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Abstract 
 
Of the many waveforms the bowed string can assume, the so-called “Helmholtz motion” 
(Helmholtz 1862) gives the fullest sound in terms of power and overtone richness. The 
development of this steady-state oscillation pattern can take many different paths, most of 
which would include noise caused by stick-slip irregularities of the bow-string contact. Of the 
five papers included in the thesis, the first one shows, not surprisingly, that tone onsets are 
considered superior when the attack noise has a very limited duration. It was found, however, 
that in this judgment the character of the noise plays an important part, as the listener’s 
tolerance of noise in terms of duration is almost twice as great for “slipping noise” as for 
“creaks” or “raucousness” during the tone onsets. The three following papers contain analyses 
focusing on how irregular slip-stick triggering may be avoided, as is quite often the case in 
practical playing by professionals. The fifth paper describes the triggering mechanism of a 
peculiar tone production referred to as “Anomalous Low Frequencies” (ALF). If properly 
skilled, a player can achieve pitches below the normal range of the instrument. This 
phenomenon is related to triggering waves taking “an extra turn” on the string before causing 
the string’s release from the bow-hair grip. Since transverse and torsional propagation speeds 
are both involved, two different sets of “sub-ranged” notes can be produced this way. In the 
four last papers wave patterns are analysed and explained through the use of computer 
simulations. 
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Preface 
 
In most musical contexts, the “classical” string player is aiming at a quick development of the 
Helmholtz motion during the tone onset of the bowed string. As shall be shown, considerable 
bowing precision is required in order to generate a fast tone buildup while avoiding onset 
noise, in terms of non-periodic patterns, or patterns lacking energy in sets of partials. 
Typically, the bowed-string transient falls into one of the following three categories: 
 

• Multiple slips, where more than one slipping interval occur during each nominal 
fundamental period.  

• Periodic stick-slip from the very beginning, giving periods equal or close to the period 
length of the Helmholtz motion (in this thesis referred to as “perfect attack”); 

• Prolonged irregular periods (“creaky” or “raucous” sounds, usually with no clearly 
definable pitch). 

 
In addition to these three, which are all frequently occurring during practical playing, a fourth 
category of some musical virtue exists:  
 

• Prolonged periods of identical length, each period exhibiting only one slip, triggered 
by either transverse or torsional waves (Anomalous Low Frequencies). 

 
The five papers of this thesis do all deal with one ore more aspects of the four categories 
above:  
 
Paper I (Acceptance limits for the duration of pre-Helmholtz transients in bowed string 
attacks) shows that string players are quite sensitive to the noises produced when the slipping 
intervals deviate substantially from the nominal fundamental period during the onset transient. 
For a violin G-string, based on a listening test, tolerance limits are suggested with respect to 
the duration of multiple slips and prolonged irregular periods, respectively.  
 
Paper II (The bowed string computer simulated – some characteristic features of the attack) 
presents some parameters that are likely to influence the bowed-string transients. Special 
focus is on the force peak that occurs in the static-friction interval after the first slip. This 
peak is probably the most protruding obstacle in the creation of a regular slip-stick pattern. 
While the range of bow velocities acceptable for a given bow force is initially quite restricted, 
the velocity can be chosen much more freely as the transient decays. 
 
In Paper III (On the kinematics of spiccato and ricochet bowing) the build-up and decay of 
spiccato and ricochet tones are analysed. These “off-string” bowing techniques, which also 
put the bow’s quality to test, require a high degree of skill to be properly performed. The 
study shows, however, that “perfect attacks” (i.e., starting transients with regular periodic 
triggering all the way) can be produced also when the bow is thrown onto the string, as in 
spiccato and ricochet. 
 
Paper IV (On the creation of the Helmholtz movement in the bowed string) is a thorough 
examination of onset transients that quickly lead to Helmholtz motion. Based on analysis of 
the waves returning to the bow, certain bowing-parameter requirements can be defined for 
simple bowed-string models. Patterns similar to those outlined by these equations are, 
however, recognisable also in more complex models.  
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Paper V (Wave analysis of a string bowed to anomalous low frequencies) uses similar wave-
analysis techniques to explain the peculiar phenomenon of Anomalous Low Frequencies 
(ALF). Here the string is forced to oscillate at frequencies substantially lower than its usual 
transverse fundamental mode. It was found that these frequencies might be divided into two 
groups, triggered by transverse and torsional waves, respectively.  
 
With the exception of Paper I, computer modelling of the bowed string has been utilised for 
analyses in all the works above. A brief presentation of the computer program is included in 
this thesis. 
 
The main body of research papers on the bowed string has focused on the string in steady-
state oscillation. The few rapports dealing with bowed starting transients have typically been 
describing them as “long lasting” without further exhaustive analyses. Backhaus (1932) 
compares the duration of a violin transient—the five lowest harmonics of the tone A4 (435 
Hz)—to the transient of a trumpet’s F4 (340 Hz). While for the trumpet all five harmonics 
reach full amplitude within 40 milliseconds (most of them much earlier), the violin uses more 
than 100 ms to do the same. However, unpublished measurements of energy radiated from a 
violin (performed by Lars Henrik Morset at the Norwegian University of Science and 
Technology) suggest a rise time in the order of 16 - 18 ms for the violin body when excited 
directly at the bridge. For frequency bands above the main air and wood resonances, the 
response might be even faster. Melka (1970) found that regardless of pitch, in violin pizzicato 
no tone build-up lasted longer than 4 ms. This points to the energy build-up in the string as the 
limiting factor, or to the string’s delicate role in wave building when bowed, which again is 
largely a function of the player’s intention and skill. In the Backhaus plot, the first harmonic 
builds up considerably more slowly than the lowest four partials above. That indicates a 
triggering not regular from the onset. With regular triggering the first harmonic would 
develop together with the others. 
 
In the case of Anomalous Low Frequencies, transient are very short, because wave patterns do 
not build up in the same way as the for the Helmholtz motion. The forced oscillations of ALF 
never form a fixed wave pattern travelling along the string. Within each prolonged period, the 
string signal is required to be significantly modified one or more times in order to provide the 
delayed triggering necessary for ALF to exist. 
 
The present works have to a large degree been taking the player’s perspective: “What can be 
done to create the wanted sound?” “Which are the reasons for attacks to fail?”—Questions 
familiar to all instrumentalists. However, unlike performers of most instruments, the string 
player is continuously influencing the transient during its development. The development of a 
stable tone is literarily led by the hand all the way through. Dependent on frequency and 
bowing position, the string and the responding instrument are merely defining a frame, within 
which the player must try to manoeuvre. While this frame is system specific, the resulting 
transient is not. The papers of this thesis have for the most part been trying to describe the 
nature of such frames. What might eventually come out of the string still lies in the hands of 
the player.  

 
Knut Guettler 

 
Oslo, April 6. 2002.
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The Helmholtz motion 
 
Description of the Helmholtz motion (Helmholtz 1862) can be found in any textbook on the 
acoustics of musical instruments. A brief summary is given here: 
 
When a bowed string oscillates in steady state, the string takes the shape of two (nearly) 
straight lines connected by a kink or corner that rotates in a parabolic path, see Fig. T1. The 
contact between the bow and string switches between two conditions: sticking and slipping. 
During the interval when the kink is travelling between the bow and the bridge (“slip”), the 
string moves in a direction opposite to that of the bow. The velocity is then (1 − β)/β  times 
higher than the (steady) bow velocity supplied by the player. β denotes the ratio between the 
bow’s distance from the bridge, and the total string length. During the remaining part of the 
cycle (“stick”), the string is stuck to the bow hair and consequently takes the speed of the 
bow. The sticking and the slipping intervals thus last (β − 1)/f0 and β/f0, respectively, where f0 
is the fundamental frequency of the string motion. 
 

Figure T1: The string in Helmholtz motion. 
Every time the string’s corner passes under the 
bow on its way to the bridge, the string slips on 
the bow hair. When passing the bow again on its 
way to the nut, the string is captured whereafter 
it stays stuck for the rest of the period.  

 Figure T2: During the sticking interval, the 
string follows the velocity of the bow, vBOW. 
In the slip interval, the string takes the 
velocity v = vBOW (β − 1)/β, where β is the 
bow’s position relative to the string length. 

 
.   
 
 
A brief description of the FIDDLE simulation program 
 
The computer program utilised for the present analyses essentially follows the concepts 
outlined by McIntyre and Woodhouse (1979) and Schumacher (1979), and later modifications 
by the same authors. Cremer (1981/1984) has given a comprehensive description of their 
simulation model. Computationally, the FIDDLE program is based on D’Alembert’s solution 
to the wave equation (described in Appendix A of Paper IV). With the exception of bow 
compliance and bow-hair/string friction, all losses are concentrated to the string terminations 
where also resonances can be programmed as part of the reflection functions. The string may 
be excited both in the transverse and the rotational plane.  
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Figure T3: Symbolic signal-flow 
diagram of the FIDDLE program. The 
string is represented by a 4 × n matrix, 
in which each element expresses a 
displacement from equilibrium while the 
columns indicate string positions (i.e., 
following the wave equation of 
D’Alembert). After each time step all 
elements are shifted one column within 
the row. The boxes symbolise reflection 
functions (with respect to partial 
velocity), which each may be composed 
of two convolution integrals for 
computational efficiency (see text). 
Similar functions are available for the 
bow.  
 
 
 
 
 
 
 

Figure T3 (bottom) lists the output variables readily available after a simulation where 
detailed information is required. For the analyses of Papers IV and V, information on the 
signal waves arriving at the bow was crucial, and the reflection functions were chosen to 
facilitate identification of their origin with respect to the stick/slip pattern. For producing plots 
of attack quality in a bowing-parameter space (such as Fig. 7 of Paper IV), only information 
on the “type of friction” (i.e., slip or stick) is kept, as this makes the program run several 
times faster even though all the information listed is still calculated internally. All calculations 
are carried out in double precision. 
 
In the boxes drawn in Figure T3, two reflection functions are indicated for each partial string 
end. The first one can be given any shape (as FIR), and is convolved with the signal in the 
traditional way in the time domain. The second function consists of a programmable Dirac 
delta followed by an exponentially decaying tail, the computation of which is very simple and 
requires three numerical operations only. This function is convenient when wanting to reduce 
Q-values for frequencies lower than the string’s third of fourth harmonic (although with the 
expense of a negligible phase shift). The function applied alone, however, gives Q-values that 
increase with the harmonic numbers, due to its Dirac delta. 
 
The first function typically takes one of the three following shapes, with or without low-pass 
filtering: (1) gaussian;  (2) “constant-Q function” (Woodhouse and Loach 1999), or (3) “string 
stiffness function” based on the Airy function (Woodhouse 1993).  
 
Friction models 
Two friction models are available: The “hyperbolic” friction function, which gives a friction-
coefficient curve of the form  
µ = c1 + c2/(vrelative + c3),   
where  
c1-3 are programmable constants, and vrelative is the relative speed between the bow hair and the 
string surface. The curve is uniquely defined with three coordinates, and is multiplied with the 
normal bow force in order to define friction force as function of relative speed. 
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At the uppermost plot of Figure T3 a movable “load line” is sloping from “potential friction 
force” (explained next page) at the ordinate, to ditto divided by the string’s impulse surface 
impedance, at the abscissa. Whenever this line surpasses the limiting static frictional force at 
the ordinate, the friction becomes dynamic (sliding). When the load line intersects the friction 
curve in two points, the seeming ambiguity is resolved by evaluating the friction’s history 
(continuing the status of the preceding time step). As soon as the load line falls below the 
curve, the friction becomes static. (See e.g., McIntyre and Woodhouse 1979, pp 98-99.) 
 
The “plastic” friction model (Smith and Woodhouse, 2000) is function of temperature at the 
point of contact (see Appendix D of Paper IV). It gives friction values that decrease as the 
temperature increases as result of energy dissipation, or increase as the temperature decays 
due to natural heat flow to the environment, the time constant of which is programmable. The 
hyperbolic curve described above can for certain models be said to approximate asymptotic 
friction values, i.e., results of lasting relative velocities, in the plastic friction-domain (see the 
middle panel of Figure T4). It hence lies in the nature of plastic friction that hysteresis occurs 
when the relative velocity varies.  
 

 
Figure T4: Examples of friction trajectories obtained through simulations with different friction models. Left 
panel: “hyperbolic” friction; middle and right panel: two versions of “plastic” friction. From simulations with 
String II of Paper IV at steady-state Helmholtz motion (vBOW = 20 cm/s; FZ = 900 mN; β = 1/8). The trajectories 
have noticeable influence on the string spectrum—the “hyperbolic” friction giving more energy in the upper 
partials than the other two models.  
 
Special features 
In addition to the numeric outputs, FIDDLE provides animated graphic information on string 
and bow movements. This has proven most helpful in certain cases, as for instance with the 
analyses of ALF of Paper V. The picture series can be stored as a graphic file for later replays 
without underlying calculations. 
 
For the analyses of spiccato in Paper III a two-track recording of an impulsive excitation of a 
Guarneri violin was used to create a transfer function (from sound pressure and the force 
signal of an impulse hammer at the bridge), later to be convolved with the simulated force-on-
bridge output in order to produce sound files. The same method has been utilised in the 
preparatory analyses of some transients, and for ALF. As an option FIDDLE gives the force-
on-bridge output in 16-bit sound format.  
 
The time-dependent input variables  
The input consists of two time-dependent variables: bow force and bow velocity (inertial 
frame) in addition to the choice of bowing point, β. These can both be programmed through a 
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set of specially designed functions, including several for system analysis, e.g., “units per 
second”, “decibels per second”, trigonometric functions or a “chirp”. Optionally, FIDDLE 
provides a second β for the possibility of playing with a double bow in order to see some 
effects of a (quasi) hair-ribbon width. The “two bows” have a definable force distribution to 
simulate tilting of the bow. [This, of course, cannot compare to the method employed by 
Pitteroff (1995), where the bow-hair ribbon was simulated by use of the finite element 
method.] It is further possible to place an object (mass, spring or resistance) at an arbitrary 
point of the string. The latter has been utilised for analyses of what musicians refer to as 
“harmonics”, i.e., “flageolet tones”, the results of which are not included in this thesis. 
Simulations can be initiated with energy present in the string in form of travelling partial 
waves of arbitrary shapes. This has shown very practical for analysis of system details, as well 
as for simulations of pizzicato. At the conclusion of a simulation, all internal variables may be 
stored to file so that new runs can be made from the point where the program was halted. 
 
Built-in tools for analysis 
FIDDLE is a menu-operated program, where plots of spectra, friction trajectories, numbers of 
periods elapsing before Helmholtz triggering in a force-acceleration parameter space, and 
other analyses are immediately available at the end of each session. Spectral amplitudes of 
partials (harmonic or inharmonic) can be stored in memory as references to be subtracted 
from similar (logarithmic) amplitudes of subsequent simulations. Before initiating any 
simulation—after programming string impedances, propagation speeds, reflection functions, 
etc.—FIDDLE provides built-in routines to determine the true mode frequencies 
(inharmonicity), Q-values (including specified loss at each string termination), string point 
admittances, and a series of other details important for the design of simulations to follow. 
 
“Potential friction force” 
The information on, “waves arriving at the bow” has shown extremely important in the 
analysis of the relation between bowing parameters and acoustical outcome. On basis of the 
bow velocity and the four waves (transverse and torsional) arriving at the bow after bridge 
and nut reflections, respectively, a most important value termed “potential friction force” is 
calculated as an option. This value must surpass the limiting static frictional force in order to 
produce a slip, and is therefore essential in all analyses of triggering patterns. 
 
The frictional force between a noncompliant bow and the string during the static intervals 
may be expressed through the following equation [which can be derived from McIntyre, 
Schumacher, and Woodhouse, 1983, Eqs. (B13) and (B14)]: 

 
 
(T.1) 
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The sum of the four partial signals (i.e., the velocities, ∂yi/∂t) gives the surface velocity the 
string would have taken at the point of bowing if the friction suddenly disappeared. It is 
convenient to refer to FST(t) as “potential frictional force” regardless of whether the friction 
be static or not. Although explicitly referred to in Papers IV and V only, the concept of 
potential frictional force has been a cornerstone in all the present wave analyses.  

 
 

 
 
 
 
 
 
 
 

Errata 
 
 
 
Paper I:  Two of the equations in the parameter list for Eq. (3.1) at the top of page 23 

should read:  
 

t1 = 2X/CTRV, and t2 = 2(L − X)/CTRV. 
 

In the caption of Figure 5, at the top of page 24, the beginning of lines number 6 
and 15 should read, respectively: 

 
 R4 = R3(f2 + f1)/ (f2 − f1) 
 
 and  

 
 K8 = 2πf3(R7 + R8)   

 
 
Paper IV: In page 11 and the figures of page 20, the orientation of the relative velocity is 

misleading. The correct orientation is:  vrelative = vstring − vbow.  
 
Paper V: At the top of page 9 – in Figure 1, the Q-values should be divided by a factor 2, 

i.e., the tick labels of the ordinate should read 5, 50, and 500, respectively. 
 

Paper V is printed here with pages 11 through 13 in scrambled numerical—but                 
correct informational—order. 
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Introduction and comments to Paper I 
 

Acceptance limits for the duration of pre-Helmholtz transients 
in bowed strings 

 
Anyone who has tried playing a string instrument has experienced the difficulty of producing 
bowed tones of agreeable quality. In particular, pleasant tone onsets are hard to achieve. As 
discussed in the Papers II through IV, intrinsic physical hurdles present themselves during the 
first part of the transient. Nonetheless, most professional string players seem to be mastering 
tone onsets quite well, although it may be added that attack quality is varying a lot also 
between these. 
 
To simplify the issue somewhat: the onset quality is for a large part a question of making the 
transient leading to the Helmholtz motion as short as possible, which implies attaining 
periodic slip/stick triggering as early as possible in the transient. By nature bowed instruments 
produce stochastic noise, which certainly can be said to be part of their charm. The major 
source to this “noise” is the sliding of the string on the hair ribbon. If the string slips more 
than once per nominal period, it consequently increases the noise-to-tone ratio. In particular: 
if the slips are irregular, very much of the sound becomes “pitchless”, and the sonorous tone 
disappears (as well as the “charm”, one may assume). 
 

 
Figure T5: Noise isolated from a violin tone, and 
the string signal in steady-state Helmholtz motion 
(i.e., with regular triggering). By use of the 
Bluestein filter (Bluestein 1968) combined with a 
frequency-domain comb filter, noise can be 
separated from the signal without bleeding to the 
neighbouring elements in the time domain. The 
plots show that noise—although apparently 
continuous in the sound pressure—is mainly 
generated in pulses during the slipping intervals. 
Amplitudes up to about 10% of the signal 
amplitudes are typically seen.  
 
 
 

By recording and inspecting the string-velocity waveform, one can estimate the number of 
nominal periods elapsing before regular periodic triggering occurs. Paper I addresses two 
questions: (1) How quickly are professional violinists able to establish regular triggering 
during practical playing? (2) From the advanced listener’s viewpoint: How much ‘off target’ 
can the player be before his/her attack is perceived as one of unacceptable quality? (It should 
be taken into consideration that any additional slip introduced during the starting transient 
most likely will prevail for a certain number of periods before expiring.) 
 
Acceptance of noise in bowed “neutral” attacks 
The main finding of Paper I is that bowed violin transients are normally short in terms of 
irregular stick-slip action. For an open violin G-string, the acceptance limit was estimated (by 
a panel of 20 advanced string students and professionals) to 50 ms (≤10 nominal periods) for 
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attacks with prolonged periods, and 90 ms (≤18 nominal periods) for multiple-slip attacks. 
The attacks were supposed to sound “neutral” as for practicing a scale.  
When verifying the attacks of normal playing (from recordings of two violinist unaware of the 
subject of the research), it was found that for most musical examples the attacks were well 
within these limits, and that 44% (out of 1694 attacks) were found to be “perfect” (defined as 
less than 5 ms elapsing before the occurrence of Helmholtz triggering). The way to determine 
whether or not a period is “noisy” is to consider the string velocity under the bow, to see how 
many times it crosses the zero-velocity line during the fundamental period. A clean attack 
would normally1 show two zero crossings per nominal period only.  
 
Character of noise varying with the musical context 
Naturally, the musical style will have some influence on the character of the bowed attack. 
For example, in the theme of Bizet’s L’Arsienne suite, a good part of the recorded attacks 
showed prolonged periods (“excess bow pressure”) giving a rougher, more “biting” sound. At 
the other extreme, Bach’s Preludio V from Das Wohltemperierte Klavier (consisting of rapid 
détaché scales at medium sound volume) showed long multiple-slip transients, producing a 
lighter, looser sound. Of the three categories “prolonged”, “perfect”, and “multiple slip”, the 
“perfect” attacks showed the highest rate for all bowing styles at all dynamic levels. However, 
the distributions on either side of this class differed substantially with the dynamics. No 
prolonged-periods were ever observed at soft levels (piano), where, on the other hand, 
multiple-slip transients of very long duration were sometimes seen. At higher dynamic levels 
(mezzo forte and forte) all the three categories were observed, but in martellato strokes, the 
first few periods were usually prolonged. Such attacks leave an impression comparable to 
first-letter consonants in speech. 
 
Background for the study 
In Papers II through IV, the theme is “perfect attacks” and how to achieve them. To our 
knowledge no report did earlier touch the issue of string waveforms during onset transients as 
performed by accomplished professionals, although transient spectra had been subjected to 
investigation by some authors (e.g., Backhaus 1932, see Figure T6, below). We found it 
important to establish a reference here in order to avoid emphasising phenomena of minor 
relevance to professional performance. The results of Paper I show clearly that string players 
are very sensitive to the quality of bowed starting transients, and that they are unanimously 
able to discriminate between onsets of small differences in the triggering pattern. The paper 
shows furthermore that professional violin players for a great part are able to adjust their 
bowing parameters for each tone individually in order to quickly establish the adequate 
periodicity. 

 
 
 
Figure T6: In the Backhaus 
plot (presented by Cremer, 
1982) the first harmonic 
builds up slowly. With 
regular periodic triggering, it 
would have developed 
simultaneously with the 
others. 
 

                                                 
1 Great torsional activity sometimes causes minor zero-line crossings of the transverse signal even during stick. 
Since these occur without dynamical consequences, small detours are ignored. 
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Figure T6 (previous page) shows the development of a violin tone (A4). In this attack the 
triggering has most likely been irregular (with multiple slip) until the magnitude of the first 
harmonic surpasses that of the second one (i.e., after >95 ms). The musical context must 
determine whether this attack is to be categorised as “good” or “below average”. Judged as a 
“neutral tone” it is doubtful that it would have received any favourable characterisation. 
 

 
 
 
 
 
Figure T7: Violin attack from recording of 
Tchaikovsky Violin Concerto in D (Kyung 
Wha Chung, soloist). Probably an example of 
periodic triggering from the very start. Notice 
that the first harmonic is leading the build-up. 
 
 
 
 
 

 
The harmonic envelopes displayed in Figure T7 were derived from a modern commercial 
recording with the soloist performing in a concert hall. Due to reverberation of the hall, the 
envelopes might have been slightly altered, but it is clearly visible that the first harmonic is 
the dominant partial during the entire build-up (and decay). This is a strong indication of 
“perfect” triggering. The pitch (G4) is one whole step lower than the violin tone measured by 
Backhaus for the previous plot. In that plot the envelope of the first harmonic was not 
completed, so we do not know how long the transient really is. The note shown in Figure T7 
was most probably executed on the G-string, and was played short and loud with a small 
accent. It was taken from the final movement of the concerto, and was picked from a musical 
phrase with a number of attacks of similar quality. 
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Introduction and comments to Paper II 
 

The bowed string computer simulated 
– some characteristic features of the attack – 

 
In order to understand some of the problems involved in the creation of the Helmholtz motion 
it is useful to investigate Figure 3 and Eq. (3.3) of Paper II. In terms of periodic triggering, the 
first frictional obstacle presents itself already during the first sounding period: At the time t = 
trel− + T − t1, that is T(1−β)− after the first slip, a force peak threatens the bow’s grip on the 
string (stick), which for obtaining periodicity should be lasting until time t = trel− + T, where 
the second release (slip) is supposed to happen (trel = time of the first release; T = the natural 
period of oscillation; t1 = the time required for a transverse wave to propagate from bow to 
bridge and back; β = the relative bowing position with respect to the string length). See also 
Figure 1 of Paper II2. (In Paper IV, the time value trel− + T − t1 is referred to as A, while trel + 
T is referred to as B.)  
 
There is one major difference between the friction forces during the transient and those 
operating at steady state: During steady state, over the whole period, the friction force is 
mainly determined by (i.e., taking values similar to) the value of the sliding friction, while 
being relative insensitive to variations in bow speed. During the transient, however, the static 
friction force is rapidly varying, with values directly related to the bow speed. 
 
The resistance-reactance reflection function  
Schelleng’s equations on minimum and maximum “bow pressure” for a given bowing 
position and speed, albeit referring to string-termination resistance only, are in fact based on a 
resistance-reactance model, that is, dashpot and spring in parallel. Without the spring, the 
whole dynamic system would have been moving in the bow-stroke direction. Paragraph 5 of 
Paper II investigates the time constants’ influence on playability in such models. When the 
dominating time constant is near the fundamental period or larger, it affects the playability in 
the sense that the velocity/acceleration delta becomes smaller, making the instrument “harder 
to play” (see Fig. 6 of Paper II). Utilising terminology from Paper IV: the difference between 
the frictional force at A and B is influenced by this time constant. The greater the difference, 
the more tolerant the system is to the bow velocity. 
 
Bow compliance 
Dynamic bow compliance (discussed in Paragraph 6 of Paper II) can be considered to 
represent an additional frequency-dependent admittance at the string’s point of excitation. As 
such, the complying bow will absorb energy in frequency ranges where its admittance is 
comparable to the point admittance of the mounted string. On a violin, however, most string-
mode frequencies will have point admittances much higher than those of the bow, ensuring a 
minimal energy leakage through the bow’s vibrations. Simulations show that even for a heavy 
violin G-string, most transverse modes would exhibit point admittances much higher than the 
bow’s peak admittances. Changing to lighter strings or bowing the same string at a larger β 
would give higher string point admittances yet. 
                                                 
2 Notice: In this figure, although based on computer simulations, force peaks have for clarity been drawn up to 
the limiting static value at each stick-slip and slip-stick transition. This was done in accordance with Figure 3 of 
the Schelleng 1973 paper. Later it has been shown that the limiting value is never reached during realistic 
capture; see Smith and Woodhouse (2000). 
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For lower (sub-fundamental) frequencies, however, the bow has a potential of acting as an 
absorber, since at non-mode frequencies the string’s point admittances are much lower. Figure 
T8 (from Guettler and Askenfelt 1995) shows the longitudinal admittance of bow hairs 
mounted on a bow clamped relatively rigidly at the frog (clamped with rubber around it). A 
handheld bow would probably give somewhat higher admittance in the lowest region. Figure 
T9 shows the simulated point admittance of a high-gauge violin G-string bowed at β = 1/9 for 
comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure T8: Bow-hair admittance in the longitudinal (i.e., the bowing) direction (from Guettler and Askenfelt 
1995). For most normal modes (see Figure T9 below) a violin string’s surface point admittance is much higher 
than the bow’s admittance at any frequency. The dotted line indicates the accelerometer mass, for which the 
spectrum has been compensated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure T9: Simulated point admittance of a high-gauge violin G-string (f0 = 196 Hz; β = 1/9; other string 
parameters as for String II of Paper IV, Fig. 11). Thick line: torsional admittance; thin line: transverse 
admittance. Of the mode frequencies, very few exhibit admittances comparable to peaks of the bow-hair 
admittance (≈ −3 dB). “Sub-harmonics” or other non-harmonic frequencies might, however, be approaching 
admittances found in the bow. The combined surface point admittance of the present string without reflections is 
1.86 s/kg (= 2.7 dB). 
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For the examples of Figure 7 (b) and (c) in Paper II, the bow hair was given unrealistically 
high mobility (1.4 s/kg) in order to visualise the effect of low-frequency damping. For larger 
string instruments damping of this order might come more into play, though, since 
admittances of their strings are closer to matching those of their bows. Double bass strings 
normally have characteristic transverse wave impedances ranging between 1.3 and 5.3 kg/s—
that is 3.5 to 14 times higher than the 0.37 kg/s of the “heavy” violin G-string above—while 
the mass of a double bass bow is only two to three times higher than the mass of a violin bow. 
 
Moving into steady-state oscillations 
Figure 8 of Paper II (repeated as Fig. T13 in this thesis) sums up much of the article’s content: 
The “perfect attack” starts with very strict speed/acceleration requirements. But, with those 
satisfied, the “Schelleng room” quickly opens, offering a great palette of timbre qualities even 
for a single bow-force value3. The figure is a qualitative schematic description of the bow 
speed tolerances with a fixed bow “pressure”. With the simple hyperbolic friction model we 
can write as an approximation  
 
∆f  ∝ vBmin(t) ∝ vBmax(t), 
 
where ∆f  = difference between the limiting static friction force and the dynamic (sliding) 
friction force, and vB(t) is bow velocity as function of time over the entire transient. 
 
This implies, of course, that in absolute terms a bow following the path of minimum bow 
speed when holding a high bow force, might exhibit higher speed and acceleration than a bow 
following the path of maximum bow speed with a lower bow force. Or, if preferable: the start 
of a firm and loud tone with minimum bow speed might imply higher velocities than the onset 
of a soft flautando with maximum bow speed. In practical playing, however, these two attacks 
would most likely be played with different β, which again influences both limits referred to. 
 
 
 

                                                 
3 In the well-known diagram where Schelleng shows the limits for maintaining the Helmholtz motion as function 
of position and bow force (1970, and Fig. 7 of 1973), he also indicates how bow force influences the timbre. 
This analysis of tone colour variation was, however, not founded on the same model as used for the calculation 
of the bow-force limits. Cremer, who later provided a formal explanation (1972 and 1973), described the 
phenomenon as “rounding of the [Helmholtz] corner”. It is worth noticing that with respect to changes of tone 
colour, a similar diagram might well have been drawn with position and bow speed as the two independent 
variables. If wanting to maintain the tone colour as much as possible during a diminuendo, the player must not 
only decrease the bow force, but also decelerate the bow. 
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Introduction and comments to Paper III 
 

On the kinematics of spiccato and ricochet bowing 
 
In order to determine which properties separate the excellent musical instrument from those of 
average quality it is important to possess a thorough understanding of how the instrument is 
played—not just at an average level, but with the technique of the highly qualified 
professional. The bow constitutes a good example. Properties of the violin bow have been 
investigated by a handful of researchers, most of them focusing the bow’s natural modes 
(Schumacher 1975, Bissinger 1993, and Askenfelt 1995). A few reports have zoomed in on 
the bow’s bounce properties (Abbott and Doyle 1990, Bissinger 1995, and Askenfelt and 
Guettler 1998), which constitute an important part of the features by which the quality of a 
bow is judged by professionals. However, without comprehensive knowledge on how the 
“off-string techniques” are executed by first-rate string players, it is hard to pinpoint the 
properties that make these performers claim one bow superior to another.    
 
The character of spiccato and ricochet 
The main musical reason for utilising techniques such as “spiccato” (from Italian spiccare: 
“clearly separated, cut off”) and ricochet (French: “indirectly rebounding”) is to achieve crisp 
and clearly separated tones of a bouncing or percussive quality, most often performed in quick 
succession. It lies in the nature of the bowed attack that if the slip-stick triggering shall be 
periodic from (near) the onset, some time is required for the string amplitude to build up, 
while this to some extent contradicts the combination of impulsive or percussive excitation 
and sizable amplitude. When recording the string velocity of well performed spiccato tones 
(as demonstrated in Figure 6 of paper III) build-up times in the order of 30 ms can typically 
be seen, after which time the bow leaves the string, and an exponential amplitude decay takes 
over. In most cases this is time enough for adequate amplitude to form in a violin. A build-up 
time of this magnitude does not interfere much with the impression of percussiveness.  
 

 
 
 

 
Figure T11 Different bow movements during 
spiccato. Only a), where the stick’s trajectories 
describe figures of eight, will produce clean attacks. 
This pattern results from a combination of 
translational and rotational movements, the latter 
with twice the frequency of the former.  

  
Figure T12 Photo of the bow-stick’s trajectory 
during a successful spiccato. The bow stick’s 
midpoint was marked with a reflective dot in order 
to display its trajectory (after Guettler 1992A, 
reprinted with permission from Yorke Edition). 
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The trajectories of the two bow movements 
In spiccato and ricochet the bow is manipulated with a combination of translational and 
rotational movements. A point near the frog serves as an axis for the latter. During a ricochet 
stroke the axis (i.e., the frog) is moved in a more or less straight (horizontal) line in the stroke 
direction as long as (the rotational) bouncing takes place. In spiccato the axis is moved 
diagonally, as shown in Figure T11 by the frog. The translational movement is executed with 
half the frequency of the rotational one. In the two spiccato examples given in this figure, the 
only difference is the timing between the translational and the rotational movements. Only the 
pattern at a) produces clean attacks. Here the bow is in contact with the string when it changes 
direction, thus getting a good grip on the string before the first release takes place. The release 
happens just before the normal bow force reaches its maximum. With pattern b) the bow 
changes direction in the air and lands on the string with substantial horizontal speed, causing 
multiple slips to occur at every onset.  
 
The four phases of spiccato 
With pattern a), after (1) a quick tone build-up, the bow bounces off the string, which then 
experiences (2) an exponential decay due to the natural damping of the system. Thereafter, 
two more phases are seen to be preparing the string for the new stroke in the opposite 
direction: (3) a “forced decay”, where a returning, lightly touching bow (without disturbing 
the triggering pattern) provides quicker damping than would be caused by the system’s 
natural losses alone; and finally, as the bow force increases: (4) a sudden firm grip on the 
string, quickly restraining the remainder of the Helmholtz corner, preventing it from 
interfering with the creation of a new pattern with reversed rotational orientation. 
 
The kinematical difference between ricochet and spiccato 
The fourth phase described above (i.e., the bow holding the string in a firm grip in order to 
quieten it) points to one substantial difference between spiccato and ricochet. Whereas 
spiccato strokes are performed with alternating bowing directions, implying that the 
Helmholtz-corner rotation has to change orientation for each new stroke, a series of ricochet 
strokes is performed with all strokes in the same direction, i.e., “in one throw”, which means 
that the string’s fading wave pattern at all times can be “refreshed” without prior damping. (A 
good illustration of the difference is found in Figure 10 of Paper III.) Repeated high-quality 
ricochet strokes can hence be executed at a faster rate than comparable strokes performed as 
spiccato. Otherwise, from a musical point of view, their qualities are often very similar.  
 
The bounce rate 
The natural bounce rate of a bow rotating with a fixed axis through the frog can theoretically 
be estimated to be (see Askenfelt and Guettler 1998) 
 

 
 
 
       (T.2) 
 
 

where  
Thair = tension of hair 
    rs = distance from the pivoting point to the impact against a rigid support (quasi string) 
Lbow = (free) hair length 
   Jx = moment of inertia. 
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Equation (T.2) compares well to practical measurements for most of the hair length, but gives 
too high frequencies for impacts farther than 2/3 of the hair length away from the frog. The 
measured bouncing rate for a violin bow is typically between 6 and 35 Hz for impacts at hair 
lengths of 8 to 60 cm from the frog when the hair tension is 60 N. Q-values were found in the 
order of 30 to 50. Equation (T.2) is, however, only valid as long as the bow hair is in direct 
contact with the support. When bouncing “off the string”, the bouncing rate is dependent on 
gravity and/or an index finger providing the “downward” force. With gravity alone, this force 
is constant, so the bouncing rate will increase as the time interval “off string” decreases—just 
like a ball bouncing on the floor.  
 
Adjustment of the bounce rate 
For the player, in addition to adjusting the bow hair tension, there are four manoeuvrable 
parameters that influence the bounce rate:  
 

(1) the firmness of the bow grip (i.e., the “downward reactive force”);  
(2) the point of impact along the hair [as expressed in Equation (T.2) above];   
(3) the distance from the bridge (the string getting more compliant as one moves away 

from the bridge);  
(4) the tilting angle of the hair ribbon (the compliance of the hair ribbon increasing with 

the angle).  
 
In a ricochet stroke one or more of these factors have to be continuously adjusted in order to 
keep the bow bouncing at a uniform rate as the point of impact is moved along the bow hair.  
 
After a series of ricochet tones, the music often requires sustained tones, implying that further 
bobbing must be quickly restrained. The way to do it is not to grip the bow tightly, as this 
would just increase “downward reactive forces” and thus only serve to raise the bounce 
frequency. Before suggesting a solution to the problem, the concept of “point of percussion” 
needs to be introduced. 
 
The point of percussion 
In an object rotating around a fixed axis, a point can be defined as “the point of percussion” 
(PoP): When hanging a bow vertically with the fixed axis through the frog, PoP is found 
where the bow has its “effective pendulum length”, i.e., L’ of the following equation:  

 
 
(T.3) 
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(In a tennis racket or a baseball bat, PoP is often referred to as “the sweet spot”. For a straight 
rod of length L with uniformly distributed mass and the rotational axis in one end, PoP is 
found at a distance 2/3 L from the axis.)  
 
When hitting the string at the frog side of PoP—where the string in effect is establishing a 
new axis—conservation of the angular momentum makes the bow seek to maintain its 
rotational orientation with respect to the string. That drives the frog upwards, as shown in 
Figure T10. When hitting the string on the tip side of PoP, the rotational orientation gets 
reversed, forcing the frog downwards, while hitting the string directly at PoP leads all energy 
into the string so little or no reaction is noticed at the frog.  
 
Preventing the bow from further bouncing 
To stop the bow from further bouncing, one should therefore, considering the analysis above, 
(partly) give in to the movements of the frog, much like playing a ball “dead” by complying 
to its movement, whereby an appreciable amount of the energy is absorbed.  
 

 
 
 
 
Figure T10: When hitting the string at a point 
outside of the point of percussion, a downward 
impulsive force is felt at the frog. If hitting the 
string inside of the point of percussion, an upward 
force is felt. By “giving in” to the frog reactions, 
further bouncing of the bow can be effectively 
restrained. 

 
 
In addition to this action, it may also help to tilt the bow-hair ribbon (or increase its tilting 
angle if already present), for in that way to lower the bounce frequency. This is particularly 
useful when ending the ricochet series near the bow’s head in preparation for a soft or 
medium-soft tone to follow. In most cases, however, the stick will continue to wobble 
somewhat (see Fig. 9 of Paper III), but as long as the bow hair is kept in touch with the string, 
and the normal bow force is fluctuating within reasonable values, the resulting small 
variations in timbre will pass unnoticed. 
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Introduction and comments to Paper IV 
 

On the creation of the Helmholtz motion in the bowed string 
 
While Papers II and III seek to explain certain details concerning bowed-string transients, 
Paper IV tries to uncover the underlying structure of quality attacks in general. The method 
used resembles the method for analysing steady-state oscillations employed by Schelleng in 
his papers from 1970 and 1973. Quite a few years earlier Raman (1918) had discovered that in 
a string model with purely resistive string terminations the friction force would be describing 
a cyclic pattern when the string was driven in Helmholtz mode. In particular, when the 
bowing position divided the string in an integer ratio, the friction force would have its lowest 
value during the slipping interval, and its maximum value at the middle part of the sticking 
interval. The peak-to-peak value of this cyclic variation could be estimated to be (explicitly 
given by Cremer in 1981/1984, with reference to Schumacher 1979): 

 
 (T.4) 
 
 
 
 
 
 
 
 
 
 

Schelleng (1970) had realised that the Helmholtz motion consequently could be maintained 
only if the value of the limiting static frictional force was ∆f higher than the value of sliding 
friction. If not, a second slip would be introduced, and the Helmholtz pattern destroyed. On 
the other hand, the limiting value should not be higher than permitting a string release when 
the kink arrived (in other words: not higher than the “potential friction force” following 
immediately after it). 
 

Applying Schelleng’s method for analysis of the transient 
During an onset transient the situation is comparable, although here the variations of friction 
force appear to be considerably more complex. It is, however, possible to localise four critical 
points in the transient where regular triggering is particularly endangered when regarding a 
simple bowed-string model. In Paper IV these points of time are labelled A, B, C, and D. 
Since the friction force during the transient is strongly related to the bow speed, it is thus 
possible, for a given “bow pressure”, to calculate approximate values of “acceptable” velocity 
or acceleration with reference to these four points of time. 
 
The increasing acceptance of bow speed during the transient 
Figure T13 shows schematically how the range of acceptable bow velocities is growing in the 
course of the transient. By utilising equations from Paper IV, we can get a rough numerical 
estimate of this development: While the bow-speed tolerance ratio for a given bow force 
indicated by Eq. (8v) is v0max/ v0min ≈ 1/(1−2β) around the second slip, Schelleng’s equation 
[Eq. (1) of the same paper] indicates the ratio vmax/ vmin ≈ 2βr/Z, (β ≥ Z/2r) at steady state. By 
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replacing r/Z with a realistic figure, say one hundred, we get an indication  of  the  ratio  of  
tolerance   after   the   transient   has   expired:   r/Z  =  100  gives vmax/vmin ≈ 200β. For the 
arbitrarily chosen bowing position β = 1/8, this is a factor 18.75 higher than the ratio 
v0max/v0min at the outset of the transient.  
 
The value “18.75” should of course not be taken too literarily, as there are many other factors 
that would enter the equation: torsion, width of bow-hair, non-linear string parameters, to 
name but a few. Anyhow, the magnitude gives an indication of how drastically conditions are 
changing during a relatively short-lasting transient.  
 

 
 
 
 
 
 
 
 
Figure T13: Qualitative schematic 
illustration of how the bow-velocity 
tolerances increase with time in the 
course of the transient. The absolute 
ranges of acceptable velocities are 
also functions of the bowing position 
and the friction delta.  
 
 

 
Notice: In Paper II, from which this figure was copied, the ratio vBmax/vBmin at the second slip 
was reported to be “typically near” 1/(1 − β) for strings with torsion and “normal” damping, 
while in Paper IV it was calculated to 1/(1 − 2β) for a nearly loss-free string without torsion, 
provided 1/β was an integer. The information value of these expressions lies mainly in how β 
affects the ranges of “acceptable” velocity—not only at steady state, but during all parts of the 
bow stroke. 
 
The problem of including torsion in the equations—“torsionally related ringing” 
The equations of Paper IV refer to simple systems without torsion. When a string flyback 
takes place, torsion will cause the system to ring. For this reason the equations of Paper IV are 
not immediately applicable for complex systems, even though it is straightforward to 
implement torsion in the function that approximately describes the friction-force build-up 
until the first slip [i.e., Eq. (3) of Paper IV].  
 
When comparing Figure 12 of Paper IV to Figure 10 of the same paper, one striking 
difference is the greater tolerance for bow acceleration present at low β (i.e., at the β values 
1/12 and 1/11) in the more complex systems of Fig. 12. At these β values tolerances of 
acceleration appear to be much greater than could have been expected from the equations and 
simulations of Fig. 10. This phenomenon might, however, be traced back to a small force 
peak caused by torsional activity around t = trel + T, i.e., when the second slip should happen. 
Utilising analyses from our next paper, Paper V, we can describe the development as follows: 
 
Figure 4 of Paper V shows the partial responses to a unit square pulse (transverse partial 
velocity propagating from the nut) arriving at the bow at t = 0. [This can be compared to a 
first slip pulse, once reflected at the nut and arriving at the bow at the time t = trel +T(1 − β).] 
For convenience we choose 1/ζ  to be an integer (ζ  being the ratio between transverse and 
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torsional propagating speeds). The width of the square pulse shown in the figure is Tβ, and 
there is no other energy present in the string. Torsional reflections from the nut are ignored in 
the time interval we investigate. Different from Fig. 4 of Paper V we will here analyse a 
system with no other loss than what is introduced by the reflections/transmissions at the fixed 
bow. With these presumptions we get the following partial signals (∂yi/∂t): 
 
In the interval 0 < t < Tβζ, arriving at the bow from the bridge and the nut, respectively: 

Torsion = 0,        Transverse = Unit. 
 

In the interval Tβζ < t < 2Tβζ: 
Torsion = Unit ZTRV/(ZTOR +ZTRV),     Transverse = Unit, 

(where ZTOR and ZTRV are characteristic torsional and transverse wave resistances, 
respectively). 

 

In the interval 2Tβζ < t < Tβ: 
Torsion (envelope) = Unit (ZTRV/ZTOR) [1 − exp(−t/τ)],    Transverse = Unit,  
       (where τ  = Tβζ /ln[(ZTOR +ZTRV)/ZTRV]—see Fig. 11 of Paper V). 

 
At this point of time the square pulse expires. The following signals both arrive at the bow 
after reflections at the bridge: 
  
In the interval Tβ < t < T(β + βζ): 
 With  [1 − exp(−t/τ)] approaching unity, we get 
 Torsion ≈ Unit (ZTRV/ZTOR),  Transverse = −Unit ZTRV/(ZTOR +ZTRV). 
  

  Compared to a string without torsion this leads to a reduction of the friction force equal to 

   ∆f1 = [2ZTOR ZTRV /(ZTOR +ZTRV)]Unit[−(ZTRV/ZTOR) + ZTRV/(ZTOR +ZTRV)]                     (T.5) 

     (where the first square bracket contains the surface point impulse impedance of the string). 

In the interval T(β +βζ) < t < T(β + 2βζ): 
Torsion = Unit[(ZTRV/ZTOR) − ZTRV/(ZTOR +ZTRV)] ZTRV/(ZTOR +ZTRV) = 

    Unit Z3
TRV/[ZTOR(ZTOR +ZTRV)2]. 

 

Transverse = −Unit[(ZTRV/ZTOR) − ZTRV/(ZTOR +ZTRV)] ZTOR/(ZTOR +ZTRV) = 
   −Unit Z2

TRV/(ZTOR +ZTRV)2. 
 
    This leads to an increase of the friction force equal to 

  ∆f2 = [2ZTOR ZTRV /(ZTOR +ZTRV)]Unit {−Z3
TRV/[ZTOR(ZTOR +ZTRV)2] + Z2

TRV/(ZTOR +ZTRV)2} = 

  2Unit (ZTOR − ZTRV) Z3
TRV/(ZTOR +ZTRV)3.                                                   (T.6) 

 
With respect to our discussion above on greater tolerance of acceleration, a comparable raise 
of the friction force would thus happen near trel +T(1 +βζ) ≤  t <  trel +T(1 +2βζ), i.e., right 
after “B”. So, if triggering fails at B—provided the product βζ is small enough—this peak 
might trigger a release just in time for the periodicity not to be critically disturbed. The effect 
is most clearly seen in Figures 5 and 6 of Paper V, and Figure 6 (b) of Paper II, where a small 
friction-force peak is rising shortly after the expiration of the major force notch. Here the 
subsequent “ringing” is also seen, partly due to torsional reflections arriving from the nut. 
Notice from the Equations (T.5) and (T.6) above: with ZTOR = ∞, no modulation of the friction 
force would have occurred. (In the analysis above, ZTOR is presumed larger than ZTRV.) 
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Introduction and comments to Paper V 

 
Wave analysis of a string bowed to anomalous low frequencies 

 
The Helmholtz motion is far from the only steady-state wave pattern that can exist in the 
bowed string. Many stable patterns can develop where more than one slipping interval occur 
during each nominal period, in which cases the fundamental frequency and certain partials 
will appear suppressed or reduced in magnitude. “Ponticello” is an example of this effect. 
There is, however, another category of stable wave patterns that occasionally has been utilised 
by composers and performers (e.g., Østergaard 1999, and Kimura 1996), based on a delay in 
the triggering of the string release after each stick (static-friction) interval.  
 
Triggering delay 
If the normal bow force (FZ) surpasses the Schelleng maximum [see Eq. (T.7)], the Helmholtz 
corner will be reflected at the bow, and, instead of causing a release, make one more turn back 
to the nut. In the meantime the static frictional force is building up due to repeated reflections 
on the bridge side. When the (rejected and reflected) Helmholtz corner meets the bow again, 
although most likely reduced in energy, it may, combined with the general raise in frictional 
force, cause the necessary triggering of release. If triggering fails again, this cycle repeats 
until the combined forces surpass the limiting static friction. 
 

 
 (T.7) 
 
 
 
 
 
 
 

 
The “echoes” of a string flyback 
In order to achieve a periodic triggering it is necessary to have a discontinuity, or marked 
change, in the signal velocity (i.e., the time derivative of the string’s surface displacement). 
The greatest changes of this kind have their origin in the velocity pulse caused by the sudden 
string flyback. Such pulses are transmitted both as transverse and torsional signals, and either 
can potentially cause a string release after having been reflected at the nut (i.e., the most 
remote string termination as seen by the bow). Figures 5 and 6 of Paper V show these pulse 
reflections superimposed on a (force) ramp caused by repeated bridge reflections, or—if 
thinking statically—by the string’s increasing angle on the bridge side, with respect to 
equilibrium. 
 
Transverse and torsional triggering 
As can be seen from Figures 5 and 6 of Paper V, a force peak (caused by a torsional pulse 
reflected at the nut) occurs at a time ≈ T0ζ after the normal triggering time t = trel + T0.  (T0 = 
the fundamental period, ζ = CTRV/CTOR, i.e., the ratio of transverse and torsional propagating 
speeds.) Normally, the positive flank seen on the right side of the first force notch would 
trigger a release. If that one fails—and the string release is triggered by the above-mentioned 
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torsional pulse—the period gets extended from T0 to T0(1 +ζ).  For most violin G-strings, ζ is 
close to 0.2, implying that the pitch will fall a minor third.  
 
In the case of “transverse triggering”, also the torsional pulse is too week to cause a slip, 
leaving the triggering to the next transverse pulse arriving from the nut at t = T0(1 + t1), or one 
that follows later. Figure T14 shows the most common signal paths, while the equations 
below give idealised descriptions of the two sets of anomalous low frequencies potentially 
obtainable through delayed triggering: 

 
 (T.8) 
 
 
 
 (T.9) 
 
 
 

It is interesting to notice that most of these frequencies are dependent on the position of the 
bow (i.e., all frequencies where n ≠ 0 in the above equations), a fact that is most easily 
understood by regarding the wave paths in Figure T14. The insensitivity to bowing position 
for the highest torsional fALF is related to a complicated transverse-torsional transform 
mechanism that implies reflections of torsional waves at the bridge-side string termination 
too. Figure 4 of Paper V and the related text seek to elucidate this4. 
 

 
 

Figure T14:  
Basic signal paths for   
a) Helmholtz motion (i.e., triggering at mT0)    (m = 0,1,2,...)  
b) Torsional triggering (at mT0(1+ζ )) 
c) Transverse triggering (at mT0[1+ (1−ζ )]). 

                                                 
4 The reader should not be confused by the fact that the expressions t1 and t2 of Papers II and V do not have 
corresponding definitions. In paper V,   t1 = T0(1−β), and  t2 = T0β,  while these were reversed in Paper II. 
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Other signal paths are possible, but most likely as combinations of a) and one or more 
of the extra loops of b) and c) of Figure T14. The arrowheads indicate the position of 
the triggering waves just before the string release. 
 
Spectra of the ALF tones 
Hanson et al. (1994) report weak or missing lower partials in sound recordings of ALF tones 
played on a violin (the microphone placed 0.5 to 1.0 metres away from the instrument). These 
missing partials are, however, not lacking energy in the string signals, which exhibit complete 
sets of harmonics. The fact that some lower partials disappear in sound-pressure recordings is 
just a confirmation of the instrument’s poor radiation of frequencies below its lowest air mode 
(about 270 Hz), and does not affect the listener’s perception of the low pitch itself. 
 
 
 
 
 
 
 

 
Additional information on Paper I: 

 
Paper II was initiated by the first author (K.G.) in order to verify or disprove the (long) 
duration of transients reported as “normal” in several earlier papers on the bowed string. 
Although most parts of Paper I were developed and evaluated in cooperation, the work was 
roughly split between the two authors in the following manner: The second author (A.A.) was 
responsible for the sound recordings of all tests, and for the instruction, classification, and 
statistical analysis of the playing test, while K.G. was responsible for the design of the 
listening test, and for selecting, filtering, and editing its sound examples. Furthermore, K.G. 
performed all tasks related to the testing itself, including panel presentation and statistical 
analyses. 

 
 
 
 
 

Additional information on Paper III: 
 

Paper III is a kinematic study of a bowing pattern that had already been described by K. 
Guettler (1992A). The second author (A.A.) was responsible for the recordings of all tests, 
including video recordings of a bow with light-emitting diodes attached to it. Together, A.A. 
and K.G. were interpreting (twice integrated) recordings of accelerometers attached to 
different parts of the bow during spiccato. K.G. did all the simulations—some of which were 
transferred to sound files—and all the analyses that followed. 
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How it started 
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