MEASURES OF TRANSPORT MODE SEGMENTATION OF TRAJECTORIES

Adrian C. Prelipceana*, Gyözö Gidófalvia, and Yusak O. Susilob

aDivision of Geoinformatics, Department of Urban Planning and Environment, KTH, Sweden; bDivision of Transport and Location Analysis, Department of Transport Science, Sweden

(Received 00 Month 200x; final version received 00 Month 200x)

Rooted in the phylosophy of point- and segment-based approaches for transportation mode segmentation of trajectories, the measures that researchers have adoped to evaluate the quality of the results (1) are incomparable across approaches, hence slowing the progress in the field, and (2) do not provide insight about the quality of the continuous transportation mode segmentation. To address these problems, this paper proposes new error measures that can be applied to measure how well a continuous transportation mode segmentation model performs. The error measures introduced are based on aligning multiple inferred continuous intervals to ground truth intervals, and measure the cardinality of the alignment and the spatial and temporal discrepancy between the corresponding aligned segments. The utility of this new way of computing errors is shown by evaluating the segmentation of three generic transportation mode segmentation approaches (implicit, explicit–holistic and explicit–consensus-based transport mode segmentation), which can be implemented in a thick client architecture. Empirical evaluations on a large real-world dataset reveal the superiority of explicit–consensus-based transport mode segmentation, which can be attributed to the explicit modeling of segments and transitions that allows for a meaningful decomposition of the complex learning task.

Keywords: Continuous Model Evaluation; Transportation Mode Segmentation and Detection; Trajectory Data Mining; Error Analysis; Interval Algebra;

1. Introduction

Communication and computing technologies together with location-, orientation-, and motion sensors in smartphones enable the large-scale collection of movements of individuals. Motivated by the steadily decreasing response rate of travelers to traditional declarative
pen-and-paper activity-travel surveys (Axhausen et al. 2003, Ogle et al. 2005, Stopher et al. 2008), one promising use of this information lies in the automatic generation of activity-travel diaries (Wolf 2000). An activity-travel diary is a verbose description of what the user did during a time frame, namely where did the user go (destination), why did the user go there (purpose) and how did the user travel there (travel modes). This paper focuses on the far from trivial task of assessing the quality of a travel mode detection method.

The travel mode detection literature so far can be divided into two main approaches: (1) a point-based approach, where an algorithm analyzes different dimensions of a location and proposes a transportation mode close to real time, and (2) a segment-based approach where an algorithm first detects transition points (i.e., the points where a user changes from one transportation mode to another) and then proposes a transportation mode for the entire segment in post-processing stages (see Section 2 for references). Point-based approaches cater for Location-Based Services and answer the question “How is the user travelling now?” and compute precision and recall at a point level. Segment-based approaches cater for transport sciences and answer the question “Given a set of locations grouped into segments, which segments are accurately detected and what transportation mode is associated with the accurately detected segments?” by first matching proposed segments to ground truth, and then computing different error measures on the matched segments. This paper argues and demonstrates that neither of the evaluations of the two approaches can guarantee that they provide an adequate answer to the transportation mode segmentation question in the context of activity-travel diaries, which is “How was the user traveling during a whole time frame?” The performance measurements associated with the two approaches offer indicators based on discrete entity comparisons instead of evaluating the continuous output, as a whole, which makes the task of choosing between any two or more transportation mode segmentation methods next to impossible.

To address the aforementioned problem, this paper proposes new error measures that can be applied to any continuous dataset and segmentation method to measure how well a model performs. The proposed error measures are instantiated in the context of automatic activity-travel survey generation to assess how well different continuous transportation mode segmentation models perform. The introduced error measures are based on aligning multiple inferred continuous intervals to ground truth intervals, and measure the cardinality of the alignment and the spatial and temporal discrepancy between the corresponding aligned trajectory segments. The utility of this new way of computing errors is shown by evaluating the segmentation of three generic transportation mode segmentation approaches: implicit, explicit–holistic and explicit–consensus-based transport mode segmentation. In the first approach, a point-based transportation mode classification followed by a low-pass filtering that removes noisy classifications produces implicit transportation mode segments. In the second approach, an explicit detection of segments of GPS points that have similar movement characteristics is performed and the detected segments are classified based on holistic segment aggregates. In the third approach, a consensus-based transportation mode classification is performed on each point that falls within the explicitly detected segments. The generic segmentation approaches can be implemented in a scalable, distributed, stream processing architecture where the mobile devices with powerful computing capabilities process the high volume measurement streams in an online fashion. The proposed alignment method allows the definition of novel error measures and their evaluations for the three generic transportation mode segmentation approaches, which constitute the main contributions of this paper.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3 provides necessary preliminaries and formalism. Section 4 presents the issues
of traditional performance measures, introduces the notion of segment alignment, the errors associated with the alignment, and introduces performance measures suitable for transportation mode segmentation evaluation. Section 5 presents the empirical evaluations of the proposed methods. Finally, Section 6 discusses the findings and Section 7 concludes and presents future work.

2. Literature Review

This section reviews the contributions of previous research in the field of trajectory segmentation and of transportation mode detection, with a focus on precision and recall.

2.1. Semantic segmentation of trajectories

As Parent et al. (2013) noted, trajectory segmentation depends on the application of the services for which it is performed. For many applications trajectories can be split into periods when the object is stationary, i.e., stops, and periods where the object is moving, i.e., moves. This type of trajectory segmentation is commonly known as stops and moves.

While useful for trajectory semantics, the use of this type of semantic trajectory segmentation in transportation science is limited to identifying where trips start and end (Ashbrook and Starner 2003), and the lack of ground truth data (Alvares et al. 2007, Palma et al. 2008, Rocha et al. 2010, Krum and Horvitz 2006), the dependency on external POI datasets (Alvares et al. 2007, Xie et al. 2009), the reliability on scientists’ subjective judgment and the lack of automated methods for the assessment of detection accuracy (Andrienko et al. 2007, Yan et al. 2011, Xie et al. 2009) makes these concepts difficult to use in other fields. Further information that lies in the extraction of segments of same transportation modes cannot be accurately extracted from such a segmentation because a traveler can switch transportation modes without stopping. This paper investigates methods that segment trajectories into transportation modes, as well as trips, and presents a methodology to meaningfully compare the performance of the different methods.

2.2. Transportation mode segmentation of trajectories

Two different branches of science have focused on proposing methods that automate the segmentation of trajectories into same mode segments, namely, location based services (LBSes), which investigated point-based transportation segmentation (i.e., close to real-time, for each location) for enriching applications and services with information derived from knowing a user’s transportation mode, and transportation science, which investigated segment-based transportation segmentation (i.e., post processing, for a batch of locations) as an effort of automating activity-travel diary generation (Ogle et al. 2005).

2.2.1. Point-based transportation mode segmentation

As point-based methods focus on providing close to real-time mode detection, most of them rely on data provided by the GPS receiver (Stemmeth et al. 2011), the accelerometer sensor (Hemminki et al. 2013, Yu et al. 2014) or a combination of the two (Reddy et al. 2010, Manzoni et al. 2010, Shah et al. 2014, Prelipcean et al. 2014). The authors that use point-based mode detection methods report the algorithms’ performance via traditional precision and recall measurements, which is sufficient if no further information is to be derived from the measurements, such as the time spent by a user while traveling via a
certain mode, or the traveled distance via a mode. The reported precision values vary based on the number of classified transportation modes and the method employed: 80.1% using AdaBoost together with decision tree classifiers for seven modes (Hemminki et al. 2013), 92.5% using support vector machine classifiers for five modes (Yu et al. 2014), 93.7% using random forest classifiers for six modes (Stenneth et al. 2011), 93.6% using a discrete hidden Markov classifier for five modes (Reddy et al. 2010), 90.8% using random forest classifiers for seven modes (Prelipcean et al. 2014), 82.1% using decision tree classifiers for eight modes (Manzoni et al. 2010), and 90% using multi-hierarchy decision tree classifiers for four modes (Shah et al. 2014).

While the point-based mode detection approach is suitable for real time applications, the collected data are usually not suitable for further analysis because the penalty assigned to an error is independent of the position of the error within the sequence as well as the spatial and temporal relations between the measurements in the sequence. Consequently, since all errors are equal when computing precision and recall, there is no trivial way of knowing how any model would perform if the task would be to segment a trajectory into same-mode segments. This research proposes a new methodology that penalizes errors based on the spatio-temporal proximity to ground truth and investigates how a generic point-based mode detection approach performs the transport mode segmentation task.

2.2.2. Segment-based transportation mode segmentation

The segment-based mode detection approach is usually attributed to the automation of activity-travel diary collection. Previous research investigated the steps needed to automate the collection (Axhausen et al. 2003), the suitable thresholds for stop detection (Shen and Stopher 2013) and identifying transitions (Das et al. 2014). For the segmentation of trajectories into same transportation mode segments, the research has been linear and built mostly on top of the approach proposed by Chung and Shalaby (2005), which identifies mode changing points by using a heuristic rule (the first record with a speed faster than 10km/h and a distance larger than 150 meters from the previous point). The reported precision values vary based on the number of classified transportation modes and the method employed: 91.7% using decision trees for four modes (Chung and Shalaby 2005), 94% using fuzzy logic for four modes (Tsui and Shalaby 2006), 95% using multi-hierarchy decision trees for five modes (Stopher et al. 2008), 83% using fuzzy logic for five modes (Schüssler et al. 2011), 85.8% using random forests for five modes, 70% using rule-based classifiers for five modes, 91.6% using membership functions for ten modes (Biljecki et al. 2013), and 71.5% using decision trees for four modes (Zheng et al. 2010).

Discussions regarding the segmentation performance are seldom and brief: Schüssler and Axhausen (2009) do not have labeled data and compare aggregates derived from the studied classification with data available from a microcensus, Schüssler et al. (2011) report a 68% segmentation accuracy by performing a temporal match with a 45 seconds buffer and continue performing the transportation mode segmentation on the original segments instead of the inferred ones, and Biljecki et al. (2013) remap the transportation modes present in two datasets to a common transportation mode set and do not discuss the implications of the computed precision and recall. Finally, Zheng et al. (2010) define the following measures for the performance of transportation mode detection: accuracy by segment computed as the number of segments correctly predicted divided by the total number of segments, and accuracy by distance computed as the distance covered by the correctly inferred segments divided by the total traveled distance. The authors use a 150 meters buffer to match the inferred segments with the ground truth segments. The authors define precision and recall values for change point detection, and emphasize that even
though the recall has higher priority in this case, a balance between precision and recall
should be kept. Even though this approach is thorough in terms of accuracy assessment, its
output is discontinuous, i.e., the statistics are presented only for the inferred segments that
are matched to ground truth segments, and all errors are treated as equal. The approach
presented in this paper analyzes the errors of a model that produces a continuous output
and penalizes miss-match errors according to spatio-temporal proximity to ground truth.

Since scientists focused on different methods for the automatic trajectory segmentation
and mode detection, they reported the performance of the proposed algorithms using
traditional metrics that do not cover all dimensions of error associated with continuous
intervals and with the error propagation due to multi-steps approaches. This paper pro-
poses a new way to measure the impact of errors on continuous intervals that can be used
to understand the differences, at various levels of analysis, between classification meth-
ods. This analysis is proven by comparing the performance of three generic approaches:
implicit, explicit–holistic and explicit–consensus-based transport mode segmentation.

3. Preliminaries

This section provides the necessary preliminaries, formalism and terminology used in the
remainder of this paper. This paper uses the definitions and notations that the authors
previously proposed in Prelipcean et al. (2014) slightly modified so that the moving objects
are users that are traveling with transportation means.

Let $M = \{m_1, m_2, \ldots, m_k\}$ be an exhaustive set of possible transportation modes, and
$\{m_i, m_s\}$ be two mobility states transition and stop. Furthermore, let a segmented trajectory
be defined by a sequence of labeled locations $L = \langle l_1, l_2, \ldots, l_n \rangle$, where $l_i = (x, y, t, m)$.
Let l_i denote the i-th location in L, $l_i.x$ and $l_i.y$ represent its coordinates, l_i,t denote the
time at which it was recorded, and l_i,m represent its transportation mode, which belongs
to $M \cup \{m_i, m_s\}$.

Let a trip be defined by the maximal length time period $[s; e]$, where s and e represent
the start and stop time of the trip, respectively, that is traveled with a single mode and
overlaps a sequence of locations, as shown in Equation 1.

$$TL^m = \langle t^{x,y,t,m}: l_{i+1}.t > l_i.t \land l_i.t \in [s; e] \land l_i.m \in M \land l_i.m = l_{i+1}.m \rangle \tag{1}$$

Let a trip be defined as the maximal length sequence of triplegs en route to a destination,
where between every two triplegs T_{i} and T_{i+1} whose modes belong to M, there is a
period W_{i}^{t+1} in a transition state, m_t, as shown in Equation 2. W_{i}^{t+1} represents the period
associated to the waiting time between the two modes and can be of 0 length.

$$T = \langle TL^m_{t_i}: s = TL_{0}.s \land T.e = TL_{n}.e \land W_{i}^{t+1}.s = TL_{t}.e \land W_{i}^{t+1}.e = TL_{t+1}.s \rangle \tag{2}$$

Considering the aforementioned equations, a mode-segmented trajectory can be defined
as a sequence of trips, where between every two trips T_{i} and T_{i+1} (formed of triplegs and
transition state periods W_{i}^{t+1} between triplegs), there is a period WT_{i}^{t+1} whose in a stop
state, m_s, as shown in Equation 3. WT_{i}^{t+1} represents the period associated to the time
between two consecutive trips and can be of 0 length.

$$L = \langle T_{i}: T_{i+1}.s \geq T_{i}.e \land T_{i+1}.s = m_s \land WT_{i}^{t+1}.s = T_{i}.e \land WT_{i}^{t+1}.e = T_{i+1}.s \rangle \tag{3}$$
Figure 1. Difficulties of comparing different methods using common error metrics. On the left, two different point-based methods PB_1 and PB_2 make the same number of mistakes and misses but on different points. On the right, the segments of PB_i and of three different segment-based methods SB_i are treated as equal since none of them are matched to GT.

4. Methodology

This section first presents the difficulties of using current error measures used for mode detection, then provides a brief discussion on the difficulties of associating errors to segments and intervals, and proposes new error measures to overcome these difficulties.

4.1. Problems with the current error measures

As discussed in Section 2, there are two main approaches for transportation mode detection: point-based and segment-based. The quality of the results of the respective approaches are evaluated based on the entities over which predictions are preformed: points and segments. For point-based approaches the particular error measures used are: precision, which is defined as the percentage of correct positive predictions, and recall, which is defined as the percentage of the positive cases identified. The example on the left side of Figure 1, illustrates the limitation of these error measures of point-based approaches in the context of transportation mode segmentation. In particular, the ground truth contains two periods associated with two transportation modes, W - walking, and S - subway, by considering the results of two different point-based classification methods PB_1 and PB_2. While the precision and recall values for both methods are equal, 60%, when the output is translated into segments, PB_1 generates 9 segments and PB_2 generates 3 segments. The critical drawback of points-based error measures is that they cannot explain how well the methods describe the travels of the user during the studied time frame, a continuous phenomenon, because they are impervious to modeling the error propagation when generating segments from the sequences of consecutive points of the same transportation mode.

In comparison, segment-based approach contains two steps: first, the trajectories are partitioned into segments (by detecting trips and triplegs), and, second, a classifier takes as input certain dimensions that are computed from the segments and infers the transportation mode. In general the quality of results of segment-based approaches are also evaluated according to the precision-recall framework, but there is a large variation on
which predicted segments are matched to which ground truth segment for the purposes of error definition. Most commonly, research uses a spatial or temporal buffer around the edges of the ground truth intervals and considers any inferred interval whose both edges fall within the buffer area as a match and report mode precision and recall on the matched segments. In an attempt to measure the quality of the match, Zheng et al. (2010) propose two additional measures: accuracy by segment, which represents the percentage of segments that were identified, and accuracy by distance, which represents the percentage of distance covered by correctly identified segments. In order to confine the error measure, Schüssler et al. (2011) consider the simplified task of detecting the transportation modes of segments that are given a priori. Regardless of which variant, as the error measures are calculated based on a subset of predictions or based on questionable a priori knowledge they provide little understanding about the real-life performance of the methods.

The example on the right side of Figure 1, illustrates the limitation of the error measures of segment-based approaches. In particular, the outputs of three different segment based algorithms, SB$_1$, SB$_2$ and SB$_3$, and the outputs translated to segments of the two previously presented point-based methods, PB$_1$ and PB$_2$ are visualized in relation to the ground truth. Because a segment is only considered matched when both of its edges fall within the buffer, denoted in Figure 1 by the hatched area, none of the methods could be matched. As such, the five seemingly different methods are equal in terms of the precision and recall metrics that can be computed only on matched segments, which are 0% in this case. The critical drawback of segment-based error measures is that whenever the matched segments do not coincide with all ground truth segments, the continuity of the phenomenon is not respected by and reflected is the error measures.

4.2. Interval alignment method

As seen in the previous section, there is a problem with explaining error when comparing a set of ground truth segments with a set of inferred segments without breaking the continuity of the studied phenomenon. To overcome this limitation, this paper proposes the replacement of a buffer-based one-to-one matching with a more permissive way to find corresponding segments between two datasets, namely interval alignment1.

The proposed method finds a correspondence between a set of inferred intervals L^{inf} and a set of ground truth intervals L^{GT} such that after the alignment every interval L^{inf}_i has a correspondence in the ground truth set so that $L^{inf}_i.s = L^{GT}_j.s$ and $L^{inf}_i.e = L^{GT}_k.e$, where $k \geq j$. The relationship between j and k is discussed in Section 4.2.1.

The details of the alignment process are explained in relation to the pseudocode in Algorithm 1. The align(.)-function is implemented recursively taking four arguments: the ordered list of inferred intervals L^{inf}, the ordered list of ground truth intervals L^{GT}, the index of the inferred interval that has to be matched idx^{inf}, and the index from which the alignment search starts in the ground truth intervals idx^{gt}. Each call to align(.) aligns the start and end of $L^{inf}[idx^{inf}]$ to the start of a ground truth interval from L^{gt} and the end of a possibly different ground truth interval from L^{gt}, advances the indexes to reflect the alignment, and makes a recursive call to align the remaining inferred intervals to ground truth intervals. $L^{inf}[idx^{inf}]$ is either aligned 1) to the start and end of the first ground truth interval that $L^{inf}[idx^{inf}]$ is within (lines 3-4) or 2) $L^{inf}[idx^{inf}]$’s start

1The alignment method is presented for intervals of an arbitrary dimension but is subsequently applied on the time dimension where the intervals represent time periods.
This section studies the error by analyzing the cardinality of the alignment of inferred periods to ground truth periods. To do so, based on the visionary work of Allen (1983) who proposes 13 relationships between two intervals, the present work defines four relationships that are illustrated in Figure 2 and are suitable for the current setting as follows:

1. A direct match occurs when one inferred period is aligned to one ground truth period and vice versa (one-to-one join) – Figure 2 (a).
2. An oversegmentation occurs when multiple inferred periods are aligned to one ground truth period (many-to-one join), which is more important for some applications than for others – Figure 2 (b). For example, if transportation modes for
(a) Matched: one inferred period aligned to one ground truth period

(b) Oversegmented: multiple inferred periods aligned to one ground truth period

(c) Missed: one inferred period aligned to more ground truth periods

(d) One handed join: special case where each of the edge of an inferred period is aligned to a ground truth edge belonging to different ground truth periods

Figure 2. The four cardinality relationships derived from Allen (1983).

periods are correctly inferred then in some cases consecutive same-mode periods can automatically be merged, whereas if the correctness of mode inferences are uncertain then tedious manual merging is required.

(3) A miss occurs when there is no information regarding an inferred period or its edges (one-to-many join) – Figure 2 (c). Any miss is accompanied by two one-handed joins since instead of splitting one period into “n” segments, the algorithm detected only one segment, which contains edge information on the first ground truth period and the last ground truth period within the period.

(4) A one-handed join is a special case of a miss in which the start of an inferred period is aligned to the start of a ground truth period and the end of the inferred period is aligned to the end of any proceeding ground truth period (one-to-many join) – Figure 2 (d). This is a special case because the inferred period merges the information between two or more consecutive ground truth periods. The severity of merging ground truth periods is application specific and the one-handed join cardinality relationship can be used to identify these cases as misses or treated them separately to identify which types of periods are hard to distinguish.

4.2.2. Space and time penalties

Any triplg TL_i has a temporal (T_i) and a spatial (S_i) dimension associated with it, which are used when computing the temporal and spatial penalties that are a consequence of the approximate alignment. Whenever a triplg TL'_i is aligned to a triplg TL_i and
the edges corresponding to the periods are different, e.g., \(TL_i.s \neq TL_i.s \), which is further referred to as an alignment disagreement window, an alignment error is made. These errors have spatial and temporal components which are further referred to as spatial and temporal penalties, respectively. By analyzing the locations that were wrongfully moved in between the triplegs within the alignment disagreement window, one can define the temporal penalty as the time that the edge of the tripleg would have to be shifted in order to correct the mistake, and the spatial penalty as the distance that the edge of the tripleg would have to be moved across the consecutive points within the alignment disagreement window in order to correct the mistake.

The temporal penalty is defined as the duration between all consecutive locations that were wrongfully moved to / from a ground truth tripleg \(TL_i \) from / to the triplegs whose periods overlap the start of the alignment disagreement window – between \(TL_i.s \) and \(TL_{i-j}.s \) – and the end of the alignment disagreement window – between \(TL_i.e \) and \(TL_{i+k}.e \) – when an inferred tripleg \(TL'_i \) is aligned to \(TL_i \). The temporal penalty for the start of the tripleg (the analogous formula is valid for the end of the tripleg) is calculated with the formula presented in Equation 4 and it is sensitive to negative values.

\[
 t_{p}^{TL'_i,s} = TL'_i.s - TL_i.s
\]

(4)

Similar to the temporal penalty, the spatial penalty is defined as the distance between all the consecutive locations that were wrongfully moved to / from a ground truth tripleg \(TL_i \) from / to the triplegs whose periods overlap the start of the alignment disagreement window – between \(TL_i.s \) and \(TL_{i-j}.s \) – and the end of the alignment disagreement window – between \(TL_i.e \) and \(TL_{i+k}.e \) – when an inferred tripleg \(TL'_i \) is aligned to \(TL_i \). The spatial penalty of the start of the tripleg (the analogous formula is valid for the end of the tripleg) is calculated with the formula presented in Equation 5, where \(k \) is the index of the locations within the given interval, and its values should be analyzed with regards to the temporal penalty values to understand whether the segment has a greater or smaller length.

\[
 s_{p}^{TL'_i,s} = \sum_{l_k \in (TL'_i.s, TL_i.s]} \text{dist}(l_k.(x, y), l_{k+1}.(x, y))
\]

(5)

Analyzing the formulas in Equations 4 and 5, the following observations can be made about \(t_{p}^{TL'_i,s} \), also referred to as \(t_{p}.s \), and about \(s_{p}^{TL'_i,s} \), also referred to as \(s_{p}.s \):

1. When \(t_{p}.s = 0 \), the edges \(TL_i.s \) and \(TL'_i.s \) were perfectly matched,
2. When \(t_{p}.s > 0 \), all the locations between \(TL_i.s \) and \(TL'_i.s \) were wrongfully moved from \(TL_i \) to the preceding triplegs within the alignment disagreement window \(TL_{i-j} \) during the alignment and the segment’s length decreased by \(s_{p}.s \), and
3. When \(t_{p}.s < 0 \), all the locations between \(TL_i.s \) and \(TL'_i.s \) were wrongfully moved from the preceding triplegs within the alignment disagreement window \(TL_{i-j} \) to \(TL_i \) during the alignment and the segment’s length increased by \(s_{p}.s \).

One important aspect of this alignment is that the spatial and temporal penalties for the start of a given segment \(TL_i \) are the opposites of the spatial and temporal penalties for the end of its preceding segment, i.e., \(t_{p}^{TL'_i,s} = -1 \ast t_{p}^{TL_{i-1}.e} \) and \(s_{p}^{TL'_i,s} = -1 \ast s_{p}^{TL_{i-1}.e} \).

Based on the description of the proposed interval alignment method and the space and time penalties, one can easily see a resemblance to string sequence alignment and similarity measures (Levenshtein 1966, Wagner and Fischer 1974) and their extensions to trajectory similarity measures (Chen and Ng 2004, Chen et al. 2005). However, a quick
examination reveals that this similarity is only on the surface and the proposed methods and penalties are fundamentally different from these Edit Distance (ED) based alignment methods and similarity measures. Most importantly, the proposed penalties 1) measure the spatial and temporal dimensions of segments that are within the alignment disagreement window (not the number of edit operations) and 2) are a relatively complex spatial and temporal function of the locations that are within the alignment disagreement window (not a constant function of edit operations).

4.3. **Generic transportation mode segmentation approaches as proof of concept**

This section describes three different approaches to transportation mode segmentation and proposes new performance measures for assessing such algorithms.

4.3.1. **Trialed generic transportation mode segmentation approaches**

As previously discussed in Section 2, there are two main approaches of deriving transportation mode: a point-based approach, and a segment-based approach, either of which has its own performance measures. This paper uses different prototypical approaches associated with each of the two approaches and proposes a novel, hybrid approach, which uses information specific to both point- and segment-based approaches for transportation mode segmentation. While, not contrary to the “no free lunch” theorems for machine learning (Wolpert 1996), different machine learning methods for different derived features for different transportation modes on different datasets yield different quality results (see Section 2), the choice of evaluation of generic approaches is motivated by the conjecture that the differences that result from how these generic approaches decompose the task dominate the aforementioned differences and are therefore of key interest. The proposed generic approaches, together with a brief description of the mechanisms that underlie the approaches are presented in the following sections.

4.3.1.1. **Implicit point-based transportation mode segmentation.** The first approach is a point-based one, where the points are classified one-by-one and the transportation segment are the implicit results of the classification, namely all the consecutive, same transportation mode points are grouped into segments after the classification is performed (see Equation 1). As in any classification task, the chosen dimensions along which the classification is performed affect the outcome and should be carefully chosen. In the context of this paper, the authors use the same methodology proposed in previous research (Prelipcean et al. 2014), with two main differences: 1) the user id is not a dimension of the classification, and 2) the transportation modes used in this research are different from the previous one. Similar to previous research, the current approach also uses a random forest classification method, accompanied by 10-fold cross-validation for model validation. Since the output of such an approach is sensitive to local, non-sequential errors, such as spuriously inserting an incorrect mode within a sequence of correct modes, this paper compensates for this drawback by smoothing the raw classifications using a five element long majority filter.

4.3.1.2. **Explicit holistic segment-based transportation mode segmentation.** The second approach focuses on first detecting the segments that have the same movement characteristics, and then classifies each segment into a transportation mode based on
holistically computed dimensions at the segment-level. Since there are multiple ways to define what a segment is or how a segment can be detected, this paper proposes three distinct segment detection methods:

1. **Stop-oriented segment detection**: a method that is finely tuned for detecting stops, makes use of a traditional heuristic “if a user’s speed is less than 3.6km/h for more than 2 minutes, then that represents a dwell period”. Furthermore, the method merges the segments that are wrongfully detected due to noise into the neighboring triplegs. A segment is labeled as “deleted due to noise” when the cumulative distance between the centers of consecutive lines formed between consecutive locations is significantly different from the cumulative distance between consecutive locations, and when the polyline formed between all the consecutive points self-intersects more than three times.

2. **Transition-oriented segment detection**: a method that is sensitive to the fluctuations in speed and accelerometer values that are associated with transitions, and detects a point as a period boundary when the accelerometer and speed differences between consecutive locations are greater than a threshold value, and when the projecting distance (defined next) is greater than a threshold value. The projecting distance of a given location l_i is defined by two entities: a point l_{i}^{past} is generated by projecting the distance that could be traveled from l_{i-1} along bearing $l_{i-1}^{l_{i}}$ using the average speed between l_{i-2} and l_{i-1} in the time frame between l_{i-1} and l_{i}, and a point l_{i}^{future} is generated by projecting the distance that could be traveled from l_{i+1} along bearing $l_{i+1}^{l_{i}}$ using the average speed between l_{i+2} and l_{i+1} in the time frame between l_{i+2} and l_{i+1}. The projecting distance is computed as the maximum distance between l_{i}^{past}, l_{i}^{future}, and l_{i}.

3. **A hybrid segment detection**: a method that first uses the stop-oriented segment detection algorithm, extracts the locations that are within segments that have high standard deviation values for speed and accelerometer, and applies the transition-oriented segment detection algorithm on the extracted consecutive locations.

A traditional 10-fold cross-validation method should not be used to train a classifier, since the inferred segments are different than the ground truth segments, and, as such, the approach considered in the current research uses a leave-one-user-out approach. The dimensions used for the classification of segments into modes are the following: number of locations within the segment, the duration that spans the segment, the average speed, the average duration between consecutive points, the length of the segment, the average, minimum, standard deviation, and median of 1) the number of steps between two consecutive locations and 2) the accelerometer values (Montini et al. 2014, Prelipcean et al. 2014).

4.3.1.3. Explicit consensual point-based transportation mode segmentation.

The last approach combines the insights of both point- and segment-based approaches by using the sliding windows that are in the point-based mode detection and the segments present in the segment-based mode detection. In particular, in the segment detection phase, the window-size is fixed to a predefined value (of five locations), in the transportation segment mode classification phase the window coincides with the segment that contains a point that will be filtered, thus allowing every point inside a segment to vote for the transportation mode of the segment.
4.3.2. Transportation mode segmentation performance metrics

After implementing all the methods, it is important to have accurate metrics that indeed reflect on the performance of each method. As such, the traditional precision and recall metrics are not suitable because they do not capture the essence of what error is in the context of transportation mode segmentation.

Since the proposed methodology makes use of segment alignment to find the correspondence between inferred segments and ground truth segments, the following five evaluation metrics that make use of the segment alignment penalties and segment alignment cardinality are proposed:

1. **precision**: the percentage of correctly inferred segments that are aligned to a ground truth segment.
2. **recall**: the minimum percentage of length / duration explained by correctly inferred segments divided by the total length / duration of the ground truth segments.
3. **shift-in penalty**: the penalty of moving every missed ground truth segment inside the inferred segment so that all the ground truth segments occupy the same position in the inferred sequence as in the ground truth. The shift-in penalty has a penalty in the dimension of time and one in the dimension of space.
4. **shift-out penalty**: the penalty of moving each of the incorrect segments – i.e., the segments that do not have the same value for the inferred transportation mode as the ground truth transportation mode – outside of the inferred segment when more than one inferred segments are aligned to one ground truth segment.
5. **oversegmentation**: the number of inferred segments a ground truth segment is split by the tested method / algorithm.

5. Empirical evaluations

This section presents the analysis of the performance of different transportation segmentation methods when applied to a real-world GPS-based activity-travel survey dataset. The data set was collected during a trial between 29th of September 2014 (Monday) to 5th of October 2014 (Sunday) where 26 users installed the MEILI Mobility Collector (Prelipcean et al. 2014) and collected 66107 GPS points fused with accelerometer summaries in the region of the Stockholm County, Sweden. The users then annotated the collected data via a web application by specifying trip ends, trip purposes, triplegs and transportation modes, which resulted in 1307 triplegs (38% stop, 28% walk, 12% bicycle, 0.4% moped, 7.6% car, 5% bus, 9% subway, 0.2% tram, 2% train). An overview of the employed segmentation methods is presented in Table 1. In this section, the performance metrics proposed in this paper are compared with the traditional metrics for generic implicit and explicit-holistic transportation mode segmentation methods in Section 5.1, and the performance boost of using an explicit-consensus method is shown in Section 5.2.

5.1. Implicit and explicit–holistic methods

5.1.1. Performance metrics

First, it is important to note what traditional precision and recall values are associated with P_B and with S_B. The performance measures reported for P_B by using traditional metrics are: **64.5%** precision and **65.1%** recall. The performance measures for the S_B
Table 1. The empirical evaluations are performed on the three main segmentation methodologies: implicit, explicit, and consensus-based, out of which the explicit and consensus-based segmentation methods are subsequently split into based on their focus into: stop (stop), transition (transition), and hybrid (hybrid).

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_B</td>
<td>implicit segmentation method based on point-based classifiers</td>
</tr>
<tr>
<td>S_{stop}^B</td>
<td>explicit segmentation method that focuses on stop detection</td>
</tr>
<tr>
<td>S_{tr}^B</td>
<td>explicit segmentation method that focuses on transition detection</td>
</tr>
<tr>
<td>S_{hybrid}^B</td>
<td>explicit segmentation method that combines S_{stop}^B and S_{tr}^B</td>
</tr>
<tr>
<td>PS_{stop}^B</td>
<td>consensus-based S_{stop}^B segmentation superimposed to the P_B classification</td>
</tr>
<tr>
<td>PS_{tr}^B</td>
<td>consensus-based S_{tr}^B segmentation superimposed to the P_B classification</td>
</tr>
<tr>
<td>PS_{hybrid}^B</td>
<td>consensus-based S_{hybrid}^B segmentation superimposed to the P_B classification</td>
</tr>
</tbody>
</table>

Table 2. Precision and recall values for the point-based and segment-based methods. The instances in bold represent the highest recorded values for the attribute.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_B</td>
<td>S_{stop}^B</td>
</tr>
<tr>
<td>Stop</td>
<td>45.7%</td>
<td>85.0%</td>
</tr>
<tr>
<td>Walking</td>
<td>44.0%</td>
<td>51.7%</td>
</tr>
<tr>
<td>Bicycle</td>
<td>41.8%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Moped</td>
<td>38.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Car</td>
<td>35.8%</td>
<td>30.4%</td>
</tr>
<tr>
<td>Bus</td>
<td>13.3%</td>
<td>45.8%</td>
</tr>
<tr>
<td>Subway</td>
<td>9.6%</td>
<td>38.9%</td>
</tr>
<tr>
<td>Tram</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Train</td>
<td>6.2%</td>
<td>27.6%</td>
</tr>
<tr>
<td>Avg.</td>
<td>26.1%</td>
<td>37.5%</td>
</tr>
</tbody>
</table>

methods report a precision of 80.1% and a recall of 82.4% (computed by detecting the transportation modes of ground truth segments).

Using the evaluation measures proposed in Section 4.3.2, the new precision and recall values are up to 40% lower than both P_B and S_B specific precision and recall values, as shown in Table 2. From the three proposed methods, S_{stop}^B suggests the most stop segments that are correctly aligned to “stop” ground truth segments, followed by S_{hybrid}^B, which even though has problems with the over-segmentation of “stop” segments, it correctly captures a significant percentage of duration / length of ground truth stop segments. For most other modes, S_{hybrid}^B records the highest values for precision and recall, except for moped, where P_B outperforms it. It is noticeable that P_B records motorized transportation modes such as car or moped well, which can be explained by the discrepancy between the number of segments traveled by an infrequent mode and the number of points within those segments (P_B has more samples to learn from the characteristics of infrequent modes than the any of the S_B methods).

5.1.2. A detailed analysis of S_{hybrid}^B

The method with the highest overall precision and recall values, S_{hybrid}^B, was chosen to be analyzed with regards to the proposed performance measures (Table 3). As expected, the spatial shift-in penalty for the “stop” and “walk” modes is small because of the high recall values and of the travel speed of these modes - low speed (walking) or no speed (stop). The transportation modes with low precision and recall values (train, moped or tram) have a large value for the shift-in spatial and temporal penalty, which implies that S_{hybrid}^B either over-segments or fails to segments the triplegs traveled by these modes. Analyzing
Table 3. The proposed performance measures computed for S^B_{hybrid}. The shift-in penalties indicate that the motorized modes are more often confused with one another and that the non-motorized modes have a higher temporal shift-in penalty, which suggest that stop triplegs overlap with walk triplegs. The shift-out penalty shows that oversegmentation is most critical for bus, car and train.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Prec.</th>
<th>Rec.</th>
<th>Space(m)</th>
<th>Time(min)</th>
<th>Space(m)</th>
<th>Time(min)</th>
<th>Over(#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>69.1</td>
<td>65.4</td>
<td>60±750</td>
<td>3.5±40</td>
<td>2250±15500</td>
<td>51±380</td>
<td>3</td>
</tr>
<tr>
<td>Walk</td>
<td>61.6</td>
<td>64.8</td>
<td>50±200</td>
<td>2.5±6</td>
<td>8500±32000</td>
<td>112±750</td>
<td>3</td>
</tr>
<tr>
<td>Bicycle</td>
<td>75.6</td>
<td>71.0</td>
<td>150±750</td>
<td>1±4</td>
<td>2000±38000</td>
<td>51±175</td>
<td>4</td>
</tr>
<tr>
<td>Moped</td>
<td>25.0</td>
<td>6.9</td>
<td>2150±3150</td>
<td>3.5±5</td>
<td>7500±4750</td>
<td>323±552</td>
<td>3</td>
</tr>
<tr>
<td>Car</td>
<td>39.0</td>
<td>27.4</td>
<td>1000±3000</td>
<td>8.5±40</td>
<td>14000±29000</td>
<td>142±380</td>
<td>4</td>
</tr>
<tr>
<td>Bus</td>
<td>46.2</td>
<td>44.6</td>
<td>670±1850</td>
<td>2±7</td>
<td>15000±38000</td>
<td>54±115</td>
<td>4</td>
</tr>
<tr>
<td>Subway</td>
<td>47.5</td>
<td>37.8</td>
<td>750±2000</td>
<td>3±7</td>
<td>10000±17000</td>
<td>132±411</td>
<td>3</td>
</tr>
<tr>
<td>Tram</td>
<td>0.0</td>
<td>0.0</td>
<td>4150±6000</td>
<td>25±37</td>
<td>21000±30000</td>
<td>85±115</td>
<td>0</td>
</tr>
<tr>
<td>Train</td>
<td>36.0</td>
<td>27.5</td>
<td>15000±48750</td>
<td>11±32</td>
<td>109000±185000</td>
<td>380±1464</td>
<td>3</td>
</tr>
</tbody>
</table>

the equivalent shift-out penalty, it is noticeable that the time penalty takes precedence over the space penalty for low speed modes, and the opposite is true for high speed modes. Walking segments are over-segmented in the middle of the segment since the spatial and temporal shift-out penalties have a high value. Bike segments are over-segmented but mostly at the beginning or at the end of a tripleg since the spatial and temporal shift-out penalties have a low value.

Table 4. Precision and recall values for the consensus-based methods. The instances in bold represent the highest recorded value for the attribute.

<table>
<thead>
<tr>
<th>Mode</th>
<th>P^S_{stop}</th>
<th>P^S_{tr}</th>
<th>P^S_{hybrid}</th>
<th>P^S_{stop}</th>
<th>P^S_{tr}</th>
<th>P^S_{hybrid}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>91.3%</td>
<td>64.3%</td>
<td>81.2%</td>
<td>69.4%</td>
<td>58.1%</td>
<td>71.1%</td>
</tr>
<tr>
<td>Walk</td>
<td>44.0%</td>
<td>57.6%</td>
<td>57.3%</td>
<td>35.6%</td>
<td>43.2%</td>
<td>53.3%</td>
</tr>
<tr>
<td>Bicycle</td>
<td>61.0%</td>
<td>71.2%</td>
<td>78.0%</td>
<td>39.2%</td>
<td>47.2%</td>
<td>73.4%</td>
</tr>
<tr>
<td>Moped</td>
<td>25.0%</td>
<td>43.3%</td>
<td>45.0%</td>
<td>38.1%</td>
<td>40.5%</td>
<td>54.9%</td>
</tr>
<tr>
<td>Car</td>
<td>60.3%</td>
<td>54.9%</td>
<td>66.4%</td>
<td>54.5%</td>
<td>40.1%</td>
<td>62.8%</td>
</tr>
<tr>
<td>Bus</td>
<td>33.8%</td>
<td>47.9%</td>
<td>49.6%</td>
<td>17.5%</td>
<td>27.6%</td>
<td>36.2%</td>
</tr>
<tr>
<td>Subway</td>
<td>10.4%</td>
<td>33.5%</td>
<td>31.9%</td>
<td>3.8%</td>
<td>18.4%</td>
<td>15.9%</td>
</tr>
<tr>
<td>Tram</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Train</td>
<td>12.8%</td>
<td>15.9%</td>
<td>37.8%</td>
<td>5.8%</td>
<td>13.1%</td>
<td>20.4%</td>
</tr>
<tr>
<td>Avg.</td>
<td>37.6%</td>
<td>43.2%</td>
<td>49.7%</td>
<td>29.3%</td>
<td>32.0%</td>
<td>43.1%</td>
</tr>
</tbody>
</table>

5.2. Explicit–consensus methods

5.2.1. Performance metrics

Next, the intention was to observe the effectiveness of using the segments as a sliding window, allowing every point within it to vote for the transportation mode, which is presented in Table 4. First, both precision and recall values have increased for all modes. Second, even though the precision of P^S_{stop} for “stop” segments is higher than that of P^S_{hybrid}, the associated recall value of P^S_{hybrid} is higher than that of P^S_{stop}, which implies that P^S_{hybrid} suggests fewer but more meaningful (with a longer duration) “stop” segments. Finally, P^S_{tr} has higher overall precision and recall values than P^S_{stop}, which illustrates the information gain from using explicit–consensus methods compared to holistic methods, in which case S^B_{stop} had higher overall accuracy and recall values than S^B_{tr}.
Table 5. Space and time shift-out penalties for S_B^{hybrid}, P_S^{hybrid} and $P_{S_{perf}}^{hybrid}$. The results indicates that part of the oversegmentation problems diminished for most high speed transportation modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>S_B^{hybrid} (m)</th>
<th>P_S^{hybrid} (m)</th>
<th>$P_{S_{perf}}^{hybrid}$ (m)</th>
<th>S_B^{hybrid} (s)</th>
<th>P_S^{hybrid} (s)</th>
<th>$P_{S_{perf}}^{hybrid}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>2250±15500</td>
<td>2300±16500</td>
<td>2400±15500</td>
<td>51±380</td>
<td>28±228</td>
<td>51±380</td>
</tr>
<tr>
<td>Walk</td>
<td>8500±32000</td>
<td>9300±30000</td>
<td>8500±32000</td>
<td>112±750</td>
<td>136±800</td>
<td>112±750</td>
</tr>
<tr>
<td>Bicycle</td>
<td>2000±3800</td>
<td>2500±6250</td>
<td>620±1500</td>
<td>51±175</td>
<td>60±200</td>
<td>60±200</td>
</tr>
<tr>
<td>Moped</td>
<td>7500±4750</td>
<td>4000±6000</td>
<td>4500±6500</td>
<td>323±552</td>
<td>316±555</td>
<td>380±600</td>
</tr>
<tr>
<td>Car</td>
<td>14000±29000</td>
<td>14500±72000</td>
<td>14000±76000</td>
<td>142±380</td>
<td>150±380</td>
<td>150±400</td>
</tr>
<tr>
<td>Bus</td>
<td>15000±38000</td>
<td>14000±33000</td>
<td>910±2000</td>
<td>54±115</td>
<td>56±113</td>
<td>20±90</td>
</tr>
<tr>
<td>Subway</td>
<td>10000±17000</td>
<td>17000±2600</td>
<td>10000±2000</td>
<td>132±411</td>
<td>138±400</td>
<td>150±450</td>
</tr>
<tr>
<td>Tram</td>
<td>21000±30000</td>
<td>21000±3000</td>
<td>0</td>
<td>85±115</td>
<td>85±115</td>
<td>0</td>
</tr>
<tr>
<td>Train</td>
<td>109000±18500</td>
<td>73000±93000</td>
<td>30000±60000</td>
<td>380±1464</td>
<td>380±1523</td>
<td>400±1600</td>
</tr>
<tr>
<td>Avg.</td>
<td>19000±36000</td>
<td>15000±31000</td>
<td>9400±30000</td>
<td>138±470</td>
<td>140±465</td>
<td>144±550</td>
</tr>
</tbody>
</table>

Table 6. Space and time shift-in penalties for S_B^{hybrid}, P_S^{hybrid} and $P_{S_{perf}}^{hybrid}$. The results clearly indicate the superiority of $P_{S_{perf}}^{hybrid}$, where there has been a substantial decrease in the shift-in spatial and temporal penalties, which indicates that fewer transportation modes have been misclassified by the new method.

<table>
<thead>
<tr>
<th>Mode</th>
<th>S_B^{hybrid} (m)</th>
<th>P_S^{hybrid} (m)</th>
<th>$P_{S_{perf}}^{hybrid}$ (m)</th>
<th>S_B^{hybrid} (s)</th>
<th>P_S^{hybrid} (s)</th>
<th>$P_{S_{perf}}^{hybrid}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>60±750</td>
<td>55±750</td>
<td>60±750</td>
<td>3.5±40</td>
<td>3.5±43</td>
<td>3.5±40</td>
</tr>
<tr>
<td>Walk</td>
<td>50±200</td>
<td>75±250</td>
<td>50±200</td>
<td>2.5±30</td>
<td>3±30</td>
<td>2.5±30</td>
</tr>
<tr>
<td>Bicycle</td>
<td>150±750</td>
<td>140±680</td>
<td>30±200</td>
<td>1.2±4</td>
<td>1±3.5</td>
<td>0±2</td>
</tr>
<tr>
<td>Moped</td>
<td>2150±3150</td>
<td>1140±2500</td>
<td>1000±2500</td>
<td>3.5±5</td>
<td>2±4</td>
<td>1.5±4</td>
</tr>
<tr>
<td>Car</td>
<td>1000±3000</td>
<td>700±2600</td>
<td>360±1800</td>
<td>8.5±40</td>
<td>8±40.5</td>
<td>7.5±40</td>
</tr>
<tr>
<td>Bus</td>
<td>670±1800</td>
<td>650±1800</td>
<td>200±800</td>
<td>2±7</td>
<td>2±7</td>
<td>1±3</td>
</tr>
<tr>
<td>Subway</td>
<td>750±2000</td>
<td>1092±2500</td>
<td>500±1800</td>
<td>3±7</td>
<td>3.5±8</td>
<td>2±5.5</td>
</tr>
<tr>
<td>Tram</td>
<td>4150±6000</td>
<td>4150±6000</td>
<td>0</td>
<td>25±37</td>
<td>25±37</td>
<td>0</td>
</tr>
<tr>
<td>Train</td>
<td>15000±48750</td>
<td>14500±48500</td>
<td>670±2300</td>
<td>11±32</td>
<td>11±32</td>
<td>2.5±6.5</td>
</tr>
<tr>
<td>Avg.</td>
<td>2500±7400</td>
<td>2500±7300</td>
<td>350±1200</td>
<td>7±22</td>
<td>7±23</td>
<td>2±14.5</td>
</tr>
</tbody>
</table>

5.2.2. Information gain from using a user-specific point-based method

In order to understand the information gain of each method, this paper makes use of another point-based method, $P_{B_{perf}}^{hybrid}$, that has been successfully used in previous research (Prepilcean et al. 2014). This method takes into account the user id when inferring the transportation mode, which makes it more precise but less general, and has one major drawback: it does not consider stop points. As such, the stop periods proposed by each of the segmentation methods are used, which means that there will be no difference in the performance of stop detection. This point-based approach is a strong candidate for because of its traditional performance metrics: 94.4% precision and 94.5% recall.

The accuracy gain is discussed with relation to S_B^{hybrid}, its initial performance and the performance modification after using PS and PS_{mob} for consensus-based classification. As seen in Table 7, using the more precise point-based classifier gave all transportation modes except “stop” and “walk” a substantial precision and recall boost. The logic behind this performance boost can be observed in Table 6, where one can observe a substantial decrease in penalties for the following modes: bicycle, moped, care, bus, subway and train. This can be explained by the higher precision of the point-based classifier used for the consensus, which results in fewer misclassifications. When analyzing the shift-out penalties, it is noticeable that the new consensus performs better when it comes to space penalty, but with no visible difference for the temporal penalty, which implies that the classification corrected wrongfully inferred segments close to the middle of ground truth segments trav-
Table 7. Precision and recall value for S_{hybrid}^B, P_{hybrid}^S and $P_{hybrid}^{B perf}$. The consensus obtained while using the points classified by the superior point-based method, $P_{B perf}^S$, yield a high increase in overall precision and recall.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>69.1%</td>
<td>69.1%</td>
</tr>
<tr>
<td>Walk</td>
<td>61.6%</td>
<td>64.8%</td>
</tr>
<tr>
<td>Bicycle</td>
<td>75.6%</td>
<td>71.1%</td>
</tr>
<tr>
<td>Moped</td>
<td>25.0%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Bus</td>
<td>46.2%</td>
<td>44.6%</td>
</tr>
<tr>
<td>Subway</td>
<td>47.5%</td>
<td>37.8%</td>
</tr>
<tr>
<td>Tram</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Train</td>
<td>36.0%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Avg.</td>
<td>44.4%</td>
<td>75.3%</td>
</tr>
</tbody>
</table>

6. Discussion

The paper tackles a problem that is imperative to understand before getting deeper insights into human behavior, in general, and traveler behavior, in particular, namely understanding how to model transportation mode from sequences of spatio-temporal measurements about travelers. Common practice relies on using statistical packages that, based on a given statistical inference method, takes as input a trajectory dataset and, using predefined dimensions, infers the transportation mode with well established performance measures (e.g., precision, recall, etc). This paper challenges that the traditional and widely used performance measures do not adequately capture the essence of modeling continuous phenomena such as how users travel. As a way to overcome these issues, a new method that aligns any entity within a continuous dataset to an entity within a ground truth continuous dataset (while maintaining its continuity) is proposed together with novel performance measures finely tuned for continuous models. These concepts have been tested and evaluated on a real-world dataset and the results suggest that the traditional performance metrics do not adequately capture information that can be used to describe the performance of a model.

In particular, two distinct traditional performance measures (point-based and segment-based) computed for the dataset suggest that the classical precision and recall values do not capture the information needed to analyze models for continuous datasets. On one hand, discrete point-based performance measures are not propagated in the continuous space. On the other hand, the segment-based performance measures are applicable only in the second stage of a segmentation process, i.e., putting labels on segments, and do not embed the errors that are due to the first stage, i.e., the segmentation stage. The proposed methods investigate how the output of the tested methods translated into a continuous model reflects the reality. This shows that any error made in the incipient phases is propagated to the later phases and output at a greater magnitude, but this paper does not identify the dimensions that affect the magnitude.

One of the interesting results was that some segmentation methods, when used together...
with a point-based method in a consensus-type of scenario, have a higher accuracy and / or recall gain than others. While some of the proposed performance metrics seem to be correlated with this accuracy gain, this paper does not go into more detail.

Finally, the authors do not intend to compare the results obtained for transportation mode segmentation in the case study of the present paper with results obtained by papers focused on the transportation mode detection tasks, but to draw attention towards the fact that widely used traditional errors do not offer a realistic description of the performance of the algorithms employed for this task.

7. Conclusions and Future Work

This paper proposes a novel approach to modeling and evaluating methods designed to study continuous phenomenon such as transportation mode segmentation. To circumvent the drawbacks of the classical methodology used to find the correspondence between a ground truth entity and an inferred entity, i.e., matching, this paper uses a variation of the time algebra alignment proposed by Allen (1983). The advantages of using alignment instead of matching are stated, discussed and explained on real data obtained from a case study where different generic transportation segmentation approaches were compared. Since the traditional measures for performance rely on the concept of matching inferred segments with ground truth segments and not on alignment, new performance measures are proposed. These measures capture how an error that is produced at any step preceding the transportation mode segmentation propagates down to the modeled output, which contrasts the traditional measures, which only count the number of “hits” and ”misses”.

The definition of more robust error measures opens up new research opportunities such as understanding which classification dimensions are sensitive to error, identifying the critical error propagation channels, understanding why certain methods produce a drastically different output when a different dataset is considered, and, most importantly, allowing scientists to answer the question “How feasible is the automation of the transportation mode segmentation task?” while keeping in mind what it is that researchers / government authorities need when asking the question. Future studies aim at validating the proposed methodology over larger datasets and studying the critical dimensions that affect the magnitude of error while it is propagating through the classification stages.

Finally, while this paper presents the concept of error propagation with regards to space and time, this approach is not limited to the two dimensions. Complementary research objectives might involve performing similar analysis for other continuous phenomenon, e.g., studying how an individual’s perception of well being varies over time, or, how an individual’s mental map varies over time. To conclude, while models are built using discrete data, in the case of continuous phenomenon, it is important to understand the error in relation to the modeled phenomenon and not only in relation to the collected discrete data.

References

REFERENCES

REFERENCES

Wolf, D. 2000. Using GPS Data Loggers To Replace Travel Diaries In the Collection of Travel Data. PhD Thesis at Georgia Institute of Technology, School of Civil and Environmental Engineering.
REFERENCES
