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Abstract

In the present climate of deregulation and privatisation, the utilities are

often separated into generation, transmission and distribution companies

so as to help promote economic eÆciency and encourage competition.

Also, environmental concerns, right-of-way and cost problems have de-

layed the construction of both generation facilities and new transmission

lines while the demand for electric power has continued to grow, which

must be met by increased loading of available lines. A consequence is that

power system damping is often reduced which leads to a poor damping

of electromechanical power oscillations and/or impairment of transient

stability.

The aim of this thesis is to examine the ability of Controllable Series

Devices (CSDs), such as

� Uni�ed Power Flow Controller (UPFC)

� Controllable Series Capacitor (CSC)

� Quadrature Boosting Transformer (QBT)

for improving transient stability and damping of electromechanical oscil-

lations in a power system.

For these devices, a general model is used in power system analysis. This

model is referred to as injection model which is valid for load 
ow and

angle stability analysis. The model is also helpful for understanding the

impact of the CSDs on power system stability.

A control strategy for damping of electromechanical power oscillations

is also derived based on Lyapunov theory. Lyapunov theory deals with

dynamical systems without input. For this reason, it has traditionally

been applied only to closed{loop control systems, that is, systems for

which the input has been eliminated through the substitution of a pre-

determined feedback control. However, in this thesis, Lyapunov function

candidates are used in feedback design itself by making the Lyapunov

derivative negative when choosing the control. This control strategy is

called Control Lyapunov Function (CLF) for systems with control input.

iii



iv Abstract

Keywords: Controllable Series Devices (CSDs), Uni�ed Power Flow

Controller (UPFC), Quadrature Boosting Transformer (QBT), Control-

lable Series Capacitor (CSC), Lyapunov function, Control Lyapunov Func-

tion (CLF), SIngle Machine Equivalent (SIME), Variable Structure Con-

trol (VSC).

TRITA-EES{0004 � ISSN 1100-1607



Acknowledgments

First of all, I would like to express my deepest gratitude and apprecia-

tion to my supervisor, Professor G�oran Andersson, for his support and

guidance throughout this project.

I would like to extend my warmest thanks to Dr. Ian A. Hiskens for

his constant support, inspiring discussions and valuable suggestions, es-

pecially during my visit at the University of Newcastle, Australia.

I gratefully acknowledge numerous useful comments by the members of

the project steering committee, namely, Mojtaba Noroozian, Lennart
�Angquist, Bertil Berggren of ABB and Magnus Danielsson of Svenska

Kraftn�at. Also, �nancial support from these companies through the Elek-

tra program is gratefully acknowledged.

Many thanks to the sta� of Electric Power Systems for providing stimu-

lating and friendly atmosphere for study and research and help in di�erent

aspects. My special thanks to Mrs. Lillemor Hyllengren for all her assis-

tance.

A special thanks to Lars Lindkvist for his assistance with SIMPOW.

Many thanks to Professor Mania Pavella and Damien Ernst for helping

me with SIME during my visit at the University of Li�ege, Belgium.

Finally, I would like to extend my deepest gratitude and personal thanks

to those closest to me. In particular, I would like to thank my dear

mother for teaching me the value of education and my lovely Karin for

her support and encouragement during this period of late working hours.

Mehrdad Ghandhari

Stockholm

September 2000

v



vi



Acronyms

Acronym Description

AC Alternating Current

AVR Automatic Voltage Regulator

BT Boosting Transformer

CLF Control Lyapunov Function

CSC Controllable Series Capacitor

CSDs Controllable Series Devices

DAE Di�erential{Algebraic Equations

DC Direct Current

ET Excitation Transformer

FACTS Flexible AC Transmission Systems

GOMIB Generalized One{Machine In�nite Bus

OMIB One{Machine In�nite Bus

PSS Power System Stabilizer

QBT Quadrature Boosting Transformer

RNM Reduced Network Model

s.e.p Stable Equilibrium Point

SIME SIngle Machine Equivalent

SPM Structure Preserving Model

TCSC Thyristor Controlled Series Capacitors

TSSC Thyristor Switched Series Capacitors

UPFC Uni�ed Power Flow Controller

VSC Variable Structure Control

vii



viii



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Background and Motivation of Project . . . . . . . . . . . 1

1.2 Aims of the Performed Work . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . 5

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . 6

2 Power System Oscillations 9

2.1 Sources of Mitigating Power System Oscillations . . . . . 10

2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Modeling of Power Systems 13

3.1 Reduced Network Model . . . . . . . . . . . . . . . . . . . 15

3.2 Structure Preserving Model . . . . . . . . . . . . . . . . . 19

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



x Contents

4 Modeling of Controllable Series Devices 23

4.1 Operating Principle of Controllable Series Devices . . . . 23

4.1.1 Uni�ed Power Flow Controller . . . . . . . . . . . 23

4.1.2 Quadrature Boosting Transformer . . . . . . . . . 24

4.1.3 Controllable Series Capacitor . . . . . . . . . . . . 24

4.2 Injection Model . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Injection Model of UPFC . . . . . . . . . . . . . . 26

4.2.2 Injection Model of QBT . . . . . . . . . . . . . . . 29

4.2.3 Injection Model of CSC . . . . . . . . . . . . . . . 30

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Lyapunov Stability 33

5.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . 33

5.2 Lyapunov Function . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Total Stability . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Application of Lyapunov Function to Power Systems . . . 48

5.4.1 Energy Function for Reduced Network Model . . . 48

5.4.2 Energy Function for Structure Preserving Model . 49

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Control Lyapunov Function 55

6.1 General Framework . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Application of CLF to the Structure Preserving Model . . 68

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Numerical Example 73

7.1 Two{Area Test System . . . . . . . . . . . . . . . . . . . . 74

7.2 IEEE 9-Bus Test System . . . . . . . . . . . . . . . . . . . 79

7.3 Nordic32A Test System . . . . . . . . . . . . . . . . . . . 81

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Contents xi

8 Single Machine Equivalent 85

8.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Control Law Based on SIME . . . . . . . . . . . . . . . . 87

8.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . 88

8.4 Selection of the Gains of Control Laws . . . . . . . . . . . 102

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9 Variable Structure Control with Sliding Modes 105

9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.2 Method of Equivalent Control . . . . . . . . . . . . . . . . 110

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10 Closure 119

10.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . 119

10.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.3 Discussions and Future Work . . . . . . . . . . . . . . . . 121



xii



List of Figures

3.1 A multi{machine power system. . . . . . . . . . . . . . . . 13

4.1 Basic circuit arrangement of a UPFC. . . . . . . . . . . . 24

4.2 Basic circuit arrangement of a QBT. . . . . . . . . . . . . 25

4.3 Basic circuit arrangement of a CSC. . . . . . . . . . . . . 25

4.4 Equivalent circuit diagram of a CSD. . . . . . . . . . . . . 26

4.5 Vector diagram of the equivalent circuit diagram. . . . . . 26

4.6 Representation of the series connected voltage source. . . 27

4.7 Replacement of the series voltage source by a current source. 27

4.8 Injection model of the series part of the UPFC. . . . . . . 28

4.9 Injection model of the UPFC. . . . . . . . . . . . . . . . . 28

4.10 CSC located in a lossless transmission line. . . . . . . . . 30

5.1 Stability boundary (dotted lines) and stability region of xs. 38

5.2 Estimate of the stability region of xs. . . . . . . . . . . . . 42

5.3 The OMIB system. . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Phase portrait of the OMIB system. . . . . . . . . . . . . 44

6.1 The OMIB system with a CSD. . . . . . . . . . . . . . . . 60

6.2 Phase portrait of the OMIB system during the fault. . . . 63

6.3 Phase portrait of the OMIB system after the fault. . . . . 64

xiii



xiv List of Figures

6.4 The 2{machine in�nite bus test system . . . . . . . . . . . 65

6.5 Variation of the rotor angles. . . . . . . . . . . . . . . . . 67

6.6 Variation of the energy function. . . . . . . . . . . . . . . 68

7.1 The two{area test system. . . . . . . . . . . . . . . . . . . 74

7.2 Variation of P vs time for the system model 1. . . . . . . 75

7.3 Variation of P vs time for the system model 2. . . . . . . 76

7.4 Variation of P vs time for the system model 3. . . . . . . 77

7.5 Variation of P vs time for the system model 4. . . . . . . 78

7.6 The IEEE 9{bus test system. . . . . . . . . . . . . . . . . 79

7.7 Variation of P vs time in the IEEE 9{bus test system. . . 80

7.8 Variation of P vs time with CSDs in the IEEE 9{bus system. 81

7.9 The Nordic32A test system proposed by CIGRE. . . . . . 82

7.10 Variation of P vs time in the Nordic32A test system, LF32{

028. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.11 Variation of P vs time in the Nordic32A test system, LF32{

029. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1 Two{area power system. . . . . . . . . . . . . . . . . . . . 87

8.2 Case 1: Variation of P vs. time in the two{area test system

and phase portrait of the corresponding GOMIB system. . 90

8.3 Case 2: Variation of P vs. time in the two{area test system

and phase portrait of the corresponding GOMIB system. . 91

8.4 Case 3: Variation of P vs. time in the two{area test system. 92

8.5 Variation of P vs time in the IEEE 9{bus system. . . . . 93

8.6 Variation of P vs time in the Nordic32A test system. . . . 94

8.7 The Brazilian North{South interconnection system. . . . . 95

8.8 Case 1: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the cor-

responding GOMIB system. . . . . . . . . . . . . . . . . . 97



List of Figures xv

8.9 Case 2: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the cor-

responding GOMIB system. . . . . . . . . . . . . . . . . . 98

8.10 Case 3: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the cor-

responding GOMIB system. . . . . . . . . . . . . . . . . . 99

8.11 Case 4: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the cor-

responding GOMIB system. . . . . . . . . . . . . . . . . . 100

8.12 Case 5: Variation of P vs. time in the Brazilian North{

South interconnection system. . . . . . . . . . . . . . . . . 101

8.13 Phase portrait of the GOMIB system of the test system. . 102

9.1 Phase portrait of the system for k = �3 (dotted line) and

k = 2 (dashed line, and also solid lines which are indeed

the eigenvectors). . . . . . . . . . . . . . . . . . . . . . . . 106

9.2 Phase portrait of the system controlled by VSC, c1 = �1. 107

9.3 Phase portrait of the system when g1 < �1 and g1 > �1,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4 Phase portrait of the OMIB system after the fault, when

CSC is controlled by CLF and VSC with sliding mode,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.5 Phase portrait of the OMIB system after the fault, when

an energy function (dotted line) and a Lyapunov function

(solid line) are used for deriving the control law, respectively. 116



xvi



Chapter 1

Introduction

1.1 Background and Motivation of Project

Historically, power systems were designed and operated with large mar-

gins. It was comparatively easy to match load growth with new generation

and transmission equipment. So, systems normally operated in a region

where behavior was fairly linear. Only occasionally would systems be

forced to extremes where nonlinearities could begin to have some signi�-

cant e�ect. However, because of political and environmental issues, such

as the building and the locations of new generation and impediments of

the building transmission facilities, there is a greater need to make maxi-

mum use of existing facilities. As a consequence, some transmission lines

become more loaded than was planned (when they were built) which leads

to reduced power system damping of oscillations and to decreased system

stability margins. Also, as the electricity industry moves toward an open

access market, operating strategies will become much less predictable.

Hence, the reliance on nearly linear behavior (which was adequate in the

past) must give way to an acceptance that nonlinearities are going to play

an increasingly important role in power system operation. It is therefore

vital that analysis tools perform accurately and reliably in the presence

of nonlinearities [1].

Development of devices for increasing the transmission capacity of lines,

and controlling the power 
ow in transmission system goes on presently.

Many of these new apparatuses can be materialized only due to the latest

1



2 Chapter 1. Introduction

development in high{power electronics to be used in the main circuits1

combined with control strategies that rely on the modern control system

software and hardware.

By using power electronics controllers a Flexible AC Transmission System

(FACTS) can be produced which o�ers greater control of power 
ow,

secure loading and damping of power system oscillations [2]. The device

concepts can be classi�ed into those operating in shunt with the power line

in which cases the injected currents are controlled, and those operating

in series with the power line in which cases the inserted voltages are

controlled. The �rst category includes system components, such as the

Static Var Compensator (SVC), and the latter category includes system

components, such as

� Uni�ed Power Flow Controller (UPFC)

� Controllable Series Capacitor (CSC)

� Quadrature Boosting Transformer (QBT)

which all henceforth will be called Controllable Series Devices (CSDs).

Application of these devices to power 
ow control and damping control

in electric power systems is described in [3].

Generally, in the modeling of such devices for studies of power system

behavior, the fast switching action inherent in power electronics is ignored.

Instead, the devices are represented by approximate models which exhibit

continuous behavior. The aim is to ensure that the exact and approximate

representations have a similar \average" e�ect on the system. Of course,

any physical limitations in the actual device must be accurately re
ected

in the approximate model [1].

1.2 Aims of the Performed Work

Modern power systems are large scale and complex. Disturbances typ-

ically change the network topology and result in nonlinear system re-

sponse. Also, because of deregulation the con�guration of the intercon-

nected grid will routinely be in a state of change. Therefore, the tradi-

tional control laws based on linearized system models are often of limited
1The circuits of the device where the power is 
owing are usually referred to as main

circuits
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value. Thus, a control strategy that will counteract a wide variety of

disturbances that may occur in the power system is attractive.

The aim of this project is to investigate and evaluate the enhancement

of the performance of the control laws which are derived for nonlinear

systems. Also, a question of great importance is the selection of the input

signals for the CSDs in order to damp power oscillations in an e�ective and

robust manner. For a CSD controller sited in the transmission system,

it is attractive to extract an input signal from the locally measurable

quantities at the controller location.

In the �rst part of the project, two control strategies, namely:

� Variable Structure Control

� Energy Function Method

were studied and the results were reported in [4]{[6]. It was concluded

that the Energy Function Method was more suitable than the Variable

Structure Control for controlling CSDs in a multi{machine power sys-

tem. Therefore, further research regarding Energy Function Method was

motivated.

It should be noted that Energy Function Method will henceforth be re-

named to Control Lyapunov Function (CLF).

The overall aim of the research of this part of the project is to try to

resolve some issues regarding CLF and verify its applicability to realistic

power systems. The following topics are planned to be addressed:

� In
uence of losses.

� In
uence of more detailed models.

� Use of local input signals and coordination of di�erent controllers.

These items will be elaborated below.

So far Control Lyapunov Function (CLF) is proven to work in power sys-

tems without losses. One issue is the unavailability of CLF to e�ectively

handle power system losses, where the losses are either from transmis-

sion systems or from the transfer conductances in the reduced system

admittance matrix after the elimination of load buses. This is a profound
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theoretical problem. This problem is also valid when voltage dependence

of real loads and more detailed models of synchronous machines included

Automatic Voltage regulator (AVR) and turbine regulator are considered.

One of the aims of the proposed project is to study the e�ects that can be

expected when control laws for the CSDs (which are based upon simpli�ed

system models) are applied to realistic systems.

In the somewhat simpli�ed model used to derive the CLF based control

law, it can be veri�ed that local input signals, e.g. power 
ows on lines,

can successfully be used to damp power oscillations. However, there are

two issues that will be investigated further in this project to gain a better

basis and understanding, namely:

� Are local signals suÆcient also when more complicated and realistic

models of the power system components are used?

� Even if it can be proven that local signals can stabilize the system,

a remote input signal may be more e�ective for this purpose. A

pertinent question is for which power system conditions this is the

case.

A related question (at least from a theoretical point of view) concerns the

coordination of several CSD controller. A relevant question is then:

� Do CSDs with CLF control adversely a�ect each other?

The aim of the project is to answer the above questions through analytical

work and simulations of realistic power systems.

The project can be seen as a very natural extension and continuation of

the work done at the department and reported in [7]. The emphasis in [7]

was on (steady{ state) power 
ow control and on linear analysis of power

systems with CSDs, but some possibilities of nonlinear control were also

brie
y investigated.

The project was also coordinated with a project by the NUTEK REGINA

project on Coordinated and Robust Control of Power Systems which was

reported in [8]. The main issues of [8] involve the design of control strate-

gies of power systems for the case when several interacting controllers are

present, both in steady{state and dynamically. The proposed project and
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the project reported in [8] have some points of interactions which were

coordinated, and it is believed that these two projects have bene�ted from

each other in fruitful way.

Another project was dealing with damping of power oscillations by use

of High Voltage Direct Current (HVDC) systems and was reported in

[9]. Many of the questions and problems of the proposed project are

similar to those of [9], but the studied solutions are of course di�erent. A

fruitful interaction took also place in this case. All the described projects

together are part of long term plan of the department to develop and

investigate the possibilities and virtues of controllable devices in power

systems. This plan includes also the development of relevant analysis and

simulation tools.

1.3 Outline of the Thesis

Chapter 2 brie
y explains the e�ects and consequence of power system

oscillations in a power system. This chapter also outlines how these oscil-

lations are mitigated in a power system. Discussion in this chapter largely

follows that in [10] and references therein.

Chapter 3 presents the mathematical models for a power system required

in formulating the stability problem. Both Reduced Network Model

(RNM) and Structure Preserving Model (SPM) are presented in this

chapter. Discussion in this chapter largely follows that in [11], [12] and

references therein.

Chapter 4 explains the operating principles of the Uni�ed Power Flow

Controller (UPFC), the Quadrature Boosting Transformer (QBT) and

Controllable Series Capacitor (CSC). A general model is also derived for

these devices. This model which is referred to as injection model, is helpful

for understanding the impact of these components on power systems.

Chapter 5 starts by reviewing some relevant concepts from nonlinear dy-

namical systems theory. Then, this chapter analyzes stability of equilib-

rium points by applying Lyapunov theorems. For mechanical and electri-

cal systems, the physical energy (or energy{like) functions are often used

as Lyapunov function candidates. The time derivatives of these energy

functions are however negative semide�nite, and therefore, these functions

fail to prove the asymptotic stability of an equilibrium point. However, by
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applying the La Salle's invariance principle and the theorem of Barbashin

and Krasovskii, the asymptotic stability of an equilibrium point can also

be justi�ed by the energy functions. Discussion in this chapter largely

follows that in [13]{[16].

Chapter 6 introduces the concept of Control Lyapunov Function for sys-

tems with control input. The so{called aÆne systems are studied in this

chapter. Discussion in this chapter largely follows that in [17] and refer-

ences therein.

Chapter 7 provides the results of numerical examples. In this chapter,

the control laws derived in Chapter 6 are applied to various test systems.

Chapter 8 introduces the concept of SIngle Machine Equivalent (SIME).

SIME is a hybrid direct-temporal transient stability method, which trans-

forms the trajectories of a multi{machine power system into the trajectory

of a Generalized One{Machine In�nite Bus (GOMIB) system. Basically,

SIME deals with the post-fault con�guration of a power system subjected

to a disturbance which presumably drives it to instability. Under such

condition, SIME uses a time{domain simulation program in order to iden-

tify the mode of separation of its machines into two groups, namely, crit-

ical and non-critical machines which are replaced by successively a two{

machine equivalent. Then, this two{machine equivalent is replaced by a

GOMIB system. Discussion in this chapter largely follows that in [12].

Chapter 9 introduces the concept of Variable Structure Control (VSC)

and VSC with sliding mode. With VSC, dynamical systems are con-

trolled with discontinuous feedback controllers. VSC has been developed

during the last four decades, and is characterized by a control law which is

designed to drive the system trajectories onto a speci�ed line (or surface)

in the state space. The sliding mode describes the particular case when

the system trajectories are constrained to lie upon a line (or surface).

Discussion in this chapter largely follows that in [44] and [48].

Finally, in Chapter 10, we provide the conclusions and also some sugges-

tions for future work are given.

1.4 List of Publications

Work performed during this project has been published in the following

publications:
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Chapter 2

Power System Oscillations

An electrical power system consists of many individual elements connected

together to form a large, complex system capable of generating, trans-

mitting and distributing electrical energy over a large geographical area.

Because of this interconnection of elements, a large variety of dynamic

interactions are possible, some of which will only a�ect some of elements,

others will a�ect parts of the system, while others may a�ect the system

as a whole.

In general, power system stability can be divided into (rotor) angle stabil-

ity and voltage stability. In this thesis, the angle stability is considered.

Power system stability is a term applied to alternating current electric

power systems, denoting a condition in which the various synchronous

machines of the system remain \in synchronism", or \in step" with each

other. Conversely, instability denotes a condition involving \loss of syn-

chronism", or falling \out of step" [19]. The stability problem involves

the study of the electromechanical oscillations inherent in power systems.

Power systems exhibit various modes of oscillation due to interactions

among system components. Many of the oscillations are due to syn-

chronous generator rotors swinging relative to each other. The electrome-

chanical modes involving these masses usually occur in the frequency

range of 0.1 to 2 Hz. Particularly troublesome are the interarea oscil-

lations, which typically are in the frequency range of 0.1 to 1 Hz. The

interarea modes are usually associated with groups of machines swinging

relative to other groups across a relatively weak transmission path. The

higher frequency electromechanical modes (1 to 2 Hz) typically involve

9



10 Chapter 2. Power System Oscillations

one or two generators swinging against the rest of the power system or

electrically close machines swinging against each other (called also local

modes). In many systems, the damping of these electromechanical swing

modes is a critical factor for operating in a secure manner.

Because of political and environmental issues, such as the building and the

locations of new generation and impediments of the building transmission

facilities, there is a greater need to make maximum use of existing facili-

ties. As a consequence, some transmission lines become more loaded than

was planned when they were built. In particular, heavy power transfers

can create interarea damping problems that constrain system operation.

The oscillations themselves may be triggered through some event or dis-

turbance on the power system or by shifting the system operating point

across some steady-state stability boundary where oscillations may be

spontaneously created. Controller proliferation makes such boundaries

increasingly diÆcult to anticipate. Once started, undamped oscillations

often grow in magnitude over the span of many seconds. These oscillations

may persist for many minutes and be limited in amplitude only by system

nonlinearities. In some cases, large generator groups loose synchronism

and part or all of the electrical network is lost. The same e�ect can be

reached through slow cascading outages when the oscillations are strong

and persistent enough to cause uncoordinated automatic disconnection

of key generators or loads. Sustained oscillations can disrupt the power

system in other ways, even when they do not produce network separation

or loss of resources. For example, power swings that are not troublesome

in themselves may have associated voltage or frequency swings, which are

unacceptable. Such considerations can limit power transfers even when

stability is not a direct concern.

2.1 Sources of Mitigating Power System

Oscillations

The torques which in
uence the machine oscillations can be conceptually

split into synchronizing and damping components of torque. The syn-

chronizing component \holds" the machines together and is important for

system transient stability following large disturbances. For small distur-

bances, the synchronizing component of torque determines the frequency

of an oscillation.
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The damping component determines the decay of oscillations and is im-

portant for system stability following recovery from the initial swing.

Damping is in
uenced by many system parameters. It is usually small

and can sometimes become negative in the presence of controls, which

are practically the only \source" of negative damping. Negative damping

can lead to spontaneous growth of oscillations until relays begin to trip

system elements.

Much history exists in the power system literature on the application of

supplemental modulation controls to existing regulators in order to aid

damping of power swings. When a device, its regulator and supplemental

control are added to the power system, they must operate satisfactorily in

the presence of multiple power swing modes over a wide range of operating

conditions.

Conventionally, the damping of power system oscillations is performed by

Power System Stabilizer (PSS) which is an added device to Automatic

Voltage Regulator (AVR) of the generator. The basic function of the PSS

is to extend stability limits by modulating generator voltage through the

exciter to provide positive damping torque to power swing modes. By

modulating the terminal voltage the PSS a�ects the power 
ow from the

generator, which eÆciently damps local modes. PSS has the disadvantage

of working through the same element that had resulted in the negative

damping originally. Also, the achievable damping of interarea modes is

less than that of local modes. Since system damping is small at best, it is

reasonable to use new devices for more damping. For e�ective damping

without disturbing the network synchronizing torques, it is essential that

the damping device generate a torque whose phase is precisely de�ned

and can operate continuously. Theses requirements seem best satis�ed by

the fast response and static character of power electronics devices.

In recent years, the fast progress in the �eld of power electronics has

opened new opportunities for the power industry via utilization of the

FACTS devices which o�er an alternative means to mitigate power sys-

tem oscillations. They are operated synchronously with the transmission

line and may be connected either in parallel producing controllable shunt

reactive current for voltage regulation, or in series with the line for con-

trolling power 
ow on the transmission line.

Unlike PSS control at a generator location, the speed deviations of the

machines of interest used as input signals (measurements) are not readily

available to the FACTS devices sited in the transmission line. Further,



12 Chapter 2. Power System Oscillations

since the usual intent is to damp interarea modes, which involve a large

number of generators, speed signals themselves are not necessarily the

best choice for an input signal for devices in the transmission line. For

the FACTS devices, it is typically desirable to extract an input signal

from locally measurable quantities. Selecting appropriate measurements

is usually a very most important aspect of control design.

2.2 Summary

Power systems exhibit various modes of oscillation due to interactions

among system components. Particularly troublesome are the interarea

oscillations, which typically are in the frequency range of 0.1 to 1 Hz.

Conventionally, the damping of power system oscillations is performed by

Power System Stabilizer (PSS). However, due to the fast progress in the

�eld of power electronics, the FACTS devices o�er an alternative means

to mitigate power system oscillations.



Chapter 3

Modeling of Power Systems

In this chapter, the mathematical models for a power system required in

formulating the stability problem will be presented. Both Reduced Net-

work Model (RNM) and Structure Preserving Model (SPM) are presented

in this chapter.

Figure 3.1 shows a multi{machine power system which has a total of n+N

nodes of which the �rst n are internal machine nodes and the remaining

N are load buses, that is, network nodes.

Transmission

Network

GEN 1

1 1n n
V �

� �
�

2 2n n
V �

� �
�

2 2n n
V ��

1 1
E ���

2 2
E ���

n n
E ���

1d
jx�

2d
jx�

dn
jx�

2 1 2 1n n
V �

� �
�

2 2 2 2n n
V �

� �
�

n N n N
V �

� �
�

GEN 2

GEN n

Figure 3.1. A multi{machine power system.

In Figure 3.1, �E0k = E
0

k
6 Æk (k = 1 � � � n) is the internal machine voltage

phasor behind the transient reactance x0dk which includes the reactance

13
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of transformer. E0
k
is the magnitude of the internal machine voltage and

Æk is the internal machine angle of the k{th machine. All the angles

are measured with respect to a synchronously rotating reference in the

system. �Vk = Vk 6 �k (k = n+ 1 � � � n+N) is the load bus voltage phasor

with magnitude Vk and phase angle �k.

Historically, loads are presented by the following three types or models

in terms of their load voltage characteristics (also called \static loads"),

namely:

� Constant power

� Constant current

� Constant impedance

They form fundamental basis in modeling a majority of loads with the

exception of some motor loads requiring special consideration during large

disturbances. A static load is described by

PL = PLo (
V

Vo
)mp

QL = QLo (
V

Vo
)mq

(3.1)

where PLo and QLo are the active and reactive powers at the nominal

voltage Vo, respectively. mp and mq are the voltage exponents of the

active power and the reactive power which can assume any value ranging

from 0 to 3 based on the nature of the composite load characteristic at a

given bus. V is the current voltage.

Having mp = mq = 0, the active and reactive components of the static

load have constant power characteristics. For mp = mq = 1 and mp =

mq = 2, the active and reactive components of the static load have con-

stant current and constant impedance characteristics, respectively.

A frequently used representation of the static loads as functions of voltage

and frequency deviations may be written as (also called ZIP model)

PL = PLo(a0V
0 + a1V

1 + a2V
2)(1 + kP�f)

QL = QLo(b0V
0 + b1V

1 + b2V
2)(1 + kQ�f)

(3.2)

where ai, bi, kP and kQ are the respective voltage and frequency sensitivity

parameters for the load model.
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3.1 Reduced Network Model

The Reduced Network Model (RNM) is based on the following assump-

tions:

� The various network components are assumed to be insensitive to

changes in frequency.

� Each synchronous machine is represented by a voltage phasor with

constant magnitude E0 behind its transient reactance.

� The mechanical angle of the synchronous machine rotor is assumed

to coincide with the electrical phase angle of the voltage phasor

behind the transient reactance.

� Loads are represented as constant impedances, i.e. mp = mq = 2

in (3.1).

� Mechanical power input to generators is assumed constant.

� Saliency is neglected, i.e. x0
d
= x

0

q
.

� Stator resistance is neglected.

This is the simplest power system model used in stability studies. It is

usually limited to analysis of �rst{swing transients.

Power systems are most naturally described by Di�erential{Algebraic

Equations (DAE). An advantage of the assumption of constant impedance

loads is that it is possible to eliminate the network nodes to obtain an

equivalent system which only consists of nonlinear di�erential equations.

This is achieved by the following steps:

1. Perform a pre{fault load 
ow calculation. Calculate the equivalent

steady{state impedance loads in the form of admittances as

�yLk =
PLk � jQLk

V 2
k

; k = n+ 1 � � � n+N

for each load bus, and add these elements to the �Ybus matrix.
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2. Calculate the internal machine voltages behind transient reactances

as

�E0k = �Vn+k + jx
0

dk

PGk � jQGk

�V �

n+k

; k = 1 � � � n

for each of the n machines.

3. Augment the �Ybus matrix by admittances corresponding to the ma-

chine transient reactances as

�yk =
1

jx0
dk

; k = 1 � � � n

to create the n internal machine nodes.

4. This augmented admittance matrix can symbolically be partitioned

as

n N

�̂Y BUS =

�
�YA �YB
�YC �YD

�
n

N

The relation between injected currents and node voltages is now

given by �
�IG
0

�
=

�
�YA �YB
�YC �YD

� �
�EG

�VL

�

where �EG is the vector of the internal machine voltages behind the tran-

sient reactances and �VL is the vector of load bus voltages. Since there is

no injected currents in the network nodes, this system can be reduced to

internal machine nodes as

�IG = (�YA � �YB �Y �1
D

�YC) �EG = �Yint �EG

The power injected in the internal machine node k can now be calculated

by

PGk = Ref �E0k �I�Gkg

= E
0

k

2
Gkk +

nX
l=1
l6=k

E
0

k
E
0

l
(Bkl sin(Ækl) +Gkl cos(Ækl))

(3.3)

where
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Ækl = Æk � Æl

Gkk is the short-circuit conductance of the k{th machine.

Gkl is the transfer conductance in �Yint, k 6= l.

Bkl is the transfer susceptance in �Yint, k 6= l.

Let

Ckl = E
0

k
E
0

l
Bkl

Fkl = E
0

k
E
0

l
Gkl

(3.4)

Now, the motion of the k{th machine is given by ( k = 1 � � �n)

_Æk = !k

Mk _!k = Pmk �Dk!k � PGk

(3.5)

or

_Æk = !k

Mk _!k = Pk �Dk!k �
nX
l=1
l6=k

(Ckl sin(Ækl) +Fkl cos(Ækl)) (3.6)

where

Pk = Pmk �E
0

k

2
Gkk

Pmk is the mechanical power input to the k{th machine.

Dk > 0 is the damping constant of the k{th machine.

Mk > 0 is the moment of inertia constant of the k{th machine.

!k is the rotor speed deviation of the machine k with respect to a syn-

chronously rotating reference.

In the analysis of angle stability, the focus of attention is on the behavior

of the machine angles with respect to each other. In order to clearly

distinguish between the forces that accelerate the whole system and those

that tend to separate the system into di�erent parts, swing equations (3.6)
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are transformed into the Center Of Inertia (COI) reference frame. The

position of the COI is de�ned by

ÆCOI =
1

MT

nX
k=1

MkÆk ; MT =

nX
k=1

Mk (3.7)

Next, the state variables Æk and !k are transformed to the COI variables

as

~Æk = Æk � ÆCOI

~!k = !k � !COI

These COI variables are constrained by

nX
k=1

Mk
~Æk = 0

nX
k=1

Mk~!k = 0

(3.8)

Swing equations (3.6) can now be rewritten in the COI reference frame

as (k = 1 � � � n)
_~Æk = ~!k

_~!k =
1

Mk

[Pk �
nX
l=1
l6=k

Ckl sin(Ækl) + Mk

MT

PCOI �Dk~!k]

� 1

Mk

nX
l=1
l6=k

Fkl cos(Ækl)

= fk + pk

(3.9)

where

PCOI =

nX
k=1

(Pmk � PGk)

fk =
1

Mk

[Pk �
nX
l=1
l6=k

Ckl sin(Ækl) + Mk

MT

PCOI �Dk ~!k]

pk = � 1

Mk

nX
l=1

l 6=k

Fkl cos(Ækl)

(3.10)
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Note that ~Ækl = ~Æk � ~Æl = Ækl and uniform damping is considered.

System (3.9) can indeed be considered as an Ordinary Di�erential Equa-

tion (ODE) of the form

_x = F (x) = fo(x) + p(x) (3.11)

where x = [ ~Æ ~! ]T is the vector of the state variables. In (3.11)

fo(x) = [ ~! [f1 � � � fn] ]T ; p(x) = [ 0 [p1 � � � pn] ]T

and

~Æ = [ ~Æ1 � � � ~Æn ] ; ~! = [ ~!1 � � � ~!n ]

3.2 Structure Preserving Model

It is known that load characteristics have a signi�cant e�ect on system

dynamics. Inaccurate load modeling may lead to a power system operat-

ing in modes that result in actual system collapse or separation. In the

Reduced Network Model (RNM), impedance loads are assumed. Hence,

in the context of system modeling, RNM precludes consideration of load

behaviors (i.e. voltage and frequency variations) at load buses. Further-

more, in the context of physical explanation of results, reduction of the

transmission network leads to loss of network topology.

Structure Preserving Model (SPM) have been proposed (�rst in [20]) to

overcome some of the shortcomings of the RNM, and to improve the mod-

eling of generators and load representations. An advantage of using SPM

is that from a modeling viewpoint, it allows more realistic representations

of power system components, especially load behaviors.

Consider again the multi{machine power system shown in Figure 3.1. It

is assumed that the mechanical power input is constant and the stator

resistance is neglected. The one{axis generator model is used for the

generators. This model includes one circuit for the �eld winding of the

rotor, i.e. this model considers the e�ects of �eld 
ux decay. Note that

in the one{axis generator model, the voltage behind the direct transient

reactance is no longer a constant. The loads are modeled by equation

(3.1) with mp = 0 and arbitrary mq. The transmission lines are given by

an admittance matrix of order (N � N) formed without considering the
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loads and the d{axis transient reactances x0
d
. The kl{th element of the

admittance matrix is de�ned by �Ykl = Gkl + jBkl, where Gkl represents

solely the resistances of the respective transmission lines. In general,

because of the high ratio of reactance to resistance, the transmission line

resistances can be neglected. Thus, �Ykl = jBkl.

The dynamics of the k{th generator are described by the following dif-

ferential equations with respect to the COI reference frame. Note that in

the following equations ~Æk � ~�l = Æk � �l and ~�k � ~�l = �k � �l. Thus, for

k = 1 � � � n
_~Æk = ~!k

Mk
_~!k = Pmk � PGk �Dk~!k � Mk

MT

PCOI

T
0

dok
_E0qk =

xdk � x
0

dk

x0
dk

Vn+k cos(Æk � �n+k)

+Efdk � xdk

x
0

dk

E
0

qk

(3.12)

where

PGk =
1

x
0

dk

E
0

qk
Vn+k sin(Æk � �n+k)

� x
0

dk
� xqk

2x0
dk
xqk

V
2
n+k sin(2(Æk � �n+k))

(3.13)

PCOI is given by (3.10).

xdk, xqk are the d{axis and the q{axis synchronous reactances of the k{th

machine.

E
0

qk
is the q-axis voltage behind transient reactance of the k{th machine.

T
0

dok
is the d{axis transient open{circuit time constant of the k{th ma-

chine.

Efdk is the exciter voltage of the k{th machine which is assumed constant.

Efd can be either constant (�xed excitation) or can vary due to Auto-

matic Voltage Regulator (AVR) action. When the exciter control action

is included in the generator model, due to AVR modeling, at least one

additional di�erential equation is needed in (3.12).
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For the lossless system the following equations can be written at bus k

where Pk is the real power and Qk is the reactive power injected into the

system from bus k.

For k = (n+ 1) � � � 2n

Pk =

n+NX
l=n+1

BklVkVl sin(�k � �l) +
E
0

q(k�n)
Vk sin(�k � Æk�n)

x0
d(k�n)

+
x
0

d(k�n)
� xq(k�n)

2x0
d(k�n)

xq(k�n)

V
2
k
sin(2(�k � Æk�n))

Qk = �
n+NX
l=n+1

BklVkVl cos(�k � �l) +
V
2
k
�E

0

q(k�n)Vk cos(�k � Æk�n)

x0
d(k�n)

�
x
0

d(k�n)
� xq(k�n)

2x0
d(k�n)

xq(k�n)

V
2
k
[cos(2(�k � Æk�n))� 1]

and for k = (2n+ 1) � � � (n+N)

Pk =

n+NX
l=n+1

BklVkVl sin(�k � �l)

Qk = �
n+NX
l=n+1

BklVkVl cos(�k � �l)

Therefore, for k = (n + 1) � � � (n + N) the power 
ow equations can be

written as

Pk + PLk = 0

Qk +QLk = 0
(3.14)

3.3 Summary

Dynamics of multi{machine power systems are described by the Reduced

Network Model or the Structure Preserving Model. In the Reduced Net-

work Model impedance loads are assumed. Thus, it is possible to eliminate

the network nodes to obtain an equivalent system which only consists of



22 Chapter 3. Modeling of Power Systems

nonlinear di�erential equations. However, in the context of physical ex-

planation of results, reduction of the transmission network leads to loss

of network topology.

In the Structure Preserving Model, dynamics of multi{machine power

systems are described by Di�erential{Algebraic Equations. Thus, from

a modeling viewpoint, it allows more realistic representations of power

system components, especially load behaviors.



Chapter 4

Modeling of Controllable

Series Devices

In this chapter, the operating principles of a Uni�ed Power Flow Con-

troller (UPFC), a Quadrature Boosting Transformer (QBT) and a Con-

trollable Series Capacitor (CSC) are described. Also, a general model

is derived for these devices. The models are derived in a single{phase

positive{sequence phasor frame. This model which is referred to as injec-

tion model, is helpful for understanding the impact of these components

on power systems. Furthermore, this model can easily be implemented

into existent power system analysis programs.

4.1 Operating Principle of Controllable Series

Devices

4.1.1 Uni�ed Power Flow Controller

A uni�ed power 
ow controller consists of two voltage source converters

[21]. These converters are operated from a common DC link provided by

a DC capacitor, see Figure 4.1. Converter 2 provides the main function

of the UPFC by injecting an AC voltage with controllable magnitude and

phase angle in series with the transmission line via a series transformer.

The basic function of converter 1 is to supply or absorb the real power

demand by converter 2 at the common DC link. Converter 1 can also

23
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generate or absorb controllable reactive power if it is desired. This con-

verter can thereby provide independent shunt reactive compensation for

the line. Converter 2 supplies or absorbs locally the required reactive

power, and exchanges the active power as a result of the series injection

voltage.

Converter
1

Converter
2

Series
transformer

Shunt
transformer

iV jV

ij ijP jQ+
ji jiP jQ+

seV

Figure 4.1. Basic circuit arrangement of a UPFC.

4.1.2 Quadrature Boosting Transformer

Based on feasible semiconductor switches and converter topologies for

high{power applications, di�erent Phase Shifting Transformer (PST) cir-

cuit con�gurations are identi�ed. In this thesis, the so{called Quadrature

Boosting Transformer (QBT) (i.e. the injected voltage is perpendicular

to the input terminal voltage) is considered. Figure 4.2 shows the basic

circuit of a Quadrature Boosting Transformer (QBT). The phase angle

di�erence between the QBT terminal voltages is achieved by serially con-

necting a Boosting Transformer (BT) into the transmission line. The

power which is injected into the transmission line by this boosting trans-

former must be taken from the network by the Excitation Transformer

(ET). The converter controls the magnitude and the phase angle of �Vse.

4.1.3 Controllable Series Capacitor

A Controllable Series Capacitor (CSC) can be materialized by Thyristor

Controlled Series Capacitors (TCSC) and Thyristor Switched Series Ca-
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Converter

BT

ET

iV jV

ij ijP jQ+
ji jiP jQ+

seV

Figure 4.2. Basic circuit arrangement of a QBT.

pacitors (TSSC), as shown in Figure 4.3. In a simpli�ed study, a CSC

can be considered as a continuously controllable reactance (normally ca-

pacitive) which is connected in series with the transmission line.

TSSC TCSC

Figure 4.3. Basic circuit arrangement of a CSC.

4.2 Injection Model

Figure 4.4 shows the equivalent circuit diagram of a CSD which is located

between buses i and j in a transmission system. A UPFC and a QBT

inject a voltage �Vse in series with the transmission line through a series

transformer, see Section 4.1. The active power Pse involved in the series

injection is taken from the transmission line (i.e. Psh) through a shunt
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transformer. The UPFC generates or absorbs the needed reactive power

(i.e. Qse and Qsh) locally by the switching operation of its converters,

while the reactive power Qse injected in series with the transmission line

by the QBT, is taken from the transmission line (i.e. Qsh). In Figure

4.4, xs is the e�ective reactance of the UPFC (or the QBT) seen from the

transmission line side of the series transformer.

iV jV

sjx

'V
seV

,se seP Q
sh

sh

P

Q
shI

seI

Figure 4.4. Equivalent circuit diagram of a CSD.

Figure 4.5 shows the vector diagram of the equivalent circuit diagram of

a CSD.

γ

seI

'V
seV

iV

β

Figure 4.5. Vector diagram of the equivalent circuit diagram.

4.2.1 Injection Model of UPFC

To obtain an injection model for a UPFC, we �rst consider the series part

of the UPFC as shown in Figure 4.6.
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seViV jV

sjx

seI

'V

Figure 4.6. Representation of the series connected voltage source.

The series connected voltage source is modeled by an ideal series voltage
�Vse which is controllable in magnitude and phase, that is, �Vse = r �Vie

j


where 0 � r � rmax and 0 � 
 � 2�.

The injection model is obtained (as shown in Figure 4.7) by replacing the

voltage source �Vse by a current source �Iinj = �jbs �Vse in parallel with xs.

Note that bs = 1=xs.

i i i
V V �� � j j jV V �� �

s
jx

inj
I

Figure 4.7. Replacement of the series voltage source by a current source.

The current source �Iinj corresponds to injection powers �Si and �Sj which

are de�ned by

�Si = �Vi(��Iinj)
� = �rbsV 2

i sin(
)� jrbsV
2
i cos(
)

�Sj = �Vj(�Iinj)
� = rbsViVj sin(�ij � 
) + jrbsViVj cos(�ij � 
)

where �ij = �i � �j.

Figure 4.8 shows the injection model of the series part of the UPFC, where

Pi = �real( �Si) ; Qi = �imag( �Si)
Pj = �real( �Sj) ; Qj = �imag( �Sj)

(4.1)
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i i i
V V �� � j j jV V �� �

s
jx

i i
P jQ� j jP jQ�

Figure 4.8. Injection model of the series part of the UPFC.

The apparent power supplied by the series voltage source is calculated

from

�Sse = �Vse �I
�

se
= re

j
 �Vi(
�
V

0 � �Vj

jxs
)�

Active and reactive powers supplied by the series voltage source are dis-

tinguished as:

Pse = rbsViVj sin(�ij + 
)� rbsV
2
i sin(
)

Qse = �rbsViVj cos(�ij + 
) + rbsV
2
i
cos(
) + r

2
bsV

2
i

Assuming an ideal UPFC (i.e. losses are neglected in the UPFC), we have

then Psh = Pse. For the UPFC, Qsh is independently controllable, and

we assume that Qsh = 0. Note that Qsh can also have a nonzero value.

The injection model of the UPFC is constructed from the series connected

voltage source model shown in Figure 4.8 by adding Psh + jQsh to bus i.

Figure 4.9 shows the injection model of the UPFC.

i i i
V V �� � j j jV V �� �

s
jx

si si
P jQ�

sj sj
P jQ�

Figure 4.9. Injection model of the UPFC.
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In Figure 4.9

Psi = rbsViVj sin(�ij + 
)

Psj = �Psi
Qsi = rbsV

2
i
cos(
)

Qsj = �rbsViVj cos(�ij + 
)

(4.2)

where r and 
 are the control variables of the UPFC.

For the purpose of developing a control strategy for the UPFC, it is useful

to apply the following control variables.

Since

r sin(�ij + 
) = r cos(
) sin(�ij) + r sin(
) cos(�ij)

r cos(�ij + 
) = r cos(
) cos(�ij)� r sin(
) sin(�ij)
(4.3)

let

uup1 = r cos(
) ; uup2 = r sin(
) (4.4)

Substituting (4.3) and (4.4) into (4.2), the following is obtained.

Psi = bsViVj(uup1 sin(�ij) + uup2 cos(�ij))

Psj = �Psi
Qsi = uup1bsV

2
i

Qsj = �bsViVj(uup1 cos(�ij)� uup2 sin(�ij))

(4.5)

Note that

r =
q
u
2
up1 + u

2
up2 ; 
 = arctan(

uup2

uup1
)

4.2.2 Injection Model of QBT

The argument given in Subsection 4.2.1 is also valid for constructing an

injection model for a QBT. For this device, the injected voltage �Vse is

perpendicular to the input terminal voltage �Vi. Thus, 
 = ��=2, see
Figure 4.5.

Assuming an ideal QBT (i.e. losses are neglected in the QBT), we have

then Psh = Pse. For the QBT, the reactive power injected in series with
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the transmission line is taken from the shunt part of the QBT. Therefore,

Qsh = Qse.

The injection model of the QBT is constructed from the series connected

voltage source model shown in Figure 4.8 by adding Psh + jQsh to bus i.

Thus, Figure 4.9 also shows the injection model of the QBT, where

Psi = uqbsViVj cos(�ij)

Psj = �Psi
Qsi = uqbsV

2
i
+ uqbsViVj sin(�ij)

Qsj = uqbsViVj sin(�ij)

(4.6)

In (4.6), uq = r sin(
) and �rmax � uq � rmax since 
 = ��=2.
Note that

r =j uq j ; 
 = sgn(uq)
�

2

where sgn(:) is the sign function.

4.2.3 Injection Model of CSC

Suppose a CSC is is located between buses i and j in a lossless transmission

line as shown in Figure 4.10.

i i i
V V �� � j j jV V �� �

L
jx

c
jx�

se
I

Figure 4.10. CSC located in a lossless transmission line.

For studies involving load 
ow and angle stability analysis, the CSC is

modeled as a variable reactance, i.e xc in Figure 4.10. However, for the

purpose of developing a control strategy and having same models for the

CSDs, it is useful to have an injection model representation for the CSC.
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Figure 4.4 is also valid for the CSC if �Ish is set to zero and xs is the

transmission line reactance, i.e. xs = xL. Furthermore, � = �=2 in Figure

4.5. Thus, Figure 4.10 can be replaced by Figure 4.4 where xs = xL and
�Ish = 0. From Figure 4.10, we have

�Ise =
�Vi � �Vj

j(xL � xc)

In Figure 4.4, �Vse = �jxc �Ise and in Figure 4.7, we have

�Iinj =
�Vse

jxL
= �jxc

�Ise

jxL
= � xc

xL

�Ise

The injection model of the CSC is then obtained by (4.1). Note that since
�Ish = 0, we have Psh = Qsh = 0. Thus, Figure 4.9 is also valid for the

CSC, where

Psi = ucbsViVj sin(�ij)

Psj = �Psi
Qsi = ucbs(V

2
i
� ViVj cos(�ij))

Qsj = ucbs(V
2
j � ViVj cos(�ij))

(4.7)

and

uc =
xc

xL � xc
(4.8)

4.3 Summary

The injection models of the Controllable Series Devices are derived in

a single{phase positive{sequence phasor frame. The injection model is

helpful for understanding the impact of the Controllable Series Devices

on power systems. This model can easily be used for the purpose of

developing control laws. Furthermore, this model can be implemented

into existent power system analysis programs.
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Chapter 5

Lyapunov Stability

This chapter starts by reviewing some relevant concepts from nonlinear

dynamical systems theory. Stability of equilibrium points in the sense of

Lyapunov is also presented. Lyapunov stability theorems give suÆcient

conditions for stability. They do not say whether the given conditions are

necessary. There are however theorems which establish (at least concep-

tually) that for many of Lyapunov stability theorems the given conditions

are indeed necessary. Such theorems are usually called converse Lyapunov

theorems. These theorems have been a basis for the introduction of Con-

trol Lyapunov Function for systems with control input.

5.1 Mathematical Preliminaries

Consider the nonlinear system

_x = fo(x) (5.1)

where x is the n{dimensional state vector which belongs to the Euclidean

space Rn. The system is speci�ed by the vector �eld function fo : D ! R
n

which is continuous and has continuous �rst-order partial derivatives with

respect to x on a domain D � R
n into Rn. System (5.1) is also called

33
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autonomous since time does not appear explicitly in fo. Let the solution

to (5.1) be given by

x(t) = �(t� to; xo)

where xo is the initial conditions and to is the initial time which is ar-

bitrary. Since the dependence of the solution on the initial time is not

essential, we can assume without loss of generality that to = 0. Thus,

x(t) = �(t; xo)

Since fo(x) is continuous, and has continuous �rst-order partial deriva-

tives with respect to x, a solution to (5.1) (satisfying the initial conditions

x(0) = �(0; xo) = xo) exists on some time interval a < t < b containing

0, and that the time interval can be extended at both ends as long as

kfo[x(t)]k remains bounded. Furthermore, the solution is unique and dif-

ferentiable in both t and xo.

One of the most important geometric properties of autonomous systems

of the form (5.1) is that there is only one solution x(t) = �(t; xo) passing

through any given initial state x(0) = �(0; xo) = xo. Hence, trajectories in

state space can never intersect each other. In contrast, for nonautonomous

systems, the solution x(t) = �(t; to; xo) depends on the starting time to,

so that the solution from xo at to = 0 will generally not be the same as

the solution starting from xo at some other initial time to 6= 0.

An equilibrium point xe for (5.1) is de�ned by fo(xe) = 0. The point xe
is Lyapunov stable (or stable in the sense of Lyapunov) if solutions that

start near xe remain near xe for all t � 0. More precisely, an equilibrium

point xe is Lyapunov stable if for any � > 0 (no matter how small) there

exists a Æ = Æ(�) > 0 such that for every x(0) in which

kx(0) � xek < Æ

the solution x(t) satis�es

kx(t)� xek < � ; 8 t > 0

If, in addition,

kx(t)� xek ! 0 as t!1

then xe is asymptotically stable. An equilibrium point xe that is not

stable is called unstable.
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Lyapunov stability of a solution to a system of nonlinear equations (at

least locally) can be de�ned by examining the linearized equations of

motion. This approach is known as Lyapunov's �rst (or indirect) method.

Linearizing the nonlinear system (5.1) around an equilibrium point xe, we

obtain

� _x = A�x

where

A =

�
@fo(x)

@x

�
x=xe

=

2
664

@f1(x)
@x1

� � � @f1(x)
@xn

...
. . .

...
@fn(x)
@x1

� � � @fn(x)
@xn

3
775
x=xe

which is also called the Jacobian matrix at xe. We say xe is hyperbolic if

A has no eigenvalues (�) with zero real part. Matrix A is called a stability

matrix or a Hurwitz matrix if all eigenvalues of A satisfy Re�i < 0.

Theorem 5.1. Let xe be an equilibrium point for the nonlinear system

(5.1). Then,

1. xe is asymptotically stable if A is a Hurwitz matrix.

2. xe is exponentially stable if and only if A is a Hurwitz matrix.

3. xe is unstable if Re�i > 0 for one or more of the eigenvalues of A.

The proof can be found in [13].

An asymptotically or exponentially stable equilibrium point is henceforth

denoted by xs. A few topological concepts of Rn are reviewed in the

following. The stability region of xs ( denoted by S(xs)) is a region in the

state space from which all trajectories converge to xs. More precisely,

S(xs) = fx : lim
t!1

�(t; xo) = xsg

A subset S � R
n is said to be open, if for every vector x 2 S, one can

�nd an �{neighborhood of x

N(x; �) = fz 2 Rn : kz � xk < �g

such that N(x; �) 2 S. A set S is bounded if there is r > 0 such that

kxk � r for all x 2 S. A point p is a boundary point of a set S if
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every neighborhood of p contains at least one point of S and one point

not belonging to S. Boundary of the stability region S(xs) is called the

stability boundary of xs, denoted by @S(xs). A closed set contains all

its boundary points. A set S is compact if it is closed and bounded. An

open set S is connected if every pair of points in S can be joined by an

arc lying in S. A set S is said to be positively invariant set if

x(0) 2 S ) x(t) 2 S; 8 t � 0 (5.2)

Let E denote the set of equilibrium points of nonlinear system (5.1). Let

also xe be a hyperbolic equilibrium point of (5.1). The stable manifolds

(Ws(xe)) and the unstable manifolds (Wu(xe)) of xe are expressed by

Ws(xe) = fx : �(t; xo)! xe as t!1g
Wu(xe) = fx : �(t; xo)! xe as t! �1g

We say two manifolds satisfy the transversality conditions if either [22]

� at every point of their intersection, their tangent spaces span Rn at

the intersection point, or

� they do not intersect at all.

Consider again the nonlinear system (5.1). Assume that this system sat-

is�es the following assumptions:

� All equilibrium points on the stability boundary are hyperbolic.

� The stable and the unstable manifolds of equilibrium points on the

stability boundary satisfy the transversality conditions.

� Every trajectory on the stability boundary approaches one of the

equilibrium points on the stability boundary as t!1.

Characterization of the stability boundary is given by the following the-

orem.

Theorem 5.2. Let xei (i = 1; 2; : : : ) be the unstable equilibrium points of

(5.1) on @S(xs). The stability boundary @S(xs) is then contained in the

set which is the union of the stable manifolds of the unstable equilibrium

points on the stability boundary @S(xs). More precisely,

@S(xs) =
[

xei
2E
T
@S(xs)

Ws(xei)
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The proof can be found in [22].

An algorithm to determine the stability boundary would involve the fol-

lowing steps:

1. Find all equilibrium points, i.e. solve fo(x) = 0.

2. Identify those unstable equilibrium points whose unstable manifolds

contain trajectories approaching the stable equilibrium point xs.

These unstable equilibrium points will be on the stability boundary.

3. Find the union of the stable manifolds of the unstable equilibrium

points identi�ed in step 2. This step would in practice involve nu-

merical integration.

Example 5.1:

Consider the following nonlinear system

_x1 = �8x1 + 2x1x
2
2

_x2 = �18x2 + 2x2x
2
1

(5.3)

Step 1 gives the following equilibrium points.

xe1 = (�3;�2) ; xe2 = (3; 2)

xe3 = (�3; 2) ; xe4 = (3;�2)

and

xe5 = (0; 0)

Linearization of (5.3) gives

A =

� �8 + 2x22 4x1x2
4x1x2 �18 + 2x21

�
x=xe

Applying Theorem 5.1, we �nd that xe5 = (0; 0) is the only asymptotically

stable point, i.e. xs = xe5 . Step 2 and step 3 give Figure 5.1 which shows

the stability region and the stability boundary of xs.
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Figure 5.1. Stability boundary (dotted lines) and stability region of xs.

5.2 Lyapunov Function

In this section we present a qualitative approach to stability analysis (valid

for both linear and nonlinear systems) known as Lyapunov's second (or

direct) method. The objective of this method is to answer questions of

stability of di�erential equations, utilizing the given form of the equations

but without explicit knowledge of the solutions.

The principal idea of Lyapunov's second method is closely related to the

energy of a system. If the rate of change dE(x)=dt of the energy E(x) of

an isolated physical system is negative for every possible state x, except

for a single equilibrium state xe, the energy will then continually decrease

until it �nally assumes its minimum value E(xe). In other words, a dis-

sipative system perturbed from its equilibrium point will always return

to it; this is the intuitive concept of stability [23]. Thus, by examining

the time derivative of E along the trajectories of the system, it is possible

to determine the stability of the equilibrium point. In 1892, Lyapunov
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showed that certain other functions could be used instead of energy to

determine stability of an equilibrium point.

Consider again the system (5.1). We present the analysis in terms of the

zero equilibrium point, i.e. xe = 0. The stability of any other equilibrium

point can be obtained by simply translating the coordinate system so that

the equilibrium of interest is at the origin in the new coordinates. Let

V : D ! R be a continuously di�erentiable function de�ned in a domain

D � R
n that contains the origin. The time derivative of V along the

trajectories of (5.1) (denoted by _V) is given by

_V =

nX
i=1

@V
@xi

fi(x)

=

�
@V
@x1

;
@V
@x2

; � � � ; @V
@xn

�
�

2
6664
f1(x)

f2(x)
...

fn(x)

3
7775 =

@V
@x

� fo(x)

= grad(V(x)) � fo(x)

The time derivative of V along the trajectories of a system is dependent

on the system's equation. Hence, _V will be di�erent for di�erent systems.

Theorem 5.3. Let x = 0 be an equilibrium point for (5.1) and D �
R
n be a domain containing x = 0. Let V : D ! R be a continuously

di�erentiable function, such that

V(0) = 0 and V(x) > 0 in D � f0g (5.4)

_V(x) = grad(V(x)) � fo(x) � 0 in D (5.5)

Then, the origin is stable. Moreover, if

_V(x) = grad(V(x)) � fo(x) < 0 in D � f0g (5.6)

the origin is asymptotically stable.

The proof can be found in [13].

A continuously di�erentiable function V satisfying (5.4) and (5.5) (or

(5.6)) is called a Lyapunov function.
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A function V(x) satisfying condition (5.4), that is, V(0) = 0 and V(x) > 0

for x 6= 0, is said to be positive de�nite. If it satis�es the weaker condition

V(x) � 0 for x 6= 0, it is said to be positive semide�nite. A function V(x)
is said to be negative de�nite or negative semide�nite if �V(x) is positive
de�nite or positive semide�nite, respectively. With this terminology, we

rephrase Lyapunov's theorem to say that the origin is stable if there is a

continuously di�erentiable positive de�nite function V(x) so that _V(x) is
negative semide�nite, and it is asymptotically stable if _V(x) is negative
de�nite.

Theorem 5.4. Let x = 0 be an equilibrium point for (5.1) and D �
R
n be a domain containing x = 0. Let V : D ! R be a continuously

di�erentiable function, such that V(0) = 0 and V(xo) > 0 for some xo

with arbitrarily small kxok. Choose r > 0, such that the ball Br = fx 2
R
n : kxk � rg is contained in D, and let

U = fx 2 Br : V(x) > 0g
Suppose that _V(x) > 0 in U . Then, the origin is unstable.

The proof can be found in [13].

Example 5.2:

Consider the scalar system

_x = ax
3 (5.7)

Linearization of the system about the origin x = 0 yields

A = 3ax2jx=0 = 0

Thus, A is not Hurwitz. Applying Theorem 5.1, the origin is therefore not

exponentially stable. However, Theorem 5.1 fails to determine stability

of the origin. This failure is genuine in the sense that the origin could

be asymptotically stable, stable or unstable depending on the value of

the parameter a. Stability of the origin can be however determined by

applying Theorems 5.3 and 5.4. Choosing the positive de�nite function

V(x) = x
4, its time derivative along the trajectories of system (5.7) is

given by

_V(x) = 4ax6

If a < 0, the origin is asymptotically stable since _V(x) < 0. If a = 0,

the origin is stable since _V(x) = 0. Finally, if a > 0, the origin is then

unstable since _V(x) > 0.
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As was mentioned, Lyapunov functions for a given system are not unique.

Furthermore, while the conditions in Lyapunov's stability theorem are suf-

�cient conditions, they are not constructive conditions; they do not tell

us how to �nd a Lyapunov function for a particular system. There are

however theorems which establish (at least conceptually) that the given

conditions in Theorem 5.3 are also necessary for stability. Such theorems

are usually called converse Lyapunov theorems. These theorems do not

give direct help in the practical search for a Lyapunov function. However,

the theorems are useful in using Lyapunov theory to draw conceptual con-

clusions about the behavior of dynamical systems. They have also been a

basis for the introduction of Control Lyapunov Function for systems with

control input. In this Section, one of these converse theorems is given. For

a comprehensive treatment of converse Lyapunov theorems, see [14]{[15]

and [23].

Theorem 5.5. Let x = 0 be an asymptotically stable equilibrium point

for system (5.1) and D � R
n be a domain containing x = 0. Let also

Do � D, containing x = 0. Then, there is a continuously di�erentiable

positive de�nite function V : Do ! R whose time derivative is negative

de�nite.

Quite often, it is not suÆcient to determine that a given system has an

asymptotically stable equilibrium point. Rather, it is important to �nd

the stability region of that point, or at least an estimate of it. Theorem 5.2

may give the stability region of an asymptotically stable equilibriumpoint.

However, application of this theorem may be diÆcult (if not impossible)

to large and complex systems. Lyapunov's second method can be used

to �nd the stability region S(xs) or an estimate of it. By an estimate of

S(xs), we mean a set 
 � S(x), such that every trajectory starting in 


approaches the origin as t!1.

Consider again the nonlinear system (5.3) in Example 5.1. The stability

region and the stability boundary of this system were shown in Figure

5.1 by applying Theorem 5.2. Now, an estimate of the stability region is

de�ned by using Lyapunov function. The simplest estimate is provided

by the set


c = fx 2 Rn : V(x) < cg
Consider the positive de�nite function V = x

2
1+x

2
2 whose time derivative

along the trajectories of the system is given by

_V = �4(4x21 + 9x22 � 2x21x
2
2)
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Since our interest is in estimating the stability region, we need to deter-

mine a domain D about the origin where _V is negative de�nite and a set


c � D, which is bounded. We can �nd c by minimizing V subject to
_V = 0. Doing this, we easily �nd c = 12:5. Thus, V < 12:5 is the estimate

of the stability region as shown in Figure 5.2.
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Figure 5.2. Estimate of the stability region of xs.

For mechanical and electrical systems, the physical energy (or energy{

like) functions are often used as Lyapunov function candidates. The time

derivatives of these energy functions are however negative semide�nite.

Therefore, these functions fail to satisfy condition (5.6) for Lyapunov

function.

Example 5.3:

Consider the One{Machine In�nite Bus (OMIB) system shown in Fig-

ure 5.3 in which xL includes line reactance (xline = 0:5 (p:u)), trans-

former reactance (xt = 0:15 (p:u)) and generator transient reactance

(x0
d
= 0:2 (p:u)).
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E E �� �� � 0V�

L
jx
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Figure 5.3. The OMIB system.

The dynamics of this system are given by

_Æ = !

_! =
1

M
[Pm � Pmax sin(Æ)�D!]

(5.8)

where

M =
2H

!o
=

8

100�
; D =

60

!o
; Pm = 1:1 (p:u); Pmax = bE

0
V

b =
1

xL
=

1

0:85
; E

0 = 1:075 (p:u); V = 1 (p:u)

(5.9)

The equilibrium points of this system are given by

(Æe1 ; !e1) = (� � arcsin(Pm=Pmax); 0)

(Æe2 ; !e2) = (�� � arcsin(Pm=Pmax); 0)

(Æe3 ; !e3) = (arcsin(Pm=Pmax); 0)

(5.10)

Applying Theorem 5.1, it can be found that (Æe1 ; !e1) and (Æe2 ; !e2) are

unstable, but (Æe3 ; !e3) is an asymptotically (and also exponentially) sta-

ble point. Let x = [Æ !]T and xs = [Æs 0]T = [Æe3 0]T . The stability

of (Æs; 0) (or xs) is studied by applying Theorem 5.3. For system (5.8), the

following energy function (which is positive de�nite in a certain domain

surrounding (Æs; 0)) exists.

V = 0:5M!
2 � PmÆ � Pmax cos(Æ) + Co (5.11)
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where Co is a constant, such that V = 0 at (Æs; 0). The time derivative of

(5.11) along the trajectories of (5.8) is given by

_V = grad(V) � fo(x)

= [�Pm + Pmax sin(Æ) M!] �
2
4 !

Pm�Pmax sin(Æ)�D!
M

3
5

= �D!2 � 0

(5.12)

which is negative semide�nite. It is not negative de�nite because _V = 0

for ! = 0 irrespective of the value of Æ. Therefore, we can only con-

clude that (Æs; 0) is stable, since _V fails to satisfy condition (5.6) for Lya-

punov function. However, we found based on Theorem 5.1 that (Æs; 0)

is asymptotically stable. Furthermore, Figure 5.4 shows that (Æs; 0) is

asymptotically stable.
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Figure 5.4. Phase portrait of the OMIB system.

Note, however, that _V is negative everywhere except on the line ! = 0,

where _V = 0. For the system to maintain the _V = 0 condition, the
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trajectory of the system must be con�ned to the line ! = 0. Unless

Æ = Æ
s, this is impossible because from (5.8)

! = 0) _! = 0) Pm � Pmax sin(Æ) = 0

Hence, on the segment Æe2 < Æ < Æe1 of the ! = 0 line, the system

can maintain the _V = 0 only at the (Æs; 0). Therefore, V must decrease

towards 0, and consequently (Æ; !)! (Æs; 0) as t!1.

The above argument follows La Salle's invariance principle and the theo-

rem of Barbashin and Krasovskii. We �rst state La Salle's theorem.

Theorem 5.6. Let 
 � D be a compact set that is positively invariant

with respect to (5.1). Let V : D ! R be a continuously di�erentiable

function, such that _V � 0 in 
. Let Z be the set of all points in 
 where
_V = 0. Let M be the largest invariant set in Z. Then, every solution

starting in 
 approaches M as t!1.

A positively invariant set is de�ned by (5.2). It is clear that under the

assumptions of Theorem 5.6 the maximal invariant set M is not empty,

it indeed contains at least the equilibrium point x = 0. Thus, one will

be able to conclude that the given equilibrium point is asymptotically

stable, whenever M reduces to the equilibrium point. This is done by

showing that no solution can stay identically in Z, other than the trivial

solution x(t) = 0. We are now ready to state the theorem of Barbashin

and Krasovskii.

Theorem 5.7. Let x = 0 be an equilibrium point for (5.1). Let also

V : D ! R be a continuously di�erentiable positive de�nite function on

a domain D containing the origin x = 0, such that _V � 0 in D. Let

S = fx 2 D : _V = 0g and suppose that no solution can stay identically

in S, other than the trivial solution. Then, the origin is asymptotically

stable.

The proofs of the above theorems can be found in [13].

Unlike Theorem 5.7, Theorem 5.6 does not require the function V(x) to
be positive de�nite. Furthermore, this theorem gives an estimate of the

stability region which is not necessarily of the form 
c = fx 2 R
n :

V(x) � cg by which we estimated the stability region of system (5.3),

see Figure 5.2. The set 
 of Theorem 5.6 can be any compact positively
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invariant set which may give less conservative estimates of the stability

region.

Note, however, that these two theorems cannot be considered as an ex-

tension of Lyapunov's theorem. If the origin is asymptotically stable,

there must then exist a \true" Lyapunov function by virtue of Theorem

5.5. However, since it is (in general) diÆcult to �nd a \true" Lyapunov

function, these theorems are therefore useful for testing stability.

5.3 Total Stability

Consider the system

_x = F (x) (5.13)

which describes an actual real system. This system has the same proper-

ties as system (5.1). Since it is diÆcult to �nd a Lyapunov function for

the actual system (5.13), we (based on the reasonable conditions) simplify

this system, such that a Lyapunov function can be found. The dynamics

of the simpli�ed system are then given by

_x = fo(x) (5.14)

System (5.14) is henceforth called the nominal system.

With simple manipulation, the actual system (5.13) can be rewritten as

_x = F (x) =fo(x) + [F (x) � fo(x)]

=fo(x) + p(x)
(5.15)

where p(x) = [F (x) � fo(x)]. We think of this system as a perturbation

of the nominal system (5.14), see also (3.11).

Suppose the nominal system (5.14) has an asymptotically stable equilib-

rium point at the origin. The question arises, what we can say about

the stability behavior of the perturbed system (5.15). Lyapunov stabil-

ity accounts for the robustness of an equilibrium point with respect to

perturbations of the initial state. However, a concept of stability was

introduced (usually referred to as total stability) expressing the robust-

ness of the nominal system with respect to perturbations acting on the

right{hand side of the nominal system.
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Let the origin be an equilibrium point for the nominal system (5.14). Let

also X (t) denote the solution of the perturbed system. We say that the

origin is totally stable, if for every positive number � (however small),

there are two positive numbers �1(�) and �2(�), such that

kX (t)k < � for t > 0

provided that

kX (0)k < �1(�)

,and that in the domain kxk < � and t > 0, the inequality

kp(x)k < �2(�)

is satis�ed.

Note that in the de�nition of the total stability, it is not required that

p(x) should be zero at the origin, i.e. p(0) 6= 0. The only requirement on

function p(x) is that this function is bounded in modulus for suÆciently

small values of x, i.e. p(x) remains small for all t > 0.

Theorem 5.8. If the origin of the nominal system (5.14) is asymptoti-

cally stable, it is also totally stable.

Applying the converse Lyapunov theorem (i.e. Theorem 5.5), we can state

the following theorem.

Theorem 5.9. If there exists a Lyapunov function for the nominal sys-

tem (5.14), the origin is totally stable.

The proofs of the above theorems can be found in [14].

The requirement that function p(x) be small for all t > 0 is not realistic.

It is more realistic to require that p(x) may assume large values in certain

small intervals of time while being small most of the time. A function

p(x) with this property is called bounded in the mean. It can be shown

that Theorem 5.9 is also valid for p(x) that is bounded in the mean [15].
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5.4 Application of Lyapunov Function to Power

Systems

As noted in Section 5.2, for mechanical and electrical systems, the physi-

cal energy (or energy{like) functions are often used as Lyapunov function

candidates. The time derivatives of these energy functions are however

negative semide�nite. Therefore, these functions fail to satisfy condition

(5.6) for Lyapunov function. However, applying La Salle's invariance prin-

ciple and/or the theorem of Barbashin and Krasovskii (i.e. Theorems 5.6

and 5.7), the energy functions satisfy the asymptotic stability condition

and they can be considered as Lyapunov function candidates.

In the following, energy functions for both Reduced Network Model and

Structure Preserving Model are presented. For a detailed analysis of

energy functions in power systems, see [11] and references therein.

5.4.1 Energy Function for Reduced Network Model

Application of energy functions to power systems began in the former

Soviet Union in the 1930's, and in the western world in 1947 with Mag-

nusson [24]. All early work on energy function methods was based on the

Reduced Network Model (RNM) of power systems, i.e. system (3.11) for

which Lyapunov theory was already established. However, by assuming

constant impedance load models, the RNM excludes the use of general

nonlinear and dynamic loads, that is, network structure is lost in this

model. Furthermore, to �nd a rigorous energy function, p(x) must be

zero in (3.11), that is, transfer conductances must be ignored. However,

the concept of total stability may give an analytical justi�cation of this

approximation, i.e setting p(x) to zero.

Now, consider system (3.11). Setting p(x) = 0, the dynamics of the

system are described by

_~Æk = ~!k

_~!k =
1

Mk

[Pk �
nX
l=1

l6=k

Ckl sin(Ækl) +
Mk

MT

PCOI �Dk~!k]
(5.16)
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The following energy function is given for system (5.16)

V(~Æ; ~!) = 1

2

nX
k=1

Mk~!
2
k
�

nX
k=1

Pk
~Æk �

n�1X
k=1

nX
l=k+1

Ckl cos(Ækl) + Co (5.17)

where Co is a constant, such that at the stable equilibrium point (Æs; 0),

the energy function is zero. Thus,

Co =

nX
k=1

Pk
~Æs
k
+

n�1X
k=1

nX
l=k+1

Ckl cos(Æskl)

It can be shown that the energy function (5.17) is positive de�nite in a

certain region surrounding (Æs; 0).

The time derivative of the energy function along the trajectories of system

(5.16) is given by

_V = grad(V) � fo(x)

=

nX
k=1

[Mk
_~!k � Pk +

nX
l=1
l6=k

Ckl sin(Ækl)] ~!k

=

nX
k=1

[
Mk

MT

PCOI �Dk ~!k] ~!k

=�
nX

k=1

Dk~!
2
k

(5.18)

since,

nX
k=1

PCOI

MT

Mk~!k =
PCOI

MT

nX
k=1

Mk~!k = 0

by virtue of (3.8).

Also, by virtue of Theorem 5.7, the energy function (5.17) satis�es the

asymptotic stability condition and it can be considered as a Lyapunov

function candidate.

5.4.2 Energy Function for Structure Preserving Model

As noted in Section 3.2, Structure Preserving Model (SPM) has been pro-

posed to overcome some of the shortcomings of the RNM and to improve
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the modeling of generators and load representations. In general, SPM

is mathematically described by a set of Di�erential{Algebraic Equations

(DAE) of the form:

_x = f(x; y)

0 = g(x; y)
(5.19)

Here, the di�erential equations describe the dynamics of the generators

(see (3.12)), while the algebraic equations express the power 
ow equa-

tions at each bus (see (3.14)). The algebraic states y are related to the

dynamic states x through the algebraic equations g. Note that in (5.19),

each trajectory must satisfy the algebraic constraint g(x; y) = 0 at all

time. Therefore, (5.19) can be interpreted as a dynamical system on the

algebraic manifold L = f(x; y) : g(x; y) = 0g. Generally, there exist

certain points within L where the trajectories may run into con
icts in

satisfying constraint g(x; y) = 0. These points are called the singular or

the impasse points of the network.

Given a point on L, say (xo; yo) 2 L. If the Jacobian Gy = @g

@y
is non-

singular (i.e. det(Gy) 6= 0 at (xo; yo)), by virtue of the Implicit Function

Theorem, there exists a unique solution, y = h(x), of the network equa-

tions which satis�es g(x; h(x)) = 0 locally near (xo; yo). Therefore locally

near (xo; yo), the dynamics of (5.19) exists as a well de�ned smooth sys-

tem described by

_x = f(x; h(x)) = F (x) (5.20)

which is indeed an ODE system.

Note that once the trajectory intersects the singular surface

S = f(x; y) 2 L : det(Gy) = 0g

a DAE cannot be reduced to an ODE. This is usually referred to as a

singularity induced bifurcation [25].

To obtain an energy function for system (5.20), it might be necessary to

simplify this system. For example, di�erential{algebraic equations (3.12)

and (3.14) are based on that the power system is lossless, the real load is

constant and the generators are modeled by the one{axis model excluding
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AVR and turbine regulator. Let fo(x) describe the simpli�ed system.

Then, (5.20) can be rewritten as

_x =f(x; h(x)) = F (x)

=fo(x) + (F (x)� fo(x))

=fo(x) + p(x)

(5.21)

Note that for both RNM and SPM modeling of the power systems, F (x)

has been used to denote the actual system and fo(x) to denote the sim-

pli�ed system, see (3.11) and (5.21), in order to facilitate the application

of the theorems in Section 5.3. However, it does not mean that F (x) and

fo(x) are identical in (3.11) and (5.21).

It is also possible to infer dynamical behavior of a DAE via a singular

perturbation approach. This approach treats the algebraic equations as

a limit of fast dynamics � _y = g(x; y). In other words, as � approaches

zero, the fast dynamics will approach the algebraic manifold. Therefore

for DAE system (5.19), an associated singularly perturbed system can be

de�ned by

_x = f(x; y)

� _y = g(x; y)
(5.22)

where � is a suÆciently small positive number. If f and g are both smooth

functions and bounded for all (x; y), the vector �eld is then globally well

de�ned.

Although the DAE system (5.19) and the corresponding singularly per-

turbed system (5.22) have some di�erent dynamic models, they still share

several similar dynamical properties. For instance, they have the same

equilibrium points, but the trajectories of the singularly perturbed system

(5.22) are not exactly the same as the trajectories of the original DAE

system (5.19). However, Tikhonov's theorem over the in�nite time inter-

val can be applied to provide a theoretical justi�cation to ensure that the

di�erence of solution trajectories between the original DAE system (5.19)

and the singularly perturbed system (5.22) is uniformly bounded by the

order of O(�) [13]. Thus, trajectories generated by the singular perturbed

system are still valid approximations to that of the DAE system. Appli-

cation of the singular perturbation approach to the power systems can be

found in [26]{[28].
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Based on the theorems in [29] and [30], the following energy function is

given for equations (3.12) and (3.14), or indeed for system (5.21) with

p(x) = 0.

V(~!; ~Æ; E0
q
; V; ~�) = V1 +

8X
k=1

V2k + Co (5.23)

where

V1 =
1

2

nX
k=1

Mk~!
2
k

V21 = �
nX

k=1

Pmk
~Æk

V22 =

n+NX
k=n+1

PLk
~�k

V23 =

n+NX
k=n+1

Z
QLk

Vk
dVk

V24 =

2nX
k=n+1

1

2x0
dk�n

[E0
2
qk�n + V

2
k
� 2E0

qk�n
Vk cos(Æk�n � �k)]

V25 = �1

2

n+NX
k=n+1

n+NX
l=n+1

BklVkVl cos(�k � �l)

V26 =

2nX
k=n+1

x
0

dk�n
� xqk�n

4x0
dk�n

xqk�n
[V 2
k
� V

2
k
cos(2(Æk�n � �k))]

V27 = �
nX

k=1

EfdkE
0

qk

xdk � x0
dk

V28 =

nX
k=1

E
02
qk

2(xdk � x0
dk
)

V1 is known as the kinetic energy and V2k as the potential energy. Co is

a constant, such that at the stable equilibrium point, the energy function

is zero.
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Using the notation

[
dV
dt

]~! for
@V
@~!

d~!

dt

and similarly for the other states, we have

[
dV1
dt

]~! + [
dV21
dt

+
dV24
dt

+
dV26
dt

]~Æ

= �
nX

k=1

Dk(~!k)
2

(5.24)

[
dV22
dt

+
dV24
dt

+
dV25
dt

+
dV26
dt

]~�

=
X

(Pk + PLk)
_~�k = 0

(5.25)

[
dV23
dt

+
dV24
dt

+
dV25
dt

+
dV26
dt

]V

=
X

(Qk +QLk)
_Vk

Vk
= 0

(5.26)

[
dV27
dt

+
dV28
dt

+
dV24
dt

]E0
q

= �
nX

k=1

T
0

dok

xdk � x0
dk

( _E0qk)
2

(5.27)

Thus, the time derivative of the energy function is

dV
dt

= �
nX

k=1

Dk(~!k)
2 �

nX
k=1

T
0

dok

xdk � x0
dk

( _E0qk)
2 � 0 (5.28)
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5.5 Summary

The existence of a Lyapunov function is necessary and suÆcient for the

stability of a system. For mechanical and electrical systems, the physical

energy (or energy{like) functions are often used as Lyapunov function

candidates. The time derivatives of these energy functions are however

negative semide�nite. Therefore, these functions fail to satisfy condition

(5.6) for Lyapunov function. However, Theorem 5.7 and/or Theorem 5.6

justi�es the use of the energy functions as Lyapunov function candidates.

Since it is diÆcult to �nd a Lyapunov function for an actual real system, it

is reasonable to simplify the actual system, such that a Lyapunov function

can be found. Then, based on the concepts of the total stability, it can be

shown that the stability of the simpli�ed system also implies the stability

of the actual system, see Theorem 5.8 and Theorem 5.9.



Chapter 6

Control Lyapunov Function

Lyapunov theory deals with dynamical systems without input. For this

reason, it has traditionally been applied only to closed{loop control sys-

tems, that is, systems for which the input has been eliminated through

the substitution of a predetermined feedback control. However, some au-

thors, [31]{[33], started using Lyapunov function candidates in feedback

design itself by making the Lyapunov derivative negative when choosing

the control. Such ideas have been made precise with the introduction

of the concept of a Control Lyapunov Function for systems with control

input [34].

6.1 General Framework

Consider the following autonomous system depending on a parameter

u 2 Rm

_x = f(x; u) ; x 2 
 (6.1)

where 
 is an open connected region of Rn. System (6.1) is referred to

as a control system in which u is the control input and x is the state

variables.

Let the origin be an equilibrium point for (6.1) and 0 2 
. The stabiliz-

ability problem can then be stated in the following way. We want to �nd

55
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conditions for the existence of a feedback control u = u(x) de�ned in a

neighborhood of the origin such that the closed{loop system

_x = f(x; u(x)) = ~f(x)

has a stable equilibrium point at the origin. If such a function u(x)

exists, we say that (6.1) is stabilizable at the origin and the function u(x)

is called a stabilizing feedback law or (simply) a stabilizer. Throughout

this work, we are mainly interested in achieving asymptotic stability of

the closed{loop system.

Consider system (6.1) and assume that this system is continuously stabi-

lizable. According to the converse Lyapunov theorem (i.e. Theorem 5.5),

there must be a positive de�nite function V(x), such that

_V(x) = grad(V(x)) � f(x; u) < 0 (6.2)

for each x 6= 0 in some neighborhood D of the origin.

A function V(x) satisfying (5.4) and (6.2) is called a Control Lyapunov

Function (CLF). Henceforth, we study a special form of (6.1) which is

called aÆne systems, that is, systems of the form

_x = f(x; u) = fo(x) +

mX
i=1

uifi(x) (6.3)

where x 2 
 � R
n, u 2 R

m and fo(x) is the system without control

input. We assume that fo; f1; : : : ; fm are C1, (Cr denotes r{time

di�erentiable). We also assume that for some �u = (�u1; : : : ; �um) 2 R
m

the equality

_x = fo(0) +

mX
i=1

�uifi(0) = 0 (6.4)

holds. Indeed, for each stabilizing feedback u(x), the value �u = u(0) must

satisfy (6.4). We are now ready to state the following theorem which was

obtained �rst by Artstein [31].

Theorem 6.1. Let u = (u1; : : : ; um) 2 R
m. Let also �u be a solution

of (6.4).There exists a continuous feedback law u(x) which makes (6.3)

asymptotically stable if and only if there exists a function V(x) which
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satis�es condition (5.4), and also for every � > 0, a Æ > 0 exists such that

whenever kxk < Æ, the inequality

grad(V(x)) � [fo(x) + u1f1(x) + � � �+ umfm(x)] < 0

holds for ku� �uk < �.

Since Artstein's proof is not constructive, a question arises whether it is

possible to write an explicit formula for a stabilizing feedback under the

assumptions of Theorem 6.1.

Now, consider system (6.3) with Rm = R, that is,

_x = fo(x) + uf1(x) (6.5)

Moreover, we assume fo(0) = 0, so that we can also take u(0) = 0. Note

that if (6.5) has a stabilizing control law u(x) such that u(0) = �u, then

the system

_x = [fo(x) + �uf1(x)] + vf1(x)

can be stabilized setting v(x) = u(x) � �u, where v(0) = 0. This could

suggest that we can limit ourselves to consider aÆne systems whose drift

term vanishes at the origin, as well as any admissible feedback law.

Let V(x) be a positive de�nite function and let

a(x) = grad(V(x)) � fo(x)
b(x) = grad(V(x)) � f1(x)

Now consider the expression

u(x) = �a(x) +  (x)

b(x)
(6.6)

where  (x) is a positive real function. Obviously, the feedback law (6.6)

makes (6.5) asymptotically stable since _V = � (x) < 0. Thus, V(x) is
a CLF for (6.5). However, a question arises how (6.6) should be de�ned

when b(x) = 0.

Sontag proved that de�ning u(x) = 0 when b(x) = 0 and taking

 (x) =
p
a2(x) + b4(x)

then (6.6) is a stabilizer [32].
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Example 6.1:

Consider the following system

_x1 =� x2

_x2 = x1 + ux2

(6.7)

which can be written in the form (6.5) with

fo(x) =

� �x2
x1

�
; f1(x) =

�
0

x2

�

Taking

V(x) = x
2
1 + x

2
2

2
(6.8)

we have then

a(x) = grad(V(x)) � fo(x) = 0

b(x) = grad(V(x)) � f1(x) = x
2
2

Thus, Sontag's formula (6.6) reduces to

u(x) = �x22 (6.9)

The time derivative of V(x) along the trajectories of the closed{loop sys-

tem is given by

_V(x) = �x42
which does not satisfy (6.2). However, applying Theorem 5.7, it can

be shown that the closed{loop system is asymptotically stable and the

feedback law (6.9) is therefore a stabilizer.

Since the system (6.7) is stabilizable, by the converse Lyapunov theorem

it must exist a function which satis�es the conditions (5.4) and (6.2),

that is, there must exist another function than (6.8) that satis�es the

conditions (5.4) and (6.2).

Taking

V(x) = x
2
1 � x1x2 + x

2
2 (6.10)

it can be shown that this function satis�es the conditions (5.4) and (6.2).

However, there is no real advantage in using the \true" Lyapunov function
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(6.10) instead of (6.8). Indeed, using (6.10), the feedback law de�ned

according to Sontag's formula is then given by

u(x) = �(x22 � x
2
1) +

p
(x22 � x

2
1)
2 + x

4
2(2x2 � x1)4

x2(2x2 � x1)

which is more complicated than (6.9).

Function (6.8) is indeed the energy function of system (6.7) without con-

trol input, that is, the energy function of f0(x). The treatment of such

systems �ts better in the framework of the Jurdjevic{Quinn approach as

explained below.

We say that (6.3) satis�es a Lyapunov condition of the Jurdjevic{Quinn

type if there is a C1 function V(x) which satis�es (5.4) and

grad(V(x)) � fo(x) � 0 for x 2 D (6.11)

According to the Jurdjevic{Quinn approach, a stabilizing feedback law is

typically de�ned componentwise, setting u(x) = [u1(x); : : : ; um(x)] and

ui(x) = �grad(V(x)) � fi(x) ; i = 1; : : : ;m (6.12)

Thus, the time derivative of V(x) for x 2 D with respect to the closed-loop

system is given by

_V(x) = grad(V(x)) � fo(x) +
mX
i=1

ui grad(V(x)) � fi(x)

�
mX
i=1

ui grad(V(x)) � fi(x)

=�
mX
i=1

(grad(V(x)) � fi(x))2 < 0

(6.13)

by virtue of (6.11) and (6.12) [33].

Based on La Salle's invariance principle, the trajectories of the closed{loop

system are attracted by the largest invariant set contained in

Z = fx 2 D : _V(x) = 0g
= fx 2 D : grad(V(x)) � fi(x) = 0 ; i = 0; : : : ;mg

Hence, to prove that (6.12) provides a stabilizing feedback, we need some

technical assumptions excluding the existence of nontrivial sets in Z.
Thus, the following theorem is stated (compare to Theorem 5.7).
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Theorem 6.2. Consider the aÆne system (6.3) with C
1 vector �elds

and fo(0) = 0. Assume that there exists a Lyapunov function V(x) of

the Jurdjevic{Quinn type. Then, the functions (6.12) de�ne a smooth

stabilizing feedback law if and only if there exists a positive real number

co, such that for each c 2 [0 � � � co], no trajectory of the vector �eld fo is

contained in the set

Lc = fx 2 D : V(x) = c and grad(V(x)) � fi(x) = 0 ; i = 1; : : : ;mg

The proof can be found in [18].

Note that the feedback law provided by Sontag's formula does not coincide

in general with (6.12), apart from the special case where

grad(V(x)) � fo(x) = 0

In general, it is natural to expect that the feedback law (6.12) is \simpler"

than the one de�ned by (6.6).

Example 6.2:

Consider the OMIB system with a CSD as shown in Figure 6.1. A three-

phase fault occurs at point F. The fault is cleared after 100 ms by opening

of the faulted line. The post{fault system data is as given by (5.9) in

Example 5.3, but D = 2=!o. The post{fault stable equilibrium point

(s.e.p) is given by (Æe3 ; 0) in (5.10).

E E �� �� � 0V�

L
jx

GEN

Infinite

BusL
jx

V �

se
V

F

Figure 6.1. The OMIB system with a CSD.

Neglecting xs (see Section 4.2), we have for UPFC

�Vse = rV e
j
 = V (r cos(
) + jr sin(
)) = V (uup1 + juup2)

and for QBT

�Vse = rV e
j
 = V (r cos(
) + jr sin(
)) = jV uq

since 
 = ��=2, see Section 4.2.
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Let �V 0 = �Vse + V . The post{fault electric power is then given by

Pe = real(jb �E0( �E0 � �V 0)�)

Thus, the post{fault electric power of the OMIB system in which a UPFC

is installed, is given by

Pe = Pmax sin(Æ) + uup1Pmax sin(Æ) � uup2Pmax cos(Æ) (6.14)

Having a QBT in the system, then

Pe = Pmax sin(Æ) � uqPmax cos(Æ) (6.15)

Finally, having a CSC in the system, the post{fault electric power is given

by

Pe = real

�
�E0
�

�E0 � V

j(xL � xc)

���
= Pmax sin(Æ) + ucPmax sin(Æ) (6.16)

where uc is given by (4.8).

Let x = [Æ !]T and xs = [Æs 0]T = [Æe3 0]T . The post{fault dynamics

of the system with CSD are then described by the aÆne system of the

form (6.3), that is,

_x = f(x; u) = fo(x) +

mX
i=1

uifi(x)

where fo(x) is given by the right{hand side of (5.8). Note that fo(xs) = 0,

so that we can take also u(xs) = 0.

Having a UPFC in the system, the post{fault dynamics of the system are

given by

_x = fo(x) + uup1fup1(x) + uup2fup2(x) (6.17)

For QBT,

_x = fo(x) + uqfqbt(x) (6.18)

and for CSC,

_x = fo(x) + ucfcsc(x) (6.19)

where

fup1(x) = fcsc(x) = [ 0 � c1 sin(Æ) ]
T

fup2(x) = fqbt(x) = [ 0 c1 cos(Æ) ]
T

and c1 =
Pmax

M
.
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Using the energy function (5.11) of the uncontrolled system (5.8) as a

Lyapunov function candidate for the control systems (6.17){(6.19), we

have then for

UPFC:

_V = grad(V) � [fo(x) + uup1fup1(x) + uup2fup2(x)]

� uup1 grad(V) � fup1(x) + uup2 grad(V) � fup2(x)

= Pmax[�uup1 sin(Æ) ! + uup2 cos(Æ) !]

(6.20)

QBT:

_V = grad(V) � [fo(x) + uqfqbt(x)]

� uq grad(V) � fqbt(x)

= Pmaxuq cos(Æ) !

(6.21)

CSC:

_V = grad(V) � [fo(x) + ucfcsc(x)]

� uc grad(V) � fcsc(x)

= �Pmaxuc sin(Æ) !

(6.22)

since grad(V) � fo(x) � 0, see (5.12). By virtue of the Jurdjevic{Quinn

approach, the following stabilizing control laws are given

UPFC:

uup1 = k1 sin(Æ) !

uup2 = �k2 cos(Æ) !
(6.23)

QBT:

uq = �k3 cos(Æ) ! (6.24)

CSC:

uc = k4 sin(Æ) ! (6.25)

since Pmax > 0. k1{k4 are positive gains which are chosen individually to

obtain appropriate damping.
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Thus, with the control laws (6.23){(6.25), the energy function (5.11) be-

comes a CLF for the control systems (6.17){(6.19).

Note that uc and xc have the same sign, since xc is (normally) less than

xL, see (4.8). Thus, uc can be replaced by xc in (6.25), that is,

xc = k5 sin(Æ) ! (6.26)

The CSDs have the following data (rmax and xcmax in (p:u))

� UPFC: rmax = 0:10, 0 � r � rmax, k1 = 0:2 and k2 = 0:25.

� QBT: rmax = 0:26, 0 � r � rmax and k3 = 1.

� CSC: xcmax = 0:125, 0 � xc � xcmax and k5 = 0:4.
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Figure 6.2. Phase portrait of the OMIB system during the fault.

Figure 6.2 shows the stability boundary of the post{fault s.e.p for the

OMIB system without CSD and with CSD. The CSDs are controlled

by the control laws (6.23), (6.24) and (6.26). Figure 6.2 shows that the

stability region of the post{fault s.e.p is signi�cantly enlarged by the CLF

controlled CSDs. Without a CSD, the system trajectory lies outside the
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corresponding stability region at fault clearing. Therefore, the system

is unstable for the proposed fault, see Figure 6.3. However, the CSDs

ensure that the post{fault system trajectory lies within the corresponding

enlarged stability region. The control system is therefore stable for the

proposed fault, see Figure 6.3.
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Figure 6.3. Phase portrait of the OMIB system after the fault.

Example 6.3:

Consider now the test system shown in Figure 6.4. The terminal buses

have been eliminated in Figure 6.4, and the transient reactances have

been incorporated into the transmission line reactances. The dynamics of

this system are given by

_Æ1 = !1

_Æ2 = !2

_!1 =
1

M1
[Pm1 � C12 sin(Æ12)� C13 sin(Æ1)�D1!1]

_!2 =
1

M2
[Pm2 � C12 sin(Æ21)� C23 sin(Æ2)�D2!2]

(6.27)
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Figure 6.4. The 2{machine in�nite bus test system

or

_x = fo(x)

where C12 = E
0

1E
0

2=x12, C13 = E
0

1E
0

3=x13 and C23 = E
0

2E
0

3=x23.

It should be noted that (6.27) is similar to (5.16) with Pk = Pmk. Since

bus 3 is assumed to be an in�nite bus, we have M3 ! 1. Therefore,

MT !1, ÆCOI ! 0 in (3.7) and Mk

MT
PCOI = 0 in (5.16). Thus, the energy

function (5.17) (in which ~Æ and ~! are replaced by Æ and !, respectively)

is also an energy function for the system (6.27), that is,

V(Æ; !) = 1

2

2X
k=1

Mk!
2
k
�

2X
k=1

PmkÆk �
2X

k=1

3X
l=k+1

Ckl cos(Ækl) + Co (6.28)

The gradient of the energy function is given by

grad(V) =

2
664
�Pm1 + C12 sin(Æ12) + C13 sin(Æ1)
�Pm2 + C12 sin(Æ21) + C23 sin(Æ2)

M1!1

M2!2

3
775
T
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Thus, the time derivative of (6.28) along the trajectories of (6.27) is given

by (see also (5.18))

_V = grad(V) � fo(x) = �
2X

k=1

Dk!
2
k
� 0

Having two CSCs in the lines between bus 1 and bus 3, and between bus

2 and bus 3, respectively, the dynamics of the system can be described

by the aÆne system

_x = fo(x) + uc1f1(x) + uc2f2(x) (6.29)

where

f1(x) =
1

M1

2
664

0

0

�C13 sin(Æ1)
0

3
775 ; f2(x) =

1

M2

2
664

0

0

0

�C23 sin(Æ2)

3
775

Using the energy function (6.28) as a Lyapunov function candidate for

the system (6.29), we have then

_V = grad(V) � fo(x) + uc1 grad(V) � f1(x) + uc2 grad(V) � f2(x)

� uc1 grad(V) � f1(x) + uc2 grad(V) � f2(x)
(6.30)

By virtue of the Jurdjevic{Quinn approach (and (4.8)), the following sta-

bilizing control laws are given

xc1 = �grad(V) � f1(x) = k1 sin(Æ1) !1

xc2 = �grad(V) � f2(x) = k2 sin(Æ2) !2
(6.31)

which make (6.28) as a CLF for the system (6.29).

An important issue with this example is to show that several CLF con-

trolled devices do not adversely a�ect each other. The reason is that

each device (independent of the other devices) contributes to make _V(x)
negative. With several CLF controlled devices in the system, the nega-

tiveness of _V(x) indeed becomes larger, that is, the slope of V(x) becomes
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sharper which implies that the energy decreases faster to its minimum

value, i.e., V(xs) = 0. Consequently, the system trajectories tend faster

to its post{fault stable equilibrium point, that is, we have better damping

in the system. The above argument is illustrated in Figure 6.5 and Figure

6.6. These �gures show the variation of the rotor angles and the energy

function after the fault. The uncontrolled system (solid line) is stable for

the proposed fault, but it is not well damped. Using one CLF controlled

CSC in the system (dotted line), the system is then better damped for the

proposed fault. However, with two CLF controlled CSCs (dashed line),

the system is much better damped.
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Figure 6.5. Variation of the rotor angles.
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Figure 6.6. Variation of the energy function.

To summarize this section, just as the existence of a Lyapunov function

is necessary and suÆcient for the stability of a system without input, the

existence of a CLF is necessary and suÆcient for the stabilizability of a

system with a control input.

6.2 Application of CLF to the Structure

Preserving Model

Consider the di�erential{algebraic system given by (3.12) and (3.14). Let

it be called the uncontrolled system. For this uncontrolled system, the

energy function (5.23) is proposed. The time derivative of this energy

function along the trajectories of the uncontrolled system is given by

(5.28) which is not positive. Let it be denoted by _VNOCSD, that is,

_VNOCSD = �
nX

k=1

Dk(~!k)
2 �

nX
k=1

T
0

dok

xdk � x0
dk

( _E0qk)
2 � 0

Assume that a CSD is located between buses i and j in the transmission

system, see Figure 4.9. Let the energy function (5.23) be a Lyapunov

function candidate for the system with CSD, i.e. the control system.
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The introduction of the CSD does not alter the energy function (5.23),

since it is an energy function for the uncontrolled system. However, the

introduction of the CSD does alter _V(x); in particular the terms (5.25)

and (5.26) no longer sum to zero. To see this, consider the i-th term of

the (5.25), that is,

(Pi + PLi)
_~�i

Without a CSD connected to bus i, we have Pi+PLi = 0, resulting in the

zero summation of (5.25). However, when the CSD is connected, power

balance gives Pi+PLi+Psi = 0. Therefore, with the CSD connected, the

i-th term of (5.25) becomes

(Pi + PLi)
_~�i = �Psi _~�i

A similar argument follows for the j-th term of (5.25) and the correspond-

ing terms of (5.26), resulting in

[
dV22
dt

+
dV24
dt

+
dV25
dt

+
dV26
dt

]~�

= �Psi _~�i � Psj
_~�j

(6.32)

[
dV22
dt

+
dV24
dt

+
dV25
dt

+
dV26
dt

]V

= �Qsi

_Vi

Vi
�Qsj

_Vj

Vj

(6.33)

Note that (5.24) and (5.27) are una�ected by the introduction of a CSD.

Therefore, the time derivative of the energy function becomes

dV
dt

= _VNOCSD + _VCSD � _VCSD (6.34)

Note that all CSD models have Psi = �Psj, see (4.5){(4.7). This allows
(6.34) to be written

dV
dt

� _VCSD = �Psi _�ij �Qsi

_Vi

Vi
�Qsj

_Vj

Vj
(6.35)

By virtue of (4.5){(4.7), we have for
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UPFC:

_VCSD =� bsVi[ uup1( _Vi + Vj sin(�ij) _�ij � _Vj cos(�ij) )

+ uup2( Vj cos(�ij) _�ij + _Vj sin(�ij) ) ]

=� bsVi[ uup1
d

dt
(Vi � Vj cos(�ij)) + uup2

d

dt
(Vj sin(�ij)) ]

(6.36)

QBT:

_VCSD =� bs[uq
d

dt
(ViVj sin(�ij)) +

1

2
u
2
q

d

dt
(V 2

i
)]

�� bsuq
d

dt
(ViVj sin(�ij))

(6.37)

CSC:

_VCSD =� 1

2
bsuc

d

dt
[V 2
i
+ V

2
j
� 2ViVj cos(�ij)]

=� 1

2
bsuc

d

dt
jV ijj2 = �1

2
bsuc

d

dt
[xLIcsc � Vcsc]

2

(6.38)

where in (6.38), Icsc is the absolute value of current through CSC and Vcsc
is the absolute value of voltage over CSC. Simulation results have shown

that the in
uence of the second term of (6.37) is very small compared to

the �rst term. Therefore, the second term is neglected.

The energy function (5.23) becomes a CLF for the control system if _VCSD
is negative. Therefore, the following control (feedback) laws are suggested

(note that Vi and bs are positive):

Control law for UPFC:

uup1 =k1
d

dt
(Vi � Vj cos(�ij))

uup2 =k2
d

dt
(Vj sin(�ij))

(6.39)

Control law for QBT:

uq = k3
d

dt
(ViVj sin(�ij)) (6.40)

Control law for CSC:

uc = k4
d

dt
jV ij j2 = k4

d

dt
[xLIcsc � Vcsc]

2 (6.41)

where k1, k2, k3 and k4 are positive gains which are chosen individually

to obtain appropriate damping.
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Once again, uc can be replaced by xc in (6.41), since uc and xc have the

same sign, see (4.8). Thus,

xc = k5
d

dt
jV ij j2 = k5

d

dt
[xLIcsc � Vcsc]

2 (6.42)

For a power system with CSDs, (6.35) is always valid, irrespective of the

generator and load models used in the development of the various en-

ergy functions in [11]. Di�erent models contribute with di�erent terms

to the left{hand sides of (6.32) and (6.33), but the right{hand sides re-

main unchanged. Thus, the control laws based on the CLF rely only on

locally measurable information and are independent of system topology

and modeling of power system components. Also, these control laws do

not require information about the post{fault stable equilibrium point.

A similar analysis can also be found in [35]. The results in [35] are based

on the statement \controllability implies stabilizability". By linearizing

the control system, it has been shown in [35] that the linearized system

is controllable, and therefore, the control law u = u(x) is a stabilizer for

the linearized system, and also for the nonlinear control system.

6.3 Summary

Lyapunov theory deals with dynamical systems without input. For this

reason, it has traditionally been applied only to closed{loop control sys-

tems, that is, systems for which the input has been eliminated through

the substitution of a predetermined feedback control. However, it may be

diÆcult to �nd a Lyapunov function for the closed{loop control system.

The concept of the Control Lyapunov Function, however, allows us to use

the Lyapunov function of the uncontrolled system (which is much easier

to �nd) as a Lyapunov function candidate for the system with input (i.e.

the control system). Then, the feedback control can be chosen by making

the Lyapunov derivative negative.

Just as the existence of a Lyapunov function is necessary and suÆcient

for the stability of a system without input, the existence of a CLF is

necessary and suÆcient for the stabilizability of a system with a control

input.
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Chapter 7

Numerical Example

In this chapter, the control laws (6.39), (6.40) and (6.42) are applied to

various test systems. The power system model used in development of

these control laws had a very speci�c (and also restrictive) form. It was

convenient for obtaining a Lyapunov function, but it only approximately

described actual power system behavior. More precisely, for obtaining a

Lyapunov function for the actual system

_x = F (x) = fo(x) + p(x)

we assumed that p(x) = 0.

The following questions arise.

� How do these control laws, derived for fo(x), a�ect p(x)?

� In the context of CSD control, how good are these control laws when

the system is lossy and more detailed models are used for generators

and loads, i.e. when p(x) 6= 0?

Simulation results in this chapter provide a partial answer when the con-

trol laws (6.39), (6.40) and (6.42) are applied to real systems that are

not subject to those modeling restrictions, i.e p(x) 6= 0. They indicate

that these control laws are not sensitive to the model approximations.

However, it is important to obtain an analytical justi�cation of this ob-

servation. The analysis and theorems in Section 5.3 may also provide a

partial answer.

All simulation are performed by using SIMPOW [36] and the results are

plotted in MATLAB.

73
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7.1 Two{Area Test System

Figure 7.1 shows a simple two{area system. The system data can be

found in [37]. If not otherwise stated, the exact data from [37] is used.

In [37], generators are modeled with one �eld winding, one damper wind-

ing in d{axis and two damper windings in q{axis. Saturation is consid-

ered. The active and reactive components of loads have constant current

(i.e. mp = 1) and constant impedance (i.e. mq = 2) characteristics,

respectively.

G1
G4

G3

G2

CSD F
P

Bus7 Bus9

Figure 7.1. The two{area test system.

A three{phase fault occurs at point F. The fault is cleared after 100 ms

by opening of the faulted line. The following system models are used in

simulation.

� System model 1: The one{axis model is used for generators

(D = 2 (p:u)) with excitation system (see Fig. E12.9 in [37]).

KA = 300; TB = 0:01 and TR = TA = 0. No PSS.

� System model 2: The generators are modeled as in [37] with the

same excitation system as in system model 1. Also, turbine and

governor regulators are used. D = 0.

� System model 3: The same as in system model 2, but

PG1 = PG2 = 730 (MW ), i.e. �PG1 = �PG2 = 30 (MW ).

� System model 4: The same as in system model 3, but active loads

have also constant impedance characteristics.
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The following �gures show the variation of P (p:u) vs time for those

various system modeling. P is the real power through the unfaulted line

between the CSD and Bus 9, see Figure 7.1. The CSDs have the following

data, (rmax and xcmax in (p:u))

� UPFC: rmax = 0:094, 0 � r � rmax.

� QBT: rmax = 0:1, 0 � r � rmax.

� CSC: xcmax = 0:047, 0 � xc � xcmax.
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Figure 7.2. Variation of P vs time for the system model 1.



76 Chapter 7. Numerical Example

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

System model 2

NO CSD

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

System model 2

UPFC

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

System model 2

QBT

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

System model 2

CSC

Figure 7.3. Variation of P vs time for the system model 2.
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Figure 7.4. Variation of P vs time for the system model 3.
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Figure 7.5. Variation of P vs time for the system model 4.

The simulation results show the ability of the control laws to stabilize

and damp the proposed power system for di�erent system models. Sys-

tem model 3 shows clearly that the CSDs which are controlled by the

CLF, enlarge the stability region. Obviously, the size of the enlarge-

ment depends on the rating of the CSDs. For example in system model

3, having the same CSDs data, the QBT and the UPFC cannot achieve

�rst{swing stability when PG1 = PG2 > 740 (MW ) and for the CSC when

PG1 = PG2 > 770 (MW ). Also, system model 3 and system model 4 show

that the load modeling does not signi�cantly a�ect the performance of the

CLF controlled CSDs.
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7.2 IEEE 9-Bus Test System

Figure 7.6 shows the IEEE 9-bus test system. The system data can be

found in [38]. The one{axis model is used for the generators (D = 0)

including excitation system. PSS and turbine regulator are excluded.

The active and reactive components of loads have constant current and

constant impedance characteristics, respectively. In this example, it will

G2 G3

Bus1

P

Infinite Bus

Bus2 Bus3

Bus4

Bus5 Bus6

Bus7 Bus8 Bus9

Figure 7.6. The IEEE 9{bus test system.

be shown that several CLF controlled CSDs do not adversely a�ect each

other. Indeed, they improve damping of the electromechanical oscilla-

tions.

A three{phase fault occurs at Bus 4. The fault is cleared after 100 ms.

No line is tripped. A UPFC, a QBT and a CSC are installed in the

line between Bus 9 and Bus 6, respectively . Also, a CSC (say CSC1)

is installed in the line between Bus 7 and Bus 5. The CSDs have the

following data, (rmax and xcmax in (p:u))

� UPFC: rmax = 0:013, 0 � r � rmax.

� QBT: rmax = 0:012, 0 � r � rmax.

� CSC: xcmax = 0:04, 0 � xc � xcmax.

� CSC1: xcmax = 0:05, 0 � xc � xcmax.
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Figure 7.7 shows the variation of P (MW ) ( identi�ed in Figure 7.9) when

there are no CSDs in the system.
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Figure 7.7. Variation of P vs time in the IEEE 9{bus test system.

The following �gures show the variation of P for CLF control of a UPFC,

a QBT and a CSC, respectively, with CLF controlled CSC1 and without

it.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Only UPFC

0 2 4 6 8 10
0

20

40

60

80

100

120

140

CSC1 and UPFC



7.3. Nordic32A Test System 81

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Only QBT

0 2 4 6 8 10
0

20

40

60

80

100

120

140

CSC1 and QBT

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Only CSC

0 2 4 6 8 10
0

20

40

60

80

100

120

140

CSC1 and CSC

Figure 7.8. Variation of P vs time with CSDs in the IEEE 9{bus system.

7.3 Nordic32A Test System

Nordic32A (Figure 7.9) is a test system for simulation of transient stability

and long term dynamics proposed by CIGRE Task Force 38.02.08 [39].

The exact data from [39] is used with the exception that no PSS is used

in the system. The system contains 32 high voltage buses. The main

transmission system is designed for 400 kV . There are also some regional

systems at 220 kV and 130 kV . Both hydro power plants and thermal

power plants with a total of 23 generators are modeled. The hydro power

plants are located in the North and External regions of the system and

are equipped with salient pole generators whose models include models of

AVR, saturation, one �eld winding, one damper winding in d{axis and one

damper winding in q{axis. The thermal power plants are located in the

Central and South regions and each plant includes a round rotor generator

whose model includes all features included in the salient pole model but
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Figure 7.9. The Nordic32A test system proposed by CIGRE.

also a second damper winding in q{axis and saturation in the resulting

air{gap 
ux. Only the hydro power units are using governors. No explicit

damping is modeled in the generators, i.e. the damping constant D is

zero. The active and reactive components of loads have constant current

and constant impedance characteristics, respectively.

Two loading cases are considered, namely LF32{028 and LF32{029. In

LF32{028, the transfers are high from North to Central. The load level

is at peak load. The case is sensitive to many types of faults. In fact

the transfer situation is above that recommended by normal reliability

standards. LF32-029 is similar to LF32-028 but transfers from North to

Central are decreased. It is made by an extra generation at bus 4051 and

a decreasing of generating powers in some generators in North.

Two CSCs are used in the system. The �rst CSC is located in line 4011{

4022 and the second one in line 4032{4044. The steady{state set points

of both CSCs are 12:8 
, that is, each CSC is de�ned by xc = xco+�xc,

where xco is the steady{state set point and �xc is the control modulation
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which is controlled by the CLF control law, i.e. (6.42). Since xco is a

constant, the reactance of the line in which the CSC is installed, can be

given by xs = x
new

L
= xL � xco. Thus, xc in (6.42) is replaced by �xc.

For the �rst CSC, 8 � xc � 30 
 and for the second one 8 � xc � 20 
.

Various faults and contingencies (i.e. various large disturbances as well

as small disturbances) have been studied for both LF32-028 and LF32-

029. For all cases the CLF controlled CSCs damped power oscillations in

an e�ective and robust manner. Also, various load characteristics were

applied for this system and simulation results showed that the damping

e�ect of the CLF controlled CSCs was not sensitive to the load modeling.

In this section, we only show the simulation results of one case, that is,

a three{phase fault imposed on transmission line 4011-4021 at a position

very close to bus 4021. The fault is cleared by disconnecting both ends

of line 4011-4021 after 100 ms.

In Figure 7.10 and Figure 7.11, the dotted and solid curves show the vari-

ation of P (identi�ed in Figure 7.9) when the CSCs are uncontrolled, and

controlled using CLF, respectively. Note that these two CLF controlled

CSCs do not adversely a�ect each other. The reason is that each device

contributes to make the time derivative of the energy function negative.
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Figure 7.10. Variation of P vs time in the Nordic32A test system,

LF32{028.
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Figure 7.11. Variation of P vs time in the Nordic32A test system,

LF32{029.

7.4 Summary

The CSDs provide an e�ective means of adding damping to power sys-

tems and signi�cantly enlarge the stability region of the post{fault stable

equilibrium point.

The control laws (6.39){(6.41) have been derived based on a simpli�ed

Structure Preserving Model. However, these control laws have been ap-

plied for the actual systems. The simulation results indicate that the

control laws are e�ective and robust for small and large disturbances as

well as meshed and radial systems, and they are not sensitive to the model

approximations.

These control laws rely only on locally measurable information and are

independent of system topology and modeling of power system compo-

nents. Thus, the input signals are inexpensive, fast and reliable. For these

control laws, information about the post{fault stable equilibrium point is

not required. Furthermore, the CSDs with CLF control (i.e. control laws

(6.39){(6.41)) do not adversely a�ect each other.



Chapter 8

Single Machine Equivalent

It has been shown that the control laws (6.39), (6.40) and (6.42) rely

only on input signals that can easily be obtained from locally measurable

variables. It has also been shown in Chapter 7 that the local signals

can e�ectively damp the electromechanical oscillations initiated by both

large and small disturbances. However, a remote input signal may be

more e�ective for this purpose. A pertinent question is, for which power

system conditions would this be the case?

In the case of using remote input signals, an important question is which

(and/or which kind of) remote information should be chosen in a multi{

machine power system, such that the concept of the CLF is ful�lled.

For selecting remote input signals, the SIngle Machine Equivalent (SIME)

method, [40]{[42], may be a relevant choice. This method assesses the

behavior of a power system in its post{fault con�guration in terms of a

Generalized One{Machine In�nite Bus (GOMIB) transformation to which

the CLF can be applied.

8.1 Foundations

SIME is a hybrid direct-temporal transient stability method, which trans-

forms the trajectories of a multi{machine power system into the trajectory

of a GOMIB system of the form 5.8, whose parameters are time{varying

[40]. The GOMIB parameters are its rotor angle (Æ), rotor speed (!), in-

ertia coeÆcient (M), mechanical power (Pm), and electrical power (Pe).

85
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Basically, SIME deals with the post-fault con�guration of a power system

subjected to a disturbance which presumably drives it to instability1. Un-

der such condition, SIME uses a time{domain program in order to identify

the mode of separation of its machines into two groups, namely critical

(subscript C) and non-critical machines (subscript N) which are replaced

by successively a two{machine equivalent. Then, this two{machine equiv-

alent is replaced by a GOMIB system. By de�nition, the critical machines

are the machines responsible of the loss of synchronism.

Let

MC =
X
i2C

Mi ; MN =
X
j2N

Mj ; MT =

nX
k=1

Mk =MC +MN

The angle and the speed of the GOMIB system are expressed by

Æ
GOMIB

= ÆC � ÆN

!
GOMIB

= !C � !N

(8.1)

where

ÆC =M
�1
C

X
i2C

MiÆi ; ÆN =M
�1
N

X
j2N

MjÆj

!C =M
�1
C

X
i2C

Mi!i ; !N =M
�1
N

X
j2N

Mj!j

(8.2)

By refreshing the GOMIB parameters at each integration time{step, SIME

provides a faithful replica of the transient stability assessment of the

multi{machine system, and also additional interesting pieces of informa-

tion, such as stability margins, identi�cation of the mode of instability

and corresponding critical machines, sensitivity analysis and control tech-

niques [42].

1By continuation, the GOMIB is also valid on a borderline stable case [41].
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8.2 Control Law Based on SIME

Consider the two{area power system shown in Figure 8.1.

System 1 System 2

Figure 8.1. Two{area power system.

After a large disturbance, the post{fault dynamics of the corresponding

GOMIB system of this two{area power system are given by

_Æ
GOMIB

= !
GOMIB

_!
GOMIB

= M
�1
T

[PmGOMIB
� PeGOMIB

]
(8.3)

where PmGOMIB
is the equivalent mechanical input power and PeGOMIB

is

the equivalent electrical output power calculated by the time simulation

program.

Let PmGOMIB
be approximated by a constant Pmapp , such that

kPmGOMIB
� Pmappk (8.4)

is small.

Let also PeGOMIB
be approximated by Peapp = Pmaxapp sin(Æ

GOMIB
) where

Pmaxapp is a constant, such that

kPeGOMIB
� Peappk (8.5)

is small.
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Now, the right{hand side of the (8.3) is simpli�ed by

_Æ
GOMIB

= !
GOMIB

_!
GOMIB

= M
�1
T

[Pmapp � Pmaxapp sin(Æ
GOMIB

)]
(8.6)

Let x = [Æ
GOMIB

!
GOMIB

]T . Let also F (x) and fo(x) denote the right{

hand sides of (8.3) and (8.6), respectively. System (8.3) can now be

rewritten as

_x = F (x)

= fo(x) + [F (x) � fo(x)] (8.7)

= fo(x) + p(x)

Assuming p(x) = 0, the GOMIB system has the same dynamics as the

physical OMIB system, i.e. system (5.8) with D = 0. Consequently, a

similar Lyapunov function to (5.11) (in which M , Pm, Pmax, ! and Æ are

replaced by MT , Pmapp , Pmaxapp , !GOMIB
and Æ

GOMIB
, respectively) can

be used for the GOMIB system.

Having a CSC between the two systems in Figure 8.1, the dynamics of the

GOMIB system with the CSC is similar to the dynamics of the physical

OMIB system with the CSC, i.e. system (6.19). Thus, the control strategy

for the CSC in the GOMIB system is similar to (6.26), that is,

xc = k sin(Æ
GOMIB

) !
GOMIB

(8.8)

where k is a positive gain.

8.3 Numerical Examples

Example 8.1:

Consider again the power system shown in Figure 7.1. System model 2

is used in this example with PG1 = PG2 = 750 (MW ). Two cases are

studied. In case 1, a three{phase fault occurs at point F. The fault is

cleared after 100 ms by opening of the faulted line. In case 2, 20% of the

load at bus 9 is disconnected during 100 ms.

In an o�{line simulation, the GOMIB system of the test system is deter-

mined by the SIME method for corresponding case. In case 1 (for which
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the system is unstable), the critical machines are machine 1 and machine

2, and the non{critical machines are machine 3 and machine 4. Thus,

Æ
GOMIB

=
M1Æ1 +M2Æ2

M1 +M2
� M3Æ3 +M4Æ4

M3 +M4

!
GOMIB

=
M1!1 +M2!2

M1 +M2
� M3!3 +M4!4

M3 +M4

(8.9)

Since the system is stable for case 2, the SIME method fails to determine

a GOMIB system for this case. However, (8.9) is also used for case 2.

A CSC is located in the system (see Figure 7.1). The purpose of this

example is to compare the dynamic behavior of the system for these two

cases when the CSC is controlled by (6.42) (i.e. with local input signals)

and (8.8) (i.e. with remote input signals), respectively.

Note, however, that the same system with the same CSC is simulated in

the same time simulation program (SIMPOW). The only di�erence is the

input data into the CSC, that is, the control laws. For control law (8.8),

we need only an additional arithmetic operation to calculate (8.9) at each

integration time{step.

The following �gures show the variation of P (identi�ed in Figure 7.1)

vs. time for both cases. They also show the phase portrait of the corre-

sponding GOMIB system.

Obviously, both control laws (which are based on the CLF) stabilize the

system (case 1) and damp the electromechanical oscillations in the system

(case 2). The dynamic behavior of this system is almost identical for both

control laws.
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Figure 8.2. Case 1: Variation of P vs. time in the two{area test system

and phase portrait of the corresponding GOMIB system.
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Figure 8.3. Case 2: Variation of P vs. time in the two{area test system

and phase portrait of the corresponding GOMIB system.
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In the next case (case 3), the generating powers of generator 1 and gener-

ator 2 increase with another 20 (MW ), that is, PG1 = PG2 = 770 (MW ).

Figure 8.4 shows the variation of P vs. time. Obviously, both control laws

are not able to stabilize the system for this case. This is not a question

about the control laws, but the rating of the CSC (xcmax = 0:047 (p:u)),

that is, the size of the stability region. In case 1, both control laws enlarge

the stability region of the post{fault stable equilibrium point. Thus, when

the fault is cleared, the system trajectories lie within the enlarged stabil-

ity region in which the Lyapunov function is positive de�nite. Therefore,

both control laws act as a stabilizer. However, using the same rating in

case 3, the post{fault system trajectories lie outside the enlarged stabil-

ity region where we cannot prove the Lyapunov function is still positive

de�nite. Having a larger rating, it can be shown that the system will be

stabilized by both control laws.
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Figure 8.4. Case 3: Variation of P vs. time in the two{area test system.
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Example 8.2:

In this example, the same case for the simple meshed system shown in

Figure 7.6 is studied. Figure 8.5 shows the variation of P (identi�ed

in Figure 7.6) when CSC is controlled by control laws (6.42) and (8.8),

respectively.
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Figure 8.5. Variation of P vs time in the IEEE 9{bus system.

Clearly, the system is better damped with the remote input signals than

the local input signals.
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Example 8.3:

In this example, the same fault in the Nordic32A test system (shown in

Figure 7.9) is considered. The loading case LF32{028 is used with the

exception that:

� Case 1: the power generating of a generator in South is decreased

with 100 (MW ), so that the transmission system North{Central

becomes more loaded.

� Case 2: the power generating of the same generator is decreased

with another 30 (MW ).

Figure 8.6 shows the variation of P (identi�ed in Figure 7.9) when CSCs

are controlled by control laws (6.42) and (8.8), respectively.
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Figure 8.6. Variation of P vs time in the Nordic32A test system.
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Example 8.4:

Figure 8.7 shows a sketch of the Brazilian North{South interconnection

system described in [43]. The North/Northeast interconnected system

consists of large hydro-generating complexes that are linked to 230 and

500 kV transmission networks. The South/Southeast/Midwest intercon-

nected system consists of a large number of hydro{generating plants linked

to the main load centers by transmission networks operating in the 138

and 750 kV . The North{South interconnect transmission line is 1028 km

with a circuit rating of 1300 (MW ). Full details are given in [43].

North/Northeast
System

South/Southeast/Midwest
System

CSC1

CSC2

P

Figure 8.7. The Brazilian North{South interconnection system.
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Four cases are studied.

� case 1: a line and a shunt in the North/Northeast system is tripped

after a fault. The fault is cleared after 100 ms.

� case 2: a line and a shunt in the South/Southeast/Midwest system

is tripped after a fault. The fault is cleared after 100 ms.

� case 3: a generator with a production of 606 (MW ) is disconnected

in the North/Northeast system.

� case 4: a generator with a production of 395 (MW ) is disconnected

in the South/Southeast/Midwest.

For both CSCs, the steady{state set points (i.e. xco) are 15:84 
, and

13:2 � xc � 40 
.

In an o�{line simulation, the SIME method has been used to determine

the corresponding GOMIB system for each case when CSCs were not

controlled. In case 1 and case 2, a longer clearing{time was applied to

make the system unstable, so that the SIME method would be able to

determine the corresponding GOMIB system. For the same reason, a

three{phase fault at the terminal bus of the corresponding generator was

also applied for case 3 and case 4. Having determined the corresponding

GOMIB system, its variables Æ
GOMIB

and !
GOMIB

are calculated at each

integration time{step in the time simulation program (SIMPOW).

The purpose of this example is also to compare the dynamic behavior of

this system for these four cases when the CSCs are controlled by (6.42)

and (8.8), respectively.

The following �gures show the variation of P (identi�ed in Figure 8.7) vs.

time for each case. They also show the phase portrait of the corresponding

GOMIB system.
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Figure 8.8. Case 1: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the corresponding

GOMIB system.
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Figure 8.9. Case 2: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the corresponding

GOMIB system.
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Figure 8.10. Case 3: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the corresponding

GOMIB system.
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Figure 8.11. Case 4: Variation of P vs. time in the Brazilian North{

South interconnection system and phase portrait of the corresponding

GOMIB system.

The simulation results show the ability of both control laws to damp the

power system oscillations initiated by these four cases. They also show

that the proposed test system has better damping with control law (8.8)

than control law (6.42). The reason may be that control law (8.8) uses

data from all machines in the system. This comprehensive data is indeed

compacted into two variables (i.e. Æ
GOMIB

and !
GOMIB

) which give a

better information of the post{fault dynamics of the system. However,

the system is still well damped by (6.42) which is inexpensive, faster and

more reliable since it relies only on locally measurable information.

Next, an extreme case (case 5) is studied. In this case, a generator with a

production of 800 (MW ) is disconnected in the South/Southeast/Midwest.

This case implies that the power through the North{South interconnect

transmission line (at the post{fault steady{state) is almost 1300 (MW )
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which is the circuit rating of the North{South interconnect transmission

line.
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Figure 8.12. Case 5: Variation of P vs. time in the Brazilian North{

South interconnection system.

Figure 8.12 shows that the control law based on the local input signals

cannot stabilize the system for this case. However, the system is stabilized

when the remote input signals are used.

In a further analysis (by using the SIME method), we found that the

stability margin was �0:02 when control law (6.42) had been used, and it

was almost zero (but positive) when control law (8.8) had been used. This

analysis implies that the system trajectories lie close by the corresponding

stability boundary of the post{fault equilibrium point at fault clearing.

Obviously, the (enlarged) stability region by control law (8.8) is a little

larger than the (enlarged) stability region by control law (6.42). There-

fore, the system trajectories lie just inside the corresponding (enlarged)

stability region at fault clearing when control law (8.8) is used. However,

when control law (6.42) is used, the system trajectories lie outside the

corresponding (enlarged) stability region at fault clearing.

Note, however, that both control laws are based on the CLF. They have

also been derived based on a simpli�ed system, i.e. fo(x).
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8.4 Selection of the Gains of Control Laws

A question of importance is the selection of the gains k1{k5 and k in the

control laws (6.39){(6.42) and (8.8), respectively. Mathematically, any

positive gain should stabilize the system. In practice, there are however

limitations for these gains. To see that , we use the SIME method.

Consider again the power system in Example 8.1. Case 1 is considered.

The control law for CSC is given by (6.42). Figure 8.13 shows the phase

portrait of the GOMIB system of the test system for various values of k5.
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Figure 8.13. Phase portrait of the GOMIB system of the test system.
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For k5 < 5, the stability margin (calculated by the SIME method) is

negative for this case, that is, the post{fault trajectories (when the fault is

cleared) lie outside the stability region of the post{fault stable equilibrium

point. For 5 � k5 � 8, the stability margin is positive and it signi�cantly

becomes larger by increasing the value of k5. For around k5 = 8, the

system is well damped and the system trajectories rapidly tend towards

the post{fault stable equilibrium point. For k5 > 8, the stability margin

is positive, but its value is almost the same as for k5 = 8. However, for

large k5, the system trajectories slowly tend towards the post{fault stable

equilibrium point.

8.5 Summary

The control law (6.42) relies only on locally measurable information.

Thus, the input signals are inexpensive, fast and reliable, but the con-

trol law (8.8) (based on the SIME methos) uses data from all machines in

the system. Thus, the input signals can be expensive and less reliable in a

real power system. However, due to the latest development in signal and

communication technology, these issues may be solved in the near future.

The simulation results indicate that using CSCs in a power system, the

control law with remote input signals (i.e. control law (8.8)) is more

e�ective than the control law with local input signals (i.e. control law

(6.42)) for damping and stability of the power system.

Note that the control laws (6.42) and (8.8) do not require information

about the post{fault stable equilibrium point.
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Chapter 9

Variable Structure Control

with Sliding Modes

This chapter brie
y presents the concept of Variable Structure Control

(VSC) with sliding modes, and its application to power systems with

CSDs. For a comprehensive and detailed analysis of VSC with sliding

modes , see [44]{[50] and references therein.

With VSC, dynamical systems are controlled with discontinuous feedback

controllers. VSC has been developed during the last four decades, and is

characterized by a control structure which is designed to drive the system

trajectories onto a speci�ed line (or surface) in the state space. The

sliding mode describes the particular case when the system trajectories

are constrained to lie upon a line (or surface).

9.1 Background

Consider the following system�
_x1
_x2

�
=

�
0 1

1 0:2

� �
x1

x2

�
+

�
0

1

�
u

where x is the state of the system and u = kx1 is a control variable. Thus,

the system can be rewritten as�
_x1
_x2

�
=

�
0 1

1 + k 0:2

� �
x1

x2

�
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The eigenvalues of this system are given by

�1;2 = 0:1 �
p
1:01 + k

Obviously, the system is unstable for any value of k. Let k = �3 and

k = 2. The system eigenvalues for these structures (i.e. k = �3 and

k = 2) are

� for k = �3, �1;2 = 0:1� j1:4107

� for k = 2, �1 = �1:6349 and �2 = 1:8349

As was mentioned above, the system is unstable for both structures as

shown in Figure 9.1. Note, however, that the only trajectories converging

to the origin are the trajectories along the the eigenvector corresponding

to the stable eigenvalue for the structure k = 2.

-0.3 0 0.3
-0.5

0

0.5

�
�

�
�

Figure 9.1. Phase portrait of the system for k = �3 (dotted line) and

k = 2 (dashed line, and also solid lines which are indeed the eigenvectors).

The objective of the VSC is to drive the system trajectories to this eigen-

vector which is a positively invariant manifold (see (5.2)). To do this, we

�rst de�ne a switching line, that is,

S(x) = g1x1 + x2 = 0 (9.1)
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Choosing g1 = ��1 = 1:6349, the switching line is indeed along the

eigenvector corresponding to the stable eigenvalue. Next, we de�ne the

following switching (control) law,

k =

(
�3 if S(x)x1 > 0

2 if S(x)x1 � 0

Applying the above switching laws, the system trajectories tend to the

origin as shown in Figure 9.2.
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Figure 9.2. Phase portrait of the system controlled by VSC, c1 = �1.

In Figure 9.2, point P1 is the initial point. From this point, structure k = 2

is switched by the switching law. Thus, the system trajectory moves along

the trajectory of this structure. At point P2, the structure is switched to

k = �3. Therefore, the system trajectory moves along the trajectory of

this structure. Once the system trajectory encounters the switching line

S(x) = 0 at point P3, structure k = 2 is switched. Since the switching

line S(x) is a positively invariant manifold, the system trajectory remains

in this line which is indeed the eigenvector corresponding to the stable

eigenvalue for structure k = 2. Therefore, the system trajectory tends to

the origin along the switching line.
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In the above example, a new system property has been obtained by com-

posing a desired trajectory from the parts of trajectories of di�erent struc-

tures. An even more fundamental aspects of VSC is the possibility to ob-

tain trajectories not inherent in any of the structures. Theses trajectories

describe a new type of motion.

To show how such motion occurs, rename S(x) to S1(x) in which g1 < �1,

and S(x) to S2(x) in which g1 > �1. The same switching law is used with

exception that S1(x) and S2(x) replace S(x), respectively.

Figure 9.3 show the phase portrait of the system when g1 < �1 and

g1 > �1, respectively.
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Figure 9.3. Phase portrait of the system when g1 < �1 and g1 > �1,

respectively.



9.1. Background 109

In Figure 9.3, the system trajectory does not remain on switching line

S1(x), once the system trajectory intercepts S1(x). However, the system

trajectory remains on switching line S2(x), once it intercepts S2(x). This

property of remaining on the switching line once intercepted is called a

sliding mode, and the switching line S2(x) is a sliding line.

A sliding mode will exist for a system _x = f(x), if in the vicinity of

the switching line, the state velocity vector f(x) is directed towards the

switching line.

Note, however, that the above example deals with an ideal VSC, that is,

switching in the control law can occur in�nitely fast. An ideal sliding

mode exists only, once the system trajectory x(t) intercepts the switching

line at to, it satis�es S2(x) = 0 at every t � to. In actual systems, various

small nonidealities of time{delay, hysteresis etc. should be taken into

consideration. Theses nonidealities force switching to occur at a �nite

frequency. The trajectory then oscillates within a neighborhood of the

switching line. If the frequency of the switching is very high compared

with the dynamic response of the system, the nonidealities and the �nite

switching frequencies are often negligible [48].

Consider the following control system with control input u 2 Rm,

_x = f(x; u) (9.2)

and the following general control law (i = 1 � � �m),

ui(x) =

(
u
+
i
(x) if Si(x) > 0

u
�

i
(x) if Si(x) < 0

(9.3)

where S(x) = [S1(x) � � � Sm(x)]T = 0 is switching manifold (or surface).

The mathematical description of sliding modes is quite a challenge. It

requires the design of special techniques. The solution of system _x = f(x)

is known to exist and be unique if a Lipshitz constant L may be found,

such that for any x1 and x2

kf(x1)� f(x2)k � L kx1 � x2k (9.4)

It is evident that in the dynamic system (9.2) with discontinuous control

(9.3), condition (9.4) is violated in the vicinity of S(x). Indeed, if x1 and

x2 are on di�erent sides of S(x), and kx1 � x2k ! 0, condition (9.4) is
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not true for any �xed value of L. Therefore, (at least formally) some

additional e�ort is needed to �nd a solution to (9.2) and (9.3) at an

occurrence of a sliding mode.

Various types of existence and uniqueness theorems have been presented

in the literature. Filippov's method, [51], is one possible technique for

determining the system motion in a sliding mode. A more promising

technique (easily applicable to multi{input systems) is the method of

equivalent control, as proposed by Utkin in [44]{[47].

9.2 Method of Equivalent Control

In this section, a formal procedure is suggested below to obtain sliding

equations along the intersections of a set of discontinuity surfaces for

systems (9.2) and (9.3).

Assume that a sliding mode exists on manifold S(x) = 0. The aim is

to �nd a continuous control, such that under the initial position of the

system trajectory on this manifold, it yields

_S(x) =
@S

@x
� _x = G � f(x; u) = 0 (9.5)

along the trajectory of system (9.2). In (9.5), G = @S

@x
is a matrix of

dimension (m � n). We assume that G is a constant matrix. Note that

the rows of G are the gradients of the functions Si(x).

Assume that a solution exists for (9.2) with respect to m{dimensional

control. Using this solution (hereinafter referred to as equivalent control

ueq(x)) in system (9.2), we obtain

_x = f(x; ueq(x)) (9.6)

which describes the motion on the switching manifold. It is also called

the equation of sliding mode.

It is quite obvious that (by virtue of condition (9.5)) a motion starting in

S[x(to)] = 0 will proceed along the trajectories which lie on the manifold

S(x) = 0.
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Consider now the following aÆne system

_x = f(x; u) = fo(x) +

mX
i=1

uifi(x) = fo(x) + B(x) � u (9.7)

where u = [u1 � � � um]T and B(x) is an n�m matrix whose i{th column

is fi(x).

The switching manifold is given by

S(x) = G � x = 0 (9.8)

The conditions for the existence of a sliding mode are closely linked with

the convergence of the system trajectory to the manifold S(x) = 0. Gen-

erally, there exists a sliding mode on S(x) = 0, if the system trajectory

satis�es a generalized Lyapunov stability requirement to S(x) = 0.

A suitable function is

V(x) = 0:5ST � S

which is positive de�nite. Note that this function is zero on S(x) = 0.

Therefore, (9.9) is a suÆcient condition for existence of a sliding mode.

_V = 0:5
d

dt
(ST � S) < 0 (9.9)

For the sake of the simplicity, assume that m = 1, i.e. single control

input. Suppose that the system trajectory intercepts S(x) = 0 at to, and

a sliding mode exists for t � to. The existence of a sliding mode implies

that for all t � to, S(x) = G � x = 0, and

_S(x) = G � _x = G � [fo(x) + ueqB(x)] = 0 (9.10)

To compute ueq, assume that [G � B(x)]�1 is nonsingular for all t and x.

Thus,

ueq = �[G � B(x)]�1G � fo(x) (9.11)

The equivalent control ueq is found by recognizing that (9.10) is a nec-

essary condition for the system trajectory to stay on the switching line
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S(x) = 0. To satisfy condition (9.9), the control action must be chosen

in the following way,

u(x) =

(
u
+(x) if S(x) > 0

u
�(x) if S(x) < 0

(9.12)

where u+ < ueq and u
�
> ueq.

Using the control law

u = ueq � ~u (9.13)

where ~u = k[G � B(x)]�1S(x) and k > 0. Then, ~u assures that a sliding

mode exists, that is, the condition (9.9) is satis�ed.

Substitution of (9.13) into (9.7) yields

_x = fo(x)� B(x)[G � B(x)]�1[G � fo(x) + kS(x)] = f(x;G) (9.14)

which is the equation of sliding mode.

Control strategy based on VSC with sliding mode can be summarized as

follows:

� Design a switching manifold S(x) = 0 to represent a desired system

dynamics.

� Design a control law u, such that the system trajectory outside the

switching manifold is driven to reach S(x) = 0 in �nite time. On

the switching manifold, the sliding mode takes place, following the

desired system dynamics.

Example 9.1 :

Consider again the OMIB system with CSC as shown in Figure 6.1.



9.2. Method of Equivalent Control 113

Let x1 = Æ� Æs, x2 = ! and x = [x1 x2]
T . Thus, the origin is the stable

equilibrium point and the system dynamics are given by

_x = fo(x) + uB(x) (9.15)

where

fo(x) =

2
4 x2

(Pm � Pmax sin(x1 + Æ
s))=M

3
5

and

B(x) = fcsc =

2
4 0

�Pmax sin(x1 + Æ
s)=M

3
5

Let also S(x) = G�x = 0 be the sliding line, where G = [g1 g2]. Applying

the control law (9.13) and substituting it into (9.15), we obtain

_x =

2
64

x2

�
�
g1

g2
x2 + k

g1

g2
x1 + kx2

�
3
75 (9.16)

On the sliding line,

S(x) = g1x1 + g2x2 = 0 ) x1 = �g2
g1
x2 or x2 = �g1

g2
x1

Therefore, (9.16) can be rewritten as

_x = �g1
g2

�
x1

x2

�

which is the equation of sliding mode, and it represents the original system

dynamics (9.15) constrained to S(x) = 0. Obviously, the equation of

sliding mode is asymptotically stable if g1
g2
> 0 and g2 6= 0. Note , however,

that g2 6= 0 is a necessary condition for [G � B(x)]�1 to be nonsingular.

A similar analysis can be found in [52]. Application of VSC with sliding

mode to the QBT and UPFC can be found in [4] and [5].

Figure 9.4 shows the stability boundary of the post{fault stable equilib-

rium point, and also, the post{fault system trajectory. xs and xe1 are the
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Figure 9.4. Phase portrait of the OMIB system after the fault, when

CSC is controlled by CLF and VSC with sliding mode, respectively.

post{fault stable and unstable equilibrium points of fo(x), respectively.

The values of these points are given by (5.10).

As shown in the �gure, the behavior of the post{fault system dynamics

is almost identical for both control laws. However, the stability region

is larger, when CSC is controlled by control law (9.13) than control law

(6.26). Specially, the di�erence is signi�cant around xe1. A reason for

this signi�cantly di�erence may be that the control law based on VSC

with sliding mode (i.e. (9.13)) is zero only at the origin. However, the

control law based on CLF (i.e. xc = k5 sin(Æ)!) tends to zero whenever

! ! 0 irrespective of the value of Æ (i.e. for 0 < Æ < �). The reason being

that we use an energy function (which is not a true Lyapunov function)

as a Lyapunov function candidate by virtue of the La Salle's theorem.

Furthermore, in the neighborhood of xe1 with ! = �� (where � > 0),

the control law (6.26) becomes negative, and the minimum value of xc
must be switched, that is, xc = xcmin = 0. Thus, the second term of the

right{hand side of (6.19) becomes zero. Therefore, (from the initial point

x = [Æe1 � �]T ) the system trajectory of (6.19) coincides with the stable

manifold of the system without CSC (i.e. _x = fo(x)).
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A disadvantage with control law based on VSC with sliding mode is that

it requires information about the post{fault stable equilibrium point for

designing the switching manifold S(x) = G � _x = 0. Furthermore, for

large multi{machine power systems, it is diÆcult and time{consuming to

choose an appropriate G, such that the equation of sliding mode becomes

asymptotically stable.

As was mentioned, the control law (6.26) was derived by virtue of (6.12),

when an energy function had been used as a Lyapunov function candidate,

i.e.

V(x) = 0:5Mx
2
2 � Pm x1 � Pmax[cos(x1 + Æ

s)� cos(Æs)] (9.17)

where x1 = Æ�Æs, x2 = !, that is, the post{fault stable equilibrium point

is transformed to the origin.

Let us look for a Lyapunov function V(x) that would have a negative

de�nite _V(x). Starting from the energy function, let 0:5Mx
2
2 be replaced

by the more general quadratic form (0:5Mx
T
Px) for some 2� 2 positive

de�nite matrix P , i.e.

V(x) =M
2
x
T
Px� Pm x1 � Pmax[cos(x1 + Æ

s)� cos(Æs)]

=
M

2

�
x1 x2

� � p11 p12

p12 p22

� �
x1

x2

�
� Pm x1

� Pmax[cos(x1 + Æ
s)� cos(Æs)]

(9.18)

Note that P is positive de�nite if its pivots p11 and p22 � p
2
12=p11 are

positive [54].

The gradient of (9.18) is given by

grad(V(x)) =
2
4 Mp11x1 +Mp12x2 � Pm + Pmax sin(x1 + Æ

s)

Mp12x1 +Mp22x2

3
5
T

The time derivative of (9.18) is given by

_V(x) = grad(V(x)) � fo(x)
= x

2
2(Mp12 �Dp22) + p12x1(Pm � Pmax sin(x1 + Æ

s))

+Pmx2(p22 � 1) + Pmaxx2 sin(x1 + Æ
s)(1� p22)

+x1x2(Mp11 �Dp12)
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Now, we choose p11, p12 and p22, such that _V(x) becomes negative de�nite.

Since the signs of the cross product terms x2 sin(x1 + Æ
s) and x1x2 are

inde�nite, we remove them by taking p22 = 1 and p11 =
D

M
p12. Thus,

_V(x) = x
2
2(Mp12 �D) + p12x1(Pm � Pmax sin(x1 + Æ

s)) (9.19)

Taking p12 <
D

M
, the �rst term of (9.19) becomes negative, and the condi-

tions for the pivots are also satis�ed. It can also be proved that the second

term of (9.19) is negative in a region surrounding the origin. Thus, (9.19)

is negative de�nite.

Using the control law (6.12), we obtain

xc =� k5grad(V(x)) � fcsc
= k6(p12x1 + x2) sin(x1 + Æ

s)

= k6(p12(Æ � Æ
s) + !) sin(Æ)

(9.20)

since x1 = Æ � Æ
s. In (9.20), k6 = �k5(�Pmax) = k5Pmax.
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Figure 9.5. Phase portrait of the OMIB system after the fault, when

an energy function (dotted line) and a Lyapunov function (solid line) are

used for deriving the control law, respectively.

Figure 9.5 shows the stability boundary of the post{fault stable equilib-

rium point, and the post{fault system trajectory when energy function
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(9.17) (dotted line) and Lyapunov function (9.18) (solid line) are used for

deriving the control law, respectively. As shown in this �gure, the stabil-

ity region is larger, and the system is better damped when the control law

is derived based on the energy function, i.e. control law (6.26). However,

control law (9.20) (which is derived based on a true Lyapunov function)

is not zero at xe1, but it requires information about the post{fault stable

equilibrium point.

9.3 Summary

Both control theories (i.e. CLF and VSC) can be applied to nonlinear

systems. VSC receives much attention due to its robust response charac-

teristics. Under certain conditions, the sliding mode of a VSC system is

not a�ected by the system perturbations and external disturbances [53].

However, application of this control theory to CSDs in multi{machine

power systems faces some diÆculties, namely:

� In contrast to CLF, there exists mathematical (and also practical)

unexplored issues for application of VSC to Di�erential{Algebraic

Equations (DAE).

� In contrast to CLF, for the Reduced Network Model of the form

(3.11), VSC does not require elimination of p(x). However, two im-

portant problems arise regarding application of VSC to this model.

First, one must �nd a good method to describe the sliding motion,

that is, to de�ne the equation of the sliding mode. The second chal-

lenge is the design of the matrix G to yield an asymptotically stable

sliding motion.

� In contrast to the control law based on CLF, control law based on

VSC requires information about the post{fault stable equilibrium

point and also all information from the system (see (9.13)).
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Chapter 10

Closure

10.1 Contributions of the Thesis

The main contributions of this thesis have been

1. to develop a general model for Controllable Series Devices (CSDs).

2. to observe the impact of CSDs on damping of electromechanical

oscillations.

3. to clarify the di�erence between energy functions and Lyapunov

functions.

4. to justify application of an energy function as a Lyapunov function

candidate.

5. to clarify the di�erence between a Lyapunov Function and a Control

Lyapunov Function (CLF).

6. to justify mathematically the control laws based on the CLF.

7. to show how the SIngle Machine Equivalent (SIME) method can be

used to select remote input signals for CSDs.

8. to observe the impact of the CLF controlled CSDs on damping of

electromechanical oscillations, when local and remote input signals

are used, respectively.
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9. to justify (both analytically and numerically) the e�ectiveness of

control laws derived from simpli�ed systems into actual systems.

10. to compare control laws based on Control Lyapunov Function and

Variable Structure Control with sliding modes.

10.2 Conclusions

A general injection model for Controllable Series Devices (CSDs) has been

developed. The injection model was derived in a single{phase{positive{

sequence phasor frame. This model is helpful for understanding the im-

pact of the CSDs on power systems dynamics.

It has been shown that the CSDs provide an e�ective means of adding

damping to power systems and signi�cantly enlarge the stability region

(also called the region of attraction) of the post{fault stable equilibrium

point with a suitable control strategy, see Figure 6.2 and Figure 6.3.

The damping e�ect of a Controllable Series Capacitor (CSC) increases as

line loading increases, see (6.25), but the damping e�ect of a Quadrature

Boosting Transformer (QBT) for a heavily loaded line is less than for a

lightly loaded line, see (6.24). However, the damping e�ect of a Uni�ed

Power Flow Controller (UPFC) is robust with respect to the line loading,

see (6.23). A similar result, based on small signal analysis, can be found

in [7].

Based on Control Lyapunov Function (CLF) concepts, a general control

strategy, see (6.35), for these three devices has been derived. The control

laws (6.39){(6.41) have been derived based on a simpli�ed Structure Pre-

serving Model (SPM). However, these control laws have been applied for

the actual systems, and the simulation results in Chapter 7 indicate that

the control laws are e�ective and robust for small and large disturbances

as well as meshed and radial systems, and they are not sensitive to the

model approximations. An analytical justi�cation of this observation can

be found in Section 5.3, i.e. the concept of total stability.

The control laws (6.39){(6.41) rely only on locally measurable information

and are independent of system topology and modeling of power system

components. Thus, the input signals are inexpensive, fast and reliable.

Selecting remote input signals for the CSDs, the SIngle Machine Equiva-

lent (SIME) method has been applied. The control law for a CSC based
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on the SIME, see (8.8), relies on remote input signals, i.e. data from all

machines in the system. Thus, the input signals can be expensive and less

reliable in a real power system. However, due to the latest development

in signal and communication technology, these issues may be solved in

the near future. The simulation results in Section 8.3 indicate that using

CSCs in a power system, the control law with remote input signals (i.e.

control law (8.8)) is more e�ective than the control law with local input

signals (i.e. control law (6.42)) for damping and stability of the power

system.

It should be noted that both control laws (6.42) and (8.8) are derived

based on CLF, and they do not require information about the post{fault

stable equilibrium point. Furthermore, the CSDs with CLF control do

not adversely a�ect each other.

Simulation results have shown that the electromechanical oscillation is

damped, and the power system is stabilized under the proposed control

(i.e. control laws based on CLF), if the initial states are in the region

of attraction, or equivalently, the fault (or other contingency) is cleared

before some maximum critical clearing time. The CLF controlled CSDs

can certainly lengthen the maximum clearing time (i.e. enlarge the region

of attraction), but there is obviously a limit on the increase, due to the

physical limitation of the devices.

The concept of Variable Structure Control (VSC) with sliding modes has

been presented in Chapter 9. A disadvantage with control law based

on VSC with sliding mode is that it requires information about the post{

fault stable equilibrium point for designing the switching manifold S(x) =

G � _x = 0. Furthermore, for large multi{machine power systems, it is

diÆcult and time{consuming to choose an appropriate G, such that the

equation of sliding mode becomes asymptotically stable.

10.3 Discussions and Future Work

In this thesis, the design of the controller has been done on phasor based

model, which may be not appropriate at higher frequencies. Therefore,

if the designed controller has a high gain at frequencies not adequately

modeled in the phasor domain it might turn out to be unstable when

tested in a full time-domain simulation. In order to investigate these

issues, it is proposed to verify the design method in a full time-domain
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simulation. This could either be done in a digital simulator, e.g. MASTA

or EMTDC, or in a real time analogue simulator. This study should

also result in guidelines regarding appropriate modi�cations to limit the

possible adverse in
uence of high frequency dynamics.

For deriving control law (8.8), the right{hand side of the actual system

(8.3) was simpli�ed, and the simpli�ed system was given by (8.6). In the

the actual system (8.3), PmGOMIB
and PeGOMIB

(which are time{varying,

and are calculated at each integration time{step) can be de�ned by

PmGOMIB
=M

�1
T

2
4MN

X
i2C

Pmi �MC

X
j2N

Pmj

3
5 (10.1)

and

PeGOMIB
= a sin(b ÆGOMIB + c) (10.2)

where parameters a, b and c are time{varying, and are calculated at each

integration time{step.

In a real power system (10.1) and (10.2) are indeed bounded. Therefore,

it is reasonable to assume that there exists a Pmapp and a Pmaxapp such

that (8.4) and (8.5) are small.

The simulation results in Section 8.3 indicate that using CSCs in a power

system, the control law with remote input signals (i.e. control law (8.8))

is more e�ective than the control law with local input signals (i.e. control

law (6.42)) for damping and stability of the power system. However,

these results cannot be basis for a general conclusion regarding the SIME

method. But, they may be good reasons for further research regarding this

control law. The following questions may be the basis for this research.

� How does this control law work in a meshed system in which several

CSCs are located in di�erent locations?

� How fast can SIME predict on-line a GOMIB system for large as

well small disturbances?

� How e�ective is this control law, (especially in extreme cases), if

we only use information from the most sensitive generators (not all

generators in the system)? How should these most sensitive gener-

ators be identi�ed? (Application of Trajectory Sensitivity Analysis

[55]{[57] may be useful to identify the most sensitive generators.)



Bibliography

[1] I. A. Hiskens, \Analysis Tools for Power Systems{Contending with Nonlineari-

ties", Proceedings of the IEEE, Vol. 83, No. 11, pp. 1573{1587, November 1995.

[2] N. G. Higorani, \Flexible AC Transmisson", IEEE, Spectrum, pp. 40{45, April

1993.

[3] CIGRE Task Force 38.01.06, \Load Flow Control in High Voltage Systems Using

FACTS Controllers", CIGRE Technical brochure 51, 1996.

[4] M. Ghandhari, Control of Power Oscillations in Transmission Systems Using Con-

trollable Series Devices, Licentiate Thesis, Royal Institute of Technology, TRITA{

EES{9705, ISSN 1100{1607, 1997.

[5] M. Ghandhari et al., \Non{linear Control of Controllable Series Devices (CSD)",

Proceedings of the 29th North American Power Symposium (NAPS), pp. 398{403,

October 1997.

[6] M. Ghandhari and G. Andersson, \Two Various Control Laws for Controllable

Series Capacitor (CSC)", Power Tech. Budapest 99, September 1999.

[7] M. Noroozian, Exploring bene�ts of controllable series compensators on power

systems, Ph. D. Thesis, Royal Institute of Technology, TRITA{EES{9402,ISSN

1100{1607, 1994.

[8] A. Herbig, On Load Flow Control in Electric Power Systems , Ph. D. Thesis,

Royal Institute of Technology, TRITA{EES{0001,ISSN 1100{1607, 2000.

[9] L. E. Jones, On Zero Dynamics and Robust Control of Large AC and DC Power

Systems , Ph. D. Thesis, Royal Institute of Technology, TRITA{EES{9904,ISSN

1100{1607, 1999.

[10] CIGRE Task Force 38.01.07, \Analysis and Control of Power System Oscilla-

tions", CIGRE Technical brochure, 1996.

[11] M. A. Pai, Energy Function Analysis for Power System Stability, Kluwer Academic

Publishers, 1989.

[12] M. Pavella and P.G. Murthy, Transient Stability of Power Systems, Theory and

Practice, John Wiley & Sons, 1994.

[13] H. K. Khalil, Nonlinear Systems (second edition), Prentice-Hall, Inc., 1996.

[14] W. Hahn, Stability of Motion, Springer{Verlag Berlin. Heidelberg, 1967.

[15] N. N. Krasovskii and J. L. Brenner, Stability of Motion, Stanford University Press.

Stanford, California, 1963.

123



124 Bibliography

[16] T. L. Vincent and W. J. Grantham, Nonlinear and Optimal Control Systems,

John Wiley & Sons, INC., 1997.

[17] A. Bacciotti, Local Stabilizability of Nonlinear Control Systems, World Scienti�c

Publishing Co. Pte. Ltd., 1996.

[18] A. Bacciotti, The Local Stabilizability Problem for Nonlinear Systems, IMA Jour-

nal on Mathematical Control and Information 5, pp. 27{39, 1988.

[19] E. W. Kimbark, Power System Stability, John Wiley and Sons, Inc., New York,

1948.

[20] A. R. Bergen and D. J. Hill, \A structure preserving model for power system

stability analysis", IEEE Trans. on Power Apparatus and Systems Vol. PAS-100,

No. 1, pp. 25{35, January 1981

[21] L. Gyugyi et al., \The Uni�ed Power Flow Controller: A new approach to power

transmission control", IEEE Trans. on Power Delivery Vol. 10, No. 2, pp. 1085{

1097, April 1995

[22] H. D. Chiang et al., \Stability Regions of Nonlinear Autonomous Dynamical

Systems ", IEEE Trans. on Automatic Control, Vol. AC{33, No. 1, pp. 16{27,

January 1988.

[23] R. E. Kalman and J. E. Bertram, \Control System Analysis and Design Via the

Second Method of Lyapunov", Journal of Basic Engineering, pp. 371{393, June

1960.

[24] P. C. Magnusson, \Transient energy method of calculating stability", AIEE

Transaction, Vol. 66, pp. 747{755, 1947.

[25] V. Venkatasubramanian et al., \Dynamics of Large Constrained Nonlinear

Systems{A Taxonomy Theory", Proceedings of the IEEE, Vol. 83, No. 11, pp.

1530{1561, November 1995.

[26] C. L. DeMarco and A. R. Bergen, \Application of Singular Perturbation Tech-

niques to Power System Transient Stability Analysis", Proceedings of I.S.C.A.S,

Monteral, Canada, pp. 597{601, May 1984.

[27] A. R. Bergen et al., \Lyapunov function for multimachine power systems with gen-

erator 
ux decay and voltage dependent loads", International Journal of Electric

Energy and Power Systems, Vol. 8, No. 1, pp. 2{10, January 1986.

[28] H. D. Chiang et al., \Direct Stability Analysis of Electric Power Systems Using

Energy Functions: Theory, Applications, and Perspective", Proceedings of the

IEEE, Vol. 83, No. 11, pp. 1497{1529, November 1995.

[29] D. J. Hill and I. M. Y. Mareels, \Stability for Di�erential/Algebraic Systems with

Application to Power Systems", IEEE Trans. on Circuits and Systems , Vol. 37,

No. 11, pp. 1416{1423, November 1990.

[30] N. A. Tsolas et al., \A Structure Preserving Energy Function for Power System

Transient Stability Analysis", IEEE Trans. on Circuits and Systems, Vol. CAS{

32, No. 10, pp. 1041{1049, October 1985.

[31] Z. Artstein, \Stabilization with relaxed controls", Nonlinear Analaysis, Theory,

Methods and Applications, Vol. 7, No. 11, pp. 1163{1173, 1983.

[32] E. Sontag, \A universal construction of Artstein's theorem on nonlinear stabiliza-

tion", Systems and Controll Letters 13, pp. 117{123, 1989.



Bibliography 125

[33] V. Jurdjevic and J. P. Quinn, \Controllability and Stability", Journal of Di�er-

ential Equations 28, pp. 381{389, 1978.

[34] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design, Birkh�auser,

1996.

[35] J. F. Gronquist et al., \Power Oscillation Damping Control Strategies for FACTS

Devices Using Locally Measurable Quantities", IEEE, Trans. on Power Systems,

Vol. 10, No. 3, pp. 1598{1605, 1995.

[36] H. R. Fankhauser et al., \SIMPOW- a digital power system simulator", Reprint

of ABB Review, No. 7, 1990.

[37] P. Kundur, Power System Stability and Control, McGraw{Hill, 1994.

[38] P. M. Andersson and A. A. Fouad, Power System Control and Stability, The Iowa

State University Press, 1977.

[39] CIGRE Task Force 38.02.08, \Longer term dynamics phase II", Final report,

January 1995.

[40] M. Pavella et al., Power System Transient Stability Analysis and Control, Kluwer

Academic Publishers, 2000.

[41] A. L. Bettiol et al., \Transient Stability{Constrained Maximum Allowable Trans-

fer", IEEE Trans. on Power Systems, Vol. 14, No. 2, pp. 654{659, May 1999.

[42] Y. Zhang et al., \SIME : A hybrid approach to fast transient stability assessment

and contingency selection", International Journal of Electrical Power and Energy

Systems, Vol. 19, No. 3, pp. 195{208, 1997.

[43] B. Carraro and J. Salomao, \Power Corridor Unites Brazil's Network", Trans-

mission and Distribution World, pp.70{74, June 1999.

[44] V. I. Utkin, Sliding Modes in Control Optimization, Springer{Verlag Berlin,

Heidelberg 1992.

[45] V. I. Utkin, \Variable structure systems with sliding modes", IEEE Trans. on

Automatic Control, Vol. AC{22, No. 2, pp. 212{222, April 1977.

[46] V. I. Utkin, \Variable structure systems: present and future", Automat. Remote

Control, No. 9, pp. 1105{1120, 1983.

[47] V. I. Utkin, \Equations of the slipping regime in discontinuous systems, II",

Automat. Remote Control, No. 2, pp.211{219, 1972.

[48] R. A. DeCarlo et al., \Variable structure control of nonlinear multivariable sys-

tems: A tutorial", Proceedings IEEE, Vol. 76, No. 3, pp. 212{232, 1988.

[49] S. Jayasuriya and S. Choi, \On the suÆciency condition for existence of a sliding

mode", American Control Conf., pp. 84{89.

[50] B. A. White and P. M. Silson, \Reachability in variable structure control systems",

Proceedings IEEE, Vol. 131, No. 3, pp. 85{91, May 1984.

[51] A. F. Filippov, \Di�erential equations with discontinuous right hand sides", Am.

Math. Soc. Transl., Vol. 42, pp. 199{231, 1964.

[52] Y. Wang et al., \Variable{structure FACTS Controllers for Power Transient Sta-

bility", IEEE Trans. on Power Systems, Vol. 7, No. 1, pp. 307{313, February

1992.



126 Bibliography

[53] W. Gao and J. C. Hung, \Variable Structure Control of Nonlinear Systems: A

New Approach", IEEE Trans. on Industrial Electronics, Vol. 40, No. 1, pp. 45{55,

February 1993.

[54] G. Strang, Introduction to Applied Mathematics, Wellesley{Cambridge Press,

1986.

[55] I. A. Hiskens and M. A. Pai , \Trajectory Sensitivity Analysis of Hybrid Systems",

IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications,

Vol. 47, No. 2, pp. 204{220, February 2000.

[56] I. A. Hiskens and M. Akke, \Analysis of the Nordel Power Grid Disturbance of

January 1, 1997 Using Trajectory Sensitivities", IEEE Trans. on Power Systems,

Vol. 14, No. 3, pp. 987{994, August 1999.

[57] M. J. Laufenberg and M. A. Pai, \A New Approach to Dynamic Security Assess-

ment Using Trajectory Sensitivities", IEEE Trans. on Power Systems, Vol. 13,

No. 3, pp. 953{958, August 1998.


	Abstract
	Acknowledgments
	Acronyms
	Contents
	List of figures
	1: Introduction
	2: Power system oscillations
	3: Modeling of power systems
	4: Modeling of controllable series devices
	5: Lyapunov stability
	6: Control Lyapunov function
	7: Numerical example
	8: Single machine equivaleng
	9: Variable structure control with sliding modes
	10: Closure
	Bibliography

