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Abstract

Advances in throughput from Next Generation Sequencing (NGS) meth-
ods has provided new ways to study molecular biology. The increased amount
of data enables genome wide scale studies of structural variation, transcrip-
tion, translation and genome composition. Not only is the scale of each ex-
periment large; lowered cost and faster turn-around has also increased the
frequency with which new experiments are conducted. With the data growth
comes an increase in demand for efficient and robust algorithms — this is a
great computational challenge. The design of computationally efficient algo-
rithms are crucial to cope with the amount of data and it is relatively easy to
verify an efficient algorithm by runtime and memory consumption. However,
as NGS data comes with several artifacts together with the size the difficulty
lies in verifying that the algorithm gives accurate results and are robust to
different data sets.

This thesis focuses on modeling assumptions of mate-pair and paired-end
reads when scaffolding contig assemblies or detecting variants. Both genome
assembly and structural variation are difficult problems, partly because of
a computationally complex nature of the problems, but also due to various
noise and artifacts in input data. Constructing methods that addresses all
artifacts and parameters in data is difficult, if not impossible, and end-to-end
pipelines often come with several simplifications. Instead of tackling these
difficult problems all at once, a large part of this thesis concentrates on smaller
problems around scaffolding and structural variation detection. By identifying
and modeling parts of the problem where simplifications has been made in
other algorithms, we obtain an improved solution to the corresponding full
problem.

The first paper shows an improved model to estimate gap sizes, hence
contig placement, in the scaffolding problem. The second paper introduces a
new scaffolder to scaffold large complex genomes and the third paper extends
the scaffolding method to account for paired-end-contamination in mate-
pair libraries. The fourth paper investigates detection of structural variants
using fragment length information and corrects a commonly assumed null-
hypothesis distribution used to detect structural variants.
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Sammanfattning

Utvecklingen av sekvenseringsmetoder som kan producera mycket data
pa kort tid har banat nya vigar for forskning inom molekylédrbiologi. Den
O0kade méngden data fran dessa metoder mojliggor studier pa en organisms
hela arvsmassa i kontrast till tidigare metoder som begrinsade studier till
specifika regioner. Global analys av till exempel genomstruktur och strukturell
variation kan underldtta bland annat evolutionsforskning samt utveckling av
vaccin och personlig medicin.

Med denna datatillvixt kommer en 6kad efterfragan pa effektiva och ro-
busta algoritmer. Mangden data genererat fran varje experiment &r inte bara
stor; sankt kostnad och minskad tidsatgang har ocksa okat frekvensen pa
antalet experiment som genomférs. Utformningen av berdkningseffektiva al-
goritmer ar darfor avgorande for att klara av méngden data. Det &r relativt
latt att verifiera att en algorithm &r effektiv genom att méta kortid och min-
nesforbrukning. Det ar emellertid svarare ar att verifiera att algoritmen ger
korrekta, eller néra korrekta, resultat och &r robusta for olika dataméangder.
Denna svarighet kommer fran storleken pa dataméngden tillsammans med de
manga och varierande artefakter som data kommer med.

Denna avhandling fokuserar pa modelleringsantaganden for sekvenserings-
metoder som producerar parade lasningar for att lanka contiger (contig scaffol-
ding) eller uppticka strukturella varianter. Bade scaffolding och att hitta
strukturella variationer &r svara problem, delvis pa grund av den berdknings-
maéssiga komplexitet som dessa problem har, men ocksd pa grund av den
méngd brus och artefakter som ofta finns i data. Att konstruera metoder som
modellerar alla artefakter och brus i data dr svart, om inte omdjligt, och ex-
isterande helhetslosningar kommer ofta med flera forenklingar. I stallet for
att angripa dessa svara problem pa en gang, sa fokuserar en stor del av den-
na avhandling pa mindre problem runt scaffolding och strukturell variation.
Genom att identifiera och modellera delar av problemet déar férenklingar har
gjorts i andra algoritmer, far vi en férbéttrad 16sning till de stora problemen.

Den forsta artikeln introducerar en forbéattrad modell for att berdkna gap
storlekar darmed contig placering i scaffolding. Den andra artikeln presenterar
ett ny algorithm for att scaffolda stora genom snabbt. Vi utvidgar scaffolder
metoden i det tredje arbetet med att modellera en vanlig artefact i sekvense-
ringsdata med heltalsprogrammering. Det fjarde arbetet korrigerar en vanlig
antagen modell och saledes nollhypotes for att uptécka structuralle varianter
med hjilp av parade lasningar.
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Chapter 1

Introduction

This thesis focuses on two bioinformatic problems — scaffolding and structural
variant detection — that on a high level both involves inferring genomic structure.
Although these problems are not bound to specific input, we will in this thesis
assume sequencing data as input. Chapter 1 gives an overview of what sequencing
data is and why it exists and introduces sequence assembly which leads the founda-
tion for work presented in this thesis. Chapter 2 introduces the scaffolding problem
and gives an overview of previous and current work on this problem. Limitations
and issues with current work as well as potential future work on the scaffolding
problem is discussed in Chapter 3. Chapter 4 switches topic and gives a lightweight
introduction to the problem of detecting structural variation. Finally, Chapter 5
briefly summarizes the contents of the included papers and Chapter 6 concludes
the thesis.

1.1 Sequencing

The genome is an organism’s complete set of DNA, including both genes and non-
coding sequences. As genes only constitute a fraction of the DNA in an organism,
studying the complete genome sequence can give more comprehensive information
about the organism’s function, evolution, and interaction with bacteria or viruses.
Having the complete genome sequence of an organism facilitates research in, e.g.,;
medicine to develop of vaccines, antibiotics and personalized medical treatments;
agricultural research such as resistance to insects and parasites; and evolution.
These benefits together with new sequencing techniques facilitating genome wide
scale analysis has led to a increased interest in producing complete genomic se-
quences of organisms.

However, there is no technology yet that can provide us with the complete ge-
nomic sequence. Current sequencing technologies output only fragments, referred
to as reads, that constitutes a small piece of sequence from the genome. The se-
quencing methods that we will focus on in this thesis, commonly referred to as Next
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Generation Sequencing (NGS) produces millions to billions of reads from an organ-
ism, where the reads may overlap each other. NGS methods can also produce read
pairs. Read pairs are two reads that are separated by a distance that is approxi-
mately known on the genome. The distance between two fragments is referred to
as the fragment length (sometimes also insert size) and the fragment length of read
pairs produced in a NGS experiment will vary around a target fragment length set
in the lab. The fragment length of all read pairs in an NGS experiment gives rise to
a fragment length distribution. The work in this thesis concentrates on applications
using read pairs as input, where the fragment length distribution is in focus.

1.2 Sequence assembly

“Imagine several copies of a book cut by scissors into 10 million small
pieces. Fach copy is cut in an individual way so that a piece from one
copy may overlap a piece from another copy. Assuming that 1 million
pieces are lost and the remaining 9 million are splashed with ink, try
recover the original text. After doing this you’ll get a feeling of what the
DNA sequencing problem is like."

— Pavel Pevzner, Computational Molecular Biology — An algorithmic
approach

The total length of read sequences produced from an NGS experiment is ¢ times
longer than the genome of the organism, where c is called the sequencing coverage,
i.e., the average number of times a position in the genome occurs in the reads. The
position of each read on the genome is unknown to us, but if ¢ > 1, it provides
us with the fact that there exist reads that share sequence on the genome. Reads
that overlap are found by investigating the sequence similarity. If two reads share
a sequence, they can be merged to form a longer contiguous sequence. Such a
contiguous sequence made from several merged reads is called contig. In practice
¢ is usually between 10 to 200 in NGS sequence assembly projectsE| to ensure that
most positions on the genome is covered and that in each position there exists
reads that are overlapping enough for the overlap to be unique on the genome —
allowing unambiguous merging of the reads. Creating as long and correct contigs as
possible by finding overlapping reads is the core problem in sequence assembly. As
we will solely focus sequence data from whole genomes we will refer to the problem
of sequencing assembly of a genome as genome assembly. This problem is difficult
due to

1The sufficient coverage needed to have enough overlap of reads depends on read length —
longer read length requires less coverage. What “enough” is depends on the structure of the
genome and its repetitive sequence lengths.
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e Data size: The amount of data requires that the method of finding overlaps
is algorithmically efficient. The simple solution to compare all possible pairs
of reads is too slow.

« Repeats: A repeat is a sequence that occurs more than once in the genome.
The sequence of a genome has more frequent, and longer, stretches of repeti-
tive sequence compared to a randomly generated string of the same size with
a four letter alphabet. Reads that contain sequence from repetitive regions
will therefore share this sequence with reads from other copies of the repeat.
If the repeat is frequent this will create large clusters of reads that appear to
overlap, with only some of them truly overlapping on the genome.

e Read errors: Sequencing technologies have artifacts, they can modify the
sequence by substituting, inserting, or deleting bases in the reads. This will
break the perfect matching of true overlapping reads, and may even, although
not as usual, create false overlaps of non overlapping reads.

e Uneven coverage: NGS sequencing artifacts gives rise to a non-uniform
probability over the genome from which a read is generated. The probability
distribution is difficult, if not impossible, to model and depends on a number
of factors such as the content of nucleotides Guanine and Cytosine (GC-
content), library preparation, amount of DNA available for sequencing, and
amplification.

Problem representation

The genome assembly problem is usually represented as a graph where nodes repre-
sent sequences in reads and edges describes a relationship between two sequences,
e.g., similarity. The two most commonly used graph representations are overlap
graphs and De Bruijn graphs (DBG).

Overlap graphs

In overlap graphs, reads are nodes and edges are constructed by overlapping regions
in reads. The overlaps does not need to have identical sequences as the reads can
contain errors. The main bottleneck with this representation is the computational
time needed to construct such a representation, where the speed depends on the al-
lowed difference between overlaps. The naive approach to compare n reads of length
m pairwise with, e.g., Smith-Waterman has a runtime complexity of O(n?m?) —
m? for the Smith-Waterman algorithm and (g) for the number of pairwise com-
parisons. For n around a billion and m around 100, sophisticated data structures
with sub quadratic construction time are needed. Although there has been work
on such constructions [74], 104} 53], most methods use De Bruijn graphs for NGS
data today.
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De Bruijn graphs

Let a k-mer denote a string with k letters. A DBG of order k is a directed graph
where a node represents a k-mer and an edge from node u to node v represents an
overlap of the k — 1 suffix of u and the k& — 1 prefix of v. For example, two 3-mers
ACT and CTG share the edge CT. In genome assembly the DBG is constructed
from k-mers of reads. Each k-mer constitutes k consecutive bases in the read, which
makes read of length r have a multi set of r — k + 1 k‘—mersﬂ (where k-mers are not
necessarily unique).

A DBG is constructed by adding nodes for each k-mer in the reads, and edges
for overlaps of prefix or suffix of the k — 1 base pairs in a k-mer, see Figure [I.]] for
example constructions. Note that the construction step can be performed in O(nm)
time using a hash table as we only need to look if the k-mer and its k — 1 suffix and
prefix is present or not. This is a major scale down from trying all possible overlaps
between reads. The downside of this construction is that we loose information of
overlaps longer than k& — 1 base pairs as only substrings of length k is present in the
graph.

The genome assembly problem under the DB graph representation is to find
a set of paths in the graph such that the contiguous sequence (contig) spelled by
consecutive k-mers in each path is present in the genome. This graph structure is
used by a majority of the genome assemblers today, e.g., in [4] 60} 127, [T05] 20].

Reconstructing the genome from a DBG

As data is represented as a graph, a natural approach is to turn to a graph traversal
algorithm that visits all vertices (Hamiltonian path) or edges (Eulerian walk) in G.
Assume that error free reads with length > k cover all bases of the genome and each
consecutive pair of reads on the genome overlaps at least k bases and no strings of
more than k& — 1 bases occurs more than once in the genome. Then there exist one
unique linear simple path in G and the genome is spelled by the letters in the path.
This never happens in practice. The problem of perfect reconstruction gets com-
plex fast. [I3] (based on Ukkonen’s condition [I11]) showed that a unique perfect
reconstruction is not possible as long as G contains interleaved or triple repeats. A
triple repeat is a repetitive sequence that occurs more than two times and inter-
leaved repeats means that at least one repetitive sequence A occurs between two
repetitive sequences B, B’ different from A. These repeat structures almost always
occurs in practice with the reads lengths of NGS methods. But the uniqueness of a
reconstruction is not the only problem. Sequencing artifacts impedes finding even
a single reconstruction as read errors creates spurious paths and coverge bias gives
low-coverage or unsequenced regions of the genome — breaking the graph.

DBG assemblers therefore use heuristics to traverse the graph, removing nodes
and edges based on properties of the data and using the abundance of k-mers and
paired reads to chose what paths to traverse and when to break the graph. The

2Ignoring the reverse complement of a read.
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Genome

Read with error

Reads

DBG, k=4 Contigs, k=4

Figure 1.1: De Bruijn graph construction and contig assembly of reads from a
sequence. One of the reads countains an error and it affects the features of the
DBG. Contigs are formed by starting at all nodes with no, or more than one,
incoming edges and stopping at all nodes with no, or more than one, outgoing
edges. The resulting sets of contigs differs with k.

basic strategy is to find as long paths as possible. A simplistic example to obtain
contigs is shown in Figure [[.I] by starting at all nodes with no, or more than one,
incoming edges and stopping at all nodes with no, or more than one, outgoing
edges.






Chapter 2

Scaffolding

2.1 Introduction

Scaffolding is the problem of ordering and orienting contigs in such a way that
their arrangement matches the arrangement they have on the genome. A scaffold
denotes a set of contigs that are positioned, ordered and oriented. We assume that
contigs are placed in a linear order within a scaffoldﬂ The positions assigned to
contigs may induce gaps between contigs representing unknown sequence.

The most commonly used source of information for scaffolding contigs is read
pairs. A read pair consists of two reads (also referred to as mates) that have
distance = between them, called fragment length. Millions to billions of read pairs
are produced in a single NGS experiment and the set of all read pairs is called the
read pair library. In an experiment, a target size is set for the fragment length of
the library, but it cannot be controlled perfectly. Therefore, x varies between read
pairs in library and the distance for any read pair is known up to the distribution
f(z). Read pairs that have mates mapping to different contigs provides information
to arrange the contigs into scaffolds. In practice, scaffolding can be applied directly
on the DBG/string graph or as a separate step in a genome assembly pipeline
after creating contigs. We will discuss scaffolding as a problem separated from
the assembly step assuming contigs and read pairs as input. This problem can be
(and has so far only been) formulated as a graph problem with contigs as nodes
and mates mapping to different contigs as edges between nodes. Depending on the
algorithm and implementation, the graph could be either a directed graph with one
node per contig or an undirected graph with two nodes per contig.

LThis is not always biologically sound as two or more contigs might occupy the same genomic
positions due to polyploid organisms with high heterozygozity, or contigs can overlap due to, e.g.,
assembly errors.
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Figure 2.1: Contig graph for ALLPATHS-LG contig assembly of Staphyloccocus au-
reus (GAGE data). Color represents coverage from reads aligned back to the contigs
and contig sizes are represented by the diameter of nodes (logarithmic scale) Al-
though this is an illustration of a high quality assembly on a smaller genome, the
graph captures some interesting features typical to contig graphs; Firstly, contig
graph structure is relatively linear compared to arbitrary graphs, i.e., the proba-
bility of two random nodes being connected is low. Secondly, contigs with higher
coverage are usually repeats, thus involved in more complex regions as seen in the
upper right part of the graph. Thirdly, in practice smaller contigs often shows a
lower coverage (see blue small nodes), potentially due to difficulties aligning reads
that partly overlaps with the contig or due to misassemblies in the contigs.



2.1. INTRODUCTION 9

[Contig graph with mate pair library from [101]]
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Figure 2.2: Contig graphs of the same ALLPATHS-LG contig assembly on
Rhodobacter sphaeroides with two different read pair libraries. (a) Contig graph
from a read pair library with approximate distribution N(3700,200) (b) Contig
graph from a read pair library with approximate distribution N(2500,1500)
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Contig graphs in practice

The graph structure of a contig graph depends on the amount of collapsed repetitive
sequences in the contigsﬂ Contigs containing collapsed repetitive sequence will
generally have increased coverage (see Figure and they are often filtered out
before scaffolding. Another factor that locally dictates the density of the graph
is the fragment length distribution f(x) in relation to the length of the contigs,
studied in [3I]. Increased average fragment length p and standard deviation o
contributes to increased density; larger p will contribute to read pairs spanning
over more contigs, thus, increasing the number of neighbors for nodes. Similarly,
increased variation in fragment length will allow both close and distant contigs
to be linked — increasing the graph density. See Figure [2.2] for an example of
contig graphs with two different read pair libraries. The density can be adjusted by
requiring a minimum number on the read pairs that links two contigs. Generally,
contig graphs are sparse for most read pair libraries and contig assemblies as two
arbitrary contigs most likely are not linked.

2.2 Notation

We assume a set of contigs C = {c1,¢a,...} and a number of read pairs R =
{(r1,72),(rd,73),...} that have been aligned to the contigs. A read pair have a
fragment length z following a fragment length distribution f(x), a <z < b with
mean p and standard deviation o. The contig graph G is induced as follows. Each
contig gives rise to precisely two vertices ¢;; and ¢; r in G where ¢; 1 and ¢; g
denotes it’s 5 and 3’ end respectively. In a read pair, if ] aligns to precisely
one contig c; and r? aligns to precisely one contig c,,, with k # m, the read pair
induces a relative orientation and an approximate distance between ¢, and ¢,,. This
relationship is represented as a link [.

2.3 Methods

The scaffolding problem (SP) defined by [42] is a combinatorial optimization for-
mulation that is widely adopted. Let ® : V. — N be an ordering, orientation and
distance mapping of vertices in G to the natural numbers that preserves contig
lengths. That is ® induces scaffolds by giving contigs positions. We say that [;
is concordant if it has correct orientation and z; € [imin, imaz] in a given contig
arrangement instance ¢. SP is given as

2For computational simplifications, most scaffolders requires unique alignments of both mates
to include the read pair as information for scaffolding. Therefore, read pairs from repetitive
sequence that occurs multiple times in the contigs should in theory not create edges and therefore
not increase the connectivity of the graph. However, repetitive sequence that has been collapsed
into a single representation will create edges, as the alignments to this sequence will appear unique.
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Scaffolding Problem (SP). Find the instance ¢mas that mazimizes the number
of concordant links in G.

min/max
Expected orientation fragment length
1. Input assumptions B Ll > < >
D DR LR R >
5’ 3

p—
~
w
N

2. Converting indata

1 2 3 4
3. Algorithm

1 3 2 4
4. Positioning 5 ‘ 3

3 2 4
5. Final solution ‘

Figure 2.3: Example of a scaffolding workflow. 1) Assumptions about data are
made. 2) Data is parsed and represented as a graph. 3) An algorithm is employed,
e.g., finding an ordering which maximizing the number of links with expected orien-
tation. 5) Positioning of contigs in a linear order within the scaffold. 5) A scaffold
containing contig sequence and unknown sequence (gaps) usually represented with
the letter “N”.

By reduction to the Bandwidth problem [42] showed that SP is NP-hard under
this formulation. Although there exists other proposed formulations of scaffold-
ing [I7P} SP has been used as foundation for a number of scaffolding algorithms,
where the common denominator being to maximize the number of concordant read

3They introduce two parameters o, and o that denotes the maximum number of linear and
circular chromosomes allowed in a solution. These parameters makes sense theoretically prevent a
scaffolding solution to contain less scaffolds/contigs than the number of chromosomes. However,
in practice this rarely happens.
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pairs. As methods have different boundaries on 4,,;, and 4,4, we will relax the
definition of concordant to be dependent on the method under consideration, see
Figure 2.3 for an example workflow in a scaffolder.

A common operation on G is to bundle together read pairs suggesting the same
order orientation and approximate location of two contigs as a weighted edge e [42].
The weight is related to the support of the edge but differs among methods (e.g.,
the number of links or the number of links weighted by mapping probabilities). We
let E denote the set of edges respectively in G.

Exact solution with dynamic programming

Although SP is NP-hard under general graph instances it does not mean that it is
computational infeasible to solve an instance of a contig graph exactly. For higher
quality bacterial genomes the problem instance might be small enough to permit
an exact algorithm for SP, see Figure 2] Also, the sparsity of general contig
graphs could be utilized as exact algorithms with polynomial time complexity (in
the treewidth of the graph) are commonly employed on sparse graphs where V is
large but treewidth is bounded [8]. For example, for several special graph structures
there exists exact polynomial time algorithms for the bandwidth problem [39] that
has similarity to the formulation of SP.

As fragment lengths, contig lengths and repeats determine how connected G
will be (assuming no spurious edges) assumptions specific to these properties can
be made. For instance, all correct contigs larger than i,,,, do not have any correct
aligned read pairs spanning over them (assuming there are no overlapping contigs),
which is information that can be used to decompose the problem. Also more explic-
itly to the topology of G, articulation points can be used to split the problem into
smaller instances. An articulation point (also referred to as a cut vertex) of a graph
is a vertex that disconnects the graph if removed. By finding such points, one can
individually solve the contig ordering and orientation of subgraphs induced by re-
moving the articulation points. With more articulation points, subgraphs becomes
smaller and tractable to solve.

Proposed algorithms Two methods using dynamic programming (DP) on sub-
problems induced by decomposing the problem are SOPRA [23] and OPERA [31].

SOPRA [23] formulates a global optimization problem similar to SP for orienting
the contigs. It use the articulation points in G to separate the problem instance into
regions where the number of concordant orientations of read pairs are maximized.
Note that this orientation step ignores the size of fragment lengths, i.e., the step
does not give contigs coordinates. The sparse structure of the contig graph permits
an exact solution via a DP approach for simple regions, while a simulated annealing
approach is employed to approximate the solution in more complex regions of the
graph. The read pairs that do not have correct orientation in the optimal solution
are removed. After the orientation step, read-pair distribution is used to deter-
mine the positions of contigs within a scaffold. If an inconsistency is found in the
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Figure 2.4: Illustration of modeling constraints on the contig connectivity graph
from [23] in SOPRA. (A) For two contigs ¢ and j with orientations S; and S;
connected through read pairs, the quantity J;; represents relative orientation (sign
of J;;) and number of mate pairs (absolute value of J;;). Minimizing F produces an
orientation assignment that satisfies as many constraints as possible. Constraints
not satisfied in the optimal configuration (shown in red) are ignored in the ordering
and positioning step. (B) The relative position of contigs are modeled by the
collection of mate pairs connecting contigs 7 and 7, illustrated as a spring attached
to the start points of contigs. The spring is relaxed when the distance between i
and 7 in a solution is equal to the average suggested distance between the start
points of ¢ and j given by mate-pair constraints.
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positioning step (i.e., & < fmin O T > imas), the contigs attach to that edge is
removed and the algorithm restarts at the orientation step. The iterative solution
of optimizing orientation and positioning separately does not solve SP where the
two needs to be optimized simultaneously. Thus, no guarantee can be given for
the solution to be optimal. Figure 2:4] depicts part of the workflow in SOPRA but
also illustrates the essence of the scaffolding problem, i.e., orienting, ordering and
positioning contigs given the graph topology and link information.

Like SOPRA, Opera [3I] aims to build scaffolds with a minimum number of
discordant links, solving the problem exactly for local regions induced by forming
scaffolds between two contigs that are both larger than 4,,,,. For a partial scaffold
S’ (induced by the subgraph G'), the set of contigs that are not in S’ but are
neighbors to a contig in S’ are concatenated to S’ (one at the time). Each new
neighbor concatenated to S’ induces a new partial scaffold S” (with a new set of
neighbors), and the algorithm continues to produce partial scaffolds recursively in
this way. The concatenation of a contig to a partial scaffold can induce concordant,
discordant or both types of edges in the subgraph G’. Opera continues to recursively
build scaffolds in this way using the number of discordant edges p in G’ (induced
by the partial scaffold) as a design criterion. By treating p as fixed, they can
obtain a polynomial time algorithm to find an optimal (with respect to a given p)
solution to their slightly modified version of SP; maximizing bundled edges instead
of individual links. The algorithm then tries all p starting from p = 0 and stops
when a scaffold can be constructed. The algorithm is polynomial in the parameter
w (for the width), where w = 40 /Cmin Where ¢y, is the minimum contig length,
that is w is the maximum number of contigs (assuming no overlaps) that i,,q, can
span. This dictates how “wide” the contig graph can be for a given read pair library.

The approaches in SOPRA and Opera are algorithmically appealing. Although
the approach presented in SOPRA maximizes the orientations of read pairs opti-
mally, the arrangement ¢y, is not guaranteed as fragment length information has
not been regarded. Figure shows the correct ordering (a) and the solution that
maximizes the number of read pairs with correct orientation (b) in a region. The use
of larger contigs to divide the problems in Opera relies on the fact that the larger
contigs are correctly assembled with no or few erroneous links and the algorithm is
sensitive to paired-end contamination [96] (discussed in Section . Furthermore,
the recursive structure for building scaffolds in Opera is memory consuming if the
treewidth (i.e., set of neighbors) is large as each neighbor to a partial scaffold S’
yields a new partial scaffold — creating a drastic increase in the number of partial
scaffolds. Thus, a lower bound on contig size is introduced in the implementation
of Opera. Finally, both SOPRA and Opera permits only unique placements of a
contig, thus repeats will get no or unique placement. The relaxation of scaffolding
with repeats is further examined in Opera [32].
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Figure 2.5: Illustration showing scaffolding error when maximizing number of con-
sistent orientations due to incorrect assumptions about data. a) True placing of
contigs in a region. b) Placing by only optimizing the number of correct mate-pair
(MP) orientations (according to data assumptions). Links that are deviating from
[imin, tmaz) appear dotted.

Maximum matching

A matching M is a set of edges in a graph where no edges in M share a common
vertex, and M is called maximal when no edge can be added to M without breaking
the matching property. In a given graph, the matching(s) M with the largest
possible number of edges is called a maximum matching. Let intra-contig edge
refer to edges between the two nodes representing contig ends (5’ and 3’). Notice
that a matching consisting of all intra-contig edges, denoted M;,¢rq, is @ maximum
matching. Let inter-contig edges denote edges between different contigs and Mi,zer
denote a matching in G consisting of only inter-contig edges. M;pser naturally
allows at most one edge from each contig end. Two maximum matchings M, q
(trivial to find) and M;p,ter forms simple paths in G — as there can only be one
inter-contig edge linking a contig in each end. The simple paths naturally induces
linear scaffolds with the exception that cycles are allowed in this formulation. To
find a maximum matching covering all nodes without cycles is equivalent to finding
a Hamiltonian path, thus NP-complete. Even relaxing the problem to finding a set
of cycles and paths (with a given constraint on the numbers of cycles and paths)
in Minter U Mintrq covering every vertex in G where G contains no self-loops is
NP-complete [I7]. However, a solution permitting an arbitrary number of cycles
can be found in polynomial time, e.g, with the blossom algorithm [26]. Therefore,
a solution containing cycles is preferred for practical reasons. In case the final
maximum matching contains cycles, they are given separate treatment.

Notice that the matching approach described above permits only a unique place-
ment of a contig in a scaffold, thus repeats will get no or unique placement. More-
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over, at most one neighbor of any given contig can be chosen with this approach.
As G contains information from the read pairs linking contigs, such as number of
links and their placements on contigs, the information can be incorporated in SP
formulated as a maximum matching problem.

Proposed algorithms [63] formulates SP as a minimum cost maximal matching
problem. Intra-contig edges get a cost of 0. All inter-contig edges are associated
with a strict positive cost corresponding to the maximum length difference in gap
size by the links between the two contigs. The cost can be interpreted as describing
the uncertainty of placements of read pairs in a given edge. A minimum cost
maximum matching solution induces a set of scaffolds as described above. Every
cycle is transformed into a path by removing the edge with the highest cost.

ScaffMatch [64] uses the number of links as the weight of the edges in G and
solves a maximum weight matching problem providing two different algorithmic ap-
proaches. The first approach is using the blossom algorithm [26] to find a maximum
weight matching among the inter-contig edges. The union of inter and intra contig
edges form paths and if no cycle is present, this forms the solution. Otherwise, the
edges with the smallest weights in each cycle is given -1 as weight in a new step
of the blossom algorithm and this is repeated until the solution is free of cycles.
The second approach is to iteratively choose the edge with the largest weight that
does not introduce cycles or vertex with degree 2, until no more feasible edges are
left. This reduces the runtime complexity of the method based on the Blossom
algorithm from O(n?) to O(nlogn).

As the maximum matching approach only permits one neighbor of every contig
to be joined, this can be a limitation on assemblies where the fragment length
is relatively large compared to contigs, making mate pairs link to several correct
neighbors. [64] acknowledge this and introduce an “insertion”-step where contigs
not chosen by the matching is inserted in gaps of existing scaffolds formed by the
maximum matching solution.

Linear constraints and (M)ILPs

As read pairs follows a distribution f(x), and has given relative orientation (e.g.,
forward reverse as for Illumina mate pairs), they give information about relative
placements and positions of the contigs. This information together with contig
lengths induces distances between contigs and predominantly, a linear layout of
contigs is assumed in the final solution. This interval structure motivates that the
problem is partly geometric with similarities to the Interval scheduling problem,
which is often formulated with (Integer) Linear Programs [I07]. Therefore, one
approach to SP is to find an ordering and orientation by formulating the problem as
an Integer Linear Program induced by distance constraints based on f(x) and contig
lengths. The objective function is, similarly to SP, usually maximizing the number
of concordant links (or as a minimization problem for the number of discordant
links). The unknowns in this problem is the orientation of a contig in a scaffold



2.3. METHODS 17

(forward or reverse), the position of the contigs in the scaffold (positive integer) and
a penalty (real valued) describing how much each edge in the contig graph agrees
with the positions assigned to contigs in a given solution. The choice of domain for
variables, e.g., the penalty dictates if the problem is a mixed integer linear program
(MILP) or ILP.

Proposed algorithms SILP2 [58] formulates an ILP that maximizes the log-
likelihood of scaffold orientations by introducing boolean variables over contig- and
edge orientations. The probabilistic framework is introduced by assigning probabil-
ities to read links based on coverage similarity between linked contigs and alignment
quality of reads. As they note, if all read pairs have the same probability of being
aligned correctly and contigs have the same coverage, the ILP reduces to maximiz-
ing the number of concordant links. As variables are introduced for all contigs and
edges, they employ a non-serial dynamic programming approach that takes advan-
tage of the sparsity of G. Assuming probabilities over alignments is novel to other
approaches and better captures the uncertainty of links. However, modeling of a
good probability distribution may be difficult. The probabilities described in [58]
should be interpreted as weights as no probability distribution is provided or dis-
cussed. They give two separate parameters; pr., describes a probability based on
the amount of overlap with repetitive sequence and p.,, measures the normalized
coverage difference between the two contigs where the mates are aligned. They
state that the full “probability” of a read alignment could be either prep, peov OT a
factor of them.

MIP Scaffolder [99] and GRASS [35] formulate SP as a Mixed Integer Program-
ming (MIP) problem. As for the DP approaches, articulation points are used to
split the graph into biconnected components. They introduce real valued variables
denoting penalties on how well distance constraints imposed by the edges are sat-
isfied. The formulations are similar, but they use different techniques to find a
solution.

MIP Scaffolder solves the MILPs on a subgraph G’. G’ is initialized contain-
ing only vertices representing the contigs and edges are constructed by adding the
largest weighted edge (i.e., the edge with the most links) one by one, until a thresh-
old for the biconnected component size is reached. The individual solutions might
introduce conflicting regions and they are resolved using heuristics such as removing
edges that are stretched or contracted more than a given threshold.

GRASS uses an Expectation-Maximization algorithm. The maximization step
obtains degrees of penalties on contig links given fixed contig orientations. The
penalties are set according to what magnitude the constraints for a link is vio-
lated. If a penalty is higher than a given threshold, the penalty of the link is
“de-activated", i.e., its constraints are not considered. The expectation step is used
to obtain the expected contig orientation of links given the activated penalties set
in the maximization step. Links that are activated in the final solution are used for
scaffolding.
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Similarly to previously mentioned methods SLIQ [92] formulates a set of linear
inequalities derived from the geometry of contigs. Scaffolds are formed by first
finding relative orientations of contigs (by finding, e.g., a spanning tree of G).
After orientations are fixed majority voting (total link weight on edges) by links
satisfying the linear constraints is used to predict placements of contigs. As for
previous described approaches, the ILP based methods presented here does not
handle repeats.

Greedy

Not only is SP NP-complete for general graph instances, mammalian and plant
genomes often give data instances containing millions of vertices and edges making
super-linear polynomial approximations infeasible [41], [98]. However, if the majority
of contigs is at most a couple of hundred base pairs (often the case in practice), a
decision of which contigs are most important to scaffold, and which to leave out, is
motivated. Also, as edges in a contig graph can be either spurious or true, a simple
classifier for this has the potential to work well if the classifier is good enough.
This motivates that a greedy algorithm, choosing which contigs to scaffold and
what edges to trust, may be appealing in practice.

Proposed algorithms Greedy algorithms proposed to solve SP include SSPACE
and Bambus [9, BI]. The published version of SSPACE choses the largest contig
that has not been joined in a scaffold yet, and selects the edge with the most
amount of links to extend the contig. If there are more than one edge and the ratio
of number of links between the two edges with most links is smaller than a given
threshold, SSPACE chooses the dominating edge to extend the scaffold, otherwise
the extension is stopped. In later versions of SSPACE, it is noted that larger contigs
in general has more links, therefore, they normalize the number of links with the
contig lengths, creating a form of “link density”. However, it is not described exactly
how this procedure is performed. Similarly to SSPACE, Bambus2 builds scaffolds in
the same greedy fashion with heuristics to remove edges with inconsistent fragment
lengths suggested by contradicting links.

The simple greedy classifiers are practical and their implementations are com-
petitive or even outperforms implementations of more advanced algorithmic ap-
proaches [41]@ However, there are graph regions and characteristics common to
contig graphs permitting simple solutions that a greedy edge classifier does not
treat.

4Scaffolding consists of several steps and it is not yet shown what step(s) in a method that
gives the performance difference — the core algorithmic framework on G or the pre- and post
processing of data. So far, evaluations have only compared full package implementations (discussed
in Section [3.3]).



2.3. METHODS 19

[c] .

Figure 2.6: Contig graphs constructed by BESST for the ALLPATHS-LG contig
assembly on Rhodobacter. The graph density is increased by repetitive and smaller
contigs. The repetitive contigs can often be classified by looking at coverage (color
coded in figure). All contigs are included in [a], [b] is the graph constructed by
contigs > imae and [c] is obtained by fitering out repeats from [b] based on coverage.
In the default setting of BESST it will start scaffolding with graph in [c], and include
smaller contigs in a later step.
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Mixed methods - Exploring structures and features common to
contig graphs

Greedy methods are appealing for their speed, but one can take the greedy ap-
proaches a bit further by tailoring graph operations that can resolve smaller struc-
tures typical to the topology of contig graphs. Instead of choosing a universal
decision function that choses what edges to trust in G, a set of different heuristics
can be chosen based on the local behavior of the graph.

Another observation is that a contig graph consists of true and false edges. If
the majority of false edges are due to random independent events with relatively low
frequency, e.g., chimeric read pairs or misaligned reads due to substitution errors,
the formulation in SP is motivated as the majority of links (hence edges) would
be correct. But spurious edges might come from misassembled contigs, collapsed
repeats or paired end contamination in a mate pair library (see Section7 creating
clusters of spurious links. In such cases SP is a too simplistic formulation of the
scaffolding problem and instead, it is desirable to remove contigs or filter out edges
that seem to be incorrect from the distribution of read pair links before scaffolding.

Proposed methods The built in scaffolder in ABySS [105] is based on a set of
heuristics to resolve regions of various kinds based on the graph topology, such as
closed simple bubbles, forks, repeat regions, tips, and weak, transitive, or ambiguous
edges [45]. All of these “regions” involve a smaller local set of nodes and require
only local operations. For example, a simple closed bubble consists of four nodes
s,t,u,v in a DAG where s is a source and t is a sink and there exist exactly two
paths s,u,t and s,v,t (simple) and there are no incoming edges from or outgoing
edges to other parts of G, except at the source and sink vertices (closed). In this
case the relative placement of w and v are ambiguous (at least from the graph
topology) and the authors remove u and v from the graph and an edge between
s and t is added. Similar graph modifications are performed for the other events,
usually involving around five nodes.

BESST [98] utilizes statistical information from read pairs and the size of contigs
to first scaffold larger contigs (essentially working with a subgraph G’ of G where
smaller and repetitive contigs are filtered out), see Figure for an example of
forming G’ (Figure 2.3). The main point is to look at the distribution of links
across contigs and decide if they match the expected characteristics of the read
pair library instead of maximizing the amount of links. This is motivated by the
presence of artifacts in data such as chimeric contigs read pair library contamination
discussed in Section that can give rise to edges with several read pairs. In a
second step, BESST find paths in a brute force Breadth First Search (BFS) with a
heuristic stopping criterion of the BFS. The brute force path finding is based on the
assumption of a relatively linear structure in a contig graph. As the number of paths
can blow up for complex regions, the approach is in theory not efficiently designed.
However, this is rarely seen in practice. Also, such a region might not be desirable
to scaffold (obtain a linear order of the complex structure). The classification of
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larger and smaller contigs are made with respect to the contig length and fragment
length of the read pair library. If there are no contigs classified as large enough
for f(z) to be border contigs, BESST fails. This classification threshold can be
manually set, but it may come at a price of more aggressive scaffolding. This is a
limitation with BESST. BESST was shown to perform especially well in relation to
other scaffolders when scaffolding with wider read pair libraries [98], potentially due
to the improved gap size estimation making contig placements more accurate [95],
which has bigger effect with increased variation of fragment lengths.

[I13] describe an algorithm implemented in the genome assembler SPAdes [4],
that similarly to BESST uses a scoring function based on the distribution of reads
to extend scaffolds. However, they work directly on the DBG. They evaluate paths
to extend a scaffold with, where they motivate that the sparsity of the DBG permits
this approach for general regions. If the graph has too many extension paths they
set a heuristic stop threshold for the number of paths to evaluate.

SCARPA [24] is a scaffolder that attempts to remove contigs that seem mis-
assembled. By using two nodes per contig, the problem of orienting contigs has a
feasible solution if and only if G has no cycles containing an odd number of nodes.
This can be realized by noting that an odd number of nodes means that the 3’
and 5’ ends are not the same — one contig contributes to two inter-contig edges.
They find the minimal number of nodes (contigs) to remove to allow for a feasi-
ble solution. They adopt a similar approach (odd cycle removal) to find spurious
edges. The algorithm is engineered to perform odd cycle removal of edges and
contigs simultaneously and prefers removal of spurious edges to contigs. After the
orientation step of contigs, they are ordered linearly by first removing any cycles
with even number of nodes, then a LP formulation is used to get coordinates of
contigs within a scaffold.

2.4 Scaffolding with other information

Read pairs provide a natural type of information for scaffolding as the approximate
distance between reads is known. But they are not the only type of information
available for scaffolding contigs. In addition to paired reads, there has been work
on scaffolding with long reads, restriction maps, RNA-seq and reference sequence
from related organisms.

Third generation sequencing long reads as offered by the PacBio RS methodol-
ogy can solve complex genomic structure by, e.g., span over repeats or phase alleles.
By mapping the long reads to contigs, scaffolds can be created if the long read has
parts that maps to different contigs, this is explored in, e.g., [I0]. However, the
reads suffer from a relatively high error rate (approximately 15%) and the through-
put is smaller than read pair sequencing. This makes long reads most useful for
assembly and scaffolding of smaller genomes at present, where high enough cover-
age can be obtained to correct the errors in reads. Restriction maps detect known
restriction sites within a sequence of DNA by cleaving it with a specific restriction
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enzyme. An optical restriction map is a restriction map that provides an ordered list
of fragment sizes resulting from the restriction sites. Fragment sizes of any contig
can be found by in silico digest of the restriction enzyme and these fragment sizes
are compared to fragment sizes of the optical restriction mapping of the genome to
order and orient contigs along the genome [75] 93] 109]. Genome-wide chromatin
interaction data sets have also shown to be useful for scaffolding contigs [15]. To
get a better coverage of the gene space in an assembly, RNA-seq data [73] [123] [94]
can be used for scaffolding contigs around gene sequence. Reference sequences of
related organisms has also been used for scaffolding [89, [TT], 50], but have only been
evaluated on prokaryotic or smaller eukaryotic genomes.

However, reference based assembly is not applicable to most de novo sequencing
projects, restriction maps are often not available, RNA-seq data only have coverage
over genes and contains no information about distance between reads which makes
contig placement ambiguous, and the throughput and error rate of long reads cur-
rently makes it feasible only for smaller, less complex genomes. This makes read
pair information the most commonly used (and often also the only applicable)
source of information for scaffolding at present.

2.5 Evaluation of scaffolders

There exist several projects benchmarking genome assemblers, and their integrated
scaffolders [25] [12} [10T], [62] using simulated and real data with high quality reference
sequences available. However, even with a reference sequence, they encountered
several problems in identifying the best assembler. Defining the evaluation metrics
is difficult.

e There is often a trade-off between the number of misassemblies and the con-
tiguity of an assembly — but the trade-off level may be difficult to define.

e Determining what counts as misassembly is subjective and depends on the
objectives of the downstream analysis. Defining possible misassemblies (e.g.,
inversions, relocations, translocations, insertions, deletions [I01]) is a compu-
tational problem in itself. Some of these misassemblies can be ordered in size
— should they be weighted based on their significance in that case?

e Regions around genes might be more valuable and therefore giving higher
priority to assemble correctly in an evaluation.

Also, [I01] clearly demonstrated how the same assembler can give significantly
different quality on similar datasets (bacterial genomes) which hamper a general-
ized statement about the performance of a tool. This makes even referenced based
assembly evaluation is difficult, but there are also attempts at reference free evalu-
ation using the same type of data as in the original assembly (paired end or mate
pair reads) [87, [1T4] 2T), 40]. This problem is as difficult as genome assembly itself
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as input information is similar. QUAST [36] is another tool that evaluates assem-
blies using a reference genome and gene families (if provided). QUAST is easy and
fast to use and offers a large amount of evaluation metrics that makes it a suitable
tool for benchmarking assemblers and scaffolders on organisms with known genome
sequence. However, the classification of misassemblies in QUAST is in some cases
too simplistic as there is only one threshold determining if the misassembly is lo-
cal (smaller) or not. This has its limitation in benchmarking assembly software
as shown in [I00]. Ideally, one would want more detailed information about the
size of misassemblies (where possible), which motivates investigating edit distance
between contigs/scaffolds and the reference. One way to approximate the quantity
of misassembled sequence in a scaffold is to extract pairs of sequences separated
by a given distance on the scaffolds and map them back to the reference to give a
proportion of pairs whose orientation and approximate distance match [99] [34].

Using other type of data to evaluate an assembly is crucial, as the same type of
data might bias the evaluation. CEGMA [80] uses eukaryotic core gene sets to map
onto assemblies in order to evaluate how many genes are fully or partially repre-
sented in contigs. BUSCO [I03] is a similar tool that uses single copy orthologous
gene sets to look at the gene space quality of an assembly.

There have also been attempts to evaluate stand-alone scaffolders [41] [98]. As
with evaluation of genome assemblers, it is difficult to nominate one scaffolder as
the “winner”, or obtain an objective ranking in general, as there are several possible
metrics to evaluate by, often with a tradeoff in, e.g., errors and contiguity. Also, the
quality difference between datasets (both contig assemblies and read pair libraries)
varies greatly, making scaffolders suited for datasets with different characteristics.
However, one important conclusion from [41] was that the type of read aligner and
its parameter settings have a big impact on the quality of the scaffolding. This
suggests that scaffolders might benefit from also looking at alignment quality and
adjust to aligner-specific artifacts such as in [58].






Chapter 3

Future work on Scaffolding

The number of algorithms proposed for scaffolding and the their variation in method-
ology suggests that scaffolding is a difficult problem. A possible explanation of the
difficulty is the artifacts and unmodeled characteristics of the problem in practice.
A simple example is that in SP, the mapping ¢;,q, that maximizes the number of
concordant links only permits one placement per contig, thus it does not address
repetitive contigs. The following artifacts and characteristics are most likely present
in biological data.

o Sequencing technology artifacts: Erroneous sequence introduced in reads from
the sequencing technology such as single nucleotide substitutions and small
indels (see Chapter and increased variance in sequencing coverage. Specific
to Illumina mate-pair protocol, spurious read pairs are created; chimeric reads
(junction adapter in the middle of one mate in the read pair), chimeric read
pairs (two distant fragments have been joined together in the circularization
step) or PE-contamination (discussed in [3.1]).

o Repetitive contigs: A contig that is present multiple times in the genome but
assembled into one copy in the assembly. Therefore it needs to be placed in
several locations (if possible) during scaffolding, see Figure

o Assembly errors: Due to, e.g., chimeric contigs caused by repetitive regions,
see Figure

o Heterozygozity: Multiple “copies” (not identical) of chromosomes in polyploid
organisms. Similar or identical regions between copies are collapsed into one
contig while highly heterozygous regions give rise to several contigs. The
objectives can also vary: Either we are interested in the difference between
copies in which case we want to separate (or phase) the copies, or we want
to create a consensus assembly in which case we want to merge contigs from
the same allele.

25
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e Misalignements: Due to any of the above issues. Another cause is the repet-
itive sequence in contigs with respect to the read length or the aligned read
pairs. Sequence that did not appear repetitive when assembling with reads
of length y can be repetitive when scaffolding with read pairs with mates of
length z, with = < y.

It is therefore questionable if solving the idealized problem formulations exactly,
such as SP, gives a solution close to the true solution. The above stated issues are
well known in the genome assembly community and comprehensive work has been
made on the individual issues stated above, e.g., cleaning of mate-pair libraries [78],
129], identifying misassembled contigs de novo [40] 2], [87], assembling repetitive
regions [14], [84], and assembling highly heterozygous genomes [48]. These methods
are either stand-alone or integrated in end-to-end'] assemblers.

Although modularity in assembly pipelines is preferred due to the transparency
in the algorithmic workflow (see Section , some problems are closely intertwined
and solving them together gives a better solution than solving them in stand-alone
modules (the orienting and ordering step in scaffolding is an example of this).
Therefore the quality improvement in an integrated solution might be preferred over
the transparency that modularity offers. As misassembled and repetitive contigs
are part of input and output to the scaffolding problem in practice, and read pair
data provide information well suited for breaking misassembled contigs and placing
repeats, it motivates the integration of these problems.

However, methods addressing the above list of practical problems in scaffold-
ing have not yet been widely integrated in scaffolders. To the author’s knowledge,
Scarpa [24] is currently the only stand-alone scaffolder that attempts to identify
and remove misassembled contigs. Opera-LG [32] is the only stand-alone scaffolder
that attempts to place repeats in multiple places in scaffolds. SILP2 is the only
scaffolder to weight alignments based on their alignment features with a probabilis-
tic framework — however they still consider only unique alignments. Also, among
stand-alone scaffolders, only BESST and Opera-LG have shown to have accurate
models for contig positioning. As such a fundamental problem is widely unnoticed,
it highlights that work on scaffolding is still in its infancy and significant work needs
to be done both on modeling the problem, and on the implementation sideEI’El Fur-
thermore, there is a paucity in literature on integrated scaffolding methods (except
a few cases, (e.g., SPAdes integrated scaffolder [84] 1I3] and ABySS [45]). The
integrated scaffolding methods are often presented as a single section in an article
describing the full end-to-end assembler, giving limited insight into the algorithms.

One of the practical problems with data listed above is the PE-contamination
in Illumina mate-pair libraries. Although this library artifact is specific to Illu-
mina sequencing technology, these libraries are the most widely used for scaffolding
larger organisms and the most common data used to benchmark NGS scaffolding

ITaking raw read files such as fastq files and output contigs/scaffolds.
2http://bioinformatics.ninja/blog/2013/12/11/genome-scaffolders-suck/
3http://omicsomics.blogspot.co.uk/2014/01/envisioning-perfect-scaffolder.html
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Figure 3.1: Examples of scaffolding instances. a) Repetitive contig: Repeats that
cannot be solved in the assembly graph are collapsed into a single copy contig. This
contig has multiple true placements in the scaffolds. b) Misassembled contig. Due
to, e.g., coverage drops, the assembly graph does not contain dotted edges. There-
fore, a chimeric contig is formed. This is passed on downstream to the scaffolding
step and the misassembled contig will give rise to edges that confuses scaffolding.
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softwareﬂ So far BESST [96] is the only stand-alone scaffolder that identifies and
models PE-contamination.
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Figure 3.2: Histogram of fragment lengths of a read pair library from Illumina jump-
ing library sequencing of Human Chromosome 14 (GAGE dataset [101]). Based on
alignments with BWA-mem [55] onto the reference sequence, the paired end con-
tamination is approximately 33% with a mean of 200 base pairs.

3.1 Paired end contaminated mate-pair libraries

The type of technology used to obtain read pairs and their main parameter, the
fragment length, determine how far apart the reads are distributed on the genome
and thereby at what distances contigs can be connected into scaffolds. A common
sequencing technology for obtaining read pairs is Illumina sequence technology,
called jumping libraries or mate pair libraries (MP). This sequencing technology
has the highest throughput and lowest cost per base pair [59, [85], which makes it
the most commonly used sequencing technology for larger genomes today. How-
ever, there are also numerous complications with the methodology. For example,
the fragment length is not perfectly controlled and larger fragment length typically

4Mate-pair libraries has been used almost exclusively as benchmark data in articles introducing
the methods presented in previous chapter as well as in the evaluation study from [41].
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means a larger variance in the distribution of distances between the reads, making
scaffolding harder [98]. Other examples of sequencing artifacts are multiple copies
of identical reads pairs (duplicates) due to the amplification step in the sequenc-
ing protocol, and chimeric read pairs due to spurious joined fragments before the
sequencing step. Another problem is the so-called paired-end (PE) contamination
of MP libraries, which is a consequence of the MP library preparation. During the
process, an unknown fraction of fragments that do not contain the circularization
junction are sequenced. These misreads behave like PE reads, with opposite read
direction to MP and effectively with a much smaller fragment length [43]. Hence,
PE contamination reads may confuse a scaffolder that assumes an MP library is
clean from contamination, suggesting a different relative order of contigs. Figure
shows an fragment length histogram from a MP library containing both the reverse
forward read pairs (MP) and forward reverse (PE contamination) distribution. The
contamination rate in MP libraries can be over 50% as observed by [34] and they
noted “We found that the greatest challenge in scaffolding the data of this work
originated from artifacts present in the read pair data.. With these library arti-
facts of the Illumina mate-pair libraries, it is therefore questionable if the idealized
formulation (SP) is a good problem formulation to optimize for.

Although a decent MP library will contain more true MP reads than PE, and
hence overshadow PE contaminants in terms of the total span coverage, it is not
the case when there are many short contigs close to each other; making PE links
dominate MP links, see Figure [2.5] PE-contamination has been discussed in work
on integrated scaffolders in end-to-end assemblers such as ALLPATHS-LG [34] and
MaSuRCA [129]. These methods relies on the fact that the orientation is observable,
e.g., by finding and removing the adapter sequence. But read pairs not containing
the adapter will not have an observable orientation [78]. Furthermore, the meth-
ods for identifying and removing adapters are often inefficient, removing all the
sequence to the 3’ end of the adapter [78], and quality of the output varies [46]. In
theory, if there is a single simple path between the mates in the DBG, this gives
unique information of the fragment length and orientation. However, due to gaps
from drop in sequencing coverage or multiple paths between mates, orientation and
fragment length of a read pair ultimately becomes stochastic. A method for scaf-
folding assuming stochastic orientation and fragment length of links is investigated
in [96] and implemented in the update of BESST. We solve local scaffolding prob-
lems as ILPs with an introduced variable over the orientation. By using information
from the interval structure of a contig graph (the lengths of contigs and fragment
lengths), an efficient heuristic is provided to solve the ILP. Significant improvement
was made in scaffolding over both integrated and stand-alone scaffolders on bio-
logical data from [I01], illustrating the impact of PE-contamination in real data.
By simulating different levels of PE-contamination, we investigated how other scaf-
folders are vulnerable to PE-contaminated libraries, resulting in increased number
of misassemblies, more conservative scaffolding, and inflated assembly sizes. The
drop in quality was most evident for fragmented assemblies.
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3.2 Choosing fragment length distribution for scaffolding

On the user side, there is limited work on suggesting the read pair distribution
characteristics to facilitate best possible scaffolding. In the study by made by [112]
they argued that applying combinations of mate-pair libraries with insert sizes
that match the distributions of repetitive elements improves contig scaffolding and
can contribute to the finishing of draft genomes. They also concluded that larger
or mid rage mate-pair libraries (5-25 kbp fragment length) were more efficient for
genome structure analysis (larger scale connections of contigs) compared to applying
a commonly used combination of paired-end reads and a 3 kbp mate-pair library.
The study was performed by scaffolding an high quality contig assembly of the
mammalian genome Rattus norvegicus with different combinations of read pair
libraries using SSPACE. Conclusions was based on increase in N50 and decrease in
number of scaffolds after scaffolding. They also evaluated scaffold quality on one
chromosome for the combination of libraries that gave the largest N50 and smallest
number of scaffolds (which was the combination of using all hbrariesED by looking at
concordance with contig order from optical mapping. Larger structural errors from
the scaffolding were revealed in 236 100kbp bins out of 872 on the chromosome. As
there were no evaluation of correctness between the different scaffolding runs the
trade-off of connectivity and the number of misassemblies was not considered. It is
therefore difficult to evaluate and quantify the gain in quality of the assembly from
scaffolding as well as electing the best combination of mate-pair libraries. Also,
SSPACE was the only scaffolder used, it might be that this particular scaffolder
works well with the libraries suggested but other scaffolders benefit more from
other library sizes. Finally, the outcome in result of this analysis depends on the
initial quality of the contig assembly (N50 of 37kbp), which is large compared to all
the libraries used. Therefore, larger libraries might be suitable for this particular
assembly, not for more fragmented assemblies.

A more theoretical study was performed by [I19] where they similarly to [I12]
concluded that mate-pair libraries tailored the the repeat distribution of the genome
gave the best results, and therefore advocated performing assemblies with paired-
end reads before constructing the mate-pair libraries. However, contrary to [112],
they found that “in high-coverage prokaryotic assemblies, libraries of short mate-
pairs (about 4-6 times the read-length) more effectively disambiguate repeat regions
than the libraries that are commonly constructed in current genome projects”. The
evaluation was performed on a large range of simulated prokaryotic datasets as-
sembled with SOAPdenovo. The analysis focused both more theoretically on the
complexity of finding paths between mate-pairs in a DBG (to be able to form a
contig/scaffold), and on the final result (N50) of SOAPdenovo.

5This is not surprising as SSPACE (similarly to BESST and SCARPA) will create scaffolds
with using library at the time (in increasing order). Taking the scaffolds created in previous step
as contigs for the new step. This is dangerous for quality as scaffold errors are passed on to the
next step and has the potential to build onto chimeric scaffolds.
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Figure 3.3: Hlustration of one benefit of using a wider library distribution to a
narrow one. If there is no or little variance in fragment length (a) adjacent contigs
might not be linked. If the library has more variable fragment length, connectiv-
ity in contig graph has more links enabling scaffolding the whole region into one
scaffold.
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Although these studies advocates choosing mate-pair sizes tailored to the repeat
distribution of the genome, more work could be done. For instance, contig sizes
in relation to fragment length is crucial for scaffolding quality. As shown in [96],
fragmented assemblies with (relatively) large fragment length libraries can cause
inflated assembly sized containing lots of gaps due to the inability to place several
neighboring contigs — a practical problem with many of todays scaffolders. Not
only the size of fragment length matters; the variation of fragment lengths will
affect scaffolding quality. With more variance in fragment lengths, contigs are
more difficult to place accurately as well as evaluating misassembled contigs with
intra-contig read pairs. However, there is also a benefit of more variance in fragment
length if only one library is used. A library with higher variance will in general
link together more contigs as it consists of more short range and long range read
pairs. This can facilitate the connectivity in scaffold regions linking together more
contigs, see Figure However, scaffolding methods that can use several (narrow)
libraries simultaneously with varying insert sizes are to prefer as it gives both the
connectivity and accurate placements.

3.3 Evaluation

No study has yet been made on how significant the discrepancy are between formu-
lations such as SP, and the practical problem of scaffolding. In other words, how
much the optimal result of SP differ from true scaffolds. The lack of such evalua-
tions could be due to difficulty in implementing such an exact algorithm, the time
complexity of solving SP optimally, and/or the fact that merely evaluating scaf-
folds is difficult (see Section . Another potentially more important limitation in
evaluations is the inability to evaluate improvements in the “core” methodologies
of scaffolders.

Both independent evaluations, e.g., [41], and evaluations in new-method pub-
lications evaluates the full “package” implementations rather than evaluating the
core algorithms. Both genome assembly and scaffolding (viewed as a sub-step in a
genome assembly pipeline) consists of several steps

e Filtering, error correction and processing of data.

o Core algorithm(s), e.g., DBG assembly and scaffolding.

o Heuristics to remove infeasible solutions produced by the core algorithm.
e Finalizing and finishing output.

It is therefore difficult to interpret what parts contribute to the improvements.
Although it’s appreciated by the community to provide an end-to-end solution that
is easily used in practice, it is a drawback for the development of new algorithms.
Firstly, because it inhibits of evaluations of the individual steps in the algorithm.
Secondly, for availability (e.g., code and documentation) of the separate steps as
modular implementations, discussed in, e.g., [83] [67].
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3.4 Summary

Although scaffolding with read pairs from NGS methods might only be around
for a couple of more years until sequencing techniques providing longer reads with
less errors take over, scaffolding is still an active research area. Some examples of
limitations with current scaffolding algorithms that is important to address are

o Repeat resolving integrated with scaffolding — Being able to scaffold (place)
the repeats that are spanned over, as discussed in [32].

¢ Soft alignments - Weighting the links by probability of alignment, as discussed
in [68]. Or even better, probabilistic assignment over reads, allowing multiple
mappings of a read.

o Heterozygozity — Identify and scaffod graph regions containing split allele
contigs from polyploid organisms. The objective could be either phasing out
scaffolds representing several alleles or to create a consensus scaffold from the
split allele contigs.

e Multiple libraries — Scaffold with information from several libraries simulta-
neously, e.g., as in [34]. Currently most stand-alone scaffolding methods are
designed for one library, and use multiple libraries only in an independent
step-wise manner.

o Meta scaffolding — using several scaffolders to build consensus scaffolds.






Chapter 4

Structural variation

4.1 Introduction

A Structural Variation is a region where two or more genomes within an organism
are differing from each other. In SV detection, the problem is to find regions where
sequences are differing. The start and stop positions of these regions are called
break points. As with the scaffolding problem, there are several types of data to use
for structural variation detection. However we limit the discussion to NGS reads.
More specifically, the scenario we discuss is when NGS reads have been sequenced
from a donor genome and we have a reference genome to compare against. Notably,
the reference is usually a single sequence although, e.g., humans are diploid, that
is having two “copies” of chromosomes. Here “copies” are quoted to highlight the
fact that they are not identical - which is partly due to structural variation. In the
two “copies” of a human chromosome, small differences in genomic content exists
that might be either a single nucleotide polymorphism (SNP’s) or larger differences
where sequences of the genome might have been deleted, inserted or cut/copy-
pasted elsewhere. This variation is natural and necessary for evolution. A large
pool of different versions of genes help to protect a species from extinction from,
e.g., virus infections as it is more likely that some organisms will carry a copy of a
gene that makes the organisms immune to that virus. Therefore, one of the reasons
to why Structural Variants (SVs) are interesting to find and study is that they can
help develop new vaccines and medicines by, e.g., isolating the gene(s) with variants
responsible for the immunity of a virus.

Although genetic variation serve as “protection” of a species, it comes at a price
of causing dysfunctional genes. Although researchers currently has a limited knowl-
edge on both methods of detection and the effect of SVs, studies have been showing
causality between SVs and numerous diseases and complex traits such as epilepsy,
Parkinson’s, Alzheimer’s disease, schizophrenia, and autism [I08]. Another area
where SV’s are studied is cancer research. Inherited or accumulated over time
(somatic) mutations in the genome might make an individual cell start to copy
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uncontrollably. The new copies most likely have the mutations passed on from the
predecessor cell and new SVs accumulate.

Originally, structural variants were defined as as insertions, deletions and inver-
sions greater than 1kb in size [30], but recent sequencing techniques have widened
this spectrum to include smaller events [3]. Here, we don’t put a size constraint
on the classification of a variant. Typically SNPs are not included in the definition
of structural variation. The size range of SVs varies from single base pairs to over
3Mbp [22] where most SVs are smaller than 10kbp [69] 61].

ref FoOCE>>>
del FoC>>
ins FoO > E>[>

inv EID >
dup F>ES>E> >0

CNV P> B

Figure 4.1: Examples of common types of SVs. From top: order of segments in the
reference sequence, deletion, insertion, inversion, duplication, copy number variant.

4.2 Structural variation types

Consider an alignment of the donor sequence to the reference sequence. If two
adjacent nucleotides b; and by (downstream ordered) in the donor sequence are
not adjacent in the reference sequence, we define b; to be a breakpoint to a SV. If
there exists sequence between by and by in the donor not present in the reference,
we denote this an insertion. If the there exists sequence between b; and b in
the reference not present in the donor, we denote this a deletion. These are two
fundamental types of SVs and there are many other types of SVs that can be seen
as a combination of deleted and inserted sequence (e.g., cut and pasted or copied

and pasted), see Figure

4.3 Current methods

Methods for detecting SVs are usually based on one, or a combination, of the follow-
ing information sources: (1) read pairs (RP), (2) split read/softclipped (SR/SO),
(3) read depth (RD), (4) de novo assembly (AS) [66, 128, 57, see Figure 1.2} Two
common approaches when using information from (1-3) is to either model the data
or learn SV types by a machine learning approach [68] [19].
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Figure 4.2: Different information sources used for SV detection. (A) Inconsistent
alignments (distance or orientation) of read pairs. (B) Reads mapping partly, or
with several parts mapping to different locations. (C) Coverage deviations in a
region, (D) split or partly aligned contigs from a de novo assembly. (E) any com-
bination of method (A-D). Hlustration from [128§]
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Read pairs

Recall that x denotes the fragment length and p, o denote the mean and standard
deviation of the fragment length distribution f(x). The distance between mates
can be used to detect variants; if reads align too close or far away to each other on
the reference genome, it might suggest that a variant is present in the sequenced
genome. We refer to read pairs mapping with an anomalous fragment length as
being discordant. If they map with an approximate expected distance, we refer to
them as concordant. Notice that the relative orientations of the aligned read pairs
can also be used to find inversions but we will limit the discussion to detection
of insertions and deletions using only the fragment length. The exact cutoff for
abnormal fragment length is dependent on the application. The advantage with
RP approaches is that they can span over, and find SVs in repetitive regions such
as duplications, CNVs and insertions or deletions in repetitive regions, where split-
read, softclipped or coverage based methods have difficulties mapping reads. A
disadvantage is that only an approximate breakpoint location can be given using
read pairs information. The parameters u, o of a library also changes the landscape
of what SV sizes can be detected. Larger y can span larger variants and smaller o
gives more power to detect smaller variants. However in sequencing libraries, ;1 and
o is positively correlated. A quantitative study from [6] showed that libraries with
larger fragment lengths are better for approximative detection of SV’s, whereas
smaller ones are better for accurate localization.

Proposed methods Numerous structural variation algorithms have been pro-
posed using RP to detect variants. The usage of information from fragment length
distances among tools varies. In many cases, a simple cutoff u + ko, k € R is
used to classify reads as supporting a variant [I8] [7], [38], which means that only
significantly deviating fragment lengths are used for detection. The use of only
such read pairs may simplify the computational power needed but it sacrifices the
the sensitivity and power as studied in [65]. There are also tools with a statistical
model/approach that utilizes also the concordant reads. [65] looks at the mean frag-
ment length of both concordant and discordant reads over positions. This allows
them to classify insertions and deletions based on statistical significant deviation
of p, (the position specific mean fragment length) from p. This method finds more
and smaller variants compared to methods that uses only discordant reads, as they
use more information. However, due to the occurrence of heterozygous variants
it is unfeasible to include all read pairs spanning a position in the statistical test
over a position — only reads that has enough overlap and similar insert size are
grouped together. This is done to increase the likelihood that the read pairs come
from the same copy. [33] models the number of discordant and concordant read
pairs over a region as a following a binomial distribution. This model allows them
to statistically classify insertions and deletions based on significant accumulation of
discordant read pairs to what is expected under the null distribution. However, any
binary classification causes loss of information, thus statistical power, as they do
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not tell how much above or below the cutoff a value is. This is studied in [29], where
they conclude that under a normal distribution, 100 continuous observations are
statistically equivalent to 158 binary observations for the best possible “cut point”,
which is the mean. The loss of information becomes worse the further away the cut
point is from the mean. As the fragment length distribution often is approximately
normal, the result can be roughly applied to observing fragment lengths (with cut
points at p £ ko). Another approach has been with non parametric testing of the
distribution over a region, e.g., the Kolmogorov-Smirnov test [54].

[07] showed that a common null-hypothesis used for testing variants based on RP
is wrong and formulated an updated null-hypothesis based on the Lander-Waterman
model: Let T denote the average fragment length observed over a position p on the
reference sequence and, as before, p be the mean of the library fragment length
distribution f. A commonly used null-hypothesis is then Hy : & = p [I8] 65], B3],
and statistical testing of variants are performed using Hy. That is, a test showing if
Z deviates significantly from g over p. [97] claims that this null-hypothesis is wrong
because p is not the expected “local” mean over a given position p. If a denotes the
minimum number of base pairs that needs to be aligned on each side of a position,
and p,, o, the position specific mean and standard deviation, they showed that

Result 1. We have p, = p+ ﬁ given f ~ N(p,0) and i.3.d. observations
n—\2q+
of fragment lengths.
Result 2. We have 0, = |02 — —2 . given f ~ N(u,0) and i.i.d. obser-
(;L—(QqH))

vations of fragment lengths.

where these formulas are based on simplified assumptions but are accurate in
practice. The accuracy decreases the bigger the truncation of a fitted normal dis-
tribution to f(z) has (enough probability density is on the positive x-axis). FE.g.,
if ¢ > p, then Result 2 would be undefined in the real domain. Furthermore, these
formulas are accurate if all read pairs over a position is included in Z. In practice,
read pairs included in x are method specific. For example, Breakdancer and Ulysses
only includes z if (x < p— ko or x > p + ko) and Clever select read pairs with
enough overlap and similar fragment lengths. However, the updated null-hypothesis
gives better results for statistical approaches such as in Clever, and the difference
increases with increasing o given fixed p [97].

Older studies such as [6, 00] used simulated read pairs (from Lander-Waterman
model) with the aim to identify parameters such as the coverage and fragment
length distribution and their role in how they change the number of SVs detected
using read pairs. But the library sequencing techniques are known to poorly follow
this distribution [I18] 82].
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Split reads/softclipped reads

Split and softclipped read methods (SR/SO) consider reads that have not been
aligned consistently to the reference. SR approaches consider reads where at least
two parts of a read are aligned to different locations, see Figure [£.:2] SO methods
use reads that have only one part aligned, with the the rest of bases unaligned
(called softclipped bases). As a reasonable read aligner will break the alignment
at (or in close proximity to) the breakpoint, these approaches provide more accu-
rate breakpoint predictions compared to methods using RP. Current methods using
SR/SO require the parts of reads to be aligned uniquely [102} 116, 126}, 1], 47, [37].
The requirement of uniqueness needs longer read length than RP methods as parts
of reads are trivially shorter sequences than the reads, therefore less likely to be
unique. As mentioned in Section [4.3] requiring unique alignments is also the disad-
vantage for detecting repetitive SVs, or SVs located in repetitive regions, compared
to RP approaches as the repetitive regions can distort the alignments. Hence, they
are most powerful on unique regions of the reference genome [5]. This is a signifi-
cant problem as there are studies such as [124] showing that SV breakpoints are not
distributed uniformly but are more often found within or close to repeat elements
and regions of low complexity. However, with the increasing read length due to ad-
vancements in sequence technologies, these methods have potential to become more
powerful as a read and its split parts are more likely more likely be long enough for
unique alignment. Also, insertions that are longer than the fragment length, thus
undetectable by RP approaches, can be discovered with SR/SO methods.

Read depth

Read depth (see Figure is mainly used to infer CNVs [I2§]. The general
assumption is that coverage on the reference genome increase/decrease in regions
with different number of copies of a sequence in relation to the average coverage.
After reads from the donor have been aligned to the genome, the general approach
among RD based methods is to first infer and normalize the sequencing coverage
across the genome. In a second step, the copy number is inferred to determine gain
or loss compared to the reference. A common approach is to infer the copy number
assuming that coverage follows a Poisson distribution [2] [122] [49], with various
modifications to adjust for the overdispersion seen in real data. There are also non
parametric models based om Hidden Markov Models [125] or iterative binning of
coverage depth in regions using Baysian Information Criterion [121].

The increased variation in sequencing coverage from intrinsic properties of the
genome such as GC bias, and local sequencing error rates from error prone se-
quence motifs [27], makes modeling of read depth difficult. In addition, reads that
are aligned to multiple locations greatly affects all methods. Using only unique
alignments, or randomly assign a location both have flaws as discussed in [12§].
However, RD based methods can give information about exact copy numbers as
opposed to RP and SR approaches.
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Assembly

As [65] noted, a large fraction of the false positive predictions of SVs are due to
misalignments. The performance of the alignment based methods are therefore
dependent on the accuracy of the alignments. It is also interesting to know how
sensitive the algorithms are to misaligned reads, furthermore, how much results
varies with different aligners or specific alignment parameters. It is not unlikely
that SV calling methods are sensitive to alignments as alignments showed to affect
results significantly for scaffolding [41].

Reconstructing the donor genome (or at least a approximate graph represen-
tation of it due to read errors, uncovered regions and repeats) from the reads by
assembly overcomes the mapping step — thus the spurious signals from mapping
errors. One can immediately examine the assembly graph for structures that are
formed by SVs. In case of insertions in the donor genome, the inserted sequence
may be represented as a path in the assembly graph and can therefore be provided
as output, which is not possible for alignment based methods unless an additional
assembly step are incorporated. Assembly based SV detection without a read align-
ment step given in [44]. They perform a de novo assembly using a DBG constructed
from multiple samples to detect local graph structures such as a bubbles (branching
and convergence of two paths of length k) suggesting a SNPs or “path divergence”-
sites (branching and convergence of two paths with unequal lengths) suggesting
insertions or deletions. [77] uses a similar setup, with a graph constructed from
several samples, but a different method relying on a Poisson mixture model for
copy number (CNV) estimation of paths (contigs).

The de novo approach offers the advantage of being unbiased by alignments
but the use of DBG structure without additional read pair information makes it
challenging to detect and “untangle” variants occurring in repetitive regions in
the genome. [91] provides an assembly method specialized to detect insertions by
comparing the DBG against the reference sequence and performing assembly on the
DBG where novel inserted sequence is detected. One of the big challenges with the
de novo assembly approach is the difficulty in producing high quality assemblies.

Combined methods

As each of the information sources RP/SR/SO/RD/AS has their advantages and
disadvantages, a combined approach seems reasonable. There exists a plethora of
methods using combined information sources. A common combination is to use
softclipped, split or read pair information to identify approximate breakpoint posi-
tions which will be used as marker regions where local assemblies will be performed
by taking the softclipped reads together with their mates [116], 117 [86]. After con-
tigs in each region are formed, they are aligned back to the reference with the hope
that they will align over the breakpoint of interest. One part will map upstream to
the breakpoint and the other part will dictate what type of SV that has occurred
after the break point. The advantage of these methods is that they can call more
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complex variants such as translocations and relocations where a piece of sequence
has been cut and pasted on another chromosome — these are variants that will be
called as one deletion and one insertion separately, if detected at all, with other
approaches. There also exists work on combining several variant calling methods
to find consensus break points where local assemblies will be performed [120].



Chapter 5

Present investigations

All included papers in this thesis concentrates on applications using read pairs as
input, where the fragment length distribution plays a key role. Paper I-III involves
method development for the scaffolding problem, with paper I and III focusing on
specific sub-problems around scaffolding. Paper IV builds on the model in paper I
and extend it to apply in other scenarios such as for structural variant detection.

I1:

II:

III:

The first paper shows an improved model to estimate gap sizes, hence contig
placement, in the scaffolding problem using read pair data and the fragment
length distribution. The assumption of normally distributed data enables
derivation of an analytical expression making computations instant.

The second paper introduces a new scaffolder that can scaffold large genomes
fast. The main idea is that looking at other information from links between
contigs, such as their distribution, might guide the scaffolding better than
the commonly employed technique of maximizing the number of links. The
presented scaffolder heuristically splits the scaffolding problem into two steps.
The first step scaffolds larger contigs using scoring derived from statistical
testing and characteristics of link distribution. In a second step, smaller
contigs are scaffolded to fill gaps, or link together, the scaffolds formed by
larger contigs. This step explores the sparse graph structure of the graph and
uses a breadth first search to choose the best path.

In the third paper we account for, and model, paired-end-contamination in
mate-pair libraries when scaffolding. We show that the contamination pro-
vides useful short range link information of contigs and state an Integer Lin-
ear Program (ILP) to find correct order and orientation of contigs. With
this method we see significant improvement over the method presented in
paper II, as well as other integrated and standalone scaffolders. Our exper-
iments show the impact that PE-contamination has on scaffolders that does
not model this. We observe an increased number of misassemblies, more
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IV:

CHAPTER 5. PRESENT INVESTIGATIONS

conservative scaffolding, and inflated assembly sizes with increased levels of
PE-contamination.

The fourth paper generalizes the model in paper I for other applications. A
key application is detection structural variants using fragment length infor-
mation. We use our model to show that a commonly assumed null-hypothesis
distribution used to detect structural variants is subject to bias, and we give a
null-hypothesis that better fits data given common assumptions. The discrep-
ancy between the two null-hypotheses is bigger for insert size libraries with
larger variance. We compare results between the two null-hypotheses and
show that structural variation callers based on statistical models can benefit
from applying our corrected null-hypothesis.



Chapter 6

Conclusions and Future
perspectives

I have presented an overview of current research on scaffolding and structural vari-
ation detection. The two biological problems of “order contigs as they appear on
the genome” and “find the locations where two genomes differ” are general and not
necessarily bound to the type of data presented in this thesis (reads from sequenc-
ing, for examples of other data, see Chapter . NGS data is however currently
one of the most promising information sources to tackle these problems, with the
sequencing techniques continuing to improve in, e.g., read length, throughput, error
rate, and more uniform coverage.

6.1 Sequencing technology

As sequencing improves we will most likely continue to see improvements from
new methods adapted to the latest sequencing data. Third generation sequencing
techniqueﬂ offering significantly longer reads continue to increase their throughput
and are already being frequently used for assembly of bacterial genomes [52} 56} [B1].
However, the relatively high cost and error rate compared to NGS methods limits
these sequencing techniques from assembling larger genomes. Therefore, a recent
common trend in genome assembly has been to develop hybrid assembly methods
combining high error level long reads with low error rate short reads from NGS
data. Numerous algorithms developed, for a summary see [51].

Although there has been work on SV detection with third generation sequencing,
e.g., [16], short read sequencing from NGS methods to this day continues to be the
leading sequence technology for detection of structural variation which makes most

IThe exists several definitions of what “Third generation” sequencing is, hence its difference
to Next generation varies. Here we simply observe that some of the techniques that have been
labeled as “Third generation” output reads substantially longer than common “Next generation”-
techniques.
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methods being developed for this type of data. An explanation to this could be
that a lot of the attention in SV detection community is directed toward variants
in the human genome, and its role in disease [110, [I08]. This often requires several
patients analyzed and sequenced so far making NGS data often the only affordable
solution.

6.2 Integrated methods

Using several information sources, e.g., different sequencing techniques, is a com-
mon approach for data inference algorithms. Another methodology is to use an
integrated method that combines several algorithms to give a consensus solution.
This is the case also in bioinformatics. With a plethora of algorithms using different
information to call variants, several integrated methods have been proposed giving
consensus variant prediction from output of several algorithms [72, [79, [120, [70].
Another reason to use an integrative approach in particular for SV-detection is,
as [57] points out, that algorithms are currently limited in both type and size of
variants they can predict. An integrative method that can call variants of several
types and sizes would be preferable to manually running several algorithms and
derive consensus variants — especially if the interesting variant types and sizes is
not known beforehand.

Several integrated solutions to infer (assemble) consensus genome assemblies
(i.e., meta-assemblers) have also been proposed [115], 106} [76], [7T] but assembling
genome assemblies is likely to be, at least in theory, as difficult as sequence assembly
itself. Nevertheless, integrated methods seems to be a promising way forward also
here, unless sequence technology improves significantly.

6.3 Gold standard benchmark data

The genome assembly community now has several sequencing data sets for high
quality finished genomes of various sizes that together with software such as QUAST
can be used to benchmark algorithms on. Several challenges on “gold standard”
data have also been proposed [10T], 62} 25 [T2] which helps the development of meth-
ods. This is still not common in SV detection, where a lack of gold standard data
hampers evaluation and benchmarking of existing tools. This makes it difficult to
give recommendations for the use of specific callers in specific circumstances, as [57]
concludes. Creating “gold standard” benchmark data is therefore still a hot topic
in a SV detection and, more recently, public challenges have been proposed [2§].
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