&by

Sy
FKTHY

VETENSKAP

An Empirical Study of the Global Behavior of
Structured Overlay Networks as Complex
Systems

RUMA R. PAUL

Licentiate Thesis in Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden

TRITA-ICT 2015:12 ISBN 978-91-7595-700-5






Abstract

Distributed applications built on top of Structured Overlay Networks (SONs) operate based on certain
self-* behaviors of the underlying Peer-to-Peer network. Among those, self-organization and self-healing
are the two most prominent and assumed properties. The operating environment of distributed systems
continues to be more inhospitable with the advance and demand of new technologies; for example in case
of mobile and ad hoc networks Churn (node turnover) can be extremely high due to node mobility, frequent
disconnects/reconnects and configuration changes. Also, in such dynamic environments, the system may
face high Churn (node turnover) and Network partition in a frequent manner. The situation becomes worse
if the self-healing behavior of underlying SON is not complete and well defined. This implies the following
non-trivial questions: Can the maintenance mechanism of a SON heal the damage to the structure due to
harshness of the operating environment and reverse it back? What are the pre-conditions; in other words,
what properties the healing mechanism should possess in order to achieve reversibility against stressful
environments? Existing literature lacks such assessment and verification study of the self-healing property
of a SON.

In this thesis, we investigate both the behavior and design of a system that operate in inhospitable
environments. This work is relevant to systems with both peaks of high stress (e.g. partitions, churn,
network dynamicity etc.) and continuous high stress. We evaluate existing overlay maintenance strategies,
namely Correction-on-Change, Correction-on-Use, Periodic Stabilization, and Ring Merge. We define the
reversibility property of a system as its ability to repair itself to its original state. We propose a new
strategy, called Knowledge Base, to improve conditions for reversibility against inhospitable environments.
By means of simulations, we demonstrate reversibility for overlay networks with high levels of partition and
churn. We make general conclusions about the ability of the maintenance strategies to achieve reversibility.

Identification of Phase Transitions in a SON can provide useful information about the properties of
each state of the system. Also, this enables to find the critical points in the operating space and parameters
influencing them. The applications running on top of the SON can potentially utilize this knowledge to
adapt its operation accordingly in different system states. In this thesis, a representative ring-based SON,
namely Beernet is chosen and extended to achieve reversibility. The resulting overlay, Beernet++ exhibits
reversible phase transitions under churn. We analyze the critical points observed during such transitions.
We present the behavior of Beernet++ for high level of churn and network partitioning, along with their
interaction.






Acknowledgments

I am deeply thankful to the following people, without the help and support of whom, I
would not have managed to complete this thesis:

My supervisors Peter Van Roy and Vladimir Vlassov, for their guidance, constant feed-
back and encouragement throughout this work.

My former colleague at UCL, Sébastien Doeraene, for his assistance with the Mozart
programming system, in which all the experimentation are conducted in this work.

Boris Mejias Candia, for the discussion and assistance with the system, Beernet, which
is outcome of his Ph.D. thesis, used for the experiments in this work.

Jérémie Melchior, who is using the enhanced Beernet, which we have termed as Beer-
net++, for implementing his system, a Distributed Mobile UI, for his continuous assistance
towards making Beernet++ well defined.

My former colleague, Nicholas Rutherford for reviewing initial work and good discus-
sion.

Vasiliki Kalavri, for sharing her experiences with me, for reviewing and giving useful
tips regarding presentation of the papers.

The anonymous reviewers of the papers, for providing observant and constructive feed-
back.

My EMID-DC colleagues and colleagues at UCL and KTH, especially Manuel Bravo,
Zhongmiao Li, Navaneeth Rameshan, Amin Khan, Hooman Peiro Sajjad, Paris Carbone,
Vamis Xhagjika, Jingna Zeng, Leila Sharifi, Solomon Liu and Petar Mrazovic for always
being available to discuss ideas, for being supportive and for the good times we spent
hanging out together.

My family, for their continuous support, their faith in me, their patience and immeasur-
able understanding.

Stockholm, 20 October 2015
Ruma R. Paul






Contents

List of Figures

1 Introduction
1.1 Peer-to-Peer Systems . . . . . . .. .. .. ... .. ...
1.2 Self-Management, Self-Stabilization and Reversibility . . . ... ... ..
1.3 Problem Definition . . . .. ... ... .. ... .. ... .. ... ...,
1.4 Thesis Contribution . . . . . . . . . .. L
1.5 Thesis Organization . . . . . . . . . . .. ... i

2 Background
2.1 Representative Complex Systems . . . . . . . . ... ... ... ......
2.2 Beernet . . . . . ... e e e e

3 Operating Space; Maintenance and Behavior

3.1 Global Operating Space . . . . . . . . . . . v i v it
31,1 Churn . . . . oL
3.1.2 Network Partition . . . . . . ... ... ... .. L.
3.1.3 Network Dynamicity . . . . ... ... ... ............
314 Workload . . . . ...
3.1.5 RingSize . . . . . ..
3.2 Overlay Maintenance Strategies . . . . . . ... ... ... ........
3.2.1 Correction-On-Change and Correction-On-Use . . . . ... .. ..
3.2.2  Periodic Stabilization . . . . . . ... ... Lo L
323 ReCircle . .. ... .
324 KnowledgeBase . . .. ... ... ... oL
3.3 BehaviorofaSON . . . . . ... .. ..

4 Failure Detection and Replica Management

4.1 FailureDetector . . . . . . . . . . . . ...
4.1.1 QoS Metrics for Eventually Perfect Failure Detection . . . . . . . .
4.1.2 Evaluation . . ... ... . ... ...
413 RelatedWork . . . . . . .. ... ...
42 Transactional DHT . . . .. ... ... ... .. ... ... ........

4.2.1 LazyDataMigration . . . . .. ... ... ... ..........



422 Evaluation . . ... ... ... ...
423 RelatedWork . . . . . . . ...

5 Investigation about Churn
5.1 Reversibility . . . . . ...
5.2 Evaluation of Reversibility . . . . ... ... ... ... ..........
5.2.1 Correction-On-Change and Correction-On-Use . . . . . . ... ..
5.2.2 ReCircle (Periodic Stabilization and Merger with Passive List) . . .
5.2.3 Knowledge Base for EachNode . . . ... ... ... .......
524 DiSCusSiOn . . . ... oL e e e e e
5.3 Evaluation of High-Level Properties . . . . . ... .. ... ........
5.3.1 Damage and Recovery of Ring Topology . . . .. ... ... ...
5.3.2 DataLevel Parameters . . . . ... ... ... ... ..., .
54 RelatedWork . . . . ...

6 Phase Transitions
6.1 Definition of Phase, Phase Transition and Critical Point . . . . . . . . . ..
6.2 Observation of Phase Transitions . . . . . . . ... ... .. ........
6.2.1 Increasing Churnwith Time . . . .. ... ... ... .......
6.2.2 Continuous Moderate Churn . . . . . . ... ... ... ......
6.2.3 Gradual Increase and Decrease of Churn. . . . . . . ... ... ..
6.3 Related Work . . . . . . . . . . ...
6.4 DiscusSiOn . . . . . . . .. e e e e e e e

7 Investigation about Network Partitioning
7.1 Typesof Partition . . . . . .. ... .. ... ...
7.2 Evaluation of Maintenance Strategies . . . . . . . . .. ... ... ....
7.2.1  Execution During Network Partition . . . . . . ... ... ... ..
7.2.2 Execution at Partition Repair (Network Merge) . . . . . . ... ..
73 Related Work . . .. .. L
T4 DISCusSION . . . . . o o

8 Interaction between Network Partitioning and Churn
8.1 StrangerModel . . . . . . ... ...
8.2 Evaluation of Maintenance Principles . . . . ... ... ... .......
8.2.1 Correction-on-* . . . . . . . ... ...
8.2.2 Correction-on-* and Periodic Stabilization . . .. .. ... .. ..
8.2.3 ReCircle (Periodic Stabilization and Merger with passive list) . . .
8.24 KnowledgeBase . .. ... ... .. ... ... .. .. . ...
825 Oracle. . ... ... . . . e
8.3 Recovery TimeandCost . . . . .. ... ... ... ... .. .......
84 RelatedWork . . . . ... ..
8.5 DIscussSion . . . . . . . .. e e e e e e

33
33
34
35
36
37
38
38
39
39
40

41
42
43
43
45
46
47
48

49
49
50
51
53
58
59



9 Conclusions and Future Work
9.1 Reversible and Predictable System . . . . . .. ... ... ... ... ..
92 FutureWork . . . . . . . . ..

9.2.1
9.2.2
9.23
9.2.4

Bibliography

API and Phase Transitions . . . . . . ... ... ... .......
Maintenance Principles and Efficient Self-Healing . . . . ... ..
Network Dynamicity and its Impact . . . . ... ... .......
Experimentation and Validation on Real-World Environment . . . .

69
69
70
70
71
71
71

73



List of Figures

1.1

2.1
22

23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

52

53
54

55
5.6

6.1

Overlay Network: A P2P System with nodes a, f, ¢, p and = forms the overlay
network on top of the underlay network . . . . .. ... ... ... ......

General Structure of Beernet . . . . . . ... ... o 000000
Branches on a relaxed ring. Peers p and s consider u as successor, but u only
considers s as predecessor. Peer ¢ has not established a connection with its
Predecessor Pyet. . . . . ..o e e e e e e
Three steps of Join Algorithm: contact the successor, contact the predecessor
and acknowledge thejoin. . . . . ... ... oL oL oL

Detection and Reaction Time for various valuesof k. . . . . .. .. ... ...
Accuracy fork . . . .o
Accuracy form . . . . . .. . L
Detection and Reaction Time for various valuesof m . . . . .. ... ... ..
Data Level Parameter: % of failed transactions . . . . . . ... ... ... ..
Data Level Parameter: % of lostupdates . . . . . .. ... ... ........
Data Level Parameter: % of lostkeys . . . . . . .. ... .. ... .......
Data Level Parameter: % of inconsistent replicas . . . . . . ... .......

% of nodes on core ring as a function of time (in sec) after withdrawing churn
to assess reversibility. Figure 5.1a, 5.1b and 5.1c are not reversible (nodes on
core ring never converges to 100%). Figure 5.1d using Knowledge Base is
reversible. . . . .. L
% of lookups and joins which remain incomplete after injection of churn for 1
MINULE . . . . o ot e e e e e e e e
% of incomplete joins with time during injection of churn for 1 minute . . . . .
Properties for increasing churn after injecting a particular churn value for 1
MUNUEE . . . o e e e e e e e e e e e e e e
% of failed transactions . . . . . .. .. ..o
Yooflostkeys . . . . . .

Phase Transitions in Beernet++: red, green and blue (dark, gray and light-
gray in B/W) areas correspond to % of nodes on ring, branches and isolation
respectively . . . . .. L



6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

8.1
8.2

8.3

8.4
8.5

Phase Transitions in Beernet++ under low churn (0% to 5%): red, green and
blue (dark, gray and light-gray in B/W) areas correspond to % of nodes on ring,
branches and isolation respectively . . . . . . . . ... ... ... ... ...
Phase Transitions in Beernet++: red, green and blue (dark, gray and light-
gray in B/W) areas correspond to % of nodes on ring, branches and isolation
respectively . . . . ... L e e e
Phase Transitions in Beernet++ due to increasing and decreasing churn: red,
green and blue (dark, gray and light-gray in B/W) areas correspond to % of
nodes on ring, branches and isolation respectively . . . . . . . ... ... ...

Two different types of partition scenarios: white and black nodes belong to two
different partitions . . . . . . . . . . ...
Two partition scenarios: white and black nodes belong to two different parti-
tions; partition having black nodes have absence of more than |succ_list| — 1
consecutive peers (here, |[succ_list| =4). . . .. ... oL
Number of islands as a function of time (in sec) starting at the moment of sparse
partition repair to assess self-healing using different maintenance strategies
Number of Messages generated for 2, 4 and 10 sparse partitions using different
maintenance mechanisms . . . . . . ... ...l
Number of islands as a function of time (in sec) starting at the moment of
sequential partition repair to assess self-healing using different maintenance
SIIAte@Ies . . . . . . e e e e e e e e e
Number of Messages generated for 2, 4 and 10 sequential partitions using dif-
ferent maintenance mechanisms . . . . . ... ..o o Lo L.

Evaluation of Stranger model for 10%, 30% and 80% of churn . . . . . . . ..
Number of islands as a function of time (in sec) after withdrawing churn and
partition to assess self-healing against strangers using different maintenance
SLrategies . . . . . . e e e e e
Number of islands as a function of time (in sec) after withdrawing churn and
partition to assess self-healing against strangers using different maintenance
SLAtEZICS . . . v o . e e e e e e e e e e e e e e e e e
Recovery/Healing time for increasing strangers . . . . . . ... ... ... ..
Number of messages generated for increasing strangers . . . . . . . ... ...






Chapter 1

Introduction

The advent of Internet has given rise to software systems in which a set of autonomous
computers connected through a network, communicate and coordinate their actions as well
as share resources. Such Distributed Systems are perceived as a single, integrated com-
puting facility by the users. This suggests distribution transparency, however, network
and computer failures breaks transparency and complicates programming of such systems.
Thus, handling partial-failure through complete recovery is a key challenge in building re-
liable distributed systems. Also, as the number of nodes increases, achieving scalability
is another issue. The initial approach of building distributed systems is the simple client-
server architecture. Though this is still a popular way, the server(s) becomes a single point
of failure and congestion, thus violates both fault-tolerance and scalability of the system.
The improvement of network bandwidth and computing power has led to the way of edge-
computing. The Peer-to-Peer (P2P) systems are one such approach, which make use of
resources available at the edge of a network, thus has become a popular way of conceiv-
ing distributed systems. There are also social factors behind such popularity, as people are
willing to connect more to other people and share resources in order to achieve mutually
beneficial exchange. Thus, distributed systems are becoming larger and complex.

A large-scale distributed system consists of many interacting parts and their overall
behavior cannot be predicted in a straightforward way from the behavior of each part. They
have many operating modes depending on the environment in which they work and what
they are supposed to do. These characteristics of distributed systems inspire approaches
to consider them from the point-of-view of Complex Systems. In such systems, complex
structures or behaviors at macro-level emerge from simple interactions or behaviors of the
various subsystems at the micro-level [1], [2], [3]. In a P2P system, it is necessary to
identify the macro-level behaviors emerge due to the interactions and actions of individual
peers. This chapter provides a brief discussion on P2P systems and describes the problem
addressed in this thesis.



CHAPTER 1. INTRODUCTION

1.1 Peer-to-Peer Systems

The basic idea of P2P systems is the dual client/server role of each node/peer of the system,
which allows taking advantage of the resource available at the edge of the network. The
widely known first P2P system is Napster [4], a file sharing service, which allows users
to exchange files directly instead of via a server. AudioGalaxy [5] and OpenNap [6] are
two other systems, which belong to first generation of P2P networks. However, all these
systems are not entirely peer-to-peer, they are based on mixed architecture and still require
a server to work. Peers connect to a server with a query about files. In reply, the server pro-
vides the addresses of the peers storing the requested file. The peer then directly connects
to the responsible peers to download the file. In case of server failure, it is not possible
to make new queries, but the exchange of file can continue. The centralization of search
operation and administration allow easier shut-down of such system, as Napster ceased its
operation in 2001 due to legal issues.

The second generation of P2P systems is the first completely decentralized ones. Gnutella
[7] and Freenet [8] are the main two representatives of this generation. These systems do
not rely on any server to work. Each peer establishes and maintains some local connec-
tions; search queries are forwarded using these connections and replied by the responsible
peer(s). Due to such local cooperation of participating nodes an overall network routing
view emerges, which is known as an overlay network, on top of the underlay network.
Usually the underlay network is the Internet, which is used by the overlay network for rout-
ing of messages. Figure 1.1 shows an example overlay network formed by a P2P system
with 5 participants.

For the second generation of peer-to-peer networks, the overlay formed is unstructured,
i.e. peers connect to each other in a random manner, without any pre-defined topology. As
a result, this approach suffers from high query overhead, as search queries are flooded
through the network. This raises concerns about scalability of the systems. Also, if flood-
ing is done with time-to-live, there is no guarantee of successful termination of a query.
All these problems of unstructured overlay networks have made the way for a structured
solution, i.e. Structured Overlay Networks (SONs), the third generation of P2P systems. A
structure is induced through the pointers maintained by each peer of the system, i.e. the
structure of the emerged overlay is a macro-level property based on the micro-level states
of the participating peers. An identifier space is embedded into the graph of a structured
overlay, where each node is assigned a unique identifier from this space and also responsi-
ble for certain identifiers. Adding structure to Peer-to-Peer networks has provided efficient
routing, guaranteed reachability and consistent retrieval of information; however also in-
troduced the challenge of maintaining the structure. Among all the structures proposed for
SONS, the ring topology is the most popular choice. As mentioned in [9], ring topology is
competitive with other SON5s in terms of reaching any other node in smaller steps and also
most resilient to failures. Unfortunately, along with these good properties, the temporary
inconsistency of the ring structure poses several challenges for correct operations. Many
SONs were proposed to gradually improve and circumvent or relax the requirements of
perfect ring for accuracy; Chord [10],[11], DKS [12], Beernet [13], [14] to name a few.



1.2. SELF-MANAGEMENT, SELF-STABILIZATION AND REVERSIBILITY

——
|
|
A |
e R s

Figure 1.1: Overlay Network: A P2P System with nodes a, f, ¢, p and x forms the overlay
network on top of the underlay network

1.2 Self-Management, Self-Stabilization and Reversibility

The unreliability and heterogeneity of edge machines, along with different network tech-
nologies introduce a crucial challenge for P2P systems, as the size of the system grows,
they become more and more difficult to manage. The conventional management becomes
very difficult, time-consuming, and error-prone. In order deal with high-level complexity,
enhancing Self-Management capacities of the system has no alternative. The term “Self-
Management” implies the ability of a system to modify itself, as per the high-level manage-
ment policies, to handle changes in its initial state or environment, without any human in-
tervention. The objectives of self-management are typically classified into four categories:
self-configuration, self-healing, self-optimization and self-protection [15]. Together they
are referred in literature as self-* properties.

Recently much work has been conducted on the concept of Self-Stabilization [16], [17]
as a non-masking fault-tolerance for distributed systems. A system is self-stabilizing iff:
1) irrespective of the initial state, it will eventually converge to a correct state, ii) once it
reaches a correct state, it is guaranteed to stay in a correct state, provided no fault happens.
These two properties enables a self-stabilizing distributed algorithm to recover from any
transient failure. Here, a transient failure implies violation of a system’s state, but not the
behavior of the system [16].

The Structured overlay networks (SONs) have become a popular way of implement-



CHAPTER 1. INTRODUCTION

ing large scaled distributed systems. The most prominent reason is that the fully decen-
tralized architecture of SONs can easily be made self-organizing and self-healing. Such
self-management properties are crucial to deal with the inherent complexities introduced
by decentralization. Also, the operating environment of distributed systems continues to
be more inhospitable with the advance and demand of new technologies. Assurance of
reversibility through complete self-healing is the only way to survive in such increasingly
stressful environments. We define the Reversibility property of a system as its ability to
repair itself to its original state when the external stress is withdrawn. In other terms, the
functionality of a system is a property of current environment hostility and not of the history
of environment hostility.

Our concept of reversibility is related to, but different from the concept of self stabiliza-
tion. A self-stable system is able to survive arbitrarily high levels of transient failures, i.e.,
self-stabilization assumes perturbation of node state, which is not the case discussed in this
thesis. Reversibility implies that overall functionality, at the system level, depends only on
the inhospitability of the current operating environment and not on the history of stresses
the system had experienced. In other terms, past catastrophes do not break the system.
There is also another subtle difference. Reversibility in a SON might also concerns about
permanent failures, where nodes fail and new nodes join at a rate that is defined as Churn.
Thus, the system is dynamic, i.e., churn is causing the system to change over time. When
looking at the overall system, high churn will cause certain functionalities to disappear and
when churn decreases, they come back. Therefore there is an analogy between high churn
and temporary failures, at the system level, even though at the individual node level there
are only permanent failures.

1.3 Problem Definition

Distributed applications break down when there are too many node failures or commu-
nication failures. Typically, such applications revert to an “offline mode” with reduced
functionality in this case. This is sometimes acceptable for applications that have a clien-
t/server architecture, such as mobile applications that depend on a data center. The data
center remains a single point of failure. However, this is now changing as the Internet is
becoming more and more decentralized: data centers are increasing in number and come in
many different sizes. Applications running on such an infrastructure need to have a decen-
tralized architecture that is resilient to failure. Ideally, the application should survive with
partial functionality during arbitrary system failures and recover its full functionality when
the underlying system is restored. This is not just a fringe case: mobile and ad-hoc net-
works, for example, have this kind of failure. Even supposedly stable parts of the Internet
have peaks of unstable behavior.

Due to the inherent complexity introduced as a result of de-centralization, large-scale
distributed systems, in particular P2P systems have brought forward many non-trivial chal-
lenges. These systems face many problems, especially when they are stressed beyond
where their behavior is a straightforward extrapolation of the behavior of their parts, i.e.
the emergence of macro-level behavior. The experience of all who have attempted to build

4



1.4. THESIS CONTRIBUTION

such large-scale distributed applications is that they are very difficult to get right: they
require continual babysitting by teams of specialists to keep them running. The reason
behind this is that, like all highly available systems, these systems are designed to operate
within a specific failure model and threat model and their behavior is typically undefined
outside these models. The standard approach based on redundant fault tolerant algorithms
has reached its limit.

This problem can only be solved by a new approach. We propose an approach to build
applications that are able to survive arbitrary failures, providing reduced but predictable
functionality in that case, and when the failures go away the application fully recovers its
functionality. In other terms, to design systems such that a change in operating conditions
can cause a qualitative change in system behavior according to a well-defined transition
instead of performing unpredictably. Our goal is to design the system to work in a well-
defined manner for the complete phase space, i.e., for all possible operating conditions
including extremely inhospitable ones. We define an “inhospitable environment” as one
in which certain stress parameters (such as churn, node failure rate, communication delay)
can potentially reach high values and temporarily increase without bound. The goal is to
build systems that are both predictable (hence, useful in practice) and reversible (hence,
they survive) in these environments. This is important for three essential reasons. First, for
practical system design it is important to explore highly stressful environments, since even
systems running in so-called “stable” environments will have peaks of high stress. Second,
it can open new venues for application design, such as mobile and ad hoc networks, for
which current fault-tolerance techniques are insufficient. Third, it is important for scientific
reasons, to understand what happens in highly inhospitable regimes.

1.4 Thesis Contribution

The objectives of this thesis is study of both the behavior and design of complex systems,
in particular a class of Structured Overlay Networks (SONs) defined by the reference ar-
chitecture of [18], in inhospitable environments. As a representative of this class we have
chosen Beernet for our practical experiments. Given its generic design, the results obtained
for Beernet should be qualitatively the same for other members of the class. The overall
contributions are as follows:

* As prerequisites of the study, organization of the entire operating space of the repre-
sentative complex systems using a set of stress parameters. Definition of ““ behavior”
of the system using a set of matrices. As part of making the system well defined
in entire operating space: i) Integration of a QoS-aware self-adaptable eventually
perfect failure detection algorithm; ii) Augmentation of replica management with
an optimistic lazy-data migration protocol for better availability and consistency of
replica sets.

* Definition of “reversibility” concept: the functionality of a system is a property of
current environment hostility and not of the history of environment hostility.



CHAPTER 1. INTRODUCTION

* Introduction of Knowledge Base as a new maintenance mechanism next to existing
mechanisms: Correction-on-change, Correction-on-use, Periodic stabilization and
Over- lay Merge;

¢ First demonstration of reversible SON and identification of conditions needed to
make a SON reversible, under a wide range of churn values;

* Reversible phase transitions: experimental demonstration in a SON with churn (A
phase is a qualitative description of the structure of the SON. A phase transition
occurs when a significant fraction of a system’s parts changes phase.);

* Investigation of network partitioning. Identification of preconditions for partition-
tolerance and reversibility for any scenario and level of network partitioning;

* Investigations of interaction between churn and network partitioning: Identification
of the limits of the combination of partitioning and churn, up to which the system
is able to achieve reversibility by itself, using a model of how the partitions diverge
with time (the Stranger Model).

¢ Demonstration of a reversible SON and identification of conditions needed to make
a SON reversible while facing network partition for any duration, with or without
churn in between;

* Comparative analysis of self-healing of different maintenance strategies in inhos-
pitable environments.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 describes our representative class
of complex systems using reference architecture for overlays. In Chapter 3, we discuss
existing and our contribution in maintenance strategies of SON, along with the organization
of operating space of a SON. This chapter also presents the set of metrics to define the
behavior of a SON. The enhancements introduced to our representative system to make it
well defined are discussed in Chapter 4. Chapter 5 and Chapter 7 present our investigation
about churn and network partitioning respectively. In Chapter 8, we explore the interaction
between the two stress parameters, namely network partitioning and churn. Finally, we
summarize our contributions and discuss future works in Chapter 9.



Chapter 2

Background

For practical reasons, we have chosen a particular class of complex systems to conduct
our study in this thesis. We build on the concept of Structured Overlay Network (SON), a
well known approach to building decentralized distributed systems. As per the reference
architecture, proposed in [18], a class of SONs is our representative complex system. For
the practical experiments, we have chosen Beernet [13], an overlay with properties typical
of this space. In this chapter, we describe key aspects of our chosen class of SONs and
Beernet.

2.1 Representative Complex Systems

According to the reference model proposed in [18], there are six key design aspects, using
which any overlay network can be characterized. Here, we provide a brief description
of this design space, along with the specification of our representative class of overlays
(which we will refer as ring overlays). The reference architecture is general enough to
include many overlays: Chord [11], Chord# [19], SkipNet [20], DKS [12], Koorde [21],
P2PS [22], Beernet [13], Mercury [23], [24], EpiChord [25], Accordion [26], Symphony
[27]. Our contributions can be generalized for other overlays having similar key aspects in
the design space.

* Choice of Identifier Space: virtual identifier space I, having some closeness metric
d : I x I — R. For ring overlays identifier space is a subset of N, of size N, with
d(z,y)= (y — x) mod N.

* Mapping to the Identifier Space: Fp : P — I associates peers with a unique virtual
identifier from I and F'r : R — I associates resources with identifiers from /. For
ring overlays, F'p can be a uniform hash function or some random function, also can
be order preserving, as in DKS. A virtual identifier is assigned to a peer when it joins
the overlay and this mapping remains static. F'p is similar to Fp for ring overlays,
usually it is a uniform hash function, which distributes resources uniformly in the
identifier space, thus provides implicit load balancing.

7



CHAPTER 2. BACKGROUND

» Management of the Identifier Space: M : I — 2F associates with identifier of a
resource 7, i = Fr(r) € I, the set of peers managing r. Each peer p is responsible
for the set M ~!(p) of identifiers. For ring overlays, a peer with virtual identifier p is
responsible for the interval (predecessor(p), p]. In these approaches, the responsi-
bility of a peer may dynamically change due to churn in the overlay.

* Graph Embedding: a directed graph, G = (P, ¢), where P is the set of peers and ¢
denotes the set of edges. A neighborhood relationship N : P — 2%, for a peer p,
N(p) is the set of peers with which p maintains a connection. The graph formed by
ring overlays complies with Kleinberg’s small-world principles [28], thus belongs to
the special class of “routing-efficient” small-world networks. In these overlays, each
peer p perceives the identifier space to be partitioned into log(/V) partitions, where
each partition is k£ (k = 2 for Chord) times bigger than the previous one. The routing
table of p contains log;, (IN') connections to some nodes from each partition.

* Routing Strategy: a non-deterministic function R : P x I — 2, which at peer
p, with neighborhood N (p), for a target identifier 7 selects the (set of) next peers
R(p,i) € N(p) to forward the message. Due to small-world networks, decentralized,
greedy routing strategy provides the best performance in ring overlays. So for a
target identifier 4, peer p selects the closest preceding link, d € N(p) to forward the
message. Since, there are always k intervals, routing converges in O(log, (N')) hops.

* Maintenance Strategy: a maintenance strategy is required to maintain the structural
integrity while peers go offline or network connection fails. Joining is handled ex-
plicitly by all overlays using a join protocol, whereas leaving/failure is implicit, thus
requires a maintenance strategy to maintain the connectivity of the underlying graph.
As Aberer et al. [18] point out: “The practical usability of an overlay network criti-
cally depends on the efficiency of the maintenance strategy." The goal of this work is
the enhancement of maintenance in ring overlays, so that these overlays can survive
inhospitable environments and achieve reversibility.

2.2 Beernet

In our study, we use the Beernet [13] system for experimentation. This is a straightfor-
ward SON that supports all the maintenance principles. It is an example of the reference
architecture (see Section 2.1). Also, it is a non-trivial complex system with interesting
global behavior, and a practical scalable transactional store. Beernet is designed so that
ring maintenance operations are extremely simple. The join operation in Beernet is done
in two steps: isolated node -> node on branch -> node on core ring. Each step is a simple
node-node communication; no locking is needed. Communication failures can cause nodes
to be ejected or ringlets to form. Figure 2.1 shows a general structure of Beernet. The
neighborhood of each peer in Beernet consists of successor, predecessor, connections/fin-
gers in routing table (as described in Section 2.1), a successor list and a predecessor list.



2.2. BEERNET

Branches (first step of join)

Isolated nodes
(trying to join)

Ringlets
o (trying to merge)

Core ring
(fully joined)

Figure 2.1: General Structure of Beernet

The successor list looks ahead along the ring and contains maximum logy (V) peers. The
predecessor list contains all the peers that consider the current node as their successor.

Ring with Branches / Relaxed Ring: Beernet has two invariants: Every peer is in the
same ring as its successor and A peer does not need to have connection with its predecessor,
but it must know its predecessor’s key. The first invariant allows a new peer to be part of the
network by connecting only to its successor. The second one determines the responsibility
of a peer. These two properties allow relaxation of the ring: when a peer is not still con-
nected to its predecessor it forms a branch from the core ring. Figure 2.2 shows a Beernet
network, where red nodes are organized into a ring and green nodes are on branches. The
branch rooted at peer w is created, because peer ¢ still has not made any connection with
its predecessor, p; so peer p is not aware about ¢ yet. In the meantime another peer s has
joined between ¢ and u, so the size of the branch has increased.

The routing principle of Beernet is: a peer p always forwards the lookup request to the
responsible candidate. This is a slight variation of Chord’s routing mechanism to support
relaxed-ring architecture. This routing strategy makes sure that p doesn’t miss any peer
in between its successor and itself. Due to introduction of branches, the guarantees about
proximity offered by Beernet lookup mechanism corresponds to O(logi(n) + b), where b
is the distance to the farthest peer on the branch.

Join needs no locking: To join a relaxed ring, a new peer triggers a lookup request using
its own key to find the best successor candidate. After the current responsible peer of the
key replies, the new peer triggers the join process. The atomic join algorithm of relaxed
ring consists of 3 steps, each step involving only 2 peers. The join process is shown in



CHAPTER 2. BACKGROUND

Figure 2.2: Branches on a relaxed ring. Peers p and s consider u as successor, but u only
considers s as predecessor. Peer ¢ has not established a connection with its predecessor p
yet.

Figure 2.3, where a node ¢ joins the ring in between peers p and r, ¢ €|p,r]. It is noted
that, after the 1st step, peer g is on a branch, as it has not yet established a connection with
its predecessor and g will continue working on a branch (where r is the root of the branch)
if it fails to establish a connection with p. During the last 2 steps, there are no changes of
responsibility, so the address space is already consistent after the first step.

10



2.2. BEERNET

Step 1 qe -
join(q)
q&r % e
p : r :

joinOk(p)
r->g

Step 2
: ;pp q newSucc(q)
q->p
p
Step 3 q predNoMore(p)
p&r p->r
P r

Figure 2.3: Three steps of Join Algorithm: contact the successor, contact the predecessor
and acknowledge the join.

11






Chapter 3

Operating Space; Maintenance and
Behavior

The objective of this thesis is a study of complex systems in its entire operating space,
in particular the inhospitable environments. As a prerequisite, it is necessary to identify
the stress parameters, which create such inhospitality. In order to achieve fault-tolerance
against inhospitable environment, maintenance strategy is an integral part of each Struc-
tured Overlay Network (SON). This chapter presents our proposed organization of the op-
erating space of a SON. Next, we describe the maintenance strategies of ring-based SONSs,
both existing and our contribution. These principles can be classified along two dimen-
sions: local/global and reactive/proactive. Compared with previous work, we add one new
principle, called Knowledge Base. With this new principle, our set of principles covers all
points in the two-dimensional space. Finally, this chapter concludes by identifying a set of
high-level properties to define the behavior of a ring-based SON.

3.1 Global Operating Space

The operating space of a Structured Overlay Network (SON) is large. In order to conduct
an exhaustive study it is essential to organize it. Most of this space is constituted by the
scenarios when something goes wrong, so we can also call this organization as the fault
model for a SON. The main focus is to identify all possible non-malicious failure scenarios
that a SON may face during its lifetime: given n nodes connected by communication links,
any set of nodes may crash, any communication link or set of links may slow down or fail,
permutation of these failure scenarios can lead to infinitesimal possibilities. In this work,
we have attempted to structure all such possible failure conditions using 5 dimensions. Any
point in this 5-dimensional space represents a valid operating environment that a SON may
face during its lifetime. The rest of this section will define each of these dimensions and
describe the parameters that characterize them.

13



CHAPTER 3. OPERATING SPACE; MAINTENANCE AND BEHAVIOR

3.1.1 Churn

Churn is the most usual and basic scenario that a SON faces during its lifetime. The term
churn is used to express the measurement of peers joining or leaving the network during
a given period of time. The literature of SON mostly addresses churn as the only failure
scenario in order to establish the basic fault tolerance and self-management characteris-
tics. However, in most cases churn remains under a certain limit. Studies such as [29, 30]
show that a peer-to-peer environment experiences high churn rates, where nodes continu-
ously join and leave the system and their up-time in the overlay is short. Several studies
[31], [32] have been conducted to understand peer behavior or churn in different peer-to-
peer systems. As per [31], the majority of peers are long-lived, however the remaining
short-lived peers join and leave the system at high rate, which comprises a large portion of
sessions. According to this, we can say that even systems with low/average churn face high
peaks. So, it will be interesting to observe the behavior of a SON under excessive churn.

We present the definition of churn, used in this work. As nodes join and leave during
churn, with equal probability for join and leave events, we can say that a node changes
its identity during the churn with only two events. In other terms, if we assume equal
probability of join/leave event and a single event per time unit, then every 2 time unit, a
node will leave and a new node will join the network, i.e., every 2 time unit the total number
of peers on the network will be same, whereas only a single node has a changed identity.
We assume that churn varies over time, and that the average number of correct nodes at any
instant is constant. We have defined churn as the percentage of nodes turnover per time
unit.

3.1.2 Network Partition

Network partition is one of the worst scenarios that a SON might face during its lifetime.
During the partition of underlying network, the nodes of a SON are divided into multiple
disjoint sets, where a node can communicate with the nodes of its own set, but is un-
able to contact the nodes in the other sets. Any long-running large distributed system is
bound to come across network partitions during its execution. Several reasons may cause
the underlying network to partition: link failure, router issues (failure, misconfiguration,
overloading), malicious activities (denial of service attacks), software bugs or physically
damaged network equipment [33],[34], [35]. For example, as a consequence of several nat-
ural disasters, it was exposed that the global network connectivity depends on a few active
“choke points" [36]. Failure of such choke points under natural calamity or similar events
can lead to network partitions [33]. Apart from these, policy based issues or conflicts can
also cause inaccessibility across regions, resulting in network partitions [37],[38]. Though
partition can be seen as massive churn, but it creates distinguishable operating condition
for a SON by itself, that’s why deserve to be a separate dimension in our proposed global
operating space. The only parameter, which characterizes this dimension, is the number of
partitions, i.e., the number of rings in the system for ring-based SON.

14



3.2. OVERLAY MAINTENANCE STRATEGIES

3.1.3 Network Dynamicity

Network dynamicity happens when communication links slow down, resulting in conges-
tion in the network. The impact of congestion leads to false suspicions in a SON. This poses
challenges, as each false suspicion event triggers failure recovery, routing table update and
other mechanisms. Huge numbers of frequent false suspicions create a challenging operat-
ing condition for a SON, in the face of which, the SON struggles to maintain its structure.
We define congestion in our fault model, as the percentage of node (or link) connectivity
change per time-unit. By the term “node connectivity change” we mean the increased or
decreased time experienced by the rest to make a contact with that particular node. The link
connectivity change signifies the increased or decreased time experienced by the nodes on
the both side of the link, to contact the other.

3.1.4 Workload

The application workload often proves to be a key factor in determining the hostility of
the operating environment. A particular amount of workload may work quite well for a
particular SON, whereas might make another limited resource SON unresponsive. The
workload can be defined as the number of transactions per time-unit along this dimension.

3.1.5 Ring Size

The last dimension of the proposed operating space of a structured overlay network is the
size of the network, the number of nodes in the system. This dimension in fact evaluates
the SON’s scalability.

3.2 Overlay Maintenance Strategies

Following [39], we classify maintenance strategies of overlays into proactive periodic cor-
rection (e.g., Chord, Chord#) and reactive mechanisms, e.g., correction-on-change and
correction-on-use (as used in DKS, P2PS, Beernet). Also, an overlay merge algorithm
has become necessary part of a SON. In our work we have adapted a partition-merging
algorithm, ReCircle [40]. ReCircle has two parts: a periodic stabilization algorithm and
a reactive Merger that gets triggered in case of extreme events. Along with these known
strategies, we have introduced Knowledge Base, which is essential to survive inhospitable
environments. Table 3.1 summarizes the properties of these principles. We describe each
principle and its integration with Beernet. We refer to the resulting extended system as
Beernet++.

3.2.1 Correction-On-Change and Correction-On-Use

These principles were introduced by DKS (we will refer to these principles together as
Correction-on-*). Correction-on-change is concerned about join/leave/failure of nodes.
Whenever such events are detected, successor and predecessor lists are updated and the
correction of pointers (successor, predecessor and fingers) is triggered. Correction-on-use

15



CHAPTER 3. OPERATING SPACE; MAINTENANCE AND BEHAVIOR

Princioles Local/ | Reactive/ | Fast/ Safet Bandwidth
P Global | Proactive | Slow y Consumption
Correction-on-* | Local | Reactive Fast Yes Small
Lookup incon-
Periodic sistencies and
e Local | Proactive | Slow uncorrected false | High
Stabilization o
suspicions can be
introduced
Merger with .
. . Global | Reactive Adaptable| Yes Adaptable
Passive List
Merger with Global | Proactive | Adaptable| Yes Adaptable
Knowledge Base P P

Table 3.1: Ring Overlay Maintenance Principles

mainly corrects the fingers. Every time messages are routed, information is piggybacked
to correct fingers. As a result more network usage makes the routing table more accu-
rate. Thus, correction-on-use provides self-optimization and self-configuration, whereas
partial self-healing is achieved through correction-on-change. These two principles are
fast in terms of reacting and updating local state for events like join/leave/failure, which
is important to survive an inhospitable environment without introducing any inconsistency.
However, without any event, no healing or maintenance is done (i.e., lack of liveness),
making these mechanisms restricted form of self-healing.

Beernet [13], our representative SON, uses both mechanisms for overlay maintenance.
As healing is completely dependent on detection of join/fail events, performance of the
failure detector plays a crucial role. A QoS-aware eventually perfect failure detection is
integrated [41], as described in Chapter 4. When a node suspects another peer, it updates
its own successor and predecessor list. If the suspected peer is the successor of the current
node (p) then it adjusts its successor pointer by choosing the first one in the successor list
(suppose r) and triggers the recovery mechanism by sending a fix message to 7. When r
receives a fix message from p, it makes p the new predecessor if its current predecessor
is suspected or p is a better predecessor than the current one. The last step of the failure
recovery is the fixOk message, which is triggered by r, after fix is accepted. In this step,
p fixes and propagates the successor list. In case of a false suspicion, the failure detector
triggers an alive message. Now, there are 3 cases to consider; the falsely suspected peer
is: i) a better predecessor, in that case the predecessor pointer is corrected and the peer is
added to the predecessor list; ii) a better successor, which now requires the correction of
the successor pointer and addition to the successor list, also a fix message is triggered to
run the protocol, this is needed in the case when the old successor also falsely suspects the
corresponding peer; iii) any other peer, in that case no special action is required. In all these
cases the falsely suspected peer is removed from the crashed list.

16



3.2. OVERLAY MAINTENANCE STRATEGIES

3.2.2 Periodic Stabilization

Chord uses this simple idea of periodic correction mechanism for ring maintenance, where
each peer periodically checks the validity of its predecessor/successor pointers. Periodi-
cally a peer asks its successor about the predecessor of the current successor. If it is the
same as itself, it does nothing; however if it is a new node, then it is probable that this new
node is a better successor for itself. Thus by exchanging periodic messages with its succes-
sor a node attempts to maintain its immediate vicinity. However, this proactive mechanism
might become a slow response while facing an inhospitable environment. As discussed
in [42], lookup inconsistencies and uncorrected false suspicions can be created in real im-
plementations. Also, [43] analyzes that inconsistencies can appear in Chord (which uses
periodic stabilization for ring maintenance) because of churn. According to [44], for a ratio
of churn to stabilization frequency, while doing a lookup the longest finger of any peer is
always found to be dead, which degrades routing efficiency. In order to avoid this, it is re-
quired to trigger periodic stabilization often, making an inefficient use of bandwidth. Thus,
we can say that this proactive mechanism is complementary to reactive correction-on-*
principles: the correction-on-* require no extra messages in case of no failures, but do not
work when no event is detected, whereas periodic stabilization needs no event to execute
(>i.e., it has liveness), but is costly in terms of bandwidth consumption.

Beernet++ incorporates this periodic maintenance mechanism. As described above,
every ¢ time units each node p checks for a better successor candidate. To do this, p asks its
current successor g about its predecessor pointer and updates if it finds a clockwise closer
node to p than ¢. On the other hand, ¢ also tries to update its predecessor pointer if p is a
better candidate than the current one.

3.2.3 ReCircle

ReCircle [40] extends periodic stabilization to react to extreme events like network parti-
tions and merge. It has two parts: periodic stabilization, as described before, and merger.
Periodic messages are issued to maintain the local geometry, whereas the merger issues
messages that navigate further, triggering awareness and remedying the anomalies, thus
ensuring eventual convergence towards one ring. Once the overlay converges, the mes-
sages issued by the merger die out and ReCircle behaves as a normal periodic maintenance
algorithm. Here we provide a brief sketch of the merger, as adapted in Beernet++.

Each node maintains a queue, which holds the identifiers of all nodes that need to be
fixed, i.e., areas that violate the ring’s geometry and introduce inconsistencies. The queue
may become non-empty due to churn, network partitions, network congestion, flash crowd
and so forth. Every v time units each node m dequeues the elements from its queue. For
each element n, m generates an event called mlookup(n), to fix a possible inconsistent loca-
tion n on the identifier space. Furthermore, along with mlookup(n) by m, n also makes an
mlookup(m). Each mlookup(id) performs a greedy routing to the problem area defined by
id, which is similar to a normal lookup operation. Once it reaches the peer responsible for
td, it tries to fix the ring by triggering the same mechanism as periodic stabilization. Fur-
ther mlookups are generated to carry on the repairing of the ring in the clockwise direction.

17



CHAPTER 3. OPERATING SPACE; MAINTENANCE AND BEHAVIOR

Each mlookup spreads this fixing process by generating new mlookups for random identi-
fiers on the ring. This is done by enqueuing id into the queue of random nodes selected
from the routing table of the current node. This is controlled by a knob, called the fanout
parameter, to trade-off bandwidth consumption and convergence time. Thus merger can
be made adaptable in term of convergence time. Also, an mlookup tries to fix any wrong
successor/predecessor pointers while routing. Shafaat et. al. in [40] propose “passive list"
mechanism to populate the queue at each node. At each node, a list of nodes, called passive
list, is maintained that consists of all nodes currently being suspected by that node. When-
ever a node is no longer suspected, it is enqueued into the node’s queue. Thus, this is a
reactive approach to trigger the merger.

3.2.4 Knowledge Base

In this thesis, we introduce Knowledge Base (KB) as a new maintenance mechanism next to
existing ones, already described. The idea of KB serves two purposes: to provide necessary
knowledge for the completion of joining of new peers and to trigger the merger of ReCircle
in a proactive manner. As the churn intensity increases the frequency of unsuccessful join
attempts increases. The first step of the join protocol of a SON is to do a lookup for
successor and after receiving a response, the new peer becomes part of the SON. With the
increased churn, lookup failure rate also increases, resulting in pending joins where new
peers keep on waiting to receive responses of their join requests (see Section 5.2). This
creates isolation for the new peers. There are two ways to make such isolated nodes be
part of the SON: i) by adding such nodes to the node queues on the overlay, thus triggering
the merger of ReCircle in a proactive manner; ii) by providing a valid join reference and
re-triggering the join request. As isolated nodes are still not part of the SON, the nodes on
the overlay have no reference to these nodes, thus no healing mechanism will be effective.
In order to apply any of these proposed solutions the knowledge about the alive peers on the
overlay is needed. Also, triggering the merger only in a reactive manner is not sufficient
to provide complete self-healing in an inhospitable environment. As the churn intensity
increases, the overlay might be partitioned in such way that there is no communication
problems among the partitions. This might also happen as well due to network partitioning
(discussed in detail in Chapter 7). For such scenarios, no suspicion event gets issued. As a
result, the passive list mechanism used in the ring merge algorithm [40] fails to trigger the
merging.

When there is simultaneous network partition and churn, the number of strangers (refer
to Chapter 7) increases due to the interaction between these two stress parameters, merger
with passive list fails to achieve reversibility (refer to Chapter 7). In order to ensure re-
versibility up to the best limit, for such scenarios and initiate merging of overlays in the
same partition, require more knowledge than a passive list to trigger the merger, which
calls for building of a Knowledge Base (KB) at each peer. The knowledge base at each
node is the best-effort view (complete/partial) of the global membership of the system. It
extends ReCircle [40] in two ways: 1) consider bigger set of nodes than the passive list, ii)
proactive triggering of merger: even if there is no false suspicion (explained shortly). The
nodes in the KB are not monitored by the failure detector at a peer, thus causes no change

18



3.2. OVERLAY MAINTENANCE STRATEGIES

of the embedded small-world graph of the overlay. The knowledge base at each node can
be accessed through an API. There can be different levels of knowledge base:

* Passive KB: Such KB can be built through listening only. At peer p, for each node
a ¢ K B, that p comes across (while routing or as a member of its current neighbor-
hood), the virtual identifier and the network reference of a is added to K B),. Building
of knowledge base at each node is based on passive observation; the list built by this
strategy is never shared with other peers, thus creates no impact on bandwidth con-
sumption or scalability of the overlay. However, such KB may be out of date quicker.

» Active KB: Using this strategy a node communicates with others to enhance its KB.
This can be a weak algorithm, such as each joining node just informing others of
its existence, or a stronger algorithm, such as gossip where each node asks a random
node to send its KB that it unions with its own KB. The result is that the KB converges
“faster" to maximum information, so that when a partition arrives, it is in the best
possible condition for surviving (least possible strangers). The effect of the active
approach is mainly on the convergence time of KB. However this approach causes
extra load on available bandwidth.

* Oracle: This is information coming from “outside the system". In order to use the
first of two alternative solutions proposed above to deal with isolated nodes, an oracle
is required. Also, as the duration of the underlying network partition increases, more
and more nodes in each partition are replaced by new nodes due to churn. Thus,
eventually the nodes in one partition will become complete strangers for the nodes
on other partition, as (Ume p, KBp,) N P> = 0 (and vice versa), here Py and P, are
the sets of peers of two partitions. This may also happen for short/arbitrary duration
of partition depending on the intensity of churn. In Chapter 8, we discuss about the
stranger syndrome using an analytical model. For such scenarios, knowledge base
built at each node falls short to merge the overlays as the partition ceases. As two
overlays have no knowledge about each other, the system requires the intervention
of third-party to gain reversibility. An oracle can be part of the API, using which the
application layer or a bootstrap server can give information to the system.

In order to use the KB efficiently, it is necessary to define a proactive sampling tech-
nique that periodically chooses elements of the KB. Since the KB can be very large, it is
not practical to use all elements of the KB. Every o time unit, each node randomly picks
up an element e from its KB, where e is neither member of its current neighborhood nor
is currently suspected, and enqueues e into its queue. Here, o is the mean of a Poisson
distribution of times when a periodic sampling happens and is a tunable parameter, which
affects the convergence time of the overlay merging. This mechanism can be made more
efficient by making o adapt to the operating environment, which we leave as future work.

The KB at each node is always growing. It may or may not converge to cover all nodes
in some partitions, depending on the operating conditions. But the number of “dead" node
references in the KB will always grow, which introduces garbage collection problem. We
can add a time-stamp to all references in KB and optimistically remove all “sufficiently

19



CHAPTER 3. OPERATING SPACE; MAINTENANCE AND BEHAVIOR

old" nodes from the KB, implementation and validation of this is left as future work. The
knowledge base presented in our work is a generalization of the passive list proposed in
[40], which only keeps track of currently suspected nodes. As a node only monitors the
members of its current neighborhood, so can only trace failures in this set. So, we can say
that the knowledge base is a super-set of the passive lists at any time, thus enriches the
nodes with required knowledge to trigger overlay merge even for long-term partition.

Knowledge Base and Gossip Frameworks

In a general gossip framework, each peer maintains a state (local knowledge of the overall
system), and by some rule (e.g., periodically, on demand, etc), each peer communicates
with other peers by exchanging the state, and updating it based on the new knowledge that
was discovered in the received state from another peer (e.g., if the state is about global
membership of the system, then each peer can accumulate a certain sample of the network
depending on the size of the state). Furthermore, the way peers decide to contact one an-
other also could be either simply random, or driven by the locally accumulated knowledge
(e.g., in T-Man [45] peers try to contact not uniform random peers, but those that are known
and have closest ID).

The Knowledge Base principle presented in Section 3.2.4 closely resembles a gossip
framework. However as already mentioned, the knowledge gathering at each peer can be
passive or active. In order to construct an active KB, a peer can use a gossip algorithm,
whereas for passive KB, a peer accumulate knowledge based on observation and also from
past and current neighborhood of the peer. In this thesis, for the experiments we have
used passive KB. Whether integrating an active gossip protocol attain any improvement is
subject to our future work. Also, we intend to improve the maintenance and application of
knowledge at each node by borrowing the ideas from gossip protocols.

3.3 Behavior of a SON

We define the term “behavior”, with respect to a SON using a set of metrics, which capture
the behavior of a particular SON at various levels. For a systematic and thorough under-
standing of the behavior of a SON with transactional DHT, we have identified 3 levels.
Below we present the parameters of all levels, studying which will provide an assessment
of the impact of a particular environment on the operation of a SON:

* Data Level: % of failed transactions, % of lost keys, % of inconsistent replicas, % of
lost updates.

¢ Connection Level: Number of times imperfections introduced, % of time a node
experiences imperfections, % of nodes on core ring.

* Routing Level: Number of messages generated.

The data level parameters signify the impact of a particular environment on the DHT
and data level operations. The last parameter, % of lost updates provides useful information

20



3.3. BEHAVIOR OF A SON

for application running on top of a SON regarding the ratio of successful updates of the
stored data in a particular environment. This parameter is mostly dominated by % of failed
transaction, however other scenarios may also contribute. Suppose, the replica set of key k;
is formed by peers a, b, ¢, d, where a, ¢, d has the latest value with version 7 (i.e. there were
total 7 updates) for k; and b holds the old value with version 5. Now, if a, ¢, d leave or crash
or become unavailable (for example, due to partition), then the old value stored in b will
be replicated to the new responsible for key k;. In this scenario though there was no failed
transaction, but 2 updates are lost. Another scenario: suppose transaction is designed for an
application in such way that the update operation of a key depends on its old value, in this
case if the key is lost, then it doesn’t invoke any update, contributing to the lost updates.
All other data level parameters are apparent from their titles.

In all ring-based SONSs, each peer keeps a successor and a predecessor pointer to main-
tain the structure. The connection level parameters assess the deviation of the ideal ring
structure during adjustment with a particular environment. The parameter Number of Im-
perfections Introduced, counts the total number of times peers falsely suspect their ideal
successor or predecessor pointer and choose an imperfect peer. The next parameter, % of
time a node experiences imperfections accounts for how long a peer goes through such
imperfection. These 2 parameters reflect the impact of false suspicions on the ring. The
parameter % of nodes on core ring, tries to measure the rigidity of the ring. In other terms,
it finds out the maximal ring in the system and reports % of nodes on it. The routing level
parameter Number of messages generated shows how many messages are generated to cope
up with the changed environment. As already mentioned, these metrics are general enough
to be applied for any SON with transactional DHT.

21






Chapter 4

Failure Detection and Replica
Management

As prerequisites of our study, we have enhanced some aspects of our representative Struc-
tured Overlay Network (SON), Beernet. As part this, we present a QoS-aware self-adaptable
failure detection algorithm [41]. Also, we have augmented replica management of Beernet
with an optimistic, low cost data migration protocol as part of failure recovery algorithm,
in order to achieve improved availability and consistency of replica sets [41].

4.1 Failure Detector

Being a distributed system, partial failures are usual incidents for Beernet, which it must
cope with. As the maintenance strategy of Beernet is Correction-on-Change, Failure De-
tectors play an important role in Beernet’s operation, because most of these changes (nodes
crashing or leaving the network) are triggered by the failure detection module at each peer.
Perfect failure detection is impractical especially for Internet style networks. An Eventu-
ally Perfect Failure Detector is the best that can be achieved on the Internet. Along with
Strong Completeness, an eventually perfect failure detector requires Eventual Strong Ac-
curacy, which implies that any false suspicion of failure will be eventually corrected. This
is feasible to implement because, if the unreachability, thus failure suspicion, was caused
by problems of the underlying communication link (failure or slow), it will eventually go
away as the link recovers, thus be able to communicate with the suspected peer. This is
the kind of failure detection that Beernet’s algorithms rely upon, however, Quality of Ser-
vice (QoS) of failure detection modules is crucial for Beernet’s performance, as frequent
false suspicions may cause instability in the SON. Also longer period to detect a crash or
correct a false suspicion will allow greater inconsistency in the system. For these reasons,
maintaining QoS of failure detection is of utmost importance. This section presents an
implementation of self-adaptable eventually perfect failure detector, which adapts with the
environment, providing QoS.

The existing public release of Beernet (version 0.9) [46] includes a generic implemen-
tation of an eventually perfect failure detector, guided by that in [47]. The idea is very

23



CHAPTER 4. FAILURE DETECTION AND REPLICA MANAGEMENT

simple: each peer p periodically sends a ping message to all other peers in 11, where II is
the set of peers p knows about. After the ping message is sent, p launches a timer, which
corresponds to the timeout for responses from all peers in II. Each node ¢, which receives a
ping message from p, immediately responds with a pong message. When p receives a pong
message from g, ¢ is added to alive set. When the timeout is triggered, all the peers, which
are not in the alive set are suspected to have failed. Then p starts a new round and repeats
the same way of collecting responses from other peers. If a pong message is received from
a peer r, where r € suspected, implies that r is falsely suspected in earlier round. This is
detected at the next timeout, when 7 belongs to both alive and suspected sets. In this case
the false suspicion regarding r is corrected and the timeout is increased by a fixed value, A
in order to prevent such false suspicions.

The algorithm above has two problems as we observed. The first issue is, the timeout
is global for all connections of a node whereas the round trip time is very often different
for each connection. For this global timeout, the detection process of a peer is driven by
the speed of the slowest connection. Let us consider the function of a failure detector of a
particular peer a, where a monitors b and c. The connection between a and b is very fast
but between a and c is very slow. In the first round, a will receive response from b within
due time but will falsely suspect c. Later, when a will receive response from c, it will
increase its timeout, this way a will continue increasing its timeout period until there is no
false suspicion, meaning that the timeout is adapted to the slowest connection. The second
problem with the above algorithm is that it only increases the timeout to adapt to the round
trip time (RTT) between two nodes, whereas the RTT may vary wildly along time, in a long
running distributed system. Due to temporary congestion, RTT may go higher, leading to
false suspicion or increase of timeout and after some time when the congestion goes away
it may drop to the normal previous value. Thus, it is necessary to lower the timeout period
to adapt to the RTT, without creating any oscillation.

The expectations from the failure detector module are threefold: to reduce the number
of false suspicions, to correct mistakes quickly, and also to detect failures quicker. Unfortu-
nately, these goals are contradictory: the time to detect failures or correct a mistake depends
on the timeout period. Lower timeout delays lead to quicker detection of failures or cor-
rection of mistakes, but in order to reduce the number of false suspicions the timeout delay
needs to be sufficiently large enough to cope with slight changes in the environment. In
order to determine the perfect or best value of timeout period for each connection adapting
to the RTT of each connection is the only option.

Based on above principle, we present self-adapting failure detection, which adapts with
RTT of a connection and also keeps a safety period to accommodate the variability in net-
work connection. Each node maintains a history of last £ RTT for each connection and the
timeout period of next round for each connection is determined based on this history. We
will explain this using an example of a pair of nodes (as for each connection the procedure
is same), where a is monitoring b (i.e. connection a < — > b). At each round, a sends ping
message to b, each ping message is time-stamped. When b receives a ping, it replies with
a pong, including the timestamp of the corresponding ping. As soon as a pong message
from b is received, a calculates the RTT of connection a < — > b for this round. After the
timeout, if no pong message from b is received, a starts suspecting b, if b is not already in

24



4.1. FAILURE DETECTOR

suspected set. However, if b is in suspected set and a pong is received from b in current
round, then the false suspicion regarding b is corrected. After deciding the status of b for the
current round, a starts preparing for the next round of connection a < — > b by calculating
the timeout period.

Timeout Period for next round = Average RTT over last k£ rounds + m*Standard Devi-
ation of RTT over last k rounds.

The first part of the above equation is used to estimate the expected value of RTT of
the next round. However, due to unpredictability of a large and complex network like
Internet, a safety period is needed so that in case of sudden changes of environment, the
timeout period can cope up quickly. For this purpose, a weighted standard deviation over
the history of RTT is the best candidate, where the weight m depends on the variability in
the network. Together, as a summation of both quantities, enables to determine the most
suitable value of timeout period for the next round and also auto-adapts with the changing
environment. This failure detection algorithm can be expressed as a function of k and m,
the best values for these parameters can be determined for a particular environment, based
on experiments, as shown in Section 4.1.2. For the initial rounds, when there is not enough
RTT data collected, a pre-defined timeout period is used. The algorithm of the self-adapting
failure detection module is shown in Algorithm 1.

4.1.1 QoS Metrics for Eventually Perfect Failure Detection

As already mentioned, QoS of the failure detection module plays an important role in
Beernet’s performance or resilience against a particular environment. The expectations
from failure detection module are threefold: quick detection of failures, reduce the number
of false suspicions or mistakes and correct a mistake as soon as possible. From a direct
mapping of these expectations, we define 3 primary QoS metrics for an eventually perfect
failure detector, which are in-line with those proposed by Chen et al. [48]:

* Detection Time: Time to detect a failure or crash. This is the average duration after
which all peers permanently suspects the crashed node.

 Accuracy: % of suspicions which are correct i.e. % of suspicions when the suspected
node has actually crashed/left the system.

* Reaction Time/Mistake Duration: Time required to correct a false suspicion. This
is the average duration after which a peer becomes aware of a false suspicion and
corrects its mistake.

4.1.2 Evaluation

The objective of this section are threefold: i) To evaluate the failure detection algorithm
using the QoS matrices as described in Section 4.1.1, ii) To understand the impact of the two
parameters (k and m) on the QoS of the failure detection in a given environment and ii) To
tune these two parameters for upcoming experiments. The ideal value of these parameters

25



CHAPTER 4. FAILURE DETECTION AND REPLICA MANAGEMENT

Algorithm 1 Self-adapting Failure Detector

upon event ( monitor | p ) do
MonitoredPeers := MonitoredPeers U {p}
p.waitPeriod := INIT_DFELAY
send ( ping | self, timestampping ) to p
starttimer(p.waitPeriod)
end

upon event ( timeout | p ) do
if p € alive and p € suspected then
suspected := suspected \ p
trigger (alive| p)

if p ¢ alive and p ¢ suspected then

suspected := suspected U p

trigger (suspect| p)
alive := alive \ p
expectedRTT := Average of last k values in p.RTTHistory
stdRTT := Standard Deviation over last k values in p.RTTHistory
p-waitPeriod := expectedRTT + m*stdRTT
send ( ping | self, timestampping ) to p
starttimer(p.waitPeriod)
end

upon event ( ping | q, timestampping ) do
send ( pong | self, timestampping ) to g
end

upon event ( pong | p, timestampping ) do
RTT = CurrentTime - timestampping
p.RTTHistory := p.RTTHistory U RTT
alive := alive U p
end

26



4.1.

FAILURE DETECTOR

Detection Time

Reaction Time or Mistake Duration

3000 T T T T T T T T T T T T 2000 T T T T T T T T T T T T T T T
For 1 minute For 1 minute
Error Bar(l minute) +-3¢--! Error Bar(1 minute) +-3¢--!
2500 + 1 For 5 minutes ====== — - For 5 minutes ======
! Error Bar(5 minutes) £ 1500 | Error Bar(5 minutes) £
| U
i
— 2000 1N\ E _ )i(
2 2
E * N\J E !
. . | B
€ wsop X w - it € 1000 - 1\7 ] SV
o 3 ¥ ! | x
E e T £ SN S e
. E : . _
& w00 4 = b @__?.?.iﬁ-ﬁ- @ £ -4
[
so0 |
&
500 - B = -
| | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | |
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
k k
Figure 4.1: Detection and Reaction Time for various values of k
Accuracy Accuracy
100 T T T T T T T T 100 LI U I N N N I N N A N N A I N A N I B B |
=R = = -Er 3= “ = ®
80 A G E XXX XX 8()39
Id X
g A
P
# T
[5) | ¢ a o -
&% 60 % P N
= ./’ RO =
] T N 8
b= X ! =
g wf JX 4 8 wf
X d
f
20 % For 1 minute 4 20 For 1 minute 4
Error Bar(l minute) +-3¢--! Error Bar(1 minute) +-3¢--!
For 5 minutes ====== For 5 minutes ======
Error Bar(5 minutes) -8 Error Bar(5 minutes) -1
0 | | | | | | | | | | | | | | 1 | | 0 S I N S I Y N N | 11 |
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 12345678910111213141516171819202122232425

k m

Figure 4.2: Accuracy for k Figure 4.3: Accuracy for m

to achieve best performance is highly dependent on the environment. It is possible to make
the failure detector as self-tuning, but we leave this as future work.

To evaluate the QoS of failure detection, a network of 100 peers is used. Correction-on-
* principles are used as the sole maintenance strategy. To simulate the underlying network,
the end-to-end delays are set based on the empirical distribution of minimum RTT provided
in [49]. During the steady state of the SON, 5% churn is injected. The churn events are
modeled as a Homogeneous Poisson Process (HPP) with A1 events/sec, where A\; = 10 for
5% churn on a network of 100 peers. Simultaneously, in order to simulate variability in the
underlying network, 5% links (in this work link always refer to end-to-end connection of
the overlay) changes connectivity every 5s, based on the empirical distribution of standard
deviation in per-connection RTTs as measured in [49]. The connectivity change events are
also modeled as a HPP with arrival rate of A9 events/sec, where Ay = L/100, here L is
the total number of connections in the system. Also, to evaluate the adapting capability of
the failure detection scheme, we have taken measurement for 2 different duration, 1 minute
and 5 minutes.

For this given environment, we have measured the QoS parameters for various values
of k, by keeping m fixed as 4, the result obtained is shown in Figure 4.2 and Figure 4.1.
The accuracy increases with buffer size until it reaches a maximum point and remains same

27



3500

3000

2500

2000

1500

Time(in ms)

1000

500

CHAPTER 4. FAILURE DETECTION AND REPLICA MANAGEMENT

Detection Time

T T T T T T T T T T T T T T T T T 1T

For 1 minute

Error Bar(1 minute) ---><--!
For 5 minutes ====== 7

Error Bar(5 minutes) £

45678 910111213141516171819202122232425
m

Time(in ms)

1800
1600
1400
1200
1000
800
600
400

200

Reaction Time or Mistake Duration

T T T T T T

T T T r T
For 1 minute

Error Bar(1 minute) -->--! -
For 5 minute ======

Error Bar(5 minute) *

4 -
'JE'E‘E'B-E-E-EE-EPE-E-@E-D{

12345678 910111213141516171819202122232425

m

Figure 4.4: Detection and Reaction Time for various values of m

both for short and long durations. As the environment is changed consistently throughout
the experiment, longer history provides more statistical information, however in case of
temporary fluctuation of environment, storing very long history might create negative im-
pact on QoS, also buffer size becomes an issue. As it is apparent, after adapting to the
environment for longer time, accuracy is improved for the same buffer size. In terms of de-
tection and reaction time, we get good results for buffer size of 30-40, beyond that we again
get an increasing trend for short duration. However for longer experiments, the outcome
increases till buffer size of 30 — 35 as accuracy goes up, after that it remains steady as it
already have a good estimate of the RTT and settles for the detection and reaction time for
the best accuracy. For the following experiments, buffer size is set as 30, as this is sufficient
history size for the failure detector to reach the optimal state.

The same environment is used to test the impact of m on QoS of failure detection; Fig-
ure 4.3 and Figure 4.4 portray the result. As expected, accuracy increases with increased
timeout period, i.e., with increment of m for short experiment. However, for longer pe-
riod, failure detector’s adapting capability is prominent, as the average RTT dominates the
timeout period, i.e., accurately measures the expected RTT which leads to maximal accu-
racy, thus, making the impact of m fades away. This happens because network variability
is modeled as a HPP, however for an unpredictable environment like Internet, m will have
its impact even for longer up time. The detection and reaction time decreases sharply for
m > 3, remains almost same for 4 till 9 and again shows an increasing trend for short exper-
iment duration. Based on this analysis, we have kept m = 4 for the remaining experiments
in this work in order to cope up with the environment right from the beginning.

4.1.3 Related Work

There are 2 implementation strategies for timeout based failure detectors [50, 51]: i) Heart-
beat based, where each process periodically sends “I am alive” messages to all other pro-
cesses; ii) Ping based, a process monitors another process by sending a ping message and
asking for acknowledgement. The ping strategy provides finer-grained control, also accord-
ing to design philosophy of Beernet, each node has a set of other peers, which it monitors,
and this matches the pull strategy. However, existing work on QoS of a failure detector

28



4.2. TRANSACTIONAL DHT

is mostly based on heartbeat-based implementation, the reason as mentioned in [50], is
the quality of the estimation of the timeout period. In contrast to the heartbeat strategy,
in ping strategy the number of variables is twice (for example, transmission, reaction de-
lays). To maintain QoS, these approaches [50, 48] use sampled arrival times to compute
an estimation of the arrival time of the next heartbeat. The timeout is set according to this
estimation plus a safety margin (which is constant in [48], whereas [50] computes it by
using Jacobson’s algorithm[52]). Very few works are found on the ping based failure de-
tectors. A message efficient algorithm is provided in [53], but in this approach each process
monitors only a single process. In [54], the failure detection is lazy, where the status of the
monitored process can be known by making a query to the failure detection module. A
process is suspected when the elapsed time for the unacknowledged message is more than
the maximum round trip time till observed. However, the maximum round trip time can be
much higher than the average response time due to a spike, so this may increase the detec-
tion time. The protocol provided in [55] assumes a model of finite average response time;
timeout increases logarithmically with the total number of slow messages (triggering false
suspicions) and linearly with the number of fast messages (acknowledgements received be-
fore timeout) since the last slow message. Whenever, a slow message arrives, the number
of fast messages is set to zero and therefore results in a drop of the timeout (if the number
of fast messages was greater than zero). This may cause increased false suspicions as the
timeout decreases after a false suspicion. Also this is a pull mechanism to get the status of
a monitored process, whereas Beernet needs failure detector to push notifications regarding
any event.

4.2 Transactional DHT

Beernet provides support for Transactional Distributed Hash Table (DHT) with replication.
The performance or correctness of the applications running on top of Beernet using the
Transactional DHT is dependent on the assurance provided by the data layer operations of
Beernet. This section provides a brief description of data layer support in Beernet, along
with an augmentation of replica management in order to achieve improved availability and
consistency among the replicas of a particular data item.

There are three protocols implemented in the transactional layer of Beernet: Two-phase
commit, Paxos Consensus Algorithm and Eager Paxos, in order to cover the requirements of
various types of application. Though Two-Phase commit is the most popular approach used
by traditional databases, it has two stringent requirements: survival of the transaction leader
and all replicas must be updated when the transaction completes. These two requirements
are hard to be satisfied in a dynamic environment. However, Paxos Consensus protocol
relaxes these requirements by using replicated transaction managers and quorum-based
commits, thus provides fault tolerance without sacrificing strong consistency. So, in this
work, only Paxos Consensus protocol is used in order to evaluate the data layer parameters,
as the obtained result can also be applied for Eager Paxos.

Symmetric Replication [43] is implemented in Beernet as a replication strategy. The
replica management layer of Beernet strives to maintain a consistent set of replicas under

29



CHAPTER 4. FAILURE DETECTION AND REPLICA MANAGEMENT

any extreme environment. Let us analyze the operations of this layer in detail under churn.
When a new peer joins, it replaces its successor as member of the replica sets of a certain
amount of items. During the join procedure, the successor pushes all such data-items to the
new peer that it has become responsible for. Taking values only from a single replica is fine
in this case, as if the successor has stale value of a data-item, this will replace a bad replica
with another bad replica. However, when there is a failure, it is more important to read from
the majority during the recovery, as there is no way for the recovery node to know whether
the dead peer was up-to-date or not. In the existing public release of Beernet [46] the replica
management layer only handles the join events and [13] analyzes the replica management
under churn, concluding that failure recovery requires reading from the majority. In order to
read from majority, doing transaction for each data-item becomes too expensive and false
suspicions make the situation more complicated. In this work, we have augmented the
replica management layer of Beernet, by proposing an inexpensive lazy-migration protocol
during failure recovery, which can achieve eventually consistent replica set for a data-item,
without creating any conflict with simultaneous transaction of that particular data-item.

4.2.1 Lazy Data Migration

Each data-item has a version number associated with it, which only increases by each
update. The read operation during transaction reads from the majority and returns the
value with the highest version number. While committing a write operation, a replica votes
for commit if version,e,w >= vVersionzisting for an existing data-item or the data-item
is absent. The monotonicity of version number, along with the advantages of symmetric
replication is exploited in lazy migration protocol. Suppose, peer ¢ has successor r and
predecessor p, when p suspects g, it initiates failure recovery, now if ¢ is also suspected
by r, r takes over the responsibility for all the data items that ¢ was responsible. Due
to symmetric replication strategy, r can find out other members of the replica set of the
corresponding data items using the symmetric function, so there is no need to add any
expensive group management to the replica sets. Though there is a replica set per data-
item, due to symmetric replication, many replica sets overlaps, which facilitates the data
migration. Lets consider the replica set is formed by a, e and m (for replication factor 4
and the 4th member q is suspected). Then r sends a pull request to all of them to do data
migration for the data-items that ¢ was responsible for. If a peer receives a pull request,
it retrieves all the data-items belong to the specified range and sends to the mentioned
destination. When r receives the data from any of them, it only do an update of a particular
data-item if version,eceived > VErsiONegisting for an existing unlocked data-item or the
data-item is absent in 7. Thus, » may have stale value for a data-item temporarily, if it
receives from e (which has old value) before a or m (holding up-to-date value), however
eventually » will be consistent for the particular data-item. Though, this is not a perfect
solution to achieve consistent and complete replica set for each data-item, as there might
be non-overlapping replica sets, however this is a trade-off between cost and consistency.
Let us now analyze the lazy migration and simultaneous transaction of a data-item,
k;. Suppose, a, e and m are the replicas for k; and after q is suspected r has become the
member of the replica set. Now there can be 3 possible scenarios while lock is requested

30



4.2. TRANSACTIONAL DHT

for k; by the transaction manager:

* r doesn’t have k;: r will vote for commit, so no inconsistency is introduced.

* r has a stale value of k;: due to monotonicity of version number, there will be no
inconsistency and r will vote for commit.

* r has up-to-date value of k;: this is the ideal scenario, resulting in regular transaction.

So, in any case, lazy-migration of a data-item to the new member of the replica set
doesn’t create any conflict with simultaneous transaction of the same data-item. This is a
low cost optimistic protocol to achieve completeness and higher consistency of replica sets.

4.2.2 Evaluation

This section evaluates the impact of Lazy-Data-Migration on the data level parameters,
as described in Chapter 3. For this experimental study, a network of 100 peers has been
bootstrapped. Correction-on-* principles are used as the sole maintenance strategy. As in
Section 4.1.2, the statistical properties in [49] are used to simulate the underlying network.
A consistent workload is created by injecting transactions, whereas transactions are mod-
eled as a homogeneous Poisson process with A = 1 per second. The workload is kept in
such way that without churn the data-layer operates perfectly, i.e., no failed transactions
and inconsistencies. A transaction is designed as: it reads k; and updates k;, here update
means k; is read and if it exists the value of £; is incremented by 1. The replication factor
is kept as 4. As in Section 4.1.2 churn events (join and crash with equal probability) are
modeled as a homogeneous Poisson process with rate \ events/sec, whereas A = 2 x C'/5
for a churn of C% on a network of 100 peers. In order to understand the impact of Lazy-
Data-Migration protocol, all data level parameters are measured once with lazy-migration
and once without lazy-migration for each value of churn. The 2 sets of result for each pa-
rameter are plotted together so that they can be easily compared. Figure 4.5-4.8 show 4
data-level parameters for the 2 sets of result.

As we can see in Figure 4.5, increasing churn leads to more failure of data layer oper-
ations. However, lazy migration doesn’t create any conflict with transactions, on the other
side shows improvement as the availability and consistency of replicas are improved. As
expected, the main impact of lazy migration is clearly visible in Figure 4.7 and Figure 4.8,
as the integration of this simple, low-cost and optimistic approach leads to less key loss and
inconsistent replicas. Figure 4.6 follows the trends of Figure 4.5, as explained before, more
churn leads to more failed transactions i.e. more updates are lost.

4.2.3 Related Work

The most relevant work on the performance evaluation or dependability analysis of data
layer operations of SON under churn is found in [56]. This work evaluates the frequency
of inconsistent lookups, overlapping responsibilities and unavailability of keys in Chord
[10],[11] resulting from unreliable failure detectors and churn. There are two other the-
oretical works on churn in Chord: [57, 58]. In [57] master-equation-based approach is

31



Percentage(%)

Percentage(%)

Figure 4.7: Data Level Parameter: % of lost

CHAPTER 4. FAILURE DETECTION AND REPLICA MANAGEMENT

Failed Transactions

100

80

60

40 -

20 b Without Lazy Migration
| Error Bar(Without) -->¢--!
H With Lazy Migration ======
i Error Bar(With) &

0 1 1 1 1
0 20 40 60 80 100

Churn

Figure 4.5: Data Level Parameter: % of
failed transactions

Lost Keys
100 T T T
R e e, Bb o
g PIEAr b
50 L : P;mﬁ',..” Fdsy ]
\
T At A
| ¥
60 N e a
41 i
N
i
40 - VA 4
R
VR
HER
20 Wil ey Without Lazy Migration 4
i “’@ Error Bar(Without) -->--!
J "dﬁ L With Lazy Migration ======
5 | Error Bar(With) -8
0 MR I I 1
0 20 40 60 80 100
Churn

keys

Lost Updates

Percentage(%)

Without Lazy Migration
Error Bar(Without) -->¢--!
With Lazy Migration

) Error Bar(Willh) )

40 60

Churn

80

100

Figure 4.6: Data Level Parameter: % of lost

updates

Inconsistent Replicas
100 T

100

ERRR RN v 3
T T TN gt :
AT s B AR
80 AT R AR ST N
e VN "W"ﬁj M’ L i
ERN/ R SEETRNY Ly
DT
< 7o AL
T 60 FAESENL ; i
5 T
5 e
540 ;3“1..( e i
& b
R 4n0l
20 41 Without Lazy Migration 4
¥ Error Bar(Without) =->--!
il With Lazy Migration ======
= Error Bar(With) 8
0 1 1 1 1
0 20 40 60 80
Churn

inconsistent replicas

Figure 4.8: Data Level Parameter: % of

used to predict the performance and consistency of lookups under churn. A fluid model
of Chord under churn is proposed in [58]. Our optimistic low-cost lazy data migration
shows improved data-layer operations under churn using only correction-on-* as the sole
maintenance, thus can be used as a complementary of existing works.

32



Chapter 5

Investigation about Churn

For a peer-to-peer network, node turnover (nodes failing and being replaced by new correct
nodes) is the most usual scenario. Though, in most existing applications churn remains
under a certain limit, as per studies [29, 30, 31] systems with low/average churn face high
peaks. Consider the scenario of a Structured Overlay Network (SON) running on mobile
phones or on an ad hoc network. Such a dynamically changing underlying network has
still not been used because the environment is considered to be too inhospitable. A major
goal of this work is to explore how to build systems that are able to survive and give useful
functionality for such environments. This knowledge can improve system design with en-
hanced self-managing properties, while opening new vistas for applications - it is also one
of the future scenarios that we investigate.

We construct a SON that is able to survive extremely high levels of churn, and when
churn returns to a low value, the functionality originally available at the low value will
again be available. We design our SON using the self-management principles necessary to
make it reversible. To our knowledge, no previous SON provides reversibility for the high
values of churn we investigate. We examine the reasons why and we add the maintenance
principles necessary to make it reversible. We demonstrate reversibility through simulation
using realistic network conditions and churn varying over a large range.

5.1 Reversibility

In this thesis, we introduce the concept of Reversibility. The term “reversible” implies
that the system reverses back to its original state when a stress is withdrawn. We extend
our SON to make it reversible, i.e., its functionality is a property of the current network
conditions, and is not affected if the network has had failures in the past. This chapter
focuses on one property of the network, namely Churn, which is the rate of node turnover,
i.e., nodes failing and being replaced by new correct nodes.We assume that churn varies
over time, and that the average number of correct nodes at any instant is constant. At the
system level, the overall functionality depends only on the current intensity of churn and
not on the history of this value. High churn will cause certain functionalities to disappear
and when churn decreases, they come back. Therefore there is an analogy between high

33



CHAPTER 5. INVESTIGATION ABOUT CHURN

100

100 T T T
=10% 801

80

80 fF

60

Percentage

60 f-

Percentage

40

Percentage

40

140 160 180

b or —
b 0 L L L L Lo h P 20 40 60 80 100
0 | ) i h | | 1 20 40 60 80 100 120 140 160 180 Time (in sec)

I
20 40 60 80 100 120 140 160 180 ‘Time (in sec)

Time (inse) (c) Correction-on-*, Periodic

. b) Correction-on-* and . .
(a) Correction-on-* ®) L. e Stabilization and Merger with
Periodic Stabilization . .
Passive List

100 T - 100 T T
H : v
i ' i
80 |- B 80 H E
i
H
H
& 60H B 2 60 f5 E
8 ] :
= = H
g g ;
: R sl
v 40 I E 1 ~ 40 |# B
20 E 20 |1 B
. For Churn = 10% J For Churn = 10%
For Churn = 50% ====== For Churn = 50% ======
For Churn = 100% ===+ For Churn = 100% ===+
0 I I I I 1 I 0 I I I I I I
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Time (in sec) Time (in sec)

(d) Two sample runs: Reversible using Correction-on-*, Periodic Stabilization and Merger with
Knowledge Base

Figure 5.1: % of nodes on core ring as a function of time (in sec) after withdrawing churn
to assess reversibility. Figure 5.1a, 5.1b and 5.1c are not reversible (nodes on core ring
never converges to 100%). Figure 5.1d using Knowledge Base is reversible.

churn and temporary failures, at the system level, even though at the individual node level
there are only permanent failures.

5.2 Evaluation of Reversibility

In order to ensure reversibility after experiencing continuous high churn, Knowledge base
(KB) is essential. This is verified through our experimental results presented in Figure 5.1.
To our knowledge no existing work demonstrates reversible SON for high churn by us-
ing one or more maintenance principles. We conduct step-wise assessment of reversibility
against extremely high churn. At each step, we integrate a principle and evaluate to an-
alyze the enhancements and lacking. Finally, we present a reversible SON, as shown in
Figure 5.1d and explain what maintenance principles are needed to achieve reversibility.
In our evaluations, we use the Beernet [13] system. This is a straightforward SON
that supports all the maintenance principles. It is an example of the reference architecture.
For assessment of reversibility we use a SON of 100 peers. All experiments are done in
Mozart-Oz 2.0 [59] in a simulated environment. To simulate the underlying network, the

34



5.2. EVALUATION OF REVERSIBILITY

end-to-end delays are set based on the empirical distribution of minimum RTT provided
in [49]. The distribution represents significant geographic diversity, so we can say that
the simulated SON is geo-distributed. We have defined churn as described in Chapter 3:
percentage of nodes turnover per time unit (second in this work). If we assume equal
probability of join/leave event and a single event per time unit, then every other time unit,
a node will leave and a new node will join the network, i.e., every other time unit the total
number of peers will be the same, whereas only a single node has a changed identity. In the
steady state of SON when all nodes are on core ring, we have injected 10%, 50% and 100%
churn for 1 minute. The churn events are modeled as a Homogeneous Poisson Process
(HPP) with X\ events/sec, where A = 2 x C for C% churn on a network of 100 peers.
After withdrawing churn, we observe healing capability of SON with time. We have used 3
values of churn to compare and study healing for low, medium and high churn. In order to
quantify the effect of self-healing, we have used metric: percentage (%) of nodes on core
ring, to measure the rigidity of the ring. In other terms, it finds out the maximal ring in the
system and reports % of nodes on it. The ultimate goal is to have the metric converge to
100%. A fixed workload is used in an experiment by injecting transactions, modeled as an
HPP with \ = 1 transaction/sec. A transaction reads one key and updates another one.

5.2.1 Correction-On-Change and Correction-On-Use

As Figure 5.1a shows correction-on-* principles fail to achieve reversibility even for the
lowest intensity (10%) of churn used in our experiments. Correction mechanisms allow
the pointers to get fixed as soon as a failure, leave or join is detected, rather than waiting
for a periodic check. Such rapid response reduces the probability of inconsistency and has
more efficient bandwidth consumption. However, after withdrawing churn, the structure
of the system remains almost the same. The reason for this is as follows. As healing
is only triggered whenever a join/fail event occurs, so after churn is withdrawn there is
no such event to continue the healing process. Also, under churn, a node based on its
current state handles a new event, whereas the current state of the node might already
be not optimized, for example, it might be on a branch and have missed an opportunity
to reduce branch size. In such situation, handling high churn aggravates the structure,
by unnecessarily pushing more and more nodes on branches. Although Beernet allows
branches, but increasing branch size affects routing efficiency and increases the probability
of creating isolated branches, thus inconsistencies under churn, as explained in [13]. So it
is ideal and required to make branches shorter by bringing nodes on the ring and make the
ring perfect whenever possible. But the branch-pruning algorithm is triggered only when a
node joins, making it less effective. A node only heals whenever it senses an event based on
its current state and later if a correction is required there is no option to trigger or propagate
that, thus the damage of the structure remains as it is, at times even worsens as found in
Figure 5.1a, once the churn events fade away. For churn value of 10% and 50%, we can
see decrease of the number of nodes on core ring after withdrawing churn. The reason is
the issuance of false suspicions by the failure detection, which push nodes on branches.
Moreover, dependency on such non-perfect failure detection also affects a node’s sensing
capability, thus controlling how fast these principles will react. All these make the healing

35



CHAPTER 5. INVESTIGATION ABOUT CHURN

100 . . . :
100 T T T T T
80 | D DLy el £ B
L LBl T T w b SIS et )
R = VoA : K PR Lot L
B TR UARG/L T et
E‘) 60 - 2 - ) ; ] 41 4 ’_‘, ~en
g N g 60 - i
8 g oo ! ! £
) L g /
=0T L i S 4 !
g /=0 ~ i
AR {
20 4 Incomplete Lookup T : "
: Error Bar -->¢-- 20 |k .
Incomplete Join i For Churn = 10%
. ) ) Error Bar i3 ] For Churn=50% ======
0 2 For Churn=100% ++++*+*
0 20 40 60 80 100 0 1 1 1 1
Churn 0 10 20 30 40 50 60
Time (in sec)

Figure 5.2: % of lookups and joins which . . .. o
.. . Figure 5.3: % of incomplete joins with time
remain incomplete after injection of churn S .
. during injection of churn for 1 minute
for 1 minute

capability, thus reversibility of these principles limited in the face of extremely high churn.

5.2.2 ReCircle (Periodic Stabilization and Merger with Passive List)

As mentioned in Section 3.2.3, ReCircle is designed using the principle of periodic sta-
bilization. It has two parts: periodic maintenance and merger, triggered when the queue
at a node becomes non-empty. Each node independently performs periodic maintenance
by exchanging messages with its successor to maintain the local geometry. The periodic
stabilization thus provides a shortsighted vision for each node about the current state of its
immediate neighborhood. Moreover, a correction gets propagated in the identifier space
during the subsequent rounds of periodic stabilization. Thus using this proactive mecha-
nism eventually all local anomalies get fixed.

We can see significant improvements in Figure 5.1b, after integration of periodic stabi-
lization; however still unable to achieve reversibility. The period used in our experiments
for periodic stabilization is 1 second. Due to periodic maintenance, nodes on branches
eventually become part of the core ring. However the healing is taken place only during
first few seconds, and after that there is no change in the SON structure, as shown in Fig-
ure 5.1b.

As Figure 5.1c shows, the integration of merger with passive list does not show any
significant improvement over the combined local healing. The reason is the existence of
isolated nodes in the system (explained shortly). The nodes on the overlay has no reference
to these nodes, i.e., no suspicion is issued. As a result, reactive merge attempt gains no
success. The period used to dequeue the elements to generate mlookups at each node is 3
seconds and we have kept the fanout parameter as 1. Though the integration of this reactive
global maintenance is unable to achieve reversibility, the knowledge is navigated further
in the identifier space, triggering local maintenance during subsequent round of periodic

stabilization, as evident from Figure 5.1c.

36



5.2. EVALUATION OF REVERSIBILITY

Why not reversible yet? In Figure 5.1c all nodes are still not on the core ring, i.e., the
system 1is still not reversible. As our investigation shows, there are peers whose joining
processes fail under churn. With the increment of churn more peers are unable to join the
network. This is most likely a phase transition as discussed in Chapter 6, where continuous
high churn injection makes the relaxed ring unstable that do not allow new peers. The first
step of joining a SON is to do a lookup for successor and after receiving a response the
new peer becomes part of the SON. For the join to fail, there are two possible reasons:
i) the lookup request is lost while routing, ii) the successor has failed after receiving the
lookup request; in both cases the new peer keeps on waiting for response. If we ignore the
processing time at successor, then the probability of join failure is proportional to lookup
failure. Figure 5.2 shows % of incomplete lookups and joins for different values of churn.
We have used the same experimental setup of 100 nodes and injected increasing churn for
1 minute. Simultaneously, lookup requests are created using a HPP with A = 100 request-
s/sec. After waiting for another 5 sec, we report % of lookups which remains unanswered,
also Figure 5.2 shows % of join requests which are not yet complete. As churn increases
more and more join requests remain pending. We also present the accumulation of pending
join requests with time in Figure 5.3, especially for high churn. As it is evident, with high
churn, the join request of the new peer is lost.

5.2.3 Knowledge Base for Each Node

As shown in Figure 5.1d, after integration of knowledge base the system has achieved
reversibility. We have conducted 50 independent runs for each value of churn, all of which
have converged. This gives an upper bound on non-reversibility. Out of the 50 samples
collected, we present two representative runs in Figure 5.1d for each value of churn. As the
churn intensity increases, more and more join requests remain pending, which isolates these
peers. We have described in Section 3.2.4 two alternative solutions for this problem. Out of
those we have chosen the simpler one for our experiments: providing a valid join reference
and re-triggering the join request. If a node is unable to join with its current join reference
within 100 seconds, then it requests a new join reference from the application layer and
triggers new join request with that. This is a tunable parameter, which we will refer as Join
Timeout, we have chosen a conservative value of 100 seconds for this parameter to avoid
triggering of unnecessary repeated join requests. This parameter can be adapted based
on the operating environment and RTT distribution of the underlying network, which we
leave as future work. Along with this, we have used the proactive manner of triggering the
merger using KB. In some runs we have observed partition of the system after the isolated
nodes complete their join procedures. In order to merge such partitions proactive global
maintenance using KB is required. As we can see in Figure 5.1d, for both samples, the
damage of the structure caused by high churn is completely healed; thus the system is
reversible.

The healing follows a staircase trend. As periodic stabilization is done in each second,
after withdrawing churn during first couple of rounds all the corrections are performed
among the nodes of the overlay. The remaining nodes are the isolated ones, whose join
request is not complete yet. These nodes after 100 seconds retrieve a new join reference

37



CHAPTER 5. INVESTIGATION ABOUT CHURN

and trigger a new join attempt. So we get a stair of larger width due to this waiting period,
after which all nodes converge to a perfect ring.

5.2.4 Discussion

This section has presented construction of a healing mechanism, which can make the sys-
tem reversible. For this purpose we have integrated different principles and assessed the
enhancement of healing capability after each extension. Also, we have analyzed the short-
comings of each principle. This experimental study shows that, in order to have an effective
self-healing behavior, the healing mechanism should have the following properties:

* It should react to an event immediately, so that no inconsistency is introduced;

* It should have a periodic maintenance mechanism to check for correction opportuni-
ties. The frequency of this can be tuned based on available resource and requirement
to avoid unnecessary bandwidth consumption;

* Proactive global maintenance is essential in order to achieve reversibility against
inhospitable environments caused by extremely high churn . For this purpose, each
participant should keep on acquiring knowledge, share this with neighbors and also
navigate further. This allows each node to have an approximation of the global state.
The Knowledge can be used to trigger the global maintenance as required, also can
prove to be invaluable in order to face an inhospitable environment.

5.3 Evaluation of High-Level Properties

We evaluate how functionality (e.g., transactions, storage, replication) decreases as churn
increases. Again, we use the Beernet [13] system, which provides strong consistency with
transactions, key/value storage, and replication. We have analyzed the following metrics:

» Damage to the ring topology in terms of % of nodes on core ring;
* Topology recovery/healing time and cost;

e Data level parameters: % of failed transactions and % of lost keys, % of inconsistent
replicas, % of lost updates.

We use similar experimental setup as described in Section 5.2. We bootstrap a SON
of 100 peers. Correction-on-*, periodic stabilization and merger with Knowledge Base are
used as part of maintenance. The underlying network is simulated based on the empirical
distribution of minimum RTT provided in [49]. We have used a stream of transactions to
create workload, where transactions are modeled as a HPP with A = 1 transaction/sec.
A transaction reads one key and updates another one. During steady state of the SON,
churn of increasing intensity is injected. For each value of churn, Beernet++ experiences
join/leave events for 1 minute. The churn events are also modeled as a HPP, as explained
before. We have used mean value of 10 independent runs for every 5% increase of churn.

38



5.3. EVALUATION OF HIGH-LEVEL PROPERTIES

180000 T

ages
100 180 Cxa
% of Nodes on Core Ring —— 160000 - frror Bar £

140000 |- Bl
80 140 | M
120000 - ¥ +H
120 |

60 1 100000 I q

Number

100 |

Percentage

80000 |- R %ox3 4
s b
wrl

Time (in sec)

- 60000 Xox
60 |

40000 x4
40 -

3 20000 |- +H
20 Reco

L T4 P e X L L L Bar --%- 0 20 40 60 80 100
0 0

0 20 40 60 80 100 0 20 40 60 80 100 Churn

Churn Churn

(c) # of messages during churn

(a) Damage of topology (b) Recovery/Healing time and recovery

Figure 5.4: Properties for increasing churn after injecting a particular churn value for 1
minute

5.3.1 Damage and Recovery of Ring Topology

After churn is withdrawn; we present the snapshot of the ring topology (in terms of % of
nodes on core ring) of the overlay in Figure 5.4a. This gives an idea the damage done
to the topology due to increasing churn. We also measure the time (in seconds) required
for the existing nodes to organize into a perfect ring topology once churn is withdrawn.
Figure 5.4b presents the recovery time or time to heal the damage (as shown in Figure 5.4a)
of ring topology for increasing churn. As expected, it requires more time for the SON to
regain/restore its topology with increasing churn. We also present the number of messages
generated for each value of churn in Figure 5.4c, which provides an approximation of
bandwidth consumption for the self-healing of Beernet++. We find in Figure 5.4c, the
number of messages is higher for lower churn, the reason behind this is, for lower churn
there are less number of isolated nodes, i.e., almost all the nodes are part of the SON. These
nodes periodically issue maintenance messages, whereas an isolated node doesn’t have
reference of any other node, so no periodic message is exchanged. This, in fact, reflects the
impact of costly periodic stabilization. In order to make the overall maintenance efficient
and scalable, it is essential to adapt with the operating environment, which we keep as
future work.

5.3.2 Data Level Parameters

To understand how data-layer performs during a challenging environment like extremely
high churn we present percentage of failed transactions in Figure 5.5. As expected, as the
intensity of churn increases, almost all transactions abort. After churn is withdrawn we
do a read transaction to read all data items in order to understand the impact of the harsh
environment on the data storage and report percentage of lost keys in Figure 5.6. After
churn is beyond 30%, almost all keys are lost. From this result, we can conclude that in
order to survive phase transitions due to an adverse operating condition, the application
design needs to take into these issues into consideration. The remaining two parameters,
namely fraction of lost updates and inconsistent replicas, follow the trends of percentage of
failed transactions and lost keys respectively.

39



CHAPTER 5. INVESTIGATION ABOUT CHURN

100 = <= 100 *
80 - 1 80 - 1
g e [ 1 & ef g
g 7 g
= =
8 8
&40 4 & 40r g
20 1 20 - 2 1
Failed Transactions ‘ Lost Keys
) ) ) Error I‘Sar Lk canl 0 ) ) ) Error I‘Bar Lol
0
0 20 40 60 80 100 0 20 40 60 80 100
Churn Churn
Figure 5.5: % of failed transactions Figure 5.6: % of lost keys

5.4 Related Work

The work in [60] mainly focuses on routing level correctness/consistency and improved per-
formance of a SON. The evaluation of MSPastry (a new implementation of Pastry[61]) is
conducted by varying environmental parameters like network topology, node session times,
link loss rates, and amount of application traffic. This work validates proposed techniques
for improved routing performance and dependability, in the face of high churn. Another
work on lookup consistency, [56] evaluates the frequency of inconsistent lookups, overlap-
ping responsibilities and unavailability of keys in Chord [10],[11] resulting from unreliable
failure detectors and churn. Krishnamurthy et al. in [58] use fluid model approach to do
theoretical analysis of Chord [11] under churn. They present the functional form of the
probability of network disconnection and the fraction of incorrect pointers (successor and
fingers). In [57] master-equation-based approach is used to predict the performance and
consistency of lookups under churn. Also, in their continuing analytical study in [62] use
the analytical tool based on master-equation approach of physics to do comparative analy-
sis of periodic stabilization and correction-on-change maintenance principles under churn.
Another analytical work in [63] establishes a lower bound on the maintenance rate of a
SON under churn in order to remain connected. In [64] and [65], El-Ansary et al. use
physics-inspired analytical approach to analyze performance of large scale distributed sys-
tems and also investigate about intensive variables (i.e., variables which are independent of
system size) related to self-organization and self-repair. They apply this methodology for
Chord and propose an intensive variable to describe the characteristic behavior of the over-
lay. Apel et al. [66] describes design decisions such as self-tuning mechanisms based on
software-engineering principles for self-organization/self-adaptation of overlay networks.
The analytical framework presented in [67] can be used to characterize the routing perfor-
mance of SON under churn. Our empirical study can be used as complementary of these
analytical works.

40



Chapter 6

Phase Transitions

A Structured Overlay Network (SON) provides significant functionality to the applications
running on top, e.g., transactions over key/value store. However, as the inhospitability of
the operating environment of a SON continues to increase, it will no longer be able to
provide such functionalities. Thus, applications that rely on transactions will no longer be
able to use them. We would like these applications to continue running nevertheless, with
predictable behavior even though functionality will be less. Ideally, this should be done
in a manner that works even for operating environments which are extremely inhospitable.
The SON can therefore not be relied on to do additional computation to determine its level
of functionality. Under this constraint, is it possible for the SON to give useful information
to the application?

In this chapter, we consider the environment inhospitability to be measured by the
Churn parameter, i.e., the rate of node turnover (nodes failing and being replaced by new
correct nodes). In order to describe the behavior of a SON, we introduce the concept of
Phase of the system. The SON’s phase is a qualitative description of the structure of the
SON. For example, at low churn, the SON has a mostly fixed structure, and at high churn,
the SON can decompose into small rings or single nodes. For low churn, the SON has full
functionality, and at high churn, the SON has reduced functionality. The phase of the SON
is not a global property, but is observed separately at each node, and can be different for
different nodes. No global synchronization and no extra computation is required to com-
pute the phase; it is a direct consequence of the observed structure of the SON at each node.
Thus, the phase inferred at each node correlates with SON functionality and can allow the
application running on that node to modify its behavior depending on the functionality
available for the current churn value. In this chapter, we experimentally demonstrate Re-
versible Phase Transitions: the nodes of the system change phase as the churn is varied.
We note that the concept of phase and phase transition are analogous to phase in physical
systems; we have chosen the term phase for this very reason. Phase transitions is the conse-
quence of having a reversible system, Beernet++ (see outcome of Chapter 5), i.e., the SON
we have constructed is able to survive extremely high levels of churn and reversible.

41



CHAPTER 6. PHASE TRANSITIONS

6.1 Definition of Phase, Phase Transition and Critical
Point

A Phase is a subset of a system for which the qualitative properties are essentially the same.
For this definition we consider a system as an aggregate entity composed of a large number
of interacting parts. Different parts can be in different phases, depending on the local
environment observed by the part. Boundaries between phases in a system can be either
sharp or diffuse. A Phase Transition occurs when a significant fraction of a system’s parts
changes phase. This can happen if the local environment changes at many parts. A Critical
Point occurs when more than one phase exists simultaneously in significant fractions of a
system. Phases are observed in many large systems. They are well-understood in physical
systems consisting of large numbers of atoms or molecules (e.g., macroscopic amounts of
water, in solid, liquid or gaseous phases) [68], but they can also be observed in computing
systems. In this chapter, we investigate phases and phase transitions in a SON due to churn,
where each part is a node of the SON.

We observe three qualitative structures in Beernet++: core ring, branches, isolated
ringlets. We call each of these structures a phase. As we will see, there is a close anal-
ogy between these three phases and the solid, liquid, and gaseous phases in physical matter
(e.g., water). We define these three phases in the context of our SON:

* Solid: The solid state of a matter is characterized by structural rigidity, where atoms
or molecules are bound to each other in a fixed structure. In case of SONs, a stable
ring with a stable finger table, where all participants are self-organized in a predefined
structure, can be termed as a solid state of the SON. During solid state of Beernet,
each node has fixed neighbors, all nodes are organized into a stable ring and there
are no branches in the system.

* Liquid: A thermodynamic system is in the liquid state where molecules are bound
tightly but not rigidly. In case of SON, with the increase of churn, the quality of
the network decreases, more nodes move on branches, thus being less strongly con-
nected, as in liquid. To be more precise, when there are non-zero nodes on branches,
we can say that Beernet is in the liquid state, since each node does not have a fixed
set of neighbors. There can be two forms of liquid state for Beernet: first, branches
around a core ring (solid core surrounded by liquid), and second, branches with no
core ring (only liquid, no solid core). In the second case, the core ring consists of a
single node.

* Gaseous: The gaseous state of matter is made up of individual molecules that are
separated from each other. When Beernet experiences high churn, new nodes are
unable to complete a join, and at some point the ring is completely dissolved, where
no node is able to join the ring anymore, resulting in isolation of all nodes. This state
of the system can be termed as the gaseous state of a SON.

Phase is a property of each node. In SON, the phase of a node is clearly determinable
at that node: there are three mutually exclusive situations depending on neighbor behavior

42



6.2. OBSERVATION OF PHASE TRANSITIONS

(no neighbors, neighbors on branch, neighbors on core ring). Also, each nodes changes
its phase independently. The current phase and phase transition at each node can be deter-
mined with high confidence, without any global synchronization. However, at system level,
phase transitions happens when there are changes in the phases of the majority of nodes.
When external conditions change, each node changes phase. If that happens to many nodes,
we have a phase transition at system level. It is not possible to determine at a single node,
a phase transition at system level, because this would require a global algorithm.

The phase of each node has a direct co-relation with the overall properties (e.g., rout-
ing, availability of keys) of the system. The routing guarantee offered by the system is
O(logiN +b), where N is the total number of nodes and b is the branch size (i.e., the num-
ber of nodes on branches) of the system. So, the more nodes change to liquid phase, the
routing will degrade with that. Also, with the increased branches in the system, the prob-
ability of introducing unavailability of keys under churn, also increases due to isolation of
branches (as discussed in [13]).

6.2 Observation of Phase Transitions

We show experimentally the existence of phase transitions in Beernet++, as the churn in-
tensity varies. For our experimental study, we have used a network size of 100 peers. To
simulate the underlying network, the end-to-end delays are set based on the empirical distri-
bution of minimum RTT provided in [49]. The churn events (join and failure) are modeled
as a homogeneous Poisson process with A\ = 2 x C events/sec, for C% of churn and 100
peers. We have measured following 3 parameters for all figures in this section:

* Percentage (%) of nodes in solid state: nodes which form a ring, we collect these
nodes by doing a routing using only the successor pointer of each node;

* % of nodes in liquid state: nodes which are on branches rooted at nodes on the ring
(collected by using the routing mechanism of Beernet as explained in [13]) or nodes
which do not form a ring but can be reached by routing;

* % of nodes in gaseous state: isolated nodes whose join requests are still pending.

6.2.1 Increasing Churn with Time

In this experiment we study phase transitions of Beernet++ under increasing churn and
reverse transitions when churn is removed. We start with 5% churn and increase the in-
tensity by 5% every 5 seconds for 5 minutes. As we reach churn value of 100, we keep
on injecting 100% churn for the rest of the period. Every 5-second we take a snapshot of
the system, where we measure the parameters described. After churn is withdrawn, we let
the system running for another 4 minutes to do self-healing and every-5 second take the
measurements. We have used mean value of the 3 parameters for 20 independent runs.
Figure 6.1a and Figure 6.1b show the state of the system during injection and withdrawal
of churn respectively.

43



CHAPTER 6. PHASE TRANSITIONS

< <
5] F
" b

(a) Under increasing churn during 5 minutes (b) After withdrawing churn

100 100

60 60

40

40 -

20 20 |

440

Time (in sec

Figure 6.1: Phase Transitions in Beernet++: red, green and blue (dark, gray and light-gray
in B/W) areas correspond to % of nodes on ring, branches and isolation respectively

Only error bars for gaseous state are used in Figure 6.1a. The red area of each bar cor-
responds to % of nodes which form a ring, thus in solid state. At time 0, i.e., starting of the
experiment with no churn, all nodes are organized into a perfect ring. As churn is increased
nodes start moving on braches, the green area of each bar, these are the nodes, which are in
liquid state. The result shown is an average of the parameter values for several samples and
each sample go through a phase transition at different instant of time. However, still we can
figure out some trends. For example, from our observation, around 30% of churn mostly
the ring gets dissolved, as there are no nodes on the ring, however there is sill connectivity
among nodes. Finally the blue area of each bar represents the nodes that are waiting for the
response of their join requests, which keeps on increasing with churn. The transition from
liquid to gaseous state is periodical as can be analyzed from Figure 6.1a. If we combine the
height of the blue bars with corresponding error bars, we can say that around 85, 170 and
260 seconds most samples go through transitions.

We have not identified the solid to liquid transition yet. As in Figure 6.1a, we can see a
sharp fall of % of nodes on core ring from 0 to 5 sec, so the transition happens between 0
and 5% of churn. In order to analyze this transition we have zoomed in this area. For this
experiment, during steady state of SON, we start with 1% of churn and every 5-second we
increase churn intensity by 1% till we reach 5% of churn. Also a snapshot is taken every 5
second as before. Figure 6.2 shows the result. We have used mean values of 20 samples for
the 3 parameters described above and only error bars for the solid state are shown. We can
say that for churn value of 2, during 5 to 10 seconds, a transition happens for most samples.

Figure 6.1b shows the recovery of the SON after churn is withdrawn (i.e., 6 —9 minutes
of our experiment). For this figure we have used error bars for solid state only. Here
starting with all isolated nodes, i.e., from gaseous state, the SON move to transient liquid
state, where connections are built among nodes. We can see a period of about 100 seconds,
during which the % of isolated nodes remains same. The reason behind this is the Join
Timeout parameter, as described in Section 5.2.3, which is set as 100 sec. As the last
churn value used is of 100%, according to our definition of churn, all nodes in the SON are

44



6.2. OBSERVATION OF PHASE TRANSITIONS

100

80

60

40

20

S v o ) (=} wv
N N

— —

Time (in sec)

Figure 6.2: Phase Transitions in Beernet++ under low churn (0% to 5%): red, green and
blue (dark, gray and light-gray in B/W) areas correspond to % of nodes on ring, branches
and isolation respectively

replaced by new ones during a second. So, almost all nodes start their waiting period to
receive a response around same time and get a timeout around 400 sec. As explained the
transition from gaseous state is controlled by this tunable parameter. Finally all nodes are
self-organized into a perfect ring, solid state of SON within 425 to 490 sec.

6.2.2 Continuous Moderate Churn

In this experiment we seek answer to the question: whether the entropy of a SON can
be increased by continuous injection of low/moderate churn so that a phase transition is
triggered. In order to investigate about this, we start with same experimental setup de-
scribed before, but this time instead of increasing churn with time, we inject same value of
churn. For this experiment we have chosen churn value of 30. From Section 6.2.1, we have
observed around churn intensity of 30, as per our definition of churn and described experi-
mental setup, there is a critical point. Around this point the ring structure starts fading, thus
a phase transition happens. During steady state of SON, we start injecting churn value of
30 and every 5 second we measure 3 parameters (described at the beginning of this section)
until we reach a gaseous state (i.e., all nodes are isolated). Then churn is withdrawn and we
let the SON do self-healing until all nodes are on the core ring. Figure 6.3a and Figure 6.3b

45



CHAPTER 6. PHASE TRANSITIONS

100 100

40 1 40

< 8 = g 2 5 8 g 2

160

< s g 2 E 8 8

3

140
160

Time (in sec) Time (in sec)

(a) Under continuous churn of 30% (b) After withdrawal of continuous churn of 30%

Figure 6.3: Phase Transitions in Beernet++: red, green and blue (dark, gray and light-gray
in B/W) areas correspond to % of nodes on ring, branches and isolation respectively

show the result of a single run. We present the outcome of a single run in order to have
explicit transitions. As in a thermodynamic system, it takes longer time to reach a gaseous
state. Also as shown in Figure 6.3a, we observe that the SON quickly reaches the liquid
state and there is hardly any ring structure kept throughout the experiment. The reverse
transition shown in Figure 6.3b follows the same pattern due to same reason as described
in Section 6.2.1.

6.2.3 Gradual Increase and Decrease of Churn

Till now, we have withdrawn churn completely; what behavior the system exhibits if the
intensity of churn is gradually decreased? In this experiment we investigate about this. For
this experiment, we use same experimental setup and parameters as already mentioned.
During steady state of SON, we start injecting 5% of churn and increase the intensity of
churn every 5-second until the system reaches a gaseous phase. Then we gradually decrease
churn by 5% every 5 second until it reaches 0. We measure the parameters every 5 second
throughout the experiment. The behavior is shown in Figure 6.4 for a single run. The ring
structure starts fading away around 30 sec, which corresponds to 30% churn, justifies our
deduction of churn intensity of 30 as one of the critical points. At 75th sec, we can see a
gaseous phase. So, starting from 76th sec, the churn intensity is decreased gradually, for
example the bar at 80 shows the snapshot of the system after injecting 70% of churn for 5
sec. As shown in Figure 6.4, during gradual decrease of churn intensity, there is increasing
connectedness among nodes, followed by organization into ring structure, evidential of
reversible phase transitions in Beernet++ due to increasing and decreasing churn intensity.
This provides experimental justification of the conjectured phase transitions for relaxed
ring SON in [69].

46



6.3. RELATED WORK

100

80 H -

60 H -

40 H i

20 H -
0

[en] [e] [e] (=] [en] (o] (e (=] (=] (o] [} [} (=]

[o\l <t \O [e7e] S N <t O oo (=] N <t

— — — N N (@\l

— —
Time (in sec)

Figure 6.4: Phase Transitions in Beernet++ due to increasing and decreasing churn: red,
green and blue (dark, gray and light-gray in B/W) areas correspond to % of nodes on ring,
branches and isolation respectively

6.3 Related Work

Diligent search has failed to uncover any empirical work on phase transitions in structured
peer-to-peer network, however we have found one analytical work [44]. The result of this
study, carried out for Chord in [44], shows a critical point in parameter space at which the
system with high probability breaks down, i.e., efficient routing becomes impossible. Such
phase transitions happen due to high churn and large link delays, resulting in a finite fraction
of the connections to be always incorrect/dead. We have come across works on phase
transitions in other networked systems during our search. For example, the analytical work
in [70] is based on theory of criticality and complex systems, which studies and applies the
phase transitions phenomenon for unstructured peer-to-peer networks. In [71], Scholtes
et al. present distributed monitoring and adaptation schemes of macroscopic statistical
network parameters using power law networks. Such adaptation of critical parameters can
be termed as phase transitions. For phase transitions in other topologies of network; for
example the small-world model [72, 73, 74, 75, 76, 77], several authors have studied an
Ising model. There are several studies [78, 79, 80] on phase transitions in models of Internet
traffic. The outcome of these works can be applied in the context of SONS.

47



CHAPTER 6. PHASE TRANSITIONS

6.4 Discussion

In this chapter we have experimentally demonstrated reversible phase transitions in Beer-
net++ for increasing/decreasing churn and continuous injection of moderate churn. Such
phase transitions are consequence of having a reversible system. Other SONs of our rep-
resentative design class (as described in Chapter 2) may be extended in a similar way to
achieve reversibility. Also, we have analyzed the critical points observed in our experi-
ments. The knowledge about critical points in the operating space of a SON can provide
useful information to the application layer and administrator in order to initiate adaptation
measures based on application layer semantics. It will also allow the application to give
meaningful notifications to the users in terms of available functionalities.

48



Chapter 7

Investigation about Network
Partitioning

In this chapter, we investigate a particular operating environment of Structured Overlay
Networks (SONs), Network Partition/Merge. During the partition of underlying network,
the nodes of a SON are divided into multiple disjoint sets, where a node can communicate
with the nodes of its own set, but is unable to contact the nodes in the other sets. Any long-
running large distributed system is bound to come across network partitions during its exe-
cution. Consider the scenario of a SON running on mobile phones or on an ad hoc network,
which has high node mobility and intermittent connectivity, and undergo frequent changes
in network topology. In such a dynamically changing environment network partition can
be a frequent event. Due to self-* properties (mostly partial), most of the ring-based SONs
are expected to provide partition-tolerance by forming separate overlay(s) in each partition.
However, once the partition ceases (we will term this event as Network Merge), the sys-
tem should reverse back, i.e., merger of multiple overlays, resulted from endurance during
partition. In this chapter, We evaluate partition-tolerance and merging (as the network par-
tition ceases) capability of existing maintenance strategies, namely Correction-on-Change,
Correction-on-Use, Periodic Stabilization, and Ring Merge. We identify the necessary and
sufficient maintenance strategies to ensure partition tolerance for any scenario of network
partitions. By means of simulations, we demonstrate reversibility, once network partition
ceases, for overlay networks with high levels of partition and we make general conclusions
about the ability of the maintenance strategies to achieve reversibility. In this chapter, we
only consider scenarios where no churn is induced during partition, which corresponds to
network partition of short duration.

7.1 Types of Partition

There can be 2 different types of partition of the overlay that may arise as a result of the
underlying network partition. This differentiation happens due to the locality-awareness
of the mapping function F},, which associates peers with a unique virtual identifier from
the identifier space (Section 2.1). If F}, is locality-aware, then logically adjacent nodes (on

49



CHAPTER 7. INVESTIGATION ABOUT NETWORK PARTITIONING

-
-
r
- y #
* -
a. ¥
- LT L

(a) Sequential Partitions (b) Sparse Partitions

Figure 7.1: Two different types of partition scenarios: white and black nodes belong to
two different partitions

the overlay) are also physically close; e.g. for DKS F), is order-preserving to ensure that
nodes in same organizational domain are logically close on the overlay. As a result, an
underlying network partition usually divides such overlay into P contiguous regions (here
P is the number of partitions). We will refer this particular kind of partitioning as Sequen-
tial Partitions, which emphasizes locality. Figure 7.1a shows an example of sequential
partitions. On the other hand, if F}, is not locality-aware or some random function then
logically adjacent nodes can be very far apart physically, e.g. for Chord, £}, is a uniform
hash function, which uniformly distributes nodes on the identifier space. For such map-
ping, an underlying network partition might cause adjacent nodes on the overlay to be in
different partitions. We will refer such partitioning as Sparse Partitions, which emphasizes
non-locality. In Figure 7.1b, we can see sparse partitions, where adjacent nodes tend to be
in different partitions.

7.2 Evaluation of Maintenance Strategies

We distinguish two different cases for a SON, corresponding to a network partition: 1)
execution during network partition (i.e., partition tolerance) and 2) partition repair (i.e.,
achieving reversibility). Existing works do not analyze case 1 in depth, have only men-
tioned the particular partition scenarios for which a maintenance strategy is able to provide
partition tolerance [13]. Shafaat et. al. [40] do not address case 1, their work is about merg-
ing of multiple ring overlays, i.e., case 2. We have identified the preconditions to ensure
partition tolerance for any possible partition scenario. For case 2, there are several works on

50



7.2. EVALUATION OF MAINTENANCE STRATEGIES

Scenario

Local Maintenance
(Correction-on-*,
Periodic Stabilization)

Global Maintenance
(Merger with Passive
List/Knowledge Base)

Merger with KB is
Required to provide
Can Create separate | the best partition-
Execution During Network Partition | rings in each partition | tolerance; however
but can get stuck Merger with passive
list can fail to fulfill
the requirement

Combined reactive
and proactive correc- | Provides no improve-
tions is able to merge | ment over the com-
multiple overlays, | bined local strategies

even reacts quicker

Execution At Partition Repair

Table 7.1: Self-healing achieved by Maintenance Strategies

ring merge algorithm [40], [81], but no work has been found that assesses partition repair
capability of local maintenance principles and compares their performance with an explicit
merger. We have analyzed ring merge capabilities of correction-on-* (with and without
periodic stabilization) and shown that integration of an explicit merger gains no significant
improvement if no churn is induced during partition. Table 7.1 summarizes our result. In
order to have the best partition-tolerance during a network partition, global maintenance
is required along with the local corrections. To repair partitions, combined reactive and
proactive local corrections are enough to achieve complete self-healing, which even shows
quicker response as the network partition ceases.

7.2.1 Execution During Network Partition

In order to ensure partition tolerance for any partition scenario, proactive global main-
tenance, i.e., the merger with KB is required along with local ones. During partition it is
impossible to achieve both global consistency and availability as per the CAP theorem [82],
however each ring should be consistent in itself. In our work we refer a SON to be parti-
tion tolerant (or survive a partition) iff i) the peers on each partition will form a separate
overlay, ii) the system shows high availability i.e. every lookup must result in a response
and iii) each overlay is consistent in itself. Both correction-on-* and periodic stabilization
is able to provide partition tolerance as long as every peer is able to find a valid successor
candidate in its successor list, as also identified in existing literature. We will analyze the
partition tolerance capability of these two local maintenance strategies, when this condition
does not hold, using the example scenarios in Figure 7.2.

51



CHAPTER 7. INVESTIGATION ABOUT NETWORK PARTITIONING

0G0,

®; @ ® O

w

oG Pee

O
00

Figure 7.2: Two partition scenarios: white and black nodes belong to two different
partitions; partition having black nodes have absence of more than |succ_list| — 1
consecutive peers (here, |succ_list| = 4).

Local Maintenance

As already mentioned, both correction-on-* and periodic stabilization are able to survive
a network partition as long as no more than |succ_list| — 1 consecutive peers are absent
from a partition. Comparing two different partition types, described before, sequential
partitions are more prone to face scenarios, where this condition is not satisfied, than the
sparse partitions.

Using only correction-on-* is insufficient to provide partition tolerance for the partition
scenarios in Figure 7.2. When peer u suspects its current successor x due to network
partition, it fails to find a valid successor in its successor list to trigger the failure recovery,
as the next consecutive 5 peers are partitioned away (which is > |succ_list| — 1 = 3), thus
sets its successor pointer as itself. In a similar way, peer ¢ also fails to find its successor
in Figure 7.2b. Peer p (and peer d in Figure 7.2b) suspects its current predecessor due
to partition, but as nobody triggers the recovery mechanism, the responsibility of peer p
(and peer d in Figure 7.2b) doesn’t change, resulting in gap in the identifier space. The
situation remains the same until the partition ceases. This introduces unavailability of keys
in the range (u, o] in Figure 7.2a and (u, b], (4, o] in Figure 7.2b for the partition holding
black nodes. Also, the nodes fail to form an independent overlay in this partition as per the
predefined structure or embedded graph. So, correction-on-* fails to survive these partition
scenarios.

Using periodic stabilization improves availability, but multiple ring overlays are formed
in the same partition. For Figure 7.2a, peer u unable to find a valid successor in its succes-
sor list after the partition, sets its successor pointer as itself. During next round of periodic

52



7.2. EVALUATION OF MAINTENANCE STRATEGIES

stabilization (suppose round = t), s asks u about its predecessor. On receiving this mes-
sage, u sets s as its successor, as s is a better successor than itself. During round =t + 1,
u asks s about its predecessor and comes to know about p. As p is a better successor for
u, u sets its successor pointer as p, which also triggers change of responsibility of p. Thus,
eventually p, s and u form a separate overlay in this partition and the gap in the range (u, o]
is healed. Though temporary unavailability of a certain range of keys do occur, it is possible
to eventually overcome that, where peers on each partition form an independent overlay,
which is consistent in itself and provides availability. However, for the partition scenario in
Figure 7.2b, this conclusion does not hold entirely. As we can see in Figure 7.2b, there are
two instances of minimum |succ_list| — 1 consecutive peers are absent from the partition
holding black nodes. As in Figure 7.2a, peers p, s and « form a ring, so do peers d, e, h and
t. So, there are two ring overlays formed in the same partition and remains the same, until
the partition ceases. The reason is that periodic stabilization only does local healing around
anode’s immediate vicinity and lacks the mechanism to spread out the healing globally. So,
for the partition scenario in Figure 7.2b, the healing of periodic stabilization falls short to
satisfy the first condition of partition tolerance (as described before), where there are more
than one overlays formed in a partition (and remains the same), though the nodes on the
overlays are able to communicate with each other. As per our analysis, during a network
partition, the number of overlays formed in the same partition is equal to the number of
instances of minimum |succ_list| — 1 consecutive missing peers from that partition.

Global Maintenance

As described before, local maintenance can get stuck while providing partition-tolerance.
For example, for the representative partition scenario in Figure 7.2b, periodic stabilization
eventually organizes the nodes in the partition (holding the black nodes) into two different
overlays. In order to merge these two overlays, we need an overlay merge algorithm, e.g.
the merger of ReCircle. If any peer from one overlay is enqueued into the queue of a
peer of another overlay, the merger will be triggered, thus eventually resulting into a single
overlay in the partition (holding the black nodes). Using the passive list approach for
this purpose fails to trigger the merging process, as nodes in the same partition are not
suspected by each other. We have experimentally verified this result for the representative
partition scenario in Figure 7.2b. However, triggering merger in a proactive manner using
knowledge base is able to provide the desired outcome, as also validated via simulation.
By exploiting the knowledge base at each node periodically (as described in Section 3.2.4),
eventually the merger will be triggered as a result of enqueuing a valid peer of other overlay,
with which communication can be established, thus resulting into a single overlay in the
partition (holding the black nodes).

7.2.2 Execution at Partition Repair (Network Merge)

As a partition of the underlying physical network ceases, which we refer as network merge,
the multiple overlays formed during partition, should also be merged i.e. reverse back to

53



CHAPTER 7. INVESTIGATION ABOUT NETWORK PARTITIONING

original state. In this section, we assess reversibility of each maintenance strategy and also
find the limit (if any), while a network merge happens.

We use a SON of 100 peers. All experiments are done in Mozart-Oz 2.0 [59] in a
simulated environment. To simulate the underlying network, the end-to-end delays are set
based on the empirical distribution of minimum RTT provided in [49]. The distribution
represents significant geographic diversity, so we can say that the simulated SON is geo-
distributed. We simulate partition of underlying network in order to create inhospitable
operating condition. In the steady state of SON when all nodes are on core ring, we simulate
2, 4 and 10 partitions of the SON, of almost equal sizes. The partition of the SON is
withdrawn after 30 seconds and we observe the merging of overlays with time. We have
used 3 scenarios, with increasing number of partitions in order to compare and study the
reversibility based on number of partitions.

In order to quantify the effect of self-healing, we have used metric: Number of Islands.
We define an island to be a disconnected sub-graph by following the successor pointer
of each node. The number of islands can be > number of partitions, due to temporary
inaccuracy of the successor pointers or inadequate healing of the maintenance strategy (e.g.,
as explained in Section 7.2.1, for Figure 7.2b, 3 islands are created, though the number of
partitions is 2). The value of this metric should be 1, for a single run, if overlays are merged
together after the partition disappears. However, we still continue an experiment until all
nodes form a perfect ring, i.e., complete self-healing. Although our representative system,
Beernet, allows branches, but increasing branch size affects routing efficiency and increases
the probability of creating isolated branches, thus inconsistencies under churn, as explained
in [13]. So, for a single run, the ultimate goal is to make “number of islands” as 1 and all
nodes to be on core ring. We present the number of islands against time (in second) after
the partition disappears and an average of 10 independent runs are taken for each second.
It is noticeable that, the termination time of an experiment, apparent in the result, is the
maximum among the samples used. A fixed workload is used in an experiment by injecting
transactions, modeled as a Homogeneous Poisson Process with A = 1 transaction/sec. A
transaction reads one key and updates another one.

Sparse Partitioning

In this section we present reversibility results for sparse partitions. Sparse partitions create
higher stress on the merge operation than the sequential partitioning. In our simulation, to
create P sparse partitions, we create P baskets, where each node of the SON is assigned
to a basket with probability %. The comparative analysis of healing capability of main-
tenance strategies is portrayed in Figure 7.3 as the average number of islands with time,
since the network merge happens. Also, the average number of messages generated for
each experiment is shown in Figure 7.4. As we can see in Figure 7.3, the combination
of correction-on-* and periodic stabilization is sufficient to achieve reversibility if there is
no churn. Merger with passive list, as done in [40], does not show improvement over the
combined local maintenance strategies.

54



7.2. EVALUATION OF MAINTENANCE STRATEGIES

of Islands

Number of Islands

Number
B
T

0 1 2 3 4 5 0 1 2 3 4 H 0 1 2 3 4 H
Time (in sec) Time (in sec) ‘Time (in sec)

(a) Number of Partitions=2 (b) Number of Partitions=4 (c) Number of Partitions=10

Figure 7.3: Number of islands as a function of time (in sec) starting at the moment of
sparse partition repair to assess self-healing using different maintenance strategies

Local Maintenance: Correction-on-*, due to its rapid reaction against an event (join/leave/-
failure/false suspicion) exhibits certain overlay merging capabilities, however, fails to com-
plete the healing process when the number of partitions goes higher. We can see in Fig-
ure 7.3, irrespective of the number of partitions created, correction-on-* has created 1 island
once the partition ceases. The reason is that, as a result of partition, each node considers the
nodes on other partitions to have failed and adjusts its pointers, however, it continues mon-
itoring those suspected peers. As no churn is experienced, so the list of monitored nodes
is not altered. So when it can make a connection with those suspected peers (as partition
disappears), a false suspicion event (see Section 2.2) is triggered, as a result of which it cor-
rects its pointers, resulting in merging of overlays. However, as we can see in Figure 7.3c,
though the number of underlying partition simulated is 10, there are 16 partitions of the
overlay (at t = 0), justifying the explanation presented in Section 7.2.1. In terms of over-
lay merging capability, the correction-on-* has made the number of islands as 1, however
it fails to make a perfect ring for most of the runs. An average of 91.5% nodes are on core
ring for those runs, where rest of the nodes are on branches. While merging large number
of overlays, nodes are placed on branches as an initiation, but as the events (detection of
false suspicions in this case) fade away, healing is also discontinued, resulting in branches
to remain in the system. However, this is the least-cost healing mechanism as a response
of network merge, as shown in Figure 7.4. In comparison with other maintenance princi-
ples, the load created on underlying network is much lower for these principles, making it a
cheap healing response against any inhospitable event, without creating any inconsistency.
Periodic Stabilization itself is not capable of merging multiple overlays, as also sup-
ported by [11]. So, we have combined periodic stabilization with correction-on-*. The
period used in our experiments is 1 second. As we can see in Figure 7.3, the combination
of reactive and proactive mechanisms show quick response among all. In terms of partition
tolerance, we can see the improvement in Figure 7.3c comparing to the correction-on-*
mechanisms, however the number of partitions is still more than the induced one, reason
for this is explained in Section 7.2.1. The impact of the integration of costly periodic sta-
bilization is clearly visible in Figure 7.4. However, the number of messages decreases with
the increase of number of partitions. The reason is that, with the increase of the number
of partitions, the size of each independent overlay decreases, resulting in less number of

55



CHAPTER 7. INVESTIGATION ABOUT NETWORK PARTITIONING

800000

Partitions=2 T

700000

F4+44

600000

500000

400000

Number of Messages

300000

200000

100000

CoCroy CoC+co U+pg ReCirey e(PS+Merger)

Figure 7.4: Number of Messages generated for 2, 4 and 10 sparse partitions using
different maintenance mechanisms

messages to propagate any correction. Thus, any correction within fewer rounds covers an
entire small overlay (with fewer nodes) while enduring network partition.

Global Maintenance: As shown in Figure 7.3, the integration of a global maintenance,
e.g., merger with passive list, does not show any significant improvement over the com-
bined local healing. The period used to dequeue the elements to generate mlookups at each
node is 3 seconds and we have kept the fanout parameter as 1. However, as we can see
in Figure 7.4, this is one of the costliest solutions, even with the fanout as 1, especially
while merging larger number of overlays. Although, the number of messages is lower for 4
partitions than 2, the reason is due to propagation of corrections by periodic protocol across
smaller overlays, as described before, but this effect is overcome by the reactive messages
generated in case of 10 partitions. Also, the number of messages generated in case of 2 and
4 partitions are lower than those for the combined local strategies. The reason is the global
spreading of corrections by the merger.

Sequential Partitioning

In this section we investigate about overlay merging when a network partitioning, which
caused the overlay to split into P contiguous regions (here P is the number of partitions),

56



7.2. EVALUATION OF MAINTENANCE STRATEGIES

of Islands

Number of Islands

Number

0 1 2 3 4 5 0 1 2 3 4 H 0 1 2 3 4 H
Time (in sec) Time (in sec) ‘Time (in sec)

(a) Number of Partitions=2 (b) Number of Partitions=4 (c) Number of Partitions=10

Figure 7.5: Number of islands as a function of time (in sec) starting at the moment of
sequential partition repair to assess self-healing using different maintenance strategies

i.e., sequential partitioning, disappears. As already mentioned, merging of a sequential
partitioning creates much lesser stress on overlay maintenance than a sparse partitioning.
In fact, as a network partition disappears, only 2 nodes in each partition need to modify
their pointers, if no churn is experienced during the partition. In our simulation, to create P
sequential partitions, we create P baskets, where N/ P contiguous nodes on the overlay (by
following the successor pointer of each node) are assigned to each basket, here /N = total
number of nodes on the overlay = 100 in our experiments. Figure 7.5 shows the compar-
ative analysis of reversibility of maintenance strategies. We have used the same metric to
assess self-healing: average number of islands with time, since the network merge happens.
Also, Figure 7.6 presents the average number of messages generated for each experiment.
As we can see in Figure 7.5, all our experiments have achieved complete self-healing irre-
spective of the number of partitions of the overlay. However, as with sparse partitioning,
the combined local maintenance (correction-on-* and periodic stabilization) shows quick
response among all. The integration of a reactive global maintenance, e.g., merger with
passive list , as done in [40], does not show any improvement over the combined local
maintenance strategies.

Local Maintenance: Unlike sparse partitioning, while repairing sequential partitions, the
reactive local maintenance, correction-on-* principles are able to achieve reversibility even
for higher level of partitioning, as evident in Figure 7.5. The reason is the same as described
for sparse partitioning, the rapid reaction of these principles against any event (join/leave/-
failure/false suspicion). As we can notice in Figure 7.5, the number of partitions in the
system at t = 0, is the same as the number of simulated partitions of the underlying net-
work. However, correction-on-* principles fail to provide partition-tolerance for any of
these scenarios, as unavailability of key ranges are introduced, also the nodes in each par-
tition fail to form a ring overlay in each partition, as described in Section 7.2.1. In terms
of overlay merging capability, the correction-on-* principles are sufficient for sequential
partitioning of any number, even offer the least-cost complete self-healing among all, as
portrayed in Figure 7.6. Though these principles show slowest response among all, but the
results obtained is consistent irrespective of the number of partitions in the system, i.e., for
all the runs, the healing is completed within 3 time unit, since the network partition ceases.

57



CHAPTER 7. INVESTIGATION ABOUT NETWORK PARTITIONING

700000

Partitions=2 T

600000 T .

500000

o -

400000

300000

Number of Messages

200000

100000

. ml T

COC#COU COC+COUHE RaymkG$+Mﬁ§m?

Figure 7.6: Number of Messages generated for 2, 4 and 10 sequential partitions using
different maintenance mechanisms

Figure 7.5 shows, as with sparse partitioning, the combination of correction-on-* and
periodic stabilization continues the trend of showing the quickest response among all while
merging sequential partitions. The period used in our experiments is 1 second. This com-
bined local maintenance provides partition-tolerance for all the runs of all levels of par-
titioning. In terms of reversibility, this combination provides the quickest response and
convergence among all. However, this is one of the costliest self-healing, as evident in Fig-
ure 7.6, making it explicit the bandwidth consumption of the costly periodic stabilization.

Global Maintenance: As Figure 7.5 shows, the integration of a global maintenance, e.g.,
merger with passive list, with periodic stabilization does not show any improvement over
the combined local healing. On the contrary, at times the convergence time (see Figure 7.5a)
and bandwidth consumption (see Figure 7.6 for 4 and 10 partitions) are more than the
combined local healing. The period used to dequeue the elements to generate mlookups at
each node is 3 seconds and we have kept the fanout parameter as 1.

7.3 Related Work

Several versions (through gradual improvement) of overlay merge algorithm are proposed
in [40], of which ReCircle (described in Section 3.2.3) is adapted in Beernet++ for the pur-

58



7.4. DISCUSSION

pose of this work. The evaluation, carried out in these works, is to validate the proposed
algorithms and sensitivity analysis of different parameters of these algorithms on conver-
gence time and bandwidth consumption. The objective of our work is to assess self-healing
achievable using different maintenance strategies and also to identify the properties/limit of
the maintenance operation to survive in an inhospitable environment caused by high level
of network partition. So, the work in [40] and our work complement each other.

In [81], a centralized approach using bootstrap server is proposed to detect multiple
overlays and initiate merge, as the underlying network partition ceases. As per this ap-
proach, peer with the smallest virtual identifier, periodically sends message to a bootstrap
server. As the bootstrap server receives multiple messages, it detects multiple overlays in
the system, which then informs all peers to initiate merging process. This approach depends
on a central bootstrap server. Also, this work lacks a full algorithm and evaluation of merge
process. The protocols for network partitions and merge are proposed in [83], at the core
of which is a broadcast protocol. A node sends broadcast message to d uniformly selected
nodes to gather knowledge about the network it belongs to, each node, which receive such
broadcast message repeats the process. However, this work does not specify how a node
acquires knowledge about the broadcast candidates and satisfy uniform sampling. Also, the
merge protocol presented states that nodes of one overlay join the other, does not mention
the process to detect a network merge and how to decide which overlay to trigger the join
process. Merging of multiple P-Grid [84] SONs is presented in [85], [86], which is com-
plementary to our work. Methods/algorithms to merge two independently bootstrapped
peer-to-peer overlays are presented in several works [87], [88].

7.4 Discussion

In this chapter, we have investigated about network partitioning. We have considered sce-
narios, where no churn is experienced by the overlay during a network partition, which
correspond to the network partitions of short durations. We have presented comparative
analysis of partition-tolerance and reversibility of existing maintenance strategies, namely,
correction-on-*, periodic stabilization and ReCircle (as done in [40]). We have observed
that a partition can occur even if there is no communication problem; also have identified
and verified the pre-conditions to ensure partition tolerance for any scenario of network
partition. Our results show that micro-level interactions among nodes (i.e., local correc-
tions at each node) are able to trigger and accomplish macroscopic healing (i.e., merging
of multiple overlays). However, the local corrections need to be both proactive and reac-
tive to attain better recovery, especially when there are high levels of sparse partitioning of
the overlay. The result obtained only through such local corrections, without any explicit
merge algorithm, is competitive (or at times better) with the one with an explicit overlay
merger.

59






Chapter 8

Interaction between Network
Partitioning and Churn

In Chapter 7, we have considered network partition and merge, where there was no churn in
between, which is not a realistic scenario, since for a peer-to-peer network churn events are
the most usual ones. Though in most existing applications churn remains under a certain
limit, as per studies [29, 30, 31], systems with low/average churn face high peaks and this
may happen even during short duration of a network partition. Consider the scenario of a
Structured Overlay Network (SON) running on mobile phones or on an ad hoc network. In
such a dynamically changing environment network partition can be a frequent event, along
with high churn. However, we have not found any work in literature that demonstrates
reversibility for such inhospitable environment, where a SON goes through a network par-
tition, while facing churn at the same time.

In this chapter, We propose a model, namely “Stranger Model”, to generalize the impact
of simultaneous network partition and churn. We show that this interaction causes partitions
to eventually become strangers to each other, which makes full reversibility impossible
when this happens. Using this model, we can predict when irreversibility arrives, which
we verify via simulation. Later, we evaluate the reversibility of maintenance principles
while facing churn during a network partition and identify the preconditions to achieve
reversibility. In this chapter, we have used only sparse partitioning for our experiments, as
sparse partitions create higher stress on the maintenance than the sequential partitioning.

8.1 Stranger Model

Before the network partition and after network merge, churn is handled by any SON as
usual. It is churn during a network partition, which creates challenge for merging the
overlays as network merge happens. We propose a model, namely “Stranger Model”, to
understand the impact of churn during a network partition. Using this model we quantify
the challenge for the maintenance mechanism, while merging multiple overlays (created
while enduring the network partition), as the partition ceases.

We use the same definition of churn as in Section 3.1: percentage of nodes turnover

61



CHAPTER 8. INTERACTION BETWEEN NETWORK PARTITIONING AND CHURN

per time unit (seconds). If we assume equal probability of join/leave event and a single
event per time unit, then every other time unit, a node will leave and a new node will join
the network, i.e., every other time unit the total number of peers will be the same, whereas
only a single node has a changed identity. So, during network partition, every other time
unit, a new node replaces an existing node in a partition, about which no other node of
any other partition has any knowledge. We can say that this new node becomes a stranger
for the nodes on other partition. In our model, we assume uniform distribution of lifetime
of peers. However, in real systems, this is necessarily not the case. So, our model is a
pessimistic one, in other terms corresponds to the “worst case" scenarios. Investigation
using a more realistic up-time distribution of peers is left as future work.

Suppose, the number of nodes on a SON is N. For simplicity we will consider only 2
partitions of almost equal size, to present our model, can be generalized for [V partitions as
well. After a network partition, two independent overlays, P; and P> are formed having n
and n9 nodes respectively on each overlay, i.e., n; + ne = N, n; = ng and P; is the set of
nodes of partition 7. The best possible starting state for a partition of the overlay is, when
each partition has complete knowledge about the other, i.e., (Uy,ep, KBp,) P2 = P.
We present our model to generalize the interaction between network partition and churn,
during the partition period, based on this simplifying assumption. For a churn intensity of
C%, after 1 time unit, the number of nodes on P, known to P is, (Upie p KBp,) P2 =

104 . . _Ct
ng X e~ 100 After ¢ time units, (Uy,ep, K Bp,) (P2 = na X e~ 100.

Prediction of Irreversibility: Using stranger model, we can predict the limit (in time
unit) of achieving reversibility, i.e., the number of time units, since a network partition,
beyond which the system is unable to achieve reversibility by itself. For every principle,
healing by merging of overlays is based on the known references of peers on other partition,
with which communication can be established as the partition ceases. So, with the incre-
ment of strangers on both P, and P, the merging becomes more difficult and at time unit
Tcos (Upep, KBp) NP2 = () (and vice versa). After Too time unit P; and P, will be
complete strangers to each other and as the nodes on a partition have no reference about any
peer on the other partition, no healing mechanism of the system will be effective. We will
refer Too as the cut-off point, beyond which, mechanism outside the system or third party
intervention is required to make the system reversible. We can derive 1o as a function of
C' and no using our model:

cr, 100 x 1

ng X e 1OCOO =1..Tco = 7011”2

Using Equation 8.1, we can derive T for P, with respect to P} for a given C. We
present experimental validation of our model for churn of 10%, 30% and 80%. For these
experiments, we use a SON of 100 peers. To simulate the underlying network, the end-
to-end delays are set based on the empirical distribution of minimum RTT provided in
[49]. During steady state, a network partition is simulated by creating 2 partitions of the
overlay of equal size, i.e., |Pi| = |P2] = 50. We have verified that after the partition,
ie,att =0, (Upyep, KBp,) P2 = P and vice versa, for these experiments. Churn of
particular intensity is injected for ¢ seconds. To inject a churn event, a partition is chosen

8.1

62



8.1. STRANGER MODEL

100 o | . ,2 T T T I |
o) rig
; e .
f 9 :
80 |- - . a 1
2 6 / J—x
= 6 ' ~ x 1
Q ’ ;
) J 4 X
g . K . i
5z 0 4 X i}
3 ; i :
kS ¢ / )
0 3 J V
g wE 4 |
= : W i
3 R
o g X For Churn = 10%
- P - Error Bar +--¢--
20 B :" For Churn =30% ====== —
;X Error Bar -
-/ ! For Churn=80% ======-
% Error Bar ---0---'
0> ] ] ] | I I |
0 5 10 15 20 25 30 35 40

Time unit (in second)

Figure 8.1: Evaluation of Stranger model for 10%, 30% and 80% of churn

Churn (C') | Theoretical Cut-off Time | Measured Cut-off Time
10% 39.12 40
30% 13.04 14
80% 4.89 5

Table 8.1: Cut-off time (Tco) for different values of Churn

with equal probability. We have used correction-on-change, periodic stabilization and the
merger with passive KB for maintenance to have the best measurement of strangers. After
withdrawing churn, we retrieve knowledge base of each node of P, and make a superset
of those. We count the nodes in P» which are not in that set and calculate the percentage,
this is the percentage of nodes in P», which are stranger to P;. We do the same for P; with
respect to P» and report the average for a single run. An average of 10 such runs is reported
in Figure 8.1 with increasing time. We present the values of T for 10%, 30% and 80% of
churn and n; = ny = 50 using Equation 8.1 and from experiments in Table 8.1. As shown
in Figure 8.1, the percentage of strangers increases with time, for all values of churn. Also,
the Cut-off points coincide with those derived using Equation 8.1, as presented in Table 8.1,
thus validating our model. We have expressed 1o assuming the best possible starting state
for a partition of the overlay, i.e., each partition has converged knowledge about the other.
A generic expression for Too is subject to future work.

63



CHAPTER 8. INTERACTION BETWEEN NETWORK PARTITIONING AND CHURN

Number of Islands

1 1 1
. . . 0 10 20 30 40 50 60 0 10 20 30 40 50 60
0 10 20 30 40 50 60 Time (in sec) ‘Time (in sec)

Time (in sec)

(b) Using Correction-on-* and (c) Using Periodic Stabilization

a) Using Correction-on-* o e . -
@ £ Periodic Stabilization and the Merger with passive list

Figure 8.2: Number of islands as a function of time (in sec) after withdrawing churn and
partition to assess self-healing against strangers using different maintenance strategies

8.2 Evaluation of Maintenance Principles

We evaluate maintenance strategies in terms of their abilities to overcome the challenges
posed by strangers, while merging multiple overlays. The generalized effect of churn of dif-
ferent intensities during network partition is the rate of increasing the number of strangers.
So, in these experiments, we have used only one value of churn, namely 10% of churn for
different durations to create desired percentages of strangers in the system. We use similar
experimental setup as described in Section 8.1. We have continued the injection of 10%
churn for 8, 20, 32 and 36 seconds, since the network partition is introduced. Then we
withdraw churn, wait for 30 seconds for the healing of the effect of churn on both partitions
and restore the network partition. We observe the reversibility of different maintenance
mechanisms with time, using the same metric as in Section 7.2.2: number of islands. We
present the average of 10 sample runs in Figure 8.2; however, we have excluded samples
(especially for experiments with 36 seconds) for which the partitions become complete
strangers (i.e., (Up,ep, K Bp;,) N P2 = () and vice versa). For stranger measurements, we
have constructed a passive KB at each node for these experiments, but the KB is not used
for any correction/healing (i.e., to trigger the merger of ReCircle).

8.2.1 Correction-on-*

We can see in Figure 8.2a, correction-on-* principles fail to merge the overlays even with
the lowest number of strangers in the system. Also, as the duration of churn increases i.e.
increment of strangers, so is the number of partitions, which remains the same throughout
an experiment, after the initial healing during first 3 seconds. This is due to the lack of
liveness property of these maintenance mechanisms that self-healing is discontinued.

8.2.2 Correction-on-* and Periodic Stabilization

After integration of periodic stabilization, we can see significant improvement, as apparent
in Figure 8.2b. The correction-on-* mechanisms, along with periodic stabilization shows
reversibility, even for churn duration of 32 seconds. However, beyond that, this combined

64



8.2. EVALUATION OF MAINTENANCE PRINCIPLES

strategy fail to guarantee reversibility, i.e., for 36 seconds of churn duration, there are runs,
for which merging has not converged. We have observed till 120 seconds for these runs,
but the result remains the same throughout, so for presentation purpose till 60 seconds is
shown.

8.2.3 ReCircle (Periodic Stabilization and Merger with passive list)

As shown in Figure 8.2c, ReCircle gives no more improvement over combined local main-
tenance (Figure 8.2b). It shows reversibility up to churn duration of 32 sec. However, for
the experiment with churn duration of 36 sec, there are runs, which have not converged. We
have observed till 120 sec, the result remains the same, so for presentation purpose, till 60
sec is shown. The reason is the lack of knowledge to trigger the merger using the passive
list.

8.2.4 Knowledge Base

ReCircle (Periodic Stabilization and Merger with passive list) works well for up to 32 sec
churn, i.e., 77% strangers (see Figure 8.1), whereas adding a passive Knowledge Base
works up to 36 sec churn, i.e., 90% strangers (and beyond, verification of which is subject
to future work), as shown in Figure 8.3a. This is much closer to the limit of 100% strangers
that is reached at 40 sec churn. This clearly shows the effectiveness of the Knowledge
Base. We have used 0 = 1 second to optimistically use elements of the knowledge base
to trigger the merger. Also, we have integrated the correction-on-change principle (Sec-
tion 3.2.1) to avoid any inconsistency while handling churn using periodic stabilization as
the only local correction policy (as discussed in Section 3.2.2), without causing any extra
load on bandwidth consumption. Using all three mechanisms (Correction-on-*, ReCircle,
and Knowledge Base) gives fast convergence of number of islands to 1. Using only two
of these three mechanisms will either not converge to 1 or else converge much slower to
1. We have excluded samples for Figure 8.3a, for which the partitions become complete
strangers (i.e., (Uy,ep, K Bp;) () P2 = 0 and vice versa). Because for these scenarios, this
combined healing falls short, as there is no knowledge in a partition about the other to
achieve reversibility.

8.2.5 Oracle

As we can see in Figure 8.3b, when the partitions become complete stranger to each other,
it is possible to achieve reversibility, as long as an oracle injects the lost knowledge about
the other partition. We have implemented an oracle in the application layer, which every
5-second, picks up 2 pairs of nodes from its list and introduce them to each other through an
API. The list of peers at application layer can be built by either active or passive way. As per
the active approach, the application layer can periodically retrieve knowledge base from the
peers it knows, thus build a superset of these knowledge bases, whereas in passive approach
the application layer comes to know about peers while joining. In our experiments, we
have used the second approach to build the list at application layer. Figure 8.3b shows
the convergence for > 40 seconds churn, i.e., 100% strangers (see Figure 8.1). Also, for

65



CHAPTER 8. INTERACTION BETWEEN NETWORK PARTITIONING AND CHURN

2.5

T T T T T T
Churn Duration = 8 sec - Churn Duration = 40 sec
Churn Duration = 20 sec Churn Duration = 44 sec ======
Churn Duration = 32 sec ====*=* h Error Bar r--%--!
Churn Duration = 36 sec e -
Error Bar £

Number of Islands
Number of Islands

0 0 2 4 6 8 10 12 14 16 18 0 0 10 20 30 40 50 60
Time (in sec) Time (in sec)
(a) Using Correction-on-*, Periodic (b) Using Correction-on-*, Periodic
Stabilization, and the Merger with Knowledge Stabilization, and the Merger with Knowledge
Base Base and Oracle

Figure 8.3: Number of islands as a function of time (in sec) after withdrawing churn and
partition to assess self-healing against strangers using different maintenance strategies

these experiments, we have restored network partition immediately, instead of waiting for
30 seconds, in order to observe the overall impact the oracle has on the healing process.
For this reason, in the first couple of snapshots the number of islands is higher than 2, as a
result of the temporary inaccuracy in the neighborhood of each node, due to churn.

8.3 Recovery Time and Cost

We present recovery time and cost, in term of number of messages, to achieve reversibil-
ity against increasing strangers among the partitions of the system. We have used similar
experimental setup and induced churn of 10% for increasing duration during the partition.
Correction-on-* and ReCircle with the knowledge base approach (passive KB and oracle)
are used as part of maintenance for these experiments. After withdrawing churn, partition
is restored and we measure the time (in seconds) required for complete healing, i.e., all
nodes organized into a perfect ring topology. We have used mean value of 20 independent
runs for every 4 seconds increase of churn duration. Figure 8.4 shows the result. This along
with Figure 8.1 gives an idea regarding the percentage of strangers in the system and the
time required to achieve reversibility. As expected, the recovery time increases with the
number of strangers in the system. We report the average number of messages generated
for increasing churn duration in Figure 8.5. This also follows the similar pattern as in Fig-
ure 8.4. We notice large number of messages generated for a network of 100 peers, raising
concern about scalability of the system. However, by controlling the number of messages
triggered by the merger of ReCircle using the knowledge base and oracle parameters and
setting an optimistic period for periodic stabilization, the bandwidth consumption can be
lowered, while trading-off convergence time. Also, it is essential that the system should
adapt with the operating environment, which we keep as future work.

66



8.4. RELATED WORK

1.2e+07

30 T T T T T Number of Messages E=1
Recovery Time (in sec)
Error Bar -->--! B
25 ! - 1e+07 -
|
| I
20 | 5 8e+06 |- ]
X
3 v/ 5 A
-z | @ =
= X
b 15 - B 7 2 6es06
E X B
= z
or M ] 4e+06
0406 |-
X ’
X
5 Iox 4
4 2e+06 -
x
0 L L L L 1 1 I I . ﬂ
0 5 10 15 20 25 30 35 40 45 0 [ 4 bk

Churn Duration Churn

Figure 8.4: Recovery/Healing time for ~ Figure 8.5: Number of messages generated
increasing strangers for increasing strangers

8.4 Related Work

Several works are done to assess resilience of various maintenance strategies under churn
[89], [63], [90], [58]. However, we have not found any work that analyzes the impact of
the interaction of network partition and churn, thus to quantify the challenges posed by this
interaction on the maintenance strategy of the overlay. In our work, we have presented a
model, using which it is possible to generalize the effect of network partition under churn
of any intensity and duration. Also, this can provide useful information to the application
layer regarding the cut-off point, beyond which the application or third-party intervention
is required to take initiative by injecting knowledge, in order to achieve reversibility.

8.5 Discussion

In this chapter, we have investigated the interaction between Network Partitioning and
Churn (node turnover) in Structured Overlay Networks. We have proposed a model, namely
“Stranger Model”, to generalize the impact of simultaneous network partition and churn.
‘We have shown that this interaction causes partitions to eventually become strangers to each
other, which makes full reversibility impossible when this happens. Using stranger model,
we have also identified the boundary (cut-off point), beyond which the system is unable
to achieve reversibility by itself. We propose to use a knowledge base to handle partitions
under churn, that contains knowledge collected in a passive way at each node and injected
by an oracle beyond the cut-off point.

67






Chapter 9

Conclusions and Future Work

In this chapter, we summarize our contributions. We conclude by discussing our future
works, in continuation towards our objective. Also, we mention some research ideas de-
rived from the results obtained so far.

9.1 Reversible and Predictable System

The advent and demand for new technologies consistently increasing the complexity of
distributed systems. The heterogeneity and inclusion of increasing mobility in these sys-
tems continues to make the operating environments more inhospitable. In order to build
reliable complex systems, it is imperative to assess and identify required properties of the
maintenance strategy of such systems to achieve complete self-healing in the entire oper-
ating space. In this thesis, we have introduced the concept of Reversibility: functionality
of a system is a property of current operating environment, and is not affected by the fail-
ures in the past. Reversibility allows opening new venues for application design, such as
mobile and ad hoc networks and Internet of Things, for which existing fault-tolerance tech-
niques are insufficient. For the purpose of this work, we have chosen one particular class of
complex systems, namely a class of Structured Overlay Networks (SONs), defined by the
reference architecture of [18]. To our knowledge, existing literature lacks an assessment
or verification of SONSs reversibility by ensuring complete healing of the predefined struc-
ture. We have organized the entire operating space of our representative complex systems
by identifying the stress parameters. We have introduced a new maintenance principle,
namely Knowledge Base, which is required to survive and achieve reversibility against in-
hospitable environments.

In this thesis, we have investigated about two stress parameters: Churn and Network
Partitioning, also interaction between them. As a part of this journey, we have done com-
parative analysis of the healing capability of existing maintenance principles of ring-based
SONs, while facing inhospitable environments caused by these two stress parameters. We
have chosen Beernet [13] as a representative example of a large class of ring-based SONs
[18] and analyzed its healing capability by enabling different combinations of principles.
We have identified the preconditions to achieve reversibility for ring-based SON. Also, the

69



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

demonstration of a reversible SON, Beernet++, against churn and network partitioning is
presented in this thesis. We have observed that a partition can occur even if there is no com-
munication problem; also have identified and verified the preconditions to ensure partition
tolerance for any scenario of network partition. Our results show that micro-level interac-
tions among nodes (i.e., local corrections at each node) are able to trigger and accomplish
macroscopic healing (i.e., merging of multiple overlays). However, the local corrections
need to be both proactive and reactive to attain better recovery, especially after sustaining
simultaneous network partition and churn. The result obtained only through such local cor-
rections, without any explicit merge algorithm, is competitive with the one with an explicit
overlay merger.

Using the “Stranger model”, we have generalized the effect of the interaction between
network partition and churn. The stranger model also allows predicting when irreversibil-
ity arrives (the cut-off point) due to simultaneous network partition and churn. This can
provide useful information for applications, thus support building application in very hos-
tile environments. We propose to use knowledge base principle to handle partitions under
churn, that contains knowledge collected in a passive way at each node and injected by an
oracle beyond the cut-off point.

On our way towards the objective of this thesis, we have observed and analyzed other
macro-level phenomenon, for example, phase transition in the system. We have shown that
Beernet++ does reversible phase transitions, i.e., it “boils" to the gaseous state (becomes
disconnected) when churn increases and condenses from gaseous back to solid phase as
churn intensity goes down. We also identify and analyze the apparent “critical points" from
the experiments while doing such transitions. The concept of phase, phase transition and
critical point allows designing applications to work in inhospitable environments. Also, as
a prerequisite of this work, a QoS-aware self-adaptable eventually perfect failure detection
algorithm is presented and evaluated in this thesis. Finally, we present the evaluation of
several high-level properties of Beernet++ for inhospitable environments.

0.2 Future Work

In this section, we discuss about some ideas towards our overall objective: “Design Pre-
dictable and Reversible systems”. Some of these ideas are continuation of the works pre-
sented in this thesis, others explore the dimensions of the operating space of a complex
system, not addressed in this thesis.

9.2.1 API and Phase Transitions

In this thesis, we have presented our first investigation about phase and phase transitions
in a SON with churn. We intend to investigate further the analogy between phase in SONs
and in physical systems. We are in the process of designing an API that makes explicit the
concept of phase and phase transitions. The API will expose the maximum functionality
and information to the application layer, widening the way to build applications that run
in inhospitable environments. In future work, we will investigate applications that take
advantage of this API to survive in extremely hostile environments.

70



9.2. FUTURE WORK

9.2.2 Maintenance Principles and Efficient Self-Healing

In future work, We intend to improve the maintenance principles, e.g., we intend to use
gossip protocols to improve the knowledge base technique. Also, in our experiments, we
have introduced some parameters, e.g., Join Timeout for the new peers to issue repeated join
requests, we intend to improve these parameters, which are currently empirical. Besides,
it is necessary for efficient survival/self- healing in an inhospitable environment to adapt
such system parameters as per the operating environment. This also requires a study to
identify the influences of different parameters on convergence time of healing or phase
transitions/critical points.

9.2.3 Network Dynamicity and its Impact

In this thesis, we have not investigated about how a highly dynamic underlying network
affects the maintenance of a system. Also, we intend to study the interaction of this dimen-
sion of operating space with other stress parameters (e.g., churn, network partition).

9.2.4 Experimentation and Validation on Real-World Environment

In future work, we intend to evaluate our system in real-world (non-simulated) dynamic
environment, like PlanetLab [91] and Community Networks, to verify the findings from
simulation.

71






Bibliography

(1]

(2]

(3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

Richard John Anthony. Emergence: A paradigm for robust and scalable distributed
applications. In In Proceedings of IEEE International Conference on Autonomic Com-
puting (ICAC’04), pages 132-139, 2004.

T. De Wolf, G. Samaey, T. Holvoet, and D. Roose. Decentralised autonomic comput-
ing: Analysing self-organising emergent behaviour using advanced numerical meth-
ods. In Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International
Conference on, pages 52—63, June 2005.

O. Babaglu, M. Jelasity, T. Holvoet, and D. Roose. Unconventional Programming
Paradigms, volume 3566, chapter Grass- roots Approach to Self-management in
Large-Scale Distributed Systems, pages 286-296. Springer Berlin/Heidelberg, Au-
gust 2005.

Napster. Inc. napster. http://www.napster.com, 1999. Accessed: 2015.

Audiogalaxy. The Audiogalaxy satellite. http://www.audiogalaxy.com/,
2001. Accessed: 2004.

OpenNap Community.  Open source napster server. http://opennap.
sourceforge.net/, 2001. Accessed: 2015.

Gnutella. Gnutella. http://www.gnutella.com/, 2006.

FreeNet Community. The freenet project. http://freenetproject.org,
2003. Accessed: 2015.

Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Ratnasamy, Scott
Shenker, and Ion Stoica. The impact of dht routing geometry on resilience and prox-
imity. pages 381-394. ACM Press, 2003.

Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris,
Ion Stoica, and Hari Balakrishnan. Building peer-to-peer systems with chord, a dis-
tributed lookup service. pages 71-76, 2001.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM’01, pages 149-160, 2001.

73



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

BIBLIOGRAPHY

Luc Onana Alima, Sameh El-ansary, Per Brand, and Seif Haridi. Dks(n,k,f): a family
of low communication, scalable and fault-tolerant infrastructures for p2p applications.
In IN 3RD IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUT-
ING AND THE GRID (CCGRID), pages 344-350, 2003.

Boris Mejias Candia. Beernet: A Relaxed Approach to the Design of Scalable Sys-
tems with Self-Managing Behaviour and Transactional Robust Storage. PhD thesis,
ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium, October
2010.

B. Mejias and P. Van Roy. Beernet: Building self-managing decentralized systems
with replicated transactional storage. IJARAS: International Journal of Adaptive, Re-
silient and Automatic Systems, July 2010.

J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41-50, Jan 2003.

Marco Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67, March
1993.

Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commu-
nications of the ACM, 17(11):643—644, November 1974.

Karl Aberer, Luc Onana Alima, Ali Ghodsi, Sarunas Girdzijauskas, Seif Haridi, and
Manfred Hauswirth. The essence of p2p: A reference architecture for overlay net-
works. In IN P2P2005, THE 5TH IEEE INTERNATIONAL CONFERENCE ON
PEER-TO-PEER COMPUTING, pages 11-20, 2005.

Thorsten Schiitt, Florian Schintke, and Alexander Reinefeld. A structured overlay for
multi-dimensional range queries. In Proceedings of the 13th International Euro-Par
Conference on Parallel Processing, Euro-Par’07, pages 503-513, Berlin, Heidelberg,
2007. Springer- Verlag.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. Skipnet: A scalable overlay network with practical locality properties. In
Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4, USITS 03, pages 9-9, Berkeley, CA, USA, 2003. USENIX
Association.

M.Frans Kaashoek and DavidR. Karger. Koorde: A simple degree-optimal distributed
hash table. In M.Frans Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems II,
volume 2735 of Lecture Notes in Computer Science, pages 98—107. Springer Berlin
Heidelberg, 2003.

Valentin Mesaros, Bruno Carton, and Peter Van Roy. P2ps: Peer-to-peer develop-
ment platform for mozart. In Peter Van Roy, editor, Multiparadigm Programming
in Mozart/Oz, volume 3389 of Lecture Notes in Computer Science, pages 125-136.
Springer Berlin Heidelberg, 2005.

74



BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. SIGCOMM Comput. Commun. Rev.,
34(4):353-366, August 2004.

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: Support-
ing scalable multi-attribute range queries. In Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions, SIGCOMM ’04, pages 353-366, New York, NY, USA, 2004. ACM.

B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the chord lookup
algorithm with reactive routing state managements. In Proceedings of the ACM SIG-
COMM 2004 Symposium on Communication, Architecture, and Protocols, Singapore,
November 2004. IEEE Computer Society.

Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-
efficient management of dht routing tables. In Proceedings of the 2Nd Conference on
Symposium on Networked Systems Design & Implementation - Volume 2, NSDI’05,
pages 99-114, Berkeley, CA, USA, 2005. USENIX Association.

G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a small
world. In Proceedings of the 4th USENIX Symposium on Internet Technologies and
Systems (USITS 03), Seattle, WA, USA, March 2003. USENIX.

Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-
ceedings of the Thirty-second Annual ACM Symposium on Theory of Computing,
STOC 00, pages 163—170, New York, NY, USA, 2000. ACM.

Ranjita Bhagwan, Stefan Savage, and GeoffreyM. Voelker. Understanding availabil-
ity. In M.Frans Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems I, volume
2735 of Lecture Notes in Computer Science, pages 256-267. Springer Berlin Heidel-
berg, 2003.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study of
peer-to-peer file sharing systems. In Proceedings of the Multimedia Computing and
Networking (MMCN), San Jose, CA, USA, January 2002.

Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC
’06, pages 189-202, New York, NY, USA, 2006. ACM.

M. Steiner, T. En-Najjary, and E.-W. Biersack. Long term study of peer behavior in
the kad dht. Networking, IEEE/ACM Transactions on, 17(5):1371-1384, Oct 2009.

Farnam Jahanian, Craig Labovitz, and Abha Ahuja. Experimental study of internet
stability and wide-area backbone failures. Technical Report CSE-TR-382-98, Univer-
sity of Michigan, November 1998.

75



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

BIBLIOGRAPHY

David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why do internet
services fail, and what can be done about it? In Proceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and Systems - Volume 4, USITS 03,
pages 1-1, Berkeley, CA, USA, 2003. USENIX Association.

Vern Paxson. End-to-end routing behavior in the internet. SIGCOMM Comput. Com-
mun. Rev., 36(5):41-56, October 2006.

Taiwan quake exposes internet vulnerability. http://
www.globalsecuritynews.com/Asia/Wolfe-Adam/
Taiwan-Quake-Exposes—Internet-Vulnerability, January 2007.
Accessed: 2015.

ISP quarrel partitions Internet. http://www.wired.com/threatlevel/
2008/03/isp—quarrel-par/, March 2008. Accessed: 2015.

The Cogent-Level 3 Dispute. http://www.lookingglassnews.org/
viewstory.php?storyid=2883, October 2005. Accessed: 2015.

Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Route maintenance over-
heads in DHT overlays. In Workshop on Distributed Data and Structures, 2003.

Tallat M. Shafat. Partition Tolerance and Data Consistency in Structured Overlay
Networks. PhD thesis, KTH Royal Institute of Technology, Sweden, 2013.

Ruma R. Paul, Peter Van Roy, and Vladimir Vlassov. An empirical study of the
global behavior of a structured overlay network. In Peer-to-Peer Computing (P2P),
14-th IEEE International Conference on, pages 1-5, Sept 2014.

Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica. Non-
transitive connectivity and DHTs. In Proceedings of the 2nd Workshop on Real Large
Distributed Systems, 2005.

Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD
thesis, KTH Royal Institute of Technology, Sweden, 2006.

Supriya Krishnamurthy and John Ardelius. An analytical framework for the perfor-
mance evaluation of proximity-aware structured overlays. Technical report, Swedish
Institute of Computer Science (SICS), 2008.

Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-based fast
overlay topology construction. Comput. Netw., 53(13):2321-2339, August 2009.

Programming Languages and Distributed Computing Research Group. Beernet:
pbeer-to-pbeer network. http://beernet.info.ucl.ac.be, 2009. Ac-
cessed: 2015.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer, second edition, 2011.

76



BIBLIOGRAPHY

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service of
failure detectors. IEEE Trans. Comput., 51(5):561-580, May 2002.

Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in TCP
round-trip times. In Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, IMC °03, pages 279-284, New York, NY, USA, 2003. ACM.

M. Bertier, O. Marin, and P. Sens. Implementation and performance evaluation of an
adaptable failure detector. In Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, pages 354-363, 2002.

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. A new
adaptive accrual failure detector for dependable distributed systems. In Proceedings
of the 2007 ACM Symposium on Applied Computing, SAC °07, pages 551-555, New
York, NY, USA, 2007. ACM.

Network Working Group. RFC 2988 : Computing TCP’s retransmission. http:
//www.rfc—editor.org/rfc/rfc2988.txt, 2000.

Mikel Larrea, Sergio Arévalo, and Antonio Ferndndez. Efficient algorithms to imple-
ment unreliable failure detectors in partially synchronous systems. In Proceedings of
the 13th International Symposium on Distributed Computing, pages 34—48, London,
UK, UK, 1999. Springer-Verlag.

C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure detection protocol. In De-
pendable Computing, 2001. Proceedings. 2001 Pacific Rim International Symposium
on, pages 146-153, 2001.

C. Fetzer, U. Schmid, and M. Susskraut. On the possibility of consensus in asyn-
chronous systems with finite average response times. In Distributed Computing Sys-
tems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference on, pages
271-280, June 2005.

Tallat M. Shafaat, Monika Moser, Thorsten Schiitt, Alexander Reinefeld, Ali Ghodsi,
and Seif Haridi. Key-based consistency and availability in structured overlay net-
works. In Proceedings of the 3rd International Conference on Scalable Information
Systems, InfoScale *08, pages 13:1-13:5, ICST, Brussels, Belgium, Belgium, 2008.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. A statistical
theory of chord under churn. In Proceedings of the 4th International Conference on
Peer-to-Peer Systems, IPTPS’05, pages 93—-103, Berlin, Heidelberg, 2005. Springer-
Verlag.

Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. An analytical
study of a structured overlay in the presence of dynamic membership. IEEE/ACM
Transactions on Networking (TON), 16(4):814—-825, August 2008.

71



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

BIBLIOGRAPHY

Mozart Consortium. The Mozart-Oz programming system. http://mozart.
github.io/, 2013. Accessed:2015.

Miguel Castro, Manuel Costa, and Antony Rowstron. Performance and dependability
of structured peer-to-peer overlays. In Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks, DSN °04, pages 9—, Washington, DC,
USA, 2004. IEEE Computer Society.

Antony Rowstron and Peter Druschel. Pastry:scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware), pages 329-350,
November 2001.

Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. Comparing
maintenance strategies for overlays. In Proceedings of the 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2008), PDP *08, pages
473-482, Washington, DC, USA, 2008. IEEE Computer Society.

David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution
of peer-to-peer systems. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing, PODC *02, pages 233-242, New York, NY,
USA, 2002. ACM.

S. El-Ansary, E. Aurell, P. Brand, and S. Haridi. Experience with a physics-style
approach for the study of self properties in structured overlay networks. In Proc.
SELF-STAR: International Workshop on Self-* Properties in Complex Information
Systems, May 2004.

Sameh El-Ansary, Erik Aurell, and Seif Haridi. A physics-inspired performance eval-
uation of a structured peer-to-peer overlay network. In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Networks, part
of the 23rd Multi-Conference on Applied Informatics, Innsbruck, Austria, February
15-17, 2005, pages 116-122, 2005.

S. Apel and K. Bohm. Self-organization in overlay networks. In Proceedings of
CAISE Workshop Adaptive and Self-Managing Enterprise Applications, volume 2,
pages 139-153, 2005.

Joseph S. Kong, Jesse S.A. Bridgewater, and Vwani P. Roychowdhury. Resilience of
structured p2p systems under churn: The reachable component method. Computer
Communications, 31(10):2109-2123, June 2008.

Wikipedia. Phase (matter). https://en.wikipedia.org/wiki/Phase_
%$28matter%s29, July 2015.

Peter Van Roy. Overcoming software fragility with interacting feedback loops and
reversible phase transitions. In Proceedings of International conference on Visions of
Computer Science, 2008.

78



BIBLIOGRAPHY

[70] Farnoush Banaei-Kashani and Cyrus Shahabi. Criticality-based analysis and design of
unstructured peer-to-peer networks as "complex systems". In Proceedings of the 3st
International Symposium on Cluster Computing and the Grid, CCGRID ’03, pages
351—, Washington, DC, USA, 2003. IEEE Computer Society.

[71] 1. Scholtes, J. Botev, A. Hohfeld, H. Schloss, and M. Esch. Awareness-driven
phase transitions in very large scale distributed systems. In Self-Adaptive and Self-
Organizing Systems, 2008. SASO ’08. Second IEEE International Conference on,
pages 25-34, Oct 2008.

[72] A. Barrat and M. Weigt. On the properties of small-world networks. The European
Physical Journal B, 13:547-560, 2000.

[73] C. P. Herrero. Ising model in small-world networks. Phys. Rev. E, 65(066110), 2002.

[74] H. Hong, B. J. Kim, and M. Y. Choi. Comment on “ising model on a small world
network,”. Phys. Rev. E, 66(018101), 2002.

[75] M. Kuperman and D. H. Zanette. Stochastic resonance in a model of opinion for-
mation on small world networks. The European Physical Journal B, 26:387-391,
2002.

[76] A. Pekalski. Ising model on a small world network. Phys. Rev. E, 64(057104), 2001.

[77] J.-Y. Zhu and H. Zhu. Introducing small-world network effects to critical dynamics.
Phys. Rev. E, 67, 2003.

[78] M. Takayasu, H. Takayasu, and K. Fukuda. Dynamic phase transition observed in the
internet traffic flow. Physica A, 277:248, 2000.

[79] T. Ohira and R. Sawatari. Phase transitions in a computer network traffic model. Phys.
Rev. E, 58(1):193-195, 1998.

[80] R. V. Solé and Sergi Valverde. Information transfer and phase transitions in a model
of internet traffic. Physica A, 289:595-605, 2001.

[81] G. Kunzmann and A. Binzenhofer. Autonomically improving the security and robust-
ness of structured p2p overlays. In Systems and Networks Communications, 2006.
ICSNC °06. International Conference on, pages 18—18, Oct 2006.

[82] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51-59, June 2002.

[83] X Xiang. Coping with structured P2P network partitions and unifications. JCIT:
Journal of Convergence Information Technology, 6(4):25-33, 2011.

[84] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Man-
fred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: A self-organizing
structured p2p system. SIGMOD Rec., 32(3):29-33, September 2003.

79



[85]

[86]

[87]

[88]

[89]

[90]

[91]

BIBLIOGRAPHY

Anwitaman Datta and Karl Aberer. The challenges of merging two similar struc-
tured overlays: A tale of two networks. In Proceedings of the First International
Conference, and Proceedings of the Third International Conference on New Trends
in Network Architectures and Services Conference on Self-Organising Systems, TW-
SOS’06/EuroNGI’06, pages 7-22, Berlin, Heidelberg, 2006. Springer-Verlag.

Anwitaman Datta. Merging intra-planetary index structures: Decentralized bootstrap-
ping of overlays. In Proceedings of SASO 2007, IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, 2007.

A. Datta. Merging ring-structured overlay indices: toward network-data transparency.
Computing, 94(8-10):783-809, 2012.

S.M. Das, L.R. Dondeti, V. Narayanan, and R.S. Jayaram. Methods and apparatus for
merging peer-to-peer overlay networks, September 2 2014. US Patent 8,825,768.

David Liben-Nowell, Hari Balakrishnan, and David Karger. Observations on the dy-
namic evolution of peer-to-peer networks. In Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, IPTPS 01, pages 22-33, London, UK,
UK, 2002. Springer-Verlag.

Ratul Mahajan, Miguel Castro, and Antony Rowstron. Controlling the cost of relia-
bility in peer-to-peer overlays. In M.Frans Kaashoek and Ion Stoica, editors, Peer-to-
Peer Systems 11, volume 2735 of Lecture Notes in Computer Science, pages 21-32.
Springer Berlin Heidelberg, 2003.

Planetlab. https://www.planet-lab.org/, 2007.

80



