

Enterprise Information Systems Management

An Engineering Perspective Focusing on the Aspects of
Time and Modifiability

Jonas Andersson

April 2002

Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

Industrial Information and Control Systems
Department of Electrical Engineering
KTH, Royal Institute of Technology

Stockholm, SWEDEN

Ex.R. 02-04
TRITA-ICS-0203
ISSN 1104-3504

ISRN KTH/ICS/R--02/03--SE

 i

ABSTRACT
Evolution of information systems (ISs) is a multi-facetted issue that over time has
proved arduous to manage. On the enterprise level of ISs, an organization’s total
portfolio of interconnected information systems is considered as one system – an
enterprise information system (EIS), consisting of course-grained and heterogeneous
components that in themselves may constitute complex ISs. In EISs, considerations
concerning legacy systems and commercial-off-the-shelf software (COTS) are
pervasive. This doctoral thesis addresses management of EISs in primarily small and
medium-sized electric utilities that are active on the reformed Swedish electricity
market. The enabling reasons for the choice of electric utilities as unit of analysis are
the implications of the recent electricity market reformation, utilities’ broad range of
interconnected ISs, and small and medium-sized enterprises’ sparse resources for
strategic management.

This work applies an engineering perspective on EISs management by investigating
how description techniques and analysis methods from software architecture may
be employed as decision support during planning and implementation of system
evolution activities. An enabling motivation for the selection of software
architecture as reference discipline for this work is its recent achievements in
expressing and analyzing complex software systems consisting of coarse-grained
software packages, on the basis of quality attributes. A special emphasis is hereby
placed on modifiability and the implication of time. Presented findings imply that the
concepts for architectural description, e.g. quality attributes, architectural taxonomy, and
architectural integration styles, combined with scenario-based architectural analysis, may
successfully contribute to enhance the comprehensiveness of the complex problem
domain provided by EIS evolution. The chosen approach promotes structured
analysis, as well as stakeholder communication and awareness. This work also
suggests adaptations of the investigated architectural concepts to increase their
applicability on the enterprise level of ISs in small and medium-sized enterprises.

Keywords: Information technology (IT), Information systems (IS), IS/IT
management, Strategic information systems planning, Software architecture,
Decision support, Quality attributes, Modifiability, Electric utilities, Deregulation.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 ii

 iii

ACKNOWLEDGEMENTS
The present thesis summarizes the research work I have carried out since early 1996
at the department of Industrial information and control systems, Royal institute of
technology (KTH). The initial problem domain addressed was migration and legacy
considerations concerning large-scale information systems, with a special focus on
the Swedish power industry. The path from there to now has proved far from
straight to explore, and has contained several detours, that in some cases have
brought me rather far from the context of this work. However, every part of the
tour has generated valuable experiences that have taught me to appreciate the
explorations during the fulfillment of this Ph.D. project at least as much as the final
goal in itself. Nonetheless, it is satisfactory to discern that the final focal point of
this doctoral thesis turned out to be very nearby the initial problem domain
addressed.

This thesis could not have been written without the support and encouragement
from many people to whom I am deeply indebted. First of all, I would like to thank
my supervisor, Professor Torsten Cegrell, who has provided the physical and
intellectual environment in which this thesis has matured. I would also like to
express my warmest gratitude to Professor Johan Schubert for his persistent
encouragement and valuable guidance during the final stages of the authoring of
this thesis.

Many thanks also to my present and former colleagues at the department of
Industrial information and control systems for making every day enjoyable, and for
fruitful discussions on any topic. Especially, I would like to thank Dr. Göran
Ericsson, Dr. Magnus Haglind, and Mr. Pontus Johnson for excellent teamwork
during various stages of this work, Mr. Mathias Ekstedt, and Mrs. Narcisa Jonsson
for valuable inputs and discussions, and Mrs. Judith Westerlund for bringing that
extra warm and personal touch to the department.

As this thesis would not had been possible without a close cooperation with
companies within the Swedish power industry, I would like to thank these
organizations, and the individuals therein who have contributed with their time and
their expertise. Especially, I would like to mention Mr. Göran Fremrot with
Östkraft, and Mr. Lennart Hansson with Sycon.

Without my personal friends and their encouragement this work would probably
not have resulted in a concrete thesis - Many thanks to all of You! A special thanks
goes to Mr. Johannes Dellby for friendship also when days were tough. Last, but
definitely not least, I would like to thank my family for your understanding and
support during these years.

Stockholm, April 2002

Jonas Andersson

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 iv

 v

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT
AN ENGINEERING PERSPECTIVE FOCUSING ON THE ASPECTS OF

TIME AND MODIFIABILITY

Jonas Andersson

LIST OF INCLUDED PAPERS
This thesis includes the following four parts, A to D:

PART A: Andersson J., Johnson P., “IT Infrastructure Architectures for Electric
Utilities: A Comparative Analysis of Description Techniques,” In: Proceedings of the
33rd Hawaii International Conference on Systems Sciences (HICSS-33), Maui, USA,
January 2000.

PART B: Andersson J., Johnson P., “Extending Attribute-Based Architectural
Analysis to Enterprise Software Systems,” In: Proceedings of the 3rd Australasian
Workshop on Software and System Architectures (AWSA ’00), Sydney, Australia,
November 2000.

PART C: Andersson J., Cegrell T., Cheong K.H., Haglind M., “Strategic
Management of Information Technology in Deregulated Electric Utilities: Bridging
the Gap Between Theory and Practice,” In: Proceedings of the Portland International
Conference on Management of Engineering and Technology (PICMET ’01), Portland, USA,
July 2001.

PART D: Andersson J., Johnson P., “Architectural Integration Styles for Large-
Scale Enterprise Software Systems,” In: Proceedings of the 5th IEEE International
Enterprise Distributed Object Computing Conference (EDOC ‘01), Seattle, USA,
September 2001.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 vi

LIST OF RELATED PAPERS AND REPORTS
In addition to the papers incuded in this thesis, the author has also published the
following papers and reports on topics related to this work:

Andersson J., ”Structured Migration and Reuse in Complex Distribution
Management Systems: A Cross Process View,” In: Proceedings of Distribution
Automation and Demand Side Management (DA/DSM) Europe 95, Rome, Italy,
November 1995.1

Andersson J., “A Strategy for Migration on a Deregulated Energy Market: Case
Study Experiences,” In: Proceedings of Distribution Automation and Demand Side
Management (DA/DSM) Europe 97, Amsterdam, the Netherlands, October 1997.1

Andersson J., Haglind M., Johansson E., Johansson L., A State of the Art Study of
Commercial Industrial Control Systems - version 2.1, External Report, Ex.R. 96-11,
Industrial Control Systems, Royal Institute of Technology, Stockholm, 1997.1

Andersson J., On IT System Integration – Prospects and Consequences of Energy Market
Deregulation, Licentiate Thesis, Ex.R 97-07, Royal Institute of Technology,
Stockholm, 1997.

Andersson J., Cegrell T., Cheong K.H., Haglind M., Johansson E., Johansson L.,
“IT Strategy for Electric Utilities - From a Paper Tiger to an Effective Management
Tool,” In: Proceedings of DistribuTech Europe 98 (DA/DSM), London, U.K.,
October 1998.

Andersson J., Johnson P., “Procurement of Integrated IT Systems for the
Deregulated Electric,” In: Proceedings of the International Conference on Electricity
Distribution (CIRED ‘99), Nice, France, June 1999.

Andersson J., Silwer M., “Enterprise Software System Infrastructure for Electric
Utilities: A Step Towards a Feasible Toolbox of Techniques,” Proceedings of the 2nd
Nordic Workshop on Software Architecture (NOSA ’99), Ronneby, August 1999.

1 Also included as a part in the author’s licentiate thesis.

 vii

TABLE OF CONTENT

1 INTRODUCTION ... 1

1.1 BACKGROUND TO THE RESEARCH.. 1
1.2 RESEARCH RATIONALE ... 3
1.3 RELATED WORKS ...11
1.4 MAIN CONTRIBUTION OF THIS THESIS...13
1.5 OUTLINE OF THE THESIS ..15

2 INFORMATION SYSTEMS AND ELECTRIC UTILITIES 17

2.1 ELECTRIC UTILITIES AS THE UNIT OF ANALYSIS IN INFORMATION

SYSTEMS RESEARCH ..17
2.2 ELECTRICITY MARKET REFORMATION ...18
2.3 INFORMATION SYSTEMS WITHIN ELECTRIC UTILITIES20

3 THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS 25

3.1 INTRODUCTION..25
3.2 MODIFIABILITY AND TIME IN ENTERPRISE INFORMATION SYSTEMS26
3.3 CHARACTERISTICS OF ENTERPRISE INFORMATION SYSTEMS.....................31
3.4 COTS IN ENTERPRISE INFORMATION SYSTEMS ...33
3.5 ENTERPRISE APPLICATION INTEGRATION ..36

4 SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION
SUPPORT... 39

4.1 ENTERPRISE INFORMATION SYSTEMS MANAGEMENT39
4.2 ENTERPRISE INFORMATION SYSTEM ARCHITECTURE41
4.3 ARCHITECTURAL ANALYSIS..44
4.4 INVESTIGATED ARCHITECTURAL CONCEPTS ..49

5 TOWARDS A NOVEL APPROACH FOR ENTERPRISE
INFORMATION SYSTEMS MANAGEMENT.......................... 59

5.1 INTRODUCTION..59
5.2 KEY CHARACTERISTICS OF THE PROPOSED FRAMEWORK59
5.3 LESSONS LEARNED ...61

6 RESEARCH METHODOLOGY ... 63

6.1 INTRODUCTION..63
6.2 INFORMATION SYSTEM RESEARCH..64

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 viii

6.3 PRACTITIONERS’ ROLE IN INFORMATION SYSTEMS RESEARCH66
6.4 CASE STUDIES..68
6.5 ACTION RESEARCH ..69
6.6 RESEARCH QUALITY...72
6.7 ETHICAL CONSIDERATIONS ...73

7 SUMMARY OF FIELD STUDIES...75

7.1 INTRODUCTION ..75
7.2 FIELD STUDY ALPHA: AN EXPLORATORY CASE STUDY...............................77
7.3 FIELD STUDY BETA: A DESCRIPTIVE CASE STUDY78
7.4 FIELD STUDY GAMMA: AN EXPLANATORY CASE STUDY AND FIELD

STUDY DELTA: AN ACTION RESEARCH STUDY ..79

8 SUMMARY OF INCLUDED PARTS ..83

9 CONCLUDING REMARKS ..89

9.1 SUMMARY OF RESULTS...89
9.2 FURTHER WORKS..92

10 REFERENCES...93

PART A: IT INFRASTRUCTURE ARCHITECTURES FOR ELECTRIC
UTILITIES: A COMPARATIVE ANALYSIS OF DESCRIPTION
TECHNIQUES ... 105

PART B: EXTENDING ATTRIBUTE-BASED ARCHITECTURAL
ANALYSIS TO ENTERPRISE SOFTWARE SYSTEMS 123

PART C: STRATEGIC MANAGEMENT OF INFORMATION
TECHNOLOGY IN SMALL AND MEDIUM-SIZED
ELECTRIC UTILITIES: BRIDGING THE GAP BETWEEN
THEORY AND PRACTICE ... 143

PART D: ARCHITECTURAL INTEGRATION STYLES FOR LARGE-
SCALE ENTERPRISE SOFTWARE SYSTEMS 169

INTRODUCTION

 1

Chapter 1
Introduction

1 INTRODUCTION

1.1 BACKGROUND TO THE RESEARCH
Evolution of software-intensive systems has proved an arduous problem to manage
since the introduction of modern computing. The commonality of software
“runaway” projects is revealed by e.g. Eason (1988), Glass (1998), Standish
group (2000), and Thorp (1998). Over time, however, the nature of problems
related to software evolution has developed in pace with technological
achievements in the domain of information technology (IT), and escalating
requirements on organizations’ competitiveness and overall efficiency; constantly
increasing the need for more intricate integration of information systems (ISs).
Presently, this trend towards integration implies that most organizations’ total
portfolio of large-scale interconnected software systems, in this thesis termed
enterprise information systems (EISs), consists of a significant number of integrated
software components of various sizes and technologies, origin from a vast number
of software vendors and technology epochs. Component granularity may span from
a few lines of code, a class, or a simple service, to complex systems that in
themselves constitute large-scale ISs. Also, contributing EISs’ overall complexity are
considerations regarding legacy and commercial-off-the-shelf software (COTS).

Traditionally, enterprise-wide ISs were developed mainly by a single organization,
either in-house by the user organizations, or by contracted software houses.
Experiences regarding custom-development of large-scale software systems have
over time proved deterrent due to high costs and hazardous implementation.
Especially, evolution of these systems have proved problematic, e.g. in terms of
software maintenance, and integration with collaborating systems. Many of these

“Scientists discover the world that exists;
engineers create the world that never was.”

Theodore Von Karman

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 2

systems are still in operation. Although many of them fulfill business-critical
functions, they constitute an increasing problem to their owners due to
obsolesce (Bennett 1995; Bennett 2000; Sneed 1995).

An increasing part of new ISs consist entirely, or to large extend, of prefabricated
software. The expected promises of COTS include lower development costs, faster
implementation, and enhanced integration of ISs. However, COTS brings several
potential problems that must be dealt with in order to exploit its advantages. For
instance related to that (especially coarse-grained) COTS components may fail to
meet specific requirements, and that user organizations’ influence on vendors’
product lines is limited. Moreover, COTS may require extensive effort for
adaptation and integration before it may be put into operation.

The increased focus on COTS also influences customer-supplier relationships as
influence on functionality and characteristics of COTS software must be exercised
indirectly by user organizations, e.g. by influencing vendors’ product lines through
user groups or standardization bodies. In addition, considerations concerning third-
party COTS components included in vendors’ product have become an important
issue for user organizations, as they may have a significant impact on EISs from a
life cycle perspective. Moreover, software vendor roles are becoming more
diversified. Vendors that offer a broad range of products and services tend to be
fewer and larger; whereas some IS vendors tend to be more specialized. Other
vendors niche themselves as system integrators. This implies changing customer-
supplier relationships.

Thus, EISs are heterogeneous systems that consist of other systems. In the vein of the
growing overall complexity regarding EISs, decisions related to these systems have
become increasingly difficult to make. Altogether, the problem domain related to
EIS represents a new conceptual echelon; the enterprise level of ISs, on which business
objectives and organizational constraints are transformed into overarching decisions
concerning organizations’ use of IT, or the potential of IT is identified and
translated into business opportunities.

This doctoral thesis addresses enterprise information systems management (EISM)
in primarily small and medium-sized electric utilities that are active on the reformed
Swedish electricity market. The enabling reasons for the choice of electric utilities as
unit of analysis are the implications of the recent electricity market reformation,
utilities’ broad range of interconnected ISs, and small and medium-sized enterprises’
sparse resources for strategic management. This work further applies an engineering
perspective on EISM by investigating how software architecture description and

INTRODUCTION

 3

analysis may be employed to provide decision support during evolution of
EISs (Bass et al. 1998; Kazman et al. 1998).

One of the most written causes of EIS investment failure is that too much attention
is placed on technology itself, rather than its characteristics or quality attributes, and
its links with organizational factors (Luftman (ed.) 1996). Therefore, an enabling
motivation for the selection of software architecture as reference discipline for this
work is its recent achievements in expressing and analyzing complex software
systems consisting of coarse-grained software packages, on the basis of quality
attributes (Medvidovic and Taylor 1998). Quality attributes2 may except for
expressing software qualities, also communicate organizational parameters
(Bass et al. 1998), such as risk, opportunities, awareness, control, and competence.
To focus the scope of this work towards evolution of EISs, the quality attribute
modifiability together with temporal considerations, i.e. the aspect of time, have been
selected for further scrutiny.

1.2 RESEARCH RATIONALE
As pointed out above, this work applies an engineering perspective on EISM by
investigating how software architecture description and analysis may be employed
to provide decision support during evolution of EISs (Bass et al. 1998; Kazman
et al. 1998). The theoretical approach of this project is multi-disciplinary in the
sense that it addresses previous research contributions in the field of software
engineering and aims to relate this to EISM. The target readers of this thesis are
both EIS practitioners, and other researchers who wish to further the findings
presented in this work. Below, the various elements in the research design are
described. Also, a delimitation of the scope for this work is presented together with
some clarifying definitions on the terminology used throughout this thesis.

1.2.1 RESEARCH QUESTIONS AND HYPOTHESES
To guide this work, a number of research questions were formulated. Their overall
purpose was to guide the collection of data and the formulation of hypothesis. The
first question aims to provide an in-depth understanding of the characteristics of
EISs in small and medium-sized electric utilities, whereas the two concluding
questions address the impact of software architecture description and analysis as

2 In information systems literature also referred to as systemic competencies (Hendersen and
Venkatraman 1996).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 4

decision support for EIS evolution. The presented empirical findings according to
the first question are partly based on results from the author’s licentiate thesis
(Andersson 1997b). The research questions are formulated as follows:

• What is the present state-of-the-practice regarding management of EIS
evolution in small and medium-sized electric utilities?

• What impact will the introduction of software architecture description and
analysis have as a tool for strategic decision support during evolution of
EIS?

• How may software architecture description and analysis be adapted to
better aid strategic decisions during evolution of EISs?

From these research questions, more confined questions have been formulated
within each field study. Except for providing a delimitation of the scope of this
thesis, the research questions also are intended to validate the following hypothesis:

Present state-of-the-art regarding EISM provides inadequate decision support for small and
medium-sized electric utilities during EIS evolution to promote effective analysis, stakeholder
communication, and stakeholder awareness. One prominent reason for this state of affairs is the
prevalent lack of means for conceptualizing the problem domain and to make explicit
organizational, computational, and temporal dependencies in terms of trade-offs between qualitative
parameters.

1.2.2 RESEARCH DESIGN
The research design (see Figure 1) essentially consists of three parallel tracks
encompassing: (1) research methodology, (2) field studies, and (3) theoretical studies. The
expected advantage of the concurrent approach has been to attain mutual support
between the activities by allowing advancements gained in each track to also
influence the progress of the others. In addition, the project can be divided into two
main phases, where Phase 1 primarily focuses on identifying feasible research
questions, and to gain initial insight in previous work in the area, whereas Phase 2
primarily focuses on testing and to furthering applicable theory.

The theoretical domains that formed the basis for the research during Phase 1 were
prevalent contributions on middleware and requirements engineering that were
deemed relevant from a user organization perspective. Also, literature on project
management contributed to the theoretical frameworks applied during Phase 1. The
case studies during Phase 1 were organized as a multiple exploratory case study

INTRODUCTION

 5

(field study Alpha) with the purpose to obtain in-depth domain knowledge
regarding small and medium-sized electric utilities. In particular, their efforts to
provide EISM were investigated. As a part of the field study, the companies’
portfolio of present, and planned IS projects were documented. The author’s
licentiate thesis is partly based on results gained during field study Alpha
(Andersson 1997b). Furthermore, a part of the investigation that focused on IS/IT
strategies was later refined and expanded by Cheong (1999) and Haglind (2002). As
the research approach applied during Phase 1 was descriptive and interpretive, research
methodology according to Robson (1992), Walsham (1993), and Yin (1994) was
applied.

Qualitative
information

systems
research

Case study
theory Alpha

Beta

Strategic information
systems planning

(SISP)

Gamma

Delta

Requirements
engineering

Software engineering

Software architecture

Project management

Ph.D. Thesis

Licentiate Thesis

Research
methodology Field studies Theory

Phase 2

Phase 1

Figure 1. Research design.

Whereas the research carried out during Phase 1 essentially contributed to the
formulation of the research questions presented in Chapter 1.2.1, the field studies
carried out during Phase 2, more specifically sought to provide information on each
of them. The field studies were augmented with further studies of methodology for
IS research (Galliers 1992) focusing on qualitative research (Myers 1997) and action
research (Baskerville 1999; Baskerville and Wood-Harper 1996; Dick 1999). During

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 6

Phase 2, three major field studies were carried out: Beta, Gamma, and Delta. Field
study Beta investigated an acquisition of a settlement system for the deregulated
electricity market. Since the IS at stake had to be integrated with several existing ISs,
the case could be characterized as a modification of an existing EIS. Especially
organizational qualities such as trust, distribution of risk, responsibility, and their
implications for the choice of vendor and technical solution were investigated. Field
studies Gamma and Delta address one organization’s effort to acquire a business
system, and may thus be considered as an attempt to create a total EIS. Whilst the
first of the two field studies constituted an explanatory case study carried out in
retrospect, the latter field study was a participatory case study using action research
as research method.

The main motivation behind the selection of qualitative research methods according
to and is its abilities to provide rigor in real-world research (Galliers 1992;
Myers 1999). The applied research methodology is further presented in Chapter 6,
and a summary of the field studies Alpha, Beta, Gamma, and Delta is provided in
Chapter 7.

1.2.3 DELIMITATION OF SCOPE AND KEY ASSUMPTIONS
The primary unit of analysis in this work is small and medium-sized3 electric
utilities4 active within the reformed Swedish electricity market. Both distribution
network operators, that are still monopolistic, and electricity retailers have been
investigated. In some cases also IS vendors have been included in the data
collection. A motivation to the selection of electric utilities as the unit of analysis is
given in Chapter 3. Two key assumptions regarding the area of EISM have been
guided this work: Firstly, the existence of a gap between theory and practice
concerning EISM, and secondly that it is a gap (or lack of alignment) among
different disciplines attempting to address evolution of EISs. Furthermore, this
thesis applies a user organization perspective of EISM.

The title of this thesis comprises the words “engineering perspective.” As the word
engineering is intensively debated in new disciplines, such as software engineering, a
clarification of the author’s interpretation of “good” engineering is provided; an
engineering perspective indicates the intention to take the responsibility of the final

3 The European community defines small and medium sized enterprises (SMEs) as companies with less
than 250 employees, a turn-over lower than 40 million ECU, and which are owned for less than 25% by
non-SMEs, except banks or venture capital companies.
4 With exception for the organizations investigated in field study Beta, which were subsidiaries of a major
Swedish electric utility.

INTRODUCTION

 7

product of an effort in the sense that important design decisions, and trade-offs, are
explicitly identified and dealt with in a structured way. Hence, both technical and
organizational parameters should be made explicit and mitigated. Moreover,
entrustment of decisions should only be made to stakeholders that have the means,
mandate, and the incentives to successfully realize them. Below, primarily some
further delimitation and major assumptions concerning the scope of the doctoral
thesis are described and justified:

The enterprise level of information systems. An important delimitation for this
work is its focus on the enterprise system level of ISs. Perhaps the most pertinent
difference between separate ISs and the enterprise level of ISs is in the size and the
heterogeneity of the components. EISs are mainly constructed by the integration of
complete ISs as components, magnifying both size and complexity of the resulting
system. Also, a prominent characteristic for EISs seems to be their heterogeneity
concerning connectors; components in EISs are generally not initially designed with
the intention to be integrated. As the total life cycle of EISs has proved to be
comparably long, sometimes stretching decades, overall heterogeneity is increased
by the incorporation of several technology generations, e.g. in terms of operating
systems, middleware technologies, and design principles. Another distinguishing
aspect of the enterprise level of ISs is that management of evolution efforts
commonly comprises multiple projects. The characteristics of EISs, and their
components and connectors are further discussed in Chapter 3.

The user organization perspective. This thesis’ organizational perspective is the
one of an organization that needs ISs in order to support its business operations.
I.e., ability as regards planning and implementation of EISs may be a matter of
survival for the organization, but is, unlike software vendors, nonetheless not user
organizations’ core business. Despite this difference, it is pointed out that user
organizations’ situation share many similarities with vendors’ regarding design and
implementation of large-scale ISs.

Commercial-off-the-shelf-software (COTS). In this work, an ambition to
maximize the use of COTS in EISs is assumed. In the past, EISs were usually
custom-developed for their organizations. This situation had the obvious advantage
of providing a great deal of latitude to develop software that corresponded with
predefined requirements. Over time, however, custom development of large-scale
ISs has frequently proved costly, resource demanding, and hazardous (Glass 1998;
Standish group 2000). In an attempt to circumvent these problems, most
organizations presently strive to construct their EISs out of prefabricated software
to as a large degree as possible. Ideally, the use of COTS implies the construction of

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 8

EISs by integration of prefabricated software components by only limited
adjustments, typically by setting certain parameters. However, COTS may require
extensive effort to adapt and to integrate (cf. e.g. Wallnau et al. 2002). Decisions
concerning EISs must therefore delicately mitigate expected benefits of using
COTS against the effort needed to integrate and adapt the COTS into the target
EIS. Also, employment of COTS has an impact on the process of designing an EIS.
Whereas custom-developed EISs may be designed in a comparably continuous design
space, the design space for EISs primarily consisting of COTS becomes rather
discrete to its nature (cf. Lane 1990). See Chapter 3.4 for a discussion on COTS and
its implications to EISs and EISM.

The aspect of time. In separate IS projects, activities are often carefully scheduled
into a time-plan with well-defined milestones, goals are generally well defined, and
temporal constraints are commonly made explicit by concepts such as projects’
critical path. Still, project management is far from uncomplicated, and failed
projects are common. In EISM, even more complicated chains of actions must be
coped with, as EIS evolution commonly comprises multiple projects carried though
during an extensive period of time. Temporal constraints and dependencies
constitute a first-class issue; issues such as selection, prioritization, coordination,
and resource allocation between ongoing or potential IS projects must be delicately
dealt with. Moreover, delimiting the length of IS projects is a vital factor for
mitigating risk and promoting feedback of experiences to subsequent projects.

Another important time-related aspect is the one of increasing disorder, “entropy,”
in ISs left unattended (Bennett 1995; Brooks 1995; Parnas 1994; Sneed 1995).
Reasons for this increasing disorder include (1) decreasing awareness and
knowledge of ISs as staff are replaced and things are forgotten, (2) actions taken in
ISs without considering their side-effects to other parts of the systems, e.g.
inconsistencies of data and functionality and deteriorating technical uniformity, and
(3) changing technical and organizational systemic context (e.g. due to company
mergers and acquisitions, or new operating systems and middleware). Note that the
issue of software obsolesce (Sneed 1995) is present both in separate EIS
components, and in the EIS as a whole. To conclude, this work assumes that
temporal constraints constitute a first-class consideration when planning and
implementing EISs. The impact of time in EISM is further discussed in Chapter 3.2.

1.2.4 DEFINITIONS
ISs and IT constitute a vast field that lacks an unambiguously terminology, and even
less a taxonomy that serves the purpose of describing ISs distinctly enough to

INTRODUCTION

 9

effectively promote structured analysis, or stakeholder awareness and
communication. Hence, key terminology must be clarified in each context applied.
As several of the enumerated terms defined below are subject for vivid discussions,
it is stressed that the definitions given here are not intended as additional firewood
to these discussions. Instead, they should be regarded as clarifications of some
fundamental terms within the context of this thesis. See Chapter 4 for further
definitions concerning terms and concepts related to software architecture, and
discussions on these terms.

Enterprise information system (EIS). An organization’s total portfolio of
interconnected ISs considered as one system (cf. Chapter 3).

Management and decision support. An important part of this thesis’
contribution is the application of software architecture description and analysis as a
framework for EISM. Partly in line with the definition of frameworks given in
Cheong (1999), a framework is a collection of concepts, methods, theories, principles,
and ideas that provide guiding principles and directions for decisions. These decisions
may be a part of a planning process or provide guidance with regard to real actions, i.e.
no distinction is made between decisions regarding planning and implementation of
EISs these two issues from an EISM perspective are intrinsically coupled. A decision
is defined as a choice made by some entity of an action from some set of alternative
actions. The entity, i.e. the decision maker, may, in the context of this work, be
either an individual or a group. A “good” decision identifies an alternative that the
decision maker believes will prove at least as good as other alternative actions (Doyle
and Thomason 1999).

Information technology (IT) and information systems (ISs). As a result of the
widespread use of computing and communication technology, especially the recent
growth of the Internet, the word IT has become a rather amorphous term that
encompasses a lot of issues that in one sense or another have some connection with
computer technology. IEEE Computer Society’s task force on IT for business
applications (TFIT), has formulated a working definition of IT: “Information
Technology is that set of technology components and operation procedures that support a business or
organization in managing information so that it can meet its mission. IT embodies the hardware,
software, algorithms, databases, tactics, and man-machine interfaces used to create, capture,
organize, modify, store, protect, access, and distribute information for ultimate use by people.” Earl
(1989) states that “IT comprises computing, telecommunications and automation technologies”
from a technical standpoint, but also may be regarded as an activity that “comprises all
the supply, development and use activities in which an organization has to be involved if it wishes to
exploit these technologies to its advantage,” and a philosophy representing the continuation

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 10

of the “aims, means and responsibilities” typical in organizations during the first 30 years
of computing. According to Frenzel (1996), “information technology is the term that
describes the disciplines encompassing computer systems, telecommunication networks, and
multimedia applications.”

IS as a discipline descends from the study of (primarily administrative) computing
as an instrument for organizational problem solving (Lyytinen 1987), and has
evolved over time into a broad research field that attempts at put IT in its context.
Thus, IS comprises a wide array of non-technical factors such as management,
organization, economy, legal aspects, and human factors.

Although IT may be considered as the technology domain within the broader field
of ISs, there is much confusion around these terms and their linkage. Not
uncommonly, definitions are avoided, or they are used in conjunction with each
other, (IS/IT), when a broader area of computing and computing related topics is
addressed. From the perspective of this work it is sufficient to regard IS/IT as a
timeless and summarizing term for the domain related to the computing of
information for whatever reason, and of which this thesis address a part, namely
decision support for EIS evolution.

Enterprise information system architecture (EISA). The term EISA is based on
the analogy to traditional software architecture. Hence, the term will be used to
denote the structured description of the collection of software-based systems
(components) supporting the operations of an enterprise as a set of components
and connectors with assigned properties. It is, however, pointed out that there is no
consensus on the definition or even the choice of the term EISA (DISA 1996; The
Open Group 1999; Zachman 1987). According to (Bass et al. 1998), software
architecture can be defined as:

“The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those components,
and the relationships among them.”

However, to make model descriptions sufficiently rich to promote stakeholder
awareness and communication, as well as structured analysis, the author also
includes important related information, the rationale of the architecture (Perry and
Wolf 1992), such as the motivation for previous design decisions. Other content
may be descriptions of migration paths to capture the time dimension of EIS
evolution. In that sense, this thesis adheres to Maier’s rule-of-thumb regarding
system architecture, based on the role of architects, namely that a system

INTRODUCTION

 11

architecture is the work result produced by the architect to help its client to make
decisions regarding the system (Maier and Rechtin 2000):

“An architecture is the set of information that defines a systems value, cost, and risk sufficiently for
the purposes of the systems sponsor.”

Quality Attributes. The externally visible properties of a system, according to the
definition on software architecture provided by Bass et al. (1998) above, are
generally expressed as qualities of the system. Qualities of a system are above its
functionality, that in fact may be expressed as a quality attribute. Software qualities
may be divided into three categories: factors that may be directly measured by
observing a system (e.g. performance, security, availability, and functionality),
factors that can only be measured indirectly (e.g. modifiability, reusability, and
testability), and finally business qualities that influence and are influenced by the
first two categories of quality attribute (e.g. trust, risk, awareness, and ability) (Bass
et al. 1998; Heineman and Councill 2001; McCall 1977).

This work focuses on modifiability of EISs (in some literature also referred to as
maintainability); a quality attribute that on the enterprise system level grasps several
important considerations for the planning and design of EISs. Modifiability is
further discussed in Chapter 3.2, and a background to quality attributes in general is
given in Chapter 4.2.2.

1.3 RELATED WORKS
Evolution of ISs is a multi-facetted issue. Although, no other works have been
found with this thesis’ combined emphasis on decision support for EISM, software
architecture description and analysis, small and medium-sized organizations, and a
user-organization perspective, much work is at hand on each enumerated aspect. As
the complexity of EISs continuously tends to grow, there is a general strive among
both practitioners and academia to provide better means for EISM, in order to
catch up and, if possible, gain ground concerning decision support for EIS
evolution.

Essentially, previous work related to this thesis may be found in three adjacent
domains: software engineering, (management) information systems, and systems engineering.
Some literature on strategic management and project/program management also addresses
issues that are related to this work. In addition, literature written by practitioners with
the purpose to share and in some cases attempting to codify experiences provides
useful empirical information.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 12

Within the domain of IS, there are many written sources focus on the issue of IT in
organizational contexts (cf. e.g. Lyytinen 1987; Walsham 1993;
Ward and Griffiths 1996). Several textbooks address EISs in relation to business
process re-engineering (Davenport 1993; Davenport 2000; Earl 1989; Hammer and
Champy 1993). Others directly address the decision process for EISM by discussing
(strategic) management of IS/IT (Earl 1993; Frenzel 1996; Lederer and
Gardiner 1992; Lederer and Salmela 1996; Mintzberg et al. 1998). Moreover, the
close relation between, and the need for aligning IS/IT with, business objectives
and business requirements are addressed in literature on strategic alignment (cf.
Hendersen and Venkatraman 1996; Luftman (ed.) 1996).

The reference discipline for this work is manly software architecture. This domain
that originally was oriented towards the investigation of, from this work’s
perspective, lower system levels, has gradually shifted its focus to embraces larger
and more complex systems consisting of coarse-grained components, such as EISs.
Contributions in the vein of software architecture description that are related to this
work include the introductions of views and viewpoints (Kruschten 1995),
architectural styles and patterns (Buschmann et al. 1996; Fowler 1997; Garlan and
Shaw 1996; Gamma et al. 1998; Grand 2002; Schmidt et al. 2000), and the
employment of the unified modeling language (UML) for architectural description
(Kobryn 1998; Medvidovic et al. 2002). Also, several architectural frameworks for
description of EISA have been suggested (cf. e.g. DISA 1996; The Open
Group 1999; Zachman 1987).

Researchers at Software Engineering Institute (SEI), Carnegie Mellon University,
have carried out much work in the integration of COTS intensive systems,
architectural analysis, and quality attributes (Bass et al. 1998; Kazman et al. 1994;
Kazman et al. 1998; Meyers and Oberndorf 2001; Wallnau et al. 2002). Their
contributions on scenario-based architectural analysis have particularly served as an
important prerequisite for this work (cf. Bass et al. 1998; Kazman et al. 1994;
Kazman et al. 1998). Scenario-based architectural analysis is also addressed by e.g.
Bosch and Molin (1999), and Lassing et al. (2002). In addition, several recent theses
address architectural integration and evolution of heterogeneous software systems
from a variety of perspectives, and on various system levels (cf. e.g. Abd-
Allah 1996; Bengtsson 2002; De Line 1999; Dellarocas 1996; Gacek 1998;
Häggander 2001; Mattson 2000; Ockerbloom 1998). Also, systems engineering
literature addresses architecture and architectural design of large-scale systems
(Maier and Rechtin 2000). A comprehensive introduction to systems engineering is
given in e.g. Blanchard (1991).

INTRODUCTION

 13

Finally, several standards that relates to this work are at hand, e.g. IEEE 1471-
2000 (2000): recommended practice for architectural description, and
ISO/IEC 15288 (2001) for life cycle management of hierarchically composed
system structures. It is stressed that the application of these standards not in any
way are in opposition to this work. Conversely, they may be applied to provide
consistent terminology or to align processes in collaborating organizations.

1.4 MAIN CONTRIBUTION OF THIS THESIS
Undoubtedly, EISM in general will remain as a first-class issue for all organizations
that operates EISs. As the impact of IT strengthens, these issues will become ever
more complicated whilst complexity of EISs continues to grow in terms of
heterogeneity, size, and the number of stakeholders affected. Presently, both
practitioners and academia strive to provide better means for EISM, in order to
catch up and, if possible, gain ground in relation to the growing problem domain in
terms of enhanced methods for planning and implementation of EISs.

In view of these attempts, the main contribution of this thesis is that through an
inter-disciplinary study increases the knowledge on how software architecture
description and analysis may be extended to provide decision support for EIS
evolution. In more detail, the contribution of this work is divided into three major
parts, I, II, and III:

I. A state-of-the-practice description of the EISs and their technological and
organizational context in small and medium-sized electric utilities. To
provide a basis for the theory building and testing in the present work, an elaborate
set of case studies (Alpha, Beta, and Gamma) has been carried out. The findings
from these studies have contributed to establish a state-of-the-practice description
of the shortcomings in prevalent practice of EISM, especially concerning issues
related to long-term evolution of EISs (cf. Part C, and the summaries of the field
studies Alpha, Beta, and Gamma in Chapter 7). Furthermore, the characteristics of
the components in EISs in small and medium-sized electric utilities have been
compiled. The results reveal heterogeneous EISs consisting of a mix of coarse-
grained COTS and legacy components and middleware, which principally was not
designed for interaction. Here, the descriptive and interpretive rendering of EISs as
presented in Parts A to D, in itself provides an improved understanding for the
context in which decisions related to evolution of EISs are made. The compilation
of the characteristics of EISs and its implications concerning long-term
modifiability is presented in Chapter 3.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 14

II. Evaluation and adaptation of architectural analysis for its capabilities as
decision support for EIS evolution. Based on its abilities to make explicit trade-
offs between system qualities, and thereby mitigate risks and opportunities on
various planning horizons, scenario-based architectural analysis has been employed
as a process for EISM. In Chapter 4, a process for scenario-based architectural
analysis and its capabilities to provide decision support for evolution of EISs is
further discussed. The proposed process is adapted and tested for the enterprise
system level in Part B, and further developed as a part of a novel approach for
strategic ISs planning in Part C. A summary of the proposed approach is presented
in Chapter 5. In short, the proposed framework: (1) is implementation-centric in the
sense that it stresses the importance of bridging the gap between planning and
implementation, (2) uses structured description techniques and quality attributes in order
to promote awareness and communication between stakeholders, and to provides
rationale for qualitative analysis of different alternatives, (3) recognizes and supports
strategic alignment between business strategies, processes, and actions concerning the
EIS, and (4) accentuates the continuous and iterative assessment and prioritization of
modifications to the total EIS, by adding, changing, or replacing components.

III. Evaluation and adaptation of architectural description techniques for its
capabilities as decision support for EIS evolution. To bring structure to the
analysis process addressed above, several concepts from software engineering
(primarily software architecture) have been investigated for their capabilities of
conceptualizing the problem domain formed by long-term evolution of EISs. In
particular, quality attributes (see Chapter 4.2.2, and Parts B and D), views and viewpoints
(see Chapter 4.4.1), architectural integration styles (see Chapter 4.4.2 and Part D), and
notations for architectural description (see Chapter 4.4.3 and Part A) have been evaluated
and partly adapted for use in EISA description and analysis. Leading presumptions
in the evaluation have been the intuitive comprehensiveness of the concepts as
stakeholders in user organizations are not trained software engineers, and the
concepts’ abilities to express important and problematic situations concerning
future evolution of EISs. Especially, their capabilities of expressing temporal
considerations and dependencies have been scrutinized.

To conclude, it is the author’s wish that the increased knowledge provided by this
thesis, will contribute to enhance EISM practice in small and medium-sized electric
utilities, and will encourage to further research in this vein.

INTRODUCTION

 15

1.5 OUTLINE OF THE THESIS
This doctoral thesis consists of an Introduction and summary and four published
papers. The published papers are enclosed in the thesis as Parts A to D; the
Introduction and summary is further divided into ten chapters. Chapter 1 provides
an overall background to the research topic this thesis, presenting research
questions, hypothesis, and the overall research design. Also, the contribution of this
work is presented together with references to related works. In Chapter 2, a
motivation of the selection of electric utilities as the unit of analysis is given,
together with a brief introduction to the reformed Swedish electricity market. Also,
the functional areas of ISs within distribution network operators and electricity
retailers are described. Thereafter, in Chapter 3, the features of EISs are explained.
In particular, considerations regarding system evolution (primarily concerning
modifiability and time) are discussed in more detail.

In Chapter 4, the application of architectural analysis and description as means for
decision support in evolution of EISs, are discussed. Also, references to the more
elaborate renderings on each addressed topic in Parts A to D are provided.
Chapter 5 exemplifies the application of software architecture description and
analysis in EISM by suggesting a novel framework for strategic ISs planning in
small and medium-sized enterprises. Applied research methodology is presented in
Chapter 6, together with some brief summaries of field studies Alpha, Beta,
Gamma, and Delta in Chapter 7, and a summary of included parts A to D in
Chapter 8. Chapter 9 summarizes the most important findings of this doctoral
thesis and emphasizes some implications of these. The Introduction and summary
concludes with references in Chapter 10.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 16

ELECTRIC UTILITIES AND INFORMATION SYSTEMS

 17

Chapter 2
Information systems

and electric utilities

2 INFORMATION SYSTEMS AND ELECTRIC UTILITIES

2.1 ELECTRIC UTILITIES AS THE UNIT OF ANALYSIS IN

INFORMATION SYSTEMS RESEARCH
There are several reasons behind the selection of Swedish electric utilities and
electricity retailers as the unit of analysis for this work: (1) electric utilities operate a
broad spectrum of ISs, thus offering a rich empirical basis for the study these
companies’ attempts to manage this plethora of interconnected ISs, (2) the
electricity market reformation process that was put into operation on January 1,
1996, has forced these companies to virtually simultaneously undergo radical
changes as to organization and ISs, (3) the Swedish power industry has a long
history of university cooperation that is helpful for researchers who wish to
perform participatory research of contemporary phenomenon, such as IS evolution,
and (4) as a consequence of (1) and (2), these companies have a real need to
enhance and adapt their capabilities concerning EISM, hence providing means for
research settings that provide mutual benefit for both researchers and the
investigated organization.

In the remainder of this chapter, a brief summary of the market conditions on the
reformed Swedish electricity market is given (STEM 2000; STEM 2001; SvK 2001)
in Section 2.2, and the different types of ISs used by electric utilities are described in
Section 2.3. The chapter is intended to provide a background to the more specific

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 18

issues concerning EISs discussed in Chapter 3, and the evaluation of architectural
description and analysis as a means for decision support provided in Chapter 4.

2.2 ELECTRICITY MARKET REFORMATION
Swedish utilities have been operating on a stable market for a long time. This is
partly due to well-defined market rules, and partly due to a stable technical process.
However, the reformation of the Swedish electricity market that was put into
operation January 1, 1996, has led to new conditions for the utilities, e.g. in terms of
the division of the energy trading and network owning utilities into two legally
separated organizations, one distribution network operator and one electricity retailer. After
the deregulation, the Swedish electricity market consists of several independent
actors according to Figure 2.

Local networks

Market places

Electricity
consumers

Electricity
generators

Electricity retailers

Regional networks

National grid

Electricity trading
Wholesale competition

Electricity sales
Retail competition

Figure 2. Physical flow of electricity and the relationships between actors on the
reformed Swedish electricity market (SvK 2001).

Electricity generators generate the electricity and feed it into the grid. In Sweden
approximately half of the generated electricity consists of nuclear power and the
other half of hydropower. A minor share, approximately 15%, is produced by other
energy sources such as thermal power and wind power.

ELECTRIC UTILITIES AND INFORMATION SYSTEMS

 19

The owners of the national, regional, and distribution networks are responsible for
transmitting the electricity from generators to consumers. The Swedish national grid
authority owns and operates the national grid and has the overall responsibility for
the Swedish power system, i.e. to ensure total reliability and availability, and to
ensure that domestic generation and import in any given moment corresponds to
electricity consumption and export. To assume the latter role, Swedish national grid
cooperates with several electricity retailers (who, in this role, are termed balance
providers), which by concluding agreements accept the financial responsibility for
ensuring a power system in balance, either by planning its own generation or by
trading with other balance providers on the electricity market places. Regional
networks transport electricity from the national grid to local networks and some large
industrial electricity consumers. The local networks distribute the electricity to the
majority of the consumers, e.g. households and businesses. All network operations
are a regulated monopoly, and the tariffs and other conditions are supervised by the
Swedish National Energy Administration.

Electricity retailers buy electricity directly from generators, or else through the Nordic
power exchange (NordPool), and sell the electric energy to consumers. Most
retailers were formed by the separation of electricity retailing departments from the
rest of the business operations in existing electric utilities at the time for the
reformation. Some of these “original” electricity retailers have been sold, have
merged with other electricity retailers, or, in some cases, have been sold to other
companies that wish to niche themselves on the electricity market. Presently, most
of the electricity trading is done by bilateral agreements directly between generators
and electricity retailers. However, an increasing part of electricity trading takes place
on organized market places, e.g. NordPool. NordPool is divided into the spot market,
in which electricity is traded in hourly contracts for physical delivery within the next
24-hour period, and the forward market that is a pure financial market for price
assurance and risk handling. The main benefit of trading on the exchange is that
transaction costs are lower than those for bilateral trade agreements.

Consumers, ranging from industries to households, must as a result of the electricity
market reform have two separate contracts in order to consume electric energy. To
buy electricity, the consumer must have a contract with an electricity retailer, and to
connect to a distribution network the consumer must have an agreement with a
distribution utility. To determine consumers’ electricity consumption, larger
customers have electricity meters that automatically report actual electricity
consumption on an hourly basis. The consumption of domestic customers is

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 20

estimated by profile settlement based on load curves for different categories of
customers.

2.3 INFORMATION SYSTEMS WITHIN ELECTRIC

UTILITIES
Electric utilities are industrial companies with a broad mixture of ISs. Traditionally,
these companies have a rather technology driven management tradition, and were
early adopters of advances in software and computer science. Even small and
medium-sized electric utilities rely extensively on computerized tools for their daily
operations. As an example, a mid-sized electric utility could operate more than
100 interconnected ISs, acquired, integrated, and maintained over a long period of
time (Andersson, 1997a).

Electricity market reformation has imposed demands for new and changed
functionality e.g. regarding network balance settlement, reporting of network availability, and
information separation in the divided electric utilities. Moreover, the electricity retailers, now
subject to the free market forces, find themselves in an acute need of ISs support
for their entire business process. As utilities, due to changed market conditions, are
going through a surge of mergers and acquisitions, the corresponding EIS (cf. the
definition given in Chapter 1) must be harmonized with the newly formed
organizations in order to achieve alignment between business goals, work processes,
and supporting ISs (cf. Luftman (ed.) 1996). Except for adapting the organizations
to changing market conditions, utilities have a major need for renewing and to
further integrate the utilities present portfolio of interconnected ISs, mainly due to
the increased financial strain provided by both increased competition and
deregulatory stipulations. For example, of the few small and medium sized electric
utilities under study in field studies Alpha, Beta, and Gamma, only one had invested
in any solution for enterprise application integration (EAI). Most implemented
integration solutions were commonly simplistic based on flat file transfer, or
desktop integration. All implemented component interfaces were considered as
proprietary, except for these related to the exchange of metering data with external
actors such as Swedish National Grid, which is based on EDIel5.

5 A standardized message format for exchange of electricity market related information, e.g. meter data,
and updated customer information. The message format is based on United Nation’s EDIFACT
(Electronic Data Interchange for Administration, Commerce and Transport) standard, exchanged by the
X.400 protocol for electronic mail.

ELECTRIC UTILITIES AND INFORMATION SYSTEMS

 21

2.3.1 DISTRIBUTION NETWORK OPERATORS
A distribution network operator (cf. Section 2.2) operates ISs to ensure the delivery
of electricity to the customers within its area of concession. Below, the major
categories of ISs in small and medium-sized electric utilities are briefly described
(Andersson 1997a; Andersson et al. 1998; Cegrell 1986; Cheong 1997;
Engelken 1999; Persson 1998). It is, however, stressed that the emphasis and
priorities considering ISs may vary significantly between different utilities.

Administrative systems incorporate functions for e.g. accounting, financial
reporting, and the (financial) asset management, and payroll management. Note that
asset management is usually divided into two separate parts: one financial and one
technical that commonly reside in different ISs. An emerging type of ISs in electric
utilities is the Enterprise Resource Planning (ERP) system. These systems are
intended to replace several existing stovepipe6 administrative applications and
support business processes and hence provide both vertical and horizontal
integration in organizations. Commonly, ERP systems consist of packaged modules
for various purposes that are designed for (proprietary) integration. Several of the
larger Swedish electric utilities are in the process of introducing such systems,
commonly starting with modules such as finance, accounting, (financial) asset
management, and payroll management.

Real-time systems provide real-time information and the infrastructure to control
the network remotely. The core of the functionality for distribution automation
(DA) is commonly a real-time SCADA7 system. Except for traditional SCADA
functionality, e.g. data collection, state supervision, and switch orders, systems for
DA may also include more advanced functions such as volt/var and feeder
optimization, and load management. For the collecting meter data, especially for
customers not comprised by profile settlement, automated meter reading (AMR)
systems collect meter data on an hourly basis.

Geographical information systems (GIS). To manage their considerable volumes
of spatial bound data digitally, and to support other ISs with as-designed and as-
built models of the distribution network, utilities implement GISs. In addition,
these systems also provide a common easy-to-use interface (including Web access)
towards other ISs, e.g. for planning and engineering of the network.

6 Stovepipe application is a popular name on ISs that address and solve narrow problems within a part of
an organization, e.g. a department (Linchicum 2000).
7 SCADA, Supervisory control and data acquisition.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 22

Work management system (WMS). WMSs manages the life cycle and the flow of
work orders from job initiation to job design, from resource management to
processing of the job closing information. Modern job design typically involves
engineering design and cost estimates, requiring graphical access and editing of the
facility data in the utility office or in the field. Resource management involves the
tracking of crews, vehicles, and materials through the life cycle of each job. Job
closing involves posing the data to support management reporting, accounting,
payroll, etc.

Planning, engineering, and documentation. ISs for planning, engineering, and
documentation ensure that the network is engineered and built with adequate
capacity and flexibility to reliably and economically deliver electricity from
generators to the customers. In this category (technical) asset management and
maintenance systems may also be included.

Meter data management and settlement. As the deregulatory framework has
separated the roles of retailer and network owner, a data intensive settlement
process has been introduced to match electricity consumption (e.g. meter data)
towards generated electric energy and financial contracts. In order to fulfill
deregulatory demands and to keep down operational costs, utilities strive to
automate this process as far as possible by integration of settlement systems, data
collection systems, and systems for the reporting of meter data and contractual
changes.

Customer information systems (CIS). CIS in electric utilities gathers information
that can be related to customers, i.e. contact and contractual information, and the
personal ledger, e.g. including coming and future bills. Billing is commonly an
integral part of these systems. In modern CIS, a high degree of automation, and
flexible multi-channels payment, e.g. by postal giro service, autogiro, and the
Internet, is sought. As distribution network operators may also be responsible for
non-electrical services such as district heating, water supply, and garbage collection,
these services are commonly handled by the same CIS in order to obtain
operational synergy effects.

Distribution management systems (DMS). There is some confusion which
functions to include in the DMS category of ISs and which to leave out
(Cheong 1997; Engelken et al., 1999). Commonly DMSs consist of integrated ISs
from the Real-time systems, GIS, WMS, planning, engineering, and documentation
categories above.

ELECTRIC UTILITIES AND INFORMATION SYSTEMS

 23

2.3.2 ELECTRICITY RETAILERS
Electric energy is a volatile product that is sold with small margins. In contrast to
distribution network operators whose overall purpose of investment in IS/IT is to
enhance efficiency and cut costs, electricity retailers’ ISs must provide efficient
support for buying and selling electric energy on a competitive market. Although
many retailers retain parts of their ISs in common with the mother companies
(typically customer ISs), their requirements concerning ISs are different compared
to the monopolistically operated distribution network operators. Below, the most
important types of ISs operated by electricity retailers are outlined.

Customer information systems (CIS). In addition to providing efficiency,
electricity retailers’ CISs are moving from a product-centric approach towards a
more customer-centric one, in order to satisfy prevalent customers, attract new
ones, and provide additional and bundled offers in conjunction with the marketing
of energy, e.g. insurances and telephony. As electricity contracts are commonly
complex, CISs must be able to represent these business rules to and use the
information for e.g. billing. Except for allowing payment through different
channels, the CIS must support multi-channel communication with customers, e.g.
by the Internet, email, and mail.

Sales and marketing. As electricity contracts may be complex, especially
concerning industrial customers, systems that support sales personnel with, e.g.
contract management are needed, together with ISs for preparing, executing, and
following-up offers to the mass market. Especially, an enhanced level of automation
is sought for in order to reduce labor costs, e.g. by scanning customer responses for
automatic processing. Moreover, all sales and marketing operations must be closely
coordinated with the trading operations within the retailer; an extensive on-line
reporting is commonly strived for.

Trading and risk management systems. Except for attracting large volumes of
customers, an important part of the electricity retailers’ competitiveness lies in their
ability to balance customer demand and available generation capacity with a
reasonable level of financial risk. Thus, apart from ISs for trading, systems for risk
management support an extensive data collection, and analysis of this data,
including e.g. (estimated) sold electricity, and weather forecasts.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 24

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 25

Chapter 3
The enterprise level of

information systems

3 THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

3.1 INTRODUCTION
From the perspective of this work, the enterprise level of ISs is a conceptual
construct aimed to provide separation of concerns between issues related to
separate ISs (i.e. systems, normally constructed by a single software vendor
organization, which in themselves may consist of integrated software components),
and issues that have a more far-reaching impact on enterprises’ total portfolio of
interconnected ISs and thereby their businesses as a whole. This work applies a user
organization perspective on IS (cf. Chapter 1.2.3), i.e. the one of an organization
that needs ISs in order to support its business operations according to its business
goals and other business or organizational constraints. A user organization may
fulfill these needs by acquiring ISs, developing these systems in-house, or by
acquiring necessary services.

ISs and middleware may at the enterprise system level be described as architectural
elements, e.g. components, connectors, ports, and roles (Garlan et al. 1997a). Note
that in the following rendering, components are regarded from a user organization
perspective, i.e. reflecting the software packages in which user organizations wish to
manage their software, rather than vendors’ product lines.

In this chapter, the implications of modifiability and time are discussed. Thereafter,
the main characteristics of EIS are described. Especially, considerations concerning
legacy IS, COTS and IS integration on the enterprise level of IS are discussed. Let it

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 26

be stressed that many of the characteristics and problems presented in this work are
shared with problems related to single IS projects or the development of vendors’
product lines.

Software
component/
Information

system

Software
component/
Information

system

Software
component/
Information

system

Software
component/
Information

system

Software
component/
Information

system

Software
component/
Information

system

Group of
integrated

components/
information

systems

Group of
integrated

components/
information

systems

Portfolio
of inter-

connected
information

systems

EIS

IS

Figure 3. A schematic example of system levels. The shaded boxes denote the
enterprise system level.

3.2 MODIFIABILITY AND TIME IN ENTERPRISE

INFORMATION SYSTEMS
A consequence of the increased integration of ISs combined with concerns
regarding legacy ISs, e.g. undocumented built-in business rules or low quality
business critical legacy data, changes to EISs may rarely be commenced from a
clean slate. As a result, most actions taken on EISs have the nature of gradual
evolution of the total portfolio of interconnected ISs, thus emphasizing the
importance of considerations about long-term modifiability on the enterprise level,
and its implications regarding time. It is further stressed that a distinct separation
must be made between system qualities, in this case modifiability, addressing the
total EIS, i.e. the enterprise level of IS, and quality attributes addressing individual
components.

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 27

3.2.1 MODIFIABILITY
According to Bass et al. (1998), modifiability may be the quality attribute that is
most closely related to a system’s architecture, as modifiability largely is a function
of the locality of (potential) changes, e.g. based on the assumption that a widespread
change in a system is more costly than changes just applied to a few components. In
software engineering literature, modifiability and maintainability are interchangeably
used to denote a system’s ability to be modified. Although, some authors make a
distinction between them related to whether the purpose of the modification is to
correct a perceived “bug” in the system, or to change functionality and/or qualities
of the system in order to satisfy new system requirements.

Definitions given of modifiability are abundant (cf. e.g. Bass et al. 2000;
Bengtsson 2002; Boehm et al. 1978; McCall 1977; Oskarsson 1982). Some examples
of definitions intended for vendor systems are given here, and based on these, a
definition deemed sufficient for the present rendering is provided. McCall (1977)
and Boehm (1978) formulated some early, partly contradicting definitions on
maintainability of software, whereas Bass et al. (2000) provide a more recent:

“Maintainability is the effort required to locate and fix an error in an operational program”
(McCall 1977).

“A software product possesses the characteristic maintainability to the extent that it facilitates
updating to satisfy requirements. A maintainable software product is one which is understandable,
testable, and easy to modify” (Boehm et al. 1978)

“Modifiability is the ability of a system to be changed after it has been deployed.”
(Bass et al. 2000)

Notably, these definitions are primarily intended for vendor systems. A definition
for EIS modifiability, however, will be semantically similar to the ones given above
but must be distinctly separated from modifiability of its components, i.e.
commonly ISs. Based on the definitions above, the following definition, sufficient
for the context of this work, is given:

“Modifiability of an EIS, is the ease with which functions and other qualities may be modified in
response to changes in its requirements or its context.”

3.2.2 THE PURPOSES OF INFORMATION SYSTEM EVOLUTION
Modifiability is related to other quality attributes on different system levels.
Bass et al. (1998) and Oskarsson (1982) present four principal aspects of system

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 28

evolution that may be used to relate modifiability on the enterprise level of ISs to
other quality attributes. Depending on the nature of the modification, our
understanding of the components and connectors affected by the modification, and
our ability to validate the result of the actions taken, different quality attributes may
be affected (Boehm et al. 1978):

Extending or changing system capabilities. This aspect of modifiability aims to
add, correct, or enhance existing functionality and/or qualities. If component
replacement is selected, actions regarding this aspect of modifiability may address
e.g. integrability or upgradability. Actions may affect quality attributes such as
scalability, and distributability, if issues as to capacity or spatial division of the system
are desired.

Deleting unwanted capabilities. Removing “leftover” parts of software systems
in a controlled way, constitutes a far more difficult task than introducing new ones,
as components may have undocumented dependencies with other components that
could cause side effects when a component is removed. For this reason separability is
addressed.

Adapting the system to new or changing operating environments. Changing
the operational environment of ISs, e.g. concerning middleware or operating system
requires portability of components and connectors in the IS. Also, see the implication
of time described below.

Cleaning up and restructuring the system. To keep complexity and heterogeneity at a
manageable level, restructuring of components and/or connectors may be justified.
In EISs this may be exemplified with the introduction of a common middleware
solution, to which components (if necessary) are encapsulated (wrapped) to provide
compatible interfaces with the new middleware.

3.2.3 THE ASPECT OF TIME
Software engineering is a project-oriented domain. Accordingly, most software
processes are aimed at the timely delivery of a predefined objective, and the process
of getting there, let it be sequentially or iterative (Boehm 1978). Thus, the aspect of
time is primarily dealt with within the boundaries provided by single projects. EISs
on the other hand, are systems that are operable in a highly time-dependant context
that in length exceed ISs projects and system life cycles.

Overall and long-term evolution of an EIS does not necessarily have a single, clearly
defined deliverable or finite time horizon (Pellegrinelli 1997), although intermediate

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 29

deliverables may be well defined and under harsh timely constraints. Therefore, the
modus operandi for EISM evolution resembles the one for programs8 rather than the
one for projects.

According to Bass (1998), modifiability is largely a function of locality of changes to
the system. However, within the context of this work, it is advocated that time is a
likewise important parameter for modifiability when expressing qualities regarding
system modifiability, as temporal constraints may impose implications concerning
future freedom of action, risks, and cost. Examples of temporal constraints are
decided planning horizons, or when to initiate, change, halt, or terminate evolution
actions, and in which order these actions should be taken.

To provide taxonomy for planning horizons, these are often expressed qualitatively
to allow for time-differentiated architectural “snapshots” of the EIS. Frequently
used terms are legacy, baseline, intermediate, and target architectures. Dependencies
between these snapshot architectures are summarized as a description of the
migration path that describes actions taken to incrementally migrate the EIS from one
migration phase to the next.

Temporal dependencies are imposed for several reasons: (1) the system itself is
constantly changing as components and connectors are upgraded, replaced, or
removed, (2) stakeholders’ perception of the system is changing as the gap between
documentation, awareness, and the real-world system varies, (3) the business and
organizational context of the systems is changing together with the future directions
of those in any given point of time, (4) the availability of COTS components and
connectors is changing in pace with vendors’ product lines. Except for these first
order dependencies, also higher levels of dependencies may have to be taken into
consideration, e.g. the availability and quality of COTS components incorporated in
ISs vendors’ product lines.

As pointed out by Lehman (1998), ISs are static unless and until humans change
them. Flexibility for future changes can only be provided through the introduction
of tolerance, responsiveness, and replaceability to explicitly recognized future
uncertainty. In addition, software in itself may be considered as a finite and
incomplete, and thereby bounded, model of its unbounded operational context. Hence,
there is always a gap between the bounded system and the unbounded application
in its unbounded domain. This gap is bridged by assumptions that are embedded in
the system in the form of design and implementation decisions. Whereas some of

8 A group of related projects managed in a coordinated way (Project Management Institute 2000).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 30

these assumptions are made explicitly, many are made implicitly due to contextual
factors. But, as a system’s operational domain is in a state of constant change, the
gap between the system and the domain tends to grow (Lehman 1998). The
deviation between the fulfilled functions of software compared to what functions it
is required to fulfill, is by Sneed (1995) defined as obsolescence.

ISs are widely reported to degenerate during gradual evolution and customization
over time (Bennett 1995; Brooks 1995; Parnas 1994; Sneed 1995). According to
Perry and Wolf (1992), this may in part be described as an architectural problem in
terms of architectural erosion and architectural drift. Architectural erosion arises when
a system’s architecture is violated. Conversely, architectural drift occurs as a result
of “insensitivity” to the architecture, i.e. the rules implied by the architecture are not
clear to those who work with it. Architectural drift obscures the architecture as it
results in lack of coherence and clarity of form, and may lead to lesser modifiability
(Perry and Wolf 1992) and an increasing risk of architectural erosion (Parnas 1994;
Perry and Wolf 1992). Case studies on architectural erosion are presented by e.g.
Bosch and van Gurp (2002), and by Jaktman, Leaney, and Liu (1999).
A consequence of architectural drift and erosion is maintenance degradation that may
be considered as a summarizing factor for lack of modifiability due to raising costs
for evolution, longer modification cycles, growing impact domains, and increasing
level of side effects caused by maintenance actions (Sneed 1995).

A factor that contributes to obsolescence of EISs is that planning and
implementation cycles for business operations and ISs may diverge significantly.
Planning and implementation of ISs to ensure freedom of action beyond an
enterprise’s planning horizon for its business operations is difficult and costly. In
addition to the often rather lengthy implementation of EISs, the time needed for
establishing appropriate objectives and creating stakeholder awareness to such a
level that implementation and/or acquisition undertakings may commence must be
added.

In literature on strategic planning, obsolescence in EISs is incorporated in the
concept of fit, used as a measure in the process of coping with turbulent and multi-
dimensional environments termed strategic alignment (Henderson and
Venaktraman 1996; Knoll and Jarvenpaa 1994; Luftman (ed.) 1996). The purpose of
alignment is to ensure fit between the organizational and technical dimensions
considered. Fit is broadly defined as, the degree to which the needs, demands, goals,
objectives, and/or structure of one dimension are consistent with needs, demands,
goals, objectives, and/or structure of another dimension (Nadler and
Tushman 1980 in Knoll and Jarvenpaa 1994). Most work on achieving alignment

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 31

between organizations and ISs take a strategic management perspective as a starting
point. However, as reported by Knoll and Jarvenpaa (1994), relatively little attention
is given to the conceptualization of fit from a technology perspective.

3.3 CHARACTERISTICS OF ENTERPRISE INFORMATION

SYSTEMS
To describe EISs from the perspective of this work, some notable characteristics of
their elements are highlighted below. In order to maintain a consistent terminology
in the following rendering, components refer to software chunks of all sizes and
shapes deemed relevant to manage on the enterprise level of user organizations, i.e.
ISs are below considered as components in the overall EIS.

Components may be fairly large grained. EISs comprise both fine-grained
components (down to source code level) and extremely coarse-grained components
(complete single vendor systems). From a user organization perspective, EIS
components should reflect the chunks of software that the organization wishes to
make explicit in order to maintain a high level of freedom regarding functionality
and quality attributes focused upon, e.g. maintainability, upgradability, or flexibility.
Thus, components in EISs are often fairly coarse-grained, as they should reflect top
management goals, present (legacy) software components, and available COTS
software components rather than the IS suppliers’ product line architectures.

EISs are normally COTS intensive. Traditionally, organizations developed their
business systems as custom-made applications, using only operating systems and
some rudimentary third party products such as compilers and database management
systems. New technical developments such as the introduction of more extensive
component technology and platforms for distributed computing, brought with it an increased
focus on reuse-at-large in terms of COTS software (Meyers and Oberndorf 2001).
From an EISM perspective, not only fine-grained software components but also
coarse-grained components in terms of complete ISs such as customer information
systems, geographical information systems, or even enterprise resource planning systems, may be
considered as COTS components.

The supply of COTS components is limited. The number of alternative coarse-
grained components is often restricted. Sometimes preferred components do not
exist, driving enterprises to either develop these components from scratch, or
combining other COTS components to fulfill the requirements of the desired
component.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 32

The legacy EIS constitutes the starting point of the system development
effort. Enterprises have to take their legacy of software systems under delicate
consideration. According to Brodie and Stonebraker (1995), “A legacy IS is any IS
that significantly resists modification and evolution.” Bennett (1995) pragmatically
defines legacy systems as “large software systems that we don’t know how to cope
with but are vital for our organization.”

Traditionally, legacy ISs comprised mainly of non-decomposable software, e.g.
custom-developed mainframe-based ISs. However, based on the observation
reported by Sneed (1995) that the maintenance implications for many new software
technologies are not well understood, problems related to legacy IS are likely to
endure. Hence, current state-of-the-art software technology, including ISs based on
distributed components from multiple software vendors, integrated by complex
middleware such as message brokers may be expected to constitute a far more
prominent legacy problem compared to previous legacy systems (Bennett 2000).

A common problem related to legacy software is that business rules may be
embedded into the software components and not documented elsewhere (cf. e.g.
Bennett 1995). Available interfaces to the legacy software components constitute a
key topic and may require considerable effort to elicit. Moreover, not only may the
present ISs constitute a significant asset that is costly and time-consuming to
replace, but also issues as the organization’s ability to cope with system changes
without severe disturbances to the business operations, and the often gigantic
efforts of cleaning up and converting the enterprise databases, must be addressed.

Components may not be modifiable. Since EISs, to a large extent, consist of
COTS software and indecomposable legacy components (Brodie and
Stonebraker 1995), changes to the system cannot be made directly on the
component, since the source code is normally not available. Therefore, changes to
the system must be handled more delicately, either by influencing the software
vendor to adapt its COTS product, or by separate changes from the component
itself, e.g. by wrapping the component in order to change its external behavior.

Components are normally heterogeneous. On the single system level,
components are oftentimes fairly uniform with regard to internal structure (e.g.
hardware platform, operating system, programming language, and database
management systems) and external interfaces mechanisms (e.g. type of application
programmers interfaces and import/export file formats). EISs components cannot
be assumed to be constructed in a uniform fashion, as they are commonly

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 33

composed to a large extent by the combination of COTS and legacy software
components from a wide range of vendors, epochs, and intended purposes.

Connectors are normally heterogeneous. Similar to components, connectors for
vendor systems is normally relatively uniform in order to facilitate the commonly
rather complex interaction that takes place internally in the system between
components. In contrast, connectors in EISs become by nature diverse since their
main purpose is to glue together heterogeneous components that commonly are not
designed for flexible integration. Moreover, middleware in EISs not only interfaces
with other components within the same enterprise, they also provide interfaces to
other organizations’ ISs bringing even more heterogeneity into the organization’s
total battery of middleware.

The enterprise software system may contain both data and functional
redundancy. As most enterprises aim to maximize the amount of COTS in their
EISs, often components available for acquisition not totally correspond to software
requirements. Therefore, in order to grasp the bulk of the software requirements,
different COTS components may be combined using custom-made software
components and connectors such as wrappers (Linchicum 2000) or gateways (Brodie
and Stonebraker 1995). As a result, redundancy in terms of both data and
functionality may occur as components’ internal content cannot be fully controlled.
This, in turn, may lead to considerably concerns as data and functionality also can
be virtually redundant (i.e. similar but not identical) for instance causing inconsistence
in enterprise databases (Andersson et al. 1998; Kohtala and Vaattovaara 1998). See
also Parts A, C, and D.

3.4 COTS IN ENTERPRISE INFORMATION SYSTEMS
As pointed out above, EISs are to an increasingly extent constructed through
integration of coarse-grained COTS components. However, although generally
used, COTS is far from being an unambiguous term. In this work, COTS refers to
all software available as commercial products, either by purchase, leasing, or, most
commonly, licensing. In literature, terms like packaged, standard or shrink-wrapped
software have similar meaning as COTS (Andersson and Nilsson 1996;
Carmel 1997; Carmel and Sawyer 1998; Grudin 1991; Klepper and Hartog 1992;
Meyers and Oberndorf 2001; Sawyer 2000).

The growing popularity of COTS is based on the leading assumption that
combining existing pieces of software into new ISs will enhance productivity,
(Meyers and Oberndorf 2001), permit shorter time-to-market, and reduce

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 34

implementation cost (Linchicum 2000). From one perspective, building EISs from
COTS components, may be seen as the logical continuation of software reuse,
extended from a single organization to a larger market, in order to increase the
customer base of the reused software, and thereby provide means to enhance
revenues and software quality. However, as stressed by Wallnau (2002), the desire to
reuse high-quality COTS components is partly obstructed by COTS vendors, who
in order to attract customers continuously add new features, that, in turn, affect the
quality of COTS components negatively.

As pointed out above, COTS come in many flavors and forms. A fundamental
difference can be seen between COTS acquired as industrial products, and COTS
acquired as retail products. COTS acquired as industrial products may be
categorized using a sliding scale with COTS-solution systems on one end of the scale,
and COTS-aggregate systems on the other (Brownsword and Place 2000). In addition,
COTS bought as retail products, as suggested by Brooks (1995), may be classified as
shrink-wrapped COTS products.

Shrink-wrapped COTS products. Software intended for a mass-market
represents a profound change for computer industry, shifting focus from
development cost to product quality and costs for integrating, and supporting the
product (Brooks 1995). In fact, consumer markets such as entertainment and
telecommunication compete with traditional industry as technology drivers. In
EISs, shrink-wrapped software may be used “as is” for general purposes, e.g. word
processing, or as a basis for fulfilling tailored purposes, e.g. by providing macros or
templates for spreadsheet or database applications. Also, a dominating share of e.g.
operating systems, middleware, database management systems, communications software falls
under this category of COTS.

COTS-solution system. These systems, also commonly termed packaged systems
or standard systems, are mainly developed by a single vendor. They may be
considered as components in EISs, which can be adapted to provide desired
functionality and qualities for a specific user organization. The degree of adaptation
may differ significantly and include parameterization, data conversion, and even
custom-development. COTS-solution systems may, or may not, be upgradeable
without further adaptations in the ISs or its systemic context. ERP and SCADA
systems are illustrative examples of this type of COTS products.

COTS-aggregate systems are made by integrating mainly COTS components
from several vendors, in order to fulfill desired functionality and qualities for a
specific purpose. These systems may, in turn, be marketed as a product in a

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 35

vendor’s product line, or be adapted directly for a specific user organization.
Enterprise ISs, as addressed in this work, are COTS aggregate systems unless
custom-developed. Especially for domain-specific purposes, the number of
alternative coarse-grained components is often restricted, driving enterprises to
either develop those components from scratch, and/or combining COTS
components to fulfill the requirements. Commonly, the components, or the
combination of them, are unprecedented, and thus require substantial resources to
integrate and to maintain (Brownsword and Place 2000).

There are several implications for EISs due to an extensive use of COTS. For the
user organization, design choices regarding the combination of large-scale COTS
components are complex (Heineman and Councill 2001). Requirements must be
delicately prioritized and matched toward functionality and qualities of available
software packages. The complexity of the problems increases immensely with the
number of integrated components. As discussed in Chapter 3.2, taking the aspects
of time and long-term modifiability into consideration makes the design problem
even more complex. A lot of attention is given to the selection of COTS
components in literature (Braun 1999; Kointo 1996; Sawyer 2000), and to the reuse
of large-grained COTS components (Braun 1999; Garlan et al. 1994a; Heineman
and Councill 2001; Walnau et al. 2002).

In addition there is an organizational aspect regarding COTS as it inflicts customer-
supplier relationships. For instance, user organizations’ influence on, and dependence of
software vendors may change, when software function and quality of software
cannot be controlled directly. Instead, the user-organization must either adapt the
COTS component (if possible), with the risk of inhibating smooth upgrades to
coming releases, or attempt to influence the vendor to make the desired changes in
its product line. The success of the latter approach is naturally dependant on the
user organization’s status as a customer.

In addition, as software vendors try to use third party COTS components as much
as possible in their product lines, acquired ISs may include a significant number of
third-party COTS components. These third-party components may have a
significant impact on EIS in the long run. Thus, from a user-organization
perspective, third party COTS may be of interest in a COTS evaluation and
selection process.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 36

3.5 ENTERPRISE APPLICATION INTEGRATION
During the last two decades, integration of heterogeneous components on the
enterprise level of ISs has evolved in pace with the growing popularity of
distributed systems. However, components in EISs are not usually designed for
collaboration, and thus connectors are heterogeneous. This is mainly due to lack of
openness, and implications of time, i.e. different life cycles in components and
connectors. Although openness is a “buzz word,” case studies Alpha, Beta, and
Gamma (cf. Chapter 7) unanimously indicate that vendors are reluctant to provide
interfaces to other ISs that are not proprietary. Supported (proprietary) interfaces
are commonly provided to components with supplementing functionality from
either the vendor’s own product line, or their partners’ (Rahkonen 1996b). Even
though more advanced generations of middleware and computing platforms, such
as message brokers, have appeared, their life cycles have proved, so far, to be
shorter than a significant share of its components, and the time required for
introducing them throughout an organization’s EIS. Consequently, the present
alternative for a user organization that wishes to achieve homogeneous connectors
is to reintegrate components during their life cycles.

Thus, compared to single ISs, connectors in EIS are commonly more
heterogeneous. Two principles for EIS component integration are integration by
coupling and integration by cohesion (Linchicum 2000; Pressman 2000). Coupling
refers to static binding of functions and data; in essence coupling creates one
component out of many. Although integration by coupling provides many
advantages, it may be less beneficial from a modifiability perspective as changes in
one component may require changes in all coupled components as well. Cohesion,
on the other hand, is based on the concept of integrating independent components
in such as way that changes in one component should not impose any changes in
any collaborating component. Cohesive integration enhances modifiability of an
EIS as components may be changed, added, or removed without requiring changes
to the other components. However, this also increases complexity, as more
advanced middleware solutions must be employed. Integration by coupling often
offers fastest reward as it may require less implementation effort (in the short run).

Most middleware, migration, and EAI literature agrees on the three-tier model that
divides the different integration approaches concerning techniques and technology
on the enterprise level into: user interface level, application logic level, and data
levelintegration. Brodie and Stonebraker (1995) classify (legacy) ISs as decomposable,
semi-decomposable, and non-decomposable, depending on whether or not collaborating
components may be addressed on the data level (decomposable and partly semi-

THE ENTERPRISE LEVEL OF INFORMATION SYSTEMS

 37

decomposable) or the user interface level (non-decomposable and partly semi-
decomposable).

User interface level. To integrate non-decomposable ISs, typically mainframe-
based with obscure and/or undocumented interfaces towards application logic and
data, techniques that utilize the user interface as an integration point to component
may be employed (Brodie and Stonebraker, 1995). This technique is known as screen
scraping and basically captures and feeds character streams to and from text-based
user interfaces, to create access to data and logic of the interfaced component. This
approach is rather primitive and requires understanding of the underlying data
storage schema, the application logic, and how the information is presented to the
user interface. However, it provides means for black-box modification of
components. One enabling technology for user interface level integration is terminal
emulators, e.g. 3270 or 5250 terminal emulation software. If graphical user
interfaces, using e.g. the Windows win32 environment, are “screen scraped,”
technologies such as OLE9 (Chappell 1996) automation may be employed. Screen
scraped user interfaces may export API10s, or encapsulate methods and data from
the user interface into e.g. CORBA11 (Pritchard 1999), COM12 (Chappell 1996;
Pritchard 1999), C++, or Java objects (Morgenthal 2001). Also, user interfaces
published through Web browsers may be used as integration points.

Application logic level. Integration on the application logic level may be carried
out in several ways. If no point of integration is at hand, one has to be developed by
changing the interior of the components. Components may publish predefined
points of integration as APIs, allowing collaborating components to interoperate by
procedure calls, or RPCs13. COTS applications, e.g. ERP systems or operating
systems, commonly provide libraries of APIs. As a result of the increasing focus on
application logic level access of functionality and data, there is a growing market for
software integration products and standards. This market may be exemplified by
enabling technologies and standards like CORBA, COM, and Enterprise JavaBeans
(Monson-Haefel 2000) incorporating more and more services. Typical integration
solutions are exemplified by remote method invocation, message queuing systems,
transaction management systems, message brokers, and adapters, (Linthicum 2000;
Ruh, et al. 2001; Thomas 1998).

9 OLE, Object Linking and Embedding.
10 API, Application Program Interface.
11 CORBA, Common Object Request Broker Architecture.
12 COM, Component Object Model.
13 RPC, Remote Procedure Calls.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

 38

Data level. To integrate databases directly, data level integration may be
considered. A main motivation for data level integration is to ensure consistency
and accessibility in enterprise databases, e.g. by providing a single-point-of-data-
entry, eliminating manual updating of the same information in several databases. As
an increasing number of ISs decouple their database from the application logic, it is
technically rather straightforward to access databases, but successful data level
integration requires understanding of database technology, and, in addition, of the
information contained in the databases. As database technology is comparably
homogeneous, most commercial database management systems provide interfaces,
e.g. ODBC14 or JDBC15, depending on applicable software technology, through
which data may be accessed, commonly by SQL16 statements. Data formats, that
except for the information, also incorporates a structured storage of meta-data,
include XML17 (Dick 2000), EDI18, and in the electricity industry, EDIel19.
However, it is stressed that exchange of data relying on flat file transfer with
information represented with in-house data formats is a common data level
integration solution.

The main reason for the choice of integration level and integration technology is
basically the business objectives of the integration effort. In addition, technical
considerations that may influence this choice include the availability of COTS
connectors, and the quality and documentation-level of the interfaces provided by
components.

14 ODBC, Open Database Connectivity.
15 JDBC, Java Database Connectivity.
16 SQL, Standardized Query Language.
17 XML, Extensible Markup Language.
18 EDI, Electronic Data Interchange.
19 A standardized message format for exchange of electricity market related information, e.g. meter data,
and updated customer information. The message format is based on United nations’s EDIFACT
(Electronic Data Interchange for Administration, Commerce and Transport) standard, exchanged by the
X.400 protocol for electronic mail.

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

39

Chapter 4
Software architecture as a tool for

decision support

4 SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

4.1 ENTERPRISE INFORMATION SYSTEMS

MANAGEMENT
To further delimit the rather broad issue of EISM, this work focuses on the
provision of decision support for evolution of EISs. No separation is made between
decision support for planning and implementation of system evolution activities, as
planning and implementation of EISs are closely coupled, especially in small and
medium-sized organizations. Further, managing evolution of EISs implies dealing
with the future, i.e. the relevance of decisions20 regarding system evolution will be
based on our success to forecast the future, based on contemporary information.
However, the state-of-the-practice in EISM, as perceived on the basis of literature
and accomplished field studies largely relies on ad-hoc heuristics.

To grasp the problem domain concerning EIS evolution in order to provide a
rationale for decisions, both the locality of change activities and the time dimension
of these activities must be addressed. In addition, the success of evolution efforts
will be highly dependant on our ability to capture prevalent heuristics (possibly
from other organizations, or even totally disparate domains), and to effectively
reuse the experiences encapsulated therein in order to avoid previously faux pas. In
this work, the general strategy employed is conceptualization of the problem

20 Cf. the definition of decisions provided in Chapter 1.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

40

domain with the purpose of making it comprehensible, analyzable, and to dispose
of biases, e.g. narrowness caused by our perception of prevalent technology (that
may be inapplicable in the time-horizon addressed).

More specifically, the approach for conceptualization and analysis comprises the
employment of theory from software architecture. An enabling motivation for the
selection of software architecture as the reference discipline for this work, is its
recent achievements in expressing and analyzing complex and coarse-grained
software packages on basis of quality attributes (cf. e.g. Bass et al. 1998; Garlan and
Shaw 1996; Heineman and Council 2001). Here, quality attributes have an important
role as a bridge between technical and organizational considerations.

Based on its abilities to combine modifiability analysis with the mitigation of
systemic and organizational qualities, risks, and opportunities, scenario-based
architectural analysis has been investigated for its capabilities to operationalize
problem domains into condensed design alternatives, or lines of action. Especially,
its capabilities for providing strategic decision support in small and medium-sized
enterprises have been further scrutinized, as this area is considered to be under-
developed and under-researched (Levy and Powell 2000). To codify the problem
domain and relevant heuristics in order to make them comprehensible,
generalizible, and analyzable, architectural concepts such as quality attributes,
architectural taxonomy, views, and scenarios have been surveyed.

To consider architectural description as a common conceptual model in EISM, is
far from being a new idea (cf. e.g. Earl 1989; Eason 1988; Luftman (ed.) 1996;
Magoulas and Pessi 1998; Walsham 1993). For instance, Zachman (1987) early
advocated “the importance of using some logical construct (or architecture) for
defining and controlling the interfaces and the integration of all of the components
of the [enterprise information] system.” In addition, several frameworks, or meta-
architectures, for EISs have been developed (Armour 1999; DISA 1997; The Open
Group 1999; Zachman 1987). Several sources also stress the architectural
description of the EIS as a dominant part of the organization’s IS/IT strategy
(Earl 1989; Henderson and Venkatraman 1996; Zachman 1987), and the close
relationship between technical and organizational qualities (Luftman (ed.) 1996).

The remainder of this chapter is organized as follows: First, a background to
software architecture and its relation to quality attributes is given. Thereafter,
software architecture analysis description are introduced together with references to
the more elaborate renderings of the applications of these in EISM provided in
Parts A to D.

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

41

4.2 ENTERPRISE INFORMATION SYSTEM

ARCHITECTURE
System architecting stems from the need of bringing together codified heuristics and
conceptual models related to complex artifacts for the purpose of providing means for
high-level design decisions. The concept of architecture can be identified in several
domains that deal with designing complex systems or artifacts, e.g. buildings or
complex industrial systems (Baragry and Reed 1998; Meier and Rechtin 2000; Perry
and Wolf 1992; Zachman 1987).

As pointed out by Medvidovic and Taylor (1998), software architecture offers an
adequate platform for supporting coarse-grained software evolution. Applying
software architecture on the enterprise level of ISs can therefore be seen as a logical
prolongation of the trend in recent year’s research in software architecture, that
follows the general development in software systems development towards
integration of rather large granule components (Clements and Northrop 1996). As
observed out by Garlan and Shaw (1996), this trend goes as far back as the 1950s
when commonly used sequences of machine language were substituted by a single
symbol, thus providing some (modest) degree of automation of programming.
During the late 1950s and 1960s, high-level languages, such as Fortran, emerged to
provide higher levels of abstraction and suggestions on even higher levels of
software abstraction emerged in terms of typing of data and modularizations of
code (Garlan and Shaw 1996).

An initiating force on the latter subject was Dijkstra, who in 1968 stressed that (as
opposed to simply programming in order to produce a correct result) it pays to be
concerned with how software is partitioned and structured, by pointing out the
elegant conceptual integrity exhibited by such an organization and its corresponding
expected gains concerning development and maintenance ease (Dijkstra 1968).
Parnas further pressed this line of software modularizations in his seminal paper
“On the Criteria To Be Used in Decomposing Systems into Modules”
(Parnas 1972), in which he advocates the advantages of modularization by the
concept of information hiding, i.e. that every module is characterized by its
knowledge of design decisions which it hides from all others, only revealing as little
as possible of its inner working by interfaces and definitions. Thus, Parnas
demonstrated by information hiding, the effectiveness of other relationships between
components than the ones provided by considering software modules as sub-
program in an execution thread. These ideas were later extended by the concepts of
software structure (Parnas 1974), program families (Parnas 1976), module guides

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

42

(Clements, Parnas and Weiss 1985), and the proposal of an architectural level of
software design (Shaw 1989).

Based on similarities and dissimilarities with other types of architecture, such as
systems and building architecture, Perry and Wolf (1992) have heavily influenced
the present conception of software architecture as a discipline, by proposing the
following threefold definition:

Software Architecture = {Elements, Form, Rationale}

Further explaining the three items in the triplet, (1) architectural elements may be
divided into processing elements, data elements, and connecting elements, (2) form represents
the properties (e.g. functional aspects and quality attributes) and the relationships between
elements that must be taken into consideration when selecting between design
alternatives, i.e. when making design decisions, and (3) the rationale for design decisions
that captures the underpinning motivations for those decisions. Other authors who
have elaborated on analogies between software architecture and other types of
architecture are Baragry and Reed (1998) and Zachman (1987).

Perry and Wolf further stress three issues that are important from the perspective of
this work: Firstly by emphasizing that architecture should place an equal focus on
components and their interconnection, secondly by stressing the need of support
for design decisions, and thirdly by recognizing the rationale as a part of the
architecture. The third issue, however, underlines the difference between
architecture as something inherent in systems whether explicitly designed or not,
and architecture as something that aims to grasp all relevant motivations for
previous design decisions (cf. the definitions given on software architecture in
Chapter 1.2.4). On this basis of this, some authors criticize Perry and Wolf’s third
item because, although relevant, it is not a part of a software system’s architecture as
it cannot be entirely coded into software and therefore not recovered by the study
of the software only (Bass et al. 1998).

This somewhat narrow view of software architecture is not fully sufficient in the
context of this work, as dealing with long-term system evolution implies working
with yet to exist artifacts, and thus the rationale might constitute the dominant part
of the architecture. In this sense, this thesis adheres to Maier’s rule-of-thumb
regarding system architecture, based on the role of architects, namely that a system
architecture is the work result produced by the architect to help his or her client to
make decisions regarding the system (Maier and Rechtin 2000):

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

43

“An architecture is the set of information that defines a system’s value, cost, and risk sufficiently
for the purposes of the system’s sponsor.”

However, it is pointed out that there is no consensus on the definition, or even the
choice, of the term EISA (DISA 1996; The Open Group 1999; Zachman 1987). Cf.,
the definition given on EISA in Chapter 1.

4.2.1 THE PURPOSE OF SOFTWARE ARCHITECTURE
Software architecture has several purposes also valid for EISA. These are
summarized as follows by Clements and Northrop (Bass et al. 1998; Clements and
Northrop 1996):

Architecture is the vehicle for stakeholder communication. Software
architecture represents a common intuitive high-level abstraction of a system that
stakeholders, e.g. end-users, business managers, technical staff, and software
suppliers may use as a basis for communication, thus increasing awareness and
competencies.

Architecture embodies the earliest design decision about a system. Software
architecture represents the manifestation of earlier design decisions, i.e. the
fundamental rationale of why a system is constructed in a certain way. This brings
indispensable information when modifications of the system is considered, e.g. why
some design alternatives are abandoned. The formulation of an architectural
description is also the earliest point when the system may be analyzed.

Architecture provides a transferable abstraction of a system. Software
architecture constitutes a comparably intellectually comprehensible model of the
system at stake. If abstracted and properly packaged, this model may be transferred
and applied on other systems with similar requirements, thus promoting reuse-at-
large.

4.2.2 QUALITY ATTRIBUTES
Software architecture and quality attributes are closely related (Kazman et al. 1994).
Thus, much of the research carried out in the software architecture community has
focused on adapting definitions of quality attributes for the architectural level of
software abstraction, and finding methods for architecture-level attribute-specific
analysis and analysis aimed at making explicit trade-offs between them. This work is
largely based on the massive effort that, over time, has been directed towards
software quality (cf. e.g. Boehm 1978, McCall 1977).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

44

Quality attributes, in general, can be divided into two major categories: those that
are directly observable during execution, e.g. performance, security, and usability, and
those that can be observed only indirectly, e.g. modifiability, security, and availability
(Pressman 1997). Concerning software architecture, two more categories may be
added, business qualities and qualities of the architecture (Bass et al. 1998).

An outstanding motivation to architectural description and analysis on the
enterprise level of ISs is the close relationship between technical and organizational
quality attributes, in Bass (1998) referred to as business qualities. The strategic
impact of quality attributes is acknowledged in management literature. In fact, one
of the most written causes of EIS investment failure is that too much attention is
placed on technology itself, rather than on its characteristics, or quality attributes21,
and its links with business qualities such as risk, opportunities, awareness, control,
and competence (Hendersen and Venkatraman 1996).

In addition, the architecture itself has qualities, the most pertinent perhaps being
conceptual integrity, i.e. the underlying theme that unifies all levels and perspectives of
the architecture, correctness, completeness, i.e. that the complete system is addressed in
sufficient detail, and buildability, i.e. that the resulting system is achievable with
conceivable limits concerning organizational, financial and other types of finite
resources (Bass et al. 1998).

It is stressed that even though quality attributes commonly are refereed to as non-
functional attributes, they are intrinsically related to system functionality. Indeed –
functionality may be defined as a quality attribute, i.e. the ability of a system to do
the work for which it was intended. Also, as components at the enterprise level of
ISs, i.e. IS, in their selves may constitute large, complex, and component-based
systems, it is of outmost importance to make explicit which level of the EISs that a
certain quality attribute addresses, as the attribute may have significantly different
meaning and implications on various system levels.

4.3 ARCHITECTURAL ANALYSIS
Software architecture embodies high-level design decisions regarding system
structure, i.e. how the total system is decomposed into components, the relationship
between these components, and how the system relates to its context. The structure
of the system influences, and is influenced by, imposed and desired quality

21 In information systems literature also referred to as systemic competencies (Hendersen and
Venkatraman 1996).

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

45

attributes. Architectural analysis aims to guide these high-level design decisions.
Using architectural analysis to provide support for decisions addressing evolution of
EISs, i.e. modifiability analysis, may be employed in order to either predict future
effort to perform system evolution, or to construct and thereafter select among
design alternatives that to various degrees support different aspects of modifiability.
Plausible approaches to attribute-based analysis, presented in (Bosch and
Molin 1999), are mathematical modeling, simulation, scenario-based analysis, and informal
assessments.

One problem, however, is that modifiability analysis may not be performed
independently from other quality attributes, as modifiability addresses future
flexibility of different quality attributes, and in addition, has dependencies to more
imminent system qualities. Scenario-based architectural analysis has the potential to
address several quality attributes. Several methods for scenario-based architectural
analysis have been presented during recent years (Bengtsson 2002;
Bosch and Molin 1999; Kazman et al. 1998; Lassing et al. 1999).

Moreover, there is an organizational and a social aspect of using an architectural
analysis process for decision support in EISM. Therefore, some additional
presumptions of a “good” approach for decision support concerning evolution of
EISs are provided. The analysis approach must support and acknowledge changing
organizational and technical rationales, as well as temporal implications and
dependencies between different considered modifications. Further, the approach
must be able to generate results despite incomplete and implicit information
suitable, at least, for further analysis. Finally, the approach must assume bounded
rationality of stakeholders (Simon 1997), e.g. by dealing with growing stakeholder
awareness, the elicitation of tacit knowledge, and the promotion of stakeholder
communication. This is in line with what Thomason (1998) refers to as sympathetic
planning, i.e. planning based on collaboration that depends on identifying and
adopting preferences and other adequate information about collaborators in order
to make decisions that further individual of mutual objectives.

To address these prerequisites, scenario-based architectural trade-off analysis
(cf. e.g. Kazman et al. 1998) has been chosen for further scrutiny in this work. The
analysis approach has successfully been employed for architectural evaluation of
systems both prior to implementation and system during evolution. In addition the
analysis approach has been used for evaluation during software acquisition
(Bergey et al. 1999).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

46

The fundamental characteristic of scenario-based architectural analysis is the
concretization of quality attributes in the form of scenarios, whereas the main
intention with such an analysis process is to make explicit and to mitigate risks. As
pointed out by Kazman (1999), the method’s main benefits are: (1) that it may be
carried out early and relatively inexpensively as it assesses architectural artifacts, and
(2), it may be performed with a relatively sparse factual basis as it qualitatively
focuses on the identification and correlation of trends. As the method is a spiral
model (Boehm 1988), its risk-driven approach contributes to gradually enhance
stakeholder awareness, competence, and unanimity.

The effectiveness of the qualitative approach to architectural analysis was confirmed
during field study Delta (cf. Parts B and C). During this study, it was assumed that
the EISs architect considered different future integration scenarios, posing the
question: “Which of the present design alternatives will result in the highest
modifiability with respect to the defined future scenarios?” It is instructive to note
that this question implies no more than an ordinal scale, i.e. it is not necessary to
determine an absolute measure of integrability but only a comparative assessment.
Moreover, it was found efficient to reflect temporal implications and dependencies
by the selection of scenarios (cf. Section 5.2 in Part B).

Below, a short introduction to scenarios is provided. Thereafter, the typical analysis
process is briefly outlined together with a discussion on how it may be modified to
allow architectural analysis of EISAs.

4.3.1 SCENARIOS
Scenarios, similar to use-cases (Jacobson et al. 1992) or threads (Maier and Rechtin
2000), describe sequences of systems operations, which represent an important
behavior for an actor. Within the context of this work, an actor may be anyone, or
anything exercising influence on system evolution, e.g. stakeholders, other
organizations, or collaborating ISs. As pointed out by Maier and Rechtin (2000),
scenarios commonly describe a single sequence of actions and do not contain
branches. Scenarios are widely used throughout all stages of the development
process, e.g. as a basis for requirements, architecture, detailed design, and testing
(Jacobson 1999). Especially, scenarios elicited during early phases of system
development are widely used as a basis for system validation (Jacobson 1992;
Sutcliffe et al. 1998). Although, scenarios may be described using notations, e.g. use-
case diagrams (Jacobson 1999), they may also be expressively formulated in natural
language (Ecklund et al. 1996; Kazman et al. 1999).

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

47

More recently, scenarios have been introduced in the software architecture stage of
the development process (Bass et al. 1998; Kazman et al. 1994; Kazman et al. 1998).
An enabling reason for using scenarios in architectural analysis is that they capture
various important or problematic situations in ISs and make their implications on
system qualities explicit. In scenario-based architectural analysis, a scenario may be
either a use-case (Jacobson 1992) – a scenario exemplifying usage of the system, or a
change-case (Ecklund et al. 1996) – a scenario exemplifying a modification of the
system. As the scope of this work is system evolution, the scenarios employed
should be regarded as change-cases. In some literature, change cases are referred to
as chance scenarios (Lassing et al. 2002), or indirect scenarios (Bass et al. 1998, Kazman
et al. 1999).

In field study Delta, extracted scenarios mainly concerned changing or adding
components and connectors in the architecture, as a result of changing
requirements or context for the EIS. Also, opportunities to reduce the number of
redundant components, and thereby the integration effort was reflected by the
scenarios, e.g. components with similar functional content used on different
locations and with different adjacent components. One important experience
gained, was that most scenarios initially proposed by the stakeholders covered only
early phases of the architecture’s life cycle. Therefore, in order to avoid that later
phases in the architectural life cycle were overlooked, extra attention had to be
spent on eliciting scenarios that covered expected future changes in the architecture.
This was the primary motivation for the proposal of the life cycle viewpoint described
in Chapter 4.4.1. Elicitation and prioritization of scenarios proved to be a time-
consuming undertaking, as also reported by e.g. Sutcliffe et al. (1998). However, this
was partly balanced due to the elicitation process’s many positive effects as it helped
stakeholders to obtain a more unanimous view of the relevant goals, problems, and
their implications, thus promoting stakeholder awareness and communication.

4.3.2 THE ANALYSIS PROCESS
This section describes the steps in the process for scenario-based architectural
analysis similar to Bass et al. (1998), Kazman et al. (1994), and Kazman et al. (1998),
adapted for the enterprise level of EIS during field study Delta. The method
presentation focuses on analysis of modifiability. Let it be stressed here that the
analysis method presented below was not completely employed during field study
Delta, rather, the proposed adaptation of the method to the enterprise level is one
of the results from the study. Although the proposed process model consists of five

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

48

sequential steps, the proposed analysis process is, like other methods for
architectural analysis, typically a spiral model (Boehm 1988):

Step 1. Definition of scope. Defining the scope for the undertaking includes
elicitation of objectives, requirements, constraints, and documentation of existing
legacy systems and available COTS components. Stakeholders from different parts
of the organization are enlisted in a cross-functional team to ensure effective
implementation. During this step, the overall objectives and requirements for the
system change are developed. Important activities include the establishment of the
boundaries and the characteristics for the modification in order to clarify and limit
the problem space that must be coped with. For temporal constraints consideration
may determine if the aim of the modification is strategic or tactical, evolutionary or
revolutionary, short-termed or long-termed, etc. In addition, a description of the
legacy systems is established together with architectural descriptions of relevant
available and foreseeable future COTS components and connectors. Also, software
vendors’ capability to deliver functionality that cannot be acquired off-the-shelf is
assessed.

Step 2. Scenario construction. This step aims at visualizing dependencies between
business strategy and processes, and the components in the EIS. Also, the scenarios
are used to make sure that the planning results are understood early on by making
the deliverables visible and tangible. Although scenario construction should start
from existing business visions or business processes, the scenarios are also made
possible, even suggested, by emerging technologies and legacy systems. Typically,
scenarios related to modifiability are extracted as change cases (Ecklund et al. 1996)
through changing or adding components in the architecture. Thus, a fundamental
concept of scenario-based analysis methods is to operationalize quality attributes as
scenarios.

Step 3. Architectural representation. In this step the objective is to propose
feasible architectural design alternatives for the EIS. During field study Delta, an
approach of expressing different views (cf. Chapter 4.4.1) of design alternatives with
architectural integration styles (cf. Part D) was developed. The design alternatives
considered are presented in Part B. The basis for the design alternatives was
relevant quality attributes, functional requirements, the legacy system, and the
relevant COTS components on the market.

Step 4. Architectural analysis. The design alternatives are then reviewed on the
basis of the scenarios. In some cases, specific architectural elements are identified as
especially important and trade-offs between different quality attributes may have to

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

49

be exposed. Here, a key issue is to prioritize available resources for the analysis on
issues deemed as relevant, since the analysis effort grows rapidly with the increasing
number of design alternatives, scenarios, and components and connectors taken
into consideration.

Step 5. Architectural modification. Based on the results from the analysis, the
architecture is modified. The resulting architecture is then used as input for further
iterations of the process. When it is deemed that no more improvements are
feasible, the iterations end. Reasons for adding iteration cycles might be that the
architectural description is considered insufficiently detailed, or that the most
favorable design alternative constitutes a dead-end, in either a business,
organizational, or technical perspective, so that a totally new alternative must be
tested and analyzed.

See Part B for a more elaborate discussion on how scenario-based architectural analysis may be
employed on the enterprise level of ISs. In Part C, the process for scenario-based architectural
analysis is used as a part of a proposed framework for EISM for primarily small and medium-
sized organizations, developed during field studies Gamma and Delta (cf. Chapter 7)

4.4 INVESTIGATED ARCHITECTURAL CONCEPTS
When using scenario-based analysis for decision support, the architectural analysis
in itself largely is based on sense making and reuse of heuristics. To support the
architectural analysis, several architectural concepts have been investigated for their
capabilities to provide means for decision support concerning evolution of EISs. In
this section, these architectural concepts are introduced together with references to
the further presentation of the concepts in Parts A to D.

4.4.1 VIEWS
In parallel to building architecture, an important feature of software architecture is
the use of multiple viewpoints22, or views23. An architectural view describes a
system with respect of some set of aspects, qualities, or concerns, allowing the
description to use the most appropriate notation or description technique for the
perspective at stake. Perry and Wolf (1992) suggest the use of views in software
architecture to abstract the architectural description from details deemed irrelevant

22 A viewpoint is a template, pattern, or a specification for constructing a view (IEEE 1471-2000 2000).
23 A view is a representation of a system from the perspective of related concerns or issues (IEEE 1471-
2000 2000).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

50

on the architectural level of design, thus adapting the architectural description for
“various uses and users.”

According to Maier and Rechtin (2000), a good set of views should be complete,
consistent, and mostly independent. Strictly, completeness means that the views together
completely define all externally visible properties of the described system. In reality,
this is hard to obtain. So, a more pragmatic formulation of completeness would be
that the views together cover all stakeholders’ concerns concerning the modeled system.
A set of views is consistent if they are abstractions of the same object. As with
completeness, means to provide rigorous consistency in architectural description is
commonly hard to provide. Ideally, the expressiveness of the view model increases
with how independent, or “orthogonal,” the views are from each other. However, the
linkage between views is commonly extensive, and should be made explicit by the
viewpoint model.

Logical Development

Process Physical

Scenarios

Figure 4. The 4+1 View Model of Architecture (Kruschten 1995)

Several sources describe viewpoints for software architectures on various system
levels and for various purposes, e.g. the Zachman framework (Zachman 1987),
TOGAF (The Open Group 1999), US Dept. of the Treasury’s Enterprise
Information Technology Architecture (EITA) (Armour 1999), architectural
structures (Bass et al. 1998), and the Rapide language framework (Luckham 1995).

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

51

Furthermore, viewpoints for communication in power systems control are provided
by Ericsson (1996).

Perhaps the most well known set of viewpoints for software architecture that
combines views and scenarios, is the 4+1 model shown in Figure 4
(Kruschten 1995). The 4+1 architectural view model defines five views (or rather
viewpoints): (1) the logical view describing the object, component, or data model of
the architecture, (2) the process view describing concurrency and synchronization
aspects of the architecture, (3) the physical view describing the mapping of the
software onto the hardware and thusly reflecting the distribution of the system, (4)
the development view describing how the software is organized in its development
environment, and (5) the scenarios that constitutes a fifth view, intended to illustrate
and validate the other four views.

For each view, Perry and Wolf’s (1992) threefold definition of software architecture
is applied (cf. Chapter 4.2), and applicable UML diagram types are proposed for
modeling. The 4+1 view model is rather generic and therefore adaptable also to
other notations and tools than the ones originally proposed (Kruschten 1995).
Several adaptations of the model have also been formulated for different purposes,
using other views to obtain completeness and expressiveness of the architectural
description (cf. e.g. Davis and Williams 1997).

During field study Delta, it was discovered that the introduction of views
contributed to provide separation of concerns during interaction with different set
of stakeholders, and in addition ensured that no significant aspects of the scenarios
in the analysis were overlooked. Originally, a subset of 4+1 was considered, due to
its explicit relations to scenarios, but in the given context 4+1 turned out to provide
inadequate completeness to constitute a proper basis for decision support. In
particular, aspects regarding different planning horizons (and their
interdependencies), and considerations concerning the provision of COTS
components were left without support.

Based on findings gained from field studies Gamma and Delta, an alternative set of
viewpoints is therefore proposed, similar to the 4+1 viewpoints, but adapted to
incorporate also issues related to COTS and legacy components, and the temporal
dependencies between these (see Figure 5). Notably, the viewpoints are developed
to address e.g. architectural elements, life cycles, and customer-suppler
relationships, from a user organization perspective; although the descriptions
incorporated in the views may also be used for interaction with stakeholders outside
the user organization, such as vendors or business partners.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

52

Logical Development

Process Physical

Scenarios

Scenarios

System

End user Vendor

Life cycle

Figure 5. A set of viewpoints adapted for EISM and its relationship to the 4+1 model.

The adapted set of viewpoints comprises: (1) the end user view that illustrates user
requirements, i.e. the desired target system at a given time if no external constraints
need to be taken into consideration (i.e. the initial target architecture), (2) the life cycle
view that makes explicit temporal dependencies between architectural elements, e.g.
considering legacy systems, migration paths, and closure conditions for architectural
elements in the EIS, (3) the vendor view that captures vendors’ abilities to provide
desired components, e.g. as COTS components and connectors, and vendors’
supply chains of third party components, if these provide implications for the user
organization’s present or future EIS, (4) the system view that includes aspects on the
software of the EIS, and (5) the scenarios that provide linkage between the views and
that contribute to emphasizing important aspects of the problem domain, similar
to 4+1.

The proposed viewpoints are not merely a transformation of the 4+1 as they do not
replace the 4+1 viewpoints. Rather, they are an extension of the model to address a
wider problem domain from a user organization perspective, in contrast to the 4+1
that primarily is created with developing organizations in mind. In fact, the
proposed system viewpoint may successfully be described using the 4+1 with
relevant description techniques for each viewpoint. Thus, the relationship between

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

53

the proposed model and the 4+1 may therefore be best described as hierarchical, as
depicted in Figure 5, since the proposed set of viewpoints encapsulates 4+1.

The viewpoints for EISM proposed in this section are based on findings from primarily field
studies Gamma and Delta (cf. Chapter 7).

4.4.2 STYLES AND PATTERNS
Except for making problem domains more comprehensible, conceptual
descriptions, or models, serve the purpose of making explicit similarities with other
(already solved) problems, thus enabling reuse of heuristics. One of the primary
drivers for architectural design is its ability to codify heuristics as architectural styles
or patterns. Styles and patterns belong to a special class of codified heuristics that
prescriptively describe particular choices of form, and their relationship to particular
problems (Meier and Rechtin 2000). In scenario-based architectural analysis, styles
provide much of the structured rules for the architectural analysis.

The perhaps most interesting part about architectural styles is that they are believed
to impact software quality attributes. Certain styles are more appropriate than others
for achieving certain quality attributes in a system. It is consequently desirable to
classify “good” architectural styles and to employ them when certain qualities are
sought. It is, however, far from unproblematic to identify all relevant component
constraints and resulting quality attributes of a style.

According to (Alexander et al. 1977), reiterated by (Gamma et al. 1995), a pattern
“describes a problem that occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice.” A set of
interrelated patterns forms a pattern language. Ideally, one or more of the patterns
define the entry point of the pattern language (Schmidt 2000).

Several collections of various types of patterns have been published. Perhaps the
most widespread of these is Gamma et al. (1998) on design patterns. Other
contributions are Buschman (1996) and Schmidt (2000) on object-oriented patterns
for software architecture, Fowler (1997) on reusable object models, and Grand
(2002) about design patters for Java. A somewhat controversial type of patterns
described is antipatterns, i.e. patterns that clarify non-navigable lines of action in
management, architecture, and software development (Brown et al. 1998). Although
patterns mostly have been applied in architectural design on the single systems level,
some attempts to describe more coarse-grained patterns adapted for EAI have been

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

54

made, similar to the work presented in Part D of this thesis (Dikel et al. 2001;
Linchicum 2000; Lutz 2000).

In software architecture, the notion of architectural style is omnipresent. A preliminary
definition of architectural style was provided by Perry and Wolf (1992), that in
analogy with building architecture described architectural style as a particular
codification of design elements and their formal arrangements. Garlan and Shaw
(1996) define architectural style as a vocabulary of components and connector types,
and a set of constraints on how they can be combined. Additionally, styles may also
encompass semantic models specifying how to determine a system’s overall qualities
from the properties of its parts. According to Bass et al. (1998), an architectural
style is the same thing as a system pattern (to be differentiated from design and code
patterns). However, the boundaries between patterns and styles in architectural
design are rather vague and subject for a vivid debate.

The Screen-Scraping, Application, and
Database Gateway Style

DG

Source
Application

DB

AG

SG

Logic

Target
Application

Logic

DB

GUIGUI

Application

Logic

DB

GUI

Application

Logic

DB

GUI

GUI

The Desktop Integration Style

Source DB

DB Fed

Target
Component

Source DB Source DB

Target
Component

Target
Component

The Database Federation Style

ABase
Component

MedBase
Component

Base
Component

A

A

The Adapter Style

Base
Component

Base
Component

Base
Component

Base
Component

Base
Component

The Point-to-Point Style

Base
Component

Base
Component

Base
Component

Base
Component

Base
Component

MR

The Message Router Style

Figure 6. Architectural integration styles (Part D).

In the context of this thesis, an architectural integration style denotes a generalization of
a historically successful integration solution on the enterprise level of ISs. In other
words, applying an architectural style on a certain set of components yields some
specific quality attributes. To relate this to Alexander et al. (Alexander 1977) and

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

55

Gamma et al. (Gamma et al. 1995), the problem is described as a set of components
and a set of desired quality attributes while the solution is the style definition. This is
not a new definition of styles but a reformulation adapted for architectural
integration styles for enterprise software systems. The architectural integration styles
depicted in Figure 6 were employed during the final iteration of field study Delta
(cf. Chapter 4.4).

Constraints on components and connectors. In the proposed style description,
the definition is thus expressed as one or several constraints on components, connectors,
semantics or topology. These defining constraints may imply other constraints (e.g., a
constraint on a connector often implies constraints on component interfaces).
Constraints on architectural elements are either part of, or results of, the style
definition. However, it makes sense to express these constraints separately and in
more detail in the case of EISs, as components normally are unmodifiable. Perhaps
the most obvious component constraint relates to the component types allowed by
the architectural style (stand-alone components, database components, etc.). There
are also constraints related to the things that one component needs to know or
manage about a collaborating component (DeLine 1999; Gacek 1998; Garlan
et al. 1994a; Ockerbloom 1998).

Point-to-Point

Desktop
Integration

Database
Federation

Gateway

Screen-Scraping
Gateway

Application
Gateway

Database
Gateway

Mediator

Message Router

Adapter

us
es uses

Figure 7. “Uses” and sub-style relations between presented architectural integration
styles.

Organizing styles. Styles are related to each other in several different ways, and a
clear organization of proposed styles may help both in the use, and in the
proposition, of new styles. The two most important relations are the sub-style and
uses relations (cf. Figure 7). A sub-style is constructed by adding constraints to its
parent style (or meta-style). A uses relation indicates that one style typically uses

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

56

another style. Another way of relating styles is by the type of architectural
constraints that they impose. On the topmost level, constraints maybe divided into
component type, connector, topological, and semantic constraints. A third set of
dimensions for relating styles are the quality attributes that they supposedly support.
Particularly interesting to note is that the quality attributes of the styles are most
easily expressed using a comparative approach, since it is difficult to e.g. express the
scalability of one style without referring to another style.

See Part D for a more elaborative description of how architectural integration styles may be applied
in EIS evolution. The case study presented therein constitutes a part of field study Delta
(cf. Chapter 7).

4.4.3 DESCRIBING ARCHITECTURAL STRUCTURE
Based on the presented characteristics of the enterprise level of ISs presented in
Chapter 3, architectural description of EISs essentially contains the same elements
as single systems, i.e. components and connectors, and element interfaces (Garlan
and Allen 1994a). However, the nature of these elements differs from single systems
(cf. Chapter 3.3). Primarily they are from an architectural perspective, more coarse-
grained and heterogeneous compared to elements of single systems.

In systems mainly constructed by the integration of prefabricated components and
connectors, there is a need to visualizing and modeling the structure of the system
in order to make explicit various design alternatives. Architectural models provide
much relevant information. E.g., the decomposition of an EIS into components
provides a real measure of complexity, and manifests the separation of concerns
between issues dealt with on an enterprise level and issues delegated to separate
implementation projects. Note that this separation of concerns may be carried out
deliberately for strategic reasons, or may be imposed due to organizational and/or
technical constraints.

Much work has been carried out in the vein of developing the formal underpinnings
for software architecture. Several Architectural Description Languages (ADL)s such
as Acme (Garlan et al. 1997a), Adage (Coglianese and Szymanski 1993), Aesop
(Garlan et al. 1994b), C2 (Medvidovic et al. 1996), Darwin (Magee et al. 1995),
Rapide (Luckham et al. 1995), SADL (Moriconi et al. 1995), UniCon
(Shaw et al. 1995), Meta-H (Binns and Vestal 1993), Z (Spivey 1992), and Wright
(Garlan et al. 1994a) have been developed and tested.

As a result of the attempt to formalize software architecture, several taxonomies for
architectural connection have been developed. One such taxonomy for architectural

SOFTWARE ARCHITECTURE AS A TOOL FOR DECISION SUPPORT

57

structure is provided by Garlan et al. (1997a) as a basis for their ADL, Acme. They
define components as the primary computational elements and data stores of a system.
Connectors represent interaction among components, and a system denotes the
boundary of an architectural description by representing the configuration of
components and connectors. In addition both components and connectors are
provided with interfaces. Components’ interfaces are defined as a set of ports,
where each port describes “a point of interaction” between the component and its
collaborators. Connector interfaces are defined as roles that define interaction with
its collaborating components.

One of the driving forces behind ADLs is their expected capability to forecast
potential misfits among architectural elements, popularly termed architectural mismatch
(Garlan et al. 1994a). Several attempts have been made to identify and analyze
architectural mismatches out of formal architectural descriptions (cf. e.g. Abd-Allah
1996; DeLine 1999). One example of an architectural mismatch in EISs, is
problems concerning redundant functionality and data, as described in Chapter 3.3.
Architectural mismatches impose a strategic impact on EISM as it dictates the ease
by which components may be replaced in the future.

However, the Achilles heel of formal ADLs is the trade-off between generality of
language and its support of formal analysis. As formalism constrains expressiveness,
they are commonly employed in relatively narrow domains (Johnson 2002).
Therefore, to provide an alternative to formal ADLs, several attempts have been
made to employ description and modeling techniques for software design for
modeling of software architecture. As a part of this work, the notations from
object-oriented design have been evaluated in order to determine their capabilities
for architectural description on the enterprise level of ISs (see Part A). On account
of its widespread use, its recent standardization, and its broad scope, the Unified
Modeling Language (UML) has been selected as the representative notation for the
object-oriented paradigm. According to Booch et al. (1999), Kobryn (1998),
Medvidovic et al. (2002), and Störrle (1999), a system’s architecture may be modeled
using UML.

Since an architectural description language for EISs architecture must be easy to
use, only a relatively simplistic subset of the great variety of alternatives to express
the structure and behavior of a system has been considered for the modeling of EIS
architectural structure. A drawback of the UML notation has been found to be the
implicit assumption of a common connector. None of the evaluated notations fully
support the architectural concept of component connectors, which proves vital for
modeling the heterogeneous nature of the user organizations’ EIS. However,

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

58

aspects of packaging mismatch as to data and functionality has been successfully
visualized, e.g. by using UML class diagrams.

See Part A for the complete evaluation of object-oriented design notations regarding their
capabilities for architectural description on the enterprise level of ISs.

TOWARDS A NOVEL APPROACH FOR EISM

59

Chapter 5
Towards a novel approach for
enterprise information systems

management

5 TOWARDS A NOVEL APPROACH FOR ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

5.1 INTRODUCTION
To exemplify how the architectural concepts investigated in Chapter 4 may be
employed as a part of a framework for strategic ISs planning (SISP), an alternative
SISP approach for the utility under study in field study Delta was developed. The
purpose of the alternative approach was to provide a framework for decision
support a prestudy, preceding procurement of several new components to the
utility’s EIS.

5.2 KEY CHARACTERISTICS OF THE PROPOSED

FRAMEWORK
Based on experiences from field study Gamma, four key-areas were given certain
attention during the development of the alternative SISP approach. These are
further elaborated below:

Implementation-centric. The approach is implementation-centric in its
characteristics as it stresses the importance of bridging the gap between planning
and implementation. In small and medium-sized enterprises where resources are
scarce, it is important that the available resources are applied in an effective manner,

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

60

and therefore top-management efforts should not be directed to create a strategy,
leaving implementation to other parts of the organization. Furthermore, the whole
approach is complemented by a strong focus on teamwork, as user participation
helps to ensure fast and effective implementation.

The EISA as the common conceptual model. The approach is based on a
framework in which the adapted analysis process, described in Chapter 4.3.2, is a
central part. Here, scenarios, and design alternatives expressed in terms of
architectural integration styles, provide a conceptual model of an organization’s ISs
without focusing on specific software technologies and functionality. The purpose
of the approach is to help management making necessary trade-offs between the
qualities made explicit during the analysis, and thus to mitigate risks, cost, and
opportunities.

Alignment. In the proposed approach, business strategies, processes, and actions
concerning the EIS are defined and aligned concurrently within one process. In
order to stress the importance of alignment (Henderson and Venkatraman 1996),
the framework adapts Walsham’s three themes, or perspectives, for ISs strategy
(Walsham 1993), according to Figure 8. First, the business context provides the
understanding of the business environment in which the small and medium-sized
enterprise operates with a particular focus on the market, the relationship with
customers and suppliers (business strategy and objectives). The second perspective
is business process. This focuses on understanding the work processes to appreciate
whether information flows inhibit business activities, and also to identify changes
that might be made as a result of the introduction of new EIS components. Finally,
the strategic content embodies the vision for change and the practicality of its
introduction given organizational circumstances.

Assessment and prioritization of EISA components. In order to provide a
proper input to the analysis, desired and existing EIS is expressed in terms of
architectural elements. An organization’s present legacy of ISs comprises a huge
amount of business critical information. In order to preserve the value of this
investment, the legacy architecture must be monitored and assessed in order to
identify and prioritize changes in components and connectors. Also, since the use
of COTS components delimits the flexibility of the overall system, the identification
and assessment of suitable COTS components must be carried out. As quality and
functionality of components is often hard to grasp, the capability of the vendor
must also be assessed. The monitoring of present and conceivable components are
of outmost importance since changed requirements to those must either be
processed as bespoke adaptations risking the COTS status of the component, or as

TOWARDS A NOVEL APPROACH FOR EISM

61

change requests to the COTS product vendor. To summarize, the assessment of the
components and the connectors facilitates trade-off analysis between different
implementation alternatives, hence providing input for the planning process.

Enterprise Information
Systems

Architecture

Understanding
of the

competitive
environment

Analysis of
business activities

and their
support systems

Understanding
of the organisations
ability to grow and

develop from use of IS

Strategic
Content

Business
Processes

Business
Context

Figure 8. The role of EISs architecture in EISM.

5.3 LESSONS LEARNED
As described previously, there are several factors that collectively influence the way
in which an EIS should be designed. Here, the iterative, evolutionary, and
interactive characteristics of a spiral process model (Boehm 1988) was found to be
highly effective in supporting the gradually increasing awareness of issues
concerning legacy EIS components, available COTS components, and business
processes during any SISP activities, as well as efficient in managing the ever-
changing technical and business requirements that an EIS ultimately must comply
with. Thus, the approach allowed the planning team to cope with effects of the
environmental turbulence through sense-making and interpretations behavior. Here,
the characteristics of the planning process allowed incorporation of good ideas that
bubbled up from the operational levels as well as ideas suggested by vendors and
other partners. In the process, scenarios were used to describe problematic and/or
important situations in the EIS design. Here, the scenarios were found to facilitate
effective communication between stakeholders. Moreover, temporal dependencies
between different future evolution activities could be made explicit by the use of
scenarios.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

62

Although some scenarios started with the business vision, the developed
architectural alternatives were made possible, even suggested, by technological
advances, especially in terms of COTS middleware solutions. In the analysis of the
different design alternatives, the conceptual modeling was found to effectively help
management to make necessary trade-offs concerning the EISA, including
translation and interpretation between strategic and operational business
requirements and ISs requirements, as well as between identified technology
opportunities and risks, and business opportunities and risks.

As often referred to as a success factor in IS/IT projects (Standish group 2000), the
involvement of top-management in the studied utility proved to be of paramount
importance for the process. In contrast to large organizations, it is often easier for
management in small and medium-sized enterprises to grasp the total problem
domain without loosing too much of the often important details. Thus, similar to
Earl, this thesis suggests that senior management involvement could be more
valuable in the project level rather than on the strategy formulation level in these
companies (Earl 1993).

As a tool for decision support concerning EISM, scenario-based analysis techniques
provide a more iterative, goal-oriented, and evolutionary process of organizational
learning, compared to the conventional top-down SISP processes, i.e. an approach
that corresponds to what Earl refers to as the organizational approach (Earl 1989).
It is stressed, based on the results from field study Delta, that additional effects of
applying this analysis scheme, other than just providing a more elaborate basis for
design decisions, consist of improved stakeholder communication and increased
awareness and competencies due to increased stakeholder participation in the
planning process.

RESEARCH METHODOLOGY

63

Chapter 6
Research methodology

6 RESEARCH METHODOLOGY

6.1 INTRODUCTION
To gain in-depth understanding of the qualitative technical and organizational
parameters related to major modifications to EISs, a qualitative research approach
has been deployed. Data collection and theory testing have been performed in four
studies, three case studies, and one study based on action research. A summary of
these field studies is given in Chapter 3. Relating to Figure 9, the cycle of building,
testing, and extending theory correspond with the right outlined process.

From the perspective of this work, the primary advantages with the choice of a case
study and action research in favor of a quantitative approach are its ability to
capture “reality” in greater detail and to allow for more variables than is possible
when using quantitative approaches as suggested by e.g. (Galliers 1992). This is
further accentuated by the fact that the contribution of this thesis is mainly in the
vein of improved engineering practice.

In short, the foundation for this doctoral thesis in terms of employed research
methods is: (1) its employment of qualitative methods, i.e. case study methodology and
action research, (2) combined with an interdisciplinary approach, as theory from several
research domains are addressed, and finally its nature of a (3) contribution to
applied engineering science. The motivation for these enumerated aspects are further
elaborated on below.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

64

Case study/action research

Theory extension

Theory testing
(field experiments)

Theory testing
(laboratory experiments)

Theory building

Research question

Theory extension

Research question

Theory testing
(field experiments)

Case study/
action research

Theory building

Survey research

Figure 9. The use of alternative IS research approaches in the process of theory
building, testing, and extension (Galliers and Land 1988 recited in Galliers 1992;
Jarvenpaa 1988).

6.2 INFORMATION SYSTEM RESEARCH
In the realm of ISs, there has been a general shift in ISs research away from
technological to managerial and organizational issues. As presented by Land in
Galliers (1992), it can be argued that ISs make sense only in the context of the
purpose to which they are employed. Since this implies that the units of analysis
commonly become complex, such as large-scale software systems in an
organizational context, limitations of an exclusive use of quantitative research
methods in ISs research become explicit.

During the last decade, there has been an increased interest and acknowledgement
of post-positivist and qualitative methods in ISs research. The earlier unconditional
criticism of non-quantitative research methods as less scientific has been lively
debated, based on the assumption that the only valid approach to increased human
knowledge is the empirical-analytical method (Bleicher 1982). Two major limitations
with, for instance, laboratory and field experiments in IS research are given in
(Galliers and Land 1987): “(1) There are only a limited number of factors that can
be studied under laboratory conditions, and it is difficult to reproduce a “real-
world” environment in these circumstances[. Therefore, (2) the] need to apply

RESEARCH METHODOLOGY

65

values to variables often leads to the elimination of factors that, although they may
have relevance, are difficult to value; thus applying to them zero value – which is
probably the value they do not have!”

Consequently, many authors (cf. Galliers 1992; Walsham 1993) argue for a post-
positivist approach that stresses the importance of methodological pluralism, i.e. we
cannot assume that there is just one correct research method, but many possible
alternatives. Over the last decade, qualitative methods, originally developed for the
social sciences community to enable researchers to study social and cultural
phenomenon, have gained ground in ISs research.

Qualitative research methods are designed to help researchers understand people
and the social and cultural context within which they live (Myers 1997). Examples
of qualitative research methods are case study research, action research, and ethnography.
According to Finkelstein (2000), this shift is also notable in the domain of software
engineering where there is an increased acceptance of methodological diversity,
including qualitative research methods, to make a case for real-world research. Also,
software engineering research is becoming increasingly aware of the interplay
between software, hardware, and organizational systems, and may thus be argued to
attempt to bridge the gap to the fields of systems engineering and ISs.

In addition, as pointed out by Galliers (1992), ISs research is multi-disciplinary.
Foundations for its study are to be found in several “reference disciplines,” ranging
from philosophy and social sciences to mathematics and engineering sciences. Thus,
it is debatable if ISs research may be considered as a homogenous research field
working in a well-defined research paradigm as suggested by Kuhn (1970).

Moreover, as this thesis attempts to transfer and adapt taxonomy, description
techniques, and analysis models from the technology-oriented field of software
architecture into the more organizational dependant area of ISs, it can be
considered as an interdisciplinary contribution. Although much qualitative research is
carried out with its philosophical base in hermeneutics, it is stressed that not all
qualitative research belongs to the interpretive tradition as described in
(Walsham 1993), e.g. hermeneutics or post-positivism. On the contrary, it may be
argued that the choice of a qualitative research method (such as the case study
method) is independent of the underlying philosophical assumptions adopted. The
underlying research epistemology, (Orlikowski and Baroudi 1991, recited in
Myers 1997) implies a threefold classification that divides qualitative research into
the positivist, interpretive, and critical categories.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

66

Qualitative Research

Positivist Interpretive Critical

influences/guides

Underlying
epistemology

Figure 10. Underlying philosophical assumptions for qualitative research
(Myers 1997).

For this thesis work, the relevant philosophical approaches to quantitative research
are the positivist (Yin 1994) and the interpretative (Myers 1997; Walsham 1993).
Positivist studies generally attempt to test theory, in an attempt to increase the
predictive understanding of phenomena, i.e. positivists generally assume that reality
is objectively given and can be described by measurable properties that are
independent of the observer/researcher and his or her instrument. Interpretive
researchers start out with the assumption that access to reality (given or socially
constructed) is only through social constructions such as language, consciousness,
and shared meanings (Myers 1997).

6.3 PRACTITIONERS’ ROLE IN INFORMATION SYSTEMS

RESEARCH
According to IS researchers of the post-positivist stance, the study of “real-world”
problems should include studies in the “real-world.” There are several reasons for
this position. For instance, there exists a gap between what industry expects from
academic research within the fields of ISs and software engineering, and what is
actually produced by this research. This gap is due to both misplaced expectations
by industrialists as well as inapplicable research results in academia. By allowing
academic research within real-world ISs, much can be gained from an academic
perspective. Increased understanding of the complex phenomena that takes place
when new ISs are planned, developed, and introduced in their organizational
contexts is perhaps the most prominent advantage.

Collaborative research is one navigable approach to bridge this gap, e.g. by means
of the case study or action research approaches described below. Except for the

RESEARCH METHODOLOGY

67

academic advantages including enhanced relevance as to addressed research issues,
and potential increased generalization of results obtained by research strategies such
as case studies or action research studies, collaborative research is an effective way
to communicate academic knowledge to industry. Practitioners’ role in the development of
engineering disciplines, such as software architecture, is addressed in Garlan and
Shaw’s (1996) codification cycle (see Figure 11). According to this explanation
model, based on the early experiences from the domain of software engineering,
“good” engineering practice may emerge from commercial practice by exploiting
the results of a companion science.

Folklore

Ad hoc Solutions

New Problems

Improved
Practice

Models and
Theories

Codification

Figure 11. Garlan and Shaw’s (1996) codification cycle for science and engineering.

In short, the model can be described as follows. Prevalent problems are at first
solved in an ad-hoc manner by practitioners. As working solutions on problems are
distinguished, they are informally exchanged among practitioners as “domain
folklore.” This common knowledge becomes more and more systematic, and is
eventually codified, e.g. as written heuristics and rules of procedure. In the context
of EISs, practitioners have produced several textbooks under nametags such as
enterprise application integration (Linthicum 2000), and earlier legacy system migration
(Brodie and Stonebraker 1995), which attempts to codify engineering experience.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

68

When codified knowledge becomes solid enough, it can be used by scientists to
improve models and theories, which, in turn, may contribute to improve
engineering practice. To close the loop, the progress in engineering practice will
allow us to contemplate more challenging problems that in turn will provide new
ad-hoc solutions, and so on.

6.4 CASE STUDIES
Regarding qualitative research within ISs, case studies have gained ground as a valid
research strategy over the last decade. The case study methodology applied in this
doctoral thesis project has its foundation in the fundamental work made by case
study proponents as Robson (1993) and Yin (1994), and the work by Walsham
(1993) to enhance case study methodology as a tool for ISs research. To provide a
basis for further adaptations of qualitative research to empirical domain of this
doctoral thesis project, the author has partly relied on results presented in previous
works (Cheong 1999; Johansson et al. 1997; Rahkonen 1996a).

According to Yin (1994), case studies constitute a rewarding research strategy when
“how” of “why” questions are being posed to gain understanding of some (rather)
contemporary phenomenon with some real-world context. Such case studies are
generally termed explanatory, and are augmented with two other categories, exploratory
and descriptive case studies.

Explanatory case studies. Many view the explanatory type of case studies as the
strongest form of case study research. It is argued that only when the effect on the
outcome of a phenomenon of one parameter is explained in detail, knowledge has
been gained. The aim of the explanatory type is therefore to explain causality of events
in an attempt to gain knowledge of a phenomenon. In this thesis, field study
Gamma is carried out as an explanatory case study.

Exploratory case studies. The main application of exploratory case studies is
basically to develop appropriate hypotheses for further study. Hence, case studies of
this type focus on finding new information on the topic of the research question. For
instance, when starting afresh with research in a domain, it would be appropriate to
explore the state-of-the-practice in that field (cf. field study Alpha).

Descriptive case studies The ambition in a descriptive case study is somewhat
higher than in an exploratory study. Working with previously collected data, or new
data, the researcher describes studied phenomena or events within a particular
domain. The ambition is not to explain the interconnection of phenomena and

RESEARCH METHODOLOGY

69

parameters but instead to describe which parameters affect certain phenomena within the
studied subject, which is the case in field study Beta.

Although case study methodology presents notable strengths in describing real-
world phenomenon and/or events, it also, like all research methods, has some
potential weaknesses that must be dealt with (Yin 1994). In particular, common
themes of criticism concerning case studies as a valid research approach are: (1) its
potential lack of rigor and (2) its weaker basis for scientific generalization. Issues concerning
(1) are separately addressed below in Section 6.6. An explanation of generalization, or
external validity regarding (2) is given below:

Generalization. Critics of the case study approach often fail to appreciate the
power of replication logic as opposed to that of sampling logic when implying that case
studies are inappropriate for generalization. Literal replication refers to case studies’
ability to predict the same result for a number of cases, whereas theoretical replication
aims at predicting contrasting results but for predictable reasons. To refute criticism
according to (2) above, Yin (1994) stresses that “the case study, like the experiment,
does not represent a “sample,” and the investigator’s goal is to expand and
generalize theory (analytic generalization) and not to enumerate frequencies
(statistical generalization).” Hence, the employment of multiple case studies aims at
increasing robustness in theory building and testing in the same way as multiple
(controlled laboratory or field) experiments.

In the greater perspective, the issue of generalizing results from case studies to
theory should be contemplated in the light of methodical pluralism as a preferred
approach to theory building and testing in ISs research (Galliers 1992), by
Yin (1994) referred to as Level Two [theoretical] interference. For the role of case studies
related to theory building and testing in ISs research, see Figure 9.

In this context of this thesis, field studies Alpha, Beta, and Gamma are based on
case study theory, whereas field study Alpha can be described as an exploratory
studies, mainly aimed at further developing research questions and hypotheses and
obtaining appropriate contextual knowledge. Beta and Gamma are explanatory case
studies, aimed at answering questions related to modifiability of ISs at the enterprise
level.

6.5 ACTION RESEARCH
Action research, which has been performed in field study Delta, could according to
Baskerville and Wood-Harper (1996) be seen as “an interventionist approach to the

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

70

acquisition of scientific knowledge that has sound foundations in the post-positivist
tradition.” Although it was the author’s first encounter with this research strategy, it
was found adequate for its intended purpose, to test and further the novel approach
for ISs planning and implantation of EISs presented in Chapter 5. Four commonly
referred to characteristics of action research are according to Baskerville (1999): (1)
an orientation towards action and change, (2) a focus on problems, (3) an “organic”
process involving systematic and sometimes iterative stages, and (4) collaboration
among participants.

In ISs research, its primary use is applied research settings in which there is an
attempt to obtain results of practical value to groups with whom the researcher(s) is
allied, at the same time adding to theoretical knowledge. (Galliers 1992). A guiding
example of the application of action research that has influenced ISs research is
Checkland’s (1986) soft systems methodology that attempts to link action research
and systems development.

An outstanding feature of action research e.g. unlike case study research, is that, the
researcher explicitly interacts with the unit of analysis as a part of the research
setting. As one of several methods in the post-positivist ISs research stance, the
method has some decided strengths. Notably, the practical as well as the theoretical
outcomes of action research are emancipatory (Baskerville 1999; Galliers 1992). The
author would, for example, stress action research as a strategy for applied science
that has the potential to considerably speed up Shaw’s codification cycle for
engineering and science (Garlan and Shaw 1996) compared to other qualitative
research strategies. Moreover, the method aims to make the bias of the researcher
explicit (Galliers 1992).

Action research suffers from similar weaknesses as case study research but
additionally places a considerable responsibility on the researcher to maintain a
holistic and objective position when objectives and results are at odds with other
groupings in the organization under investigation (Galliers 1992). The ethics of the
particular field study are a key issue, as action research, despite its clear differences
sometimes may be taken for consulting (Baskerville 1999; Galliers 1992).

The process for action research has evolved over the last three decades. The most
prevalent description is Susman’s (1983) five-phase cyclical process summarized in
(Baskerville 1996). Referring to Figure 12, the five phases in this model comprises
diagnosing, action planning, action taking, evaluation, and specifying learning. In addition to
the five phases, a client system infrastructure (also referred to as or a research
environment) must be established.

RESEARCH METHODOLOGY

71

Diagnosing

Action takingEvaluating

Specifying
learning

Action
planningResearch

environment

Figure 12. The action research cycle. Adapted from Baskerville (1999).

Research environment. In action research, the research environment, or the client-
system infrastructure, includes the specification and the agreement that directs the
research. Considerations found in the agreements may include boundaries of the
research domain, and the entry and the exit of the scientist(s). A key aspect of the
infrastructure is the collaborative nature of the undertaking, where the researcher(s)
work closely with the practitioners in the investigated organization.

Diagnosing. In the diagnosing phase, the underlying causes for the organization’s
desire to change is developed into an working hypothesis, taking the theoretical
assumptions and the nature of the organization, and its problems, into
consideration. It is stressed that the approach for this stage should be holistic, and
that reduction and simplification should be avoided.

Action planning. To establish a target for the change and an approach to reach it,
an action plan is developed. In the planning process, researchers and practitioners
collaborate to find actions that are intended to relieve or improve the problems
addressed in the study. Another important prerequisite that directs the action
planning is the theoretical framework.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

72

Action taking. The researchers and the practitioner then collaborate in
implementing the active intervention in the client’s organization. To implement the
actions that are to take place, several forms of intervention strategies may be
adopted, such as directive (in which the research(ers) direct the change), non-directive
(i.e. the change sought indirectly).

Evaluation. In order to determine the actions’ theoretical effects, and these effects’
contribution to solving problems(s) addressed in the study, the researchers and the
practitioners particularly evaluate the result of the implemented actions. The
evaluation must question critically if the undertaken action(s) were the sole (or a
prominent) contributing cause to the success or failure. The outcome of this phase
should also include an improved theoretical framework for additional research
cycles.

Specifying learning. Although described as a formal phase in the action research
cycle, the codification of the knowledge attained during the action research is better
described as an ongoing process. According to Baskerville (1999), the knowledge
gained in the action research can be directed to three audiences: (1) the
collaborating organization that may benefit from the “restructuring of
organizational norms to reflect the new knowledge gained by the organization
during the research,” also referred to as double-loop learning (Argyis and Schön 1978),
(2) the researcher, as the additional knowledge gained may provide a rationale for
forthcoming action research interventions, and (3) the scientific community, as the
success or failure of the theoretical framework may provide important knowledge to
the research community faced with future research setting.

6.6 RESEARCH QUALITY
The measure of quality, in research processes can be divided into the measures of
reliability and validity. The issue of validity may be further divided into construction,
internal, and external validity (Yin 1994).

Reliability. Issues of reliability deal with the (literal) replicability of the research
results. The objective of achieving a high degree of reliability is to ensure that
another investigator, using the same set of collected data, comes to the same
conclusions. Studies that have high reliability thus run less risk of containing bias
and errors. Achieving high reliability is done through careful documentation of
collected data and performed analysis. When performing case studies, Yin (1994)
suggests the use of a case study protocol to ensure structured and complete
documentation of the case, which may serve as a repository of collected data. Raw

RESEARCH METHODOLOGY

73

data as well as analyzed and refined results of performed surveys, interviews, and
experiments may thereby be stored in a uniform way, accessible to other researchers
for further study and scrutiny.

Validity. When research results are qualitative, such as for case studies, the issue of
avoiding bias and subjective reasoning, validity, is of course of the highest
importance. The division of validity into three separate measures suggested by
(Yin 1994) provides taxonomy for validity in qualitative research. Construct validity
deals with establishing correct measures for the concepts being studied. When
striving for high construct validity, the researcher should clearly define which
aspects of a specific phenomenon are to be studied, and also establish measures that
clearly reflect the studied aspects. To verify that the collected data is valid, the
approach of triangulation may be used. In the field studies presented in Chapter 3,
(data) triangulation has been attained within each case study by using multiple
sources of evidence including documents and focused interviews, combined with
open-ended interviews and participant observations. Internal validity (applicable for
explanatory case studies only) addresses the degree to which casual relationships
may be established in a research study. The task of achieving internal validity is best
tackled by selecting a limited scope of study, thus reducing the amount of
parameters necessary to consider. The last measure of validity, that of external validity
is of concern when the results of the study are to be generalized to a greater
environment than the one immediately studied (cf. the discussion on generalization
below). Achieving a high degree of external validity is based on having control of
external parameters and their effect on the outcome of an event.

6.7 ETHICAL CONSIDERATIONS
When carrying out qualitative research in close corporation with practitioners, ethics
is a key issue. Unavoidably, investigating planning and implementation of EISs in
their organizational context entails dealing with sensitive information from both
vendors and user organizations. In all field studies included in this thesis, there have
been a clear agreement between the author and the other involved parties that
certain information should not be made available to a third party, without the
consent of the information providers. Therefore, a large part of the research
protocols (e.g. documented interview and documents) from the field studies are
confidential, i.e. only results published in papers are open to the public.

Consequently, the identity of involved companies, projects, and products etc. has
been excluded in the rendering in Chapter 3, and Parts B, C, and D. Unfortunately,

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

74

this confidential nature of the field studies obstructs to some degree the external
visibility of the research. Moreover, in spite of its clear differences (Baskerville and
Wood-Harper 1996) critics sometimes take participatory research for consulting.
Undoubtedly, a great responsibility is placed on the researcher who must be aware
of “political” issues in the client organization (Avison et al. 1999; Galliers 1992).
However, it is the author’s experience that these issues, in practice, are manageable
in the same way as the issue of confidentiality, by the employment of a mutually
acceptable framework for cooperation. Also, to avoid potential misunderstandings;
interviewees and other key informants have reviewed results from the field studies
before including them in the case study protocol.

SUMMARY OF FIELD STUDIES

75

Chapter 7
Summary of field studies

7 SUMMARY OF FIELD STUDIES

7.1 INTRODUCTION
As previously explained in Chapter 1, this thesis relies on empirical data collected
during a number of field studies (case studies and action research studies) carried
out in mainly small and medium-sized electric utilities24. The academic contribution
of each activity concerning theory building and testing is mainly addressed in
Parts A to D, and summarized in Chapter 4 and 5 of this Introduction and summary.
However, since the field studies of editorial reasons are rather briefly discussed in
the included papers, this chapter aims to describe the research setting for each field
study, together with a brief summary of the “case.” The relationships between the
field studies and Parts A to D, are visualized in Figure 13.

To characterize each field study, field study Alpha was a rather broad exploratory
multiple case study which main purpose was to seek relevant research questions and
to gain domain knowledge. Field study Beta had the nature of an in-depth
descriptive case study comprising the acquisition of a settlement system that was
highly integrated with the organization’s present ISs. In this study, both technical
and organizational aspects were investigated, based on the system’s selected
architecture and the relationship between the buyer and the vendor. To employ a
more holistic perspective on EISM, field study Gamma was initiated.

24 According to the current definition of Small and Medium-sized Enterprises (SMEs) provided by the
European Community, companies with less than 250 employees, a turn-over lower than 40 million ECU,
and which are owned for less than 25% by non-SMEs, except banks or venture capital companies.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

76

Company A
Electric utility

Company D
Electric utility

Company G
IS vendor

Company H
Electricity

retailer

Company H
Electricity

retailer

Company F
Electric utility

Company E
Electric utility

Company B
Electric utility

Company C
Electric utility

Field study
 Alpha

Field study
 Beta

Field study
 Gamma

Field study
 Delta

PART B
PART C
PART D

PART A

Figure 13. An overview of the field studies and their relations to Parts A, B, C, and D.

This study was carried through as an explanatory case study aiming to seek the
causes for a (according to the client organization) failed pre-study, preceding the
acquisition of a new business system. As a part of the study, the legacy architecture
of the present EISs was audited and later used as input for the theory building
presented in Parts B, C, and D. Another purpose of field study Gamma was to
prepare for field study Delta that was an action research study aimed to test and
further parts of the theory based on findings from field studies Alpha, Beta, and
Gamma.

Parts A, B and D were written in very close cooperation with Pontus Johnson; the
specific individual contributions are therefore difficult to separate. However, the
work of the present author is concerned with the concept of evolution of ISs, while
Pontus Johnson’s work (Johnson 2002) considers ISs integration. Further
differentiating Pontus Johnson’s work from the present is its emphasis on
deduction-based (formal) approaches to architectural analysis, whereas the present
work explicitly focuses on the aspects of modifiability and temporal constraints.
Part C was written in cooperation with Magnus Haglind and the field studies
(Gamma and Delta, cf. Chapter 7) were performed jointly with him. However, in
the theory building and analysis, Magnus Haglind’s focus is on strategic planning

SUMMARY OF FIELD STUDIES

77

(Haglind 2002), while the present author investigates architectural description and
analysis for its applicability as a tool for decision support in EISM.

7.2 FIELD STUDY ALPHA: AN EXPLORATORY CASE

STUDY
This field study is the result of five case studies, which were carried out by the
author in cooperation with four colleagues during a time period of two years. The
field study has the nature of a multiple exploratory case study (Yin 1994) involving
five electric utilities. Initially, a smaller investigation, that could be characterized as a
pilot case study, was carried out to increase the overall rigor and relevance of the
four concluding case studies included in the field study. Excluding the pilot case
study, data collection was mainly carried out by eleven open-ended interviews.

At the time of the case studies, 1997 to 1998, all investigated electric utilities were in
the process of restructuring themselves to better match the conditions of the
reformation process on the Swedish electricity market, which was initiated on
January 1, 1996. Two of the utilities in the study were (at the time still rather
independent) subsidiaries of major Swedish Enterprises, whereas the remaining
three fell under the definition of small and medium-sized enterprises provided in
Chapter 1. The size of the organizations ranged from 30 000 to 100 000, and up to
150 employees.

Holding
Company

Network
Operation

Electric
Energy
Trading

District
Heating

Additional
Business

Areas

Figure 14. The business areas of a typical electric utility. Partly adapted from
Cheong (1999).

Except for providing domain knowledge regarding the organizations’ structure, its
business activities and processes, and the concerns of the organization, the case

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

78

studies had two overall objectives. Firstly, the organizations’ effort to provide
strategic management on the enterprise level of their ISs was investigated. Ongoing
actions such as IS projects in progress and the work in project steering committees
etc., were matched against the organizations’ strategies for their EISs, either in the
form of IS/IT strategy documents, or in the form of statements made in interviews
with the management teams for each organization. Secondly, the companies’
portfolio of present, and planned ISs and IS projects were documented. The
investigation with regards to the IS/IT strategies of electric utilities was later refined
and expanded by Cheong (1999) and Haglind (2002).

The case studies included in field study Alpha are also described (from a slightly different
perspective) in Andersson et al. (1998), and provided the primary empirical basis for the author’s
licentiate thesis (Andersson 1997b). From the perspective of this work, the findings from the case
studies within field study Alpha have contributed to the formulation of the research question (cf.
Chapter 1) and the characteristics if enterprise level of ISs presented in Chapter 3.

7.3 FIELD STUDY BETA: A DESCRIPTIVE CASE STUDY
This field study was performed by the author and a colleague as a descriptive case
study of a newly commissioned combined IS for balance and network settlement of
electric energy (SvK 1996; SvK 1997), intended for the newly deregulated Swedish
electricity market. The case study was carried out in retrospect and covered the
complete acquisition project, including initial planning, pre-studies, evaluation of
tenders, development, and deployment. Data was collected from several sources of
evidence, including 13 focused interviews with key-informants from both the user
organization and the supplier, and contractual documents, pre-study reports, the
request for tender, status reports (from both the user organization and the supplier),
steering committee protocols, and the design specification of the IS. The analysis
focused on the relationships between technical and organizational parameters in the
project, partly by employing Software Engineering Institute’s (SEI’s) Software
Acquisition Capability Maturity Model (Ferguson 1996) as an analysis framework.

The studied procurement was of interest for several reasons. Firstly, the
procurement strategy was well defined in the early phases of the project. Secondly,
as a consequence of the procurement strategy the contract only contained
technology independent requirements, i.e. functional and qualitative requirements.
Thirdly, the project incorporated a strict definition of responsibilities between the
buyer and the vendor. Fourth, the buyer and the vendor followed very different
modus operandi regarding their cultures for acquisition and development projects

SUMMARY OF FIELD STUDIES

79

respectively. Moreover, their organizational size and economical strength differed
significant between the buyer and the supplier. The buyer was a major Swedish
utility, whereas the supplier was a newly formed company for whom the buyer
constituted an important future reference. Fifth, both the buyer and the vendor
considered the concluded project as successful.

The data collection and analysis performed during this field study is more elaborately presented in
Andersson and Johnson (1999). The field study especially contributed to create knowledge
concerning the organizational implications of EIS evolution.

7.4 FIELD STUDY GAMMA: AN EXPLANATORY CASE

STUDY AND FIELD STUDY DELTA: AN ACTION

RESEARCH STUDY
Data collection and analysis of this field study was carried out as an explanatory
case study by the author and a colleague. The main issue addressed was to explain
why an EISs planning initiative had failed to reach the expectations of the company
under study, and based on this explanation propose some characteristics of a
process and techniques for planning and implementation of EISs, suitable as work
hypothesis (Baskerville and Wood-Harper 1996) for field study Delta. Data
collection was accomplished by five open-ended interviews with key-stakeholders
within the electricity retailing company and the owner companies, and by document
studies of consultant reports, combined with records and notes from meetings. The
study was carried out in retrospect in relations to the investigated events.

The enterprise under study was recently formed by a merger of the previously
energy sales operations of five municipality-owned electric utilities. Initially, the
company was established with only three utilities as owners. One of these owners
was considerably bigger than the others, and had thusly a major influence on the
strategies and the operations of the firm. A year later, the number of owners was
extended when a rather large utility acquired a 25% part of the company. This
accelerated the consolidation process, in which the management team had been
focused issues such as establishing the organizational structure, management team,
and working routines, rather than creating competitive edge. Hence, the
management team started to review the strategies in order to prepare for
forthcoming changes in the electricity market, e.g. increased competition as a result
of changes in the deregulatory framework by the introduction of a new standardized
system for settlement based on consumption profiles.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

80

Early in the strategy review, management got several indications that most identified
problems were related to shortcomings in the existing EISs to support the business
operations sufficiently. Prevalent EISs were a legacy from the owner companies,
and these companies were also responsible for the governance of most systems. It
became also evident that an important instrument for finalizing the organizational
consolidation of the company was a unification of the EISs, as existing legacy EISs
consisted of a wide array of legacy systems and components that were poorly fit for
their purpose. Employed ISs were found to lack functionality in several critical areas
and provided on the other hand redundant functionality and data storage in others.

Moreover, employed ISs were not designed for collaboration. The company
experienced problems to merge information for customer support, energy trading,
and sales activities, on a daily basis, and virtually lacked means for effective analysis
and reporting on the enterprise level. In order to quickly reap some of the benefits
of the merger while maintaining business operations, rudimentary scripts and/or
spreadsheet programs were used as temporary solutions for the exchange of
information between the legacy components and the compilation of this
information. This, however, increased overall heterogeneity and complexity
unfavorably and was therefore considered as a short termed tactical solution. As a
consequence of the low level of integrability, the degree of automation was low
which, in turn, demanded considerable manual intervention to provide a reasonable
flow of operations.

To initiate the process towards a more appropriate EIS, the management team
decided to undertake a systematic a formal planning process. A major management
consultancy firm was contracted to apply their methods and frameworks to
contribute to the development of a migration strategy for the major part of the
legacy EIS. In the process of developing the strategy, a comprehensive set of
activities was carried out by the consultants, mainly directed towards the
management team. The activities included elicitation of key elicitation of (primarily)
functional and (to some extent) qualitative requirements, by interviewing
stakeholders in the owner companies to capture their domain knowledge and
previous experiences.

As the company at the time was formed only five years earlier neither documented
work routines and processes, nor an explicitly formulated business strategy was
available to guide the consultants and to delimit the scope of their work.
Consequently, the proportions of the applied method grew and become difficult to
grasp rather early in the process. Although different design alternatives were
presented in the strategy, they failed to fulfill some (partly implicit) expectations of

SUMMARY OF FIELD STUDIES

81

the company and its managing team. Also, the conclusions presented were found to
be on a too abstract level to provide any crisp guidance for coming activities. The
management team found it hard to select and to prioritize the most important
actions and quality attributes for their specific situation. However, even if the
initiative at the time was deemed as a failure, the investigation revealed that it had
provided some important effects. As a direct result of the strategy process, the
management team increased their awareness of the problems with the present EISs,
and the need of explicit business strategies to guide further planning and
implementation of EISs.

In Field study Delta, that comprises the same organizations as field study Gamma,
the author and a colleague was invited by the organization to participate in the
ongoing EISM process as external advisors. Thus, this field study could be
considered as action research according to e.g. Baskerville (1999). With the findings
from field study Gamma, an initial proposal concerning analysis process based on
the scenario-based architectural analysis (cf. e.g. Kazman et al. 1998) and further
adapted for EISs in Parts B and C, was proposed as a work hypothesis for the
study. The analysis process was thereafter refined during three iterations of the
analysis process (and the action research cycle, cf. Chapter 6.5). The architectural
analysis focused on modifiability in terms of integrability in various planning
horizons. Also, trade-offs against other technical and business quality attributes
were investigated. During this field study, a number of architectural integration
styles were formulated in order to elucidate different principal design alternatives
consequences concerning quality attributes.

To sum up, the results from field studies Gamma and Delta are presented in Chapter 4 and 5 of
this thesis. In Part B, the applicability of scenario-based architectural analysis on EISs is
scrutinized, and Part C further puts the proposed analysis process into the context of SISP
framework. To provide guidance for the attribute-based architectural analysis with respect to design
alternatives and their connections to quality attributes, the concept of architectural integration styles
is described and discussed in Part D.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

82

.

SUMMARY OF INCLUDED PARTS

83

Chapter 8
Summary of included parts

8 SUMMARY OF INCLUDED PARTS

PART A: IT INFRASTRUCTURE ARCHITECTURES FOR

ELECTRIC UTILITIES: A COMPARATIVE
ANALYSIS OF DESCRIPTION TECHNIQUES

J. Andersson, P. Johnson

Proceedings of the 33rd Hawaii International Conference on Systems
Sciences (HICSS-33), Maui, USA, January 2000.

The escalating development of IT enables utilities to reorganize or migrate from
their existing disparate software systems towards an integrated EIS25 that embraces
the total organization. Integration of software systems is expected to increase
competitiveness and to cut costs. However, since utilities’ present EISs are
heterogeneous as to type and technical platform, overlapping with regard to both
data and functionality, and relying on ad-hoc low-level middleware, integration and
EISM often turn out to be hazardous.

This paper presents a comparative analysis of architectural modeling capabilities of
established notations used in structured, information engineering and object-
oriented design methods. In the paper, the notations are applied to typical
configurations found in electric utilities’ EISs. The ambition is to show that

25 In the paper termed enterprise software system infrastructure (ESSI).

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

84

techniques originally intended for design of vendor systems also may be employed
to modeling heterogeneous EISs, from a user organizations perspective. Further,
the total architectural description of an EIS should provide an overall view of the
present and future target architecture that can be used as a basis for strategic and
tactical decisions regarding the utility’s EIS. Examples of such decisions are the
establishment of boundaries between EIS components and the identification of
possible simplifications in the structure of the EIS.

The results presented in the paper indicate that a structured approach that makes
use of well-defined notations for architectural modeling, may be used to visualize
technical risks and opportunities in an organization’s current and future EIS, and
furthermore may improve communication between stakeholders involved in EIS
evolution, e.g. top-management, end-users, system administrators, system owners,
and vendors. Furthermore, aspects of overlapping and shared data and functionality
may be visualized successfully using object-oriented notations, such as UML26 class
diagrams. The problems that are put forward in the paper have been identified
during exploratory case studies of EISM in four Scandinavian electric utilities27.

26 UML, Unified Modeling Language.
27 Companies B, C, D, and E in field study Alpha.

SUMMARY OF INCLUDED PARTS

85

PART B: EXTENDING ATTRIBUTE-BASED

ARCHITECTURAL ANALYSIS TO ENTERPRISE

SOFTWARE SYSTEMS.

J. Andersson, P. Johnson

Proceedings of the 3rd Australasian Workshop on Software and
System Architectures (AWSA ’00), Sydney, Australia,
November 2000.

As the size and complexity of EISs grow and the dependency on IS/IT increases,
assurance of satisfactory quality attributes such as reliability, availability, and
integrability becomes an important issue. This paper is based on the observation
that the properties of systems developed by single vendor organizations differ
significantly from the interconnected collections of ISs operated by user
organizations.

One approach to the assessment of quality attributes of software systems is
architectural analysis. While existing methods of architectural analysis are primarily
aimed at analysis of vendor-developed software systems, this paper presents a
method for analysis of EISs. The paper explores the relation between traditional
software systems and EISs from a user organization perspective; describing how
these two system levels differ. The consequences on the architectural analysis effort
are considered in an investigation28 of an extensive software system modification at
an electricity retailing company active on the deregulated Swedish electricity market.
The paper reveals that architectural analysis is meaningful on the enterprise level,
but analysis methods from the traditional architecture discipline need to be
significantly modified to be useful.

28 Company H in field study Delta.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

86

PART C: STRATEGIC MANAGEMENT OF INFORMATION

TECHNOLOGY IN DEREGULATED ELECTRIC

UTILITIES: BRIDGING THE GAP BETWEEN

THEORY AND PRACTICE

J. Andersson, T. Cegrell, K.H. Cheong, M. Haglind

Proceedings of the Portland International Conference on
Management of Engineering and Technology (PICMET ’01),
Portland, USA, July 2001.

The rapid advancement in IT is transforming business organizations worldwide.
Many organizations are making huge investments in IT in order to retain and/or to
advance their positions in increasingly competitive and global markets. However,
many research studies have shown that only few investments have actually
succeeded to bring about the intended benefits. The purpose of this paper is to
highlight critical issues in achieving alignment between business and IS/IT
strategies in small and medium-sized electric utilities. Further, the results presented
in the paper indicates that defining an IS/IT strategy and an EISA is not primary a
rational, analytical, and certainly not only a technical activity. Rather, potential
success is highly dependent on the organization’s ability to ensure communication
between involved stakeholders, and ability to manage a process that supports the
gradually increasing awareness of issues concerning legacy EIS components,
available COTS components, and business processes.

To circumvent some of the identified obstacles, the paper proposes a novel,
alternative approach for EISM in small and medium sized organizations, which is
less comprehensive and more flexible than most present methodologies for strategic
IS planning, thus attempting to bridge the gap between theory and practice. The
approach is implementation-centric and based on a framework in which scenario-
based architectural analysis is used as a process for EISM. Furthermore, the
proposed planning process is iterative and the rationale for this is the need to
support the gradually increasing awareness, as well as to tackle the ever-changing
technical and business requirements that an EIS ultimately must comply with.

SUMMARY OF INCLUDED PARTS

87

PART D: ARCHITECTURAL INTEGRATION STYLES FOR

LARGE-SCALE ENTERPRISE SOFTWARE
SYSTEMS

J. Andersson, P. Johnson

Proceedings of the 5th IEEE International Enterprise Distributed
Object Computing Conference (EDOC ‘01), Seattle, USA,
September 2001.

A predominant problem in management of EIS evolution is integration on the
enterprise level of ISs. Despite the considerable efforts spent on the development
of new standards and technologies for software interoperation, the integration of
ISs that originally were not designed to interact with each other is a major
undertaking, requiring in-depth knowledge of existing systems, incorporation of
integration products, and development and/or parameterization of various kinds of
adapters and gateways.

This paper presents the concept of architectural integration styles, i.e. architectural
styles describing software structures of integration solutions for enterprise software
systems. The paper further proposes an approach for selection of styles based on
the characteristics of the existing software applications and the desired quality
attributes of the integrated system. A number of architectural integration styles for
enterprise systems are presented in the paper, and a case study of the style selection
process applied to a mid-sized Swedish electricity retailer29 is described.

29 Company H in field study Delta.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

88

CONCLUDING REMARKS

89

Chapter 9
Concluding remarks

9 CONCLUDING REMARKS

9.1 SUMMARY OF RESULTS
Evolution of ISs is a multi-facetted issue that over time has proved arduous to
manage. On the enterprise level of ISs, an organization’s total portfolio of
interconnected ISs is considered as one system – an Enterprise Information
Systems (EIS), consisting of course-grained and heterogeneous components that in
themselves may constitute complex ISs. In EISs, considerations concerning legacy
systems and COTS are pervasive. A prominent motivation for considering the
enterprise level of ISs as a separate conceptual echelon, is the need for providing
separation of concern between project-oriented management of single ISs, and the
more holistic, and strategic, management of EISs.

This work applies an engineering perspective on EISM by investigating how
description techniques and analysis methods from software architecture may be
employed as decision support during planning and implementation of system
evolution activities. An enabling motivation for the selection of software
architecture as reference discipline for this work is its recent achievements in
expressing and analyzing complex software systems consisting of coarse-grained
software packages, on the basis of quality attributes (cf. e.g. Bass et al. 1998; Garlan
et al. 1994; Heineman and Council 2001). A special emphasis is hereby placed on
the quality attribute modifiability and the implication of time.

Here, EISM of primarily small and medium-sized electric utilities, active on the
Swedish deregulated electricity market, has been scrutinized from a user organization
perspective. The enabling reasons for the choice of electric utilities as unit of analysis,
are the implications of the recent electricity market reformation (e.g. deregulatory

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

90

demands on reporting of meter and customer data, a more competitive
environment resulting in a strive for effectiveness, and company mergers and
acquisitions), utilities’ broad range of interconnected ISs, and small and medium-
sized electric enterprises’ sparse resources for strategic management.

Several prominent features of EISs that have an impact on system evolution have
been identified: (1) components may be fairly course-grained (complete ISs), (2)
EISs are normally constructed with COTS components, (3) the supply of COTS
components is limited, (4) the legacy IS constitutes the starting point of the system
development effort, (5) components may not be modifiable, (6) components cannot
be assumed to be constructed in a uniform fashion, (7) connectors are normally
heterogeneous, and (8) the EIS may contain both data and functional redundancy.

The resulting problem domain consequently constitutes a design space that is discrete
and time dependent in nature. This implies that as requirements dictated by the
organization and its context must be delicately mitigated with the present (legacy)
EIS and the availability of COTS components and connectors. Complex temporal
dependencies occur, as all enumerated factors are mutually dependent on each
other, but yet in a state of constant change.

As a part of this work, a process for scenario-based architectural analysis has been
tested as a strategic decision support tool during a pre-study, preceding the
acquisition of several new components to an utility’s EIS. The analysis process was
augmented with set of viewpoints, and in the final iteration of the process, the
architectural integration styles were applied in order to make explicit principal designs
and their connection to quality attributes. The findings imply that the concepts of
architectural description, e.g. quality attributes, architectural ontology, views, and scenarios,
combined with scenario-based architectural analysis, may successfully be utilized on
the enterprise level of ISs. Four viewpoints were defined and employed as a part of
the study in order to ensure some degree of completeness in the analyzed
architectural description, in line with other architectural viewpoint models
(Kruschten 1995; Maier & Rechtin 2000).

Here, applying the iterative, evolutionary, and interactive characteristics of a spiral
process model for architectural analysis (Boehm 1988) were found to be highly
effective in supporting the gradually increasing awareness among stakeholders. In
the analysis of the proposed design alternatives, the conceptual modeling was found
to effectively help top-management to mitigate risks and opportunities, and
furthermore to help them make necessary trade-offs concerning identified quality
attributes and business requirements. Furthermore the approach was found to

CONCLUDING REMARKS

91

promote structured analysis of proposed design alternatives, as well as enhance
stakeholder communication and awareness.

As often referred to as a success factor in ISs management (Standish group 2000),
involvement of the top-management in the studied utility proved to be of vital
importance for the process. In contrast to large organizations, it is often easier for
management in small and medium-sized enterprises to grasp the total problem
domain without loosing too much of the often important details. Thus, similar to
Earl (1989), this thesis suggests that senior management involvement could be more
valuable in the project level rather than on the strategy formulation level in these
companies.

The chosen approach furthermore proved efficient to reduce the initial problem
domain (that by the client organization was perceived as rather endless) into a
relatively manageable design space. After the first iteration of the analysis process,
four feasible design alternatives were condensed, based on constrains concerning
business objectives, legacy considerations, and available COTS components and
connectors. Although the volume of the analysis task was found to increase
dramatically with the number of views, scenarios, time horizons, and design
alternatives taken into consideration, the discrete nature of the design space
contributed to keep down the number of components and thereby the effort
required for the analysis. A lesson learned is also that the volume of the analysis task
in itself served as a useful indicator for decisions as it provided a tangible measure
of complexity affecting e.g. the selection of granularity of components, and make-
versus-buy decisions.

Another consequence of an increased use of coarse-grained COTS components and
connectors is that customer-supplier relationships are changing. Thus, user-
organizations may have to influence their software suppliers indirectly (possibly in
collaboration with other customers), e.g. through user-associations or
standardization bodies. Also, third-party software has become significantly
interesting for user-organizations, as its content and quality may have a significant
impact on the long-term modifiability of EISs in particular. Consequently, user
organizations that wish to influence software vendors’ product lines must act
proactively and with a planning horizon that may considerably exceed the one
achievable within the frame of a single IS acquisition project.

Concisely, employing architectural description and analysis for decision support in
EISM does not provide a cookbook for which decision to make in every situation,
as because the context for each decision is unique. However, architectural

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

92

description and analysis provide an approach for conceptualizing the design space
into conceivable lines of action, and to make explicit relevant trade-offs between
qualities of the system and its context, in order to mitigate risks and opportunities.
Also, architectural concepts, such as views and styles, may help to ensure that no
important aspects are overlooked, and to promote reuse of previous experiences. It
is also stressed that architectural description and analysis does not exclude other
approaches for EISM. Conversely, the approach provides a framework in which
other techniques for more detailed conceptualizing and analysis, of e.g. specific
quality attributes may be employed.

9.2 FURTHER WORKS
As research processes tend to create more questions than answers, it may be
concluded that an abundance of further work remains within the area of EISM.
Contemplating this work in retrospective, there are several logic proceedings for
research in this area. Firstly, as the techniques and methods applied have been
adapted during the concluding field studies of this work, a full-scale test of the total
approach for using architectural concepts for EISM in small and medium-sized
electric utilities would further strengthen the results presented in this thesis.
Secondly, this work focuses on evolution of EISs and thereby on modifiability. Other
quality attributes have consequently been regarded relatively modifiability. A
conceivable future research direction is therefore to execute a similar investigation
focusing on other types of quality attributes that require alternative analysis
approaches. Thirdly, the generalization of presented findings is strictly confined to
the domain of small and medium-sized electric utilities. To increase the
generalization of this work, large organization and/or enterprises in other business
domains should also be taken into consideration. In addition to these suggestions
for further research, it is stressed that work which aims to package experiences
concerning EISM for more general reuse should be encouraged, e.g. by means of
cataloguing architectural integration styles.

REFERENCES

93

Chapter 10
References

10 REFERENCES

Abd-Allah A.A. (1996), Composing Heterogeneous Software Architectures, Ph.D. Thesis, University
of Southern California, August 1996.

Abowd G., Allen R., Garlan D. (1993), “Using Style to Understand Descriptions of Software
Architecture,” ACM Software Engineering Notes, pp. 9-20, December 1993.

Alexander C., Ishikawa S., Silverstein M., Jacobson M., Fiksdahl-King I., Angel S. (1977),
A Pattern Language, Oxford University Press, 1977.

Allison G.T. (1971), Essence of Decision: Explaining the Cuban Missile Crisis, Boston: Little,
Brown, 1971.

Andersson J. (1997a), “A Strategy for Migration on a Deregulated Energy Market – Case
Study Experiences”, In: Proceedings of DA/DSM DistribuTech Europe 97, Amsterdam, The
Netherlands, October 1997.

Andersson J. (1997b), On IT System Integration – Prospects and Consequences of Energy Market
Deregulation, Licentiate Thesis, Royal Institute of Technology, Stockholm, Sweden, 1997.

Andersson J., Cegrell T., Cheong K.H. Haglind M., Johansson E., Johansson L. (1998), “IT
Strategy for Electric Utilities - From a Paper Tiger to an Effective Management Tool,” In:
Proceedings of DA/DSM DistribuTech Europe 98, London, U.K., October 1998.

Andersson J., Johnson P. (1999), “Procurement of Integrated IT Systems for the Deregulated
Electric,” In: Proceedings of the International Conference on Electricity Distribution (CIRED ‘99,),
Nice, France, June 1999.

Andersson R., Nilsson A. (1996), The standard application package market—an industry in
transition?, In: Advancing Your Business: People and Information Systems in Concert (Lundeberg M.,
Sundgren B. (eds.), EFI: Stockholm School of Economics, Sweden, 1996.

Argyis C., Schön D.(1978), Organizational Learning: A Theory of Action Perspective, Addison-
Wesley, Reading, 1978.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

94

Armour F., Kaisler S., Simon Y (1999), “A Big-Picture Look at Enterprise Architectures”,
IT Professional, pp. 35-42, January-February 1999.

Avison D., Lau F., Neilsen P.A., Myers M. (1999), “Action Research”, Communications of the
ACM, 42(1), pp. 94-97, 1999.

Baragry J., Reed K. (1998), “Why is it so hard to define software architecture?,” In: Proceedings
of Asia Pacific Software Engineering Conference, pp. 28-36, 1998.

Basili V, Yakimovich, D., Bieman J., “Software Architecture Classification for Estimating the
Cost of COTS Integration,” In: Proceedings of the 11th International Conference on Software
Engineering, ICSE ’94, 1994.

Baskerville R.L. (1999), ”Investigating Information Systems Research with Action Research,”
Communications of the Association for Information Systems, 2(19), October 1999.

Baskerville R.L., Wood-Harper A.T. (1996), “A Critical perspective on action research as a
method for information systems research”, Journal of Information Technology, 11(4), pp. 235-246,
1996.

Bass L., Clements P., Kazman R. (1998), Software Architecture in Practice, Addison-Wesley, 1998.

Bass L., Klein M., Bachmann F. (2000), Quality Attribute Design Primitives, Technical Note
CMU/SEI-2000-TN-017, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, USA, December 2000.

Bengtsson P.O. (2002), Architecture-Level Modifiability Analysis, Doctoral Thesis, Blekinge
Institute of Technology, 2002.

Bennet K. (1995), “Legacy Systems: Coping with success”, IEEE Software, 12(1), pp. 19-23,
January 1995.

Bennet K., Rajlich V. (2000), “Software Maintenance and Evolution: A Roadmap,” In:
Finkelstein A. (ed.), “The Future of Software Engineering,” Proceedings of the 22nd International
Conference on Software Engineering, ICSE 22, ACM Press, 2000.

Bergey J.K., Fissher M.J., Jones L.G., Kazman R. (1999), Software Architecture Evaluation with
ATAM in the DoD System Acqusition Context, Technical Note CMU/SEI-99-TN-012, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, USA, September 1999.

Binns P., Vestal S. (1993), “Formal real-time architecture specification and analysis,” In:
Proceedings of the 10th IEEE Workshop on Real-Time Operating Systems and Software, May 1993.

Blanchard B.S. (1991), System Engineering Management, John Wiley & Sons, New York, 1991.

Bleicher J. (1982), The Hermeneutic Imagination: Outline of a Positive Critique of Scientism and
Sociology, Routledge and Kegan Paul, London, 1982.

Boehm B.W., Brown J.R., Kaspar H., Lipow M., McLeod G., Merritt M. (1978), Characteristics
of Software Quality, North-Holland Publishing Company, Amsterdam, 1978.

Booch G., Jacobson I., Rumbaugh J. (1999), The Unified Modeling Language User Gudie,
Addison-Wesley, USA 1999.

Bosch J., Molin P. (1999), “Software Architecture Design: Evaluation and Transformation”,
In: Proceedings of the IEEE Conference and Workshop on Engineering of Computer-Based Systems, pp. 4-
10, 1999.

REFERENCES

95

Bosch J., van Gurp G. (2002), “Design Erosion: Problems & Causes”, Journal of Systems &
Software, 61(2), pp. 105-119, Elsevier, March 2002.

Braun C.L. (1999), “A lifecycle process for the effective reuse of commercial off-the-shelf
(COTS) software”, In: Proceedings of the 5th symposium on Software reusability, pp. 29-36, Los
Angeles, USA, 1999.

Brodie M.L., Stonebraker M. (1995), Migrating Legacy Systems: Gateways, Interfaces, and the
Incremental Approach, Morgan Kaufmann Publishers, 1995.

Brooks, F. P. (1995), The Mythical Man-Month, The 20th anniversary ed., Addison-Wesley,
1995.

Brown J.B., Malveau R.C., McCormick H.W., Mowbray T.J.(1998), Anti Patterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley & Sons, 1998.

Brownsword L., Place P. (2000), Lessons Learned Applying commercial Off-the-Shelf Products,
Technical Note CMU/SEI-99-TN-015, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA, June 2000.

Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stahl M (1996), Pattern-Oriented
Software Architecture: A system of Patterns, John Wiley & Sons, 1996.

Carmel E. (1997), “American hegemony in packaged software trade and the culture of
software”, The Information Society 13(1), pp. 125-142, 1997.

Carmel E., Sawyer S. (1997), “Packages software Development Teams: What Makes Them
Different?,” Inforamtion Technology and People, 11(1), pp. 7-19, 1997.

Cegrell T. (1986), Power System Control - Technology, Prentice Hall International, U.K., 1986.

Cegrell T. (1997), “Integrated Information and Control Systems,” In: Proceedings of DA/DSM
DistribuTech Europe 97, Amsterdam, The Netherlands, October 1997.

Cegrell T. (1998), “Systems Specification and Requirements Engineering,” Published in the
technical report: The ISES Project. Enersearch, Malmö, Sweden, 1998.

Cegrell T., Andersson J., Cheong K-H., Haglind M., Johansson E., Johansson L. (1998), “IT
strategy for electric utilities – from a paper tiger to an effective management tool”, In:
Proceedings of DA/DSM DistribuTECH Europe ´98 Conference, London, U.K., October 1998.

Cegrell T., Sandberg U. (1994), Industriella Styrsystem, SIFU Förlag, Sweden, 1994.

Chappell D. (1996), Understanding ActiveX and OLE: A Guide for Developers and Managers,
Microsoft Press, 1996.

Checkland P. (1986), Systems Thinking, Systems Practice, John Wiley & Sons, 1986.

Cheong K.H. (1997), Distribution Automation: Cost-Effective Introduction Strategies, Licentiate
Thesis, Dept. of Industrial Control Systems, Royal Institute of Technology, Stockholm,
Sweden, October 1997.

Cheong K.H. (1999), IT strategy for Electric Utilities – A Framework towards Effectiveness, Ph. D.
Thesis, Dept. of Industrial Control Systems, Royal Institute of Technology, Stockholm,
Sweden, October 1999.

Ciborra C.U., de Profundis (1997), “Deconstructing the Concept of Strategic Alignment,”
Scandinavian Journal of Information Systems, 9(1), 1997.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

96

Clements P., Northrop L. (1996), Software Architecture: An Executive Overview, Technical Report,
CMU/SEI-96-TR-003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, USA, 1996.

Clements P., Parnas D., Weiss D. (1985) “The Modular Structure of Complex Systems,”
IEEE Transactions on Software Engineering, 11(1), pp. 259-266, 1985.

Coglianese L., Szymanski R. (1993), “DSSA-ADAGE: An Environment for Architecture-
based Avionics Development,” In: Proceedings of AGARD93, May 1993.

Davenport T. (1993), Process Innovation: Reengineering Work through Information Technology,
Harward Business School Press, 1993.

Davenport T. (2000), Mission Critical: Realizing the Promise of Enterprise Systems, Harward
Business School Press, Boston, USA.

Davis M.J., Williams R.B. (1997), “Software Architecture Characterization”, In: Proceedings of
the 1997 Symposium on software reusability, ACM SIGSOFT Software Engineering Notes, 22(3),
pp. 30-38, Boston, USA, May 1997.

DeLine R. (1999), Resolving Packaging Mismatch, Ph.D. Thesis, Carnegie Mellon University,
USA, 1999.

Dellarocas C. (1996), A Coordination Perspective on Software Architecture: Towards a Design
Handbook for Integrating Software Components, Ph.D. Thesis, Massachusetts Institute of
Technology Center for Coordination Science, 1996.

Dick B. (1999), What is action research?, Available on line at:
http://www.scu.edu.au/schools/gcm/ar/whatisar.html, 1999.

Dick K. (2000), XML: A Manager’s Guide, Addison-Wesley, 2000.

Dijkstra E.W. (1968), “The Structure of the ‘T.H.E.’ Multiprogramming System,”
Communications of the ACM, 11(5), pp. 453-457, 1968.

Dikel D.M., Kane D., Wilson J.R. (2001), Software Architecture: Organizational Principles and
Patterns, Prentice Hall, New York, 2001.

DISA (1996), Department of Defence Technical Architecture Framework for Information Management,
Vol 1-8, Defence Information Systems Agency, United States Department of Defence,
Available on-line: http//www-library.itsi.disa.mil/tafim.html, 1996.

Doyle J., Thomason R. (1999), “Background to qualitative decision theory,” AI magazine,
20(2), pp. 55-68, Summer 1999.

Earl M.J. (1989), Management Strategies for Information Technology, Prentice Hall, 1989.

Earl M.J. (1993), “Experiences in strategic information systems planning,” MIS Quarterly,
pp. 1-24, March 1993.

Eason K. (1988), Information Technology and Organizational Change, Taylor & Francis Publication,
U.K., 1988.

Ecklund E.F., Delcambre L.M.L., Freiling M.J.(1996), ”Change cases: use cases that identify
future requirements,” In: Proceedings of the eleventh annual conference on Object-oriented programming
systems, languages, and applications, ACM SIGPLAN Notices, 31(10), pp. 342 - 358,
October 1996.

REFERENCES

97

Engelken L., Gay A., Tram H. (1999), ”Development of an information technology strategy
and architecture for energy delivery utility mergers”, In: Proceedings of IEEE Transmission and
Distribution Conference, 1999.

Ericsson G. (1996), On Communication in Power System Control, Ph. D. Thesis, Dept. of
Industrial Control Systems, Royal Institute of Technology, Stockholm, Sweden, August 1996.

Ferguson J. (1996), Software Acquisition Capability Maturity Model (SA-CMM) Version 1.01,
Technical Report CMU/SEI-96-TR-020, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh 1996.

Finkelstein A. (ed.) (2000), “The Future of Software Engineering,” In: Proceedings of the 22nd
International Conference on Software Engineering, ICSE 22, ACM Press, 2000.

Fowler M. (1997), Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.

Frenzel C.W. (1996), Management of Information Technology, 2nd ed., CTI, Cambridge, 1996.

Gacek C. (1998), Detecting Architectural Mismatch During System Composition, Ph.D. Thesis,
University of Southern California, 1998.

Galliers R.D, Land F.F (1987), “Choosing Appropriate Information Systems Research
Methodologies”, Communications of the ACM, 30(11), pp. 900-902, 1987.

Galliers R.D. (ed.) (1992), Information Systems Research: Issues, methods, and practical guidelines,
Blackwell Scientific Publications, 1992.

Galliers R.D., Land F.F. (1988), “The Importance of Laboratory Experimentation in IS
Research: A Response,” Communications of the ACM, 31(12), pp. 1504-1505, 1988.

Gamma E., Helm R., Johnson R., Vlissides J. (1998), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1998.

Garlan D, Allen D. (1994a), “Formalizing Architectural Connection,” In: Proceedings of the 16th
International Conference on Software Engineering, ICSE ’94, Sorrento, Italy, 1994.

Garlan D. (2000), “Software Architecture: A Roadmap,” In: Finkelstein A. (ed.), “The Future
of Software Engineering,” Proceedings of the 22nd International Conference on Software Engineering,
ICSE 22, ACM Press, 2000.

Garlan D. Allen R (1997b), ”A formal basis for architectural connection,” ACM Transactions
on Software Engineering and Methodology, July 1997.

Garlan D. Monroe R., Wile D. (1997a), “ACME: An Architecture Description Interchange
Language,” In: Proceedings of CASCON’97, 1997.

Garlan D., Allen R., Ockerbloom J. (1994a), ”Exploiting style in architectural design
environments,” In: Proceedings of SIGSOFT94: The second ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 170-185. ACM Press, December 1994.

Garlan D., Allen R., Ockerbloom J. (1994b), “Architectural Mismatch: Why Reuse is so
Hard,” IEEE Software, 1994.

Garlan D., Shaw M. (1996), Software Architecture – Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

Glass R.L. (1998), Software Runaways: Lessons Learned from Massive Software Project Failures,
Prentice Hall, 1998.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

98

Grand M. (2002), Java Enterprise Design Patterns, John Wiley & Sons, 2002.

Grudin J. (1991), Interactive systems: Bridging the gap between developers and users, IEEE Computer
24(5), pp. 59-69, 1991.

Häggander D.(2001), Software Design Conflicts, Ph.D. Thesis, Blekinge Institute of Technology,
2001.

Haglind M. (2002), Information Systems Planning in the Deregulated Electric Power Industry: Addressing
Small and Medium Sized Enterprises, Ph. D. Thesis, Dept. of Industrial Information and Control
Systems, Royal Institute of Technology, Stockholm, Sweden, February 2002.

Hammer M, Champy J (1993), Reengineering the corporation: A manifesto for business revolution,
Harper Business, New York, 1994.

Heineman G.T., Councill W.T. (eds.) (2001), Component-Based Software Engineering: Putting the
Pieces Together, Addison-Wesley, 2001.

Hendersen J.C., Venkatraman N. (1996), “Aligning Business and IT Strategies,” In: Luftman
J.N. (ed.), Competing in the Information Age - Strategic Alignment in Practice, Oxford University
Press, 1996.

IEEE (2000), IEEE 1471-2000: Recommended Practice for Architectural Description, IEEE
Standard, IEEE Architecture Working Group, 2000.

ISO/IEC 15288 (2001), ISO/IEC 15288: Life Cycle Management: System Life Cycle Processes, Final
Draft International Standard (FDIS), 2001.
Jacobson I., Christerson M., Jonsson P., Övergaard G. (1992), Object Oriented Software
Engineering – A Use Case Driven Approach, Addison-Wesley Publishing Company, USA, 1992.

Jacobson I., Rumbaugh J., Booch G. (1999), Unified Software Development Process, Addison-
Wesley Publishing Company, USA, 1999.

Jaktman C.B., Leaney J., Liu M. (1999), “Structural Analysis of the Software Architecture: A
Maintenance Assessment Case Study,” In: Proceedings of the 1st Working IFIP Conference on
Software Architecture, WICSA1, San Antonio, USA, February 1999.

Jarvenpaa S. (1988), “The Importance of Laboratory Experimentation in IS Research,”
Communications of the ACM, 31(12), pp. 1502-1504, 1988.

Johansson L., Andersson J., Bäcklund M., Daugulis A., Cheong K.H., Haglind M., Johansson
E., Silwer M. (1997), ”Case Study Research in Large System Engineering Projects,” In:
Proceedings of DA/DSM Europe 97, Amsterdam, the Netherlands, 1997.

Johnson P. (2002), Enterprise Software System Integration: An Architectural Perspective, Ph. D.
Thesis, Dept. of Industrial Information and Control Systems, Royal Institute of Technology,
Stockholm, Sweden, April 2002.

Kazman R., Barbacci M., Klein M., Jeromy Carriere S., Woods S.G (1999), “Experience with
performing architecture tradeoff analysis,” In: Proceedings of the 1999 International Conference on
Software Engineering, pp. 54-63, Los Angeles, USA, May 1999.

Kazman R., Bass L. (1994), Toward Deriving Software Architectures from Quality Attributes,
Technical Report CMU/SEI-94-TR-10, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA, 1994.

REFERENCES

99

Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., Carriere J. (1998), “The
Architecture Tradeoff Analysis Method,” In: Proceedings of the Fourth IEEE International
Conference on Engineering of Complex Computer Systems, pp. 68 –78, 1998.

Klepper P., Hartog C. (1992), “Trends in use and management of application package
software,” Information Resources Management Journal, 5(4), pp. 33-37, 1992.

Knoll K.K., Jarvenpaa S.L. (1994), “Information technology alignment or “fit” in highly
turbulent environments,” In: Proceedings of the 1994 computer personnel research conference on
Reinventing Information Systems, Alexandria, USA, April 1994.

Kobryn C. (1998), “Modeling Enterprise Software Architectures Using UML,” In: Proceedings
of Second International Workshop on Enterprise Distributed Object Computing, EDOC ‘98, pp. 25-34,
1998.

Kohtala J., Vaattovaara M. (1998), ”Experiences about computer applications for distribution
management, In: Proceedings of DA/DSM DistribuTECH Europe ´98 Conference, London, U.K.,
October 1998.

Kontio J. (1996), “A case study in applying a systematic method for COTS selection,” In:
Proceedings of the 18th International Conference on Software Engineering, IEEE Computer Society
Press.

Kruchten P. (1995), “Architectural Blueprints: The “4+1” View Model of Software
Architecture,” IEEE Software, November, 1995.

Kuhn T. (1970), The Structure of Scientific Revolution, 2nd ed., University of Chicago Press, 1970.

Lane T.G. (1990), A Design Space and Design Rules for User Interface Software Architecture,
Technical Report CMU/SEI-90-TR-22, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA, 1990.

Lassing N., Bengtsson P.O., van Vliet H., Bosch J. (2002), ”Experiences with ALMA:
Architecture –Level Modifiability Analysis,” The Journal of Systems and Software, No. 61, pp. 47-
57, 2002.

Lassing N., Rijsennrij D., van Vliet H. (1999), “Towards a Broader View on Software
Architecture Analysis of Flexibility,” In: Proceedings of 6th Asia Pacific Software Engineering
Conference, pp. 238-245, 1999.

Lederer A.L., Gardiner V. (1992), “The process of strategic information planning”, Journal of
Strategic Information Systems, 1(2), pp. 76-83, 1992.

Lederer A.L., Salmela H. (1996), “Toward a Theory of Strategic Information Systems
Planning,” Journal of Strategic Information Systems, 5(3), pp. 237-253, 1996.

Lehman M.M. (1998), “Software’s future: managing evolution,” IEEE Software , 15(1), pp. 40-
44, January-February 1998.

Levy, M., Powell P. (2000), “Information Systems Strategy for Small and Medium sized
Enterprises: An Organizational Perspective”, Journal of Strategic Information Systems, No. 9, pp.
63-84, 2000.

Linthicum D. (2000), Enterprise Application Integration, Addison-Wesley, 2000.

Luckham D.C., Kenney J.J., Augustin L.M., Vera J., Bryan D., Mann W. (1995),
”Specification and analysis of system architecture using Rapide,” IEEE Transactions on Software
Engineering, 21(4), pp. 336-354, April 1995.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

100

Luftman J.N. (ed.) (1996), Competing in the Information Age - Strategic Alignment in Practice, Oxford
University Press, 1996.

Lutz J. (2000), “EAI Architecture Patterns,” EAI Journal, March, 2000.

Magee J., Dulay N., Eisenbach S., Kramer J. (1995), “Specifying distributed software
architectures,” In: Proceedings of the Fifth European Software Engineering Conference, ESEC95,
September 1995.

Magoulas T., Pessi K. (1998), Strategisk IT management, Ph.D. Thesis, Dept. for Informatics,
University of Gothenburg, Gothenburg, Sweden, March 1998.

Maier M.W., Rechtin E.R. (2000), The Art of Systems Architecting, 2nd edition, CRC Press, 2000.

Mattson M. (2000), Evolution and Composition of Object-Oriented Frameworks, Doctoral Thesis,
Blekinge Institute of Technology, 2000.

Mayer Sasson A. (1993): ”Open Systems Procurement: A migration strategy,” IEEE
Transactions on Power Systems, 8(2), pp. 515-521, May 1993.

McCall J.A., Richards P.K., Walters G.F. (1977), Factors in Software Quality, Three volumes, US
Rome Air Development Center Reports NTIS AD/A-049 014, 015, 055, November 1977.

Medvidovic N, Taylor R.N. (1998), “Separating fact from fiction in software architecture,”
In: Proceedings of the 3rd international workshop on Software architecture, pp. 105-108, Orlando, USA,
November 1998.

Medvidovic N., Oreizy P., Robbins J.E., Taylor R.N. (1996) Using object-oriented typing to
support architectural design in the C2 style. In: SIGSOFT96: Proceedings of the 4 th ACM
Symposium on the Foundations of Software Engineering, ACM Press, October 1996.

Medvidovic N., Rosenblum D.S., Redmiles D.F., Robbins J.E. (2002), “Modeling software
architectures in the Unified Modeling Language,” ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(1), pp. 2-57, January 2002

Meyers B.C., Oberndorf P (2001), Managing Software Acquisition: Open Systems and COTS
Products, Addison-Wesley, 2001.

Mintzberg H., Ahlstrand B., Lampel J. (1998), Strategy Safari – A Guided Tour Trough the Wilds
of Strategic Management, The Free Press, New York, 1998.

Monson-Haefel R. (2000), Enterprise JavaBeans, 2nd Ed., O’Reilly & Associates, 2000.

Morgenthal J.P. (2001), Enterprise Application Integration with XML and Java, Prentice Hall, 2001.

Moriconi M., Qian X., Riemenschneider R. (1995), “Correct architecture refinement,” IEEE
Transactions on Software Engineering, Special Issue on Software Architecture, 21(4), pp. 356-372, April
1995.

Myers M.D. (1997), “Qualitative Research in Information Systems,” MIS Quarterly, 21(2), pp.
241-242., June 1997, Available on-line: http://www.misq.org/misqd961/isworld/.

Nadler D. and Tushman M.L. (1980), “A Congruence Model for Diagnosing Organizational
Behavior,” in Miles R., Resource Book in Macro organizational Behavior, pp. 30-49, Goodyear,
Santa Clara 1980.

Ockerbloom J. (1998), Mediating Among Diverse Data Formats, Ph.D. Thesis, Carnegie Mellon
University, 1998.

REFERENCES

101

Orlikowski W., Baroudi J. (1991), ”Studying information technology in organizations:
research approaches and assumptions,” Information Systems Research, 2(1), pp. 1-28, 1991.

Oskarsson Ö. (1982), Mechanisms of Modifiability, Ph.D. Thesis, Software Systems Research
Center, Linköping University, Linköping, Sweden, May 1982.

Parnas D.L. (1972), “On the Criteria To Be Used in Decomposing Systems into Modules,”
Communications of the ACM, 15(12), pp. 1053-1058, 1972.

Parnas D.L. (1974), “On a ’Buzzword’: Hierarchical Structure,” In: Proceedings of IFIP Congress
74, pp 336-339, North Holland Publishing Company, 1974.

Parnas D.L. (1976), “On the Design and Development of Program Families”, IEEE
Transactions on Software Engineering, 2(1), pp. 1-9, 1976.

Parnas D.L. (1994), “Software Aging,” In: Proceedings of the 16th International Conference on
Software Engineering, ICSE ’94, pp. 279-287, Sorrento, Italy, 1994.

Pellegrinelli S. (1997), “Programme management: organising project-based change,”
International Journal of Project Management, 15(3), pp. 141-149, June 1997.

Perry D.E., Wolf A.L. (1992), “Foundations for the study of Software Architecture,” Software
Engineering Notes, ACM Press 17(4), New York, pp. 40-52, 1992.

Persson M. (1998), IT-användning i elbolag, Utlandsrapport Sveriges Tekniska Attachéer, 1998.

Pressman R.S. (1997), Software Engineering: A Practitioner’s Approach, 4th Ed., McGraw-Hill,
USA, 1997.

Pritchard J. (1999), COM and CORBA Side by Side: Architectures, Strategies, and Implementations,
Addison-Wesley, 1999.

Project Management Institute (2000), A Guide to the Project Management Body of Knowledge
(PMBOK® Guide), Project Management Institute, USA, 2000.

Rahkonen T. (1996a), Case Study Theory Applied in a Technical Research Project, External Report,
Ex.R. 96-02, Department of Industrial Control Systems, Royal Institute of Technology,
Stockholm, Sweden, 1996.

Rahkonen T. (1996b), User Strategies for Open Industrial IT Systems, Ph.D. Thesis, Dept. of
Industrial Control Systems, Royal Institute of Technology, Stockholm, Sweden, 1996.

Robson C. (1993), Real World Research: A Resource for Social Scientists and Practitioner Researchers,
Blackwell Publishers Ltd, Oxford, 1993.

Ruh W., Maginnis F., Brown J. (2001), Enterprise Application Integration: A Wiley Tech Brief, John
Wiley & Sons, 2001.

Sawyer S. (2000), “Packaged Software: Implications of the differences from custom
approaches to software development,” European Journal of Information Systems, no. 9, pp.47-58,
2000.

Schmidt D.C., Stal M., Rohnert H., Buschmann F. (2000), Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, John Wiley & Sons, 2000.

Shaw M. (1989), “Larger scale systems require higher-level abstractions,” In: Proceedings of the
5th international workshop on Software specification and design, ACM SIGSOFT Software
Engineering Notes, 14(3), pp. 143-146, April 1989.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

102

Shaw M., DeLine R., Klein D.V., Ross T.L., Young D.M., Zelesnick G. (1995), “Abstractions
for software architecture and tools to support them,” IEEE Trans on Software Engineering,
21(4), pp. 314-335, April 1995.

Simon H.A. (1997), Administrative behaviour, 4th edition, The Free Press, New York, 1997.

Sneed H. (1995), “Planning the re-engineering of legacy systems,” IEEE Software, 12(1),
pp.24-34, 1995.

Spivey J. (1992), The Z Notation, Prentice Hall, 1992.

Standish group (2000), Perils in Gas & Electricity, Available on-line:
http://standishgroup.com/, 2000.

STEM (2000), Electricity Market 2000, Statens Energimyndighet (Swedish National Energy
Administration), available at http://www.stem.se, 2000.

STEM (2001), Electricity Market 2001, Statens Energimyndighet (Swedish National Energy
Administration), available at http://www.stem.se, 2001.

Störrle H. (1999), “Architectural Modeling with the Unified Modelling Language,” In:
Proceedings of the 2nd Nordic Workshop on Software Architecture, NOSA ’99, Ronneby, August 1999.

Susman G. (1983), ”Action Research: a sociotechnical systems perspective,” In: Morgan G.
(ed.), Beyond Method: Strategies for Social Research, pp. 95-113, Sage, Newbury Park, 1983.

Sutcliffe A.G., Maiden, N.A.M., Minocha S., Manuel D. (1998), “Supporting scenario-based
requirements engineering,” IEEE Transactions on Software Engineering, 24(12), pp. 1072-1088,
December 1998.

SvK (1996), Svenska kraftnäts balanstjänst, Handbok, andra reviderade utgåvan, Svenska
Kraftnät, 1997.

SvK (1997), Avräkningshandbok för elbranschen: Kapitel 1 och 2, Utgåva p1A, Svenska
Kraftnät, 1997.

SvK (2001), The Swedish Electricity Market and the Role of Svenska Kraftnät, SvK - Svenska
Kraftnät (Swedish Grid), available at http://www.svk.se, 2002.

The Open Group (1999), The Open Group Architectural Framework, Available on-line:
http://www.opengroup.org/togaf/, 1999.

Thomas A. (1998), Selecting Enterprise JavaBeans Technology, Patricia Seybold Group, 1998.

Thomason R.H. (1998), “Qualitative Decision Theory and Interactive Problem Solving
(extended abstract),” In: Haddawy P., and Hanks S. (eds.), Working Notes of the American
Association for Artificial Intelligence Spring Symposium on Interactive and Mixed Initiative Decision-
Theoretic Systems, pp. 197-113, Menlo Park, USA, 1998.

Thorp J. (1998), The Information Paradox: Realizing the Business Benefits of Information Technology,
McGraw-Hill Publication, 1998.

Wallnau K.C., Hissam S.A., Seacord R.C. (2002), Building Systems from Commercial Components,
Addison-Wesley, 2002.

Walsham G. (1993), Interpreting Information Systems in Organizations, John Wiley & Sons, U.K.,
1993.

REFERENCES

103

Ward, Griffiths, Strategic Planning for Information Systems, 2nd ed., John Wiley & Sons, U.K.,
1996.

Witt B.I., Baker T.F., Merritt E.W. (1994), Software Architecture and Design – Principles, Models,
and Methods, Van Nostrand Reinhold, 1994.

Yin R. (1994), Case Study Research: Design and Methods, 2nd Ed., SAGE Publications, Thousand
Oaks, California, USA 1994.

Zachman J.A. (1987), “A Framework for Information Systems Architecture,” IBM Systems
Journal, 26(3), 1987.

ENTERPRISE INFORMATION SYSTEMS MANAGEMENT

104

	Abstract
	Acknowledgements
	List of papers
	Table of contents
	Summary
	1: Introduction
	2: Information systems and electric utilities
	3: The enterprise level of information systems
	4: Software architecture as a tool for decision support
	5: Towards a novel approach for enterprise information systems management
	6: Research methodology
	7: Summary of field studies
	8: Summary of included parts
	9: Concluding remarks
	10: References

