reduce spatial resolution by smearing of the point
spread function. Currently, no figure of merit exists that can take all of the above
mentioned properties into account. To di�erentiate two systems based on distinct
technologies, certain features connected to the specific systems must be singled out
and evaluated.
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Figure of merit for image quality

For a spectrally resolved digital CT detector, three essential performance metrics
that characterize the systems intrinsic capabilities can be defined:

• Spatial resolution

• Spectral resolution

• Contrast resolution

CT image quality can be described in a variety of terms such as noise, low-contrast
spatial resolution and low-contrast detectability. Spatial resolution is typically de-
fined as the measure of how closely lines can be resolved in an image, and depends
not only on physical parameters such as focal spot size and detector element dimen-
sions, but on choice of reconstruction algorithm [68]. The low-contrast resolution
is defined as the smallest object that can be visualized given a certain dose and
contrast to background intensity, typically measured using phantoms containing
low-contrast objects of di�erent sizes. The low-contrast detectability represents
the ability of a CT scanner to distinguish between objects that have similar X-ray
attenuation coe�cients. Small objects are more di�cult to detect than larger ob-
jects of the same contrast to background intensity. In analogy, objects of the same
size will be easier to visualize the larger the contrast to background intensity. The
low-contrast detectability thus depends on both the size of the object and its con-
trast to background intensity. In addition, the presence of noise highly influences
the visibility of a given object. The noise in itself depends on a range of factors
such as dose, slice thickness, tube voltage, detector material, energy spectrum and
reconstruction algorithm. Low-contrast detectability is typically determined using
measurements of phantoms in combination with human observers, or alternatively
using computer analysis [69]. In its simplest form, it is quantified in terms of the
signal-di�erence-to-noise ratio (SDNR).

From a systems spectral resolution emerges two main methods: energy weight-
ing and material basis decomposition. The latter formula enables di�erentiation
and characterization of di�erent materials in an object. Energy weighting deals
with optimal weighting of the detected photons where di�erent methods have been
proposed (projection, image and task-based) that show a significant image con-
trast enhancement compared to the energy-integrating method [49, 50] in terms of
increase SDNR.

It might be considered more stringent to separate the spatial/contrast and spec-
tral resolution when comparing two systems. Since the spectral information can
be used to increase the contrast, i.e. detectability, of a certain lesion using optimal
weighting of the detected photons, and as well for quantifying the local area density
of a material, the two characteristics (i.e. spectral and contrast resolution) are how-
ever not entirely separable. As far as energy integrating detectors go, for a certain
selection of settings (e.g. photon spectrum) and object, the contrast resolution in
an image given a fixed range of Hounsfield values is set and can not be changed
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post-acquisition. For a multiple-bin photon counting detector however, contrast
resolution depends on which weights are being used and can be altered at any time
using the projection measurements [49] or reconstructed bin-images [50].

Performance evaluation

Traditionally, evaluation of the performance of a CT system has been made us-
ing physical phantoms in combination with software analysis and human observer
studies [70,71]. This method has several advantages, as it can take image artifacts
such as beam hardening and ring artifacts into account. In addition, it relies on
physical measurements where no assumptions of system linearity or shift-invariance
have been made. Obviously, it has been and will continue to be, a powerful tool for
the quantification and comparison of detector performance. The downside of this
method however, is that it requires a mature system and depends strongly on the
choice of reconstruction algorithm in combination with the phantom being used.
In addition, it is time consuming. When developing new technologies for CT, it is
at an early stage important to be able to evaluate the relative impact for example
detector element size has on system performance.

In digital projection X-ray imaging (e.g. radiographs), system evaluation is rou-
tinely performed using a Fourier-based metrics [72–76] based on the assumption of
linearity and shift-invariance, which can be used to optimize a system for a certain
detection task. More specifically, common figures of merits are the detective quan-
tum e�ciency (DQE) and detectability index (dÕ) that describe the propagation of
the signal-to-noise ratio (SNR) and signal-di�erence-to-noise ratio (SNDR), respec-
tively, in imaging systems [77] as a function of spatial frequency. In spite of CT
systems being neither linear nor shift-invariant, assuming so and determining the
frequency-based projection SNR and SDNR can be of use at an early development
stage as they o�er a method of system evaluation before complete physical measure-
ments and three-dimensional reconstruction for practical reasons can be performed.
(In absolute values however, the projection DQE and projection detectability index
dÕ are misguiding for CT systems as they do not take into account the e�ect the
three-dimensional reconstruction process has on signal and noise due to for example
aliasing [78,79].) Several studies investigating the relationship between theoretical
descriptions of imaging performance using a Fourier-based approach and the perfor-
mance of real human observers, both for CT and radiographs, have been published.
Results indicate that the theoretical Fourier-based metrics of detectability using
simple model observers indeed can predict the performance of human observers on
a reasonable level [80,81].

The physical performance of a system in terms of DQE and dÕ may relatively eas-
ily be simulated under certain idealized conditions, thereby o�ering a base-line from
which comparisons can be made. The dependance of detectability on rudimentary
parameters such as detector element size or detector material can be examined
or compared to the performance of other systems. Since theory rarely coincides
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perfectly with reality, it is of course important to compare the simulations with
physical measurements.

For energy integrating and photon counting detectors, the concept of DQE
and its associated metrics have been well defined for projection imaging [52, 82]
(and as well the e�ect of three-dimensional reconstruction for CT imaging [78,79]).
With the emerge of multiple-bin photon counting detectors, these definitions must
be revisited and reviewed in conjunction with optimal methods of how to weigh
di�erent energy bins. Since material basis decomposition of an object containing a
K-edge material is performed using two fundamentally di�erent methods for dual
energy imaging and multiple-bin photon counting systems, a considered approach
must be taken when comparing the accuracies accompanying each technique.

It should be noted that there are other important parameters that determine
the quality of an image or the performance of a CT system which are not addressed
in this work. Amongst them is temporal resolution, somewhat simplified defined as
the time needed for acquiring a single image [20]. This is an important characteristic
in for example cardiac imaging where the object (i.e. heart) is moving during image
acquisition, and also in CT fluoroscopy which requires near “real-time” images.

2.5.2 Outline
In the following Secs. 3.1.1, 3.1.2 and 3.1.2, well-established metrics to quantify
and optimize the detectability of a target structure embedded in a background are
presented in terms of SDNR and pixel-based weighting using statistical decision
theory. In Sec. 3.1.3 follows an introduction to the linear systems theory which
includes a derivation of the DQE and optimal weighting for spectral projection
imaging using a multiple-bin detector originally presented in [83]. The theory of
material basis decomposition is briefly reviewed in Sec. 3.3, as well as illustrations of
the implementation using dual energy CT and multiple-bin detectors. An example
of how a comparison between the accuracies in material basis decomposition using
these two inherently di�erent systems may be conducted is given in Sec. 3.3.1. In
Sec. 4, physical measurements of detector performance in terms of projection DQE
and modulation transfer function (MTF) using a photon counting silicon detector
with eight energy bins developed by the Physics of Medical Imaging group at KTH
are presented and compared with simulations.





Chapter 3

Quantification of detector
performance

3.1 Quantification of detectability

Along with the rapid development of X-ray imaging devices over the past decades,
the understanding of the fundamental processes that governs image quality have
evolved in conjunction with well-defined metrics for comparison and evaluation
of di�erent technologies. Sec. 3.1.2 contains a short summary of the statistical
decision theory used for system analysis in Sec. 3.2.1 and [83]: a more comprehensive
treatment can be found in [84].

3.1.1 Rose model
The Rose model, named after its formulator Albert Rose, was employed in order
to account for the quantized nature of X-rays. It describes the signal-di�erence-to-
noise ratio (SDNR) for the detection of a uniform object in a uniform background
[85–89]. If q̄

0

and q̄
b

is the mean number of quanta per unit area in the region of the
uniform object and background, respectively, the Rose signal-di�erence (denoted
�S) is equal to

�S = A(q̄
b

≠ q̄
0

), (3.1)

where A is the object area. The noise is defined as the standard deviation ‡
b

in the
number of quanta in an equally large area of uniform background. For uncorrelated
background quanta, the noise can be described by Poisson statistics and ‡

b

=
Ô

Aq̄
b

,
and

SDNR = A(q̄
b

≠ q̄
0

)Ô
Aq̄

b

= C(


Aq̄
b

), (3.2)

where C = (q̄
b

≠ q̄
0

)/q̄
b

is the contrast. Rose formulated a very simple but e�cient
criterium, stating that if SDNR Ø 5, the object is visible.

17
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3.1.2 Statistical decision theory
Assume two hypothesis H

1

and H
0

, representing the presence and absence of some
feature (e.g. a tumor or bone), respectively. We collect in total Q observations ĝ

i

where i = 1, ..., Q, each an outcome of a random variable. Let:

g = (ĝ
1

, ...ĝ
Q

)T

, (3.3)

be a 1 ◊ Q column-vector containing all these observations, and

ḡm = Èg|H
m

Í (3.4)

be the expectation value of g under hypothesis m = 0, 1. The ideal linear observer
forms the discriminant function T (g) = w†g, equal to the inner product between
the column vector of weights w = (w

1

, .., w
Q

)T , and g where † refers to the com-
plex conjugate transpose (equal to the transpose T when g and w are real). The
(squared) SDNR of T (g) is then equal to

SDNR2 =
!
w†�ḡ

"
2

w†
!
K0 + K1

"
w

, (3.5)

where �ḡ = ḡ1 ≠ ḡ0 is the expected signal di�erence between the hypotheses. Km

in Eq. (3.5) is the Q ◊ Q auto-covariance matrix of g under hypothesis m = 0, 1,
with entries Km

i,j

given by

Km

i,j

= È(ĝ
i

≠ ḡ
i

) (ĝ
j

≠ ḡ
j

)† |H
m

Í. (3.6)

It can be shown that the optimal weights w that maximize Eq. (3.5) are given
by (see pages 850-852 in [84])

w =
!
K0 + K1

"≠1 �ḡ. (3.7)

Now, Eq. (3.5) with w given by Eq. (3.7), yields the (squared) Hotelling SDNR:

SDNR2 = �ḡ† !
K0 + K1

"≠1 �ḡ, (3.8)

which is the upper bound for Eq. (3.5).

Pixel-based weighting applied to multiple-bin photon counting detector

Conventional pixel-based weights (superscript pb) are calculated by designing the
ideal linear (Hotelling) observer model to discriminate between the hypotheses H

0

:
pixel belonging to background, and hypothesis H

1

: pixel belonging to target. As-
sume a spectrally resolved photon counting detector with N bins acquiring two-
dimensional projection bin images I

i

(x, y), each of size M
x

◊M
y

where i = 1, ..., N .
�ḡpb is then of size 1 ◊ N and contains the di�erence in expectation value of the
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pixel value in the target, and the expectation value of the pixel value in the back-
ground. The optimal pixel-based weights wpb is of size 1 ◊ N and calculated as
(using Eq. (3.7)):

wpb =
1

K0,pb + K1,pb

2≠1

�ḡpb. (3.9)

In Eq. (3.9), the two-dimensional auto-covariance matrix Km,pb is of size N ◊ N .
For uncorrelated bin counts, Km,pb is diagonal with entries equal to the variance
of the counts in the corresponding bin and the (squared) Hotelling-SDNR defined
in Eq. (3.8), calculated using wpb, �ḡpb and Km,pb, is maximized for a single
pixel. Due to the Poisson nature of photon counting statistics, the variance is the
expected value and the formulas for maximizing the SDNR of a target structure
with linear attenuation µ

t

(E) over a background with linear attenuation µ
bg

(E),
originally proposed by Tapiovaara and Wagner [90], follow immediately from Eq.
(3.9):

w (E) = N
bg

(E) ≠ N
t

(E)
N

bg

(E) + N
t

(E) . (3.10)

In Eq. (3.10), N is the detected photons with energy E in the pixel belonging to
the background (bg) and target (t).

For pulse height discriminating detectors capable of incrementing the counts in
energy bin i if the detected energy E is between energy thresholds T

i≠1

and T
i

,
Cahn et al. [91] and later Giersch et al. [92] demonstrated the optimal weights for
bin i with an average energy E

i

to be

w (E
i

) Ã 1 ≠ e≠(µt(E

i

)≠µbg(E

i

))dt

1 + e≠(µt(E

i

)≠µbg(E

i

))dt
. (3.11)

In Eq. (3.11), the Beer-Lambert law have been used assuming a thickness d
t

for
a target with linear attenuation coe�cient µ

t

embedded in a background with
linear attenuation coe�cient µ

b

. Niederlöhner et al. [93] later refined the work
of Cahn et al. and Giersch et al. by calculating the optimal weights taking into
account uncorrelated scattered radiation, which follow by adding external noise to
the diagonal entries of Km,pb in Eq. (3.9):

w (E
i

) Ã 1 ≠ e≠(µt(E

i

)≠µbg(E

i

))dt

1 + e≠(µt(E

i

)≠µbg(E

i

))dt + 2 ◊ SPRi
, (3.12)

where SPRi is the scatter to primary ratio of bin i.
When constructing a weighted projection image I (x, y), identical weights are

used for all counts registered in bin i regardless of pixel location:

I (x, y) =
Nÿ

i

wpb

i

I
i

(x, y) , (3.13)
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where wpb

i

refers to the ith entry in wpb. Studies have shown that compared to
energy integrating systems at the same patient dose, ideal photon-counting energy-
sensitive detectors applying optimal energy weighting schemes have the potential
to increase the contrast-to-noise ratio in CT images by 15-60% [49,50].

3.1.3 Linear systems theory
The SDNR is important as it establishes that image quality ultimately is limited
by the statistical nature of quanta. It is however in its simplicity an insu�cient
measure since it only is relevant in the limit where the structures to be detected in
the image are uniform over very large areas. For smaller structures, the detector
element (del) size limits the systems maximum achievable spatial resolution and
one has to take the spatial frequency dependence of signal and noise into account.

Assuming a linear, shift-invariant and wide-sense stationary system, a Fourier-
transfer linear-systems approach [94] is a more suitable measure to analyze or char-
acterize system performance. It is used to describe both signal and noise transfer
via the modulation transfer function (MTF) and noise power spectrum (NPS). Two
associated metrics commonly used to quantify the performance of a digital detec-
tor in terms of detector e�ectiveness and detectability, are the detective quantum
e�ciency (DQE) and detectability index dÕ.

Listing all the contributors to the unified framework for system evaluation is
not in the scope of this work but interested readers are referred to the work of
Cunningham and Shaw [95] for a historical exposition and general overview, as well
as to the introduction by Sattarivan and Cunningham [96] on how to estimate the
DQE via the MTF and NPS by cascading elementary processes.

MTF

The point-spread function psf(x, y) is the response of a linear and shift-invariant
system to an impulse located at x = 0, y = 0. The optical transfer function (OTF) is
defined as the zero-frequency normalized Fourier transform of the point-spread func-
tion:

OTF(u, v) = F{psf(x, y)}
F{psf(0, 0)} , (3.14)

and MTF(u, v) = |OTF(u, v)| where by definition, MTF is equal to 1 at zero spatial
frequency coordinates u and v [72]. For an ideal system, the point-spread function
is a delta function and the MTF flat and equal to unity for all frequencies. In
practice, in addition to e.g. scattering of secondary quanta in the detector, the
discrete sampling and integration of quanta in each detector element employed
using digital detectors significantly alters the shape of the MTF.

For a digital detector with pixels of size a
x

and a
y

in the x- and y-direction,
respectively, the integration of quanta can be modeled as a convolution with a
rectangle function �(≠x/a

x

, ≠y/a
y

) in the spatial domain. In the spatial-frequency
domain, convolution translates into multiplication. The pre-sampling MTF is the
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MTF of a digital system before the process of discrete sampling introduced by the
sampling aperture and can be written as a product of the MTF from the point
spread function and an aperture MTF (here denoted MTF

a

x

,a

y

) equal to:

MTF
a

x

,a

y

(u, v) =
|T

a

x

,a

y

(u, v)|
T

a

x

,a

y

(0, 0) = |sinc(fia
x

u)||sinc(fia
y

v)|, (3.15)

where T
a

x

,a

y

(u, v) = F{�(≠x/a
x

, ≠y/a
y

)}.
For digital detectors, the discrete sampling at the centre of each detector ele-

ment located at (n
x

x
0

, n
y

y
0

) for all integers (n
x

, n
y

) introduces aliasing which can
be modeled by multiplication with a comb function

qŒ
≠Œ ”(x ≠ n

x

x
0

, y ≠ n
y

y
0

) in
the spatial domain. In the spatial frequency domain, this corresponds to convolu-
tion with (1/(x

0

y
0

))
qŒ

n

y

=≠Œ
qŒ

n

x

=≠Œ ”(u≠(1/n
x

x
0

), v≠(1/n
y

y
0

)). The sampling
at uniform spacings of x

0

and y
0

in the x- and y-direction, respectively, thus cor-
responds to the production of aliases of the signal at spacings of u = 1/x

0

and
v = 1/y

0

[72]. If these aliases overlap, i.e. the signal contains frequencies higher
than u = 1/(2x

0

) and v = 1/(2y
0

), the image signal will be distorted at frequencies
below the cut-o� frequencies u

c,x

= 1/(2x
0

) and v
c,y

= 1/(2y
0

) according to the
Nyquist-Shannon sampling theorem (see e.g. [97]).

From a 2-dimensional MTF, the 1-dimensional MTF can be estimated by

MTF(u) = MTF(u, v)|
v=0

, (3.16)

which is equal to evaluating MTF(u, v) along the v = 0 axis [72].

NPS

The autocovariance describes the correlation of a random variable a(x):

K
a

(xÕ, xÕ + x) = E{�a(xÕ)�aú(xÕ + x)}. (3.17)

It describes the correlation of a(xÕ) with itself at a location displaced by x. For
a wide-sense stationary random process, the autocovariance in Eq. (3.17) depends
on the separation x and not on the position xÕ [98], i.e. K

a

(xÕ, xÕ + x) = K
a

(x).
The 1-dimensional NPS of a wide sense stationary process is equal to the Fourier
transform of the 1-dimensional autocovariance matrix K:

NPS(u) = F{K
a

(x)}. (3.18)

The autocovariance in Eq. (3.17) is based on true expectation values which in prac-
tice may be di�cult to obtain. For an ergodic process however, the expected values
can be determined either by the spatial or ensemble average. The autocovariance
can thus be estimated by the sample autocovariance K

a,X

(x):

K
a,X

(x) = 1
X

⁄

X

�a(xÕ)�a(xÕ + x)dxÕ, (3.19)
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which in the limit of X æ Œ, gives the autocovariance. Using Eqs. (3.18) and
(3.19), the NPS of a wide-sense stationary ergodic random process can be written
as

NPS
a

(u) = lim
XæŒ

1
X

E
Ó

|F
X

{�a(x)}|2
Ô

(3.20)

where �a(x) is a zero-mean noise-only function. For a 2-dimensional wide-sense
stationary ergodic random process d(x, y), the 2-dimensional NPS is given by

NPS
d

(u, v) = lim
X,Y æŒ,Œ

1
XY

E
Ó

|F
X,Y

{�d(x, y)}|2
Ô

, (3.21)

where �d(x, y) is a zero-mean noise-only function and F
X,Y

{�d(x, y)} is the 2-
dimensional Fourier transform of �d(x, y).

In practice, the 1-dimensional NPS can be estimated from 1-dimensional digital
data d

n

of size 1 ◊ N according to [72]:

NPS
dig

(u) = x
0

N
E

Ó
|DFT {�d

n

}|2
Ô

. (3.22)

In Eq. (3.22), �d
n

= d
n

≠E{d
n

} , x
0

the sampling distance and DFT equal to the
discrete Fourier transform. For a 2-dimensional digital data d

n

x

,n

y

of size N
x

◊ N
y

with sampling distances x
0

and y
0

in the x- and y-direction, respectively, the 2-
dimensional NPS is given by [72]

NPS
dig

(u, v) = x
0

y
0

N
x

N
y

E
Ó--DFT2D

)
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y

*--2

Ô
, (3.23)

where DFT2D is the 2-dimensional discrete Fourier transform and �d
n

x

,n

y

=
d

n

x

,n

y

≠ E{d
n

x

,n

y

}. From a 2-dimensional NPS, the one-dimensional NPS can
be calculated as:

NPS(u) = NPS(u, v)|
v=0

, (3.24)

which is equal to evaluating the 2-dimensional NPS along the v = 0 axis.

Detective quantum e�ciency and detectability index

The two-dimensional DQE for an average input number of quanta q per unit area
is defined as [72]

DQE (u, v) = NEQ (u, v)
q

, (3.25)

where the NEQ (u, v) is defined as the square of the expected output signal S (at
spatial frequency coordinates (u, v)) for a constant input signal q divided by the
corresponding output NPS:

NEQ (u, v) = |S(u, v)|2
NPS (u, v) . (3.26)
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The frequency dependent SDNR, commonly denoted detectability index dÕ, is
equal to the integral of the squared Fourier-based ideal observer SDNR:

dÕ2 =
⁄

SDNR2 (u, v) dudv. (3.27)

For a constant input number of quanta q per unit area, it is well known how the
expressions in Eqs. (3.25), (3.26) and (3.27) translate for a single-bin (subscript sb)
photon counting detector [72]. By writing the absolute value of the output signal
S (u, v) in the spatial frequency domain equal to the absolute value of the product
of the average incoming signal q times the system OTF:

|S (u, v) | = q|OTF (u, v) |, (3.28)

we have:

DQE
sb

(u, v) = qG2MTF (u, v)2

NPS (u, v) , (3.29)

NEQ
sb

(u, v) = q2G2MTF (u, v)2

NPS (u, v) , (3.30)

and

dÕ
sb

2 = �N2

⁄ Œ

≠Œ

h (u, v)2 MTF (u, v)2

NPS (u, v) dudv. (3.31)

In Eq. (3.31), we have assumed h (u, v), equal to the Fourier transform of the object
profile, to be strictly positive and normalized to 1 at frequency coordinates (0, 0).
�N is the total detected signal di�erence between the target and background.
G = d/q in Eq. (3.29), is the system large-area gain factor, where d is the average
output signal.

For a multiple-bin system (subscript mb) with bins i = 1, ..., N and input bin
signal d

i

(x, y), the output bin signal s
i

(x, y) is given by d
i

(x, y) ú psfi (x, y) where
psfi (x, y) is the point spread function for bin i and ú the convolution operator.
Using a 1 ◊ N vector of bin weights w with entries w

i

, the Fourier transform of
the output signal is equal to the weighted sum of the Fourier transform of the bin
input signals times the optical transfer function for bin i, OTFi (u, v):

S (u, v) = F
)

s (x, y)
*

=
Nÿ

i

w
i

D
i

(u, v) OTFi (u, v) . (3.32)

In Eq. (3.32), D
i

(u, v) is the Fourier transform of the input bin signal d
i

(x, y).
Because of the summation over bin signals, the absolute value of the output

signal cannot be written as a product of the absolute value of the input signal and
a system MTF. This implies that the NEQ, DQE and dÕ for a mean number of
registered counts N

i

in bin i per unit area, and mean number of input counts q
i

in
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bin i per unit area, must be written in less concise forms compared to Eqs. (3.29),
(3.30) and (3.31) [83]:

NEQ
mb

(u, v) = |
q

i w iNiOTFi (u, v) |2

NPS (u, v) , (3.33)

and
DQE

mb

(u, v) = |
q

i w i N iOTF i (u, v) |2

NPS (u, v)
q

i

qi
. (3.34)

Since the individual bin input counts q
i

can be equal to zero, a bin-DQE cannot be
defined; such a normalization would produce infinitely large quotients. Assuming
a target consisting of a single material, the bin output signal �S

i

(u, v) is equal to
the total signal di�erence in bin i, �N

i

, times h (u, v), the Fourier transform of the
object profile and the bin-OTF. The squared detectability index is then equal to:

dÕ
mb

2 =
⁄ |

q
i

wi�Nih (u, v) OTFi (u, v) |2

NPS (u, v) dudv. (3.35)

3D reconstruction

The three-dimensional NPS and MTF of the reconstructed image can be modeled
according to the method outlined by Tward and Siewerdsen [79]. This method
starts with normalization of the projection NPS according to NPS

out

= NPS
in

/q̄2,
where q̄ is the mean detector signal. The normalization is followed by an application
of a ramp and an apodization filter whereby the NPS and MTF are transferred as a
deterministic convolution, i.e. NPS

out

= NPS
in

T 2 and MTF
out

= MTF
in

T at each
stage (with T being the filter expressed in the Fourier domain). Any interpolation
of the filtered projection is also transferred as a deterministic convolution. For a
bilinear interpolation, T is given by T = sinc2(fiua

u

)sinc2(fiva
v

) where a
u

and a
v

are the sampling distances in the projection image.
The 3D reconstruction stage a�ects the NPS as

NPS
out

(f, wÕ) = fi

mf
NPS

in

(u/M, v/M), (3.36)

where f = (u2 + v2) is the radial spatial frequency in an axial slice in the recon-
structed domain (u, v and w are the spatial frequency coordinates in the recon-
structed 3D image). wÕ is the spatial frequency along the axis of rotation, M is the
magnification and m the number of projections.

Using voxel-driven reconstruction, the e�ect of the 3D reconstruction process
on the MTF is given by

MTF
out

(f, wÕ) = 1
Mf

MTF
in

(u/M, v/M). (3.37)

As a final step, the NPS 3D voxel matrix is again sampled introducing aliasing in
three dimensions.
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3.1.4 Choice of figure of merit for system comparison
The SNR is calculated as the ratio of the mean signal value S

B

, to the standard
deviation ‡

S

B

of the signal values over a given neighborhood:

SNR = S
B

‡
S

B

. (3.38)

The SDNR is defined as the ratio of the mean signal-di�erence S
B

≠ S
A

, and the
standard deviation ‡

S

B

of the background:

SDNR = S
B

≠ S
A

‡
S

B

. (3.39)

The contrast C is equal to the ratio of the mean signal-di�erence S
B

≠ S
A

, and the
mean background signal S

B

according to

C = S
B

≠ S
A

S
B

. (3.40)

Assume a detector which generates a signal proportional to the number of absorbed
photons where the only noise source is due to the Poisson statistics of the absorbed
photons. Then, ‡

S

B

=
Ô

S
B

, which gives

SNR = S
B

‡
S

B

= S
BÔ
S

B

=


S
B

, (3.41)

and
SDNR = S

B

≠ S
A

‡
S

B

= S
B

≠ S
AÔ

S
B

. (3.42)

The NEQ is equal to the square of the (spatial frequency-dependent) SNR:

NEQ = SNR2 = S
B

, (3.43)

using Eq. (3.41). The DQE is defined as the NEQ divided by the mean input signal
S

B,in

:
DQE = NEQ

S
B,in

. (3.44)

For a system with unity detection e�ciency and an NEQ as expressed in Eq. (3.43),
S

B

= S
B,in

and the DQE is equal to

DQE = S
B

S
B,in

= 1. (3.45)

The detectability index is equal to the integral of the squared signal-di�erence-to-
noise ratio:

SDNR2 = (S
B

≠ S
A

)2

S
B

= C2NEQ. (3.46)
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Since the NEQ is a measure of the squared signal-to-noise ratio according to
Eq. (3.33), it tells us nothing about the contrast detectability which is an im-
portant parameter when comparing di�erent CT systems. Rather, the NEQ is
measure of the intensity of the signal produced by the detector, and the DQE of
the e�ectiveness of the detector. A certain CT system may be associated with a
high NEQ and DQE but still produce images with very low contrast. Since for an
energy integrating system, the contrast can cancel out for two materials with an
on average equal attenuation, the detectability defined in Eq. (3.46) might even
be zero (i.e. S

B

= S
A

). For the evaluation of a spectrally resolved system, this
becomes especially important since the optimal energy weights defined in Eq. (3.7),
are designed to maximize a signal-di�erence-to-noise ratio and as such are task
dependent. Rather than being parameters of image quality, the NEQ and DQE
should be used for evaluating the impact di�erent physical parameters have on the
spatial resolution of a specific system, such as detector material or size or detector
element. When comparing two di�erent systems, the detectability index dÕ is a
more appropriate chose of figure of merit since it incorporates both the contrast
and the NEQ, schematically according to Eq. (3.46) [52].

3.2 Optimal energy weighting in spectral projection
imaging

For a multiple-bin photon counting detector, the still universal concept [49, 50, 99]
of pixel-based bin-weights described in Sec. 3.1.2 cannot take into account spatial
correlation structures between detector elements in di�erent bin images and any
di�erence in point spread functions of separate bins originating from photons de-
positing energy in several detector elements via Compton scattering and/or charge
sharing. The same weighting scheme will therefore be used for the combination of
imaging task and system giving rise to a large fraction of high spatial frequency
dependent SDNR as for one with predominantly low spatial frequency dependent
SDNR. This is can be illustrated by considering the pre-sampling projection MTF
of each bin for a simulated multiple-bin photon counting silicon detector with five
equidistantly placed energy thresholds and a pixel size of 0.5 mm, shown in Fig.
3.1. The amplitude of the MTF of bin number two (denoted MTF

2

) at frequencies
distinct from zero is considerably lower than the amplitudes of the other bin-MTFs.
This is due to a large part of the Compton scattered photons depositing their en-
ergies in bin two, thereby smearing the point spread function of that bin. A pixel-
based weighting scheme will only “see” the zero-frequency part of the bin-MTFs,
thereby ignoring the amplitudes at higher frequencies even though they e�ect the
DQE and detectability index according to Eqs. (3.34) and (3.35).

Bornefalk [100] pointed out this predicament and attempted to rectify it by
developing a framework for maximizing the frequency-based detectability index
dÕ for photon counting spectral projection images using task-based weights. Those
weights were derived by taking the spatial frequency dependence of noise and signal
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Figure 3.1: Bin-MTFs, denoted MTF
i

where i = 1, ..., 5, for a simulated multiple-
bin photon counting silicon detector with five equidistantly placed energy bins and
a pixel size of 0.5 mm.

for each bin into account, and the final image I (x, y) calculated as the weighted
sum of the bin images I

i

(x, y):

I (x, y) =
Nÿ

i

w
i

I
i

(x, y) , (3.47)

where N are the number of bins. Since a small object contains both high and low
frequencies, it may not however always be optimal to weigh all frequency compo-
nents of a signal in a certain bin equally. For example, the frequency dependent
SDNR in a particular bin may diminish for a certain range of frequencies due to a
high degree of charge sharing, but remain high for others. Nevertheless, the weight-
ing scheme used in Eq. (3.47) weighs all frequency components of the signal in that
bin identically.

The idea of optimizing signal detectability by analyzing the frequency content
of a certain imaging task is not new; prior to [100], Siewerdsen and Antonuk [101]
optimized the CsI:Tl scintillator thickness for a chest radiography system. Fur-
ther, Richard and Siewerdsen [102] and Fredenberg et al. [103] optimized the dose
allocation and relative weights of high- and low-energy images in a dual energy
application; other examples exist [104,105].

3.2.1 Frequency-based weighting
Assume a spectrally resolved photon counting detector with N bins acquiring two-
dimensional projection bin images I

i

(x, y), each of size M
x

◊M
y

where i = 1, ..., N .
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A di�erent approach of calculating the weights defined in Eq. (3.7) originally pre-
sented in [83], is to find the linear discriminant that takes into account the infor-
mation from all pixels, thus making ḡm and the covariance matrix K

m

defined in
Eqs. (3.4) and (3.6) of sizes 1 ◊ NM

x

M
y

and (NM
x

M
y

) ◊ (NM
x

M
y

), respectively,
for our hypothetical system. In the Fourier domain, this translates into taking
every frequency component of - let’s say- each bin-MTF in Fig. 3.1 into account
in contrast to solely the zero-frequency value as for pixel-based weighting. We de-
note this type of weighting scheme frequency-based weighting, and show below that
it provides the upper limit on the frequency-based SDNR for spectral projection
imaging.

Theoretical framework

By writing the inverse discrete Fourier transform as a matrix multiplication [106],
we have

�ḡ = H≠1�˜̄g, (3.48)

and

K = H≠1K̃H≠1†
. (3.49)

In Eqs. (3.48) and (3.49), �˜̄g and K̃ are the discrete Fourier transforms (from now
on referred to as DFT) of �ḡ and K, respectively. Using the general Eq. (3.7), the
resulting vector of optimal frequency-based weights w will be of size 1 ◊ NM

x

M
y

.
Each entry in the 1 ◊ NM

u

M
v

vector of optimal weights w̃, equal to the DFT of
w, is denoted w̃

ipk

. The 1 ◊ N sub-vector w̃ (p, k) of w̃ is equal to

w̃ (p, k) = (w̃
1pk

, ..., w̃
Npk

)T

. (3.50)

For compactness, we drop the index m for covariance matrices and K is simply
put equal to K0 + K1. For a wide-sense stationary random system, K̃ is block-
diagonal. Each N ◊N diagonal entry diagonal entry K̃ (p, k) of K̃ is built up of the
DFT of the covariance of bin image i and j at fixed spatial frequency coordinate
indices p and k, and

w̃ (p, k) = K̃ (p, k)≠1 �˜̄g (p, k) . (3.51)

The upper limit on the (squared) SDNR, i.e. Hotelling SDNR or detectability index
dÕ, is then equal to

dÕ2 = �˜̄g†K̃
≠1�˜̄g =

ÿ

p

ÿ

k

�˜̄g (p, k)†
K̃ (p, k)≠1 �˜̄g (p, k) . (3.52)
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By using the weights derived in Eq. (3.51), a scalar-valued image f whose DFT is
f̃ with elements f̃

pk

, can be formed:

f̃
pk

= w̃ (p, k)† ˜̄g1 (p, k) =
1

K̃ (p, k)≠1 �˜̄g (p, k)
2† ˜̄g1 (p, k) =

�˜̄g (p, k)†
K̃ (p, k)≠1 ˜̄g1 (p, k) , (3.53)

where the last step follows from K̃ (p, k)≠1 being Hermitian. �f̃
pk

is then equal to

�f̃
pk

= w̃ (p, k)† ˜̄g1 (p, k) ≠ w̃ (p, k)† ˜̄g0 (p, k) =
�˜̄g (p, k)†

K̃ (p, k)≠1 �˜̄g (p, k) . (3.54)

The elements K
˜

f

(pk,p

Õ
k

Õ
)

of the covariance matrix K
˜

f for f̃ are given by

K f̃
(pk,pÕkÕ) =

+!
f̃pk ≠ Èf̃pkÍ

"!
f̃pÕkÕ ≠ Èf̃pÕkÕ Í

"†,
=

;
�˜̄g (p, k)†

˜K (p, k)≠1 �˜̄g (p, k) , if (p, k) = (pÕ, kÕ)
0, otherwise.

(3.55)

The (squared) detectability index is then equal to

dÕ
˜f
2 = �f̃†K

˜

f

≠1

�f̃ =
ÿ

p

ÿ

k

�˜̄g (p, k)†
K̃ (p, k)≠1 �˜̄g (p, k) , (3.56)

which is identical to the Hotelling-SDNR derived in Eq. (3.52).
Since

f̃
pk

= w̃ (p, k)† ˜̄g1 (p, k) =
Nÿ

i

w̃†
ipk

˜̄g1

ipk

, (3.57)

we may by introducing the notation w̃
i

and ˜̄g1

i

for the M
u

◊ M
v

images with pixel
values w̃

ipk

and ˜̄g1

ipk

where p = 1, ..., M
u

and k = 1, ..., M
v

, respectively, write the
image f̃ with pixel values f̃

pk

from Eq. (3.57), as the element-wise multiplication
of ¯̃w

i

(here the overbar represents the complex conjugate of w̃
i

and not the mean)
and ˜̄g1

i

:

f̃ =
Nÿ

i

¯̃w
i

˜̄g1

i

. (3.58)

By taking the inverse DFT of Eq. (3.58), we obtain the optimally weighted image
f in the spatial domain:

f =
Nÿ

i

H≠1 ¯̃w
i

ú H≠1 ˜̄g1

i

, (3.59)
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where ú is the convolution operator. Frequency-based weighting is thus equal to
summing filtered bin images in the spatial domain, and the optimal frequency-based
weights that maximize the detectability index are given by Eq. (3.51).

Application to spectral projection imaging

By using a simplified model first developed in [100], the proposed method of using
optimal frequency-based weights (superscript of) has been evaluated for a pulse
height discriminating silicon detector with five energy thresholds and 1 ◊ 1 mm2

large detector elements [83]. The quotient of the detectability index dÕof, calcu-
lated using Eq. (3.56) with optimal frequency-based weights, denoted w̃of, and the
detectability index dÕpb calculated with pixel-based weights, denoted w̃pb, is eval-
uated for 13 di�erent sizes of cylindrical task functions, ranging from 0.05 mm to
20 mm in radius and shown in Fig. 3.2 as a function of object radius. A 28%
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′o
f /
d
′p
b

Figure 3.2: dÕof and dÕpb are the resulting detectability indices when applying opti-
mal frequency-based weights (superscript of) and conventional pixel-based weights
(superscript pb) , respectively, to the model system. Figure shows the quotient of
dÕof and dÕpb as a function of object radius (mm).

increase in detectability index is found for high frequency objects when applying
optimal frequency-dependent weights instead of pixel-based weights. Although the
weights derived are optimized for projection spectral imaging, weights optimal for
reconstructed CT images and projection images have been shown to result in similar
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SDNR under realistic noise assumptions. However, the former approach is favorable
for suppressing beam hardening artifacts [50,107].

3.3 Material basis decomposition

Spectral CT opens up for the method of material basis decomposition originally
proposed by Alvarez and Macovski [51] and Macovski et. al. [108]. The physical
basis of this method is that in the clinically relevant diagnostic energy range (e.g.
between 30 to 140 keV), there are two main mechanisms of the interaction of X-
rays with matter: Compton scattering (subscript Co) and photoelectric absorption
(subscript ph). Since these two interactions has its own functional dependence on
energy, the linear attenuation coe�cient µ(x̨; E) of an object can be decomposed
using two basis functions in the absence of K-edge discontinuities. These basis
functions can be chosen as to either describe the energy dependence of Compton
scattering (subscript Co) and the photoelectric e�ect (subscript ph), or as the mass
attenuation coe�cients (µ/Í) (E) of two materials with a large di�erence in atomic
number Z [109]:

µ(x̨; E) = Í
Co

(x̨)
3

µ

Í

4

Co

(E) + Í
ph

(x̨)
3

µ

Í

4

ph

(E), (3.60)

where Í(x̨) is the local density (g/cm3). The expression in Eq. (3.60) was later
adapted to allow for components exhibiting a clear K-edge (e.g. iodine or gadolin-
ium) [109] by expanding Eq. (3.60) with one additional basis function Í

k

(x̨)
1

µ

Í

2

k

(E)
capturing the sudden jump in linear attenuation due to the K-edge.

In CT, the line integral of the linear attenuation coe�cient µ (x̨; E) (cm≠1) is
determined at each angular position and detector element (del):

s
µ(x̨; E)ds =

q
–

”
–

1
µ

Í

2

–

(E), for – œ {Co, ph, k}.

Above, ”
–

=
s

Í
–

(x̨)ds is the area density (g/cm2) and (µ/Í)
–

(E) equal to
the mass attenuation coe�cient. This allows for decomposition of the projection
images in three (or more) basis images.

Material basis decomposition using dual energy CT

Common for the dual energy technologies is that only two spectrally independent
measurements are provided. Since an accurate material basis decomposition of an
object containing a contrast agent with a K-edge requires at least three spectrally
distinct X-ray measurements per projection [111], some type of prior assumption
about the imaging objects attenuating characteristics must be made in order to
estimate the density map using dual energy CT.
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One of two methods frequently suggested for quantification of iodine [23, 112]
using dual energy CT is to approximate all body materials with water and perform
a material basis decomposition in the projection space [109]. The second method
is based on assigning each reconstructed voxel a ratio of soft tissue and fat. Since a
small addition of K-edge contrast agent to both soft tissue and fat and any mixture
of those two materials leads to a similar and measurable enhancement vector [53],
the amount of contrast agent can be estimated from a dual energy measurement
by plotting the low (›

1

) and high (›
2

) measured CT-values in a HU-diagram. This
method uses two body material data points defined as in Eq. (2.6), › f

j

and › t

j

for
j = 1, 2, corresponding to fat (denoted by f) and soft tissue (denoted by t) with
densities equal to Í

f

and Í
t

, respectively.
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Figure 3.3: Figure illustrating the method of estimating the amount of contrast
agent (superscript c) present in a voxel consisting of soft tissue (superscript t) and
fat (superscript f) using dual energy CT. By plotting the low (› c

1

) and high (› c

2

)
measured CT-values in a HU-diagram where the line y = kx+m describes CT values
for any mixture of soft tissue and fat, the contrast agent density (proportional to
the arc length l) can be calculated using the enhancement function y = f(x).

By drawing a line between the points (x, y)=
!
› f

1

, › f

2

"
and (xÕ, yÕ)=(› t

1

, › t

2

) as
illustrated in Fig. 3.3, the high energy CT-value ›

2

of any mixture of soft tissue
and fat without the presence of a K-edge material can be written as ›

2

= k›
1

+ m,
where ›

1

is the low energy CT-value,

k = › t

2

≠ › f

2

› t

1

≠ › f

1

, (3.61)
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and
m = › f

2

≠ k› f

1

. (3.62)
If the attenuating object contains some amount of contrast agent (denoted by c),
the high and low energy measurements › c

2

and › c

1

will no longer be located along
the line y = kx + m. By successively adding a small amount of contrast agent to
a mixture of fat and soft tissue, the enhancement function y = f(x) at every point
along the line y = kx + m and a function g(l), where an arc length l corresponds
to a contrast agent density Í

c

, can be calculated.

Material basis decomposition using a photon counting multiple-bin
detector

While dual energy integrating CT is based on performing two spectrally distinct
measurements for each exposure, multiple-bin photon counting systems measure
the energy of each photon using a single spectrum and a number of energy bins.
For a photon counting detector with N bins, the registered counts in each bin B

i

,
denoted m

i

(xÕ) where i = 1, ..., N , is used to determine the line integrals ”
–

by
solving the system of integral equations for ”

–

:

m
i

(xÕ) = I
0

(xÕ)
s

�

�(E)D(E)S
i

(E)e≠
q

m

–=1
”

–

( µ

Í

)
–

(E), i = 1,..., N .

Above, I
0

(xÕ) is the total number of photons impinging on the area of the object
projected onto the detector element at xÕ during the projection image acquisition
time. We define a bin function S

i

(E) according to the notation in [66] using the
Heaviside step function ‰(x), being 1 for x Ø 0 and zero otherwise:

S
i

(E) = ‰(E ≠ T
i

) ≠ ‰(E ≠ T
i+1

). (3.63)

In Eq. (3.63), T
i

for i = 1, ..., N are the energy thresholds such that events with
energy E are placed in bin B

i

if T
i

Æ E < T
i+1

. D(E) is the detection e�ciency
of the detector and �(E) the X-ray spectrum on the target designed such that the
fraction of X-rays with energy in the interval (E, E + dE) is given by �(E)dE. As
long as the number of bins is larger than two, an unbiased estimation of the amount
of contrast agent in any object can be made using a material basis decomposition
method either in image space [113–116] or in projection space [55,65,109], requiring
knowledge of the incident spectrum, or alternatively by using a calibration phantom
as suggested in the work by Alvarez [110].

3.3.1 Quantification of material basis decomposition accuracy
Mean square error

An unbiased estimator is an estimator that on average will yield the true value of
the unknown parameter ◊ [117]:

E(◊̂) = ◊ a < ◊ < b, (3.64)
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where (a, b) denotes the range of possible values of ◊, and E denotes the expectation
value. The bias of the estimator of ◊, denoted bias

ˆ

◊

, is defined as:

bias
ˆ

◊

= E(◊̂) ≠ ◊. (3.65)

A figure of merit that takes into account both of the variance and the bias
defined above is the mean square error (MSE):

MSE
ˆ

◊

= E[(◊̂ ≠ ◊)2]. (3.66)

The MSE measures the di�erence between the estimator and what is estimated. It
can be rewritten as

MSE
ˆ

◊

= E
Ë1

◊̂ ≠ ◊
2

2

È
=

1
E[◊̂2] ≠ E[◊̂]2

2
+

1
E[◊̂] ≠ ◊

2
2

= ‡
ˆ

◊

2 + bias
ˆ

◊

2, (3.67)

where ‡
ˆ

◊

2 is the variance of the estimator. For an unbiased estimator, the MSE is
equal to the variance.

Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) expresses a lower bound on the variance
of any unbiased estimator [117]. Since no unbiased estimator can be found that
yields a lower variance, it provides an e�cient benchmark against di�erent unbiased
estimators can be compared [111,117]. For the unbiased estimate ◊̂ of a parameter
vector ◊ = [◊

1

◊
2

...◊
p

]T , the lowest variance ‡2

ˆ

◊

i

of the estimate of parameter ◊
i

, is
equal to element [i, i] of the inverse of the so called Fischer matrix I(◊):

‡2

ˆ

◊

i

Ø [I≠1(◊)]
ii

, (3.68)

where
[I≠1(◊)]

ij

= ≠E
Ëˆ2 ln p(x; ◊)

ˆ◊
j

ˆ◊
j

È
(3.69)

for i = 1, 2, ..., p and j = 1, 2, ..., p where p(x; ◊) is the probability density function
of the data.

Comparison between material basis decomposition performed using
dual energy CT and a photon counting multiple-bin detector

For any K-edge material basis decomposition method using dual energy CT, the
quantification of contrast agent will be unbiased for objects corresponding to the
prior assumption (e.g. of being composed of solely water and iodine, or a mixture
of soft tissue, fat and contrast agent), and a lowest variance for such an estimation
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can be calculated using the CRLB [117–119]. For any object not satisfying the
condition, the estimation of contrast agent content will be biased.

Wang and Pelc [118] simulated an optimized dual energy CT system and esti-
mated the minimum variance of contrast agent estimation using the CRLB for an
object consisting of water and iodine. The result was compared to the minimum
variance using a photon counting multiple-bin detector with optimized settings,
taking into account a limited energy resolution, pileup and spectrum tailing. The
results indicated that the performance of a typical photon counting detector could
be compared to using an optimized dual kV system. Following the work of Wang
and Pelc [118], Bornefalk and Persson [119] compared the theoretical limits of io-
dine quantification for ideal dual energy and multi-bin systems using a common
input spectrum for both technologies. In that work, the CRLB was used to assess
the standard deviations of unbiased iodine content estimations where both systems
were allowed to make prior correct assumptions about the densities of the two
composing materials soft tissue and fat.

A patient being imaged however rarely consists of solely water and contrast
agent, or for that matter soft tissue, fat and contrast agent. When comparing an
actual proposed and implemented method of contrast agent quantification using
dual energy CT to the performance of a photon counting multiple-bin detector, the
inherent risk of model specification error using dual energy CT should be taken into
account. Since it is not possible to have complete knowledge about the elemental
composition of a voxel by forehand, such a risk is always present. One clinical
example of this is the presence of plaque in a blood vessel, another a piece of bone
filling up a certain portion of the voxel. By using the MSE (which includes the
bias and not solely the variance) as a figure of merit, the uncertainty accompanying
making prior, possibly false, assumptions about the object can be quantified.

In Fig. 3.4a, an example of the square root of the MSE in contrast agent quan-
tification using an optimized dual energy system (superscript dual) subject to dose
and power constraints is shown for a voxel consisting of soft tissue, fat and iodine
(subscript I). The method of contrast agent content estimation based on assigning
each reconstructed voxel a ratio of soft tissue and fat, described in Sec. 3.3, was
applied and the square root of the MSE estimated using propagation of errors. In
the same figure, the square root of the MSE in contrast agent quantification cal-
culated using the CRLB for the same object using an optimized photon counting
multiple-bin silicon detector (superscript pc), also subject to dose and power con-
straints, is shown. For both systems, the detector element sizes are 1 ◊ 1 mm2. As
can be seen, the square root of the MSE for an object consisting of only soft tissue,
fat and contrast agent (corresponding to the prior assumptions which means that
the bias is zero for the dual energy system) results in a smaller square root of the
MSE using dual energy CT compared to using a multiple-bin detector.

In Fig. 3.4b, the square root of the MSE for the same systems are shown for
the contrast agent content estimation in a voxel consisting of soft tissue, fat, iodine
and a 2.2% voxel volume fraction of bone. By adding a small amount of bone,
the square root of the MSE for small concentrations of contrast agent using the
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dual energy system is approximately twice as large as the square root of MSE
using a photon counting multiple-bin detector. The increase in MSE using a dual
energy system is due to the bias introduced by adding small amounts of a material
not included in the prior assumptions. The result indicate that using a spectrally
resolved detector where the number of energy bins is larger than two reduces the
risk of introducing a bias in contrast agent content estimation when performing a
material basis decomposition. This is something that cannot be neglected for a
dual energy CT system since it in reality is impossible to have complete knowledge
about the elemental composition of a voxel by forehand.
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Figure 3.4: Figs. 3.4a and 3.4b show the square root of the MSE of the contrast
agent content estimation using dual energy CT (superscript dual) and the square
root of the MSE of the unbiased contrast agent content estimation using a multi-
bin silicon detector (superscript pc), as a function of iodine content Í (mg/cm3),
respectively. The square root of the MSE is evaluated in percentage of iodine
(subscript I) content Í. In Fig. 3.4a, the object consists of soft tissue and fat. In
Fig. 3.4b, the object consist of soft tissue, fat and bone where the amount of bone
is specified by percentage of bone volume per total voxel volume, equal to 2.2%.





Chapter 4

Measurements of detector
performance

During the past few years, various methods of measuring DQE have been estab-
lished, making the comparison of DQE values di�cult. In 2003, the IEC62220-1
standard was introduced to standardize DQE measurements, including specifica-
tions for the measurement of the MTF and the NPS. While this standard addresses
radiography where the image is directly related to the detection performance, thus
excluding CT, it can still be useful to quantify the three-dimensional DQE [20] as
well as the two-dimensional projection DQE [120] for CT systems.

Below, methods of measuring the projection pre-sampling MTF and projection
NPS from single-view projection measurements are briefly reviewed. It should be
noted that measuring the three-dimensional MTF and NPS from reconstructed CT
images di�er from these procedures [20].

4.1 MTF

The line-spread function (lsf) describes the response of the system to a “line” delta
function, which for shift-invariant systems can be written as [72]

lsf(x) =
s Œ

≠Œ psf(x, y)dy
s Œ

≠Œ
s Œ

≠Œ psf(x, y)dydx
. (4.1)

The one-dimensional MTF is then equal to

MTF(u) = |F{lsf(x)}|. (4.2)

In practice, a digital systems over-scanned line spread function can be measured by
recording the response in a single detector element while moving a thin slit along the
direction in which the pre-sampling projection MTF is to be estimated [121, 122].

39
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Another alternative is to use an edge test device and measure the systems edge-
spread function from which the line-spread function can be calculated by di�eren-
tiation [122].

4.2 NPS

Measurements of the projection NPS can be performed by acquiring a large number
of uniformly exposed projection (i.e. single view) measurements. Ideally, a centre
region in the projections should be divided into smaller regions of interest (ROI)
I(x, y) of size N

x

◊ N
y

. For each ROI, a two-dimensional sample noise power
spectrum is calculated by the Fourier transform. Averaging of the individual spectra
then yields the two-dimensional digital noise spectrum (see e.g. [72,123]):

NPS
dig

(u, v) = a
x

a
y

N
x

N
y

E
Ó

|F {�I(x, y)}|2
Ô

, (4.3)

where �I(x, y) = I(x, y)≠E{I(x, y)}. In Eq. 4.3, a
x

and a
y

are the dimensions of the
detector element size in the x- and y-direction, respectively. The one-dimensional
NPS for a 2-dimensional process is calculated as
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and the NPS for a 1-dimensional process as

NPS
dig

(u) = a

N
E

Ó
|F {�I(x)}|2

Ô
. (4.5)

In Eq. (4.5), it is assumed that one-dimensional projection images I(x) of size 1◊N
are acquired and that the detector element size is a along the x-direction.

4.3 DQE of photon counting silicon detector

The Physics of Medical Imaging group at KTH is developing a photon counting
multiple-bin detector for clinical CT [28,124–126]. The detector is fabricated on a
high resistivity n-type silicon substrate and consists of wafers pointing back to the
radiation source in an edge-on geometry. Each silicon wafer is 0.5 mm thick in the
x-direction, and the depth of each wafer is approximately 30 mm to provide a high
detection e�ciency for high-energy X-rays in clinical CT applications. The active
area of each wafer extends 20 mm in the y-direction, and is segmented by means
of 50 rows of collection electrodes yielding a pitch of 0.4 mm. Consequently, the
detector pixel size is equal to 0.5 ◊ 0.4 mm2, and the number of slices per rotation
equal to 50. Each wafer is segmented along the direction of the incident X-ray
photons into 9 depth segments with exponentially increasing lengths to ensure a
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Figure 4.1: Basic layout of the detector. Photons impinge in the direction (0, 0, ≠1).
Panel (a) shows how the silicon wafers are stacked in two planes and how the
detector elements extends in the rotational (x-) direction, pointing back to the X-
ray source. Panel (b) is a collapsed view of the x, z-plane showing the spacing
between wafers, necessary for cooling and electronic circuitry, and also how the
lower level of detector wafers is o�set with one pixel width in the x-direction.

uniform count rate over all segments. As a result, the count rate in each detector
segment is reduced. Each depth segment has individual charge sensing channels
connected to an electronic readout channel in the application specific integrated
circuits (ASIC) bonded directly to the silicon substrate. Following an X-ray inter-
action in the detector, the ASIC amplifies and shapes the current pulse produced.
The pulse height (which is proportional to the amount of energy deposited) is then
counted by one of the eight energy bins formed by eight adjustable energy thresh-
olds. To absorb scattered radiation in the detector in the x-direction, each detector
wafer is backed with a thin foil (30 µm thick) consisting of a commercially available
tungsten-compound. To provide space for electronic circuits and enable cooling,
the detector modules are stacked in two layers as illustrated in Fig. 4.1. The tung-
sten sheats are extended by 2.5 cm pointing towards the source, thereby acting as
a 1-dimensional object scatter grid. The full CT detector consists of approximately
2000 number of wafers, adding up to a total detector length of roughly 80 cm.

In november 2104, four silicon wafers were successfully installed in a Philips iCT
gantry (Fig. 4.2), providing a 2 ◊ 20 mm2 large detector configuration composed
of 4◊50 detector elements. For this prototype, no tungsten shielding was included
and the source-to-detector and source-to-isocenter distances were equal to 1040 mm
and 570 mm, respectively.
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Figure 4.2: Part of Physics of Medical Imaging group at KTH in front of Philips
iCT gantry in which the first silicon wafers successfully were installed in november
2014.

4.3.1 MTF

Measurements of the 1-dimensional pre-sampling projection MTF in the y-direction,
sometimes referred to as the longitudinal MTF, for the wafers installed in the gantry
were performed by scanning a thin slit source of X-rays and taking the Fourier
transform. The narrow slit of X-rays was constructed by placing two 13 mm thick
rectangular blocks of tungsten 20 µm apart approximately 10 cm above the detector
surface. The slit was aligned along the x-direction and could be moved along the
y-direction with small steps using a linear stage. The tube peak voltage was equal
to 80 kVp and the spectrum was filtered with 5 mm of aluminum. The response
in a single detector element was recorded while the slit was moved with a step size
equal to approximately 10 µm at the detector plane, providing the over-scanned
line-spread function in the y-direction from which the pre-sampling projection MTF
was calculated by taking the Fourier transform. At the time of measurement, depth
segment nine was corrupted by an unknown noise source later identified as electronic
noise originating from surrounding components transferred via a connecting wire.
For the calculation of the MTF, segment nine was subsequently not used, and the
lowest threshold was put quite high (approximately 16 keV) to remain above the
noise floor.

The MTF resulting from measurements was compared to previously performed
Monte Carlo simulations of the pre-sampling projection MTF [127]. In the simula-
tion, a 6.5 cm long (in the x-direction) times 2 cm wide (in the y-direction) detector
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was modeled and the interaction locations of 106 number of photons impinging uni-
formly onto the center detector element were recorded, together with the deposited
energies. The primary energies were drawn from a simulated spectrum [46] with a
peak voltage of 80 kVp, filtered with 3 mm of aluminum and 0.1 mm of copper using
linear attenuation coe�cients from [43]. In the simulations, a 30 µm thick tungsten
shielding was modeled, covering the backside of each wafer. Charge sharing was
not included in the simulation model and the energy bins were equidistantly placed
with the lowest energy threshold at 5 keV.

The measured over-scanned line-spread function and resulting pre-sampling pro-
jection MTF are shown in Figs. 4.3a and 4.3b, together with the pre-sampling
projection MTF generated from simulations. For both the measurement and simu-
lation, photon counting weights were applied. Note that the spatial frequency axis
of the MTF is referenced to the isocenter of the CT scanner. To reference it to the
detector plane it should be scaled by 570 mm/1040 mm.

4.3.2 NPS
10 000 uniformly exposed projection images with a frame rate of 5 000 frames per
second (fps) were acquired. For the measurements, a 30 cm thick water phan-
tom was placed between the X-ray source and prototype detector. At the time of
measurement, only one silicon wafer was accessible for recording and transmitting
signal. The output data was therefor 1-dimensional of size 1 ◊ 50, correspond-
ing to 50 detector elements in the y-direction. To estimate the projection NPS,
the formula in Eq. (4.5) for calculating the 1-dimensional NPS from 1-dimensional
data was subsequently applied even though the prototype detector in practice is
2-dimensional. The tube peak voltage was equal to 80 kVp filtered with 5 mm
of aluminum and the tube current was equal to 500 mA. As for the MTF mea-
surements, depth segment nine was corrupted by an (at the time) unknown noise
source and subsequently not used. The energy bins were equidistantly placed with
the lowest energy threshold at approximately 16 keV.

4.3.3 DQE
The 1-dimensional projection DQE using photon-counting weights (i.e. weighing all
bins identically) was calculated according to Eq. (3.34) using the 1-dimensional pre-
sampling OTF and the 1-dimensional projection NPS in the y-direction acquired
from measurements in the gantry:

DQE(u) =

---
q

N

i

w
i

N iOTF
i

(u)
---
2

NPS (u)
q

N

i

q i
. (4.6)

In Eq. (4.6), N i is equal to the average number of detected photons in bin i . The
input number of counts per detector element,

q
N

i

q i, was estimated by measuring
the air kerma rate (mGy/mAs) using an ionization chamber (Unfors Instruments
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(b) MTF resulting from measurements and simulations.

AB, Billdal, Sweden). A simulated spectrum [46] was used in combination with data
from the work of J. Boone and J. Seibert [128] for the translation from mGy/mAs
to photon fluence (photons/mm2 · s).

The 1-dimensional projection DQE resulting from measurements was compared
to the 1-dimensional projection DQE estimated using previous Monte Carlo simu-
lations of the detector [127]. To estimate the projection NPS, 200 projection image
matrices of size 50◊80 were generated using a simulated spectrum [46] with a peak
voltage of 80 kVp filtered with 3 mm of aluminum and 0.1 mm of copper [43]. The
2-dimensional projection NPS was calculated according to Eq. (4.3), from which the
1-dimensional projection NPS was computed using Eq. (3.24). In the simulations,
a 30 µm thick tungsten shielding was modeled, covering the backside of each wafer.
Charge sharing was not included in the simulation model and the lowest of the eight
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equidistantly placed energy bins was equal to 5 keV. Next, the one-dimensional pro-
jection DQE from simulation was estimated according to Eq. (3.34), using the OTF
acquired from simulations as described above in Sec. 4.3.1.

The results of the measurements are presented in Fig. 4.4, together with the
projection DQE estimated from simulations of the detector at identical kVp settings
using photon counting weights. The spatial frequency axis of the DQE is referenced
to the the isocenter of the CT scanner.
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Figure 4.4: Measured and simulated projection DQE in y-direction.

4.3.4 Electronic noise
Two distinct types of image noise that limit the detectability and interfere with the
interpretation of a CT image [129] are statistical and electronic noise. The source
of statistical noise is the fluctuations inherent in the detection of a finite number
of X-ray quanta, commonly denoted quantum noise. It represents a fundamental
limitation in the X-ray imaging process and can only be reduced by increasing
the detected number of quanta. This can be done by developing more e�cient
detectors, or by increasing the transmitted dose (e.g. mAs). Electronic noise is the
random fluctuations in electrical signals that comes from electronic components in
the X-ray detection system [130]. Since conventional CT detectors integrate the
total electrical current, charges resulting from both X-ray detection and electronic
noise are summed. For such detectors, measurements free from contribution of
electronic noise is not possible to obtain since the two types of events can not be
separated.

For a regular CT scan, the measurement noise is dominated by quantum noise
rather than electronic noise. At low dose settings however, the electronic noise
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may become a dominant factor limiting the image quality. This e�ect is illus-
trated in the work by Luhta et al. [131], who measured the projection DQE for an
energy integrating detector as a function of dose. The results demonstrate a zero-
frequency DQE that is constant and equal to approximately 0.75 for dose rates
ranging between 200 mR/s and 2.2 mR/s. When decreasing the dose rate to 0.28
mR/s however, the zero-frequency DQE drop to 0.4. A dose rate equal to 0.028
mR/s, results in a zero-frequency DQE equal to 0.1, implying that the electronic
noise is the principal source of noise. Using pulse height discriminating photon
counting detectors, proper settings of the low energy threshold can e�ectively re-
ject electronic noise. This opens up for low-dose imaging, important especially for
pediatric imaging tasks.

Measurement of projection DQE as a function of dose

The 1-dimensional projection NPS was calculated from measurements using a single
silicon wafer installed in a table-top-setup. For calculations of the NPS, 10 000
frames were acquired for a frame rate of 31250 fps at seven di�erent exposures
(i.e. mA) ranging from 0.5 to 5 mA and a tube voltage equal to 80 keV. The
spectrum was filtered with 4 mm of aluminum. The resulting zero-frequency DQE
is presented in Fig. 4.5. For these measurements, the lowest threshold was put
at approximately 10 keV and the following energy bins equidistantly placed. The
input number of counts q per detector element was estimated by measuring the
air kerma rate (mGy/mAs) using an ionization chamber (Unfors Instruments AB,
Billdal, Sweden). As described in Sec. 4.3.3, a simulated spectrum [46] was used
in combination with data from the work of J. Boone and J. Seibert [128] for the
translation from mGy/mAs to photon fluence (photons/mm2 · s). As can be seen
in Fig. 4.5, the DQE at zero frequency is approximately constant, implying that
the electronic noise is negligible down to 16 µAs.
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Summary of the appended papers

5.1 Paper A: Performance evaluation of a sub-millimeter
spectrally resolved CT system on high- and
low-frequency imaging tasks: a simulation

Paper A is co-authored with Mats Danielsson and Hans Bornefalk and is published
in Physics in Medicine and Biology, Vol. 57, No. 8, pp. 2373-2391, 2012.

The purpose of Paper A is to incorporate the spatial frequency dependence of
signal and noise when comparing the performance of a proposed photon counting
detector to an energy integrating system. This is done by reconstructing the 3D
MTF and NPS of a silicon strip detector with 0.5◊0.4 mm2 large detector elements
using cascaded system analysis. The reconstructed noise and signal characteristics
are compared with a reconstructed 3D MTF and NPS of an ideal energy-integrating
detector system with unity detection e�ciency, no scatter or charge sharing inside
the detector, unity pre-sampling MTF and 1 ◊ 1 mm2 detector elements.

The dose-normalized detectability index dÕ is calculated for four di�erent imag-
ing tasks. Results indicate that for imaging of high-frequency objects, dÕ using
the proposed silicon detector is 110-130% of the detectability index obtained using
an ideal energy-integrating system. For low-frequency objects, the improvement
in the reconstruction of the linear attenuation coe�cients using projection-based
weighting in combination with the smaller detector element size results in a dose-
normalized detectability index of the silicon detector that is 105-110% of an ideal
energy-integrating system.

5.2 Paper B: Eliminated risk of iodine contrast cancellation
with multibin spectral CT

Paper B is co-authored with Mats Persson, Joakim Crafoord, Mats Danielsson and
Hans Bornefalk and is published in Physics in Medicine and Biology, Vol. 58, No.
14, pp. 201-209, 2013.
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In this paper, the extent of contrast cancellation induced by iodinated contrast
agents in energy integrating and photon counting multiple-bin CT images is con-
sidered. The contrast-to-noise ratio of a hypodense tumor filled with successively
increasing amount of iodine against a homogenous background composed of liver
tissue is modeled for the two systems for a range of iodine concentrations and tube
voltages. For the energy integrating systems, the contrast between the target and
the background vanishes for iodine concentrations around 2–6 mg I/ml, dependent
on tube voltage. Although the contrast-to-noise ratio for each tube voltage has a
minimum for a certain iodine concentration, this e�ect is absent for the multiple-
bin systems due to the capability to utilize any local di�erence in the attenuation
coe�cients to generate contrast in the final image by means of energy weighting.

5.3 Paper C: Theoretical comparison of a dual energy
system and photon counting silicon detector used for
material quantification in spectral CT

Paper C is co-authored with Mats Danielsson and Hans Bornefalk and is published
in IEEE Transaction on Medical Imaging, Vol. 34, No. 3, pp. 796-806, 2014.

In this paper, a frequently suggested method for material basis decomposition
using dual energy CT, based on assigning each reconstructed image voxel a ratio of
fat and soft tissue with fixed densities, is evaluated. The purpose is to compare the
ability of a dual energy CT system to estimate the amount of iodine and gadolinium
that are present in an object to that of a photon counting multiple-bin silicon
detector. For both systems, the tube voltages, filtrations and currents are optimized
subject to dose and power constraints.

The results of this work suggest that when only two materials with known
densities are present in the enhancing voxel, the noise levels of the unbiased iodine
and gadolinium content estimations using the silicon detector are higher than the
noise levels of the unbiased iodine and gadolinium content estimations using a dual
energy system. However, using a spectrally resolved detector where the number of
energy bins is larger than two reduces the risk of introducing a bias in contrast agent
content estimation when performing a material basis decomposition, something that
cannot be neglected for a dual energy CT system since it in reality is impossible to
have complete knowledge about the elemental composition of a voxel by forehand.

5.4 Paper D: Optimal frequency-based weighting for
spectral X-ray projection imaging

Paper D is co-authored with Mats Persson and Hans Bornefalk and is published in
IEEE Transaction on Medical Imaging, 34(3), pp. 779 - 787, 2014.

In paper D, a novel frequency-based weighting scheme which provides the upper
limit on the frequency-based SDNR (detectability index dÕ) for spectral projection
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imaging is presented. In comparison to pixel-based weighting, the method allows for
taking into account each frequency component in a certain bin and is particularly
beneficial for systems with complex correlation structures.

The frequency-based signal and noise for a spectrally resolved photon counting
detector with N bins acquiring two-dimensional projection bin images are defined.
Optimal frequency-based weights are calculated and it is shown that frequency-
based weighting is equal to summing filtered bin images in the spatial domain.
The detectability indices for 13 di�erent sizes of cylindrical task functions with
radius ranging from 0.05 mm to 20 mm are calculated using optimal frequency-
based weights and compared to the detectability indices obtained when applying
conventional pixel-based weights. The maximum gain achievable using frequency-
based weights is equal to 1.28 for the smallest radius and drops towards 1 for the
largest radius.

5.5 Contribution by co-authors

For papers A, B and C, Hans Bornefalk and Mats Danielsson acted as advisors
and supervisors of the work. The reconstructed CT image of a PMMA phantom
taken with a clinical energy integrating CT system at the Karolinska University
hospital in paper A was provided by Joakim Crafoord. Mats Persson contributed
with valuable discussions and suggestions for the research on which paper B and D
are based. For paper D, Hans Bornefalk acted as supervisor.
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