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Abstract

Condensed matter systems undergoing phase transitions rarely allow ex-
act solutions. The presence of disorder renders the situation is even worse but
collective Monte Carlo methods and parallel algorithms allow numerical de-
scriptions. This thesis considers classical phase transitions in disordered spin
systems in general and in effective models of superfluids with disorder and
novel interactions in particular. Quantum phase transitions are considered
via a quantum to classical mapping. Central questions are if the presence of
defects changes universal properties and what qualitative implications follow
for experiments. Common to the cases considered is that the disorder maps
out correlated structures. All results are obtained using large-scale Monte
Carlo simulations of effective models capturing the relevant degrees of free-
dom at the transition.

Considering a model system for superflow aided by a defect network, we
find that the onset properties are significantly altered compared to the A-
transition in “He. This has qualitative implications on expected experimental
signatures in a defect supersolid scenario.

For the Bose glass to superfluid quantum phase transition in 2D we de-
termine the quantum correlation time by an anisotropic finite size scaling
approach. Without a priori assumptions on critical parameters, we find the
critical exponent z = 1.8 4+ 0.05 contradicting the long standing result z = d.

Using a 3D effective model for multi-band type-1.5 superconductors we
find that these systems possibly feature a strong first order vortex-driven
phase transition. Despite its short-range nature details of the interaction are
shown to play an important role.

Phase transitions in disordered spin models exposed to correlated defect
structures obtained via rapid quenches of critical loop and spin models are
investigated. On long length scales the correlations are shown to decay alge-
braically. The decay exponents are expressed through known critical expo-
nents of the disorder generating models. For cases where the disorder corre-
lations imply the existence of a new long-range-disorder fixed point we deter-
mine the critical exponents of the disordered systems via finite size scaling
methods of Monte Carlo data and find good agreement with theoretical ex-
pectations.
keywords: condensed matter physics, phase transitions, critical phenomena,
spin models, quantum phase transitions, quantum fluids, superfluidity, su-
perconductivity, disordered systems, Bose glass, dirty bosons, vortex pinning,
statistical mechanics, Monte Carlo simulation, Wolff algorithm, classical worm
algorithm, Wang-Landau algorithm






Preface

The work for this thesis has been performed at the department of theoretical physics
at the Royal Institute of Technology (KTH) in Stockholm. It is divided into an
introductory background part and a second part featuring the scientific articles that
I contributed to.

Sammanfattning

Denna avhandling studerar fastvergangar i kondenserad materia med hjilp av
storskaliga datorsimuleringar. Speciellt underséks modeller fér klassiska spinnsys-
tem och deras tillampning pa kvantvatskor. Vi definerar och anvénder effektiva
modeller for exotiska system sésom supersolida faser, supervétskor och aven for
kvantfasoverganger mellan isolerande faser och supervétskefaser. De kritiska egen-
skaperna hos dessa system bestdms sedan genom moderna berdkningsmetoder i
form av kollektiva Monte Carlo metoder. Kvalitativa implikationer foér experi-
mentellt métbara kvantiteter ges. En central fragestéllning dr hur korrelationerna
i oordnade system paverkar de universella egenskaperna hos fasévergangen och
pa vilket sétt korrelationer med lang rackvidd kan genereras. Vi betraktar dven
hur dndringar i véxelverkan i ett system av vortexlinjer paverkar fasévergangens
ordning. Resultaten presenteras i fem vetenskapliga artiklar.

Artikel I syftar pa att kvalitativt forklara signaturer som observerats i experi-
ment pa fast He som ursprungligen tolkades som en &vergang till ett nytt superfast
tillstand. Vi visar att om supervéitskan bara transporteras pa ett sammanhéngande
nitverk av defekter s kommer de vintade singulariteter som upptréder i super-
viitskedvergangen i flytande *He att blir utslitade i det oordnade systemet.

I artikel IT definieras en skalningskvantitet som tillater bestdmning av den dy-
namiska kritiska exponenten z i en exotisk kvantfasévergang mellan en isolerande
Bose-glasfas och en supervérskefas genom en anisotrop skalningsansats. Utan a
priori antaganden om kritiska parametrar finner vi z = 1.8 & 0.05 vilket tyder pa
att den teoretiska forutsigelsen z = d inte géller.

Artikel ITI introducerar en effektiv modell f6r flerkomponents typ-1.5 supraledare.
I gransen dar interaktionen mellan vortexlinjerna &r icke-monoton, dvs attraktiv
pa medellanga langdskalor och repulsiv pa korta ldngdskalor, finner vi att modellen
kan ha en stark diskontinuerlig fasévergang som drivs av vortexfluktuationer. Detta



resultat kan inte uppnés i en vanlig enkomponents Ginzburg-Landau-modell med
stabila vortex excitationer. Dessa genomgar kontinuerliga 6vergangar. Detaljer i
vixelverkan verkar vara viktiga trots att denna &r exponentiellt skirmad pa langa
avstand.

Artikel TV och V behandlar fasovergangar i oordnade klassiska spinnmodeller
dér korrelerade defektstrukturer erhalls genom mappning av jamnviktskonfigura-
tioner av kritiska loop- och spinnmodeller. Vi visar att defektkorrelationerna pa
langa langdskalor avtar som ett potenslag och hérleder uttryck for korrelation-
sexponenten i termer av de kinda kritiska exponenter som beskriver de loop och
spinnmodeller som har anvénts for att skapa oordningen. I de fall dér vi finner
att oordningskorrelationerna avtar tillrackligt langsamt for att ge upphov till en ny
oordnad fixpunkt som inte beskrivs av kidnda exponenter for okorrelerad oordning
berdknar vi de kritiska exponenterna i det oordnade systemet via skalningsmetoder
av Monte Carlo data och finner att de Gverensestimmer med teoretiska forvint-
ningar.
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Background






Introduction

This thesis focuses on transitions between different states of matter. We all are
familiar with the three common states gas, liquid and solid which we encounter in
everyday life. The kitchen is a good place to spot them all. Who hasn’t found
himself staring at the boiling water in a pasta pot and the vapor emerging from
the surface. Opening the freezer one might encounter water in form of ice cubes
or with a bit of luck as a wonderfully symmetric snow flake stuck to the kitchen
window at a cold winter day. In all these cases one encounters a substance made
up of the same molecule HyO. So how can its properties vary so drastically?

In all these examples water is not an isolated system but embedded into a larger
environment. Changes in external variables like temperature and pressure cause a
substance to appear in different phases. This process of transformation is generally
referred to as a phase transition.

Since the advent of the atomistic theory we know that matter microscopically
consists of tiny building blocks called atoms. Most people are introduced to the
field of physics during their high school years and maybe mostly remember it as
the science subject where an attempt is made to describe the world using simple
mechanical laws to predict trajectories of well defined single objects. If one were
to microscopically describe all water molecules, consisting of two hydrogen and
one oxygen atom, by this approach one would face a task of truly astronomical
difficulty. Even a small cup filled with 1/4-liter of water contains around 8.3x10%* =
8300000000000000000000000 interacting molecules which roughly is of the same
order of magnitude as the total number of stars expected to exist in the entire
universe [6]. Even if one could describe such a system by solving Newton’s laws of
motion, no one could make sense of such an amount of microscopic information, let
alone that the notion of temperature there is not defined.

To describe the macroscopic bulk properties of many-particle systems one there-
fore has to use the power of statistics. The aim is to describe the system by the
average behavior reflected in observable properties such as density, magnetization,
moment of inertia or conductivity under well defined external conditions. Can sta-
tistical calculations provide us with exact analytical answers? In principle, yes, but
in practice for almost all cases, no. Most systems are far to complex to be studied
analytically. The everyday business of a physicist therefore is to identify the im-
portant degrees of freedom expected to give rise to the properties of interest and



using symmetry arguments find a simplified effective model capturing the essential
features. But even for most simple models as soon as one introduces interactions,
again exact calculations are notoriously difficult. One thus has to apply numerical
methods which using the power of modern computers, smart Monte Carlo algo-
rithms and given enough time in principle can yield answers of arbitrary accuracy.
This basically is the approach used throughout this thesis.

Here the main focus is on phases appearing under less everyday conditions, at
much lower temperatures than the water example above, where the microscopic
particles follow laws that seem add odds with our everyday expectation. The game
changer there is quantum mechanics. As it turns out there are only two classes
of particles called fermions and bosons. At low temperatures the microscopic con-
stituents such as electrons and atoms even if one wanted to describe them all indi-
vidually cannot be considered as independent particles but are indistinguishable.

One prime example of a low temperature state is given by the so called Bose-
FEinstein condensate where all bosonic atoms behave as if they where one. Like a
perfectly drilled platoon, or north-korean gymnastics group. Another is found in
Helium-4 (“*He) where at 2.17 K one observes a superfluid phase allowing it to flow
with zero viscosity through tiny channels or creep up container walls. Other mate-
rials like Tin (Sn) that are rather lousy conductors at room temperature suddenly
become superconductors and can carry currents without dissipation.

This thesis aims at the theoretical description of the qualitative properties of
similar systems. The superfluid phase transition in *He for example exhibits the
same critical behavior as the planar classical ferromagnet-paramagnet transition.
This is remarkable as although the emergence of superfluidity entirely is of quantum
mechanical origin the essential features of the transition can be captured by a
classical system where all details of the *He interactions are reduced to classical
magnetic needles sitting on the vertices of a 3D-lattice, pointing in the zy-plane
and interacting only via their local magnetic moments. This usually is referred to
as the 3DXY model. The surprising fact that many apparently different systems
exhibit phase transitions that share similar characteristic properties lead to the
classification of phase transitions in universality classes an idea whose theoretical
origin was pioneered by Wilson [7]. Before, it had been empirically known that at
the critical point of CO2, Xe the density p behaves as piiquid/gas — Pe o< (' — Tc)ﬁ
close to the critical temperature T, on the liquid/gas side of the transition. The
exponents measured are 8 ~ 0.32—0.36 and suspiciously close to the values obtained
at the ferromagnetic paramagnetic transition in Fe, Ni and YFeOs [8, 9]. In fact
these cases are examples of the 3D Ising universality class where the magnetization

. . 0.3265(3)
per spin vanishes as m ~ |T — T¢| [10].

The spirit of identifying universality classes of simplified models is central for
this thesis. Emphasis is laid on general systems with random disorder and superflu-
ids. The research is presented in five scientific articles. Article [1] was motivated by
observations made in experiments on solid *He. These showed unexpected features
which were initially interpreted as a transition to a so far experimentally unob-



served superfluid-solid state, a supersolid. Simplified to a 3DXY model exposed to
defect networks as potentially present in *He yields that such experimental signa-
tures lacking the characteristic divergencies of the superfluid A-transition in fact
are compatible with a superfluid transition with correlated disorder. Article [2]
considers the exotic case of a quantum phase-transition for bosons living on a two
dimensional disordered substrate from a superfluid to an insulating Bose-glass state
absent without disorder. Occurring at experimentally inaccessible temperature 0
K in two dimensions this transition can theoretically be studied by means of finite-
size scaling in numerical simulations of 241 dimensional classical systems. We find
evidence that the relation z = d of the dynamic critical exponent believed to be
exact for disordered, dirty bosons is not obeyed.

The next paper [3] considers an effective model of a so called type-1.5 supercon-
ductor. This recently proposed state differs from ordinary superconductors which
usually are classified into two types depending on how they respond to an applied
magnetic field. Such a field can create vortex excitations that interact either at-
tractively or repulsively in type-1 and type-2 materials respectively. The type 1.5
regime can occur if several superconducting components are present and coupled.
Then composite vortices can be formed that under certain conditions interact via
a non-monotonic potential. Simulating a 3D effective model for such a system of
interacting vortex loops in zero applied field we find that in this limit the transition
between the superconducting and insulating state can be different from the expected
behavior of a single superconducting component with stable vortex excitations.

Articles [4] and [5] are devoted to the study of phase transitions in presence of
correlated defect structures. We pursue the idea that disorder is generated from
a substrate which rapidly was frozen from a critical point. Using our knowledge
about this critical point we find exact expressions for the decay exponent of the
disorder correlations. Our finite-size scaling analysis of Monte Carlo simulation
data confirms predictions about the expected correlation length critical exponent
to be found in disordered spin systems.

The remainder of this thesis is organized as follows. Chapter 1 introduces the
formalism in which critical phenomena are typically studied, motivates the origin
of universality and the mapping of quantum phase transitions in d-dimensional
quantum systems on (d + 1)-dimensional classical ones. It further presents the
most common classical spin models that are usually exploited to effectively model
much more complex systems sharing the same symmetry, the O(N) spin models.
Chapter 2 introduces the basic properties of superfluids and superconductors and
connects them to the theoretical framework of 1. Chapter 3 shows how superfluids
and type-2 superconductors can be mapped on models of interacting vortex lines
via a duality transformation. A similar mapping of the Ising systems used in [4] is
also presented. Chapter 4 introduces the dirty boson model studied in [2]. Chapter
5 introduces the Monte Carlo methods used in the articles. A summary of the
results obtained in each article is presented in chapter 6.






Chapter 1

Phase Transitions

This chapter introduces elementary theoretical concepts used to study phase tran-
sitions. Starting from a brief overview on the milestone concept of Landau theory
and its mean field treatment of second order phase transitions, reasons for its break-
down are discussed. This leads to the concept of the renormalization group and
finite-size scaling of critical phenomena. Further the mapping of a quantum phase
transition in d-dimensions on a classical phase transition in d + 1-dimensions is
discussed.

1.1 Mean field theory

At a phase transition upon varying some external set of parameters {g} such as
temperature T', pressure P, magnetic field H, a system appears in different phases
on either side of the transition. Cooling a magnet through the Curie temperature
the magnetization m becomes finite and points along a fixed direction. Usually the
Hamiltonian of a system is symmetric under the application of some transformation
group on its degrees of freedom eg. global inversion or rotation. Below the critical
temperature this symmetry is therefore reduced or broken. One of the oldest at-
tempts to theoretically study phase transitions is Landau theory [11]. Identifying
a symmetry in the underlying Hamiltonian of the system an order parameter field
U (7) is defined. First intended for continuous transition the general existence of a
Landau free energy functional £ [¥] specifying the phase by its absolute minimum
with respect to the order parameter field configuration ¥ was postulated. On gen-
eral grounds £ shall only reflect the symmetries of the system under consideration
and is assumed to be analytic in ¥ and {g}. The most simple and widely used
model for classical thermal phase transitions is the ¥*-functional

Jatretw ) ml = [ [e[9u @R sa @@l 3w e v r)
(1.1)
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where o (T) = ap (T — Temr) /Temr = oot changes from negative to positive upon
increasing the temperature through the MF transition temperature 7, vy and h is
an external ordering field coupling to ¥ (7). Although the form above originates
in the ferromagnetic models where ¥ () = m(r) can be thought of as the local
magnetization it is easily generalized to describe a large variety of phase transitions
in superfluids, superconductors and other systems.

1.2 Scaling phenomenology

Empirically at continuous transitions response quantities such as the specific heat
¢s or the order parameter susceptibility x as well as the onset of the order parameter
m scale as power laws in the distance to criticality ¢t = (T' — T¢.) /T.. Remarkably
the set of critical exponents «, 3,7, 9, v,n defined via

cs ~ [t (1.2)

W (r)] ~ (=1)° (1.3)
xw=5 o~ (1.4

W] ()] ~ [R]""° (1.5)

was found to agree for many systems without any obvious connection. Further the
two-point correlation function has the characteristic behavior

G (r) = (¥ (r) ¥ (r)) — (¥ (r){¥(r)) ~ 7,(1_%6’”5 (1.6)

where ¢ is the correlation length, » = | — r’| and (. ..) denotes ensemble averaging.
If it is finite then all correlations decay exponentially fast. At a continuous phase
transition ¢ is found to diverge as & ~ |t|”” 1. Then all correlations become long-
ranged and decay algebraically G (r) ~ r?=2+7 Similarly the correlation time 7
diverges as 7 ~ £ = [t|” %,

1.3 Mean field critical exponents
Does the Landau-functional Eq. (1.1) correctly predict these particular experimen-

tally verifiable features at the phase transition? The central quantity in statistical
mechanics is the partition function

- d?” ™ ™
Z 1 (r)] = trg gy {e# S VO RO (1.7)

LA notable exception is the Berezinskii-Kosterlitz-Thouless phase transition [12, 13] with an
essential divergence & ~ e*/VT—=Tc which means that log & ~ t=1/2 and effectively corresponds to
v R 00
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from which the free energy can be obtained via
F=-p"1log[Z] (1.8)

with 8 = 1/kgT. Under the assumption behind the postulate to identify Eq.
(1.1) as the free energy lies that fluctuations away from the homogenous solution
minimizing £ can be ignored. In zero field the order parameter then takes the
homogeneous value

ot 1/2
below Tc mr and ¥ = 0 above. The specific heat below T} pr becomes
o f adT
s = Ti = — 1.10
CTIATE T Ty, (1.10)
and zero above. It therefore jumps discontinuously by Ac = — bTiL?\/IF. The suscep-
tibility can be obtained via minimization of Eq. (1.1) w.r.t. ¥
h+ 2603 + 2Wat (1.11)
and differentiating with respect to h
ov 1 2a0t) tift >0
Oh|,_y 200t + 6bY (—dapt) "ift<0

At t = 0 Eq. (1.11) yields the order parameter field dependence on the critical
isotherm
W (t=0,h)~h'/3 (1.13)

Allowing the order parameter and external field to spatially vary the two pint
correlation function G (v, ") = (U (r) ¥ (7)) — (¥ (r) ¥ (r')) is obtained from the
partition function and can formally be related to the two-point-susceptibility and
the order parameter correlations via

0’F

—W :BG(T‘, 'I"l) (114)

x(r,r') =
Performing the analogous steps yielding to Egs. (1.11) and (1.12) under the re-
quirement of stationarity in Eq. (1.1) identifies G (7, r’) as the Green’s function

of
_ 1
(-V2+€2)G(r) = %w) (1.15)

where r = |r — 7’| and £ = (2agt + 6b¥?)/2c defines the MF correlation length

(L)m ift>0

Ozot

£= 1/2
() " ift<o

(1.16)
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assuming translational invariance. Via Eq. (1.15) G(r) obeys

e ifd=1

@r)y 2 (e DR Ky s re)ifdz2 D

2e6672HG (r/€) = {

where K, (r/€) are the modified spherical Bessel functions of the second kind with
asymptotic behavior

e\ /2
Ka(r/9)~ (52) e, rjg o0 (118)
K, (r/€) ~ <F(2”)) <27’€)_ /€0 (1.19)
Ko (r/&) ~—In[r/¢], r/&—0 (1.20)

Off criticality for d > 1 correlations considered on length scales r > £ vary as
B aA=d)/2 1 -7/
— 204d)/2 9¢f p(d—2)/2

r £B-d)/2 (1.21)

and thus decay exponentially. Approaching the MF transition temperature however
¢ diverges and an algebraic decay given by

1 T(%2) 1
(7,) - = ( 2 )
2cB 4md/2 pd=2

is found for d > 2. Identifying the corresponding exponents from the previous
section yields the mean field critical exponents

a=0, B=1/2, =1 §§=3, wv=1/2 75=0 (1.23)

(1.22)

1.4 First order transitions on mean field level

If the functional Eq. (1.1) is extended to include a cubic term e |\IJ|3 in the order
parameter then the optimal nontrivial uniform field configuration becomes

3e 3¢\ 2 agt
T(r)=-—==x4/[=] — = 1.24
r=-% (45) b (1.24)

under the condition that the argument of the square root is real ie. t < t* =
a% (%)2 > 0. Thus the transition occurs at a higher temperature than the expected
continuous mean field transition 7, > T.yr. Approaching the transition from
above the order parameter discontinuously jumps to from zero to a finite value
below T.. A classical example is found in the superconducting phase transition
in the so called type-I limit where the order parameter W is a complex scalar and
describes a charged condensate coupling to a gauge field. Integrating out the gauge
field fluctuations the final free energy functional yields a cubic term that exhibits

a first order transition [14].
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1.5 Breakdown of mean field theory

The implicit assumption of Landau theory is that the partition function can be
calculated by solely evaluating the functional at its optimal order parameter field
configuration. This however requires the probability distribution

P(F)=ePF (1.25)

where F' is the free energy, to be sharply peaked around the field configuration
minimizing £. The normalized fluctuations averaged over a correlation volume &¢
therefore have to be small. Landau theory itself predicts via Egs (1.9) and (1.12)

fgd der(T) _ X _ kp |t|d/2,2 (1 26)
Jeadir®(r)?  Benp?PF  4AcE] )

0% =

Self consistency 0% < 1 therefore implies the Ginzburg criterion

(4—d)/2 kp
t — 1.27
0 > (127)

where the right hand side defines the relative width of the critical region. Therefore
only if d > 4 can MF theory be self consistent. In the marginal case d = 4 it is
strictly not correct but this will only lead to logarithmic corrections [15, 16]. For
d < 4 it inevitably breaks down. Using the general scaling laws named in Sec. 1.2
and starting from the middle expression in Eq. (1.26) Eq. (1.27) can be rephrased
as

S 2Bty

v

d d, (1.28)

where the upper critical dimension d. marks the boundary above which MF theory
becomes self consistent.

1.6 Renormalization and scaling theory

Strong correlations invalidate the mean field approach. The seemingly innocent
scaling laws mentioned in Sec. 1.2 defining the correlation length critical exponent
v and the dynamic exponent z

€ ot (1.29)
7o oc £ o |t T (1.30)

imply that the system exhibits highly correlated fluctuations in space and time on
all possible scales. At t = 0 it looks the same under arbitrarily rescaling lengths
and thus becomes self-similar. Thereby apart from the spatial dimensionality, fun-
damental symmetries of the Hamiltonian and the range of interactions microscopic
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details are rendered unimportant [17]. This is at the heart of the fact that appar-
ently unrelated systems show the same scaling laws. The theoretical framework
to study phase transitions which lead to an understanding of the origins of scaling
and in principle allows to calculate universal quantities is called the renormalization
group (RG). Consider a generalization of the partition function of Eq. (1.7)

Z = trx {e_S[X]} (1.31)

where S is the Ginzburg-Landau-Wilson (GLW) action and X symbolically de-
notes the degrees of freedom. Examples for S are 8 [d%rL in Eq. (1.1) or the
rescaled Hamiltonian H = SH of a classical lattice-spin system to be introduced
in Sect. 1.11. Having specified the degrees of freedom X, the GLW action in
principle can be completely characterized by the set of couplings {g} such as
Be, Ba (T), Bb, Bh in Eq. (1.7) through which the X enter. Pioneered in the 1970’s
by Wilson, Fisher and Kadanoff [18, 19, 7] the RG approach basically embodies
the following coarse graining procedure. One identifies and separates the short-
wavelength, microscopic fluctuations from the long-wavelength, large scale fluctu-
ations entering S. This corresponds to changing the resolution on which changes
in the degrees of freedom X are considered. If, initially, one has the resolution AL
and decreases this resolution to considering only larger patches of linear extension
AL = IAL the correlation length ¢’ measured in units of the new coarse grained
cutoff length, decreases as

"=¢/1 (1.32)
The system then is described by a coarse grained GLW action S8’ related to the old

action via )
e =trx,,, {e_s} (1.33)

where trx, , {...} indicates that fluctuations on scales shorter than AL’ have been
integrated out with the effect of renormalizing S or equivalently the couplings {g}.
Equation (1.32) means that a system initially close to criticality ultimately is driven
away from criticality unless £ already has diverged and is infinite. If the system
indeed is self similar &’ = S and in particular the rescaled couplings are the same as
the old ones. Thus formally denoting the coarse graining procedure as a mapping
R! of the couplings {g} at the critical point

R [{g}] = {g}] (1.34)

the critical couplings emerge as fixed-points of the mapping R!, which will be de-
noted by {g*}. As the correlation length transforms as & (R' [{g*}]) = £ ({¢g*}).
one indeed finds via Eq. (1.32) that £ = 0 or £ = oo. These two cases are called
trivial fived-points describing the bulk phases and critical fixed-points. Couplings
that under R! flow towards a fixed point define its basin of attraction. The basin
of attraction of a critical fixed point is called the critical manifold. Close to a fixed
point

gn = g + 09 (1.35)
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which can be used to linearize R!

gn = R [{g;, +0gn}] = g + 9g. 095 = 9+ M} ;6g; (1.36)
j
In a diagonal representation {g} this relation becomes 6§, = A,dg,. Keep in

mind that the apparent simplicity of the equations is rather misleading. The RG
transformation can be quite complex such that the matrix M,llj does not need to
be symmetric. In general it is complex and left and right eigenvectors have to be
distinguished [17]. If, however, its right eigenvalues are real, one can exploit that
a repeated application of the transformation with scales I,!’ has to be equal to a
single transformation to the scale [ - I’. This means that

MY ML =MLY
nuttujy T nj

, , (1.37)
= A AL = AL

Therefore the eigenvalues transform according to a power law A}, = [¥» [17]. This is
the basis for all the data analysis performed in this thesis. Depending on the value
of y,, the scaling fields §,, are called:

1. relevant, if y, > 0, as then the weight of the associated scaling field increases
under renormalization.

2. irrelevant, if y, < 0, as the weight of the associated scaling field decreases
under renormalization.

3. marginal, if y, = 0.

The number of relevant eigenvalues thus corresponds to the independent parameters
that need to be adjusted in order to hit the critical point in experiment or simu-
lation [17]. Due to Eq. (1.33) the RG transformation leaves the partition function
invariant. The free energy density

f=F/VkgT = -V 'InZ (1.38)
where V' is the system volume scales under the above transformation as

F=U (') + fa(gh) (1.39)

where f,, ({g}) is called the analytic part of the free energy density [20]. This leads
to the form

fs (gl,gg,...) :lidfs (lylul,ly2U2,...) (140)

The u; are called scaling fields and depend analytically on {g}. If there only are
two relevant scaling fields u; and wuy, as in the standard magnetic systems then to
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lowest order u; ~ t and us ~ h. The homogeneity allows to eliminate [ and write
Eq. (1.40) in two equivalent scaling forms

d/ h
|t] YDy (myh/yt)

s ah =
f (t ) ‘h|d/yh Zi(

(1.41)

t
Ihlyt/?/h

From these homogeneity laws basically all equilibrium scaling relations mentioned
in Sec. 1.2 can be derived. According to Eq. (1.39) f, ~ ¢~¢ ~ t® and thus
v =1/y; but Eq. (1.2) requires f; ~ t2~%. We thus obtain a hyperscaling relation

dv=2-a (1.42)

called the Josephson scaling relation. Further, m ~ 90f;/0h implies through Eq.
(1.5) that y, = dd/(1 + 0). Performing the appropriate derivatives yields 8 =
(d —yn) v and v = (2yp — d) v. Identifying the susceptibility x with the integrated
correlation function yields the Fisher scaling law

vy=(2-n)r. (1.43)

Thus by the knowledge of either v, or equivalently «, and one other exponent from
the set 3,7, d,n, the value of y;, and thus all other equilibrium exponents can be
calculated. For the sake of completeness we state the Rushbrooke scaling law

a+28+y=2 (1.44)

and the Widom scaling law
BE—1)=17 (1.45)

1.7 Finite size scaling

All systems that are studied via numerical simulation methods in this thesis neces-
sarily need to be of finite extent. Usually confined in a hyper cubic volume L? the
correlation length in Eq. (1.29) therefore naively is expected to diverge up to £ ~ L
leading to a rounded maximum in £ (T, L) at T.. Then the system size L basically
can be seen as yet another scaling field entering Eq. (1.40) scaling trivially with
exponent y;, = —1. Choosing the rescaling factor [ = L yields

ot h L) = %fs (Ll/"t,Lyhh, 1) (1.46)
where Eq. (1.29) has been used. Equations (1.2)-(1.5) then imply
Csln=o ~ LV, (Ll/ ”t) (1.47)
mlp—o ~ LB/ (Ll/”t> (1.48)
Xln=o ~ L% (Ll/”t) (1.49)

ml,_g ~ LY~ (LY h) (1.50)
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where ¢g, M, X, ™ are scaling functions of the singular parts. Evidently any possible
divergence in the response functions cs or x is rounded to a finite maximum for
finite L. However as the finite-size form Eq. (1.46) necessarily implies hyperscaling
it cannot be correct above d..

1.8 Corrections to scaling

The irrelevant scaling fields are associated with corrections to scaling. Assume the
leading corrections to scaling field is ug with negative RG dimension y3 = —w. The
singular part of the free energy then reads

fo(t.hga, L) = L7 (el un LV ug L)
(1.51)
~ L7if (utLly, uhLy") +usL~4v (utLl/”, uhLyh) + -

Respecting the symmetry of fs under h — —h they can be approximated by up =
hay (t) + O (h3) where 4, = ap + a1t + O (t2) and u; = ¢t + coat? + cooh?® +
o1 h?t + 0O (t3, h?, h4t) close to the critical point h = t = 0. The fields up and u;
are independent of L. With these definitions corrections to all other quantities can
be derived [21]. Implicit to the derivation above is that the free energy behaves
analytic in the limit that the leading irrelevant scaling field approaches zero, which
is not always the case.

1.9 Above the upper critical dimension d,

Above d. although all exponents are known exactly by their Landau values (1.24),
the standard finite-size scaling approach from Sect. 1.7 in which the correlation
length is identified with the system size L fails. In fact for models of the type Eq.
(1.1) it turns out that the leading irrelevant scaling field wy, is dangerously irrelevant
meaning that the free energy is singular in the limit b — 0. It is now well established
that above d, the correct finite-size expression is & ~ L%/ de [22, 23, 16]. This implies
that the scaling variable = L'/¥¢ has to be replaced by L% "¢ above d, instead
of the naive expectation L?t. In addition precisely at d. where the quartic coupling
b is marginal one acquires logarithmic corrections & (t) = t~1/2|log¢|*/® and ¢ ~
L (log L)l/4 [15, 24]. The proper scaling variable thus becomes = & (¢) /¢ (Te, L) =
t=1/2 logt|*® /L log L|"*.

1.10 Quantum phase transitions
In addition to the previously introduced classical phase transitions there is yet

another class of phase transition: Quantum phase transitions (QPT). At a QPT
the variation of a non-thermal coupling parameter K such as chemical potential
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1, external magnetic field H or the impurity doping concentration causes a non-
analyticity of the many-body ground state properties. As will be evident these
QPT’s are only possible at absolute zero temperature where in contrast to classical
systems and due to the Heisenberg uncertainty principle a quantum mechanical
system still exhibits fluctuations.

Path integral formulation of statistical mechanics
The Hamiltonian of a quantum mechanical system usually can be written as
H=T+V (1.52)

where 7 and V are the operators for the kinetic and potential part. In contrast to
classical systems, where the partition function factorizes in 7 and V), their general
noncummutativity in a quantum description enforces a coupling between dynam-
ics and statics. Cutting the time scale hf in equidistant slices AT = Af/M the
partition function Z = Tr {e‘BH} can be written as the trace over a product of

M high temperature density matrices e~ M = {6_%?{ . Inserting resolutions of

unity and choosing an arbitrary complete set of states {|«)} the partition function
becomes a sum over weighted trajectories in state-space

7 = ZZ Z<a0|ef%7{|a1><a1\€i%%|02>

@p o1 Qp—1
AT

X ooox {aps—1]e” 7 ' ag) (1.53)
All these paths start and end at |ag). Following a trajectory the states perform
intermediate transitions as in the Feynman path integral description of elementary
quantum mechanics [25]. But with time ¢ replaced by imaginary time —ihj3 in the
time evolution operator matrix elements (cv;le™% *|a;1). The coupling between
different time slices can be used to express a d-dimensional quantum system as a
(d + 1)-dimensional classical one. This quantum classical mapping is most evident
if one considers position eigenstates |a) = |R) = |{r1...rn}) as done in path
integral Monte Carlo simulations to describe atoms at low temperatures such as
‘He . There, using A = %, one has 7 = =AY, Vi and V = 3,V (ri, 7))
where V (7, r’) is the two body potential. The partition function becomes, up to
quadratic corrections in AT,

M-1
Z = /dRO/de.../dRM_l [ e 5ot (1.54)
1=0

where the action Sa, becomes

AN (R-R)* &
Sar (R R) = —log (4TAAT) + ~——— + > A7V (1, 7))
2 AAAT =
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and couples neighboring time slices only via the kinetic term whereas atoms only
interact within the same slice [26]. The d-dimensional quantum many-body problem
thus has been mapped to a classical problem of polymers in (d+1)-dimensions. But
for finite temperature 7" the extension in 7-direction is always limited and only for
T = 0 the (d + 1)-dimensionality holds even in the thermodynamic limit. At high
temperatures the corresponding time interval hf usually is small compared to the
natural frequency scales of the system. The system then looks static in all time slices
0...M —1 and the dynamics drops out rendering the path integral description into
that of an ordinary Boltzmann weight. If the underlying Hamiltonian considered is
written in terms of boson field operators v);, 1/13 then the usual way to evaluate Eq.
(1.53) is to normal order and then use a coherent state representation. This yields
the Landau-Ginzburg-Wilson functional [27, 28]

B
S= /0 dr [Z ¢j(7)87¢z(7) + 7‘[{1/13(7’),1/}1(7')} (1.55)

with partition function Eq. (1.53)
Z=T"{e %} (1.56)

where Tr? {...} = [ DyDyt(..).

Scaling at quantum phase transitions

The quantum classical mapping implies the emergence of fluctuations on all length
and time scales as given in Egs. (1.29) and (1.30) at the quantum critical point
(QCP). Diverging time scales directly relate to a vanishing characteristic frequency

and therefore energy scale
hw, oc [t]"* (1.57)

which can be applied as a measure to determine whether quantum or thermal
fluctuations drive the transition. If w,. < kg7 the regime is purely classical which
renders quantum fluctuations irrelevant for temperatures

t| < TY/v= (1.58)

for any finite 7.. This, as promised above, implies that at finite temperatures
the fluctuations of any physical system asymptotically close to a critical point are
entirely classical. Only at zero temperature can a phase transition be entirely driven
by quantum fluctuations. The presence of a QCP however leaves a signature even
at finite temperatures. Figure 1.1 illustrates a general phase diagram close to a
QCP. Quite generally the ordered state might persist in a large parameter range
of (K,T). Then the phase diagram exhibits a classical critical line for finite 7" and
K < K.. In contrast, if order at any finite temperature is precluded, a transition is
only possible at T' = 0 between a quantum ordered and quantum disordered many
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Figure 1.1: Illustration of the phase diagram close to a QCP. In general the ordered
phase may exist for finite 7" > 0. The transition between thermally ordered and
disordered states is entirely classical. Interestingly, below the cutoff temperature
where the quantum critical region vanishes, the influence of the quantum critical
point widens with respect to the distance from criticality k& upon increasing 7. If
order is forbidden at finite T then the classical critical line vanishes and the system
only exhibits a QPT at T" = 0. The boundaries of the quantum critical region is
determined by the dashed black curves kT o< |k|”*. Figure adapted from [29].

particle ground state. The presence of the QCP leads to a quantum critical region
for determined by
kpT > hw, o |k|"* (1.59)

where k¥ = K — K. and the system ultimately is driven away from criticality by
thermal fluctuations. This quantum critical behavior is cutoff above some system
dependent temperature where microscopic energy scales are rendered irrelevant by
strong thermal fluctuations. Below the behavior is to a large extend governed by
excitations of the quantum critical ground state [29]. The behavior in this region is
normally non-universal except in the direct vicinity of the quantum critical point
itself. There the correlation length diverges as

€ oc k|77 (1.60)

with a universal exponent v. But along the extra imaginary time direction the
correlation time diverges as

Te o< &% oc |k| 77 (1.61)
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where z # 1 only if space-time symmetry is broken. Then the correlation volume
grows infinite anisotropically as also observed in systems where isotropy explicitly
is broken by introducing a symmetry breaking field or correlated disorder along
a specified axis [30, 31]. These as evident from the quantum classical mapping
introduce columnar correlations along the time direction. The homogeneity law
Eq. (1.40) then generalizes to

Fk,T) = b+ (kbl/”, L;le) (1.62)
with L, = 1/T as effective system size along the time direction and dimensionality
D=d+=z (1.63)

If the critical point satisfies hyperscaling the existence of £, as a single length scale
and £7 as a single timescale, apart from microscopic cutoff length scales important
for anomalous scaling dimensions [17] allows the finite-size scaling ansatz

O(K,L,L,) = L%0, (LI/% LT/LZ> (1.64)

for operators with scaling dimension dp. Again these relations are only valid below
the upper critical dimension d.. of the problem at hand. Above the critical behavior
is given by the mean field solution. The ratio between the inverse temperature

length and the spatial system size usually is referred to as the aspect ratio o, =
L,/L~.

1.11 The O(N) spin models

The O(N) vector models have a wide range of applicability in the study of phase
transitions and critical phenomena. The Hamiltonian entering the partition func-
tion Eq. (1.31) is given by

H=BH=—B3 [JS(r;)-S(ri+ )~ H(r) 5(r)] (1.65)

i,H

where /i shall denote the unit lattice vectors connecting the sites i = 1...L% on
a simple hypercubic lattice of linear extension L. The term O(N) means that the
degrees of freedom S (r) are given by N-component vectors or classical spins of
fixed length N residing on the vertices of the lattice. J here is a uniform coupling
constant. Disorder in the model can be included via defining position dependent
bond couplings J — J* () coupling S (r) to S (r + i). H is an external magnetic
field coupling to the magnetic moment of S (7). The critical properties of many
complicated systems can be captured by the properties of O(N) models. In con-
densed matter physics the most frequently studied cases are the Ising model [32]
where N =1 and S (r) = £1, the XY model or classical planar spin model where
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N = 2 and the Heisenberg model N = 3. In high energy physics the case N = 4
is studied to describe finite temperature transitions in the theory of strong inter-
actions (QCD) [33]. N =5 has been applied to high-T, superconductivity [34, 35].
The large N-limit can be solved exactly [36, 37]. An extensive review of numerical
and analytical calculations on the O(N) vector class can be found in Ref. [10].

1.12 Phase transitions in the O(N) models

From the discussion in Sec. 1.6 it is clear that the properties of any possible phase
transition between an ordered and a disordered state in the models described by
Eq. (1.65) in general can be expected to depend on the symmetry group and the
dimensionality d of the system. In addition the range of interactions matters. Here
only short-range nearest-neighbor interactions are considered. One natural order
parameter is the O(N) magnetization

M=Y"5(r) (1.66)

The system exhibits long range order if the order parameter correlation function
G(lri —ril) = (5(ri) S (7)) (1.67)

is finite in the limit |7; — r;| — co. At T' = 0 and zero external field all spins of
Eq. (1.65) are bound to point along the same direction and G (|r; — r;]) = N2.
To illustrate the importance of the spatial dimension on the existence of a phase
transition at finite temperature consider the Ising case N = 1 and d = 1. In
the thermodynamic limit fluctuations of a finite number of spins cannot destroy
long range order. Assume the system has chosen all S (r;) = 1. A single domain
wall separating a region of S (r;) = 1 from a region of S (r;) = —1 has energy
cost 2J but entropy S = kplog L. The system can thus lower its free evergy by
AF = 2J—kgT log L which tends to —oo for L — oco. Splitting the domains further
lowers F' and thus order is destroyed for any finite T"at N = 1 for entropic reasons.
This simple argument due to Landau and Peirls [38, 39] immediately precludes the
existence of a finite temperature phase transition for any N > 1 in d = 1. For
d = 2 domain walls have loop-like circumference. The energy cost of inserting an n
bond loop scales as 2Jn. A rough estimate of the entropy can be achieved via the
assumption that having chosen the starting point of the domain wall and without
backtracking the loop has 3 possibilities to choose the next lattice point from each
vertex. The entropy thus roughly scales as AS ~ kglog(3") and the associated
n-bond domain wall free energy change scales as AF,, ~ [2J — kgTlog (3)] n. There
thus seems to be a temperature

2
N kp 1og3

*

(1.68)
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Figure 1.2: Sketch of the Mexican hat potential for the O(2) model. True long
range order can only appear in dimensions d > 2.

above which disordering the system decreases F'. One therefore expects a finite
temperature phase transition in the 2D Ising model. Indeed this is the case and
the system is even exactly solvable [40, 37|. For continuous spins, N > 1, the case
d = 2 is more tricky.

1.13 Continuous global symmetry

In the previous section, mentioning the ordered, zero temperature ground state, an
important detail was swept under the rug. In all O(NN) models for H = 0 the energy
is left unaltered if all spins are mutually rotated by a global O(N) transformation.
This follows from the fact that the Hamiltonian has a global O(N) symmetry and
rotating all spins at once leaves the energy unaltered. If, hypothetically, N and d
are such that there is an ordered phase, and an experimenter would cool the system
deep into the ordered phase, a particular orientation is found. As in the ordered
phase fluctuations have a finite correlation length, the thermodynamical averages
observed, including the ground state, do therefore not display the same O(N)-
symmetry as the Hamiltonian itself. This is referred to as spontaneous symmetry
breaking. At the heart of it lies the fact that the limits of having an infinitesimally
strong field on the one hand, and letting the number of spins go to infinity on
the other hand, do not commute. For an arbitrarily small ordering field H letting
L¢ — oo the system ends up in a symmetry-broken, ordered, low symmetry state.
Conversely the limit H — 0 and subsequently L? — oo is not unique. In the
thermodynamic limit the system thus is not ergodic. To illustrate the importance of
the symmetry group for the existence of long range order consider the Hamiltonian
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Eq. (1.65) in its equivalent continuum GL form [17]

S=— /ddr {‘320 (8;54)% + %nﬁi + iuo [52]% = haSa (1.69)
Here o = 1,..., N denotes the spin components and i = 1...d labels the spatial di-
rections. The fixed length condition has been relaxed. For simplicity consider only
N = 2 which yields the Mezican hat potential shown in Fig. 1.2. Now assume that
IS (7)| = /|ro/uo| minimizes the potential part with some particular orientation
and the external field is zero. Then we can write S (1) = /|ro/uo| (cos (6 (r)) ,sin (0 (r)))
below the mean field transition temperature 7; p»r and obtain the effective action

5= /ddrg (VO (r))? (1.70)

where K = S|rg/up| is usually referred to as the bare spin wave stiffness. If T <«
T, mr one may expect only small variations in 0 (r) smoothly fluctuating around a
fixed direction. Then transforming 6 (r) = L=%2%" q0ac™ gives

K
S=7% > ¢ g (1.71)
q

where the modes 4 are Gaussian variables. The ¢*> dependence of the action
reveals the presence of gapless soft-mode excitations. In momentum space (0q0q/) =
8q.—q'/Kq? is proportional to the Fourier transform of the unscreened Coulomb
potential. The correlations can be obtained via

(S () S (0)) = "2 (ei0M=0(0)]y [0 o=5((8(r)—0(0)*) (1.72)

Uo Uo

valid in the Gaussian approximation Eq. (1.70) yielding the leading behavior

~ const if d > 2
O(r)0(0) =< ~r2difd <2 (1.73)

logr
= Erifd=2

In 1D as expected smooth spin wave fluctuations are thus enough to exponentially
suppress correlations. In 2D however

(S (r) S (0)) ~r=T) (1.74)

with 7 (T) = |ug| T /27 |ro|. Again there is no true long range order but quasi long
range order as the correlations decay algebraically towards zero. This is the core of,
and rigorously generalized in the Mermin- Wagner-Hohenberg theorem [41, 42, 43].
It states that there is no spontaneous symmetry breaking in systems with a contin-
uous symmetry N > 2 and short-range interactions for d < 2. This however does
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not preclude the existence of a phase transition in 2D. Obviously, the assumptions
made above break down, when the temperature is increased such that the phases
are allowed to fluctuate wildly, and the effective action above cannot be treated
as Gaussian. Then one can expect the correlations to decay exponentially. In fact
the point where the quasi-critical correlations in Eq. (1.74) change to exponentially
damped marks the Berezinskii-Kosterlitz- Thouless phase transition [12, 13].

1.14 Topological defects

As illustrated for the 2D Ising model the gain in entropy associated with the macro-
scopic creation of defects above a finite temperature was shown to surmount the
energy cost of their creation. Many O(N) spin-systems can undergo a phase transi-
tion associated with the proliferation of defects or defect pairs with low excitation
energy but high entropy gain. These can be topological in the sense that the as-
sociated field configuration, S (), is such that a removal of the defect via simple
local alternation of spins is not possible but involves spins at arbitrary distances.

Domain walls

Domain walls interpolate between two different grounds states. For Ising models
they therefore are the boundaries separating regions containing spins of opposite
orientation. In a d-dimensional system a domain wall therefore has dimension
d — 1. In zero external field the phase transition of the Ising model is governed by
the macroscopic proliferation of domain walls.

Vortices

Vortices are the natural class of topological defects emerging in the O(2) or XY
models in 2D. Again mapping a spin configuration to an equivalent configuration
of phases 0 (r) a vortex at 7 is defined by the property

]{ drVe = 2nq (1.75)
¥

with integer winding number or charge ¢ for any closed path « encircling rg. Vor-
tices of negative g are usually referred to as anti-vortices. Evidently the vector
field v, = VO ~ r~ley gives rise to a 27 winding for arbitrary paths around the
origin. Using Stokes theorem this is only possible if the vortex shows up as a sin-
gularity in V x v, = V x V0 = 27¢d (r)e,. From Eq. (1.70) one obtains the
cost F1 = Kmlog[L/a] to create an isolated vortex in a finite system of radius
L. Here the definition of a microscopic cutoff parameter a is a necessary. Thus
in the thermodynamic limit no isolated vortex should be excited. But if a vortex
configuration deliberately has been created the cost to remove it via a sequence of
local distortions followed by flipping a macroscopic number of anti-aligned neigh-
boring spins can roughly be estimated to be of the order of ~ KL [44]. Returning
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to the ground state from a vortex configuration via small statistical fluctuations is
extremely unlikely and the vortex topologically and physically stable.

To calculate the energy for an arbitrary distribution ¢ (r) =), ¢i0 (r — r;) e,
of vortices or charges one usually uses the following trick. The vector field v = V6
can be decomposed in transverse and longitudinal parts v, v; where the label has
been chosen due to the analogy between a quantum mechanical phase gradient field
and a velocity field. The components obey V - v; =0 and V x v; = 0. Thus

vi =V x Ve, and v; = VV] (1.76)
and by construction the vortices can only emerge from the transverse component
Vxv=VxVxVe,=-VVe,=q(r) (1.77)

Equation (1.70) then implies
K
- 5/ [(vvl)? A AR (1.78)

where the longitudinal part is equivalent to Eq. (1.71). Using the Green’s function
G (r) = —In(|r]) of the 2D laplace operator gives V; as the convolution

/G r— ') q(r') d2r’ (1.79)

and therefore the vortex part of the action is described by

G = ﬂ'K//q (r)G(r—7r')q(r)d*r'd*r (1.80)

where CG stands for Coulomb gas which is motivated by the fact that the inter-
action between the vortices is the same as for unscreened point charges in 2D. To
deal with the mathematical singularity at the center of the vortices it is required
that the local order parameter S (r) vanishes at the center. In a lattice theory the
action then becomes

SCG - ZQz T C]; + G (Z Qz> (181)
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where V (1) = G (r) — G'(0) and G is the potential for vortices obtained if the
delta-singularities in ¢ (r) above are smeared out to charge distribution of finite
extent. As G (0) is infinite in the thermodynamic limit, the system is restricted
to be neutral i.e. ), ¢; = 0. Then the pure interaction terms between the charges
asymptotically scale as x —g;¢; log [r/a] which implies that the cutoff a defining the
lattice constant should be of the order of the vortex core size defined by the width
of the point charge distribution. Vortices with opposite charge therefore attract
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and equal charges repel. As the longitudinal fluctuations of the O(2) model where
shown not to be able to exhibit any phase transition, the only possibility left is that
it is exactly the proliferation of neutral vortex pairs which will give rise to a phase
transition from a disordered state to a quasi long ranged ordered state described
by the property Eq. (1.74) at low temperatures. In Ch. 3 it will become clear that
in 3D order is destroyed by a similar mechanism associated with the proliferation
of closed vortex loops.

1.15 Effects of disorder - Harris criterion

Defects naturally appear as impurities or can deliberately be created by thermal
quenching, nuclear damage tracks [45] or by random potentials in laser traps. Spa-
tially extended defects can show long range correlations. The effect of quenched
random disorder in a system corresponds to spatial variations in J — J* (r) =
J+8J# (r) or equivalently 1o — ¢+ drp (7) in the O(N) models defined by (1.65)
and (1.69) respectively. For finite temperature phase transitions it therefore leads
to spatial variations in the distance to criticality ¢(r) = (T — T¢. (7)) /Te.

A useful heuristic criterion for the critical behavior of disordered Ising spin
systems was given by Harris for the case of uncorrelated point disorder [46]. Re-
garding the effects of random defects on the universal properties at a continuous
phase transition a criterion for fixed point stability usually can be derived in the
following way. Within a correlation volume Ve = £% the presence of disorder leads
to the effective average distance to criticality

1
te~— [ dirt(r) (1.82)
£ Jve
The fixed point should be stable, with respect to the introduction of disorder, if the
spatial temperature fluctuations, A? = [tﬂd_ , due to the defects within V¢, are
1S

small compared to the overall distance to criticality ¢t = (7' — T¢) /T.. Here [.. ] 4
denotes averaging over different realizations of the disorder. For correlated defects
described by

[t ()t (r")]gss ~ (07" (1) 6" (")) 4s = gais (7, 7) (1.83)
this requires
AQ
= ~§*2dt*2/ ddr/ d®r’ gais(r,7') = 0 (1.84)
Ve Ve

for t — 0. It is thus the long distance behavior of gais (7, r') that determines whether
the critical properties are still given by the pure fixed point. Most interesting for
this theses are the cases of
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1. uncorrelated random point disorder: This is the case treated by the original
Harris criterion. Here gqis (7, 7') ~ & (r — ') inserted into Eq. (1.84) yields
using & ~ ¢t~V the requirement t%“~2 — 0 and thus the original fixed point is
unaltered if the Chayes inequality [47]

v>2/d (1.85)
is obeyed. Below the upper critical dimension this is equivalent to a < 0 .

2. rodlike disorder along one or several symmetry axes: Here
g(r—7r'")oc§4t (r — r') forces d—1 components of the position vectors r, r’
to coincide for a nonzero contribution. Thus Eq. (1.84) gives ¢2—2-(d+1v
0 yielding
v>2/(d—1) (1.86)

3. random planes: Here
g(r—r') < §972 (r — r') forces d—2 components of the position vectors 7, r’/
to coincide for a nonzero contribution. Thus Eq. (1.84) gives t2—2-(d+2)v _,
0 yielding
v>2/(d-2) (1.87)
4. power law correlated disorder: This interesting case where g (r — r') ~ | — 7| “
decays with exponent a > 0 was treated via RG techniques in a seminal paper
by Weinrib and Halperin [48]. Equation (1.84) gives, depending on the speed
of the fall off,

t™=2 ifa>d
— ~ )t 2IntY ifa=d (1.88)
tw=2 ifg < d

Thus for @ > d the short range Harris criterion Eq. (1.85) is obtained whilst
for a < d one obtains
2
> — 1.89

- (189)
In fact for the case of a Gaussian disorder distribution it was argued that if
the fixed point is unstable towards a new long-range-disorder fixed point then
v = 2/a should be exactly fulfilled [48].

The cases 1-3 can be seen as disorder living on dy = 0, 1, 2 dimensional, potentially
interconnected, subspaces. Although the defect correlations are not power law like
the stability criteria obtained correspond to v > 2/a with a = (d — dp). In Ref. [1]
the 3DXY model with disorder corresponding to the case 2 is found to flow towards
a new critical fixed point in agreement with ¥ = 1 marginally violating the extended
Harris criterion Eq. (1.86) but in agreement with the marginal behavior of the last
case.
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P(M,)

Figure 1.3: If quantities are described by universal scaling functions then their
respective histograms are also universal. The magnetization per spin M =
L=4%" S (r) for the 3D Ising model as defined via Eq. (1.66) shows a characteristic
symmetric double peak structure close to T, with constant free energy barrier AF'.

1.16 Continuous vs. discontinuous phase transitions

At a continuous transition the correlation length £ diverges leading to the scaling
behavior described in Sec. 1.6. At a discontinuous or first order transition £ is
finite. If a system is studied numerically, without any prior knowledge, it cannot
be excluded that ¢ is very large but finite at the transition. Then the transition is
weak first order and scaling proceeds towards a second order transition with scal-
ing properties as £ ~ t~” until very close to the singularity, where a first order
transition occurs instead. This happens in the 2D five state Potts model where
& is of the order of a 1000 lattice spacings which makes it difficult to determine
the nature of the transition via finite-size scaling methods [49]. To distinguish be-
tween weak first order transitions and continuous transitions is generally very hard.
Thermodynamic averages of quantities such as the specific heat, that are expected
to show discontinuous behavior at a first order transition exhibit severe crossover
effects [50]. To distinguish between discontinuous and continuous transitions using
numerical simulations one usually studies energy or magnetization histograms close
to T. [51, 50, 52].

Lee-Kosterlitz method

Lee and Kosterlitz [50, 52| proposed a numerical method based on the properties of
the energy histogram at T,. In simulations of a system with size L a specific real-
ization X of an observable O performing N, measurements at inverse temperature
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B is achieved

N (8.Xo) = 575 S0 (B Xo) % = e #AXoLN) (1gp)
E

times. Here E labels the energy levels of the underlying Hamiltonian H and
g(E,Xo) the joint density of states with energy H = E and O = Xp. The
quantity A (8, Xo, L, N,) defined in the last step of Eq. (1.90) is, up to Ny and
B dependent additive terms, the free energy F' (5,0, L). Evaluating differences in
A(B,0, L, Ny) at fixed L, 8, Ny thus becomes equivalent to evaluating free energy
differences. Calculating the probability histogram Pr, (8, Xo) = N (8,X0) /Ns
during a numerical simulation thus yields A (8, X0, L, Ny) = —% log [Pr, (8, X0)].
Free energy differences AF between two values X, and Xp, can thus be simply
calculated via

AF (B, Xo,, Xo,, L) = F (8, Xo,, L) = F (8, Xo,, L) = %bg [m]
(1.91)

The histogram Py, has characteristically different features at first and second order
transitions. For first order transitions, with finite £, the competing phases coexist
at the transition point. Assuming now for simplicity that O takes the values Ogjs
and O, within each respective phase this means that Py, has to have peaks of equal
height P;, = P ax at both values. Between these two maxima Pj, decays and has a
minimum Py, at Oni, indicating the presence of a “domain wall” separating the
phases. With Eq. (1.91) the interpretation is clear. The decay in the probability
for the simulation to visit the region between O, and Ogis corresponds to a free
energy barrier of height

1
AF (57 Odisa Omin7 L) =AF (57 007 OminoL) = B 10g |:‘]P3m2.tX:| (192)

If £ < L then at a first order transition the free energy barrier scales as
AF ~ L@~ (1.93)

but might show corrections if £ > L. In general one considers temperature- and
field-driven transitions. The hallmark of temperature-driven first order PT’s is the
presence of latent heat AH. The observable whose free energy dependence is of in-
terest thus is the internal energy O = H. The difference AH, = |H; — Ha| between
the characteristic energy values values where Py, is maximal for a fixed system size
corresponds to the latent heat and needs to stay finite for L — co. So the mere
presence of a double peak in Pj, is not enough. If the peaks approach each other
and collapse onto a single one the transition is continuous in the thermodynamic
limit. At field-driven transitions as for example in the 3D Ising model the quantity
to monitor is the 3D Ising magnetization @ = M Eq. (1.66). For temperatures
below the critical point t = h = 0 the transition is first order with increasing
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free energy barrier. Approaching the critical line from A — 0~ or h — 07 the
magnetization jumps discontinuously between M_ and M, in the thermodynamic
limit. At 7. the transition becomes second order and as my = M/L* ~ L=/ and
thus Pr, (mLfﬁ/ ”) ~ LP/" both the magnetization and the double peak structure
vanish in the thermodynamic limit whilst the free energy barrier Eq. (1.92) stays
constant. In fact as according to Eq. (1.92) L=P/"m is described by a universal
scaling function the histogram of P, (m) can be collapsed on a universal histogram
as shown in Fig. 1.3. In cases where £ >> L then the mere increase of the free energy
barrier with system size might be taken as indication of a weak first order transition
if at the same time the difference AO = |Og4is — Oo| remains non-vanishing in the
thermodynamic limit.

Response functions and Binder cumulant

Before the advent of the histogram reweighting methods [53, 54] and generalized
ensemble methods such as replica exchange MC and Wang Landau sampling [55,
56, 57] it was close to impossible to obtain reliable histograms Py, for large system
sizes. However much can be learned about the global properties of the histograms
by considering simple thermodynamic response functions such as the specific heat c;
and the spin susceptibility x as well as the expectation value of the moments (O").
Quite generally assuming that the system spends a fraction P, of the simulation
time in the ordered phase then if the double peak structure was infinitely sharp

(O") = PO + (1 = P,) Ofis (1.94)

follows. In that limit the leading contributions to the specific heat scale as
(H?) — (H)* AH?
7,2d 7,2d
where a similar relation for the susceptibility can be found at a field-driven tran-
sition. Although this argument is grocely oversimplified it can be backed up by

phenomenology [58, 51| and also rigorously by RG theory [59]. Binder [51] intro-
duced the normalized fourth order cumulant

(HY)L
3(H?)7

cs ~ L4932 ~ LB?P, (1 - P,) ~ LY (1.95)

Vp=1-

(1.96)

which by Eq. (1.94) should show a minimum at T, asymptotically saturating at?
2 Hg + Hfilis

Y 2
3 (Hg + Hgis)

only in case that the double peak structure survives in the thermodynamic limit.

Away from the transition it approaches a trivial limit V£ = 2/3. In case that the
transition is continuous then the minimum converges to V3 even at Tt.

Voo =1 (1.97)

2This value of Vo in general is inconsistent with simulations [52] but shall here simply illustrate
the emergence of a nontrivial value in the binder ratio.






Chapter 2

Superfluidity and Superconductivity

Low temperature physics made a giant leap in 1908 when the dutch physicist Heike
Kamerlingh Onnes successfully liquified *He in Leiden. Soon after that, in 1911, he
discovered that the resistance of mercury drops from 0.1 € to essentially zero below
4.2 K within 0.01 K [60]. Achieving temperatures as low as 1.8 K he ironically
did not realize that at the same day that his refrigerant went through a superfluid
transition at the so called lambda temperature T = 2.17 K, but only noticed that
the boiling of *He suddenly stopped above the lowest temperatures [61]. Whereas
the field of superconductivity took its next leap in 1933 with the discovery of the
Meissner-Ochsenfeld effect [62] establishing the superconducting phase as a true
thermodynamic state it took until 1937 when Kapitza [63] and Allen and Misener
[64] independently discovered the frictionless flow of *He through narrow capillaries.
The development on the theory side was much slower. This chapter is devoted to
briefly discuss some remarkable properties of superfluids and superconductors and
finally to introduce a generalization to the Landau theory of phase transitions appli-
cable to numerically study strong fluctuations in superconductors and superfluids
and to model novel superfluids the Ginzburg Landau (GL) theory [65].

2.1 Bose-Einstein condensation

The connection between superfluidity and Bose-Einstein condensation (BEC) was
first made by Fritz London [66] in 1938. Bose [67] originally had derived Planck’s
law [68] in 1924 by considering the statistical mechanics of a quantum gas of pho-
tons with discrete energy levels without the need to invoke further assumptions
and semiclassical approximations as had been necessary before. Einstein [69] sub-
sequently generalized this idea to massive free particles with dispersion relation
€p = p*/2m and average number per mode

1

eﬁ(fp_l") —1 (21)

(np) =

31
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and found that this ideal Bose gas exhibits a phase transition at the temperature

Toeo » (ZT/Z) (2.<(7511>2>g (2.2)

below which the chemical potential p vanishes. In this limit Eq. (2.1) allows a
macroscopic occupation of the zero momentum ground state in the sense that the

ratio <n<pn_>0> L <£>3/2 23)

, where n is the total particle density, becomes finite. Thus a complex many-body
problem could be described in terms of a single-particle wave function

(2.4)

where 6 an arbitrary phase independent of r. It took long, until 1995 when BEC
was first experimentally realized at the extraordinarily low temperature of 170 nK,
resulting in the 2001 Nobel prize for Eric Cornell, Carl Wieman and Wolfgang
Ketterle [70, 71, 72]. For interacting systems the eigenvalues ¢; of the one-particle
density matrix p (7, ) determine if BEC occurs [73, 74]. If ¥, (7 ... 7y) denotes
a set of properly symmetrized, mutually orthogonal, pure many-body states, the
one-particle density matrix can be expressed as the weighted sum [74]

p(r,r') = Nch/drg...rN\Il: (r,ra...vN) W, (P ro...7N) (2.5)

If there exists a single eigenvalue ¢; of macroscopic order NV then simple BEC occurs.
In case that not only one, but a finite number of macroscopic eigenvalues exist the
system exhibits fragmented BEC. If all eigenvalues are of order unity the system is
normal. Generally the condensate fraction can be defined via

no=lim p(r—7') (2.6)

|7, 7’| =00

meaning that the system shows off-diagonal long range order (ODLRO) [75]. Spatial
variations in the phase 6 () imply a mass current density of

js:

s 05 (1) V00 () = 0o (1) VG ()] = L [0 (V6 (r) (27)

which can be used to define the superfluid velocity

v (r) = %V@ (r) (2.8)
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This has the remarkable consequence that superfluids allow for vortices, just like
the O(2) model discussed in Ch. 1. Due to the requirement of singlevaluedness of
U (7) any contour integral needs to obey

j{ Vo (r)-dr =2mn (2.9)
c

for any closed curve C'. The circulation k of such a vortex is quantized in integer
multiples of A/m. Although the identification of BEC and superfluidity seems
tempting the general relation is a subtle one, as shall be clarified in the next section.

2.2 Liquid Helium

Ironically there are basically only two bulk superfluids that have been realized in the
laboratory. The only stable helium isotopes *He and 3He. The multiple superfluid
phases in the latter where discovered 35 years after those of *He at temperatures
of 2 — 3 mK roughly 1000 times lower than T ~ 2.17 K and where first thought
to be new solid phases [76, 77, 78]. In this thesis we are only concerned with
4He. Helium is the second lightest and second most abundant element found in our
universe. The atom ground state is !Sg and thus a boson. The pair interactions can

be modeled by a Lennard-Jones potential Vij (1) = 4e |(o/r)"* — (o/r)°]|, with a

minimum of roughly ~ 11 K at a nuclear separation of ~ 3 A, or the more exact
Aziz potential [79] which frequently is used in first principle path integral Monte
Carlo (PIMC) simulations [26, 80]. The differences are small as shown in Fig. 2.1
(B). In contrast to the ideal Bose gas above *He is strongly interacting due to the
hard wall for separations r < 2.6 A. At temperatures below the liquification point

T =~ 4 K the thermal de Broglie wave length A = h?/ (\/27rkaT)_1/2 ~4A and
thereby roughly matches the typical inter-particle distance reported in [26] defining
1He as a quantum liquid. As shown in the phase diagram Fig. 2.1 (C) *He never
freezes under its own vapor pressure. Only above 26 atm (= 26.3458 hPa) is
the solid phase stable [74]. Until recently this feature was mainly attributed to
the fact that the zero-point motion of *He overcompensates the weak interaction
between the atoms. Recently, it has been shown that the role of Bose statistics is
much more important in preventing solidification [81, 82]. Another manifestation of
superfluidity apart from frictionless capillary flow is that a fraction of the fluid does
not couple to moving boundaries. Andronikashvili [83] proved this experimentally
by immersing a stack of rotating disks with small separation into *He showing that
only a decreasing fraction was dragged along below T). Later Hess and Fairbank [84]
showed for bulk helium in a rotating container that the A-transition is accompanied
by the appearance of non classical rotation inertia for small rim velocities meaning
only a fraction of the *He follows the motion of the container walls. This fraction
usually is referred to as the normal component or He-I whereas the other component
whose constituents freely move through the normal background is called superfluid
or He-II.
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Figure 2.1: Selected properties of “He. (A) The excitation spectrum in the su-
perfluid phase. For small scattering wave vectors the spectrum is phonon like and
linear. Above 0.6 A" it however becomes highly nonlinear and exhibits a parabolic
roton-minimum (see Eq. (2.12)) around k ~ 1.91 A. The experimental data has
been taken from the neutron scattering measurements at 1.1K in [85]. (B) Compar-
ison between the Aziz potential and a standard 12-6 Lennard-Jones potential with
the de Boer-Michels parameters o = 2.556 A and ¢ = 10.22 K. The minimum of
the Aziz potential lies at roughly r ~ 2.96744 A. Obviously *He cannot be treated
as a free boson gas. (C) Sketch of the low temperature phase diagram of *He [26].
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The fact that there is a critical velocity v, below which there are no excitations
was introduced as the hallmark of a superfluid by Landau. He derived a simple
criterion

ve = min (Z’) (2.10)

implying v, = 0 for the ideal Bose gas which hence is not regarded as a superfluid.
For low momenta *He however approximately follows the linear dispersion relation

€, = C 2.11
P P (

where ¢ & 237 m/s [85]. This dispersion is also qualitatively obtained in the weakly
interacting Bogolyubov limit of the Bose gas. However the actual *He spectrum is
nonlinear. The critical velocity would roughly correspond to the location of the so
called roton minimum. There the dispersion curve can be approximated by

(p —P0)2

2.12
2m* ( )

€p = ARoton +

using Agoton = 8.6K, m* &~ 0.16may, and po/h = 1.91 A~ [85] as shown in Fig. 2.1
(A) . Applying the relation Eq. (2.10) to the data the roton minimum corresponds
to roughly v, = 60 m/s at saturated vapor pressure [74]. The experimental value
however is much lower due to creation of vortices as shown by Feynman [86]. The 3D
superfluid transition at T} is continuous and the correlation length critical exponent
has been determined as v = 0.6709 +0.0001 in high-precision measurements in zero
gravity [87]. This result corresponds to the 3DXY (or O(2)) universality class
introduced in Ch. 1 and can be obtained as the phase-only or London limit of
the 3D GL theory to be presented in the next sections. As mentioned in 2D the
XY universality class goes through the Kosterlitz-Thouless transition [13] but it
can be shown that there is no BEC in 2D and therefore BEC is no prerequisite of
superfluidity.

2.3 Ginzburg-Landau theory of superconductivity

Against common lore the ability of some materials to sustain the flow of electric
current without resistance is not the defining property of superconductivity as a
thermodynamic phase. A superconductor, in contrast to a hypothetical perfect
metallic conductor, in addition behaves as a perfect diamagnet in the Meissner
phase below T, [62]. There magnetic fields are shielded out completely, indepen-
dently from the initial condition of whether cooling started within an applied exter-
nal magnetic field or not. The first successful theoretical explanation of this effect
was given 1935 by the London brothers [88]. Motivated by the two fluid model of
4He and by the logical assumption that the magnetic field only could be expelled by
a surface current penetrating with some finite characteristic depth A they derived
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the London equations

o0J 2 2

s _ Mee E VXJS:_nee

ot m m

where n. is the charge carrier number density and the latter using Ampéres law
tod =V x B can be rephrased to

B. (2.13)

(V2=A"?)B=0 (2.14)

Thus static magnetic fields are screened out on a length scale A\ = /m/uge?n?2
a relation that had been predicted already in 1925 by de Haas-Lorentz [89]. Al-
though this was a big achievement, it could not explain why superconductivity was
destroyed in strong magnetic fields. A major phenomenological breakthrough was
made in the seminal paper by Ginzburg and Landau [65] who realized that the
original Landau theory could be generalized to complex order parameters

i ('I") — |\I/ (T)I ez‘@(r) _ /nS (,r)ew(r) (2.15)

where ng is the condensate density motivated by the quantum mechanical origin of
the problem. If the condensate is charged it couples to a gauge field A (r) via its
charge ¢q. Equation (1.1) thus generalizes to

clw A H = [ [a ()0 () + 519 ()] + o (0T~ oA () ¥ ()

+
240

—(VxA(r)H (2.16)
which can on a mean field level be seen as the free energy difference between the
superconducting and the normal state. In absence of an external field the uniform
mean field solution of ¥ below T, ur is again given by the right hand side of Eq.
(1.9). Allowing for spatial inhomogeneities varying Eq. (2.16) with respect to ¥ (r)
yields the first GL equation

1
a(T)W (r) +b|¥ (r)]> ¥ (r) + 7 (ZihV —qA (P)? T (r)=0 (2.17)
On the other hand variation with respect to A gives the second GL equation

Ty = =R (7) (—ihV = gA (1) ¥ ()} = 1 ¥ (1) (V6 () - gA (r))

2m*

(2.18)
defining the supercurrent density. In the Meissner phase, inside the superconduc-
tor, |\I'|2 is constant and no vortices appear. Taking the curl Eq. (2.18) becomes
equivalent to the second equation in Eq. (2.13) retrieving the London penetration

depth
m*
A= |———— (2.19)
Hog? |‘I’|2
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as an intrinsic length scale of the GL theory. Initially ¢/m* were thought to corre-
spond to the electron charge-mass ratio until the advent of BCS [90] who showed
that an arbitrarily weak attractive interaction between electrons destabilizes the
Fermi surface in such a way that electrons of opposite momenta and spin form
Cooper pairs, bosonic quasi particles of mass m* = 2m, and charge ¢ = (—2e).
This leads to a gap A in the single particle excitation spectrum. Such an attractive
mechanism was found in the interaction between the electrons and the lattice vi-
brations. BCS successfully predicts the Meissner effect and the upper critical field
and reproduced electronic heat capacity as well as the temperature dependence of
the penetration depth. Due to the accidental cancellation of the transformation
Ne — Ne/2,e — 2e,m — 2m the London penetration depth in Eq. (2.14) is the
same even if the wrong naive assumption is made that the condensate is related to
single electron wave functions. The same year as BCS Gor’kov [91] showed that the
GL phenomenology can be obtained as a limiting case of BCS theory and that the
order parameter ¥ directly is related to the Cooper pair wave function and directly
proportional to A.

Equations (2.9) and (2.18) together imply that the magnetic flux ® is quantized
in units of the magnetic flux quantum

Dy = — (2.20)

In neutral superfluids the analog is the quantization of the angular momentum
below T, also observed in the Hess Fairbank experiment [84]. Apart from A, Eq.
(2.16) includes yet another characteristic length scale the coherence length

72
2m* |a|

&= (2.21)
which can be seen as the shortest distance on which fluctuations in the order pa-
rameter are allowed without causing a breaking of the Cooper pairs. For neutral
superfluids ¢ — 0, such as “He, £ corresponds to the characteristic vortex core ra-
dius where the superfluid density is suppressed. Actually via suitable rescaling Eq.
(2.16) is entirely characterized by the ratio K = A\/€. The mean-field phase diagram
can be divided into two characteristic regions separated along the line x = 1/1/2
defining different regimes of vortex interaction. For x > 1/v/2 the surface energy
becomes negative and thus was deemed unphysical by GL. Abrikosov showed that
an intermediate state with magnetic flux lines penetrating the sample in an ordered
lattice form (Shubnikov phase) was possible [92]. Superconductors have since then
been separated into two categories characterized by their response to an externally
applied magnetic field. Materials like Al and Sn with x < 1/4/2 are called type-I
superconductors and can for small values of x be excellently described by mean-field
or BCS theory if fluctuation effects are negligible. For type-I below T, an applied
magnetic field H < H. is completely screened out of the bulk. Above H. super-
conductivity is destroyed. This differs from the type-II regime x > 1//2 where
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Cooper pairs are strongly bound and £ (T) is very small. For small external fields
H < H. again all magnetic flux is expelled from the bulk. But above the lower
critical field H,y < H < H. the Shubnikov phase is found. Beyond the mean
field approach the order of the superconducting transition in the type-I and type-II
dichotomy at finite temperatures has been a long standing fundamental question.
Since a classical work by Halperin, Lubensky and Ma [14] it has been established
that gauge field fluctuations in extremely type-I superconductors generate a cubic
term in the GL functional if fluctuations in the order parameter can be ignored.
The transition thus is discontinuous as motivated in Ch. 1. Erroneously this was
thought to apply also to the type-II limit. Dasgupta and Halperin [93] subse-
quently corrected this, showing that type-II superconductors undergo a continuous
transition in the universality class of the inverted XY model treated in Ch. 3. The
breakdown of superconductivity in the type-II limit is driven by the proliferation of
vortex loops [93, 94, 95]. While the limiting cases are well investigated, the value of
Ginzburg-Landau parameter £k = A/{ at which the phase transition changes from
second to first order is much harder to establish. Monte-Carlo simulations [96, 97|
indicate that the correct boundary is s = (0.76 & 0.04) /+/2 slightly smaller than
ke = 1/4/2 in agreement with previous theoretical work [98].

Up to the 1980’s the largest transition temperature observed was roughly 20 K.
In 1986 Bednorz and Miiller [99] at IBM Ziirich discovered the high-Tr. cuprates
with T, in the 30 K range as the result of a systematic research effort. All of
these fall within the type-II class. Today materials have been developed leading to
critical temperatures of around 133 K [100]. At such temperatures BCS theory fails
and a precise theoretical understanding has still not been achieved. Interestingly
the neutral superfluid “He can be seen as extreme type-1I limit with x — co. This
explains why the vortex transition for *He and many high-T. superconductors share
the same critical exponents.

After the success of BCS it was also proposed that superconducting materials
even may exhibit multiple gaps [101]. But it took four decades until magnesium
diboride became the first experimentally confirmed two-gap (or two band) supercon-
ductor [102, 103, 104]. Even in this case GL theory can be derived from microscopic
models [105] but then is extended to contain multiple complex order parameters to
describe the electrons in the different bands.

2.4 Multi component GL theory and vortex interactions

The concept of several superfluid components is not limited to the case of multi-gap
superconductors. Similar behavior is expected for the multiple baryonic components
found in the inner cores of neutron stars forming a proton superconductor and
neutron superfluid [106]. The state of liquid metallic hydrogen projected to occur
around 260 — 270 GPa at room temperature is another application of the formalism
[107, 108]. Equation (2.16) is easily generalized to multiple components. Using
Dy = (hV —iguA (7)), and 1, = |1y €% (") where k = 1, ..., d denotes the spatial
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vector components and b = 1...n denotes the respective n superfluid constituents
gives

1 . 1 9

L({p, A}) = Z T(Dk,b¢b) Dipthp +V ({e}) + 5—(V x A) (2:22)

AL 240

In the remainder only consider the case of equal charges ¢, = ¢, masses m, = m

and two components n = 2. The potential term shall be decomposed into the sum

ordinary GL forms plus a problem symmetry dependent interaction Veym ({¢s})

which has to be gauge invariant. It only can contain terms dependent on the moduli

|tp|, and on the phase differences 6, — 6 such as Josphson interband coupling
[ty |0pr| cos (B — By ), if the components are allowed to mix. Thus assume

V({ue}) = aulinf’ + %wb\‘* + Vsym ({¥1}) (2.23)
b

Negative coeflicients «;, are called active bands, and positive, passive bands and as
before B, > 0. As in Sec. 1.14 isolated vortices in a single component of Eq. (2.22)
have divergent energy per unit length. Only composite integer N-flux quantum
vortices where both components encircling the vortex core on a contour 7 obey
ﬁy (VOp)dr = 2r N with the same N can be produced with finite energy cost in
an infinite system [109]. Allowing for spatial variations the total free energy is
stationary when

oV
Dy v Dy pihy = 2m—— (2.24)
Bl
O(OAl — DA =~ %s (Vi Dy} (2.25)
b=1

The system has been studied intensively in 2D and for the case of n = 2 components.

Ground state properties of the two band superconductor in 2D

Following [110] we focus on the asymptotic solution of the field equations and the
static vortex interaction potential for coinciding, composite vortices of equal phase
winding. For axially symmetric, well separated, composite vortices of equal unit
phase winding N = 1 in polar coordinates (r, ) one can make the ansatz

vy = fo(r)e”
(Az, Ay) = M(—sin(é’),cos(&)) (2.26)

r

with ; =03 = 0. As A = A(r) ey and thus 9y A = 0 Eq. (2.25) becomes

2 2
K
RA+D j%w’b' [(alob) - %Al} —0 (2.27)

b=1
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Using the relation (9,0) = —y/r? and (0,0) = /r? and transforming the Laplacian
to polar coordinates the equations

a,,_la,+§:W(l_qa>:0 (2.28)
r — m h '

1 1 q \2 0
B shi= s (1= ge) hr=magv ol 60y (229

for the gauge field and the densities of the composite vortex with axial symmetry
are obtained. Far away from the vortex the amplitudes are given by the uniform

values lim fi(r) = up = y/—ow/Fp and the field by lim a(r) = i/q. Outside the
T—00 T—00

core region one assumes that the fields only slightly deviate from these boundary

values by €, a such that

fo(r) = up + ep(r), a(r) = g + a(r) (2.30)

Then Eqgs (2.28) and (2.29) can be linearized if the potential is expanded to second
order in the densities

Vil 00— 0 D) =V (f},0) + resHacee (231)

around the minimum ({wy, ..., u,,0}). As the Hessian H, is a real positive definite
symmetric n X n matrix the linearized equations become

1
€, + ;eé = mz_; Hpc€e (2.32)
1 2. pod? [
[(—— - — =0 2.33
« Toz a; - ( )

Thus in the present approximation «(r) is found to be
a(r) = Ky (r/A) (2.34)

with screening length A defined through

(2.35)

where K,, denotes the n-th modified Bessel’s function of the second kind. The real
integration constant /m can be seen as a dipole moment pointing perpendicular to
the z1xzo-plane associated with the current. Obviously the Hessian Hp. in general
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is not diagonal but can be diagonalized for “physical” choices of V. Thus the vector

e = (€1,...,€,) can be rewritten as a linear superposition in the eigenbase of the
Hessian € = 25:1 hygs. Equation (2.32) then decouples to
(V2=&2) g (r)=0 (2.36)

where &, 2 are the eigenvalues corresponding to hy. Specifically in the two compo-
nent case the eigenbase can be characterized by a single real mixing angle © via
h; = (cos (0),sin (0)) and hy = (—sin (0), cos (©)). The Green’s function Gy (r)
can be found using the Fourier representation

1 eik:r 1
G 1) = Gy /d2kk2 e o (/4 (2.37)

and mediates screened Coulomb interaction. For r >> &, where the linearization is
applicable the normal modes

3 (r) = 2Ky (r/6) (2.39)
7r
are solutions to Eq. (2.36) and thus
€1 = g1 cos (©) — gosin (O) (2.39)
€9 = g1 8in (©) — g2 cos (O) (2.40)

to Eq. (2.32). The functions g, (r) resemble field configurations originating from
a monopole point source of charge @) located at the origin. Only in some special
cases, namely when O is an integer multiple of 7/2, can the &, be identified with the
respective GL coherence lengths of the individual condensates 1),. The gauge field
mediates a repulsive force between vortices whilst at the same time the densities
(or cores) interact attractively. To calculate the interaction between two composite
vortices, one of the pairs can be considered as sources of the field experienced by
a second composite vortex brought into the system. This approach is similar to
introducing an extra source term [111]

Esource ({%, A}) = wab _ijb (241)

in the free energy functional Eq. (2.22). A distance r far away from the composite
vortex a second composite vortex experiences a field equivalent to that created
by point particle sources p, = @0 (r) with monopole charge 27Q;, and magnetic
dipole moment m perpendicular to the zy-plane originating from the current j =
m (02, —01) 6 (). The interaction energy of two monopoles with like charge Q) at
positions y,y then can be approximated by

Fint = _/ ddl‘pbwb
R2

2
==y [ a8 (x = y) PoKa (=31 /6) = ~ 22 Ka (y ~51/6) (242
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and is attractive. Taking all components into account and calculating the magnetic
field energy in the very same way the total composite vortex interaction potential
becomes [110]

V(r) ~ [m* Ko (r/X) = Q1Ko (r/&1) — Q3 Ko (r/&2)] (2.43)

All terms thus correspond to the 2D screened Coulomb interaction with differ-
ent signs and ranges. The first one corresponds to the current-current interaction
screened by the London penetration depth and the other two stem from the den-
sities of both components interacting attractively within the respective bands. In
case that at least one of the two length scales £;, = max (1, £2) exceeds the London
penetration depth A the resultant pair interaction between vortices can become
attractive intermediate ranges. This hierarchy of length scales leads to a non-
monotonic interaction which should lead to vortex clusters. This possibly gives
rise to the physics of the type-1.5 superconductor which currently is is a subject
of intense experimental research on materials where vortex clusters were observed
[112, 113, 114, 115, 116, 117]. In Paper IIT a 3D vortex loop model using a gener-
alization of this asymptotic interaction is studied.

2.5 Supersolidity

The theoretical possibility of a supersolid state was addressed by Legget in 1970
[118]. Before, Penrose and Onsager had found that perfect crystals cannot exhibit
ODLRO [73] but had not used properly symmetrized wave functions [119]. In its
original interpretation a supersolid would be a state of matter sharing both long-
range positional order of the crystal lattice while at the same time allowing for
unimpeded coherent mass flow. This supersolid remained elusive despite significant
experimental efforts. A review on early experiments can be found in Ref. [120].
This changed dramatically in 2004 due to experiments performed on *He samples
confined to porous vycor glass [121] as well as bulk samples [122]. There torsional
oscillator (TO) experiments measured a period drop that was interpreted as the
presence of non classical rotation inertia (NCRI) upon reducing the temperature
below =~ 200 mK. This was attributed to an effect of mass decoupling just as in the
Hess Fairbank experiment [84] anticipated by Legett [118].

As a true phase transition to a supersolid should leave a signature in other
response functions in the same temperature region, heat capacity measurements
were carried out and confirmed the presence of a smooth peak close to 100 mK
[123, 124, 125]. This profile of the peak was rather unexpected as the superfluid
A-transition has a sharp logarithmically diverging heat capacity peak as its key
signature. With the sensation that such a discovery would display subsequent
works cast doubt on whether the initial interpretation of the period drop truly was
the signature of superfluid mass decoupling. First principle path integral Monte
Carlo (PIMC) studies showed that ideal hcp *He crystals always are insulators
[126, 127]. Independent experiments showed that TO results varied wildly with the
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surface to volume ratio and that annealing could reduce NCRI below the signal to
noise ratio [128, 129]. Clark and coworkers [130] pointed out the strong influence
the ®He concentration had on the NCRI onset.

Extended crystal defects such as grain boundaries and dislocations emerged as
possible candidates for superfluid mass transport through the helium sample. In-
deed grain boundaries were shown to be superfluid below 0.5 K both experimentally
and via PIMC [131, 132] but their concentration was far too low to account for the
total NCRI [130]. Simple order of magnitude estimates preclude a supersolid tran-
sition above the milikelvin range [133, 1]. Strong experimental indications against
the dislocation supersolid had already been obtained in 2010 by Reppy whose setup
allowed an in situ increase of the degree of disorder in the solid sample via plastic
deformation [134]. Although the period shift increased upon deformation this effect
was most prominent in the high temperature range and close to invisible for the
lowest temperatures quite opposite to the expected behavior for a superfluid like
signal. Interestingly simulations of 3He binding to a screw dislocation showed the
emergence of a peak in the right temperature interval [135].

Day and Beamish had shown in 2007 that the shear modulus of *He stiffened
at low temperatures in the very same way as the NCRI increased and with the
same dependence on the concentration of *He impurities [136]. As shear modulus
stiffening alters the effective torsion constant of the total filled TO the period drop
could be an entirely classical effect caused by the decrease in resonance frequency
due to an increase in the total torsion constant.

Repeating the 2004 vycor experiment using a new oscillator design precluding
any presence of bulk “He inside the TO the NCRI where shown to vanish completely
[137]. Using TOs with two eigenfrequencies Mi and Reppy claim that frequency-
dependent elastic signals can entirely account for the observed period shift signals
for “He in vycor [138]. Also in bulk *He the major contribution was attributed to
elastic defects, but also a small additional frequency-independent contribution that
might actually indicate the presence of a supersolid fraction as small as 1.6 x 1074
at 10 mK [138, 139].

Today the story of the existence of a supersolid phase in *He is not entirely
settled and it can surely be seen as one of the most challenging subjects in low
temperature physics.






Chapter 3

Duality

The wave particle dualism is central to quantum mechanics. For *He this dichotomy
is evident by the fact that in the superfluid phase it can be treated as a delocal-
ized, macroscopic matter wave, whereas at high pressures the crystal testifies to
the presence of localized classical atoms. Similarly, as already encountered in the
mapping from the 2DXY model to the 2D Coulomb gas, a proper choice of variables
can vastly facilitate the identification of the collective excitations of a system. A
theory described by an order parameter field in the original variables then usually
can be mapped on another field theory with a disorder parameter vanishing in the
ordered phase and nonzero when excitations, mostly in form of topological defects
proliferate. For the purposes here a duality transformation generally shall be seen
as a change of variables describing the degrees of freedom in the underlying action
of the problem. Central to the articles [2, 3, 4] is the mapping of spin models and
superconductors on interacting loops.

3.1 Duality transformation of the GL-model for superfluids
and superconductors

Consider a general superfluid described by a complex order parameter. Ignoring
amplitude fluctuations in Eq. (2.16) one arrives at the London limit

o [v x %A(r)r
— 22 |V x %A(r)] : [%H] (3.1)

Lrona [0, A, H] = J/ddr ‘ (V - i%A (r)) e?(r)

where X is given by Eq. (2.19) and

|2 p2
LIy
2m*

(3.2)

All magnetic fields naturally emerge in units of 27 times the unit flux quantum
Eq. (2.20) ®y = h/q. Similarly to the 2D O(2) model Eq. (3.1) maps on a model

45
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of interacting topological defects. In the remainder only the case of zero external
field is considered and the model is set on a cubic lattice with spacing a,, where
©= 2,7, z refers to the lattice directions. Whereas ordinary gradients can straight
forwardly be discretized 9, — A, where A, is the lattice difference operator, the
gauge-invariant gradients need to be replaced by [140]

27 1 —i2rg A,
{au — T A, (r)} U(r) = — [\ymme Ty _ q/,,} (3.3)
0 ay
where _
r+auf
A= [ Ay (3.4
™

and + is the curve coinciding with the bond r — 7 + a,/fi. Similarly the Maxwell
field energy is replaced by the plaquette sum

V x A(r)], > — (Z eWc,Al,Ar,U> (3.5)

Ap

v,0

Introducing A, , = %A# (7) then ignoring effects of anisotropy and setting a,, to
unity yields

2
2
Liond[0,A] = =27 |cos (A0 — Ay ) — % (Z EMVUAVAT,J> (3.6)
T

v,o

The partition function thus becomes

z - /IDQ/DAefﬁﬁLond[e,A] (3.7)
Using K = 23.J the fields A, 6 can be decoupled via the Villain approximation
s K -\ 2
eKcos(z) N €K Z 6—7(1‘—271']) (38)
Jj=—00

on each link r, r + i followed by a Hubbard-Stratonovich transformation

_%wQ 1 /OO d _%-&-ivw (3 9)
e = ve .
V2K J_oo

where v is a real dummy field. The partition function then reads

0 v2 2 2
Z - /DG/DA/D’UH Z e er“ J"“’T“;L(Aue'r*-Ar,u*271']'1-,“)*1(%(E“VUAV_A,.J)

T Jp,u=—00

(3.10)
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where Einstein’s summation convention is implicit. Using the Poisson formula re-
lating the infinite sum over a function to a sum over its Fourier transform

i eI — i §(v—k) (3.11)

j=—o00 k=—oc0

the jp , sum allows the v integration to be performed yielding

0 .2
Z:/D@/DAH 3 o b (D= A ) =K (o DA o) (3.19)
T Kp,=—00
Partially integrating the ZT’H kr by = — Zr’# 0rALky, term neglecting sur-

face contributions the phases can be integrated out via
s
/ e 0 2 Bk = 2165 40 (3.13)
—Tr

leaving the zero divergence condition
V-k=Auk,, =0 (3.14)

of the integer k field in each vertex of the lattice. The k field thus can be written
as the curl of yet another auxiliary vector field k = V x h. Applying the Hubbard-
Stratonovich trick also to the magnetic field energy term gives

%)
Z:/DA/D,UH Z e,kj}’(ﬂ7ik”v“"4"’“7%+w”’“6“"”A”A"’U (315)
T kpu=—00
> (cuvoduhro)® oy
Y =
T hp,=—00

Using the Poisson summation rule in reverse order lifts the h, , to real valued
variables at the cost of introducing an integer field m, ,. The A integration then
gives another constraint

euVO'AIJ (U’r,o’ - h’l‘,o’) =0 (317)
implying that v, , — h, , can be written as the gradient of a scalar potential
Vp =8, Pr + by (3.18)

But as k is the curl of h the action Eq. (3.15) is bound to be invariant under the
gauge trafo h (r) — h(r) + V& (r) for any function ® (r). The partition function
simplifies to
ad (cuvodihro)® Mo oo
Z — /DhH Z e— K _m_2ﬂZ}Lr7ll/m'p1M (3.19)

i (‘QQW}LP*’)\?Z) 1 2 . h h
/DhH Z 6_$| va,u|* =i (hq,um—q,uth-q,umq,u) (320)

q Mq,u=—00
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where |Qq.|° =3, (2 — cos (g,)) is the square of the lattice difference operator in
Fourier representation. Integrating out the h field, transforming back to real space
and for cosmetic reasons replacing m,. by ¢, to connect with Eq. (1.81) finally yields

Z= Y e ETrataVerigg g, (3.:21)
Gr p=—00
where 2 (k( "
T cos(k(r—r
Ve = — 3 — (3.22)
L Ek: A2+ 37, (2 —cos (k)

is the Yukawa potential or Greens function of the 3D screened Poisson equation
(V2 — )\*2) V = 4. Observe that in absence of the gauge field A =0 or by A — oo
in Eq. (3.12) in principle already Eq. (3.15) provides a fully acceptable mapping
on a loop model in any dimension. The phase degrees of freedom living on the
lattice vertices are replaced by integer variables living on the bonds connecting
the original sites required to form closed loops. In addition the coupling also has
been inverted to 1/K = 1/28J. Comparing to Eq. (3.21) this corresponds a simple
contact interaction and thus by the Yukawa analogy a screening length A = 0 in
Eq. (3.21). So surprisingly one finds that the limits A — 0 and A = oo need to have
the same universal equilibrium properties.

About order parameters

In contrast to global symmetries such as present in the O(N) models local gauge
symmetries cannot be spontaneously broken. This result is known as Elitzur’s
theorem [141]. Hence, in these theories no such thing as a local order parameter can
be defined and nonlocal order parameters are necessary. Quite generally for systems
like “He with a global U(1) symmetry the superfluid density can be defined as the
response of the system to an infinitesimal uniform phase twist A0 = x®/L. Then
the twisted free energy density fg obtained by calculating the partition function
under L,onq [0 + A0,0,0] in Eq. (3.1) defines the helicity modulus or phase stiffness

T = %%| Ao—o which is directly proportional to the superfluid density ps [142].
3 2 2
T (T) = +5 <Z JZ sin (6, — 0r+@)> - < <Z JZ sin (6, — emz)) >
(s ™
1 &
+ﬁ Z Jycos (0p — Opiz)

(3.23)

For charged superfluids one needs to define gauge invariant quantities associated
with the proliferation of the topological defects. The helicity modulus can be as-
sociated with the dielectric tensor e. In case that vortex loops proliferate or in 2D
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charges unbind the medium gets polarized then the helicity modulus becomes the
linear response coefficient for an external vector potential perturbation 64, [143]

el = lim [1 - gc‘l/:‘;qqkﬁ)} (3.24)

For finite screening length A there is no neutrality restriction on the vortex loops in
3D. The transition then can be detected by measuring the onset of disorder using
the dimensionless fluctuations W2 = (Wi ) of the vortex loop winding number

W, =L g, (3.25)

which by construction is dimensionless and thus at a second order transition should
obey the simple scaling relation W2 (L,T) = W (L'/"t).

3.2 Loop representation of the Ising model

Before the 2D square lattice Ising model was solved exactly by Onsager using al-
gebraic methods [40, 144] van der Waerden noticed that it could be rewritten in
terms of non-overlapping polygons [145]. This allows the partition function to be
evaluated by combinatorial methods [146]. The main insight needed is that as
S (7ri)-S (r; + [1) = £1 the weight for each lattice bond 7;, r;;, in Eq. (1.65) using
K = J can be rewritten as

eKSr)S(ritit) — cosh (K) [1 4 S () S (i + f1) tanh(K)] (3.26)

by simply separating even and odd terms contributing to the exponential. Then in
general dimension d for hypercubic lattices the partition function becomes

Z= Y J]ecosh(K)[1+S(r:) 8 (ri+ i) tanh(K)]
{S(r)}rip

= cosh®™ (K) " T [+ 8 (r:) S (rs + ) tanh(K)] (3.27)
{S(r)} ran

= cosh™ (K) Y |1+ tanh(K) Y S () S (7 + )
{S(r)} &z

+ tanh?(K) > S(ri) S(ri+a)S(r)S(rj+6)+...
(T17Ti+2‘;;£b(7giv7'_j+&)

which means that the product has been expanded to a sum over products of spin
pairs or bonds. Again as S (r;) only can take values 1 one finds that

S S (r)" S ()" 8 (r)™ S ()" - = 22 (3.28)
{s(m}
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only if all ¢ are even 0, 2, .. ., 2d, and zero otherwise. Introducing new bond variables
Jp where b labels the bond taking the value 1 if the bond is “active” and 0 if the
bond is “incative” this translates to configurations where each site r; is touched by
an even number of J, = 1. The allowed configurations thus are closed paths (CP)
or loops yielding the loop representation of the Ising model

_ard
7 = 2Ld [1 _ e—Q,Bdual] dL®/2 Z H e Bauar (3.29)
(J,=0,1}CCP b

where Bqua = cotanh (K) ¢ tanh(BJ) = e PPust and the identity cosh(x) =
[1 — tanh® (x)]71/2 = [1- 672613”‘“]71/2 has been used. Thus the Ising model
has been rewritten in terms of a dual model where low temperatures (large 3) are
mapped on large temperatures in the dual model ( small S4ya1 ). The spin-spin
correlation function Eq. (1.67) now becomes

G (ros 1) = cosh?L” (K) X5 I, 0 S (1a) S (rp) [L+ 5 (r3) S (ri + ) tanh(K)]

4
R D S | (3.30)

{J»=0,1}CG b
ag:{’l‘a,’l’g}

where the last line is obtained using the same reasoning leading from Eq. (3.27) to
(3.29). Now as there are two extra spins inserted it is exactly those graphs G with
“open ends” or boundary 9G described by the starting point 7, and end point rg
that contribute whereas closed ones average to zero unless both ends coincide. An
advantage of the worm algorithm to be introduced in Ch. 5 is that it both samples
open and closed graphs. The spin correlations then map on the probability to find
an open worm with “head” r, and “tail” rz at any time in the simulation.



Chapter 4

Dirty Bosons

The Hubbard model was originally created to provide a simplified description for
electrons in transition metals to understand their magnetic properties. Due to the
sign problem the fermionic version has not been solved despite recent numerical
progress in algorithms [147, 148, 149, 150]. Initially the major focus of the research
around this model was on electronic transport properties. A true surprise was that
in d < 2 an arbitrarily small amount of disorder is sufficient to localize the electrons
[151, 152] and does not simply increases the resistivity. The bosonic version was
first treated much later [153] and can serve as an effective description for a variety
of systems such as Helium atoms on a substrate [154], cooper pairs of electrons
tunneling between superconducting islands [31] or bosons in optical lattices [155].
Quite generally in absence of disorder one expects noninteracting bosons to always
be delocalized at zero temperature. For random on-site potentials repulsive inter-
actions between the particles are necessary in order to prevent localization. This
chapter is focussed around the effects of disorder on the critical properties of the Bo-
son Hubbard model and exploits hidden symmetries of the Josephson Hamiltonian
emerging at high densities in order to arrive at a numerically tractable model.

4.1 The Dirty Boson Hubbard model

The lattice Hamiltonian H = Hg + H1 consists of

N 1 L
Ho = =D (Opi + ) i+ 5 D Vigia (i = )
' L (4.1)

Hi = —5 Z Jij (‘I’I‘I)J + (I)j@)l)

(2]

where 7,j label the sites on a d-dimensional hyper cubic lattice and J;; is the
hopping matrix element between two sites. The zero of the chemical potential p can
be fixed by requiring > ; Jij = 0, which can always be achieved by a suitable choice
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of the diagonal elements J;;. The random on-site potential du; is symmetrically
distributed around zero and bounded. The pair potential V;; shall be translationally
invariant and symmetric. The operators ®; obey the usual commutation relation

[@Z,@}L] = 0;; and define the particle number operator 7; = éj@l For large
. P 1o
densities one can infer the approximations <I>I = (No + ﬁ)1/2 e~ Njedi, &, =
. 1 -
=% (Ny +7)"/% ~ NZe=i% and fi; = No + it; implying [(;5 ﬁ]} — i6;;. Equation
(4.1) then reduces to the Josephson junction array Hamiltonian
- A L 1 o
Hy == Jijeos(di = dj) = D (0 + )i+ 5 Y Ui (4.2)
(2] i 2]
with redefined couplings J;; = NoJij, Uij = Vij, 0fi = O, i = 1 — NoVo + Vo,
Vo = 3. Vi; and Vo = Vj; [28]. This transformation reveals two exact symmetries in

J
the Hamiltonian H ; which the original Eq. (4.1) lacks. The shift 7, — 7} = 7; +ng
only yields f; (&) — fs (;1 — nOUO> + €% (no, i) where €% (ng, i) = no(%noﬁo — [,
and Uy = 3 ; Uij [28]. The free energy thus is simply shifted by a trivial additive
term, and invariant under shifts of i by kUy with integer k. The only difference
is that the system is considered at a different density but has exactly the same
properties. For the original system, this statement is generally wrong unless for
zero hopping J;; = 0. In addition 7} = —n;, qﬁg = —¢,; implies frm, {om:}) =
fr(—f, {—0fi;}) [28]. Together these symmetries imply, that for zero disorder the
Hamiltonian is particle-hole symmetric at the points g = fx = %ka for integer k
as also shown in Fig. 4.1. The combined transformation 7' = k — 7, g%’ = —(ﬁ leaves
everything unchanged. Particles and holes are equally likely to be added to the
system. Strictly seen this symmetry is destroyed by the introduction of disorder
but statistically conserved if the disorder distribution is chosen symmetric as above.

4.2 Phase diagram of the pure system in the ; — J plane

In absence of disorder du; = 0 the systems Egs. (4.1) and (4.2) will exhibit two
different phases. A localized insulating phase that in addition is incompressible
and thus referred to as Mott insulator (MI) and a superfluid phase (SF) exhibiting
coherent mass transport. In the remainder we set V;; = V;d;; to on-site and limit the
hopping matrix J;; to be tridiagonal and symmetric allowing only nearest-neighbor
hopping with uniform strength Jy. Loosely this kinetic term favors delocalization
whereas the potential term prefers to localize the particles. The existence of the
incompressible Mott phase is most easily shown via the argument that in absence
of hopping the total particle number n is a good quantum number chosen such that
the energy in Eq. (4.1) is minimal. For p in the region n — 1 < p/Vy < n there are
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Figure 4.1: Comparison of the phase diagrams for the pure and the disordered
Josephson Hamiltonian Eq. (4.2) in terms of the couplings Jo, i relative to the on
site repulsion Uy = V. left: In absence of disorder the phase diagram is periodic in
i = p+ Vo /2 with period Uy. In each lobe the particle number per site is an integer
constant ng. The blue points ji/Uy = k+1/2 with integer k are 2V fold degenerate,
as here each site independently accommodates k or k + 1 particles. The system
there is superfluid for arbitrarily small Jy. The MI to SF transitions occurring at
the tips of the Mott lobes (red points) lie in the universality class of the (d + 1)-
dimensional XY-model [153, 156, 28]. right: If bounded random on-site disorder
df; with A < fi; < A is introduced, a completely new phase, intervening between
the MI and SF phases already shown in the left panel, appears. This is the Bose
glass phase. Now the Mott lobes have shrunk and, if the disorder is sufficiently
strong, might even be absent [153, 156, 28]. It has been shown that there is no
direct transition between the MI and SF phase [157].

exactly n bosons per site. As any degeneracy in the energy between having n or n—1
particles per site immediately leads to superflow, superfluidity occurs at arbitrarily
small hopping at the special points u/Vy = k for integer k£ > 0. In between these
at finite Jy the energy gained by adding or removing a single particle and allowing
it to travel through the system comes at the cost of the energy dE, (§E},) to create
a particle (hole) excitation which, for sufficiently small Jy, necessarily is finite and
positive. So for each interval k — 1 < pu/Vy < k there is a region in the Jy — p plane
where the particle number is fixed to exactly k particles per site. If a particle
would be delocalized in such a region of fixed density, it would win the energy Jy
for the price of the combined energy dE,;, = 6 £, + 6 E},. Thus the probability for a
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Figure 4.2: Influence of particle-hole symmetry on the nature of the phase tran-
sition in the disorder-free case at different values of ji/Uy = 3/4,1,5/4. Data has
been created by using the link current representation [31] of Eq. (4.2). left: If i is
an integer multiple of the on-site repulsion potential the pure system in the Joseph-
son representation exhibits particle-hole symmetry. Superfluidity results from the
simultaneous buildup of large scale, boson world-line, particle and hole-fluctuations
within the background of the system. The particle number is fixed to an integer
multiple of the number of sites. For other choices of i within the same Mott lobe,
the nature of the transition is different. Depending on the size of the respective
excitation gap either particles or holes are added to the system. right: Onset of
superfluidity for the 2D pure model. At i = fix, the Mott insulator to superfluid
transition lies in the universality class of the 3DXY-model (right set of curves).
The curves for equal system sizes for fi = 3/4,5/4 collapse. Their onset is created
by removing/adding particles to the system and trivial in the sense that it starts
linear in density and consequently has mean field critical exponents as predicted by
Bogoliubov theory [28].

boson of hopping a distance r away from its original position decays exponentially
x e/€ with &€ ~ [In(6Eyn/Jo)]”" [153]. For fixed positive non-integer u/V # k
the system thus is insulating even for finite Jy up to a threshold Jy . (1/Vp) where
the kinetic gains finally overcompensate the potential energy costs leading to the
lobe-like regions. As this implies a constant density for a finite range of p the state
is incompressible defining the Mott insulator. The tips of the Mott lobes lie at half
integer pu/Vy = k —1/2. Here the density approximately is fixed to an integer value
for J/Vj even in the superfluid phase in the vicinity of the tip. The phase transition
there is driven by particle-hole fluctuations at constant integer density which is most
easily revealed by considering the Josephson Hamiltonian Eq. (4.2) at integer fi/Uy
exhibiting the exact particle-hole symmetry which implies a nontrivial transition
in the (d+ 1)-dimensional XY universality class with a diverging correlation length
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scaling as & ~ (Jo — Jo,c) “*". Although the original Hamiltonian does not possess
this symmetry, it should asymptotically be restored and the same universality class
obtained. The phase diagram for the Josephson limit Eq. (4.2) is illustrated in the
left panel of Fig. 4.1. Leaving the Mott lobes through any other position than their
tips the transition is well described by mean field critical exponents with a particle
or hole gap vanishing linearly in J — J.. [153].

4.3 Phase diagram of the disordered system in the y— J
plane

Adding disorder a second insulating, but yet compressible, phase the Bose-glass
(BG) emerges. There particle number fluctuations occur, but no superfluid trans-
port is possible as the bosons still are exponentially localized. In this thesis and
Ref. [2] only bounded uniform weak disorder —A < §pu; < A with A < V4/2 is con-
sidered. Again in absence of hopping the site occupation n; is a good quantum num-
ber but becomes spatially dependent on the random background yielding a local en-
ergy € (n;) = — (p+ dp;) n; + Vo(n? —n;) /2. Creating an excess particle at site i for
fixed chemical potential p« now costs the potential energy of 0E, ; = Von; — (dpi+p)
and similarly an excess hole dE}, ; = Vo(1 — n) + (du; + ). Therefore n; is set to
the closest integer near p/Vy + 1/2 4+ dp;/Vo. Again for Jy = 0 one can expect
regions around the half integer values 11/Vy = (k — 1/2), in which the system is MI
with exact particle density of k particles per site. If p is chosen close to k — 1/2V}
and increased then as soon as p > kVp — dp; it becomes favorable to accommodate
one extra particle at site ¢. Starting in the same way for u < (k — 1) Vo — du; the
state becomes unstable towards the creation of holes. On average this means that
at Jop = 0 the p axis splits up into MI intervals of width V — 2A centered around
the original half integer lobe center positions u = Vo (k — 1/2). There each site is
occupied ezxactly by k bosons independent of the local value of the random potential
dp;. But for other values of p located within intervals of width 2A between these
MI intervals [(k — 1) Vo — A] < p < [(k — 1) Vp + A] the occupation number varies
between k and k — 1, depending on the local value of du;. Now only for pn < —A/V}
the occupation number is strictly zero. If Jy is increased to a finite positive value
much smaller than V{ the Mott insulator phase is found to survive but with the
lobes partly shrunk. The transition between the insulating, incompressible Mott
state and the superfluid state, now always goes via the insulating but compressible
Bose-glass [157, 28]. For nonzero A, even in the Josephson approximation Eq. (4.2)
particle-hole symmetry is locally broken everywhere even for i = Upk/2. Never-
theless, it is statistically conserved in these points. Tuning Jy through the critical
value at these loci the superfluid onset is in the universality class of the (d 4+ 1)
dimensional XY-model with columnar bond disorder |28, 31]. The phase diagram
in this approximation is illustrated in Fig. 4.1.
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4.4 The equality z =d

To derive some scaling properties of the dirty boson Hamiltonian, it is most conve-
nient to choose a functional integral formulation [153]. As the dirty boson Hamilto-
nian does lack the exact particle-hole symmetries so does its GLW functional which
directly can be obtained by combining Eqgs (4.1), (1.55) and replacing the lattice

operators <i>j, <i>j by their continuum counterparts v (r,7), 1 (r, 7). The strategy
of reference [156] is thus to consider

B
Lo= [dir [dr{-30'0P0 - Koo, ~ u(r)Po 4 rolul +uolol} (43

0

where only u(r) = p+ op (r) includes quenched random disorder and ¢ (r,7) ~
e(m7) Tt is a continuum approximation to the lattice Josephson Lagrangian

B -
£r=— [ ar{ ¥ Jscoslontr) - o5(7)
0 ig
1 . .
5 Uy [idi(r) + = O] [idy(7) + i - o } (4.4)
i,
considered in the previous section.

Scaling arguments

Spatial phase gradients in the order parameter imply a free energy increment of

B
Af, = (T/28V) /0 dr / dr |V (r, 7)) (4.5)

where T is the helicity modulus introduced in Eq. (3.23). Since V¢ has dimensions
of inverse length it should scale as €71 o |§|” where § is the distance to the quantum
critical point. There the universal assumption is that the free energy scales as

fs ~ €7d§;1 ~ 5u(d+z) ~ 62704 ~ T52V (46)

implying T ~ §27972”, The generalization 2—a = (d+ z)v of the Josephson scaling
relation Eq. (1.42) then gives
T ~ gld+z=2w (4.7)

Phase twists in the imaginary time direction are also punished. The coupling be-
tween changes in the chemical potential and the time derivative of ¢ can be used
to define the compressibility as a helicity modulus in the imaginary time direction
[31]. Temporal twists contribute

B
Afe= (5/28v) [ e [t @6 (r.7)) (4.8)
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to the free energy, leading to the scaling relation
63 ~ k0% o g~ §ATRY (4.9)

Thus if the system at the Bose glass to superfluid phase transition has finite, nonzero
compressibility dn/du in both phases and even at § = 0 the requirement z = d
follows.

Weichman and Mukhopadhyay pointed out that the above argument only needs
to be strictly valid if temporal or spatial phase twists each break a fundamental
symmetry of the model and contribute to the singular part of the free energy [28].
One way to trigger the superfluid transition as outlined before is increasing the
hopping strength J at a given J.() which makes it convenient to choose § =
|J — Je(p)| /Jc(p). Important is that time derivatives and chemical potential in
the Josephson approximation are always included in the combination 9, — p. This
motivates a detailed look at how phase twists enter in different directions.

An arbitrary phase twist can be established by the boundary conditions

Y(x + Laby) = e©9(x), 4] < (4.10)

where = (7, 7) is the combined space time vector. The axis & = 0 is chosen as the
temperature direction with extension L, ~  and the remaining o = 1...d denote
the spatial directions. Introducing wg = ©¢/8 and kg = (©1/L1,...04/Lq) field

b(x) = e Oy ) (4.11)

obeys periodic boundary conditions. The twisted Lagrangian £~°X0 becomes equiv-
alent to an untwisted Lagrangian with renormalized coupling parameters and an

_ B o
additional current term P [¢| = —iJ [ d%x [ dr [¢*V¢ — ¢ V*]. Solving for ¢ (z)
0
in Eq. (4.11) and inserting into the functional Eq. (4.3) yields

L% [, 1, 70) = L [, p — iwo, 7o + JKG] + koP [¢] (4.12)

The free energy of the twisted system becomes

feoko — _(py)~1 [ln (eiﬁwoko)} (4.13)

av

d
where [...],, denotes averaging over realizations of ou(x) and V' = [] L. As
a=1

universality classes by definition are insensitive with respect to smooth changes in
the system parameters the most important feature is to consider the effects of the
twisted boundary conditions on fundamental symmetries of the model. Expandig
Eq. (4.13) in presence of a spatial phase twist and subtracting the corresponding
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untwisted free energy yields the increments

Afoz — fO,kg _ f0,0

= fﬁiv {log {/ Di/_ze*[:o’o (15£ + ;5£2)} — log {/ Dql_)eﬁo'()”av

—ﬂiv [<5£> v (62 - <5c>2)}

Q

av

1
= §Tk3 + 0 (k) (4.14)

where 6L = £0%0 — £90 and (...) = [Dge £ (..) ] [ Dpe=E"". By Eq. (4.12)
only the term koP [¢] can give rise to linear terms in ko. But as (P [¢/]) = 0 these
do not appear in Af,. For a pure temporal twist kg = 0 and Eq. (4.12) directly
implies

Feo0 (u) = [0 (p — iwo) (4.15)
Expanding around wo = 0 with p = —0f/9p and k = 9p/Jp gives the increment

1
Afr =iwop+ G + 0 (wp) (4.16)

The important difference pointed out in Refs. [156, 28] is that only for u(r) = 0
does the imaginary time twist wy break the initial particle-hole symmetry of the
system. In any other case p # 0 this symmetry already has been broken and the
additional twist only corresponds to a smooth variation of the chemical potential.

4.5 Scaling at the Dirty Boson critical point

For ;1 = 0 and in absence of disorder the 1)* theory of the (d + 1)-dimensional XY-
model is obtained and Eq. (4.3) is invariant under both space and time inversion
with all directions entering isotropically. The compressibility « then simply is the
temporal helicity modulus Y, and is finite only in the ordered phase. The free
energy increment then scales as [28]

Afwo’ko ~ 6—1L—d(i>¢6)o,ko (k0€7wofr) _ ﬁ_lL_d(I)go’ko (A,,.(SLl/VO, A_]_éﬁl/zouo)

(4.17)
where vy, zg are the critical exponents of the pure (d + 1)-dimensional XY univer-
sality class and § = (J — J.)/J. the distance to the critical point at gy = 0. Due
to the isotropy in space-time one requires by Eq. (4.14) leading corrections of L =2
and 372. Compensating for the L=¢3~1 prefactor the scaling ansatz thus yields

(I)aazo,ko (x,y) ~ xdyoyzoyg (QTm—Qvo + QTy—2Z(JVO) (4.18)
Resubstituting the above definitions and using (ko), = 0a/La gives

T ~ Ald=2r Az (Q,./©2) §v0 (4.19)
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KA AW AZZv0 (Q, /OF) 6970 (4.20)
where ©2 = ©% + .- + ©2 [28]. Thus the Josephson scaling relations

Uoz(d+Zo—2)V0=2—a0—2V0 (421)

vro = (d — zo10) = 2 — ap — 2291 (4.22)

in D = d + 2 dimensions are obtained with Q, o< ©2 and Q, o< OF .

At the Bose glass to superfluid transition one comes across a different situation.
Both p and k are smooth functions of p in each respective phase. At finite p a
temporal twist only minimally changes the particle-hole symmetry-breaking term
Y* (0r — u(r))2 1 included in L. Spatial twists however enter in the very same way
as above for wy = 0. The scaling form of Eq. (4.17) now implies

AfO gL (4,801, A58V ) (4.23)
where again in order to get the appropriate leading terms
dOKo (1, 9) ~ R4y (4.24)
which for large x,y > 0 implies the stiffness
T~ Al AZ (R, /©2) 6V (4.25)

where v = (d+2z—2)v = 2—a—2v. Again R,. oc ©2 and all exponents are those of the
dirty Boson critical point. As there are no twisted boundary conditions imposed
along the time direction, no O (6‘1, ﬁ_2) appear in the free energy increment.
Finally, including a temporal phase twist wg has the net effect of shifting u — p—iwg
and the occurrence of extra (-boundary conditions in (4.23). The free energy
increment then should simply turn out to be

Afwo,ko _ B*lLfdé(),kg (AT(SQLl/V,AT(Seﬂl/ZV>

(4.26)
+fa (J7 To + Jk%; n— in) - fa (Ja TOvM)
where dg = J—J. (u — iwg) =~ 0 +iwpJ. (1) has slightly been shifted and f, denotes
the analytic part of the free energy [28] . But ®¥¥o is still given by Eq. (4.23) and
therefore is unable to give rise to O (B‘l, 5_2) corrections. Weichman et al. thus
argue that the only ways that p and x can pick up these temporal corrections are
(a) through a possible wy dependence of dg which has been shown in double e-
expansions to have dominating singular behavior rs oc [6|”” and thus for o < 0
becomes negligible at § = 0 (b) through f,. So far simulations of the problem
including the one presented here [2] seem to be well consistent with z > 1 and
v > 1158, 31, 159]. Thus a = 2—(d+z)v < 0 for d > 2. This then would strongly
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suggest, that x amounts from the analytic part of the free energy. Without any
spatial phase twist the analytic part in the free energy therefore becomes [28]

Fa(Jop) = =pe (T) [ = e ()] = e () [ = pre (D] + . (4.27)

close to the transition line p. (J). Inserted into Eq. (4.26) at ko = 0 this means
that a finite x through the transition can be obtained solely via the analytical part
fa without imposing any restrictions on z.

4.6 Dual representation of the Josephson Lagrangian

To simulate the dirty boson model and avoid complex weights naturally arising in
Eq. (4.4) at non-integer densities or in presence of disorder one usually maps to
the link-current model [31]. Using the same methods as in Ch. 3.1 the Josephson
Lagrangian Eq. (4.4) can be mapped on a model of sterically interacting loops
describing the boson world lines in a path integral formulation. Discretizing all
derivatives and using the Villain approximation Eq. (3.8) of the cosine-term Eq.
(4.4) reduces to the form Ly [¢,j] by

e I (4.28)
. 1 " -
E.]V[¢,J] = 5 Z K’L (Aa¢w - 27T]m)2
z oc;éO
+ 5 Z qu(z T) T - 27Tj?1'77—))
4,7
X (AT¢(j,T) — v — 277.7.?]',7—)) (429)

where Ay bz = (¢pra—dz) is the finite difference derivative and j, = (5Z,75%,...,5%)
a (d + 1)-dimensional integer vector field sitting at each lattice site € = (i,7) of
a L; x L% space-time lattice. The index o = 0,1,...,d denotes the (d + 1)-unit
bond directions adjacent to each site. The 7-direction corresponds to o = 0. The
coupling constants K, V;; and v; correspond to J;; A1, U;; AT and (it + 0f;) AT in
Eq. (4.4). Observe that only the second term couples different “time-slices” through
A7 i,ry- Straight forward multivariate generalization of the Hubbard Stratonovich
decoupling Eq. (3.9) and again using the identity Eq.(3.11) and the same steps that
lead from Eq. (3.7) to (3.15) one obtains the dual link-current Lagrangian

. (JG.)?
‘CJ[J]:% Z (I(ia—’_ ZV;JJ(zT (4,7) Zyl (i,7) (430)

7, 7,a#0

where the components JS are integer variables. The partition function becomes

Z = Z H 5v.Jm}06_£J[J] (431)
J =z
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The divergence free condition again was obtained by integrating over the phases as
in Eq. (3.14). Similar to the bond variables q in Eq. (3.21), describing the vortex
currents in a superconductor, the space-time variables (J7, JZ,JY,...) have a neat
physical interpretation. The time component J7 describes the density fluctuations
and thus can be seen as the excess particle or hole density. If one were to include
an external magnetic field minimally coupling to the kinetic hopping term then
the cosine term in Eq. (4.4) transforms as cos[¢;(7) — ¢ira(T)] — cos[¢i(T) —
$ita(T) + Az.a]. This would add a term i}, o J&As.a to £;[J] in Eq. (4.30).
The expectation values of the spatial current components can therefore be written

as
dlog Z

0Az.

and Jg can be seen to describe the full physical, gauge-invariant current. Imposing
a uniform phase twist along any of the spatial directions g = 1...d corresponds to
the presence of a uniform vector potential A o = 9,,,0/L along that direction.
Using the definition of the superfluid density then yields in analogy to Eq. (4.14)

(J2) = —i a#0 (4.32)

0%, 1
ps ~ L? 902 ~ Li2L. (W] (4.33)

where W, = L™'Y"_ J# is the winding number describing how many times the bo-
son world lines wrap around the system in the spatial direction g. Thus in contrast
to the superconductor representation, where the macroscopic onset of vortex line
fluctuations in the system signals the destruction of superconductivity, in the link-
current representation the onset of macroscopic world line fluctuations signals the
onset of superfluidity. Similarly the compressibility can be straight away calculated
as
_On _ 0*f L,
e o op?2 L2
and thus simply corresponds to the number fluctuations in the excess particle den-
sity.

((W2) = (W2)?) (4.34)

T






Chapter 5

Monte Carlo Methods

All phase transition considered in this thesis can be mapped on equivalent classical
effective models only respecting the relevant degrees of freedom and fundamen-
tal symmetries. Thus the statistical physics can be treated entirely by classical
Monte Carlo methods. This chapter shall briefly outline the general properties of
the Monte Carlo (MC) method starting from local algorithms over more advanced
collective updating methods performing exceptionally well in the critical region of
a continuous phase transition. Further generalized ensemble methods applied to
the problems in this thesis are discussed. Those are particularly effective for hardly
relaxing systems and for first order transitions.

5.1 Classical Monte Carlo

The need to describe classical systems of a macroscopic number of particles by
statistical means arises out of the sheer impossibility and absurdity it would pose
to solve the equations of motion for 1023 particles and describe the behavior of each
of them in detail. One thus simply describes these systems in terms of their bulk
properties given by averages over (@) of some physical observable Q. For simplicity
labeling all possible states by the index p one aims to calculate

<Q> = ZQMPM (51)

where P, = P (X,) is the probability for the microscopic configuration X, to
occur. The goal of MC is to generate a series of configurations {X,,,} that prop-
erly reproduce the statistical properties. In the same way as it is not sensible to
microscopically solve for the trajectories of the individual particles, it is utterly in-
effective to simply generate a random configuration of the system and accept with
the proper probability P,. Usually the average is dominated by only a fraction of
the theoretically accessible states. This is especially the case for the Boltzmann

63
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distribution
e PEL

VA
where E,, = E (X,,) is the internal energy and

Z = Ze_ﬁE“ = Zg(E)e_ﬂE (5.3)
% E

P, = (5.2)

Usually ordered low energy configurations are penalized at high temperatures by
an exponentially small density of states g(E) and disordered states at low tem-
peratures by an exponentially small weight e ~#Z». To ensure that the observables
obtained from numerical simulations converge as quickly as possible and in principle
to arbitrary precision the algorithm yielding the time series {X,, } needs to be de-
signed such that the state space is explored in an effective fashion. If one generates
the states contributing to Eq. (5.1) according to some predetermined probability
distribution I:)u then the average becomes

(@) =) P.'PLQy, (5.4)

The choice Pu = P, is known as importance sampling, ensuring that the algo-
rithm automatically does not try very unlikely configurations. The average over N
configurations generated by the MC algorithm then becomes

1 Qe
Qn, = A ;Qm (5.5)

Markov processes

The quality of a MC algorithm is to a large extent determined by the speed by
which all observables @,, approach their equilibrium distribution with increasing
number Ny of configurations contributing to Eq. (5.5). To efficiently construct such
a random time series X is highly non-trivial. An elegant way is given by Markov
chains. Starting from an initial configuration X, one proposes random updates
that eventually lead to a transition to a new configuration X, with conditional
probability w,,,. For proper Markov chains these transition matriz elements need to
be time independent and are allowed to “remember” the history of the process only
via the current configuration X,,, with all other previously obtained configurations
having no effect. The probability for being in state p at time ¢+ 1 then is given by

P(t+1)= 3" Py (D + P (01— D wy) (5.6)

vEp vEp

where it has been used that the probability for no change at all is w,, = 1 —
> 2y Wop- In order to ensure that the “temporal average” of the stochastic pro-
cess X, Eq. (5.5) is equal to the ensemble average it needs to be ergodic. All
configurations should be reachable in a finite number of steps.
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Detailed balance

In case that the Markov process has succeeded in converging towards the “true”
equilibrium probability density the distribution P, (t) is stationary. Thus conver-
gence can be ensured by imposing the detailed balance condition

P,w,, = P,w,, 5.7
nWrp w

on Eq. (5.6). This avoids the theoretical possibility of ending up in limit cycles [160].
In principle one can write the evolution of Eq. (5.6) as a matrix equation P(t+1) =
wP(t). If only the weaker balance condition ), P,w,, =, P,w,, was imposed
then Eq. (5.6) still would yield an equilibrium distribution but this equilibrium
may be a dynamic one in the sense that P(co) = w”P(00) is obtained after a finite
number of steps n, where n is the length of the limit cycle. Then the temporal
average obtained by taking the mean over the stochastic time series in general is
different from the desired ensemble average. For the Boltzmann distribution Eq.
(5.7) implies

Won _ BX) _ os5,-1,) 3)

W P (Xy)
Having pointed out the possible pitfalls, in fact, many widely used MC algorithms
such as parallel tempering break detailed balance [161]. Under fairly mild assump-
tions detailed balance can be shown to be overly strict [162].

5.2 Warmup and convergence

Obviously starting from a random, or any other initial configuration, any MC al-
gorithm will take a finite time in order to enter, sample and exit all states with
their correct respective Boltzmann weights. One method to check for equilibration
is given by logarithmic boxing. One calculates the expectation value

1 2N,
<A>Nt:ﬁt oA (5.9)
t=N;+1

over increasingly large, non overlapping intervals of the MC time series. Here INVy
denotes the number of MC sweeps performed. One MC sweep usually is defined as
a single update attempt per degree of freedom. The equilibration time necessary
can vary strongly between different quantities. The slowest quantity of interest
should therefore be considered when deciding how many MC sweeps need to be
run. In addition at any step in the simulation the next configuration will directly
depend on the previous one. It therefore always takes a finite time to generate a
completely uncorrelated new configuration. The correlations typically can be shown
to approximately decay exponentially with the number of steps

(QDQw) — (QNQE) ~ e~ (171)/me (5.10)
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for t > ' and 7 again depends on the quantity @'. This is important if one
attempts to calculate the error bar of some quantity from a single MC trajectory.

Acceptance probabilities

The efficiency of a MC algorithm is to a large extent determined by the weights
wyy- In fact there is a lot of freedom to chose these weights as these only need to
obey the normalization condition )  w,, = 1 of the transition amplitudes and the
(detailed) balance condition Eq. (5.7). It proves useful to break down the transition
matrix elements in two parts via defining trial probabilities ¢,,, to attempt an update
that given the state X, the system is taken to X, and corresponding acceptance
probabilities a,, via

Wyp =ty - Gy (5.11)

The condition (5.8) does only fix the ratio

Wop _ LGy (5.12)
Wuy  tupup

By multiplying the larger value of a,, and a,, by a positive number in such a
way that the product becomes unity and adjusting the remaining acceptance ratio
by the same factor, the a,, are made as large as possible while still obeying all
constraints. In an ideal MC algorithm the whole dependence of w,, would be
incorporated in the trial probabilities rendering all a,, to unity.

5.3 The Metropolis algorithm

This is one of the first examples [163] of a successfully implemented Markov chain
MC simulation. For most algorithms in the canonical ensemble the trial amplitudes
are chosen symmetrically and drop out of the ratio. The ratio of the transition
amplitudes then simply becomes equal to the ratio of the acceptance probabilities

Bop _ G _ o=B(B,—By) (5.13)

Wy (M

The optimal Metropolis choice of the acceptance probabilities is

(5.14)

e PEED) B, E, >0
Auy =
. 1 else

For the models given by Eq. (1.65) the algorithm itself then becomes

1. Start from an initial configuration {S (r;)}

1n fact this is a bit oversimplified. Writing the asymptotic probability density obtained for
large times in terms of the eigenvectors of the transition matrix w it can be shown that there are
rank (w) — 1 correlation times [160]
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2. Randomly pick one spin S (7;) and suggest a new orientation S’ (r;) uniformly
distributed on the boundary of the N-dimensional sphere.

Calculate the energy difference AH
Accept new state S’ (r;) with probability min {e=#2H 1}

Measure all observables of interest.

A

Repeat 2-5 until the running averages of all observables have converged.

5.4 Collective updating methods

The problem for local update schemes like the Metropolis algorithm is that they
suffer from critical slowing down, at a second order phase transition. The number of
effectively sampled, independent measurements is Negr ~ Ngamples/27 where 7 is the
autocorrelation time. Usually 7 grows, as the transition temperature is approached,
according to the power law

T~E TV (5.15)

with the exponent z ~ 2 for most local methods [164]. Collective updating methods
such as the Swendsen-Wang ,Wolff and Worm algorithm practically avoid critical
slowing down by making wuse of the fact that the correlation length diverges at
the phase transition. In single spin flip models the probability of flipping single
spins let alone large clusters of spins is severely reduced at criticality, due to the
local dynamics. If spin models of the O(N) type Eq. (1.65) go through a phase
transition the diverging correlation length leads to the emergence of cluster like
regions of similarly oriented spins. Fortuin and Kastelyn [165, 166] realized that
the Ising spin model can be mapped on a model for bond percolation. Swendsen
and Wang [167] designed an algorithm that uses this fact in order to efficiently flip
multiple clusters of spins at the same time. Their algorithm later was refined by
Wolff to a single cluster algorithm [164] for arbitrary N. The dynamic exponent z
for the Swendsen-Wang roughly is zgw ~ 0.25,0.54,0.86 in d = 2,3,4. The Wolff
algorithm performs even better with z = 0.25(1), 0.33,0.25 for the same dimensions
and was even found to be consistent within a logarithmic divergence scenario [168].
As much as these algorithms improve the performance of the O(N) models in zero
field, where the interaction along each bond can be written as a simple spin scalar
product, they are useless for the London superconductor models Eq. (3.6) with
fluctuating gauge field. Similarly the worm algorithm pioneered by Prokof’ev and
Svistunov [169] gains from the fact that using the dual loop representation at T,
the loops size diverges.

Wolff algorithm

For continuos O(N) models the single Ising spin flip operation is generalized towards

a reflection operation, R (S , with respect to a hyperplane orthogonal to some
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randomly chosen vector S on the respective N-dimensional unit sphere via
S'(ri) =R (s) S(r:) =8 (r:) —2 (s (rs) - s) S (5.16)
The algorithm then can be sketched as

1. Choose a random lattice site r; and a random reflection vector S.

2. The seed spin S (r;) is flipped according to Eq. (5.16) and marked as an
element of the cluster.

3. Check all bonds connecting site r; to its nearest neighbors. The bond r; —
r; = r; £ [i is activated with probability
)|}
Ss

|
)

(5.17)

P(S(r),S(r;) =1—exp (mm {o,ws (r;) - [ (s
=1-—exp {mln {O 28.J (SS i ) (

In case of activation the spin S (r;) is flipped. All sites that have been joined
to the cluster are saved in a list.

4. Consider the neighbors of the last saved element on the list and continue to
consider addition of spins not marked to belong to the cluster using step 3.
Remove the element from the list and continue until the list is empty.

The worm algorithm

For actions like Eqgs (3.21), (4.30) and Eq. (3.29) admitting a representation whose
configuration space is given by closed paths (CP), the worm algorithm is an effective
tool. Its efficiency is similar to the best cluster methods with essentially logarithmic
scaling 7 ~ In L at the critical point [169]. For the classical Ising, XY and Potts
models, such a representation arises by performing a high temperature expansion.
As for single spin flips in the spin models, the corresponding local updates given
by removing or adding elementary closed plaquette loops to the configuration, have
the strong drawback that they hardly lead to loops winding around the system.
Global updates, adding lines spanning over the whole system, are exponentially
suppressed with increasing system size. The ingenuity of the worm algorithm was
to base the generation of the loops on a local draw-and-erase procedure which can
be described as follows:

1. Start from an arbitrary closed path configuration.

2. With equal probability pick a radom site on the lattice. And set the worms
head and tail coordinate equal to that site.

3. With equal probability pick a random direction.
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Figure 5.1: left: Probability amplitude P (r/L), to insert an open loop segment
with head and tail separated by a distance r, for the dual 3D XY model in Villain
approximation at different couplings for L = 64. The data is normalized to P(0) =
1. Below K. large distances are exponentially suppressed. At K. the probability
distribution decays as r—(@=2+1)  Above K. large worms become abundant. right:
The corresponding quantity for the 3D-Ising model in loop representation at the
critical coupling Bqua;,c = 0.221654 shows the same scaling properties using n =
0.0366.

4. Calculate the action difference AS associated with adding a worm segment
along the direction.

5. Accept with probability min (1, e~ A8 )

tion.

eventually creating an open configura-

6. If the worms head and tail coincide stop and measure. Otherwise repeat from
step 3.

7. Perform 2-6 until all running averages converged.

As due to step 5. the worm algorithm, locally for each step, is a Metropolis-like
scheme, it automatically obeys detailed balance. The reason for its effectiveness is
of similar origin as that of the Wolff method. The latter profits from the collec-
tive behavior of spin clusters reflected in the power law form of the spin two point
correlation function g (r) ~ 7~(¢=2+") at T.. In the loop representation this corre-
sponds to an open-loop length distribution, where the probability amplitude P(r),
to find open loops with head and tail separated by a distance r apart at any time in
the simulation, scales as P(r) ~ r—(@=241) with the same exponent 1. Thus again
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precisely at the critical point where local schemes are harshly punished by critical
slowing down the worm scheme is warranted by the same power law correlations,
leading to the proliferation of system size spanning loops, potentially in a single
MC move and to low dynamic correlation times. A plot of P(r/L) is shown in the
left panel of Fig. 5.1 for link-current model S = 7 ZZ'E_:O [q,.(:)]” for different

values of the coupling K = Bgulal close to K. =~ 0.33305. Here it measures the
order-parameter correlations via

P(ir =)~ @0 — ([ ewp |- (atrd+3 )] 619

r,eC

where C' is an open contour connecting 7 and 7. The right panel shows the scaling
collapse of P(r/L) for a 3D Ising loop model Eq. (3.29) at B4ual,c-

5.5 Wang-Landau algorithm

Conventional Monte Carlo methods sample over phase space at a fixed temper-
ature T according to the canonical distribution Eq. (5.2). Specifically at first
order transitions this approach becomes very inefficient. There the probability
to tunnel between the coexisting phases decreases exponentially with system size
~ exp (—BAF) where AF ~ L9~1 according to Eq. (1.93). The correlation time
diverges accordingly. To avoid these dynamical problems the Wang-Landau (WL)
method [56, 170] directly tries to estimate the density of states g (E) defined in
(5.3). In principle observables O () that are functions o(E) of the energy only and
their respective probability distributions can be obtained for any temperature by

simply reweighting
_ 2po(B)g(B)e PP

according to Eq. (5.3). Of course g(E) is not known initially but is estimated in
the following way:

1. Set g (F) to an arbitrary starting guess. Create a histogram h(FE) keeping
track of the number of visits at the level E.

2. Attempt to update the configuration and accept proportional to the inverse
of the current estimate of g(E) via

- |9 (EM) ]
p(E, — FE, :mln{ , 1 5.20
using a standard elementary MC move. Update g (E) for the final level accord-
ing to g (E) — g(E) - f where f > 1 and the histogram by h(E) — h(E) + 1.

3. Repeat this until the energy histogram h (E) is flat in the sense that the
number of entries in its bins fluctuates between a fixed range (usually ~ 20%)
around the mean histogram entry (h (E)).
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4. The density of states is now considered to be determined within the accuracy
of the modification factor f. Reduce f and reset the energy histogram to
h(E) = 0 for all entries F and repeat 2-3 with the current estimate of g (E)
until f is very close to unity for example f = exp (10*8).

Good starting guesses for g(E) can immensely increase the convergence. Further as
g(E) usually varies over several orders of magnitude it is numerically advantageous
to solely save the logarithm S(F) = log[g(E)]. Then S(E) simply is updated
according to S (FE) — S(F) + F where F = log[f]. In the original work it is
suggested to modify f — \/f after each time a flat histogram has been obtained.
The density of states g(F) here only is a relative estimate, but if the exact number
of ground states is known then it can be normalized to truly reflect the number of
states at a certain energy level. The implicit assumption in the preceding section
was that the energy levels are discrete. One way to treat continuous models is to use
a binning procedure but this becomes very inefficient if the bins are chosen too wide.
To treat continuous cases and to efficiently calculate the joint density of states for
multiple observables a generalization to the WL method has been obtained [171].

For the original WL method it can be shown that the error in the estimate of
g(E) saturates due to the rapidly decreasing modification factor f [172]. This can
be avoided using the 1/t algorithm. The WL time ¢ is defined by ¢t = Niyiais/Npins
and updated at every trial move. Again the finess initially is chosen to Fy = 1.
Then the original WL algorithm is used until the refinement parameter F' becomes
smaller than 1/t. From then on one uses F' (t) ~ 1/t until the desired accuracy is
obtained.

5.6 Replica exchange

Some systems such as spin glasses exhibit many local energy minima out of which
canonical MC algorithms can hardly escape. This implies large autocorrelation
times and in some cases even leads to fundamentally wrong results if the algorithm
gets stuck in the vicinity of one particular minimum. Also at first order transitions
the exponentially increasing tunneling times imply that the algorithm only explores
a tiny fraction of phase space, spending most of the time visiting states of the same
phase. An efficient work-around for such problems is found in the replica exchange
method [55]. There M replica of the same system are simulated in parallel at
different temperatures f3,,. A state of the system then is defined by the joint
state of all independent M replica {X} = {X,,, X,,,...,Xu,,_,}. One is thus
simulating an extended ensemble with partition function

M M
Z =Tr{x {exp ( > ﬂmEum) } =[] 2 (Bn) (5.21)

m=1

where Z () is the canonical partition function of a single system. The idea now is
that in order to prevent getting stuck in metastable states one proposes to exchange
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configurations between two temperatures to reduce the autocorrelations at a single
temperature. In practice of course it is much easier to just assign new tempera-
tures to the existing configurations. To assure convergence towards the Boltzmann
distribution one invokes

W (XFLWL ? Bleﬂn ) Bn)
WXy Bl Xty Br)

= exp [(Bn — Bm) (B, — Ep,,)] (5.22)
for exchanging the replicas n and m. The acceptance probability is thus given by

Uty B st sBon) (o B st ) = 1T (exp [(Bn — Bm) (Eu, — Eu,.))s 1) (5.23)
The actual Monte Carlo procedure can now be summarized as:

1. Simulate all replica simultaneously and independently using any standard
canonical MC method for a fixed number of sweeps.

2. Exchange two configurations with the probability given in Eq. (5.23)

From Eq. (5.23) it is obvious that the acceptance probability decays exponentially
with the inverse temperature difference thereby only nearest neighbor exchanges
are attempted. It is further very inefficient to choose evenly spaced temperatures.
Berg [173] suggests to optimize the acceptance ratios by iterating the positions of
the temperatures via the following rule. Given some initial spacing one generates
a new set of temperatures 5/, by

By = Po and B, = B, 1 +Tam (Bm — Bm-1) (5.24)

where the parameter 7, ,, is determined by the weighted point to point acceptance
ratios a,, measured for the exchange move (5.22) for the replica pair m — 1 <> m

via
Br—1— Bo
m M1 ~
Zmzl Am (ﬁm - ﬁmfl>
Thus large acceptance ratios between two adjacent temperatures tend to increase

their spacing in the new setting of couplings, whereas small ones lead to a shrinking
distance.

=a

(5.25)

Ta,m

5.7 Replica exchange for the Wang-Landau scheme

The above idea of simulating different replica has also been adapted to the WL
scheme [57]. It can be implemented in the following way:

1. Divide the total energy range considered by the WL algorithm in NV, smaller
overlapping subwindows. An overlap by around 75% between neighboring sub
windows is advantageous [57].
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Figure 5.2: MC data for the SRM case in paper III. Specific heat results obtained via
serial runs using the worm algorithm, and the WL algorithm with replica exchange
using only plaquette loop and straight line updates, agree very well.

2. Now in all subwindows perform standard WL sampling for a fixed number of
N, sweeps accepting changes as in Eq. (5.20). In general one can use several
“walkers” performing WL sampling within the same window.

3. All walkers within a sub-interval randomly choose an exchange partner from
the neighboring interval. Let walker ¢ be associated with configuration X,
and walker j be associated with configuration X, just before the exchange. If
the two are chosen for an exchange attempt then the move is accepted with
probability

9:(B) g; () 520

9: (Ev) g5 (E,)

Thus in this scheme every walker ¢ has its own density of states g;(E) and
histogram h;(E) which are updated independently.

Pice = min |1,

4. When multiple walkers are used within a subwindow the error can be re-
duced with y/m by averaging out g(E) among the walkers before continuing
to the next step and redistributing. The simulation then potentially moves
on faster due to reduction of the effect of outliers in the simulation impeding
fast advancement for the next iteration.

5. The simulation is terminated when all energy subwindows have reached the
final accuracy. At the end of the simulation all N,, x m pieces of g(F) frag-
ments are used to calculate the total DOS. Two overlapping regions are joined
at the point where the micrcanonical 8 = dlog [g (E)] /dE do best coincide.
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In paper IIT this method was used with single walkers in each interval. Averages
where performed over independently obtained results. Test results for the SRM
case treated in this article are shown in Fig. 5.2.

5.8 Reweighting methods

As for classical MC algorithms the underlying probability distribution is known,
data obtained at 3y can in principle be reweighted to a nearby temperature at
via [53]

SN Qe (BBo) B
Ziv;l e—(B—B0)Ey,

(Q) = (5.27)

The reliability of this single histogram procedure is however limited by the heat

capacity in point Sy. Only if the corresponding temperature Ty = 1/, satisfies
T — Ty T3 1

To Var [E (Tp)]  e(Tp) (5.28)

where ¢ is the total, unnormalized heat capacity its data can be reweighed to T’
[160]. The efficiency can be boosted by joining the data of several temperatures
using the technique of multi histogram reweighting [54]. Consider a set of N inverse
temperatures f3;. At each temperature n; (ideally independent) measurements shall
have been performed. Then we can iteratively calculate the partition function
Zy, = e~ f* according to

Ng n;

=f
e Jr ZZZ n; e(ﬁk Bi)Eit+f; (5.29)

i=1 t=1

where F; ; is the t*" entry in the energy time series at coupling 3;. A way to solve
this nonlinear equation is by just feeding a start guess to it and then reiterate until

N s _ps—1
2 N P
Xs = _fs

e “hi

i

(5.30)

drops below some predefined value € where s denotes the step. A second possibility
is given by using a stored energy histogram h;(E). Then equation (5.29) can be
phrased as

—fr — )
‘ ZZ Z n; e(ﬁk Bj)E+f; (5.31)

=1 FE
To interpolate between temperature values to a value 8 we then simply can use

Ng n;

e~ s —
=33 s (5:52)

i=1 t=1
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which gives us the reweighed estimators of any other operator O stored in the same

set of time series
Ng Mg

O; 4
Ol =22 > njeB=PE =Ty (5.33)

i=1 t=1

The optimized expression for the density of states is given by

S nihi (E)
n(E) = L (5.34)

5.9 FError estimation

To obtain error estimates for the MC trajectories generated via the combination
of temperature exchange and histogram reweighting methods in [3] we adapt to
the following strategy. We calculate the longest integrated autocorrelation time
at each temperature and take values once for each correlation time. Then we
generate synthetic data sets by independently and uniformly resampling the reduced
trajectories obtained. With those we again perform the reweighting procedure and
calculate the variance over all estimators obtained. For the disordered systems
[1, 2, 4, 5] we obtain averages for different realizations of the disorder independently.
As they are uncorrelated the final disorder average can simply be calculated as the
mean and variance over all independently obtained final estimators. In the Wang-
Landau case we simply calculate different estimates of the density of states and
average over the estimators obtained for different final results.






Chapter 6

Results

6.1 Paper I: Defect supersolid

The article considers the possibility of a superfluid onset in solid *He with signatures
different from the bulk A-transition. The approach is motivated by the peculiar
disorder dependence of the NCRI and specific heat discussed in Sec. 2.5 seen in
initial experiments [130, 123]|. Quite generally we assume the superfluid component
to be confined to the defects of the *He crystal. If the transition is driven by the
breakdown of long range phase-coherence and using that “He is a neutral superfluid
Egs. (2.16) and (3.6) generalize to

L== " Ju(r)cos[(r; + 1) — O(r;)] (6.1)

(%

The XY coupling parameter Eq. (3.2) is chosen spatially inhomogeneous and ran-
dom in order to resemble the proportionality J,(r;) o |W|* where the order pa-
rameter amplitude is zero in the bulk, and nonzero on the defect. In particular
there were two kinds of crystal defects shown to sustain superflow, dislocation lines
and grain boundaries [133, 132, 131|. The former are effectively one dimensional
defects extending throughout the whole crystal. By intersecting, these can form an
interconnected network that possibly can be pinned by lattice impurities such as
3He. In principle such networks then might support bulk 3D superflow. Similarly
grain boundaries separating crystallites in 3D bulk crystals can effectively be seen as
planar defects. Previous work on a possible phase transition signature, had mostly
considered the effect of disorder with respect to uncorrelated random defects [174].
But in extended defect networks long range correlations can appear. As outlined in
Sec. 1.15 this can destabilize the fixed point of the pure system towards a new disor-
dered fixed point in particular with a new disordered critical exponent vq. We model
dislocations in Eq. (6.1) as straight lines on a cubic lattice. The coupling parameters
thus show spatial correlations [0.J,(7)d.J,/(0)] o [6(2)d(y)+6(y)d(2)+0(2)d(x)]0,, 0
where 6J,(r;) = Ju(r;) — [Ju]. Asin Eq. (1.84) the integrated correlation func-

T
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Figure 6.1: Comparison of the onset properties for a system of size L = 40 of the
different correlated disorder cases considered in [1] compared to the pure 3DXY
case. In all cases the onset features of ps are considerably softened and the heat

capacity maximum smoothened.

tion over the coupling constants [(AJ)%] can be rewritten in terms of the coupling
correlation averaged over the sub-volume V = R?,

(A1 = CR) = RS 3 [67,(r)57,0(0)] (6.2)

o’ T €V

For straight line disorder Eq. (6.2) gives C(§) ~ £~% with exponent a = d — 1 =
2. Which is the result one would obtain for algebraic correlations with the same
decay exponent a according to Eq. (1.88). In a similar way approximating grain
boundaries as randomly oriented planes orthogonal to some symmetry direction of
the cubic lattice gives a = d —2 = 1. Using the A-transition value vpyre ~ 0.671
according to the WH criterion Eq. (1.89) both dislocations and grain boundaries
obey 2 > avpyure, implying that a new disordered fixed point should appear with
vq = 2/a with the respective value of a. In contrast to the case of uncorrelated point
disorder [0.J,(7;)0J,/(0)] o< 6, 005, 0 Where vg = Vpyre > 2/d. It is precisely the
exponent v that controls the onset properties of ps ~ |T'—Tc|” and the shape of the
scaling part of the heat capacity ¢ ~ |T'—T,|~“ via the exponent « = 2—dv. For the
correlated disorder cases considered v > 1 automatically implies that the derivatives
dps/dT and dc/dT remain finite at T, in contrast to the pure model where both
diverge. To relax the straight line condition we also consider directed random
walks with enforced periodicity along the drift direction. These show a decay in
the integrated correlation function that is similar to the one observed for straight
lines. The upshot of this analysis is that all these disorder types should lead to onset
signatures that are softened with respect to the original A-transition as shown in Fig.
6.1. There is thus no strong reason to expect a hypothetical supersolid transition
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Figure 6.2: Scaling results for MC data of the Binder ratio U (T,L) =

(M*)/ ((M2>)2 and the helicity modulus Lp, (T, L) obtained for the defected su-
persolid model Eq. (6.1). Open symbols connected by dashed lines are the scaling
results presented in Fig. 3 of the paper I. Filled symbols are results obtained by a
corrections to scaling ansatz for U, Lp, of the form ag + a2 + asx?® + L™%¢,, where
x = LY (T —T,)/T. using system sizes L = 10, 12, 16, 20, 30, 40, 60, 80 and z < 0.2.
Invoking these corrections clearly improves the agreement if the smallest system
sizes 10,12, 16, 20 are included. Whereas the estimate of v obtained via U is hardly
affected by the correction term, the one obtained via Lpy is greatly improved. In
addition the T, estimates obtained for both quantities respectively are considerably
improved and agree within error bars in contrast to the curves obtained without
corrections. The estimate for the respective corrections to scaling exponent w are
now stable if the smallest system sizes are included but vary strongly upon us-
ing only the largest system sizes. The correction term becomes much smaller for
these sizes compared to the asymptotic scaling function and thus harder to esti-
mate. In addition the number of data points entering the scaling ansatz is much
smaller. A problematic property of the correction term is that increasing c,, can be
compensated for if at the same time w is increased.

to have the same signatures as the 3D A-transition if the superflow is confined to
extended interconnected lattice defects. For the most interesting candidate case of
straight dislocation lines our results suggest that the WH conjecture vg = 2/a =1
is correct. For small system sizes corrections to scaling seem present but can be
corrected for as shown in Fig. 6.2.
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6.2 Paper II: Quantum critical dynamics in the 2D Bose
glass to superfluid transition

We test the scaling prediction z = d for the dynamic critical exponent at the Bose
glass to superfluid quantum phase transition via Monte Carlo simulation methods.
Choosing all couplings K¢ in Eq. (4.30) isotropic and only including random on-site
disorder the link-current model [31] defined by the Hamiltonian

1 v-J=0 1
)2 ~ ~ T
x,& (z,7)

emerges. Here z = (i, 7) denotes sites on the space-time lattice L? x L, on which
the link currents reside. The chemical potential is adjusted to i = 1/2 and the
random on-site potential is chosen at maximum strength to be uniformly distributed
between —A < §ji; < A where A = 1/2. To extract the exponent z we construct a
scaling function based on the winding number fluctuations defining the stiffness p;
via [175]

m <W2>L27d

Ps = w2 Ad

where 8 ~ L. corresponds to the length of the time direction of the anisotropic
space-time lattice. In the critical region, using k = (K — K,) /K., the fluctuations
(W?2) are given by a universal scaling function (W2) = W (L/"k, a;) where a, =
L./L? is the aspect ratio. At the quantum critical point kX = 0 and the winding
number fluctuations reduce to a universal scaling function of the aspect ratio a.,
alone. At fixed L, K, (W?) should be an increasing function of L,. This follows
directly via rearranging Eq. (6.4) to

(W?) ~ L, L 2p, (L, L) (6.5)

~ L7 L2 W?) (6.4)

and by the fact that the superfluid density, at fixed L, is a monotonically increasing
function of 8 ~ L,. Then the winding number fluctuations automatically are
monotonically increasing in the aspect ratio a... The thermodynamic limit for the
QPT corresponds to simultaneously taking L. — oo and L, — oco. But care needs
to be taken in the limiting procedure. Using cubic volumes, as apparently done in
Ref. [159] leading to the result z ~ 1.4, should be invalid as then, upon increasing
L, the aspect ratio is systematically reduced unless z < 1. Our approach is based
on the general scaling function

(w?)

5 =
T

®(K,L,L,) = (LY Ek, ay) (6.6)

(0%

motivated by the fact that (W?)/L2 at fixed K, L has a maximum at L* [2]. As
the corresponding aspect ratio o where this maximum occurs has to be the same

for all L one gets
o = Ly /L7 =3(LY"k) (6.7)
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Figure 6.3: Scaling results for ® (K, L, L;) main figure: At all couplings K we
identify the maximum ®*(K, L, L,) of W?2 /L2 for fixed L. At K. Eq. (6.6) implies
®* ~ L2%, Using system sizes L > 16 only, the data scales nicely with z ~ 1.78.
A: Dependence of the residuals from a linear fit of log [®* (K, L, L,)] vs. log L shows
a clear minimum at K = 0.2477. B: The derivative with respect to K of ®* taken
at K. obtained via a third order polynomial fit to the data shows a power law
divergence ~ L'/" where v ~ 1.154. C: The position L* of the maximum at
K, = 0.2477 for different system sizes also scales ~ L78.

Thus taking only the maxima at each fixed K, L the anisotropic scaling function
é(Ll/”k‘, ;) reduces to a function of a single variable L'/*k and, given that the
value of z is adjusted correctly, one finds a set of curves that intersect at K, as shown
in Fig. 6.3. As shown in the inset (C) at K. ~ 0.2477 the power-law L, ~ L™
is obeyed over a large range of system sizes. Further by expanding the scaling
function W(Ll/ Yk, a;) into a third order, bivariate polynomial and fitting our data
to this form for several intervals of aspect ratios, we find that our results agree well
within z = 1.8 £ 0.05 suggesting the relation z = d is not obeyed. The values of
the exponents obtained can also be tested using the scaling of the uniform order
parameter susceptibility

L L*
X:ZG(r,T)N/O ddr/o drG(r,7)=Gk=0,w=0)~L>*" (6.8)

where the generalized scaling ansatz for the propagator Eq. (5.18) in D = d + 2
dimensions

Glr,t, ' ) = (00| G20 rjes) (69)
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Figure 6.4: Scaling of the winding number fluctuations and the order parameter
susceptibility at K. = 0.2477 as functions of the aspect ratio a, = L,/L* using
n = —0.29 and z = 1.8. Observe that W? increases monotonically as a function
of the aspect ratio. This invalidates using isotropic space-time volumes L = L. in
order to extrapolate to the thermodynamic limit.

has been used. Figure 6.4 shows a combined scaling collapse of the winding number
fluctuations and the susceptibility at K. = 0.2477.

6.3 Paper III: Fluctuation-induced first order phase
transitions in type-1.5 superconductors in zero external
field

Paper I1I considers an effective composite vortex model for type 1.5 superconductors
in 3D. Generalizing from the 2D results illustrated in Sec. 2.4 we propose a model for
a two-band superconductor with strong interband coupling, made of a strongly type-
IT component with very short coherence length and a type-I component, with a much
lower ground state density. For these systems the nature of the superconducting
phase transition cannot be deduced in the same ways as for the type-I/type-II
limits in Sects. 2.3 and 3.1. It is still expected that the phase transition is driven
by vortex excitations. We generalize the 2D interaction Eq. (2.43) for composite
vortices without fluctuating internal structure to the 3D Hamiltonian

Vq=0 1 1
H=Y [qu ia5 + 51671 Us 47| (6.10)

,7,0
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Figure 6.5: Comparison of MC results obtained for the third moment of the action
M3 for all parameter sets in article III. Inset: Scaling of the difference AM3 be-
tween the extrema displayed by Ms. The short-ranged and nonmonotonic limiting
cases (A),(D) scale in good agreement with the expectation of an inverted 3DXY
transition and a strong first order transition respectively.

In 3D the Bessel-functions are replaced by Yukawa potentials V;; and U;;

Vi =Y <ri - rj|> _ % cos (k - (r; — rj)) - (6.11)
Ay LE4=6—3",2cos (ko) + Ay

solving the 3D counterpart of Eq. (2.37). The first term corresponds to the current-
current interaction m? Ky (r/)) in Eq. (2.43) with Ay = X. Neglecting density terms
Cpy = 0 the model is equivalent to a 3D type-II superconductor in the London-limit
and the transition is expected to lie the inverted 3DXY universality class. For finite
Cy < 0 the second term is always attractive as desired by Eq. (2.43). The range \y
is set by the largest coherence length &, = max {1, &2} of the normal modes g 2
introduced in Sec. 2.4. As the potential U;; is exponentially screened the transition
is not expected to belong to a new universality class, even if Cy and range &,
are changed. But this might in general cause the second order phase transition to
become first order.

We study this model via extensive Monte Carlo simulations. We start from a
system with short-ranged, monotonic interactions (SR-case) by setting Cy = 41,
Cy = —2.5 and £, = A = 0.5 measured in terms of the numerical lattice spacing.
We find upon increasing the attractive range £;, that the heat capacity peak, sig-
naling the transition, becomes increasingly sharp. For the choice of £, = 2A =1,



84 CHAPTER 6. RESULTS

where the vortex interaction is nonmonotonic for vortices of equal winding, we find
clear finite-size signatures of a temperature-driven first order transition. In particu-
lar, the heat capacity peak scales ~ L% and the energy histogram exhibits a double
peak structure with a growing free energy barrier AF as discussed in Sec. 1.16. In
addition for the same choice of parameters, but with a truncated attractive poten-
tial U;; at a range r. = 3 beyond which the nonmonotonicity appears, the transition
shows no sign of first order scaling for small system sizes and presumably becomes
continuous. Setting the cut-off r. = 5, such that the attractive tail is just included,
lets the first order signatures reappear.

We also consider systems with short-ranged, repulsive interactions close to the
stability boundary of the model Eq. (6.11), which is the condition of a vortex
free ground state. We choose the same values of Cy/, A\, £, as in the SR case but
larger negative values Cy = —10,—-10.24999. We denote these as SR 10 and SR
10.24999. For these systems no unambiguous indications for a first order transition
are found. The finite-size scaling properties do however significantly deviate from
those expected for the inverted 3DXY transition. Figure 6.5 shows MC data for
the third moment of the action [176]

0

My = (H = (H))* ~ — (

T?L%) (6.12)
which exhibits two extrema around T, whose difference AM3 scales as ~ L= for
continuous- and ~ L?? for discontinuous transitions. The size dependence of c}
and AM;3 at a first order transition therefore corresponds to effective exponents
a =1,v =1/d. The system with a nonmonotonic interaction shows clear finite-size
scaling signatures of a first order transition, and the SR system shows very good
agreement with the scenario of a inverted 3DXY transition. The SR 10 and SR
10.24999 show large deviations from both scenarios.

6.4 Paper IV: Phase transitions with critical loop disorder

We consider phase transitions in disordered, ferromagnetic Ising and XY models. In
this article the disordered bond couplings J,,(r;) are taken from static equilibrium
configurations of loop models in the Ising and inverted-XY universality class and
therefore form closed defect lines. The aim is to determine if such loop disorder
can give rise to a new long-range-disorder fixed point with critical exponent v given
by the lower bound of Eq. (1.89) in agreement with the Weinrib-Halperin (WH)
theory [48]. The inverted XY model, or link-current model [31], can be obtained
for A =0 from Eq. (3.12) upon integrating out the phases and is described by

BunatH _ Paual oy 2 i
dwal o xy = —5 > lau(ra)] (6.13)

T

in any dimension. The loop transformation essentially inverts the temperature scale
Bdual ~ B and replaces the spin degrees of freedom by integer valued, directed
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Figure 6.6: left: Snapshot of a 3D Ising loop configuration generated at Sqyalc.
The local coupling strength J(r;) defined by Eq. (6.15) corresponds to the mean
number of nonzero links attached to a site plus a uniform background term. For
large separations the coupling correlations should follow a power law ~ r~% with a =
—Qoop/Vioop + d = 2.826 right: Monte Carlo results for the two-point correlations
for 3D Ising critical loop disorder generated at Bquai,c ~ 1.5228. The short-ranged
part decays very quickly. Rescaling all curves by L® where a = 2.826 gives a very
convincing collapse for r/L > 0.1.

bond variables ¢, (r;). In the Ising case, the spin degrees of freedom are replaced
by undirected bond variables g, (r;) € {0,1}. In loop representation Eq (3.29) the
Ising Hamiltonian is given by

{qu(r;)=0,1}CCP
/BdualHD,Ising = ﬁdual Z qu (T'L') (614)

Tis [

with inverted temperature scale Bqua1 = log [coth (8)]. The closed path (CP) con-
straint means that each site r; has an even number of nonzero g, attached. In the
paper, using equilibrium loop configuration of these two models, the couplings in
the disordered spin systems Eq. (1.65), out of which we intend to study the Ising
and XY case, are set to

sy ={ 5 i) (6.15)

This means that the presence of a loop increases the coupling between nearest
neighbor spins connected to it.

Specifically for critical loop disorder, meaning quenched, disordered coupling
configurations obtained from simulations at the critical couplings Bqual,c, one ex-
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pects long-range correlations in the bond variables J,, (7). At Squai,c the prob-
ability amplitude Eq. (5.18) to insert an open loop configuration with head and
tail separated by a distance r scales as P (1) ~ 7~ (4=2+Moop) for both loop mod-
els resembling algebraic spin correlations in the original spin models. Therefore
the natural expectation is, that by mapping such configurations on the couplings
Ju(r;) of lattice spin models via Eq. (6.15), the average local couplings J(r;) =
%Zu (Ju(ri) + Ju(r; — 1)) show similar power law correlations.

Via simple scaling arguments and numerical simulations in 3D this is shown not
to be the case. The approach we use to calculate the defect correlations in the paper
is illustrated in detail in the next section and applied to a more general case. The

disorder correlations g(|r|) = L~¢ h ([J(ri)J(m + 7)) — [J]2> turn out to be
not entirely algebraic. Here [...] means disorder average over quenched equilibrium
loop configurations which is equivalent to a thermal average for the loop model

studied. As the loop model Hamiltonian, at criticality, basically is proportional to
the total number of segments g,, present in the system one finds

C(Bdual» L) = Ca(ﬂdual) + Cs(ﬂduala L) X Z g (|T|) (616)

reV

where ¢, is the singular part of the heat capacity per lattice site and ¢, the analytic
part. For critical loop disorder one expects g (1) = gshort (') + Gscale (1) Where

Jscale (T) ~rT (617)

decays with exponent a = —ugop/Vioop + d, determined by the known exponents
of the generating loop model. The function ggnort is short-ranged and does not
contribute to scaling. In particular a is independent of n,op, and, as long as the hy-
perscaling law Eq. (1.42) is obeyed, essentially only determined by the heat capacity
exponent ajeep and d.

For the universal properties of the phase transitions in 3D Ising and 3DXY spin
models with loop defects the WH extension of the Harris criterion then gives rise to
the following expectation. Loop disorder generated by bond variable configurations
of Egs. (6.13) and (6.14) only yields a fixed point stability criterion different from
the standard case of uncorrelated point disorder v > 2/d, if the generating loop
model obeys aigop > 0 e.g. a heat capacity peak that diverges with system size
faster than log (L). For the mechanisms considered this only applies to the case of
Ising loops in 3D @ jo0p &~ 0.11 and v jo0p = 0.63 [10]. In MC simulations of 3D
Ising and 3DXY models exposed to this particular kind of disorder we find good
agreement with the WH value vq = 2/a = 0.71. Figure 6.6 shows a snapshot of
a 3D Ising loop model at criticality and the scaling of the resulting critical loop
disorder coupling correlation function.

The “heat capacity sum rule” applied to spin systems

With the same approach used to determine the loop correlations in paper IV we
attempt to construct a scaling function which can be used to determine the critical
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exponent v and the ratio /v also in other cases. For an arbitrary Hamiltonian
which can be expressed in terms of local variables ¢ (r;) via

H=3 q(ry) (6.18)

such as q(r;) = >, Ju(r:)S(r:) S (ri+ i) for the standard O(N) models, or
q(r;) = S(ri)E(riSL using the field £ (r;) = >,V (ri —r;) S (r;) for models
with pair interactions, the heat capacity can be expressed as the integral over a
correlation function g (r) via

c=L""* ((H?) — (H)?) (6.19)
=L Z [(q (ri) q (r5)) = {a (ri)){q (r;))] (6.20)

=Yg () (621)

Assuming rotational invariance the Fourier transform g* (k) of the correlation func-
tion g(|r|)

9" (k) = L™ (la (0)1*) — (0)*$i0 (6.22)
yields a similar “sum rule” as in Eq. (6.8)
_ P2 N\ — B2 73 * — B2 * _
c=p Zg(rz) B lim g* (k) = 529" (k) k=0 (6.23)

At criticality it should be possible to decompose g(|r|) in a short-ranged part, giving
rise to the analytic contribution to ¢, and a long-ranged part, gscale (1) ~ ro/v—d
yielding the scaling contribution ~ L®/¥. If the leading contribution to the Fourier
transform of the short ranged part at small & can be approximated by a constant
the ansatz

B2, (k) ~ wk™*"" v (6.24)
where v and w are real can be made. Taking the difference between the two smallest
wave vector components gives

Ag(T,L) =T 2%[g* (2n/L) — g* (47 /L)] =~ ¢*L*/" (6.25)

where ¢* = 2w (27r)7a/1' (1 —27%/"). This defines an operator with scaling di-
mension «/v and allows the finite-size scaling ansatz

L=/"Ag (T, L) = Aj (Ll/”t) (6.26)

where ¢t = (T'—T¢) /T,. Equation (6.26) might also provide a direct test of the
hyperscaling relation Eq. (1.42). Replacing o/v by 2/v —d a collapse on a universal
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Figure 6.8: Scaling results for the 3D Ising MC data of Ag shown in the upper row
of Fig. 6.7. A second order polynomial ansatz to Eq. (6.26) within the intervals
|L1/0-63 (T'/4.5115 — 1)| < 0.5,1 was used. Here o, v and T are free parameters.
The agreement with the numerical estimates v = 0.6301(4),c = 0.110(1) from
Refs. [177, 10] (thick blue lines) is good. In all cases system sizes in the range
L = Lyin to L = 80 have been considered.
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scaling function Ag can only be expected if Eq. (1.42) holds. Figure 6.7 illustrates
the method using MC data for Ag obtained for the 3D Ising and 3DXY models.
For both cases curves for L*/¥ Ag show nice intersections and collapse on universal
scaling functions. Figure 6.8 shows scaling results obtained for the 3D Ising model
using a second order polynomial ansatz for A§ and compares them to numerical
estimates [177, 10].

6.5 Paper V: Phase transitions in systems with critical
cluster defects

Another natural way to create long-range correlated, disordered coupling constants
with the help of a critical point is using the active bonds of spin clusters at criticality.
Specifically we study a model of quenched disorder given by frozen-in configurations
of a 3D Ising model

Hlsing = ﬂHIsing = _BZ S (rz) -8 (ri + ﬂ) (627)
iy

coupling to the phase fluctuations of a 3DXY model described by the Hamiltonian
Hxy = BHxy = —52 Ju(ri) cos (0 (r;) — 6 (ri + ) (6.28)
i
The random bond couplings are set to
Ju(ri) =1+ (A—=1)6J,(r;)) (6.29)
with local disorder 6.J, (r;) determined by the frozen-in Ising configuration

5.7, (ri) = (S(ry) +1) (S(Zi)‘f‘S(’f‘i‘f’ﬂ)) (6.30)

As S (r;) = £1 this automatically yields a bimodal distribution J, (r;) = 1, A with
all bonds connecting neighbors S (r;) = +1 set to A. As in paper IV we choose
A = 2 for our numerical simulations. The coupling correlations are expected to
be dominated by the Ising spin-correlation function and should, to leading order,
decay algebraically as g(r) ~ r~® with exponent a = d — 2 + n,. This implies
a < d for all relevant dimensions. The subscript “g” refers to the 3D Ising critical
exponents vy = 0.6301(4),7m, = 0.0364(5), and By = 0.3265(3) of the disorder
generating mechanism [10]. Below the upper critical dimension this is equivalent
to a = 28,/v, and thus in 3D to a ~ 1.037.

In large scale MC simulations of the 3DXY Hamiltonian Eq. (6.28) double peak
signatures in the disorder averages of the XY spin-susceptibility and shoulders in
the heat capacity appear. One might be tempted to interpret these as indications
for either two subsequent phase transitions or as evidence for algebraic finite-size
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Py L™

Figure 6.9: The probability density of the mean coupling strength exhibits a dou-
ble peak structure. As in our disorder mechanism Eq. (6.30), for antiparallel Ising
spin neighbors S (r) S (r + 1) = —1, the coupling always is set to J, (r) = 1, the
resulting histogram is asymmetric. inset: To leading order, the coupling distri-
bution scales as the magnetization distribution of a classical 3D Ising model with
peak height ~ LPe/Va = [4/2 ~ [0-52 and a peak width scaling inversely to the
height. This gives rise to the apparent double peak signatures found in the disorder
averages of the XY spin susceptibility Fig. 6.10.

scaling, in a finite range of temperatures such as recently reported for 2D Potts
models with long-range correlated disorder [178]. Taking a closer look at the dis-
tribution for the average coupling strength Jr within the system the mechanism
behind this feature is revealed. For a random coupling configuration averaged over
the whole volume L%, J;, can be seen as a random variable determined by the joint
distribution of the Ising magnetization and energy via

1 (A—1) 1

Due to the double peak structure of the Ising magnetization-histogram shown in
Fig. 1.3, the mean coupling Jr, in Fig. 6.9 exhibits a similar structure. This has
dramatic consequences, Fig. 6.10 illustrates that the ordinary disorder average does
not capture the properties of the “infinite” system within a broad region of temper-
atures. The system is non self-averaging within this region [179]. An important fact
is, that none of the single disorder realizations shows any double peak signature,
which the disorder average apparently displays.

In the paper, we use the sample to sample fluctuations of different scaling quan-
tities and show that those collapse well on a scaling function within the region
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Figure 6.10: MC data for the spin susceptibility x of the 3DXY model with cluster
defects Eq. (6.28). Disorder average vs. averages for single disorder realizations for
sizes L = 16, 32. This region where the system is non self-averaging decays however
slowly towards a single transition temperature.

where the system is non self averaging. The width of this regions is found to decay
slowly as ~ L=%2 = L7952 where a again is the exponent describing the disor-
der correlations. This can be understood by the fact that the exponent a at the
same time determines the width of the distribution for the average coupling per
realization, as can be seen from the variance

L2

Var (JL) ~ <(m%) + W

CSVL) ~ Cmy L7e/ve o L4 4 ey Lo/ (6.32)

and a = 2v,/B, in 3D. Although the effect shown in Fig. 6.10 largely prevents a
proper scaling analysis of our data using ordinary disorder averages we find good
agreement with the assumption that the WH result v = 2/a = 1.037 holds for the
disordered system Eq. (6.28).






Chapter 7

Conclusions

The majority of the work presented in this thesis was concerned with the effects
imposed by correlated defects on second order phase transitions with well known
properties in the disorder-free case by means of numerical simulation. A central
question was if and potentially how the universality class and thereby the criti-
cal exponents are changed by the presence of disorder. In some cases also what
qualitative implications this has on the experimentally measurable quantities.

The defected supersolid scenario of paper I, where simple 3D XY models are
exposed to one and two dimensional randomly intersecting defects, suggests that
given the same knowledge there was at the height of the supersolid dilemma around
2009, there was in principle no a priori reason to expect a possible supersolid tran-
sition to show the same M-like signature as liquid *He. The onset of superflow
carried on interconnected correlated defect networks can in contrast be expected to
show smoothened onset features. As today the existence of a supersolid phase in
“He seems to be ruled out for temperatures above the ImK range. Possible future
work, building on the scenario presented, could aim at investigating whether or
not the heat capacity maximum observed around 100 mK can be explained in an
interconnected defect network without the need to invoke a phase transition. This
potentially can be done by PIMC simulations of “He confined to tube like dimen-
sional geometries or actual dislocations as done by Boninsegni and coworkers [133].
Even simpler methods such as one dimensional Ginzburg-Landau theories that are
known to exhibit a heat capacity maximum [180, 181] could serve as effective mod-
els.

Dirty bosons have been a central problem to localization physics in the last 20
years. The finite-size scaling analysis performed in paper II for the 2+ 1 dimensional
dirty boson model showed, without any a priori assumption on the dynamic critical
exponent z, that our data is best described by z ~ 1.8 4-0.05 [2]. To achieve this we
defined a new finite-size scaling quantity expected to display a universal maximum
at the quantum critical point. Our result is in accordance with recent theoretical
work by Weichman et. al. [156] predicting that, at finite chemical potential, the

93
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compressibility can arise out of the analytic contribution to the free energy alone.
As of today the exact value of z is still debated. Recent work found z = 1.85 £+
0.15 [182] using a quantum Monte Carlo algorithm [183]. Other groups found
z = 1.88 £ 0.08 for hard core bosons, but disagree for the soft core case where
z = 1.99 £ 0.05 was reported, very close to the original, theoretically predicted
value z = d = 2 [184, 153|. This discrepancy shows that this problem is very hard
to tackle numerically. As illustrated in Sec. 6.2 the recently presented value z ~ 1.4
[159] probably can be ruled out by scaling arguments as the extrapolation to the
infinite correlation volume limit was done using isotropic space-time volumes.

The results from paper III suggest that the fluctuation-driven superconducting
phase transition in type-1.5 superconductors, where vortices interact nonmonoton-
ically, can be first order. This result is nontrivial as it cannot appear in ordinary
single band type-II superconductors with stable vortex excitations. As our simula-
tions were limited to an effective, phenomenologically motivated composite vortex
loop description of 3D type-1.5 superconductors we cannot answer the question if
the transition generically is discontinuous. This will require and motivates future
studies of two-band Ginzburg-Landau models including amplitude fluctuations.

The papers IV, V considered phase transitions in more complex defect networks
than obtained from random straight lines or planar defects studied in paper I. The
interesting feature we exploited was that extended, correlated defect structures can
be expected to result from critical configurations of O(N) spin models in vari-
ous representations. Naturally the anomalous scaling dimension 7 can be seen as
the exponent characterizing the power-law decay of the critical order parameter
correlations. Therefore one might expect that it also describes other equilibrium
correlations between the degrees of freedom in the loop models or clusters. Whereas
this trivially holds true for critical cluster disorder we showed that it certainly is
not the case for the disorder generated via the Ising loop model and the XY loop
model in link current representation. Instead the bond variable correlations for
large separations decay ~ r~% with an exponent ¢ = —ioop/Vicop + d which is
given in terms of the known loop-model critical exponents aigop and vigep, and
the spatial dimensionality alone. Generally the disorder correlations arising from
the loop configurations, even if quenched from criticality, decay much faster than
random straight line correlations considered in paper I. For the XY link-currents
loop < 0 and one therefore expects in all dimensions that the resulting critical
loop disorder fixed point stability criterion is ultimately described by the standard
Harris criterion. Interestingly, the same probably holds true if one would have used
a vortex representation for 3D type-II superconductors. There the interaction be-
tween vortices is exponentially screened. It is then still plausible to assume that
the number of segments in each configuration scales similarly to the energy. The
long-range correlations then should decay with the same exponent a as obtained for
the link current model in paper IV. A case that lies outside this treatment is the
neutral superfluid or extreme type-II case A — oo which is much harder to study
numerically due to the long-range, unscreened Coulomb interactions.

In paper V, where the disordered, ferromagnetic bond couplings are directly
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obtained from fully connected Ising spin clusters, the disorder correlations obey the
power-law decay ~ r~® = =927 for large r. Although we are able to show that
the critical cluster disorder is a relevant perturbation to the 3DXY phase transi-
tion, an accurate estimate of the correlation length critical exponent could not be
obtained due to the broad double peak distribution found in the average couplings
for the system sizes we studied. Nevertheless we found that the data for large
system sizes together with the sample to sample fluctuations can be well described
under the assumption that the critical exponent v as in papers I and IV is given
by the Weinrib-Halperin theory v = 2/a. We find similar signatures such as a
broad plateau in the order parameter susceptibility as recently found in 2D Potts
models with related disorder distributions [178]. There they were interpreted as a
Griffiths phase in the disordered system. In our case these signatures are likely to
be artifacts of the disorder averaging procedure used in our simulations and should
vanish in the thermodynamic limit. For models with such broad disorder distribu-
tions it could prove advantageous to perform large parallel simulations over single
disorder realizations and extract thermodynamic signatures by different methods
as suggested in [185].
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