Postprint

This is the accepted version of a paper presented at 9th Sida Regional Collaboration conference, July 20-23, 2014, Entebbe, Uganda pp. 254-258.

Citation for the original published paper:

In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179309
Phase Developments during Natural Evaporation Simulation of Lake Katwe brine based on Pitzer’s Models

Hillary Kasesedde1, John Baptist Kirabira2, Matthéus U. Bäbler3, Anders Tilliander4, Stefan Jonsson5

1Graduate Student, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden.
Corresponding author email: hillary@kth.se
2Associate Professor, Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda.
3Assistant Professor, Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, Teknikringen 42, SE-100 44 Stockholm, Sweden.
4Associate Professor, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden.
5Professor, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden.

ABSTRACT
Lake Katwe is the largest of the eight saline crater lakes in the Pleistocene Katwe-Kikorongo volcanic field situated in the western arm of the East African Rift system in southwestern Uganda. The salt lake is hydro-chemically of a carbonate type with its brines representing an important source of mineral salts of high economic value. In the present work, the geochemical simulation of the crystallization route of the natural evaporation of the lake brine in PHREEQC based on Pitzer’s thermodynamic models was done. The precipitation sequence of the different mineral salts that crystallized step by step from the brine during natural evaporation at 30°C was obtained. The results show that the mineral salt precipitation sequence following the saturation data is: sulfates, chlorides, and carbonates. During the evaporative concentration process, the brines become enriched in Na+, K+, Cl-, CO3^2-, and depleted in CI- and SO4^2- with massive halite precipitation. The study provides the basis for the future comprehensive utilization of the natural brine resource in Lake Katwe.

Keywords: Brine crystallization sequence; Lake Katwe; PHREEQC modeling; Pitzer models

1INTRODUCTION
The future hydrological and geochemical evolution of closed natural saline basins depends very strongly on water evaporation and mineral salt precipitation from these basins (Rumgalz, 2001). Interactions between ions in natural waters have a great effect on the rates of mineral solubility. Models describing the variation of activity coefficients with ionic strength, temperature, and solution composition are required to quantify these effects, and hence can be used to make many thermodynamic calculations such as aqueous speciation of elements, mineral crystallization sequence, mixing of aqueous solutions and phase equilibria of mineral-solution. In the past few decades, the progress of geochemical modeling dealing with concentrated electrolyte solutions allowed the application of up-to-date approaches to understanding the geochemical aspects of natural phenomena. The ion-interaction model, developed by Pitzer in 1973, has not only advanced the development of the theory of concentrated electrolyte solutions, but also provided a valuable tool for the realization of a more accurate description of saline crystallization sequences observed in several present-day saline systems.

The applicability of the ion-interaction approach to modeling geochemical processes involving natural brines has been well established. Successful applications have included models accounting for mineral sequences produced by evaporating seawater (Harvie et al., 1984), deposition of trona on Lake Magadi, Kenya (Monnin and Schott, 1984), formation of boron rich evaporation products at Searles salt Lake, California (Felmy and Weare, 1986), and halite solubility in the Dead Sea (Israel) (Rumgalz and Millero, 1989). Further studies involved simulated evaporation of natural waters (Risacher and Clement 2001; Ma et al., 2011) and estimation of the quantities of salts obtained from evaporation of brines from disposal basins (Aral and Sparrow, 2004).

In this work, Lake Katwe brine deposits are investigated. The lake is the largest among the eight saline crater lakes within the Pleistocene Katwe-Kikorongo volcanic field north of Lake Edward in southwestern Uganda. At an elevation of 885 m, the lake occupies a maximum area of 2.5 km², circumference of 9 km, and a depth ranging from 0.4 to 1.6 m. The lake natural brine is hydro-chemically of a carbonate type, forming a mineral assemblage characterized by alkaline mineral salts rich in Na+, K+, Cl, SO4^2-, CO3^2-, and HCO3-. In a previous investigation, the mineral recovery from the lake brine using experimental evaporation under isothermal laboratory conditions at 30°C is reported.
According to those investigations, the mineral salt precipitation sequence from the brine, which was monitored over a period of 50 days, can be summarized by: sulfates → chlorides → carbonates (Kasedde et al., 2013). In the present study, further work was initiated to model the physico-chemical relationship between Lake Kátwé brine evaporation and mineral salt precipitation. The main goal is to provide additional information needed to get a better understanding of the evolution of the brines and mineral salts that form upon evaporation of the lake brines.

2.0 THERMODYNAMIC MODELING

2.1 Description

For the simulation of the natural brine evaporation, a thermodynamic modelling package, PHREEQC 3.0 (Parkhurst and Appelo, 2013) was used. PHREEQC is an interactive modeling code with an extensive thermodynamic database. It is based on Pitzer’s ion-interaction models which account for the non-ideality of aqueous solutions. It iteratively calculates mineral-solution-gas equilibria in complex brine systems. Due to the high ionic strength of the solutions in this study, the Pitzer database was used. The simulations were made using the chemical composition of a brine sample (pH = 10.2) from Nambawu salt pans at Lake Kátwé (Table 1). The ions with the highest concentration were used as input parameters in the code since interest is in the bulk of the precipitation of the major evaporite minerals at 30°C. Moreover, 30°C is the mean temperature for the dry and rainy seasons in the lake basin.

2.2 Modeling Procedure

To simulate brine evaporation in a series of sequential steps, PHREEQC was constrained to reduce the original water mass of the brine by 10% in the first evaporation step, and then reduce the resulting new water mass by 10% in the second evaporation step, and so on while allowing mineral salt precipitation. After 6 evaporation steps, 60 % of the original water mass (33.3 moles) was depleted without replenishment from outside sources such as rainfall. The original brine mass was 1 kg or 55.508 moles.

Output from the model lists the new brine volume and the resulting composition from each evaporation step. It also identifies the mineral species that precipitate at each step. Brine composition in terms of water, major ions, and precipitated mineral species from each evaporation step is expressed in moles. PHREEQC uses the brine composition from the previous evaporation step as input to calculate the brine composition for the next evaporation step. The step-wise process continued until brine compositions were calculated for all the 6 evaporation steps.

During evaporation, PHREEQC calculates several brine parameters including the mineral saturation indices (SI), ionic evolution, and number of moles of precipitated mineral salts. The modeling does not take into account kinetic factors such as those caused by day-night temperature changes and the time to reach equilibrium which affect the crystallization path. Furthermore, the modeling does not provide information on the fate of trace elements in the mineral salts.

3.0 RESULTS AND DISCUSSION

3.1 Saturation state of the brine

The saturation state of the analyzed brine solutions are shown in Figure 1. Positive values of a saturation index (SI) indicate that the solution is supersaturated and hence, mineral precipitation will occur. Negative values indicate mineral dissolution.

The results in Figure 1 show that the sulfates of sodium and potassium have SI greater than 0 while carbonate salts have low SI less than 0. The thermodynamic potential for minerals salts to precipitate from solution is often expressed in terms of SI. The results above imply that upon brine evaporation, the sulfate minerals precipitate before the other salts. The carbonate salts precipitate last from the brines. However, it should also be noted that SI values exceeding 0 do not automatically result in the precipitation of a mineral phase, because...
precipitation kinetics can be very slow. The development of the saturation indices for the most important mineral phases was further modeled to show which mineral phases dominate in the solution and to estimate the point at which the precipitation of certain minerals begins during brine evaporation (Figure 2). At each stage of precipitation, the mineral phase with the largest SI is predicted to precipitate. Most often, observations show that amorphous phases precipitate first, followed by a slow maturation to more crystalline, less soluble phases.

When considering the recovery of mineral salts from brine, the first step is the evaporation of the solution where different salts precipitate stepwise according to their solubility product. This gives a rough understanding of the processes occurring during the evaporation of the brine. The results from the evaporation simulations in Figure 2 indicate that glaserite, thenardite, and halite are slightly oversaturated in the original brine solution and hence have high saturation indices. This also explains the existence of the three minerals in the salts from the mineralogical analysis by XRD (Kasedde et al., 2014). The precipitation of these mineral phases is dominant during the concentration of the brine. The evaporation simulations also show that the composition of the brine during concentration is controlled primarily by the precipitation of sulfate and chloride mineral phases. Therefore, the point of brine concentration when a certain mineral begins to precipitate is moved towards a higher concentration. The saturation indices of the carbonate salts reduce during the evaporation and do not reach saturation at higher degrees of evaporation. This implies that most carbonates have very high solubilities in the brine. The evolution of the saturation indices is in good agreement with previously reported results from earlier laboratory evaporation experiments (Kasedde et al., 2013). The mineralogical analysis of the recovered salts could not detect some of the mineral phases as observed from the model calculations. To explain this, we note that the model calculations only consider ideal thermodynamic conditions which do not exist in a natural setting. Under natural conditions, the influence of kinetic factors and the formation of over saturated solutions explain the delayed precipitation of some minerals or their absence from solution.

3.2 Brine ionic evolution
Furthermore, the ionic evolution of the brines is modeled at different degrees of evaporation with the assumption that the considered mineral phases precipitate from solution as soon as reaching a positive SI (Figure 3).

Results show that until an evaporation rate of 10%, sodium, chloride, potassium, and sulfate show a decrease in concentration. Thereafter, these ions behave differently. Sodium and potassium show a conservative behavior during further evaporation while chloride and sulfate concentrations decrease further during the later stages of evaporation. The continuous depletion of sulfate and chloride is explained by the continuous precipitation of thenardite and halite respectively. Carbonate and bicarbonate concentrations show a steady increase in concentration with a constant slope. The conservative behavior of these ions indicates that the carbonate and bicarbonate bearing-mineral phases stay in solution until a high degree of evaporation due to their high solubility in the brines. It should also be noted that the (HCO$_3$ + CO$_3$) concentration is not significantly lowered during the evaporation because of the high alkalinity of Lake Katwe brines.

3.3 Mineral evolution
The results from the geochemical modelling of the mineral evolution during brine evaporation are shown in Figure 4.

The geochemical evolution of brines in closed saline basins is primarily controlled by inflow composition, selective removal of solutes and evaporite
precipitation. Modeling of the brine evolution pathways assumes that inflow waters evolve into brines which is controlled by evaporative concentration followed by mineral precipitation. The simulation results in Fig.4 carried out at 30°C show that as evaporation progresses, new mineral salt species are precipitated at the expense of some previously precipitated salts, which are reabsorbed back into solution. Once the least soluble minerals begin to precipitate, a chemical divide is created where the composition of the remaining solution changes as minerals are removed from the system.

Figure 4: Evaporative concentration of Nambawu salt pan brine showing the masses of major mineral salts precipitated as a function of evaporated water.

The solution therefore evolves along a new pathway until the next mineral phase reaches saturation before a new chemical divide is established (Eugster, 1980). In contrast with the other minerals predicted to precipitate from the brines, only arcanite, burkeite, glaserite, halite, sylvite, and thenardite were predicted by PHREEQC to precipitate from the brines with halite being the predominant mineral formed. Because of their high solubility in the brines, all carbonate-bearing minerals contained in these brines remain in solution even after 60% of the water is evaporated.

4.0 CONCLUSIONS

Simulated evaporation of Lake Katwe brines provides the following conclusions.

- Thenardite, halite, sylvite, glaserite, and arcanite are the first mineral phases to precipitate from solution. Halite precipitates more massively and hence, contributes most of the salt mineral mass.
- Carbonate-bearing mineral precipitates (trona, soda, kalicinite, nafcolite, and thermonatrite) do not appear in the early stages of the evaporation. They remain in solution even after 60% of the water mass is evaporated.
- The evolution of the saturation indices is in good agreement with the mineral determinations carried out on the solid experimental samples, and hence interprets the evaporative evolution of the lake brines.
- During the evaporative concentration process, the brines become enriched in Na⁺, K⁺, and HCO₃⁻ + CO₃²⁻. Cl⁻ and SO₄²⁻ concentrations are lowered because of halite, thenardite, sylvite, glaserite, arcanite, and burkeite precipitation.

For most simulations, the predicted results match closely with those observed from earlier experimental investigations. Since thermodynamics can only suggest final equilibrium phases and cannot specify neither geochemical path nor time to reach equilibrium, further studies should investigate the kinetics of mineral salt precipitation from Lake Katwe brines.

5.0 ACKNOWLEDGEMENTS

The study was funded in part by the Swedish International Development Cooperation Agency (SIDA) and Makerere University.

REFERENCES

Aral, H., and Sparrow, G.J., 2004, **Estimation of the Quantities of Salts that may be obtained from the disposal basins**. CSIRO Minerals. Report DMR-2378D.

Krumgalz, B.S., 2001, **Application of the Pitzer ion interaction model to natural hypersaline brines**. Journal of Molecular Liquids 91, 3-19.

Mannin, C., and Schott, J., 1984, **The determination of the solubility products of sodium carbonate minerals and...**

