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Abstract 
 
Series compensation of transmission lines is an effective and cheap method of 
improving the power transmission system performance. Series capacitors 
virtually reduces the length of the line making it easier to keep all parts of the 
power system running in synchronism and to maintain a constant voltage level 
throughout the system. In Sweden this technology has been in use since almost 
50 years. 
 
The possibility to improve the performance of the AC transmission system 
utilizing power electronic equipment has been discussed a lot since about ten 
years. Some new semiconductor based concepts have been developed beside the 
since long established HVDC and SVC technologies. The Thyristor Controlled 
Series Capacitor (TCSC) is one such concept. By varying the inserted reactance 
an immediate and well-defined impact on the active power flow in the 
transmission line is obtained. Several potential applications, specifically power 
oscillation damping, benefit from this capability. The concept implied the 
requirement to design a semiconductor valve, which can be inserted directly in 
the high-voltage power circuit. This certainly presented a technical challenge but 
the straightforward approach appeared to be a cost-effective alternative with 
small losses.  
 
It was also realized that the TCSC exhibits quite different behaviour with respect 
to subsynchronous frequency components in the line current as compared to the 
fixed series capacitor bank. This was a very interesting aspect as the risk of 
subsynchronous resonance (SSR), which just involves such line current 
components, has hampered the use of series compensation in power systems 
using thermal generating plants. 
  
The thesis deals with the modelling and control aspects of TCSC. A simplifying 
concept, the equivalent, instantaneous voltage reversal, is introduced to represent 
the action of the thyristor controlled inductive branch, which is connected in 
parallel with the series capacitor bank in the TCSC. The ideal voltage reversal is 
used in the thesis in order to describe and explain the TCSC dynamics, to 
investigate its apparent impedance at various frequencies, as a platform for 
synthesizing the boost control system and as the base element in deriving a 
linear, small-signal dynamical model of the three-phase TCSC. Quantitative 
Feedback Theory (QFT) then has been applied to the TCSC model in order to 
tune its boost regulator taking into account the typical variation of parameters 
that exists in a power system. The impact of the boost control system with 
respect to damping of SSR is finally being briefly looked at.  
 
Keywords: Thyristor Controlled Series Capacitor, TCSC, FACTS, reactive power 
compensation, boost control, phasor estimation, Quantitative Feedback Theory, 
subsynchronous resonance, SSR. 
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CHAPTER 1 
OVERVIEW OF THE THESIS 
  

1.1 BACKGROUND 
For many years the use of power electronic equipment in power transmission 
systems was restricted to High Voltage Direct Current (HVDC). But in the 
1970’ies the Static Var Compensator (SVC) was introduced as a means to 
provide reactive power support and voltage control in the network. It found wide-
spread application in transmission systems as well as in large industrial plants. 
The fast development of high-power semiconductors during the 80’ies brought 
forward rugged thyristors capable of handling high voltages and heavy short-
circuit currents. As a result intense research efforts were initiated in many places 
with the overall objective to improve the AC transmission technology by 
introducing power electronics to control voltage, phase and current in such 
systems. The well-known FACTS program was launched by EPRI in USA 
around 1990.  Many new concepts were proposed, among them the Thyristor 
Controlled Series Capacitor (TCSC). 
The first proposed use of TCSC was related to power flow control, but it was 
soon realized that the device is also a very effective means for providing 
damping of electromechanical power oscillations. A third possible application of 
TCSC emerged from the insight that it can provide series compensation without 
causing the same risk for subsynchronous resonance (SSR) as a fixed series 
capacitor. 
In the TCSC concept the thyristor valve is connected directly in series with the 
transmission line and accordingly it becomes fully exposed to all overvoltages 
occurring in the system. Thus the main circuit, including the cooling system, 
requires full insulation relative ground level, which means that it shall withstand 
impulse tests with voltage amplitudes well exceeding 1000 kV. This was a 
challenge as earlier power electronic apparatus had always been connected to the 
high voltage circuit through their own dedicated transformers. However, the 
challenge also brings about an opportunity, because eliminating the need for an 
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interfacing transformer, which would represent substantial cost and losses, makes 
the TCSC an economically attractive device with low losses. 

1.2 OBJECTIVES 
The purpose of this thesis is to present a general overview of the TCSC concept. 
The steady-state characteristics are well known from the literature and a number 
of dynamical models also have been presented in different papers. However, in 
the author’s opinion, the dynamical models presented so far turn into 
mathematics very fast. The engineer is left without any good description making 
it easy to understand the dynamics of the TCSC. 
� it is an objective of the present thesis to present a conceptual description, a 

“theory”,  of the function of the TCSC, giving an intuitive insight into its 
dynamical behaviour 

For design and tuning of the control system a good dynamical model is also 
needed. 
� it is an objective of the present thesis to derive a dynamical model, based on 

the presented description, having sufficient accuracy and bandwidth 
Any apparatus that shall be installed in the power transmission system must be 
designed so that it can cope with the parameter variation that normally occurs 
when the system is in operation.  
� it is a further objective of the thesis to investigate a method to design a robust 

control system taking such parameter variations into consideration  

1.3 METHODS AND RESULTS 

1.3.1 Use of the capacitor voltage zero-crossing angle 

In thyristor converter technology the firing angle with respect to the driving 
voltage, often denoted as α, has traditionally been considered as the natural 
converter control signal. This convention also has been inherited into other fields 
of power electronic equipment, like SVC and TCSC. In all literature presented so 
far this traditional method has been applied. It is certainly well adapted to 
describe the characteristics of the TCSC in steady state operation. However, the 
same approach it is not very helpful, when one tries to describe the dynamical 
behaviour of the TCSC in a comprehensive way. There is simply no general 
principle to connect the change of firing angle to the change of the operating 
state in the TCSC. 
In this thesis the focus has been changed from the thyristor firing angle to the 
angle related to the capacitor voltage zero-crossing. The reason is that during 
steady state conditions the capacitor voltage zero-crossing must occur at one 
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uniquely determined equilibrium angle relative the line current, and any 
displacement of the capacitor voltage zero-crossing from this equilibrium 
position has a well-defined impact on the state of the TCSC. Many main 
characteristics of the TCSC, even quantitative ones, can easily be related to the 
displacement of the capacitor voltage zero-crossing angle from its equilibrium 
position. 

1.3.2 Equivalent instantaneous voltage reversals 

The insight of the importance of the capacitor voltage zero-crossing angle 
permits an idealisation, where we consider an equivalent TCSC circuit, which 
performs instantaneous voltage reversals as a substitute for the real voltage 
reversals that needs finite time to be executed in the main circuit. This 
idealisation is extensively used in this thesis as a base for modelling and 
simulation. It generates a new theory of TCSC control, which is developed 
further as described below. 

1.3.3 Synchronous Voltage Reversal (SVR) control scheme 

The concept of equivalent instantaneous voltage reversals serves as a platform 
for synthesis of a new control system for the TCSC. The boost control system has 
a structure, where the regulator provides a timing reference for the capacitor 
voltage zero-crossing instants and a subsystem finally determines the thyristor 
firing instant taking into account the timing reference and the measured 
instantaneous capacitor voltage and line current values. 

1.3.4  TCSC characteristics at subsynchronous frequencies 

It is possible to derive the basic, inherent characteristics of the TCSC at 
subsynchronous frequencies from a simple analysis using the concept of the 
equivalent instantaneous voltage reversals. 

1.3.5 Three-phase TCSC model 

Using the concept of equivalent instantaneous voltage reversals a small-signal, 
three-phase model of the TCSC can be derived. It has a sampling rate of 300/360 
Hz in a 50/60 Hz network. The high sampling rate means that frequencies 
covering the whole subsynchronous frequency range can be dealt with without 
violating the Nyquist frequency limit. 

1.4 CONTRIBUTIONS IN THE WORK 
The present work provides the following contributions: 
� description of the TCSC using the concept of equivalent capacitor voltage 

reversals as described in chapter 4.1 
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� derivation of boost dynamics as described in chapter 4.4 
� SVR control system architecture as described in chapter 4.5 
� control equation for the fire pulse generating subsystem as described in 

chapter 4.6 
� derivation of the apparent impedance of the TCSC for subsynchronous 

frequencies as described in chapter 5.3, 5.4 and 5.5 
� incorporation of the homopolar component in the “converter-oriented” 

coordinate system as described in chapter 6 
� three-phase dynamical model of the TCSC as described in chapter 7 

1.5 THESIS ORGANIZATION 
The main purpose of this thesis is to discuss the problems related to modelling of 
the TCSC and the associated control problems. However, it seems appropriate to 
give a short introduction about reactive power in general and series compensation 
in particular. Hopefully this will provide a proper insight in the potential of 
application of the TCSC and a basic idea of what requirements that must be 
fulfilled by the device. Thus chapter 2 starts by presenting the physical 
background for the reactive power consumption in the network. The theoretical 
principle for reactive power series compensation is described. Further the 
applications and the implementation of series capacitors is explained. 
Chapter 3 summarizes the steady state characteristics of the TCSC. This material 
is not new, but has been incorporated for reference. 
Chapter 4 describes the main contribution of this thesis. The Synchronous 
Voltage Reversal scheme, is being presented.  
Chapter 5 contains a simple derivation of the apparent characteristics of the 
TCSC at subsynchronous frequencies. A single-phase approach is utilized. 
In chapter 6 the representation of three-phase converters is investigated. The 
concept of  “converter-oriented” coordinate system is presented. The three-phase 
space vector representing the TCSC capacitor voltage including its homopolar 
component is presented and visualized. 
Chapter 7 starts with summarizing some dynamical models of the TCSC which 
have been described in the literature. The motivation for developing a three-
phase model is given and then the derivation of the three-phase TCSC model 
using the instantaneous voltage reversals as an idealising approximation is 
presented. 
Chapter 8 describes the main characteristics of the derived model. 
Chapter 9 very shortly discusses the outline of boost control system in the TCSC. 
Chapter 10 deals with the topic of phasor estimation. Power electronic converters 
typically are utilized to control the fundamental frequency component of some 
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quantity like voltage or current. The problem to extract this component in real-
time from measured signals is discussed. Models in the frequency and time 
domains are given. 
In Chapter 11 the phasor estimation algorithms are used to get the response value 
of TCSC boost factor from the measured capacitor voltage and line current. The 
synchronization system, using the estimated line current phasor as input, also is 
investigated. 
Chapter 12 describes the boost control problem for stiff line current. The boost 
regulator is tuned for some defined uncertainties using the Quantitative Feedback 
Theory (QFT) approach. The impact of the synchronization for improving the 
suppression of line current phases shifts is described. Comparison of the results 
from the idealized model used for tuning and a complete model that has fully 
implemented models of the main circuit shows a very good agreement. 
In chapter 13 the control of the TCSC is investigated when it is inserted in a 
transmission line. Some uncertainties with respect to line resistance variation and 
source impedance variation are defined and the control system is tuned for these 
conditions. 
Chapter 14 describes very briefly how one can investigate the electrical damping 
at subsynchronous frequencies of a generator connected to a radial transmission 
line that incorporates a TCSC. 
Finally in chapter 15 the result of the work is summarized together with a short 
outlook. 
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CHAPTER 2 
REACTIVE POWER AND TCSC  
  

2.1 PHYSICS OF REACTIVE POWER 
The subject of this thesis is Thyristor Controlled Series Capacitors and it deals 
mainly with the control of such devices. Specifically a certain control scheme 
named Synchronous Voltage Reversal will be dealt with in detail. However, 
before entering this rather particular topic it seems appropriate to give a broad 
background on the problems related to reactive power consumption in power 
transmission systems in general. 
Many people regard reactive power as a diffuse concept, more or less artificially 
created from mathematical considerations. The rest of this section presents an 
interpretation of what reactive power is in terms of physical phenomena. The 
explanation immediately clarifies what reactive power compensation means and 
how it may be implemented. 
In this thesis the discussion will be restricted to the inductive reactive power 
consumption in transmission lines caused by the load current. A similar 
interpretation may be worked out for the capacitive reactive power generation 
emerging from the electrical field between the phase conductors when the line is 
energized with high voltage. 
 

2.1.1 Magnetic fields associated with transmission lines 

Physics teaches that transfer of electrical power along a transmission line is 
always associated with magnetic and electrical field energy. A magnetic field 
surrounds the phase conductor whenever any current flows in that phase. The 
field strength is proportional to the current and the field is distributed in space so 
that the field strength is high close to the conductor surface and it lessens fast 
with the distance from the conductor. Figure 2-1 portrays the magnetic field 
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strength and figure 2-2 depicts the magnetic energy density distribution in 
space in the surroundings of a three-phase transmission line having three bundled 
conductors in each phase and loaded with symmetrical current. It is a snapshot 
taken when the phase B current peaks. The three upper diagrams to the left 
indicate the instantaneous phase currents. 

 

 
Figure 2-1 Magnetic field strength around a transmission line. 

 
 

 
Figure 2-2 Magnetic energy density around the line. 
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The energy density is proportional to the square of the magnetic field strength 
and accordingly is even more concentrated around the conductors in each phase. 
We may conclude that the magnetic energy is more or less bound to the phase 
conductors. The three lower diagrams to the left in figure 2-2 show the energy 
associated with each phase in the line. The energy is proportional to the square of 
the instantaneous phase current. It can easily be confirmed that the total magnetic 
energy per unit length is constant in time at symmetrical load. However this 
constant total energy is being redistributed between the phases during each half 
cycle of the network frequency. 
 

2.1.2 Redistribution of magnetic field energy in transmission 
lines 

Consider a certain, e.g. 100 km long, segment of a transmission line. It contains 
three phase conductors running in parallel but separated from each other by only 
some tens of meters. Yet no bridges exist between the phase conductors where 
field energy bound to one phase may pass and bind to another phase. Thus no 
redistribution between the phases of magnetic field energy is possible within the 
considered segment. Accordingly, in order to perform the redistribution of the 
field energy between the phases, the whole field energy must be transported 
along the transmission line to a location, where such bridges are available. It may 
appear that bridges only exist at the line terminal(s) through the feeding 
source(s). Figure 2-3 illustrates this situation. 
 

Wm
∆Wm

∆Wm

line segmentrest of linesource  
Figure 2-3 Redistribution of magnetic field energy. 

 
In fact it can be concluded that in a long transmission line the field energy will 
have to be transported hundreds of kilometers in order to be redistributed to its 
neighbour phase conductor which runs some tens of meters away. And this 
transport is effectuated twice per cycle of the network frequency! When the line 
current is high and/or when the transmission line is long a large portion of the 
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driving source voltage is necessary to accomplish the redistribution of field 
energy and therefore a voltage drop occurs along the line. 

The constant of nature µ0=1.26 mH/km implies that each conductor in an 
overhead transmission line exhibits an inductance in the range of 1 mH/km. The 
magnetic energy associated with each phase conductor illustrated in figure 2-2 
then peaks at wm=2.2 kJ/km when the line carries 1500 A rms. This figure 
translates to a reactive power consumption in the line of QL=3ωNwm=2.1(2.5) 
Mvar/km at 50 (60) Hz. It appears that the reactive power consumption in the 
transmission line is considerable for lines having a length of some hundred 
kilometers. Further the reactive power consumption is proportional to the square 
of the load current, thereby limiting the practically useful line current rating to a 
few kiloamperes. 

2.1.3 Reactive power compensation 

The discussion above indicates that any means that substitutes the need for 
transport of field energy will improve the performance of the transmission 
system. There are two obvious principles, which can be applied to do this.  
� The first principle, shunt compensation, is illustrated in figure 2-4. Bridges 

have been provided along the transmission line where field energy associated 
with different phases may be exchanged. Different kind of shunt 
compensators can be utilized. The energy may either be temporarily stored as 
electrostatic energy in shunt capacitors or it may be periodically redirected by 
means of power electronic devices like voltage source converters (VSC) 

 

Wm
∆Wm

∆Wm

line segment

compensator

rest of linesource  
Figure 2-4    Principle of shunt compensation 

 
� Figure 2-5 depicts the second principle, series compensation, where a storage 

device for the field energy has been provided in each phase. Instead of being 
transported the field energy is stored locally during the quarter cycle when the 
line current is low. Then it is returned during next quarter cycle, when the line 
current is high. 
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Wm

Wm

Wm

∆Wm

∆Wm

∆Wm

line segment

compensator

rest of linesource

energy
storage

energy
storage

energy
storage

 
Figure 2-5    Principle of series compensation. 

 
The energy storage devices in figure 2-5 may be implemented as passive 
capacitor banks as shown in figure 2-6. 
 

Wm

We

We

We

Wm

Wm

∆W

∆W

∆W

line segment

series
capacitor

rest of linesource  
Figure 2-6  Passive capacitor bank as temporary energy storage. 

 
The voltage across the capacitor opposes the movement of the magnetic energy 
along the transmission line, which reduces the voltage drop. Let the line current 
be sinusoidal 
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The energies then become 
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The opposite signs of the time-varying term in the magnetic and electrostatic 
energies indicate that compensation really comes about. Further the 
proportionality between the line current amplitude and the capacitor voltage 
amplitude indicates that the compensation is self-regulating. 

2.2 IMPACT OF SERIES COMPENSATION IN 
TRANSMISSION SYSTEMS 

The power transmission system is a complex structure, which connects power 
generating plants and power consuming load areas, which are spread over huge, 
often nation-wide and sometimes even international, geographical areas. The 
ultimate objective of the control of such a system is to deliver voltage with 
constant frequency and amplitude to all customers irrespective of the operating 
conditions and in spite of the disturbances that will be imposed on the network 
due to lightning strokes and other faults. This goal can be accomplished only if it 
is possible to transport large amounts of power to almost any point in the 
network at any time. When the system becomes stressed due to high load and/or 
disturbed operating conditions the lines may be heavily loaded and the internal 
reactive power consumption in the lines may produce conditions that jeopardize 
continued operation due to phenomena like voltage collapse or loss of 
synchronism. 
Having the discussion in the preceding section in mind makes one believe that 
the use of series compensation will relieve such problems to a great extent. It 
turns out that this guess is completely true and it will be illustrated below in two 
generic cases. The first case focuses on the improvement of voltage stability and 
the second case deals with the impact on the angular stability brought about by 
the use of series compensation. 

2.2.1 Impact of series compensation on voltage stability 

Some buses in the transmission system may lack reactive power support, i.e. 
there is no nearby generator that controls the voltage in the bus. The voltage in 
such a point depends very much on the actual power transfer on the line. In 
figure 2-7 it is assumed that only active power only is transported along a 
transmission line from the generating area A to the load area B. The voltage 
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characteristic in B versus the power transfer is depicted in figure 2-7. For obvious 
reasons such curve is called a “nose-curve”. It indicates that at a certain 
maximum loading of the transmission line a voltage collapse situation occurs. No 
power can pass through a node with zero voltage. A situation, where one node 
voltage drops a lot or even collapses, may endanger the power transfer in the 
whole transmission system. 
 

0

P

P
w comp

w/o comp

XL

XL

XC

A B

BA

U

U
P

U U1

U2

P

w/o comp

w comp

 
Figure 2-7 Voltage vs power transfer to a passive node (B) lacking reactive 

power support. 
 
Insertion of a compensating series capacitor changes the nose-curve dramatically, 
pushing the voltage collapse to a much higher power loading. Also the voltage 
drop in the load point B at a certain load is reduced from |UN-U2| to |UN-U1| 
when series compensation is introduced. 

2.2.2 Impact of series compensation on angular stability 

A different situation is shown in figure 2-8. A line connects two buses A and B. 
Both buses have strong reactive support, i.e. nearby generators control the 
voltage amplitude in each line terminal. The current flowing in the line is 
determined by the difference between the terminal voltages. Both terminal 
voltages are close to their nominal value so the voltage across the line mainly is 
caused by the phase angle difference between the terminal voltages. The sending 
end voltage phasor is phase advanced relative the receiving end voltage. In order 
to push more active power through a line the phase angle difference must be 
increased and the higher the reactance in the line (i.e. the longer the line is) the 
bigger angle deviation is needed. When the angle difference is 90° the maximum 
power transfer is reached for the specific line. If part of the inductive reactance is 
compensated by an inserted series capacitor the total reactance becomes smaller 
and a smaller angle deviation is required to push a certain amount of power. 
Figure 2-8 illustrates the characteristics for power transfer versus angle 
separation δ between the terminal voltages of the line without and with series 
compensation. 
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Figure 2-8 Power transfer vs terminal voltage angle separation for a line with 

rated voltage amplitude in both ends. 
  
It is obvious from the figure that a significant increase of the maximum power 
transfer is obtained and also that the steady state operating angle deviation is 
reduced from δ1 to δ2. Both these effects contribute to improve the system’s 
ability to remain in synchronous operation even after severe faults. 
In practice the angle deviation between the end-point voltages of a line normally 
is kept below 30-40° in order to preserve necessary stability margins. The power 
transfer capability of the line (without series compensation) then approximately 
reaches the so-called surge impedance load (SIL) of the line. The SIL is defined 
as 
 

C
LZ

Z
U

SIL

SIL

SIL

llN

=

= −
2

,

         (2-4) 

 
where UN,l-l  is the rated line-line system voltage, L is the series inductance per 
km and C is the shunt capacitance per km of the line. L is somewhat smaller than 
µ0 = 1.256 mH/km and C is somewhat bigger than ε0 = 8.85 nF/km. Practical 
values of ZSIL ranges from 200-400 Ω. The loadability of a 500 kV line thus is the 
order of 800 MW. The use of series compensation practically permits an increase 
of the line loadability almost to the double SIL thus reaching approximately 1500 
MW. 
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2.3 IMPLEMENTATION OF FIXED SERIES 
CAPACITORS 

One way of explaining the improvements of transfer capability, which was 
reported in the preceding section, is to interpret the insertion of a compensating 
series capacitor as a virtual reduction of the length of the line. This was 
understood since a very long time and series compensation of transmission lines 
have been practiced since at least half a century. The first series-compensated 
400 kV line was taken in service in Sweden in the 50’ies. Today it is in practical 
use in many countries, specifically where remote hydro-generation resources 
have been exploited to power load centres. Such power systems are found in e.g. 
Brazil, Argentina, USA, Canada, South Africa, China, Russia, Scandinavia and 
other countries. Today series compensators with a total accumulated rating 
exceeding 100 000 Mvars of are in operation. 

2.3.1 Single-line diagram 

A fixed series capacitor installation, being inserted to compensate part of the 
inductive reactance of a transmission line, typically has a single line diagram as 
shown in figure 2-9. 
   

IL LD

SD1 SD2C

M

L

B

S
 

Figure 2-9 Single-line diagram of a series capacitor (SC) installation 
LD=line disconnector,  SD1,SD2=Series capacitor disconnectors,  
C=capacitor bank, M=MOV varistor, B=bypass breaker,  
L=damping inductor,  S=spark gap 

 
The transmission line passes a disconnector arrangement LD, SD1, SD2. When 
LD is closed and SD1 and SD2 are open the series capacitor installation is 
isolated from the high-voltage line and is available for service or maintenance. 
The series capacitor C is inserted by closing SD1 and SD2, opening LD (with B 
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closed) and finally opening B. A Metal Oxide Varistor M is provided across the 
capacitor bank in order to limit the capacitor voltage when fault currents flow in 
the line. The energy rating of the MOV is limited and for faults close to the SC 
installation the energy accumulated in the MOV is limited by firing of a triggered 
spark gap S. The inductor L only serves the purpose of limiting the discharge 
current from the capacitor bank when B is being closed. 

2.3.2 Physical implementation 

Figure 2-10 shows a photo of a series capacitor installation in a high voltage 
network. The equipment for each phase is located on a platform that is fully 
isolated towards ground and between the different phases. A typical insulation 
level is 1300 kV for a 500 kV system. The capacitor bank, the MOV, the damping 
inductor and the spark gap are the main components on the platform. The bypass 
breaker often is provided in a self-sustained structure. Typical ratings for SC 
installations are 100 Mvar to 800 Mvar for voltage levels in the range 230-800 
kV. 
 

  
Figure 2-10 Series capacitor installation in a 400 kV system 

  

2.3.3 Development of series compensation technology 

During the fifty years since the first series capacitor was installed a continuous 
development of insulation materials has occurred. Improvements in materials and 
production technology has increased energy storage density and decreased losses 
in capacitors tremendously. In general the cost tend for capacitors is favourable 
and the space requirement for capacitor-based equipment has been remarkably 
reduced. Continuous improvement on the auxiliary equipment used in series 
compensators, like bypass circuit breakers, Metal Oxide Varistors and fast 
bypass equipment, also has taken place during the years. Finally digital systems 
have replaced the earlier analogue measuring and protection systems. E.g. are 
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optically powered current transducers used to perform measurement in the main 
circuit at high potential. 

2.4 APPLICATIONS FOR CONTROLLED SERIES 
CAPACITORS (CSC) 

The active power flow in the transmission line is inversely proportional to the 
total reactance of the compensated line. A change of the reactance of the inserted 
series capacitor thus immediately causes a change of the power flow in the line. 
The possibility to adjust the inserted series capacitor reactance therefore 
obviously can be utilized in two areas of application, namely for power flow 
control and for damping of power oscillations. 

2.4.1 Power flow control using CSC 

One problem in the operation of the transmission systems today is to route the 
power flow along certain desired transport facilities. The reason may be to avoid 
power flow bottlenecks, which limit the maximum power transfer in the system, 
or simply to comply with the commercial conditions that have been negotiated 
with neighbour utilities. 
For this reason it may be of interest to vary the inserted reactance in certain lines 
in the system in order to manipulate the power flow pattern. This type of  
“reactance control” mainly can be used as a means to control the load-sharing 
between several parallel transmission facilities that transfer power between to 
power systems or subsystems. Figure 2-11 depicts such an application. Naturally 
the total power transfer between the areas depends only on the generation/load 
balance in the areas. 
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Figure 2-11    Power flow control using CSC. 
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In general power flow control in meshed power systems requires a device having 
the capability to achieve some phase-shifting action. 
Power flow control applications seldom can benefit economically from the use of 
fast-acting controlling devices. Therefore equipment for this purpose most often 
would be based on mechanically switched apparatus, which are more cost-
effective and cause less loss than semiconductor based equipment. Controllable 
series capacitors may be implemented as a series-connection of series capacitor 
sections equipped with individual bypass circuit-breakers. 

2.4.2 Damping of power oscillations using TCSC 

Events in the transmission system like line switching, line faults etc. disturb the 
equilibrium in speed and phase of the generators in the system. During the fault 
the sending end generators tend to speed up and phase advance while the 
receiving end generators speed down and phase retard. When the fault is cleared 
the generators must find a new equilibrium, where all run with the same speed 
and with phase angles that comply with the new steady state power flow pattern. 
Due to the inertia of the generators (and participating machines in the load) and 
the angle versus power characteristics this new equilibrium point will be reached 
via an oscillation known as “electro-mechanical power oscillation” or simply 
“power oscillation”. The frequency of this oscillation falls in the range 0.2-2 Hz. 
Figure 2-12 illustrates an interconnection of two power systems with an 
interconnecting transmission line having both fixed and controllable series 
capacitors. 
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Figure 2-12 Series compensated interconnection between two power systems. 
 
Indeed it was remarked in section 2.4.1 that insertion of the series capacitor in 
the interconnecting line does not impact on the power flow in steady state. 
However, during the transients following disturbances it is important that the 
power transfer capability in the interconnection is sufficiently strong, so that the 



2.4 Applications for controlled series capacitors 
 

 19

synchronism between the power systems is not at danger. This first-swing 
stability property is improved very much by the fixed series capacitor. However, 
essentially the fixed series capacitor does not provide substantial damping of the 
subsequent power oscillation. A controllable series capacitor therefore is 
installed in order to provide artificial damping of the power oscillations by active 
control of the inserted capacitive reactance. The use of controllable series 
compensation is a very efficient and robust method to achieve improved damping 
of power oscillations. Adequate equipment for power oscillation damping utilizes 
thyristor control of the inserted capacitive reactance. 

2.5 IMPLEMENTATION OF THYRISTOR 
CONTROLLED SERIES CAPACITORS 

2.5.1 Types of thyristor control 

Thyristor control of series capacitors may be implemented in two versions 
� Thyristor Switched Series Capacitor (TSSC) 
� Thyristor Controlled Series Capacitor (TCSC) 
The topology of the main circuit is identical for the two forms as illustrated in 
figure 2-13. The normal series capacitor bank has been equipped with a parallel 
thyristor controlled inductive branch. 
 

C

L

TSSC

 
Figure 2-13  Main circuit and valve current waveform for TSSC and TCSC 
 
In the TSSC the thyristor valve is utilized as a switch that inserts or bypasses the 
capacitor bank for any number of complete half-cycles of the network frequency. 
The inductance in TSSC can be small as the thyristor valve does not switch at 
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high valve voltages. Typically the reactance of the inductor is 2-5 % of the 
capacitor bank reactance at rated network frequency. 
In the TCSC, on the other hand each thyristor is fired with phase angle control 
once per cycle. A bigger inductance is required; typically its reactance at network 
frequency is 5-20 % of the capacitor bank reactance. 

2.5.2 TCSC and subsynchronous resonance (SSR) 

When the line inductance is series compensated by a capacitor an electrical series 
resonance will be created. If the degree of compensation is below 100 % then the 
resonance frequency will occur below the rated network frequency. Thermal 
power stations use turbine-generator sets with shaft systems that normally have 
mechanical torsional eigen-frequencies below rated frequency. Torsion 
oscillations modulate the generated voltage causing sidebands to 50 or 60 Hz to 
show up.  When the lower sideband at fN-ftorsion coincides with the electrical 
resonance frequency in the network subsynchronous resonance (SSR) is said to 
occur. It can be shown that at such conditions there is a risk that negative 
damping may appear, causing the torsional oscillations to increase in amplitude 
until shaft damage occurs if no protective action is taken. 
The problems with SSR put restrictions on the useful degree of compensation 
that can be used in networks to which thermal power plants are being connected. 
Sometimes the restrictions limit the compensation degree to levels below what 
would have been desired from a strict power transmission point of view. 
Use of thyristor control according to the TCSC approach has a major effect on 
the risk for SSR, as will be discussed in further detail in later chapters. For now it 
is sufficient to mention that the apparent impedance of the TCSC in the 
subsynchronous frequency range deviates completely from that of a passive 
capacitor bank. This fact can be utilized to enhance the degree of compensation 
using TCSC to levels beyond those that would be safe from a SSR standpoint 
using fixed, passive capacitor banks. 

2.5.3 Existing installations 

 A test valve using the TSSC approach was installed for some years in: 
� Kanawha River SC, USA: owned by AEP, built by ABB 1991 [I1, I2] 
Five installations of the TCSC type so far have been built: 
� Kayenta TCSC, USA: owned by WAPA, built by Siemens 1992 [I3, I4] 
� Slatt TCSC, USA: owned by BPA, built by GE 1993 [I5, I6] 
� Stöde TCSC, Sweden: owned by Svenska Kraftnät, built by ABB 1997 [I7] 
� Imperatríz TCSC, Brazil: owned by Eletronorte, built by ABB 1999 [I8] 
� Serra da Mesa TCSC, Brazil: owned by Furnas, built by Siemens 1999 
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Figure 2-14 shows a photo of the Imperatríz TCSC in Brazil. The capacitor bank 
is placed on the right-hand side of the platforms, the valve is located in the house 
on the left-hand side and the MOV arresters are placed in the middle of the 
platform. The bypass breaker is placed free-standing in the foreground to the left 
outside the platform. The TCSC inductor can be partly seen in the left-most side 
of the photo. 

 

 

 
Figure 2-14 Photo of  Imperatríz TCSC, Eletronorte, Brazil. 

2.6 TCSC IN THE FACTS FAMILY 
The TCSC is a member of the FACTS family, which consists of a number of 
power electronic based apparatus developed to improve the controllability of the 
AC transmission system. Beside the since long established members, like SVC 
and HVDC, TCSC seems to be one of the first new FACTS devices to find 
commercial applications.  In the subclass of devices that insert voltage in series 
with the line the TCSC is competing with the 
� Thyristor Controlled Phase Angle Regulator (TCPAR), a transformer based 

phase shifter with thyristor control 
� Unified Power Flow Controller (UPFC), a back-back VSC configured as a 

phase shifter between a shunt transformer and a series boost transformer 
� Static Synchronous Series Compensator (SSSC), a VSC based device 

injecting voltage via a boost transformer 
The TCSC has the advantage of being directly implemented in the main circuit. 
No interfacing transformer is used, which brings about a big cost-advantage in 
high-voltage applications. Also losses are minimized when the interfacing 
equipment is not needed. 
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Comparing studies also have shown that the contribution to damping using a 
TCSC is as good as or better than TCPAR or UPFC of similar rating. 
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CHAPTER 3 
TCSC IN STEADY STATE OPERATION 
  

3.1 TOPOLOGY, PARAMETERS, NOTATION 
In our analysis we shall first look at the waveforms in steady state operation. In 
this study we consider the simple main circuit according to figure 3-1. 
 

iL
uC

iV

+ -

C

L
R

F

 
Figure 3-1    TCSC main circuit. 

 
The reference directions of currents and capacitor voltage have been indicated in 
figure 3-1. These references are used throughout this thesis. The thyristor 
carrying conducting current in the positive direction is marked with an ‘F’, for 
FORWARD direction. It can only be triggered when positive capacitor voltage 
exists. Correspondingly the ‘R’ thyristor, the REVERSE thyristor, conducts 
current in the negative direction and can only be triggered, when the capacitor 
voltage is negative. 
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The capacitance of the bank in each phase is C and the inductance in the thyristor 
branch is L. These two branches together form an LC circuit with the resonance 
frequency ω0  
 

ω 0
1

=
LC

         (3-1) 

 
The reactance in the capacitor bank and in the inductor have equal magnitude 
reactance X0 at their common resonance frequency 
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For proper functioning of the TCSC it is necessary that ω0 > ωN, where ωN is the 
network frequency. The quotient between the resonance frequency and the 
network frequency is a design parameter, which we will denote as λ in the 
analysis. Its definition is given in (3-3). 
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       (3-3) 

 

Typical values of λ fall in the range 2 - 4. 

3.2 FORMULAS FOR STEADY STATE OPERATION 

3.2.1 Assumptions, angle definitions 

The normal operating mode of a TCSC is known as “capacitive boost mode”. 
The generic waveforms in steady state of this mode are shown in figure 3-2. 
It is assumed that the line current iL is sinusoidal; this assumption is justified by 
the fact that line current in high-voltage transmission systems normally is not 
very much polluted by harmonics. The waveform of the line current also is rather 
little influenced by any harmonic distortion in the series capacitor voltage due to 
the comparatively high impedance in the transmission line at higher frequencies. 
Further the losses in the circuit have been neglected. 
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The thyristor is triggered when the capacitor voltage is approaching the zero line 
before zero-crossing occurs. If the line current is positive the capacitor voltage 
changes from negative to positive, so that the REVERSE thyristor will be 
forward biased before the zero-crossing. When it is triggered the valve current 
becomes negative and adds to the line current when it passes through the 
capacitor. Thus an extra charge will be pushed into the capacitor from the 
thyristor branch in addition to the charge provided by the line current. In this way 
an extra voltage, the boost voltage, will appear across the capacitor. 
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Figure 3-2 Generic waveforms for TCSC operating in capacitive boost mode. 
 

In the study of steady state conditions the thyristor trigger angle α (shown in 
figure 3-2) can be used as the control parameter. Like in other line-commutated 
converters α is referred to the earliest instant when forward voltage appears 
across the thyristor. In capacitive mode operation the trigger angles is around 
140-180°. Often it is more practical to use the control angle β  (shown in figure 
3-2). It is related to α by the expression 
 

α π β= −          (3-4) 

 

Also the conduction angle σ  (shown in figure 3-2) appears in formulas in the 
literature about TCSC. Obviously 
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βσ 2=          (3-5) 

 

It should be noted that, although the definition of α was referred to the zero-
crossing of the capacitor voltage, in practice the phase information to be used for 
synchronization is always derived from the line current, i.e. the angle used in 
practice is rather α-π/2, which is also shown in the figure. 

3.2.2 Derivation of general formulas 

The waveforms in steady state will be derived in the following. It is assumed that 
the TCSC circuit in figure 3-1 is powered by a stiff current source with current 
amplitude $I L  and with frequency ωN 

 

( )i t I tL L N= $ cosω         (3-6) 

 
If the losses are negligible the thyristor conduction interval becomes symmetrical 
around the line current maximum. Let the conduction interval be  
 

− < <β ω βN t          (3-7) 

 
So far we have not determined which one of the thyristors (or both) that shall be 
conducting in the interval, we only have postulated that the valve is conductive. 
Among the solutions derived from this assumption we will sort out the different 
operating modes later. 

 
� Differential equations 

The following set of differential equations apply in the interval -β<ωNt<π-β  
(solutions in other intervals are obvious) 
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� Thyristor current and capacitor voltage as time functions 
The solution to the equations is given by 
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As expected the limit value of equation (3-10), when β approaches zero, is 
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� Asymptotic behavior 
Equations (3-9) and (3-10) both contain a factor cosλβ  in the denominator. This 
factor equals zero for certain control angles, namely 
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For such control angles the capacitor voltage and the thyristor current tend 
towards infinity because the apparent inductive reactance at fundamental 
frequency of the thyristor-controlled inductor branch matches the capacitive 
reactance of the capacitor bank. When connected in parallel the apparent 
impedance of the combination at network frequency appears to be infinite. A 
very large voltage must be applied in order to force the line current to flow 
through the combination. 
 
� Thyristor peak current and capacitor peak and firing voltages 

The peak value of the valve current, $iV , occurs at t=0 and we obtain from (3-9) 
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Let the capacitor voltage at ωNt=π/2 be $uC . Then (3-10) yields 
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The capacitor voltage at the beginning of the conduction interval also is 

interesting from valve design point of view. Name it 

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� Fourier analysis of thyristor current and capacitor voltage waveforms 
Thyristor current 
The time function for the thyristor current in (3-9) can be expressed as a Fourier 
series of the following kind 
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Calculation gives the Fourier coefficients for fundamental frequency (µ = 1), and 
harmonics of order µ = 3, 5, 7, ... 
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In the formula some quotients may be replaced by the limit value 
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This specifically applies to the fundamental frequency component 
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Capacitor voltage 
The fundamental frequency component of the current passing through the 
capacitor is given by 
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Then fundamental frequency component of the capacitor voltage has frequency 
ωN and the capacitor voltage then can be obtained through multiplication with the 

reactance 1
0j C

j X
Nω

λ= −  (compare equation (3-3)). We get 
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Finally the harmonic components of the capacitor voltage can be expressed as the 
product of the harmonic component in the negative valve current multiplied with 

the capacitor reactance 1 0
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= − . The following result is obtained 
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These formulas will be illustrated in section 3.3 below. 
 
Boost factor 
The ratio between the capacitor voltage fundamental frequency component with 
and without thyristor action is of specific interest in TCSC applications. We will 
call it the boost factor kB. The formula is obtained from (3-21) 
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3.3 CHARACTERISTICS IN DIFFERENT OPERATING 
MODES 

In this section the results of the mathematical analysis in section 3.2.2 will be 
evaluated and discussed. The different operating modes of the TCSC also will be 
explained. 

3.3.1 Boost factor for varying conduction angles 

The formula for the boost factor was given in (3-23). 
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Figure 3-3: Boost factor vs. control angle, λ=2.5. 
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Figure 3-3 presents the curve for one case with main circuit parameter λ = 2.5. In 
this case the resonance frequency of the main circuit LC circuit is 125/150 Hz in 
a 50/60 Hz system respectively. The reactance of the inductor is 1/2.52 = 16 % of 
the capacitor bank reactance at fundamental frequency. 
 

3.3.2 Capacitive boost mode 

The boost factor commence at unity for β=0 and starts to increase at about 
β=10° and it ascends along the asymptote at β=90°/λ=36°. Figure 3-4 illustrates 
the waveforms of the capacitor voltage in this capacitive boost mode. 
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Figure 3-4  TCSC waveforms in capacitive boost mode for varying control 

angles with λ=2.5. 
 
It should be noted that the boost factor characteristics is a most non-linear 
function of the conduction angle and thus of the trigger angle. At reasonably high 
boost factors even a small change in trigger angle results in a large change in the 
steady state boost. 
The waveform of the capacitor voltage deteriorates when the boost factor 
increases. Figure 3-5 illustrates the relative harmonic voltage as a function of the 
boost factor in capacitive mode. The relative harmonic voltage is obtained by 
dividing (3-22) with (3-21). 
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Figure 3-5 Relative harmonic voltage vs boost factor, λ=2.5. 

 

3.3.3 Inductive boost mode 

Figure 3-3 shows that the mathematical formula (3-23) for the boost factor 
generates a branch even for control angles exceeding the asymptotic angle 36°. 
The calculated corresponding waveforms are shown in figure 3-6. 
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Figure 3.6 TCSC waveforms in inductive boost mode for varying conduction  

angles with λ=2.5. 
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The fundamental frequency component of the thyristor branch current now is in 
phase with the line current and its magnitude exceeds that of the line current. 
The fundamental frequency component of the capacitor current then opposes the 
line current as shown in figure 3-7. 

 

 
Figure 3-7    Currents in TCSC operating in inductive boost mode. 

 
Accordingly the phase of the capacitor voltage, which is inserted in series with 
the line, appears to be inductive when referred to the line current direction. 
Therefore this mode of operation is called the inductive boost mode. In this 
mode of operation the thyristor current is very high. 
The relative harmonic content in the capacitor voltage is depicted in figure 3-8. 
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Figure 3.8 Relative harmonic voltage vs boost factor, λ=2.5. 

 
The graph shows that the waveform is very much distorted even for small 
negative boost levels with absolute values close to 0.3. 
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3.3.4 Impact of  inductor size 

As a second example we shall study the case that the inductor in the thyristor 
branch is smaller. We assume λ = 3.5, corresponding to a resonance frequency 
175/210 Hz in a 50/60 Hz system respectively. The inductor reactance is about 
half the size of the preceding case i.e. 8.2 % of the capacitor bank reactance. 

Figure 3-9 shows the boost factor kB versus the control angle β. 
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Figure 3-9 Boost factor versus conduction angle for TCSC with λ = 3.5. 

 
The left part of the figure is similar to the curve in the preceding case (figure  
3-3). The angle range for capacitive mode however is narrower and a second 
asymptote has entered from the right. It appears at β=77.14° according to 
equation (3-12). 
Four different regions can be identified: 

� capacitive boost mode region: 0<β<25.7° 

� inductive boost mode region: 25.7°<β<approx. 55° 

� region A: 55°<β<77.1° with capacitive boost 

� region B: 77.1°<β<90° 
 
Capacitive boost mode: The waveforms are similar to those in the preceding 
example. Figure 3-10 presents a comparison between the two main circuit 
designs when operating with identical boost factor. It shows the waveforms for 
the two different TCSC main circuits operating at the same boost factor kB=2.0. 



3.3 Characteristics in different operating modes 
 

 35

 

-200 0 200
-2

-1

0

1

2

deg

uC

lambda= 2.5, beta=  29.3 deg

-200 0 200
-4

-2

0

2

4

deg

iL
, i

V

-200 0 200
-2

-1

0

1

2

deg

uC

lambda= 3.5, beta=  21.9 deg

-200 0 200
-4

-2

0

2

4

deg

iL
, i

V

 
Figure 3-10 Waveforms at kB=2.0 for TCSC with two different main circuits. 

 

As expected the one using higher λ will have higher thyristor peak currents and 
somewhat more distorted waveform. 
Remark:  It appears in the figure that the capacitor peak voltage is lower than 2 
pu even for a boost factor that equals 2 pu. The reason for this is that the thyristor 
current vanishes between the conduction intervals causing the corresponding 
added capacitor voltage to have some resemblance with a square-wave. It should 
be noted that the amplitude of the fundamental component of a square-wave 
having unity amplitude is 4/π ≈1.27. 
Inductive boost mode: In figure 3-11 a similar comparison is made in the 
inductive boost mode region. 
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Figure 3-11 Waveforms kB=-0.5 for two main different main circuits. 
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Obviously the harmonic content in these waveforms is high in general and the 
harmonic content worsens when λ gets high. In practice a rather low λ is required 
in order to make the operation possible. At low boost levels the harmonic 
composant in the capacitor voltage is higher than the peak value of the 
fundamental frequency component. 
 
Behaviour close to the second asymptote 
Region A: In figure 3-9 there is a narrow region close to the second asymptote in 
which the fundamental voltage is capacitive and has an absolute value below 1. 
The corresponding waveform is shown in left part of figure 3-12. This waveform 
results mathematically from the assumption made in the derivation of the boost 
factor formula, that the valve remains conducting during a certain angle interval, 
independent on the current direction. It appears in the calculated waveform that 
the valve current will flow alternatively in both directions during each 
conduction interval. In practice this kind of operation does not appear to be 
meaningful. 
 
Region B:  The right-hand side graphs in figure 3-12 show the waveforms when 
the conduction angle is in region B, i.e. a little bit to the right of the second 
asymptote in figure 3-9. This case also is a “pathological” case that results from 
the assumptions made for the mathematical derivation of formulas.  
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Figure 3-12 Waveforms close to the second asymptote in figure 3-9. 
Region A, capacitive boost (left), Region B, inductive boost (right). 
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3.3.5 Bypass mode 

Assume that the TCSC inductor is selected so that λ=2.5 as in figure 3-8. When 
the control angle is 90° the valve becomes continuously conducting. In this 
condition the valve is said to operate in bypass mode. The resulting inserted 
reactance then tends towards the reactance of the capacitor and the inductor 
connected in parallel. The resulting boost factor is 
 

290, 1
1
λβ −

== oBk         (3-24) 

 

which in this case (λ=2.5) gives kB = -0.190. It can be seen in figure 3-8 that no 
harmonics are generated in bypass mode. Note that the valve current in bypass 
mode exceeds the line current as the capacitor bank generates some current, 
which is added to the line current, when passing through the valve. 
 

3.3.6 Blocking mode 

When no triggering command at all is given to the thyristor valve the TCSC the 
fixed capacitor bank is inserted. The operating mode is called blocking mode. 
 



 

 38

 



 39

CHAPTER 4 
SYNCHRONOUS VOLTAGE REVERSAL 
  

The waveforms for TCSC operating in steady state have been presented in the 
preceding chapter. Both capacitive and inductive boost modes of operation have 
been discussed. In this chapter the study will be continued in order to extend the 
description of the TCSC to facilitate also a discussion of the dynamics of the 
device. 
For this purpose the concept of equivalent, instantaneous capacitor voltage 
reversal will be introduced in order to describe the impact of thyristor operation 
in the TCSC on the capacitor voltage. This concept will be introduced in section 
4.1. The idea of describing the TCSC in terms of the equivalent, instantaneous 
voltage reversals is one of the major contributions in this thesis. 
In section 4.3 the boost factor, kB, will be redefined so that it can be used together 
with the new concept of the equivalent, instantaneous voltage reversals. The 
boost factor measures the apparent reactance of the TCSC at rated frequency as 
seen from the transmission system. 
In section 4.4 the dynamics of the boost factor will be described using the 
instantaneous voltage reversal concept. An intuitive model of TCSC boost is 
derived which is used to outline a boost control system for the TCSC in section 
4.5. 
Section 4.6 describes how the principle of instantaneous voltage reversal can be 
applied to a real system where the reversal process takes finite time. An equation 
is derived which is used to determine the thyristor firing instant from measured 
values of capacitor voltage and line current and using the desired equivalent 
reversal instant of the capacitor voltage as reference. The solution of this 
equation in run-time results in a control system which we will call the 
Synchronous Voltage Reversal (SVR) scheme. 
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4.1 THE EQUIVALENT, INSTANTANEOUS 
CAPACITOR VOLTAGE REVERSAL 

The TCSC main circuit is designed with respect to the stresses in the thyristor 
valve. Requirements on harmonic distortion of the capacitor voltage also may 
influence the main circuit selection. Usually the main circuit design parameter λ 
as defined in (3-3) will fall in the range 2 - 4. Thus the thyristor conduction time 
is always shorter than the half cycle time at the rated network frequency; in 
normal designs it is considerably shorter. The thyristor conduction in the TCSC 
provides a “current pulse” or a “charge pulse” into the capacitor. In steady state 
the thyristor conduction intervals appear when the line current passes through its 
maximum positive or negative values. At these instances the derivative of the 
line current is low or zero and accordingly the variation of the line current within 
the thyristor conduction interval is very small. As a first approximation we may 
consider it to remain constant during the conduction interval. 
Figures 4-1 and 4-2 demonstrate the capacitor voltage and the valve current. The 
behaviour immediately before, during and immediately after the thyristor 
conduction interval is shown. The main circuit design parameter λ varies 
between 2.5 and 10 and both capacitive (figure 4-1) and inductive (figure 4-2) 
boost mode operation is considered. The losses in the circuit have been 
neglected. With these assumptions the capacitor voltages at turn-on and turn-off, 
in the beginning and the end of the thyristor conduction interval, have equal 
magnitude but opposite signs. In other words the result of the intervention of a 
thyristor in the TCSC is a capacitor voltage reversal.  

 

-30 -20 -10 0 10 20 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

C
ap

 v
ol

ts
 [

kV
]

xC= 20.0ohms, fN=   50Hz, iL=  1.5kA, uZ=  -10kV

-30 -20 -10 0 10 20 30

-6

-4

-2

0

angle [deg]

V
al

ve
 c

ur
r 

[k
A

]

 
Figure 4-1 Voltage reversals in capacitive mode with kB=1.424 and λ=2.5,  

3.5, 5, 10, infinite. 
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Figure 4-2 Voltage reversals in inductive mode with kB=-1.122 and λ=2.5,  

3.5, 5, 10, infinite. 
 
Figures 4-1 and 4-2 show that if triggering is controlled so that the capacitor 
voltage zero-crossing instant remains unchanged, then all trajectories, 
irrespective of the main circuit design parameter λ, connect to the same post-
reversal line. The latter has the same constant slope as the pre-reversal capacitor 
voltage line. The slope of both these lines is proportional to the line current 
which was assumed to be constant. 
If no thyristor conduction occurs, i.e. if the thyristors are blocked, the pre- and 
the post-reversal lines coincide; the capacitor voltage just changes linearly due to 
the constant line current. Therefore it can be claimed that the effect of thyristor 
action in the TCSC is that it produces a parallel displacement of the pre- and 
post-reversal lines relative each other. The created vertical gap in this 
displacement is a measure of the strength of the thyristor action. 
The trajectories in figures 4-1 and 4-2 represent various TCSC main circuits 
using inductors with different inductance. When the inductance decreases the 
thyristor conduction interval turns out to be shorter and the thyristor peak current 
becomes higher. When the thyristor current totally dominates relative the line 
current an almost instantaneous voltage reversal results. The capacitor voltage 
trajectory in the idealized case where the inductance is zero has been added in the 
figures. 
Now let a real TCSC circuit having finite reversal time be fired at the angle 
ωNt=-β in the figures. Assume that the line current can be approximated to be 
constant during the conduction interval. The capacitor voltage zero-crosses at 
angle ωNt=0 and simultaneously the thyristor current peaks. The same 
displacement between the pre- and post-reversal lines, i.e. same the boost action 
of the TCSC, would be obtained in a hypothetical circuit performing an 
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instantaneous capacitor voltage reversal at the angle ωNt=0. The hypothetical 
circuit then would perform an equivalent, instantaneous capacitor voltage 
reversal. 
When the TCSC is connected in a transmission system the significant issue, from 
system point of view, is the boost action of the TCSC, i.e. the parallel 
displacement of the pre- and post-reversal voltage lines. The exact time function 
of the transfer between the lines is not very important. In the continued 
investigation of the TCSC therefore it is sufficient to deal with the equivalent, 
instantaneous voltage reversals in order to describe the TCSC dynamics.

4.2 THE ADDITIONAL CAPACITOR VOLTAGE 
CAUSED BY THYRISTOR ACTION 

The interpretation of the parallel displacement of the pre- and post-reversal lines 
for the system can be made clear as follows. The capacitor voltage comprises two 
contributions. One originates from the line current and the other one from the 
current circulating through the thyristor branch and the series capacitor bank. The 
latter component represents the thyristor boost action. The corresponding 
additional capacitor voltage can be calculated by integration of the thyristor 
current and dividing the resulting charge with the bank capacitance. The thyristor 
branch does not carry any current during most of the time and then the additional 
capacitor voltage does not change. Therefore the additional voltage is square-
wave-like. Curves showing the additional capacitor voltage for the cases in 
figures 4-1 and 4-2 are presented in figures 4-3 and 4-4.  
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Figure 4-3 Additional capacitor voltage in capacitive mode with kB=1.424 and  

λ=2.5, 3.5, 5, 10. 
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The waveforms have different main circuit design parameter λ but the 
fundamental frequency component is constant (the sinusoidal curve in the 
figures) and equals the fundamental component in a square-wave with 10 kV 
(capacitive mode with kB = 1.424 ) and 50 kV (inductive mode with kB = -1.122 ) 
respectively.  
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Figure 4-4 Additional capacitor voltage in inductive mode with kB=-1.122 and  

λ=2.5, 3.5, 5, 10. 
 
It can be seen that the amplitude of the additional voltage between the reversals, 
i.e. the difference between the pre- and post-reversal lines, for all cases are very 
close to each other. This applies specifically for capacitive mode of operation. 
The reason is of course that the waveforms for the capacitor voltage differ only 
for values close to the reversal point. The values of the capacitor voltage close to 
the zero-crossing contribute very little to the fundamental frequency component. 
Remark 1: The equivalent, instantaneous capacitor voltage reversal describes the 
reversal in a hypothetical TCSC circuit with a very small inductor with a high Q-
factor (low losses). The trajectories presented in figures 4-1 and 4-2 show that 
the thyristor current increases fast with increasing λ.  The values shown for λ=10 
in inductive mode of operation cannot be realized even for short-time operation, 
due to the very high di/dt that results from the combination of a small inductance 
in the circuit and a high turn-on voltage. 
 Remark 2: The assumption that the line current is constant during the whole 
thyristor conduction interval has the consequence that the thyristor current 
becomes symmetrical around the time instant when the capacitor voltage cuts the 
zero line. The deviation in a real circuit from the assumption of constant line 
current decreases with decreasing length of the conduction interval. Thus main 
circuits with high λ and operation in capacitive mode with low boost are better 
described by this approximation than low-λ circuits operating in inductive mode.  
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4.3 DEFINITION OF BOOST FACTOR 
The boost factor kB was introduced in section 3.2 dealing with the analysis of the 
TCSC operation in steady state.  Equation (3-23) designates the formula for the 
boost factor versus the control angle β. In this thesis the boost factor kB is used as 
a measure of the ratio of the apparent reactance of the TCSC as seen from the 
line and the physical reactance of the series capacitor bank. The reactance is 
evaluated at rated network frequency. Thus assume that a sinusoidal line current 

LÎ  with rated network frequency is injected into the TCSC and that it produces a 
sinusoidal voltage with amplitude 0

ˆ
CU , when the thyristor valve is blocked. 

When the valve is deblocked and the control angle has been adjusted the 
fundamental frequency component of the capacitor voltage is changed to 1

ˆ
CU . 

The boost factor then is defined as 
 

0

1

ˆ
ˆ

C

C
B U

Uk =          (4-1) 

 

In the formula the signed amplitude of 1
ˆ

CU  is used, which means that the boost 
factor is positive for capacitive apparent reactance and negative for inductive 
apparent reactance. Figures 4-5 and 4-6 show the waveforms in capacitive and 
inductive mode of operation. 
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Figure 4-5 Illustration of boost factor in capacitive mode. 
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Figure 4-6 Illustration of boost factor in inductive mode. 

 
In the following section of the thesis we will discuss the dynamics of the boost 
factor in the TCSC utilizing the idealized concept of equivalent, instantaneous 
capacitor voltage reversals. The additional voltage then becomes a square-wave. 
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Figure 4-7 Definition of boost voltage. 

 
The boost voltage uZ is defined as the amplitude of the square-wave with sign 
according to figure 4-7. Positive sign indicates capacitive boost and negative sign 
inductive boost as shown in the figure. The fundamental frequency component of 
the additional capacitor voltage related to the equivalent, instantaneous capacitor 
voltage reversal is given by 
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Accordingly the boost factor  becomes 
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4.4 BOOST FACTOR DYNAMICS 
In this section we shall demonstrate how simple the dynamics of the boost factor 
can be explained using the concept of equivalent, instantaneous capacitor voltage 
reversals. In this framework the TCSC capacitor voltage in steady-state operation 
appears as in figure 4-8. It is composed of pieces of sinusoidal curves joined by 
instantaneous reversals. 
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Figure 4-8 Idealized capacitor voltage waveforms in steady state. 

 
The variation of the capacitor voltage in the meantime between consecutive 
reversals depends exclusively of the line current. In steady-state operation the 
capacitor voltage reversals occur equidistantly in the TCSC with a repetition rate 
that equals twice the frequency of the line current. The triggering of the reversals 
must appear with a particular phase relationship relative the line current if 
steady-state conditions shall prevail. The requirement simply is that the time 
integral of the line current between consecutive reversals must be zero. The 
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capacitor voltage immediately before an upcoming reversal equals the capacitor 
voltage immediately following the preceding reversal if this condition has been 
fulfilled. The boost voltage then remains constant in the successive reversals and 
the boost level remains constant and accordingly the TCSC operates in steady 
state. These equilibrium reversal positions coincide with the line current 
maximum and minimum values. Figure 4-9 illustrates the conditions just 
described. 
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Figure 4-9 Steady-state boost in capacitive and inductive mode. 

 
In figure 4-10 the voltage reversal has been phase advanced from the equilibrium 
position in figure 4-9. The displacement causes an increase of the boost voltage 
at the right-hand reversal because the capacitor bank is charged with more 
positive charge and it is discharged with less negative charge by the line current. 
The change in boost voltage at each reversal is proportional to the line current 
amplitude LÎ  and to the phase deviation Cϕ∆  from the equilibrium position. 
There is a change of charge both at the beginning and at the end of the interval 
between the reversals so that 
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Figure 4-10 Increasing boost in capacitive and inductive mode. 

 
As the steady-state non-boosted capacitor voltage is given by 
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the corresponding increase per reversal of the boost factor (defined in section 
4.3) becomes 
 

CBk ϕ
π
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The reversal rate is the double network frequency so in average the rate of 
change of the boost factor is given by 
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The boost factor continues to change with the speed  given by (4-7) as long as the 
phase advancement Cϕ∆  is present. 

In a similar way the boost voltage decreases, as shown in figure 4-11, when the 
voltage reversals are being phase  retarded relative their equilibrium positions. 
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Figure 4-11 Decreasing boost in capacitive and inductive mode. 

 
A net charge is taken from the capacitor bank by the line current due to the 
reduced amount of positive charge and the increased amount of negative charge. 
The boost factor keeps decreasing as long as the reversals remain retarded 
relative their equilibrium positions (i.e. Cϕ∆ <0). Of course the boost factor 
decrease ceases when the boost voltage becomes zero because the thyristor 
cannot conduct in its reverse direction. 
It shall be observed that according to equation (4-7) the speed of change of the 
boost factor kB is proportional to the displacement ∆ϕC of the reversal angle. The 
impact on the capacitor voltage is proportional to the actual line current. 
Accordingly the behaviour of the control system is critical when the line current 
is high. Any malfunction or imperfection then easily may cause hazardous 
voltage stress on the capacitor and the thyristor valve.  
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4.5 OUTLINE OF A BOOST CONTROL SYSTEM FOR 
TCSC 

Equation (4-7) shows that the time derivative of the boost factor, 
dt

dkB , depends 

on the angular displacement of the equivalent, instantaneous voltage reversals 
from their equilibrium position. If the timing of the equivalent, instantaneous 
capacitor voltage reversals can be adequately controlled by the TCSC’s 
triggering system, then the design of the control system becomes easy and 
straightforward, because the TCSC boost then can be described simply as an 
integrating process as shown in figure 4-12. 
 

fN16C Bk

 
Figure 4-12    Model of the boost process. 

 
In theory such a process can be controlled simply by proportional feedback; in 
practice a PI controller would be utilized. This is the simple solution to the boost 
factor control problem using the Synchronous Voltage Reversal (SVR) concept. 
To “control the timing of equivalent, instantaneous voltage reversals” translates 
in practice to “directly control the zero-crossing of the capacitor voltage”. 
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Figure 4-13 Outline of the boost control system. 
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In next section it will be explained how this control is obtained by a 
supplementary independent triggering control system. When given a time 
reference pulse this system selects the thyristor triggering instant such that the 
capacitor voltage zero-crossing instant occurs at a fixed delay time after the 
reference pulse. The boost control system now may be outlined according to 
figure 4-13. The line current and the capacitor voltage are measured and the 
fundamental frequency components are being extracted in the block marked 
“phasor evaluation”. Then the complex quotient between the phasors is formed. 
Its imaginary part represents the measured apparent reactance of the TCSC. It is 
normalized with the capacitor bank’s physical reactance to get the measured 
boost level. The boost response is compared with the actual reference value and 
the error is entered to the boost controller. A Phase Locked Loop (PLL) is 
arranged and supplies line current argument information to the boost controller. 
The output of the latter is a pulse train with timing reference pulses to a SVR trig 
pulse generator block. In this block the firing instant is being calculated and a trig 
pulse is generated and sent to the appropriate thyristor. 

4.6 THE SYNCHRONOUS VOLTAGE REVERSAL 
EQUATION 

The function of the block marked “SVR trig pulse generation” in figure 4-13 will 
be explained below with reference to figure 4-14. 
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Figure 4-14 Waveforms and definitions for the SVR equation. 
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The time reference pulse defines the time tZ, i.e. the time instant, when it is 
desired that the capacitor voltage shall become zero. It shall occur with a fixed, 
given delay Tdel relative the reference pulse. Now measured values of the 
capacitor voltage and the line current are being collected. In the figure measured 
values are acquired  at time tM.  
The thyristor triggering time-point tF , which causes the capacitor voltage to zero-
cross at tZ  is calculated based on the measured values of the capacitor voltage, 
the line current and the known main circuit design parameter λ. This calculation 
obviously involves some assumption about the variation of the line current in the 
interval between the measuring point tM and the voltage zero-crossing instant tZ at 
the midpoint of the thyristor conduction interval. In a simple approach the line 
current is extrapolated to remain constant keeping its latest measured value. 
Another more refined assumption may involve a sinusoidal line current 
waveform. Several calculations may be performed with newly updated measured 
values until triggering occurs. 
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Figure 4-15 Main circuit and definition of direction. 

 
Here the simplest assumption, i.e. the constant line current approximation, will 
be used. The previous figure 3-1 is reproduced once again as figure 4-15. 
Let the measured line current at t = tM be iLM and assume that it remains constant. 
The equations in the conduction interval are 
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Combining these two equation together with the definitions in (3-1) and (3-3) 
yields 
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The solution, which has the initial value ( ) 0=FV ti  is 
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The capacitor voltage can be obtained according to (4-8) by differentiating the 
expression (4-10) for the valve current. Combining the result with the definition 
in (3-3) we get 
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But we assumed that the line current is constant so we also get 
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where we have again used (3-3). The upper equation in (4-12) makes it possible 
to calculate uCZ every time a new measurement has been performed. Put 
 

( )FZN tt −=ωβ         (4-13) 

 
The latter equation in (4-12) together with (4-13) now forms a non-linear 
equation that determines the triggering time instant 
 

( )[ ]λβλβ tan0 −= LMCZ iXu        (4-14) 

 
It is necessary to investigate under what circumstances a solution to (4-14) may 
be found and whether the solution is unambiguous. From its definition β is a 
positive quantity. Figure 4-16 shows the value of the function 
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Figure 4-16 Function values of (4-15). 

 
It can be seen in figure 4-14 that the boost voltage uCZ is positive and the line 
current is negative in capacitive boost mode. Equation (4-14) then has a unique 
solution in the interval 0<λβ<π/2 corresponding to the lower branch in figure  
4-16. 
Inductive boost mode also requires that the boost voltage uCZ is positive. 
However also the line current is positive in this case. Figure 4-16 shows that a 
unique solution certainly exists in the interval π/2<λβ<π  if  uCZ >πX0 iLM. 
 
We may summarize the SVR calculation scheme 
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Example 4-1 
We shall illustrate the properties of the Synchronous Voltage Reversal equations 
by some simulation examples. First assume that the line current is sinusoidal with 
constant amplitude and frequency. Further assume that the losses are negligible 
and that the reference instants for the reversals appear at their ideal positions, i.e. 
they coincide with the line current maximum and minimum values. Under these 
conditions the circuit is expected to preserve a constant boost level. Figure 4-17 
shows the result of such a simulation. The upper graph is the line current, the 
second from the top is the resulting capacitor voltage, the third from the top is the 
valve current and the bottom graph shows the calculated control angle β. The 
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trigger angle calculation is performed from the zero-crossing of the line current 
and it is repeated until triggering really occurs.  
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Figure 4-17 Simulation of SVR scheme operating without any corrections. 

 
It can be seen that the calculated control angles decrease with time just before 
triggering. This depends on the approximation applied in the SVR equation that 
the line current will keep its measured value constant until the valve conduction 
interval has passed. This approximation improves when the calculation time gets 
closer to the line current peak. However, in reality the average line current in the 
conduction interval exceeds the measured value at triggering to some extent. 
Therefore the calculated control angle becomes a little bit too big. Accordingly 
the thyristor valve is triggered slightly too early so that the boost level slowly 
increases. 
This drift in boost level easily is taken care of by the boost control regulator, but 
it might be of interest to investigate if a simple compensation can easily be 
applied in the triggering system. At least two approaches could be considered: 
� apply a multiplicative factor on the measured line current value in order to 

compensate for the current increase during the conduction interval 
� apply a fixed angle compensation of the commanded reversal instants. 
Figure 4-18 presents some simulation results for these two approaches. The 
graphs show the ratio between consecutive half-cycle capacitor voltage peaks as 
function of the boost factor. The circuit design parameter is λ=2.5 and the main 
circuit losses have been neglected. The upper graph relates to line current 
compensation and the lower to angle compensation. 
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Figure 4-18     Compensation of the SVR equation. λ=2.5. 

 
The graph shows that line current compensation provides excellent results. In this 
case (λ=2.5) a compensation factor fICORR = 1.20  is adequate. 
 
Example 4-2 
In the deduction of the SVR equations losses in the main circuit were not 
considered. In the context of equivalent instantaneous voltage reversals losses 
may be taken care of by a loss factor Df indicating the absolute value of the ratio 
between the post reversal and the pre reversal capacitor voltages. 
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Figure 4-19 Loss factor Df versus Q-factor (at fN ) for the inductor branch.  

  (λ=2.5) 
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Simulations were performed in order to derive the relation between the loss 
factor Df and the Q-value of the thyristor controlled inductive branch. Here the 
Q-value has been defined as the ratio between reactance and the resistance at 
network frequency. Please note that the loss factor is associated with the ratio of 
voltages before and after the reversal. It is not identical with the ratio between the 
capacitor peak voltages. In the simulations a current compensation factor fICORR = 
1.20 was applied. The results obtained are shown in figure 4-19. The graphs 
indicate that Df = 0.95 corresponds approximately to a Q-factor of 30. 
 
Example 4-3 
The SVR approach inherently symmetrizes the capacitor voltage. As long as the 
reversal reference pulses are equidistant and the line current is symmetrical, a DC 
offset voltage will not be created. A varying control angle will create a varying 
boost factor, but the capacitor voltage will not contain any DC component.  
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Figure 4-20 Simulation of TCSC with randomly varying reversal positions. 
 
Figure 4-20 shows an example where the timing reference pulse train is being 
phase modulated by a random signal shown in the upper graph. The other graphs 
are in order from the top: capacitor voltage, thyristor current and control angle β. 
The figure shows that the voltage remains symmetric in spite of the randomly 
changing reversal instants. One can also detect the integrating property of the 
SVR algorithm, which means that the capacitor boost voltage depends on the 
integral of the applied deviation of the reversal angle. 
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CHAPTER 5 
IDEAL APPARENT IMPEDANCE OF TCSC 
  

5.1 INTRODUCTION 
The preceding chapter dealt with the properties of TCSC control based on the 
Synchronous Voltage Reversal approach. It was assumed that the line current 
was stiff and sinusoidal. It was shown that the boost is controlled by the phase of 
the capacitor voltage zero-crossings with respect to the line current. 
Another, most important, characteristic of the TCSC behaviour relates to how it 
reacts with respect to small changes in the line current. For frequencies not equal 
to the network rated frequency this property may be described in terms of 
“apparent impedance” as function of frequency. For the passive fixed series 
capacitor the reactance at subsynchronous frequency is capacitive with a 
magnitude, which is   inversely proportional to the frequency. Thus, given the 
reactance at 50 or 60 Hz, the inserted reactance in the whole subsynchronous 
frequency range is determined. If a transmission line is compensated to a degree 
less than 100 %, an electrical resonance occurs at a subsynchronous frequency, 
where the magnitude of the capacitive reactance equals the total inductive 
reactance of the transmission line and the connected sources. The existence of the 
electrical resonance constitutes one of the prerequisites for establishing 
“subsynchronous resonance”, SSR, in a power system. (SSR is an interaction 
between the electrical resonance in the transmission system and the mechanical 
torsional resonance in the turbine-generator shaft string in a thermal power 
station connected to the transmission system). 
However, for a TCSC the apparent impedance for lower frequencies is not only 
determined by the inserted reactance at 50 or 60 Hz. On the contrary, the inner 
control of the TCSC has a substantial impact on the apparent impedance as will 
be seen in the following. 
Figure 5-1 illustrates the basic difference between the fixed series capacitor and 
the TCSC at an angular frequency ω. Note that the voltage inserted in series with 
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the line is determined by the voltage across the capacitor, which is in its turn 
created by the current passing through the latter.  
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Figure 5-1 Apparent impedance for fixed series capacitor (upper) 
 and for TCSC (lower) 

 
In the fixed series capacitor any line current must pass through the capacitor and 
any subsynchronous current creates a subsynchronous voltage proportional to the 
capacitive reactance at that frequency. In the TCSC the subsynchronous current 
in the capacitor depends on the triggering system’s reaction to any injected 
subsynchronous line current component. If the firing system is designed so that it 
prevents any subsynchronous current to pass through the thyristor controlled 
inductive branch, then the situation is just identical to that in the non-boosted 
series capacitor, i.e. the network sees a capacitive reactance with magnitude 
inversely proportional to frequency. On the other hand, if the whole 
subsynchronous current flows in the thyristor controlled inductive branch, then 
no subsynchronous current passes through the capacitor and no subsynchronous 
voltage will be created. Then the apparent impedance is zero. Due to the thyristor 
control also an amplified subsynchronous current may pass through the valve 
branch. Then the direction of the subsynchronous current passing through the 
capacitor must be phase opposed relative the subsynchronous line current. Then 
the reactance apparent to the network is inductive. Such behaviour is highly 
interesting with respect to the SSR problem, because in any frequency range 
where the TCSC apparent impedance is inductive, no electrical resonance can be 
created together with the inductance in the transmission system. Then one 
prerequisite for the existence of SSR is being set aside. 
In this chapter we will consider how deviations in the line current impacts on the 
capacitor voltage in some cases. We want to isolate the impact of the line current 
and accordingly it is assumed that the control system does not react at all on the 



5.1 Introduction 
 

 61

deviations in the line current. The operation of the TCSC is governed by a pulse 
train with equidistant pulses, which provide timing reference for the voltage 
reversals.  

5.2 DC CURRENT INJECTION 
A first example is illustrated by figure 5-2. A TCSC is operating in steady state 
when a small DC current component is suddenly added to the line current passing 
through the TCSC. The control system continues to send out the pulse-train with 
equidistant pulses with constant phase relative the line current fundamental 
frequency component. The pulses indicate the desired instants for the voltage 
reversals (or rather voltage zero-crossings) and the firing of the thyristors is 
determined according to the SVR equation using the measured line current and 
capacitor voltage values. Current correction using the factor 1.20 was applied. 
It can be seen that the TCSC, contrary to a fixed series capacitor, does not block 
a DC current component in the line. Instead according to the SVR algorithm the 
thyristors are fired so that the current pulses have different magnitude in the 
positive and the negative direction. The DC component in the line current 
therefore passes though the thyristor branch and does not cause any capacitor 
offset voltage. 
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Figure 5-2 TCSC response to an added DC component in the line current. 
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Of course any TCSC control system must sooner or later bypass any sustained 
DC line current component in order to limit the voltage stress on the capacitor 
and the valve. However, it should be observed that in the SVR approach this 
function is automatically provided by the thyristor triggering control without any 
involvement of the system providing the reference pulse train. The lower graph 
(marked “beta”) in figure 5-2 shows that different firing angles for the forward 
and the reverse thyristors will be obtained immediately at the onset of the DC 
current component. 
It is very instructive to deal with this problem using the equivalent, instantaneous 
voltage reversals. Figure 5-3 shows such waveforms. At the start of this 
simulation the pulse train has been phase adjusted so that the TCSC circuit with 
loss factor Df = 0.95 operates in steady state. During the first ten cycles of the 
simulation these conditions remain valid.  
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Figure 5-3 Sudden DC component added to the steady state line current: AC 
current and DC (upper), steady state capacitor voltage and voltage 
caused by DC (second), total capacitor voltage (third), reversal 
voltage step height (bottom). 

 
The upper graph shows the line current components. In the second graph from 
the top the steady state capacitor voltage and the additional capacitor voltage 
caused by the DC current component are shown separate. The DC current 
component gets integrated in the series capacitor and reverses each half cycle as 
shown in the second graph in figure 5-3. The offset of the DC voltage curve 
depends on the phase at the onset of the DC component, but after some time the 
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initial component has decayed and only an almost symmetrical triangular wave 
remains. The total capacitor voltage is depicted in the third graph and finally the 
voltage steps at the reversals (i.e. the charge passing through the TCSC valve) are 
shown in the bottom graph. Note that the total capacitor voltage never contains 
any DC offset voltage, but the DC line current component causes a temporary 
change of the boost factor. 

5.3 SUBSYNCHRONOUS SINUSOIDAL  CURRENT 
INJECTION 

We can repeat the procedure assuming that the added disturbance current is 
sinusoidal with a subsynchronous frequency. Figure 5-4 depicts the results of a 
simulation where a 10 Hz current component has been added to the steady-state 
current. 
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Figure 5-4 Sudden 10 Hz component added to the steady state line current: 
total line current,  added component (upper), capacitor voltage 
(second), valve current (third), control angle (bottom). 

 
The upper graph shows the total line current and the disturbance current. The 
second graph from the top shows the capacitor voltage. Very little deviation from 
the steady-state waveform can be noticed. The TCSC operates with a fixed pulse 
train that provides the time reference for the voltage zero-crossings. It shall be 
observed that the SVR block modulates the firing angle of the TCSC in order to 
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fulfil these requirements when the line current varies (join each second angle to 
see the subsynchronous variation). As a result the valve current is modulated 
with the subsynchronous frequency of the injected line current component. 

5.4 VISUALIZING THE BEHAVIOUR OF SVR AT 
SUBSYNCHRONOUS FREQUENCY 

We can anticipate the mathematical treatment to be presented in next section by 
showing some graphs, where the behaviour of the SVR-controlled TCSC will be 
illustrated using the equivalent, instantaneous voltage reversal model. 

Assume that the capacitor bank in a TCSC has the reactance 20 Ω/phase at 50 
Hz. In steady-state operation voltage reversals are performed each 10 ms. Further 
assume that the line current contains a 10 Hz component with amplitude 100 A in 
addition to the 50 Hz component. We postulate that the boost control system 
providing the reference pulses for the reversals is not being influenced by the 
added line current component, but continues to command equidistant reversals 
each 10 ms. Figure 5-5 depicts a simplified description of the TCSC behaviour 
according to the following statements 
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Figure 5-5     Illustration of apparent impedance of SVR-controlled TCSC.  

 
� the additional line current component is represented by a constant current in 

each interval between consecutive reversals; this is shown by the staircase 
curve approximating the sinusoidal curve in the upper graph 

� the additional current produces an additional capacitor voltage, which is 
shown in the lower graph; this voltage changes linearly within each interval 



5.4 Visaulizing the behaviour of SVR at subsynchronous   frequency 
 

 65

with a voltage slope that is proportional to the line current amplitude, i.e. to 
the height of the staircase line current curve 

� at each reversal command the actual voltage reverses; in the model this occurs 
instantaneously 

� the average capacitor voltage in each interval is represented by the value in 
the midpoint of the linear segments; these average values have been indicated 
by circles in the lower graph 

� for a low frequency the capacitor voltage may be represented by its average 
value in the whole interval; this is indicated by the horizontal line segments in 
the lower graph 

The figure shows that the average voltage line forms an approximation of a 
sinusoidal curve with 10 Hz frequency. This curve is positive each time the line 
current has positive derivative, which is natural as the slope of the capacitor 
voltage in each consecutive interval is higher than in the preceding one and 
accordingly the average capacitor voltage gets higher in each consecutive 
interval. Similarly the average capacitor voltage is negative when the additional 
line current has a negative slope. The described behaviour with an average 
capacitor voltage, which is proportional to the line current derivative, however 
characterises an inductor. Thus the TCSC appears like an inductance for 
subsynchronous frequencies. 
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Figure 5-6 10 Hz component added to the steady state line current:  line 

current deviation (upper), instantaneous capacitor deviation 
(second), capacitor voltage midpoints (third),  capacitor average 
voltage (bottom) 
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Figure 5-6 shows a similar curve, where we have not used the staircase 
approximation of the line current, but rather integrated the sinusoidal input 
current. The graphs confirm that the main conclusion, that the apparent 
impedance of the TCSC is inductive, still holds. The upper graph shows the 
additional line current component, the second graph the capacitor voltage 
deviation caused by the disturbance current component in the line. In the third 
graph the midpoint of each curve segment has been marked and is considered to 
represent the average capacitor voltage for that segment. Finally, in the lower 
graph, all the midpoints have been joined by a continuous curve, which 
represents the average capacitor voltage at the subsynchronous frequency. 
Figure 5-7 reveals curves similar to figure 5-5 for several different 
subsynchronous frequencies 
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Figure 5-7     Impact of subsynchronous current at varying frequencies. 
 
The graphs show that the voltage amplitude of the additional voltage increases 
with increasing frequency. This is in line with the result in  section 5.2, where it 
has been shown that a DC line current component will be effectively bypassed by 
the TCSC without causing any DC voltage across the capacitor. 
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5.5 MATHEMATICAL FORMULATION  
In this section we shall present a mathematical formulation of the discussion in 
the preceding section.  
When the deviation of the line current from its steady state waveform only 
contains low frequency components a difference equation can be derived, which 
can be interpreted as a description of an equivalent circuit of the TCSC. It was 
shown in the preceding section that we may treat the deviation current quite 
separate from the steady state current. In principle the disturbance current gets 
integrated in the capacitor and then it is periodically reversed equidistantly with a 
repetition frequency of twice the network frequency. 

5.5.1 Derivation of formula 

Thus assume that the disturbance current is given by ∆iL(t) and that the reversal 
instants occur at times 
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The deviation current can be approximated by one sampled value per interval 
between consecutive reversals if it does not contain components having 
frequencies exceeding the Nyquist frequency. Theoretically this means the whole 
subsynchronous frequency range.  
The development of the capacitor voltage now can be calculated in three steps 
� integrate the deviation line current from the first sample point to the reversal 

point in order to get the prereversal capacitor voltage 
� perform the voltage reversal taking the applicable loss factor into account to 

obtain the postreversal capacitor voltage 
� integrate the deviation line current from the reversal point to the second 

sample point to get the capacitor voltage in the second sampling point 
The above calculations may be performed using the formal operator p to denote 
the differential operator d/dt. We will use the formula 
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This formula is obtained by term-by-term integration of the Taylor expansion of 
the function f(t). Accordingly it can be applied only in intervals where the Taylor 
expansion of the function exists and is convergent. 
Then the calculation scheme yields the following equations 
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and reduction of the system gives 
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Now we may regard the capacitor voltages in the interval midpoints to be 
sampled values of a continuous curve, the capacitor average voltage ( )tu avC ,∆ .  
We may express the capacitor voltage also using differential operators. Then 
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and we get the operator expression for the apparent impedance of the TCSC 
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5.5.2 Low-frequency approximation 

Assume that the disturbance only changes slowly so that the operator p is small. 
Then we can approximate the impedance as follows 
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The loss factor normally is close to unity so we may neglect the last term. The 
remaining expression contains a constant term plus a term, which is proportional 
to the derivative operator p. The former represents an apparent resistance RTCSC 
and the latter an apparent inductance LTCSC. Using the expression for h in  
(5-1) we get the following approximation of the capacitor voltage caused by the 
low frequency deviation line current 
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The interpretation of equation (5-8) is that the average voltage across the TCSC 
for slow small deviation line currents corresponds to the voltage across an 
inductive-resistive circuit according to figure 5-8.  
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Figure 5-8 Low-frequency equivalent circuit of TCSC using SVR scheme. 

When the losses are small is the equivalent resistance zero. The reactance of the 
equivalent series inductance at nominal network frequency corresponds to π2/8 
times that of the series capacitor bank. 
 

5.5.3 Subsynchronous frequency function 

The operator form (5-6) for the apparent impedance is close to the frequency 
function describing the apparent impedance. The latter can be obtained by 
replacing the operator p with the complex number jω, where ω is the frequency 
of the subsynchronous disturbance current. Thus 
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Put 
 

( ) ( )

( )
( ) ( )

( ) ( ) 













−+






+















−++






−

=

=

=

2
sin1

2
cos1

2
cos11

2
sin1

1

πζπζζ

πζπζ
ζ

ω
ζζω

ω
ωζ

ff

ff

Z

N
ZNapp

N

DjD

DjD
k

C
kjZ    (5-10) 



5.5 Mathematical formulation 
 

 71

 
If the losses can be neglected the formula simplifies to 
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In this case obviously the apparent impedance is inductive in the whole 
subsynchronous frequency range. Figures 5-9 and 5-10 illustrate the frequency 
function derived above. 
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Figure 5-9 Ideal apparent impedance for TCSC using SVR scheme: 

apparent resistance factor  (upper), apparent reactance factor 
(lower) 
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Figure 5-10 Ideal apparent impedance for TCSC using SVR scheme: 

apparent resistance factor  (upper), apparent reactance factor 
(lower) 

 
It can be seen from figure 5-10 that the low-frequency approximation according 
to equation (5-8) remains valid up to about one third of the nominal network 
frequency. 
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CHAPTER 6 
REPRESENTATION OF THREE-PHASE 
POWER CONVERTERS 
  

The dynamical model of the TCSC is a central item in this thesis. The idea of the 
Synchronous Voltage Reversal scheme has been presented in earlier chapters and 
the basic behaviour of the TCSC has already been presented. 
So far the studies have considered each phase circuit of the TCSC separately. In a 
three-phase network, however, a strong interaction exists between the different 
phases. This is manifest by the fact that the current in the transmission line, 
where the TCSC is inserted, is mainly determined by the three-phase space 
vector representing the total inserted TCSC voltage. This space vector depends 
on the capacitor voltages in all phases and it is changed each time any thyristor is 
triggered in the TCSC. 
Therefore we shall in the following work with a model in which the TCSC is 
treated as a three-phase power electronic converter. Such converters typically use 
internal control variables like ”control angle α”, “phase shift ϕC” or similar. 
These control variables are applied repeatedly to determine triggering of each 
thyristor in the converter. In this chapter we shall consider a formal procedure to 
deal with the interaction between such variables and the transmission network 
represented as a three-phase entity. In this formalism we will make use of a 
sequence of frames. We will call them “converter-oriented frames” in 
consistency with “rotor-fixed frames”, which are frequently applied in theory of 
electrical machines. 

6.1 ROTATING COORDINATE SYSTEMS 
Before introducing converter-oriented coordinate systems it might be 
constructive to consider the role of rotating coordinate systems in describing 
electrical machines. Electrical machines contain two sets of windings, one fixed 
in the stator and one movable in the rotor. From an electrical circuit analysis 
perspective this means that we have to analyse an electrical circuit having 
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variable topology, as the magnetic coupling between the stator and the rotor 
circuits changes depending on the angle of the rotor shaft in the fixed stator 
coordinate system. Due to the rotor inertia only continuous changes in the shaft 
angle may occur. 
The analysis of machines is simplified by introduction of rotating coordinate 
systems, e.g. a rotor-fixed coordinate system. By transforming the stator 
variables into such a coordinate system they virtually operate on an electrical 
circuit with fixed topology. 

6.2 COORDINATE SYSTEMS FOR THREE-PASE 
POWER ELECTRONIC CONVERTERS 

Power electronic converters, just like machines, exhibit a time-variable electrical 
circuit topology. However, contrary to in rotating machinery, the topology 
changes are caused by switching operations, which occur at discrete time instants 
and theoretically are executed instantaneously. Therefore, any coordinate system 
adapted to reflect the converter state must be a sequence of frames rather than a 
continuously changing one.  
In a three-phase power electronic converter the semiconductor valves are 
arranged symmetrically with respect to the three phases of the connected electric 
power network. Therefore, in steady state operation, the semiconductor valve 
quantities like valve current, valve voltage etc. are identical for all switches in the 
converter. It is desired that the analysis of the converter’s behaviour could be 
performed in a single circuit with fixed topology. It is the purpose of the 
following discussion to outline an analysis method, which suggests such a 
description of power electronic converters. In this thesis we will deal with a 
TCSC, but it seems that similar principles may equally well be adapted on other 
comparable power electronic converters. 
 

6.2.1 Outline of TCSC as a three-phase power electronic 
converter 

The principal coupling between the electrical power network and the connected 
power electronic converter (TCSC) is demonstrated in figure 6-1. The 
transmission lines and the capacitor bank in the TCSC constitutes the “network”, 
while the “power electronic converter” comprises the thyristor valves together 
with the branch inductors. 
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Figure 6-1 Interface between the power electronic converter (TCSC) and the 
  network 
 

6.2.2 Three-phase quantities in the network 

The formalism for treating the quantities in the three-phase network is well 
established since almost hundred years. Here we shall consider the “space-
vector” approach [B1], in which the phase quantities are described as projections 
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Remark 1:  This transformation keeps the magnitude of the phase quantities, i.e. 
the space vector length is identical with the phase quantity amplitude. The 
transformation is not “power“ invariant. 
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Remark 2: Please note the distinction (in this thesis) between the two-
dimensional vector ( )ts)  and the three-dimensional vector ( )ts , which will be 
defined below. 
The equation system (6-1) can be solved giving the result 
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It is common to denote the real and imaginary part of the complex vector 
function as the α- and β-components as has been done in (6-2). The vector 
function trajectories often are depicted in a complex plane. The homopolar 
component normally is ignored in the theory of electrical machines (often it is 
identically zero), but in the theory of TCSC it must be taken care of, so for that 
reason we would prefer to represent all components, including the homopolar 
component, as a vector in three dimensions. We denote the axes of this vector in 
R3 as { }γβα eee ˆ,ˆ,ˆ  and denote that system as the FIXED system. The 
transformation rules can be expressed in matrix form as 
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6.2.3  Rotating coordinate system 

It is assumed that the undisturbed steady state line current in the TCSC is three-
phase symmetrical with amplitude LÎ  
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We will use the coordinate system, which is synchronized with this undisturbed 
line current vector. This system is called the IL_SYNC system. Space vectors in 
the rotating coordinate system will be denoted with the superscript ‘R’. Its 
components are called d- and q-components and the transformation rule is 
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Let us denote the homopolar component of the IL_SYNC system as ‘ Rs0 ’ and 
define it to be identical with the homopolar component in the FIXED 
coordinates. Then it translates to the matrix transformation 
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6.2.4 Connecting individual thyristors to the network 

When operating in steady state the thyristors in the TCSC are triggered with 
equidistant time delay in the sequence order as they have been numbered in 
figure 6-1. The total current contribution from all thyristor branches can be 
condensed into one quantity according to equation (6-2). 
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The current passing each one of the thyristors is associated with a certain phase 
current in the network. When inserted in (6-8) this phase current generates a 
contribution to the space vector Vi

)
 in a certain direction and to the homopolar 

current as indicated in Table 6-I. 
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 Table 6-I Connection between thyristor / phase current / space vector and 
  homopolar directions 

thyristor phase current space vector 
direction 

homopolar 
direction 

T0 +iVa 0 +1 

T1 -iVc π/3 (60°) -1 

T2 +iVb 2π/3 (120°) +1 

T3 -iVa -1 (180°) -1 

T4 +iVc 4π/3 (240°) +1 

T5 -iVb 5π/3 (300°) -1 

6.2.5 Streamlining calculations 

As said above the thyristors are being triggered in the same order as they have 
been numbered. In studying the thyristor operation it is practical to transform the 
circuit as indicated by figure 6-2. In this figure a virtual three-phase network 
having phases {u,v,w} has been established to represent the thyristor part of the 
circuit in figure 6-1 in such a way that the latest triggered thyristor connects to 
phase +u, the preceding one to phase –v, etc. Table 6-II gives the details 
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Figure 6-2 Transformation of the circuit in figure 6-1 in order to represent all
   thyristors by one single case 
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The connection to the real three-phase system is achieved through a switching 
network Mk. When the thyristor conduction intervals are shorter than 60° they do 
not overlap and then only one of the quantities iVu, iVv, iVw is non-zero. The idea is 
that switching takes place six times per cycle such that in practice only valve Tk 
will be conducting current, while the currents iVv and iVw  will always be zero.  
 
Table 6-II Connection between thyristors and phase currents in virtual  
  network 

thyristor phase current 

Tk +iVu 

Tk-1 -iVv 

Tk-2 +iVw 

T k-3 -iVu 

T k-4 +iVv 

T k-5 -iVw 

 
When the TCSC operates in capacitive boost mode and the line current is given 
by (6-5), the equivalent capacitor voltage reversals associated with conduction in 
thyristor k occurs at the time instant (compare figure 3-2 which shows capacitor 
voltage reversals in phase a occurring for k=0) 
  

KK ,1,0,1,
3

−== kkt
N

k ω
π        (6-9) 

 
We can study the transient related to this specific voltage reversal at time t=tk 
under the transformation 
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The inverse of each matrix is the transposed matrix, so 
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In (6-10) and (6-12) we have replaced the time variable t with the angular 
deviation from the sampling time tk. We will denote the system {uvw} the 
“converter-oriented coordinate system” or the CONV_ORI system. By properly 
using a sequence of transformations as defined in (6-10) the behaviour of the 
TCSC circuit will be periodic with period π/3 (60°) in the converter-oriented 
sequence of frames. 

Of course the behaviour of the three phase currents {iVu(ϕ), iVv(ϕ), iVw(ϕ)} can be 
observed using space-vector/homopolar description as in (6-2), (6-3), (6-4) just 
as in the fixed system. We will denote this quantity with a numerical superscript 
‘k’ indicating the index of the frame, and its components by the subscripts ‘x’, ‘y’,  
‘z’. Thus 
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with the inverse relation 
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Then it is found that the following relations, connecting variables in the 
CONV_ORI and FIXED systems, apply 
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Similarly the link between the CONV_ORI and IL_SYNC systems is  
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The matrix formulation of the above relations is 
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Inversely 
 

( ) ( )( )
( ) ( ) ( )( )kN

k
Vz

k
V

kN
k

V

kj

V

ttiti

ttieti

−−=

−=

ω

ω

γ

π

1

3
))

       (6-19) 

 
and 
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The matrix relations are similar to (6-17) and (6-18) but use the transposed 
transformation matrices. Thus 
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and 
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Further from equation (6-15) we can also deduce the transformation rule between 
different members of the sequence of converter-oriented frames 
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The matrix formulation of this important relation is 
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Normally the space vector function is being studied in the interval 
 

− < <
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         (6-25) 

 
in each member frame. Equation (6-24) shows that at each change of frame a 
rotation in negative direction occurs with the angle π/3 (60°). 
 
The discussion about different coordinate systems above has been applied to 
valve currents only. However, it is clear that the same transformations can be 
applied also to the valve voltages and other quantities. 
 
Example 6-1 
Assume that the TCSC is operating in steady state with fixed boost factor. We 
further assume that the line current is three-phase symmetrical and with no zero-
sequence current. The line current space vector is given by (6-5) and the 
transformation into the converter-oriented coordinate system delivers a space-
vector trajectory, which is a 60° long arc passing from -30° to +30° with constant 
angular speed in a sixth of a cycle at mains frequency. 
 
The time function for the capacitor voltage was derived in equation (3-10) in 
chapter 3 discussing steady-state conditions. The following equation was 
obtained 
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The capacitor voltages in the other phases can be obtained from 
 



6.2 Coordinate systems for three-phase power electronic converters 
 

 85

( )

( ) 







+=









−=

N
CaCc

N
CaCb

tutu

tutu

ω
π

ω
π

3
2

3
2

        (6-27) 

 
The capacitor voltages have been depicted together with the line currents and the 
valve currents as functions of the angle ωN t in figure 6-3  
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Figure 6-3   Phase quantities in the TCSC; boost factor kB = 2.0, design 

   factor λ=3.0 
 

Inserting the phase voltages in (6-8) yields a vector function in the αβγ-space. 
The trajectory of the vector is depicted in figure 6-4.  
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Figure 6-4 Trajectory in the αβγ-space of the capacitor voltage function at 
  boostfactor  kB=2.0 and design factor λ=3.0. 
 

The projection in the αβ-plane, i.e. the so-called “space vector”, and the 
homopolar component are shown in figure 6-5. 
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Figure 6-5 Trajectory projection in the αβ-plane and the homopolar γ - 
  component. 
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When the αβ-vector is transformed by (6-6) into the rotating coordinate system 
IL_SYNC an almost constant vector along the negative imaginary axis results. 
Due to the harmonics, however, the tip of the vector encircles a small closed loop 
as shown in figure 6-6. The loop is encircled in negative direction six times per 
cycle of the  network frequency.  

-0.2 0 0.2
-2.5

-2

-1.5

-1

-0.5

0

d-axis

q-
ax

is

 
Figure 6-6 Capacitor voltage in dq-plane (kB=2.0, λ=3.0) 

 
If we instead transform into the converter-oriented sequence of frames according 
to (6-15) the result is as shown in figure 6-7, which illustrates the trajectory in 
the xyz-space. 
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Figure 6-7 Capacitor voltage trajectory in converter-oriented frame (kB=2.0, 
  λ=3.0). 
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The trajectory in figure 6-7 is being repeated during each sixth of the period at 
network frequency. Each time the curve has passed through from left to right a 
transformation to a new frame occurs. The transformation rule is as in (6-24) and 
the curve starts again to the left in the new frame. Figure 6-8 demonstrates the 
component time functions in each converter-oriented frame. 
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Figure 6-8 Component time functions of the capacitor voltage in each  
  converter-oriented frame (kB=2.0, λ=3.0). 
 

Finally figure 6-9 shows how the functions are repeated for each 60° interval. 
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Figure 6-9 Component time functions of the capacitor voltage in the sequence 
  of converter-oriented frames (kB=2.0, λ=3.0). 
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6.3 HARMONIC SPECTRUM IN STEADY-STATE 
Figure 6-6 shows that the capacitor voltage in the rotating coordinates system 
IL_SYNC is periodic with frequency 6ωN. This means that it can be expanded in a 
Fourier series 
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Equation (6-6) then shows that the capacitor voltage in the fixed coordinate 
system is given by 
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The formula shows that the capacitor voltage space vector in three phase 
symmetrical, steady state operation can be split in its positive and negative 
sequence components. The former have frequencies +ωN, +7ωN, +13ωN, … 
while the latter ones have frequencies -5ω N, -11ωN, … 
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CHAPTER 7 
DYNAMICAL MODEL OF TCSC 
  

This chapter deals with a three-phase model of the TCSC using the Synchronous 
Voltage Reversal scheme. The dynamical model is intended to extend the 
qualitative description from chapter 4 with an accurate quantitative model of the 
dynamics of the TCSC. The model is intended for detailed analysis of the control 
and protection systems for the TCSC. Another objective, equally important, is to 
be used as a module in power system stability programs. 

7.1 AVAILABLE MODELS IN THE LITERATURE 
Several models have been described earlier in literature. Early papers only 
considered the steady-state relations [M1,M2]. In [M3] different periodic 
solutions of the mathematical equation representing the TCSC were investigated. 
The conditions causing “harmonic instability” were discussed. In a paper [M4]  
dynamical models based on Poincaré map theory were introduced and the 
behavior of the Kayenta TCSC was analyzed. In a further paper [M5] a model of 
the TCSC for use together with available stability programs was presented. In 
this paper a discrete-time model the TCSC circuit was obtained by representing 
the thyristor valve by an equivalent current source. By introducing an internal 
state variable to keep track of the capacitor voltage a discrete-time equation for 
the current in this equivalent source is formulated. The paper [M6] introduces a 
linearized discrete-time difference equation for the capacitor voltage. It is 
proposed that the model is then converted into a continuous differential equation, 
which can be used as a module in any stability program. A model considering 
TCSC using strictly line current synchronization has been published in [M7]. In 
[M8] a simplified dynamical model of the TCSC based on constant conduction 
angle is used to investigate the impact of the TCSC with respect to damping of 
SSR. Further models have been derived using a general averaging theory for 
converter switching circuits. These models are based on forming dynamical 
equations, which describe the development of the essential Fourier components 
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that characterize the operation of the TCSC. Such models have been described by 
[M9]. 

7.2 MOTIVATION FOR THE MODEL IN THE THESIS 
Most if not all models in the literature have been derived from considering a 
single phase of the TCSC. The discrete-time models then uses a sampling time of 
a half cycle of the network frequency. Accordingly the bandwidth of the model is 
restricted to mains frequency. In this thesis the bandwidth of the model will be 
further expanded by using a shorter sampling interval. This means that the 
interaction between the different phases in the three-phase system must be 
represented in the model. A natural step then is to consider a sampling interval 
which is one sixth of the network fundamental frequency. 
Some motivations for the increased sampling rate are the following: 
� the TCSC has six thyristors, which each can be fired once per cycle of the 

fundamental frequency; thus the natural maximum sampling rate of the 
apparatus is six times the network’s frequency 

� accordingly the bandwidth of the model in principle equals the bandwidth of 
the main circuit 

� the model can be used to investigate the limitations of speed of response 
caused by constraints imposed by the TCSC main circuit 

� the model can be used to investigate the impact of transmission system data 
on the dynamics of the total system. The transmission system may have 
different parameters for positive, negative and zero-sequence components 

� phenomena like SSR have three-phase character by nature as they involve 
generation of electrical torque in three-phase generators 

� the higher sampling rate permits the conversion from the discrete time model 
into an equivalent continuous model with substantial bandwidth 

In all models presented in the literature it is assumed that controller output is the 
turnon angle of the thyristor valve. It has been demonstrated in the preceding 
chapters that the dynamical behaviour of the TCSC can be much easier explained 
in terms of the timing of the equivalent, instantaneous capacitor voltage 
reversals. The new model takes advantage of this fact. This means that the 
command signal obtained from the boost controller primarily is a reference for 
the timing of the equivalent reversals rather than the turnon angle itself. Given 
the reference for the equivalent reversal instants a subsystem calculates the exact 
thyristor firing time depending on the instantaneous capacitor voltage and line 
current as described in section 4.5. The benefits of this approach are: 
� the very non-linear gain related to the control angle versus capacitor voltage 

(figure 3-3) will not be seen by the controller 
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� the controller can dynamically utilize angles that are “forbidden” from a 
steady-state point of view in order to force the dynamical response at high 
boost levels; the maximum voltage limitation will be taken care of by the sub-
system controlling the trigger pulses 

7.3 GENERAL ASSUMPTIONS FOR THE NEW 
MODEL 

In the derivation of the model it is assumed that an undisturbed steady-state 
operating point is defined. The model describes the dynamics of deviations from 
this state. The steady-state operation makes it possible to define a synchronously 
rotating coordinate system by selecting a system, which is aligned with the 
undisturbed line current space-vector. This rotating coordinate system is referred 
to as the IL_SYNC system throughout this thesis. Space vector functions given in 
the IL_SYNC frame are notified by the superscript ‘R’. 
The control of the TCSC in all practical implementations use an internal 
synchronizing system, generally in the form of a Phase Locked Loop (PLL), 
which is locked to the line current or some other periodic quantity measured in 
the power system. The TCSC control system uses this angle as an internal angle 
reference. The synchronizing system can be thought of as a means to derive, in 
real-time, the synchronously rotating coordinate system IL_SYNC, which has 
been utilized in the derivation of the difference equation representing the TCSC. 
The TCSC model assumes that two signals are provided to displace the reversals 
from their steady-state positions. One emerges from the boost control system and 
the other from the synchronizing system. Both exhibit some dynamics, when the 
TCSC is connected to a power system and its input signals vary. 
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Figure 7-1 Overview of the TCSC model. 
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The general appearance of the TCSC model is depicted in figure 7-1. It is a 
discrete-time model for a sampling interval, the length of which is one sixth of 
the cycle at the network frequency. The intervals are selected so that equivalent, 
instantaneous capacitor voltage reversals occur in the middle of the interval in 
steady state operation. 
The discrete model calculates the change of the state variables between 
consecutive sampling instants taking into account 
� the line current in the sampling interval 
� the boost controller’s and the synchronization system’s output angles, which 

have been used to determine control the voltage reversal occurring between 
the sampling instants 

The mentioned angles are being represented by angles acting on the equivalent, 
instantaneous capacitor voltage reversal occurring inside the sampling interval. 
Further the model delivers an average of the TCSC capacitor voltage in the 
synchronously rotating coordinate system within the sampling interval as an 
output signal. 
The states of the model are defined in a sequence of fixed frames, which is here 
given the name “converter-oriented”, CONV_ORI, coordinate system, and which 
has been described in the preceding chapter. 

7.4 EFFECT OF INSTANTANEOUS CAPACITOR 
VOLTAGE REVERSAL IN TCSC 

The Synchronous Voltage Reversal (SVR) scheme utilizes the approximation 
that the conduction time of the thyristors is very short and can be neglected. Even 
if this is a rough approximation it simplifies the derivation of the model 
tremendously and we will see that the results produced with this approximation 
are quite satisfactory. 
We start by deriving an equation that describes the effect of an instantaneous 
thyristor intervention with respect to the capacitor voltages represented in the 
converter-oriented frame. This equation can easily be derived as follows. 
The reversal that occurs close to the steady-state reversal instant at t=tk is studied. 
It is assumed that the conduction time is short, so only one thyristor conducts in 
each time frame in the converter-oriented sequence. Accordingly all thyristors in 
figure 6-3 are blocked except Tk, which is connected to the ‘+u’ phase and which 
conducts for a very short interval at t=tk. Figure 7-2 illustrates the conditions in 
the interval. 
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Figure 7-2 Conditions in the converter-oriented frame. 

 
It can immediately be concluded from the figure that the capacitor in the u-phase 
performs a voltage reversal, when the thyristor Tk is triggered, while the other 
capacitors do not change their voltages during the (infinitely) short conduction 
time. Now the phase quantities are given by a formula similar to (6-14)  
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Therefore we can express the condition that the capacitor voltage in the u-phase 
reverses with a loss factor Df  as follows 
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The loss factor Df, is somewhat smaller than unity and is intended to represent 
the losses related to the capacitor voltage reversal. 

Let the charge passing through the thyristor be k
Tq . The associated current only 

flows in phase u. Looking at equation (6-13) it can then be seen that this current 
causes the following contributions (Dirac-pulses) to the capacitor current 
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Thus the voltage change caused by the thyristor current at t=tk in space vector k
Cu)  

is real and two times the voltage change in the homopolar component k
Czu . This 

yields 
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The imaginary part of the capacitor voltage remains unchanged during the 
reversal. 
Using this and equations (7-2) and (7-4) we obtain the connection between 
components x and y of the space-vectors and the homopolar components before 
and after the capacitor reversal. We introduce the name Arev for the matrix and 
get 
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Note that the ‘x,post’ component depends on both the ‘x,pre’ and the ‘z,pre’ 
components. Thus, unlike the situation for many other power electronic 
converters, the homopolar component cannot be neglected! 
For the ideal case where the reversals occur without losses we obtain 
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7.5 CAPACITOR VOLTAGE DEVIATIONS WITHIN 
THE SAMPLING INTERVAL 

In the following we shall consider deviations from the steady state capacitor 
voltage waveform due to a small variation in the line current and a small 
displacement of the reversal time. Specifically our goal is to derive a difference 
equation, which describes the change of the capacitor voltage during a sampling 
interval from tk-h/2 to tk+h/2. The change caused by the reversal has already been 
discussed in the preceding section. As input the pre-reversal voltage deviation is 
required. It depends both on the line current deviation and on the displacement of 
the reversal instant from its steady state equilibrium instant, the latter deviation 
being directed by the control system. Finally the capacitor voltage in the 
upcoming sampling point similarly depends on the line current deviation and the 
timing of the reversal.  

7.5.1 The capacitor voltage trajectory in steady state 

The capacitor voltage trajectory in the converter-oriented CONV_ORI coordinate 
system has been depicted in figure 6-6. Now we will consider instantaneous 
reversals, and the trajectory then becomes as shown in figure 7-3. 
 

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1

0

-0.5

0

0.5

x-axis

y-axis

z-
ax

is

inst reversal 

 
Figure 7-3 Trajectory of the capacitor voltage in CONV_ORI system 
  (kB=1.95) 
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The trajectory is traversed from the left to the right six times during each cycle of 
the network frequency. At the instantaneous capacitor voltage reversal an 
instantaneous movement along the inclined line segment occurs. The 
corresponding trajectories of each component have been depicted in figure 7-4. 
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Figure 7-4 Capacitor voltage components in the CONV_ORI system (kB≈1.95)
  {uC_dev1.m} 
 
It can be seen that, due to the circuit losses in the circuit, the reversals occur 
somewhat before ϕ=0. The loss factor was assumed to be Df = 0.95. Further 
notice that the step in the x-component is two times that in the zero-sequence 
component. 
 

7.5.2 Effect of displacement of reversal 

Let us first consider the case that the steady state line current is not disturbed. If 
the voltage reversal occurs at the same time as in steady state operation the 
conditions are trivial as shown in figure 7-5. No change of the capacitor voltage 
deviation in addition to the voltage reversal then takes place inside the sampling 
interval. The pre-reversal capacitor voltage deviation equals the value at the start 
of the sampling interval and the capacitor voltage deviation at the end of the 
sampling interval equals the post-reversal voltage. The change of the capacitor 
voltage deviation only depends on the reversal equation (7-5) in this case. 
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Figure7-.5 Capacitor voltage components in CONV_ORI frame; no reversal 
  instant displacement. 
 
However, the reversal instants do not always occur at their steady state time 
instants, because the reversal instant is directed by the control system, which 
comprises a boost controller and a synchronization system. Let the reversal 
instant be phase advanced by the angle ∆θ  before the steady state reversal at t=tk 
due to actions of the boost controller (∆θreg) and due to deviation in the 
synchronization signal (∆θPLL) from the PLL system. Thus 
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The capacitor voltage time derivative is proportional to the line current 
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As the angle ∆θk represents a phase advance from the steady state reversal instant 

and as further the undisturbed line current is ( )
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the pre-reversal voltage caused by ∆θk becomes 
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Figure 7-6 shows the capacitor voltage components. 
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Figure 7-6 Capacitor voltage components in CONV_ORI  at displacement  of 
  the reversal instant. 
It can be clearly seen that the displacement of the reversal point only impacts on 
the pre-reversal voltage in the x-component. 
 

7.5.3 Effect of line current deviation 

Line current deviations cause additional changes in the pre-reversal voltage. The 
alteration is governed by the differential equation (7-8). For small angle 
deviations ∆θk the linearized variation of the capacitor voltage due to the line 
current deviation is given by 
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Similarly the linear variation of the capacitor voltage versus the line current 
deviation in the interval <tk+0,tk+h/2> after the reversal is given by 
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The model outlined in figure 7-1 is a discrete, sampled model. The capacitor 
voltage is sampled at the midpoints, t=tk+h/2, of the intervals between 
consecutive reversals in steady state operation. In such a discrete, sampled 
system it is adequate that only one current deviation sample will be used per 
interval. This value is sampled at the instant of the undisturbed steady state 
reversal, t=tk, and it is used in the whole sampling interval both before and after 
the voltage reversal.  
The sampled line current deviation in an interval is a triple of values representing 
the components of the line current. 
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We are going to use these values to calculate the integrals in (7-12) and (7-13). 
For that purpose we have to determine how the instantaneous values of the line 
current deviation shall be calculated from the sampled value at any time instant 
in the interval between the samplings. 
It appears that the homopolar current component is lacking any naturally 
preferred approximation beside the trivial assumption that it is constant 
throughout the interval. If the sampled values of the zero-sequence component in 
the CONV_ORI remains constant, kconsti k

Lz ∀=∆ , this means that that the zero-
sequence current in the FIXED coordinate system is a third harmonic square 
wave current.  
For the x- and y-components several interpretations are possible. They may be 
considered to be approximately piecewise constant around the sampling point of 
the capacitor voltage components. However, such piecewise constant 
representations may be adopted in various coordinate systems: 
� in the FIXED coordinate system 
� in a rotating coordinate system synchronous with the steady state line current 

vector, the IL_SYNC system 

� in a coordinate system rotating with arbitrarily chosen frequency, ξωN with 
constant ξ ,  relative the stator coordinate system 

 
� FIXED, stator coordinate system 
The abc-frame, or FIXED coordinate system, is used for line current deviations 
which mainly contain low frequency components in the phase quantities. Figure 
7-6 shows the approximation of sinusoidal current deviations for different 
frequencies. It can be used for deviations with electrical frequencies below 20 
Hz. 
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Figure 7-6 Approximation of the line current deviations as piecewise constant 

functions in FIXED system; frequencies 50±30 Hz, 50±20 Hz and 
50±10 Hz 

 
� IL_SYNC, steady state rotating coordinate system 

The two-dimensional space vector ( ) ( ) ( )ϕϕϕ k
Ly

k
Lx

k
L ijii ∆+∆=∆
)

 in the CONV_ORI 
system as defined by equation (6-10) and (6-13) represents the line current 
deviation. If it varies only slowly relative the rotating coordinate system 
IL_SYNC defined according to equation (6-7) it is beneficial to approximate the 
line current deviation within the sampling interval as a constant in the latter 
coordinate system. Specifically this appears to be adequate when 
electromechanical transients in the network should be investigated. Also for 
current and voltage deviations in the subsynchronous frequency range 
corresponding to mechanical frequencies  below 30 Hz (electrical frequency 20-
80 Hz) this approximation seems appropriate. Some examples are shown in 
figure 7-7.  
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Figure 7-7 Line current  deviation in the FIXED (abc) system approximated  
  as a piecewise constant function in IL_SYNC system; frequencies 
  50±30 Hz, 50±20 Hz and 50±10 Hz 
 
This approach seems to be the best one for deriving general-purpose time-domain 
linear models. 
 
� Rotating coordinate system with other rotational speed 
If the deviation current is a positive sequence current having a narrow frequency 
spectrum around the centre frequency ξωN, it is a good idea to approximate the 
current deviation to be piece-wise constant in a coordinate system that rotates 
with frequency ξωN. This method can specifically be used to calculate the 
frequency domain transfer function as calculation of the transfer function value at 
a specific frequency assumes that the TCSC circuit will be excited with this 
single frequency component only. In the frame that rotates with the specific 
speed the approximation of the current deviation as piecewise constant will be 
perfect and without error. 
 
� General approach 
The two earlier mentioned alternatives can be looked upon as special cases 

o the stator-fixed coordinate system, FIXED, is generated if ξ = 0 
o the synchronously rotating coordinate system, IL_SYNC,  is obtained if 

ξ = 1 
Accordingly put 
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Inserting these expressions in the formulas (7-12) and (7-13) yields after 
integration the following result, which also includes the contribution to the 
voltage deviation according to equation (7-11) 
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7.6 NORMALIZATION OF THE EQUATIONS 
It may be observed that the equation (7-17) contains capacitor voltage 
components and terms that include the product LIX ˆ

0λ . Going back to the 
definition (3-3) this product can be identified as 
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which is the capacitive reactive voltage drop across the capacitor bank in the 
TCSC at line current LÎ  without any boost, i.e. at kB = 1.0. It is advantageous to 
normalize the equation with this quantity. We will do this and work with the 
relative line current and capacitor voltage deviations defined in equation (7-20) 
and (7-21) 
 

















∆
∆
∆

=
∆

=
















∆
∆
∆

=∆
k
Lz

k
Ly

k
Lx

LL

k
L

k
Lz

k
Ly

k
Lx

k
L

i
i
i

II
i

i
i
i

i ˆ
1

ˆ~
~
~

~
      (7-20) 

 

















∆
∆
∆

=
∆

=
















∆
∆
∆

=∆
k
Cz

k
Cy

k
Cx

LL

k
C

k
Cz

k
Cy

k
Cx

k
C

u
u
u

IXIX
u

u
u
u

u ˆ
1

ˆ~
~
~

~

00 λλ
     (7-21) 

 
Introducing the variables above in (7-17) yields 
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The same normalization also is applied to equation (7-5) giving the result 
 

k
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7.7 DIFFERENCE EQUATION DESCRIBING THE 
DISCRETE SYSTEM. 

Combining the above equations (7-22) and (7-23) provides a difference equation 
that associates the state variable, i.e. the capacitor voltage deviation, at the end of 
the sampling interval with 
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� its value at the start of the sample interval 
� the line current deviation within the sample interval 
� the deviation of the reversal time instant due to control system intervention 
We get 
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Finally formulas like (6-24) provides the formula for connecting quantities in 
consecutive members of the sequence of frames in the CONV_ORI system  
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When this formula is applied to (7-24) the desired state equation for the discrete, 
sampled model results 
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7.8 OUTPUT FROM THE DISCRETE SYSTEM 
Equation (7-26) is a state recursion equation for the discrete system describing 
the TCSC. The relative capacitor voltage deviation at the beginning of the 
sampling interval is the state, and the sampled relative line current deviation in 
the sample interval midpoint and the displacement of the reversal instant are the 
input variables. 
Three states are required to represent the TCSC circuit, e.g. the capacitor voltage 
in the CONV_ORI (x,y,z) frame as in (7-26). The homopolar (=zero-sequence) 
capacitor voltage interacts strongly with the other capacitor voltage components 
why it cannot be disregarded. However, in the transmission network the 
impedance level for the zero-sequence components is generally higher than for 
the positive- and negative-sequence components and the dominating homopolar 
component of the TCSC voltage is the third harmonic component. Therefore the 
zero-sequence component of the line current will be small and can in general be 
neglected. In the following we will only consider the non-zero-sequence 
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components of the relative line current deviation as input signals. Accordingly 
the capacitor voltage components, which mainly interact with the transmission 
system, are the two non-zero-sequence components and they are required as 
output signals from the TCSC model. They may be extracted from the model as 
sampled values of the relative deviation of the capacitor voltage or, alternatively, 
as values obtained by averaging during the whole sample interval. In the latter 
case the output signals correspond to Fourier coefficients for the fundamental 
frequency components of the inserted voltage.  

7.8.1 Sampled output 

The state (relative capacitor voltage deviation) is sampled in the CONV_ORI 
system at time tk-h/2. A better output signal is the voltage vector in the IL_SYNC 
system. According to the transformation rules in (6-20) we get 
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The matrix formulation can be obtained from (6-22) 
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7.8.2 Averaged output 

When the variation of the line current deviation inside the sampling interval (the 
factor ‘ξ’ in (7-16)) and the loss factor Df has been selected, the capacitor voltage 
deviation inside the sampling interval is completely determined. Then it becomes 
possible to calculate the average of the relative capacitor voltage deviation’s d- 
and q-components, defined by (6-6), in the IL_SYNC rotating coordinate system. 
Let 
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In steady state these average values represent the components of the fundamental 
frequency Fourier components of the relative capacitor voltage deviation. 
Evaluation of the formula (7-29) as described in Appendix A yields the result 
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7.8.3 Boost factor 

The d-axis in the rotating coordinate system is in this thesis aligned with the 
steady state line current vector.  The steady state capacitor voltage therefore is 
aligned with the negative imaginary axis, i.e. the negative q-axis in the IL_SYNC 
system. The components in (7-30) extracts the fundamental frequency 
components of the relative capacitor voltage deviations steady. The q-axis 
component equals the negative deviation of the boost factor from its steady state 
value. Thus we obtain the expressions 
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for the sampled and the averaged output respectively. 
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CHAPTER 8 
TCSC MODEL DYNAMICS 
  

In this chapter the characteristics of the TCSC model, which has been derived in 
the preceding chapters, is investigated in order to clarify the nature of the TCSC. 
It is common practice among control system engineers and researchers to 
separate the design problem in a “servo” and a “regulator” problem. In the 
former focus is on the possibility to change the output, in this case the boost 
factor or the controlled reactance, by manipulating the input control signal, i.e. 
the timing command for the reversals. The latter design problem deals with the 
question of how external disturbances, e.g. changes in the line current amplitude 
and phase, impact on the output signal. In this chapter we will look at the transfer 
functions of the TCSC, which are of interest for the control system design in both 
these respects. 
Another objective of the study is to compare the different outputs, i.e. the 
sampled and the averaged outputs given in (7-26) and  (7-28)-(7-30). 

8.1 TCSC SERVO CHARACTERISTICS 
The transfer function from displacement of the reference angle for the equivalent 
voltage reversal, ∆θk, to the resulting deviation in boost factor, ∆kB, is governed 
by the discrete recursive state equation  
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This equation is obtained from (7-26) with no line current deviation. 
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8.1.1 Sampled state variable as output 

Equations (7-28) and (7-32) in the preceding chapter yield a first output signal 
representing the boost factor 
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Let the time shift operator q be defined by 
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Set the loss factor to Df=0.95. Then the following transfer function is obtained in 
operator form 
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The transfer function poles appear at 
 

8513.04915.0

8513.04915.0

9830.0

3
2

3
3

3
2

3
2

3
1

jeDp

jeDp

Dp

j

f

j

f

f

−−==

+−==

==

−
π

π

     (8-5) 

 
corresponding to the exponential damping coefficients and frequencies given by 
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The results are summarized in table 8-I below 
 

Table 8-I Poles in transfer function ∆θ -> ∆kB 

pole time constant [s] frequency [Hz] 

p1=0.9830 0.195 0 

p2,3=-0.4915±j0.8513 0.195 ±100 

 

8.1.2 Fourier component as output 

In another capacitor voltage model the average voltage component in a 
synchronously revolving coordinate system IL_SYNC is being calculated. 
Neglecting the line current deviations we obtain in this case from (7-30), (7-31) 
and (7-32) 
 

( )

( )( )
( ) ( )[ ]101002

2

22

10

10
6

~

PGPAIFD

AFFC

DuCtk

revend

revendbeg

k
k

CkB

θ

θπ

+−−=

+−=

∆+





−∆=∆

     (8-7) 

 

We select the parameter ξ=1 and evaluate the matrices (which are independent of 
kB). The recursive state difference equation then becomes 
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The poles in the transfer function poles are the same as before, but the numerator 
has been changed somewhat. 

8.1.3 Time domain response 

The linear response to a unit step in the control angle is shown in figure 8-1 for 
both output functions. The lower graph simply is a zoomed part of the upper 
curve. It appears from figure 8-1 that there is not any significant discrepancy 
between the two output signals except at their steady-state gains. The step 
response after half a second differs about 5 %.  
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Figure 8-1 Control angle step response. 

8.1.4 Frequency domain response 

For sinusoidally varying signals with frequency Ω and with |Ω|<3ω (i.e. below 
the Nyquist frequency) the following transfer functions is obtained from equation 
(8-4) 
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and from equation (8-8) 
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These transfer functions have been illustrated in figure 8-2. Basically identical 
plots are obtained for the two models. At the assumed loss factor the system is 
integrating from a few Hz. At lower losses the transition frequency, where the 
system changes from proportional to integrating characteristics, decreases. The 
integrating character remains up to approximately the network frequency. A 
resonance peak then occurs at the double network frequency, i.e. at 100 or 120 
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Hz and then the gain drops very fast at frequencies exceeding the resonance 
frequency. 
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Figure 8-2 Frequency domain response for transfer function from control 
  angle to boost factor

8.2 TCSC REGULATOR CHARACTERISTICS 
It has been shown earlier in section 4-4 that it is the deviation of the reversal 
instants from their steady state equilibrium position that causes changes of the 
boost level in the TCSC. Therefore a phase shift in the line current is almost 
equivalent to a control angle shift and it has a big impact on the output. Also line 
current amplitude change influence on the TCSC boost, but with less strength. 
Formally the difference from preceding section dealing with transfer functions 
due to changes in the control angle is that other B and D matrices will be used in 
the system description. 

8.2.1 Phase shift in line current 

We use the relative line current change as input variable to the state equation  
(7-26). A sudden small-signal step change of the quadrature component of the 
line current is identical to a phase shift.  
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Assuming no changes in the control angle we get from (7-26) 
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� Sampled output 
In the first output alternative, using the sampled state variable, we can use (8-2) 
again. Using the loss factor Df=0.95 as before we get the transfer function 
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The transfer function has the same poles as before. The transfer function has 
zeros as specified in Table 8-II. 
 

Table 8-II Zeros in transfer function B
R

Lq ki ∆→∆~ , sampled output 

zero time constant [s] frequency [Hz] 

z1,2=-0.3867±j0.8972 0.143 94.43 

 
� Fourier component as output 
The Fourier components also can be used for output. In this case we obtain from 
(7-30), (7-31) and (7-32) 
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The transfer function now becomes 
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The transfer function has the same poles as before and zeros as specified in Table 
8-III. 
 

Table 8-III Zeros in transfer function B
R

Lq ki ∆→∆~ , Fourier component output 

 time constant [s] frequency [Hz] 

z1=-1.000  fNyquist 

z2,3=-0.2659±j0.9389 0.136 88.18 

 
� Time domain step response 
The response to a 1 rad phase shift in line current (in the linearized model) is 
shown in figure 8-3 for both output functions. The lower curve is simply a 
zoomed part of the upper curve. The difference between the two approaches 
seems not to be very significant. 
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Figure 8-3 Response to line current phase shift. 
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� Frequency domain response 
The frequency response of the two output signals is depicted in figure 8-4. For 
frequencies exceeding approximately 30 Hz a certain discrepancy can be detected 
between the two alternative output signals. The gain in the averaged output drops 
much faster at frequencies approaching 100 Hz, than the sampled output. 
It should be noted that none of the transfer functions dealt with so far depends on 
the steady state boost factor. 
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Figure 8-4 Frequency domain response in boost factor from line current phase 
  shift. 
 

8.2.2 Line current amplitude changes 

We shall also look at the dynamics of a sudden change in line current amplitude. 
The procedure is similar to the one used before. The only change is that the 
relative line current’s d-component is being used rather than its q-component. 
The state recursion equation in this case is similar to (8-11) but using the other 
line current component. Thus 
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� Sampled output 
In this case equation (8-2) still applies and we get the transfer function 
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The transfer function has the same poles as before and zeros as specified in Table 
8-IV. 
 

Table 8-IV Zeros in transfer function B
R

Ld ki ∆→∆~ , sampled output 

 time constant [s] frequency [Hz] 

z1=-1.000  fNyquist 

z2=0.8571 0.022 0 

 
� Fourier component as output 
The Fourier components also can be used for output. In this case we obtain from 
(7-30), (7-31) and (7-32) 
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The transfer function now becomes 
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The poles in the transfer function are the same as before and zeros as given in 
Table 8-V. 
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Table 8-V Zeros in transfer function B
R

Ld ki ∆→∆~ , Fourier component output 

 time constant [s] frequency [Hz] 

z1=0.8930 0.029 0.00 

z2=-0.3574 0.003 fNyquist 

z3=-2.8316 -0.003 fNyquist 

 
� Time domain response 
These transfer functions have been illustrated in figure 8-5 below. It can be 
recognized that the strength of the influence on the boost factor is more than one 
order of magnitude weaker than the impact due to changes in the control signal 
or in the line current phase. In fact the transfer function must have unity gain in 
steady state as the system equations only involve relative capacitor voltage and 
relative line current. A unity step in the relative line current amplitude means that 
the line current doubles. In steady state then also the capacitor voltage doubles as 
the control signals remain unchanged. That means that the change of the relative 
capacitor voltage also becomes unity. 
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Figure 8-5 Response to line current amplitude change. 

 
� Frequency domain response 
Figure 8-6 shows the frequency response of the output functions derived from 
state variable and from the Fourier coefficient. The response is relatively weak in 
the range 10 - 40 Hz. A peak occurs at 100 Hz. 
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Figure 8-6 Frequency response to line current amplitude changes.
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CHAPTER 9 
CONTROL ARCHITECTURE FOR TCSC 
  

9.1 MOTIVATION FOR FEEDBACK CONTROL 
So far we have dealt with different aspects of modelling the dynamics of the 
TCSC itself. If the TCSC main circuit would be perfectly stable and insensitive 
to disturbances it would be possible to operate it with an open loop control, 
providing triggering at the steady state positions relative the line current. 
However, the operation conditions in a power transmission system do not 
provide such a stable environment, and the main circuit of the TCSC is highly 
dynamical and, if left uncontrolled, it can easily reach boost levels that would 
jeopardized the operation of the transmission network and that would be 
destructive for the TCSC main circuit components. We shall only remind the 
reader that the TCSC shall work within a wide range of current levels that varies 
more than one order of magnitude. Energizing of transformers and switching of 
transmission lines, loads and other apparatus occurs during normal operation. 
Further the TCSC control system must handle a lot of situations related to short-
circuits in the power system. Such events require a protection system, which 
operates with sequences of mode changing, start, restart, bypass, limiting 
operation on capacitor voltage and inserted reactance etc. All these operations 
require that a fast-acting control system is implemented and in service. 
Furthermore, in the power oscillation damping applications, the reason for 
installing the TCSC is to actively vary the inserted reactance of the TCSC, in 
order to provide artificial damping of power oscillations. 
Feedback control of the TCSC is required to cope with all the uncertainties that 
exist during its operation. We assume that an inner loop, which incorporates a 
“boost regulator”, is used to control the inserted reactance or, equivalently, the 
boost factor of the TCSC. The regulator requires a measured response of the 
actual boost factor, which can be compared with the given boost reference. 
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9.2 CONTROL SYSTEM OUTLINE 
The principal control system outline was discussed briefly already in chapter 4 
(figure 4-13). It is a very conventional, straight-forward approach. The actual 
boost value is measured and compared with the boost reference. The error drives 
the boost regulator, which modifies the reference for the reversals by adding 
deviations to a synchronization signal. The latter is derived from the line current. 
Finally a SVR-block determines the triggering instants taking into account the 
reversal reference and the actual capacitor voltage and line current. 

9.2.1 Dynamics of the measuring systems 

It should be noted that it is not trivial to implement the measuring systems, 
neither to detect the actual boost level, nor to derive synchronization signals from 
the relatively volatile line current signal. In fact, the dynamics of these systems 
are as important as those of the main circuit! Therefore we shall address the 
problem of representing these systems in the next chapter. 

9.2.2 Role of synchronization 

In power electronic control a synchronization system is often implemented 
without further motivation. In analysis of the control system sometimes the 
dynamics in the synchronization system is not discussed in depth. However, it 
should be stressed that in reality the dynamics of the synchronization system has 
a great impact on the system performance. 
When a synchronization system is implemented, the question arises how the 
device shall be tuned? Shall the synchronization system be tuned to be fast or 
slow relative the regulator? 
One way to explain the role of the synchronization system can be described as 
follows: 
� let the TCSC be running in steady-state 
� assume that the regulator provides a train with equidistant pulses that provide 

timing reference for the reversals in the TCSC 
� assume that the boost regulator has an integrating member which impacts on 

the phase of the pulse train 
� the regulator then finds a suitable phase with respect to the line current where 

the measured boost coincides with the boost reference 
Obviously no synchronization system is required for establishing the correct 
phase of the pulse train. The approach is identical with the simplest current 
regulator in DC-motor drives, where the integral part in the current regulator 
reflects the speed of the motor. 
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Now the servo performance of the TCSC can be improved by tuning the boost 
regulator. The synchronization system still is not required. 
When the optimal tuning with respect to servo performance has been obtained we 
can test the TCSC with respect to its sensitivity to line current disturbances. As 
we know already from the study of the transfer functions, the TCSC is as 
sensitive to line current phase shifts as it is to control angle deviations. In order 
to suppress the sensitivity of the TCSC to line current phase shifts the 
synchronization system is introduced. The purpose is to implement a measuring 
device dedicated to discover phase shifts in the line current and to introduce the 
measured phase signal as a feed-forward signal into the TCSC control. Naturally 
the speed of the synchronization system must be at least as fast as the tuned boost 
control system if the feed-forward signal shall provide any improvement to the 
regulator performance of the TCSC. 
We will follow the described approach in this thesis. 
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CHAPTER 10 
PHASOR ESTIMATION 
  

10.1 INTRODUCTION 
Most high power electronic apparatus used in power transmission systems aim 
for controlling the fundamental frequency component at power frequency of 
current or voltage or a combination of both. In the TCSC case the controlled 
quantity is the boost factor, which basically is the scaled quotient between the 
fundamental components of capacitor voltage and line current. 
It was mentioned in the preceding chapter that a synchronizing system may be 
implemented to detect the phase of the line current in real-time. This phase angle 
is used for synchronizing the capacitor voltage reversals, controlled by the boost 
regulator. This objective can be met by a phase locked loop (PLL). 
In both cases pointed out above there is a need for real-time extraction of the 
fundamental frequency component of measured quantities like AC currents and 
voltages. Any analysis of the TCSC performance requires that the dynamics of 
the measuring system and the synchronization system is known and well defined. 
The measuring system limits the permitted gain in the feedback loop and thereby 
determines the attainable performance. Due to the importance of the measuring 
system we will devote this chapter exclusively to discussing the phasor extraction 
issue. 
The description of the dynamics for the measuring system and the 
synchronization system boils down to the following problem: 
� given a coordinate system, which rotates with fundamental frequency of the 

network. The coordinate system may be aligned e.g with the steady state line 
current space vector 

� given a measured signal of e.g. line current or capacitor voltage; the measured 
signal may be a phase quantity (scalar) or a space vector (complex) 
representing the zero-sequence-free part of a three-phase quantity 
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� find a phasor, i.e. a complex function of time that is fixed or only slowly 
moving in the given coordinate system, which can be used to represent the 
fundamental frequency component of the measured quantity 

This problem is closely related to linear estimation and algorithms like Recursive 
Least Square (RLS) estimation. We shall discuss a certain class of algorithms, 
which we will name “Phasor Estimators” or PE. They may operate on three-
phase complex space vector signals or on single-phase scalar signals. This 
discussion is found in section 10.2. 
Once the phasor estimation algorithm has been defined a corresponding PLL can 
easily be defined and its dynamics can be derived. This is dealt with in chapter 
11. 

10.2 PHASOR ESTIMATION FORMULAS 

10.2.1 Derivation 

Assume that a rotating coordinate system has been defined by a given angle time 
function θCS(t) which determines the angle of its real axis in the fixed coordinate 
system. The corresponding rotation frequency of the frame is 

 

( ) ( )tt CSCS θω &=         (10-1) 

 
First assume that the instantaneous values of the phase quantities of a certain 
three-phase current or voltage are being measured. Application of the 
transformation in (6-2) yields a space vector function ( )ts) , which represents the 
zero-sequence-free part of the three-phase quantities. We shall presume that each 
phase quantity predominantly contains a sinusoidal component with the network 
frequency and a constant DC offset. The space vector function then has the form 
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where ( ) ( ) ( )tStStS npav
rrr

,,  are complex phasors, which are ideally constants and 
which represent in order the average, the positive sequence and the negative 
sequence components respectively. A straight-forward engineering approach to 
extract the “constants” in (10-2) is to rearrange the equations so that the 
“constants” become isolated and to apply lowpass filtering on the resulting 
expressions. This process yields the following algorithm to obtain the phasor 
estimates ( ) ( ) ( )tStStS npav

~
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~
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The operators Hav(p), Hp(p), Hn(p) represent low pass linear transfer functions of 

the operator 
dt
dp = . Equation (10-3) defines a dynamical system where 
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 are states and ( ) ( )tts CSθ,)  inputs. It is advantageous to 
transform the states according to equation (10-4) 
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because the transfer functions from input signal ( )ts)  to the new states, 
( ) ( ) ( )twtwtw npav *,, ))) , are linear time-invariant (LTI) filters, i.e. they have constant 

time-independent coefficients. The details are given in Appendix B, where the 
models of the filters are given in both the time and the frequency domain. Figure 
10-1 outlines the Phasor Estimator. 
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Figure 10-1 Outline of the Phasor Estimator 

 
Further mathematical aspects related to similar filters are given in [S1]. 
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10.2.2 Transformation to IL_SYNC coordinates 

The connection between the TCSC main circuit model and the transmission 
system and the control system is described by equation (7-30). The electrical 
quantities in the transmission system then are defined in IL_SYNC coordinates. 
Accordingly, in our analysis, the Phasor Estimators will operate in the IL_SYNC 
environment and it appears to be adequate to transform the PE models also to this 
frame. The following input and outputs then are used 
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Figure 10-2 shows the modifications necessary and Appendix C gives the 
modified models in frequency and time domains. 
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Figure 10-2 Outline of the Phasor Estimator operating in IL_SYNC coordinates 
 
Example 10-1 
A phasor estimator for 50 Hz is equipped with lowpass filters of first order. It has 
� average filter with 3 dB bandwidth at 10 Hz 
� positive sequence filter with 3 dB bandwidth at 20 Hz 
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� negative sequence filter with 3 dB bandwidth at 5 Hz 
 
Thus 
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The frequency domain characteristics of the phasor estimator filter in the 
IL_SYNC coordinates are depicted in figure 10-3. 
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Figure 10-3 Frequency domain characteristics of Phasor Estimator operating 
  in IL_SYNC coordinates. 
 
It is worth noting that each output of the phasor estimator has unity gain and zero 
phase shift at pure constant, positive sequence or negative sequence input signals 
respectively. The bandwidth of the lowpass filters for the different output signals 
is reflected in the graphs. 
In figure 10-4 the time-domain responses to a sudden constant input signal in the 
IL_SYNC system is shown. This input signal corresponds to a suddenly applied 
three-phase signal having only a positive sequence component. It can be seen that 
the steady-state response appears in the pv)  signal. The rise time constant for this 
signal is approximately 10 ms. The settling time for each component is inversely 
proportional to the bandwidth of its associated filter. 
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Figure 10-4 Time domain response to step in IL_SYNC input signal. 

 

� Transfer functions from component to component 
In figure 10-2 the Phasor Estimator has a complex vector input signal and 
complex vector output signals. In the TCSC control system we are primarily 
interested in the positive sequence phasor output signal. The model of the TCSC, 
however, is formulated with the components of the line current as inputs and the 
components of the positive sequence components as outputs. For this reason we 
would like to adapt the transfer functions from complex input to complex output 
into transfer functions from either vector component in the input signal to either 
component in the output signal. Figure 10-5 depicts these desired arrangement. 
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Figure 10-5 Phasor Estimator using real components as input and output  
  signals. 
 

The complex-to-complex transfer function ( )ΩjG R
p  is given in (C-8) in Appendix 

C. There it also shown that the following rules apply 
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Example 10-2 
Figure 10-6 shows the transfer functions from component to component of the 
Phasor Estimator described in example 10-1. 

-100 0 100
0

0.2

0.4

0.6

0.8

1

m
ag

n

GPE d->d

-100 0 100

-100

0

100

freq [Hz]

ph
as

e 
[d

eg
]

-100 0 100
0

0.2

0.4

0.6

m
ag

n

GPE d->q

-100 0 100

-100

0

100

freq [Hz]

ph
as

e 
[d

eg
]

 
Figure 10-6 Transfer functions between the components in input and output 
  vectors. 
 
The amplitude curve of course becomes symmetrical along the frequency axis as 
we are dealing with transfer functions between real functions. 
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10.2.3 Single-phase vs three-phase measurements 

� General discussion 
So far it has been assumed that the input signal to the Phasor Estimator is a 
complex space vector representing a three-phase quantity. However in practical 
implementation of a TCSC there are good reasons to utilize a control system, 
which regulates the inserted reactance on a phase-by-phase basis. In transmission 
systems the line current is not necessarily three-phase symmetrical. The phase 
current magnitudes may differ both due to single-phase loads and because of use 
of long non-transposed transmission lines. The same reasons also may cause 
differences in the mutual phase displacement. Finally, the TCSC control system 
must be able to operate adequately, when single-line to ground faults occur and 
cause large asymmetry in the loading. 
A TCSC single-phase control system obviously requires single-phase measuring 
and synchronization systems. So how can single-phase phasor estimation be 
achieved within the concept described in the preceding sections? 
Any phasor estimation requires that a rotating coordinate system, where the 
phasor can reside, has been defined. Let us assume that the earlier used 
coordinate system, defined by (10-1), has been selected. Further assume that a 
scalar input signal, s(t), comprises an offset component and a sinusoidal 
contribution as stated in equation (10-9) 
 

( ) ( )[ ] ( ) ( )tj
ph

tj
ph

avtjphav CSCSCS eSeSSeSSts θθθ −++=+=
22

Re
*

rr
r

  (10-9) 

 

We would like to focus on determining the phasor ( )tS ph
r

, which should be a 
complex constant or a complex function that varies slowly with time. 
It is might be anticipated that estimation of three-phase signals inherently can be 
made faster than single-phase measurements. However, we will see below that 
this belief is not true. 
It is obvious that the magnitude and phase of a scalar measured quantity, e.g. a 
phase current in a transmission line, cannot be determined if we are given only 
one instantaneous measured value. This applies even if the signal does not 
contain any harmonic distortion. Measuring all three phase quantities certainly 
defines a definite value of the space vector, but it is not possible to separate the 
positive and negative sequence components. This is valid even if one knows that 
the constant offset average component is zero. 
Next it shall be shown that it actually takes approximately the same time to 
determine a phasor independent of whether a single-phase or a three-phase 
approach has been selected. 
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� Single phase phasor estimation 
Figure 10-1 shows a Phasor Estimator, which takes an input signal ( )ts)  formed 
by the three phase quantities and which accordingly normally is complex-valued. 
The PE block has three outputs ( ) ( ) ( )twtwtw npav *,, ))) . The input-output relations are 
governed by linear time-invariant (LTI) transfer functions. These are explicitly 
defined by formulas (B-6) and (B-7) in Appendix B. 
We may think of entering a real-valued input signal, e.g. a measured phase 
quantity, to the phasor estimator. If it contains a DC offset signal plus a 
sinusoidal function of θCS(t) it will have the form given in equation (10-9). The 
transfer functions from the real-valued input, i.e. ( )ts , to the real-values of the 
output signals, i.e. to ( ) ( )[ ]twty av

av
)Re= , ( ) ( )[ ]twyy p

p
)Re=  and ( ) ( )[ ]twty n

n
*Re )= , 

still are given by the earlier mentioned formulas in Appendix B. 
However, we may consider the real-valued input signal to be generated by the 
phasor phS

r
, which we want to extract. A natural approach then is to multiply the 

complex output function ( )tw p)  by the exponential ( )tj CSe θ−  as indicated in figure 

10-1.  Then the phasor 
2

phS
r

 is obtained as output signal in steady state. In order 

to estimate the desired phasor phS
r

 a gain factor 2 must be applied as shown in 
figure 10-7.  
When the input signal is real-valued it can be considered to be a superposition of 
a positive and a negative sequence component with the same magnitude. Then 
there are no good reasons to utilize different characteristics for the lowpass filters 
for positive and negative sequence output signals. Accordingly we postulate that 
the filters are equal 
 

( ) ( ) ( )pHpHpH phnp ==        (10-10) 

 
Inspection of the algorithm in (10-3) and (10-4) indicates that the output signal 

( )tS av
~r

 then becomes real and the output signals  ( ) ( )twtw np *, ))  form a conjugate 
pair. The negative sequence phasor output thus gives redundant information. 
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Figure 10-7 Real-valued signal entering the Phasor Estimator. 

 
� Comparison between single-phase and three-phase estimation 
From the above it can be concluded that the single-phase measuring system can 
be modelled with the same linear, time-invariant model as in the three-phase 
case. The difference is that in the single-phase case the input signal contains 
both positive and negative sequence components of equal magnitude. Thus the 
following outputs will be obtained when we assume that 
 

( ) tt CSCS ωθ =          (10-11) 

 
Three-phase Phasor Estimation 

input signal:    tjAe ω  

estimated phasor output signal:  ( ) ( )tj
p

CSejAG ωωω −  

 
Single-phase Phasor Estimation 

input signal:    [ ]tjAe ωRe  

estimated phasor output signal:  ( ) ( ) ( ) ( )tj
p

tj
p

CSCS ejGAejAG ωωωω ωω +−− −+ *  

 
It can be seen that an additional term is obtained in the single-phase case as 
compared to the three-phase case. The low-pass characteristics of the filters in 
the Phasor Estimator cause the transfer function Gp(jω)  to mainly transfer 
frequencies ω close to frequency +ωCS and to suppress all other frequencies. It 
has a zero at frequency -ωCS. Accordingly the contribution of the additional term 
is very small. The suppression becomes more effective when the bandwidth in 
the phasor filters is lowered, but at the same time the speed of response of the 
phasor estimation slows down. 
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To conclude:  
� the main contribution to the estimated phasor output is identical for the 

single-phase and the three-phase cases 
� the single-phase Phasor Estimator output contains an additional, small, 

undesired disturbance term. 
The formulas related to the single-phase Phasor Estimator are given in Appendix 
D. 
 
Example 10-3 
Let the Phasor Estimator operate to extract a 50 Hz fundamental frequency 
component from a scalar input signal. The filters are second order filters with 
damping ζ=0.866 and with 3 dB bandwidths at 10 Hz and 15 Hz for the average 
and phasor outputs respectively. The filter transfer functions then are 
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Figure 10-8 Transfer functions of a single-phase Phasor Estimator. 
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The transfer functions in the frequency domain of this Phasor Estimator are 
depicted in figure 10-8. For scalar input signals only positive frequency is of 
interest.  
It can be seen that the output signal extracts the generating phasor in a band 
centred around 50 Hz and with 3 dB damping at about ±15 Hz. The phase shift in 
the filter is very linear (Bessel filter). Offset signals in the input do not contribute 
to the output signal neither in the desired nor in the undesired component. The 
undesired output signal has low gain around the centre frequency and at 
harmonic frequencies.  
In Appendix D formulas have been derived for the time domain model of the 
single-phase Phasor Estimator. We will assume that the same filter arrangement 
is used as above. The step responses in the phasor output following a sudden 
application of cosine and sine input signals having the coordinate system rotation 
frequency are shown in figure 10-9. The response for a three-phase Phasor 
Estimator having an exponential positive sequence input signal also has been 
included for comparison 
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Figure 10-9 Time domain response to suddenly applied scalar input signal 
  (reponse to exponential input in 3-ph PE included for comparison)
  
The graph shows that the amplitude response is very similar in all cases. The 
angle information depends on the phase of the applied scalar input signal. After 
about half the output signal rise time the phase error is rather small.  
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� Model used in the simulation of TCSC 
It has been shown that the transfer functions characterising the Phasor Estimators 
for single- and three-phase input signals are identical in the frequency domain. 
Further the undesired contribution to the phasor output signal that appears in the 
single-phase case is suppressed by the filters to a large extent. Due to this reason 
it appears adequate to utilize the three-phase model of the Phasor Estimator, 
which takes the complex vector time function as input signal. For practical 
reasons we use the formulation in the IL_SYNC coordinate system. 

10.2.4 Phasor Estimation and RLS algorithms 

The phasor estimation problem also can be formulated as an estimation problem, 
which can be attacked by the Recursive Least Square (RLS) method. In the case 
that the input signal is scalar as defined in (10-9) we can write 
 

( ) ( )[ ] ( ) ( )tStSSeSSts CS
ph

qCS
ph

d
avtjphav CS θθθ sincosRe −+=+=

r
  (10-13) 

 
A number of measurements are being collected at time instants {tk}. At these time 
instants the regressors ϕ(tk) and the measured values s(tk) are known. The 
regressors are given by 
 

( ) ( ) ( )( )kCSkCSk
t ttt θθϕ sincos1 −=      (10-14) 

 
The parameter vector 
 

( )tph
q

ph
d

av SSS=Θ        (10-15) 

 
shall be estimated such that  
 

( ) ( ) min=Θ− kkk tts ϕ        (10-16) 

 
The RLS algorithm, which solves this problem, is described in almost any 
textbook dealing with linear estimation, e.g. in [B2]. The modified version, 
which includes a forgetting factor, permits adjustment of the bandwidth of the 
estimator. The solution in the RLS algorithm has the same form as the solution to 
the Kalman problem. The correspondence is discussed in [B3]. In the continuous 
case this means that the derivative of the estimate is given by the product of the 
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Kalman gain and the “innovation”, i.e. error between the measured and the 
estimated signal. 
 

( ) ( ) ( )[ ]Θ−=
Θ ttstK

dt
d tϕ        (10-17) 

 
The components in the Kalman gain vector converge rather fast towards a 
constant for the average component and towards sinusoidal functions of time 
with the coordinate system rotation frequency. The periodic, steady state solution 
corresponds to a linear time-invariant filter given in Appendix E. The system 
matrix of this filter has some resemblance of the filters that has been discussed in 
Appendix D. The filter performance also is quite similar, when looked upon in 
frequency or time domain. 
In an interesting further development of the measuring technique following this 
track it should be possible to utilize not only the steady state solution of the RLS 
algorithm, but rather the complete solution. The process, from which the input 
signals are extracted, then is monitored and when extraordinary events occur the 
RLS algorithm is resetted, with suitable initializations of the Kalman gain 
factors. A similar idea has been applied in a measuring system described in [S2]. 
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CHAPTER 11 
BOOST MEASUREMENT AND 
SYNCHRONIZATION 
 
The study approach selected in this thesis is to treat the TCSC as a three-phase 
device operating in a three-phase network. The TCSC model described in the 
previous chapters also has been adapted to that objective. In this chapter 
dynamical models for the boost measuring and synchronization systems shall be 
derived. In order to fit these models to the main circuit representation it is 
preferred to use a Phasor Estimator model that takes a complex-valued input that 
represents a space-vector in the IL_SYNC coordinate system. In real installations 
the Phasor Estimators used may be implemented as single-phase devices, but we 
have shown in the preceding chapter that the use of a vector-based three-phase 
representation does not introduce any significant error. This conclusion applies at 
least as long as the cut-off frequencies in the low-pass filters in the Phasor 
Estimators are less than about one third of the rated network frequency.  

11.1  BOOST FACTOR MEASURING SYSTEM 
The model of the TCSC operates in the IL_SYNC system. Accordingly the line 
current vector in steady state is real, LÎ . Let the steady state boost factor be kB so 

that the capacitor voltage vector is negative imaginary, 
Cj

IkU
N

LB
C ω

ˆˆ = . The 

fundamental frequency components of the line current and the capacitor voltage 
are measured by identical Phasor Estimators utilizing the same rotating 
coordinate system. The measuring system creates the complex quotient between 
the estimated capacitor voltage and the line current phasors and extracts the 
imaginary part of the result. Figure 11-1 outlines the boost measuring system.  In 
the model we utilize the relative quantities as defined in (7-20) and (7-21). The 
measured boost factor then becomes 
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where PE signify the Phasor Estimation procedure and ∆θ  represents the phase 
error between the undisturbed line current vector and the coordinate system used 
by the Phasor Estimators. The quotient is independent of the coordinate system, 
if the Phasor Estimator is linear and the dynamics in ∆θ can be neglected, i.e. if 
the synchronizing PLL is slow. Linearisation of the expression in (11-1) then 
proceeds as follows 
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Here the transfer functions for the Phasor Estimators used have been denoted 
with the lower index ‘PE’. Using the symmetry properties of the component 
transfer functions, i.e. dqR

p
qdR

p
qqR

p
ddR

p GGGG >−>−>−>− −== ,,,, , , we get 
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The Phasor Estimator transfer functions to be utilized are given in (10-8). 
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Figure 11-1 Outline of the boost measuring system. 
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Example 11-1 
Figure 11-2 shows an example where the measured capacitor voltage and the line 
current are both complex exponentials, which abruptly (t=0.010 s) change their 
amplitude and phase (∆uCrel=-0.03-j0.06, ∆iLrel=0.025+j0.02). In the three graphs 
Phasor Estimators with varying bandwidth have been used. In the upper graph 
the 3 dB bandwidth is 15 Hz in the middle 20 Hz and in the lower graph it is 25 
Hz. It appears reasonable to select the lower bandwidth of 15 Hz. The rise time is 
about 15 ms and the overswing is in the range of 15-20%. A certain static error 
occurs in the linearized model due to the approximation of the complex division 
formula. 
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Figure 11-2 Step response in boost factor measurement. Phasor Estimators with 
  varying bandwidth. 
 
An important feature in applications related to series capacitors is the impact of 
offset voltages appearing across the capacitor.  
Figure 11-3 presents the result of a simulation where 0.1 pu DC offset voltage 
step is suddenly (t=0.010 s) added to the capacitor voltage. The figure shows that 
the disturbance causes a drop in the boost factor response signal with about 0.02 
pu during approximately 20-25 ms if the cutoff frequency is 15 Hz. 
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Figure 11-3 Response in measured boost factor to DC offset step in capacitor 
  voltage. Phasor Estimators with different bandwidth. 

11.2 PHASE-LOCKED LOOP (PLL) 
It is natural to look at the TCSC to be a device into which a line current is being 
injected and which generates and inserts a voltage in series with the line. 
Therefore, when the control system needs some synchronization with the 
network, the phase will be related to the phase of the line current. The capacitor 
voltage is a most volatile signal, which cannot be used to provide a stable and 
robust phase reference signal for the control system. 
The control system architecture already has been discussed in chapter 9. It was 
pointed out that the role of the synchronization system, from a boost factor 
control perspective, is to provide a feed-forward signal, which makes the TCSC 
less sensitive to line current phase shifts. 
The objective of extracting the argument of the line current of course is closely 
associated with the phasor estimation problem. 

11.2.1 Getting the line current phase directly from a PE 

As a first approach one may consider to simply provide the measured line current 
signal to a Phasor Estimator and detect the phase of the extracted phasor. Figure 
11-4 illustrates this approach. 
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Figure 11-4 Direct derivation of synchronization angle from PE. 

 
In steady state the relative line current is unity. Therefore the transfer function 
from phase shift in the line current in the IL_SYNC coordinate system to change 
in PLL angle is given by the transfer function ( )Ω>− jG qqR

PE
,  in (10-8). Likewise, 

the transfer function from change in relative line current amplitude to change in 
the PLL angle is  ( )Ω>− jG qdR

PE
, . In these formulas the frequency Ω is the frequency 

of the line current components in the IL_SYNC coordinate system. 
 
Example 11-2 
Figure 11-5 shows results of time domain simulations using the approach shown 
in figure 11-4. A sudden phase shift of 0.1 rad was applied to a sinusoidal single 
phase signal.  
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Figure 11-5 Response to phase angle shift. 
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The phase step inception was initiated at varying point-of-wave during a half 
cycle of the input wave. Second order Bessel filters with 3 dB cutoff frequency at 
15 Hz were utilized. Corresponding results for the case that a complex-valued 
input signal was used also are shown. They are marked by small circles in the 
graph. 
The result indicates that the rise time varies in the range 15-25 ms and that the 
overshoot is below 5 % in this case. 
The frequency domain transfer function of the Phasor Estimator used above is 
shown in figure 11-6. The transfer function ( )Ω>− jG qdR

PE
,  is marked  

‘DiLd->phase’ and the transfer function ( )Ω>− jG qqR
PE

,  ‘DiLq->phase’. The angle 
measuring system has a bandwidth  (–3dB) of approximately 20 Hz.  
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Figure 11-6 Frequency domain characteristics of the Phasor Estimator. 

 

11.2.2 PLL with frequency regulator 

Another more conventional approach is shown in figure 11-7. In this case the 
coordinate transformation angle is being generated by integration of a frequency 
signal delivered by a frequency controller. The latter is a proportional-integrating 
(PI) regulator having the argument of the estimated line current phasor as its 
input signal. The frequency regulator keeps integrating until the estimated phasor 
argument equals zero. 
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Figure 11-7 PLL with frequency regulator. 
 

For modeling purposes let us introduce the PLL deviation angle ∆θPLL(t), which 
denotes the deviation between the estimated line current argument, as delivered 
by the PLL, and the angle of the undisturbed line current space vector. Naturally 
the deviation angle ∆θPLL(t) can not be measured in a real application as it refers 
to the coordinate system associated with the undisturbed line current phasor, 
which is an artificial quantity not available in an installation. The rotating 
coordinate system of the real-life Phasor Estimator therefore utilizes the 
estimated line current argument from the PLL. The input signal to the frequency 
regulator then becomes 
 

( ) ( )[ ] ( ){ } ( ) ( )titeeit R
LqPLL

tjtjR
LPLL

PLLNN ~~
1arg ∆+∆−≈∆+=∆ ∆+− θϕ θωω)

  (11-4) 

 
The block diagram in figure 11-8 illustrates the dynamical model of the PLL.  
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Figure 11-8 Dynamical model of PLL . 
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The transfer function of the frequency regulator has been denoted HPLL(s). Most 
often it would contain a PI link as its dominating constituent, but sometimes also 
other links also may be inserted in order to adjust the phase shift of the transfer 
function. 
 
The closed loop frequency domain transfer functions become 
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The PLL can be represented in the time-domain by a linear time-invariant state 
space model.  
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The derivation of this model is described in Appendix F. 
 
Example 11-3 
Let us assume that the frequency regulator is of the proportional-integrating type 
with the transfer function 
 

( )
PLL

PLL
PLLPLL sT

sTksH +
=

12π        (11-7) 

 
The parameters were selected to kPLL = 3.0 Hz/rad, TPLL = 0.3 s. The Phasor 
Estimator parameters equal those used for figure 11-5. 
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Figure 11-9 PLL step response . 

 
With this conservative tuning of the PLL only a slow response can be obtained. 
The corresponding closed loop transfer curves in the frequency domain are 
presented in figure 11-10. 
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Figure 11-10   Frequency domain closed-loop transfer function. 

 
First it should be noted that signal amplitude changes have a very small impact 
on the measured angle. This is visualized by the curve close to the bottom 
(marked ‘DiLd→phase’) in the upper graph in figure 11-10. The other curve in 
the same graph (marked ‘Dilq→phase’) shows the closed loop transfer function 
from actual phase in the input signal to the measured value. The figure shows 
that the angle measuring system in this case has a bandwidth of only 4 Hz. 
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Example 11-4 
It is possible to make the frequency controlled PLL much faster. E.g. one can 
utilize a PID regulator and incorporate some additional phase compensating 
links.  
 
As an example the following arrangement can be used: 
� Phasor Estimator average filter: 1st order, 15 Hz cutoff frequency (3 dB) 
� Phasor Estimator phasor filter: 2nd order Bessel, 25 Hz cutoff frequency 

(3 dB) 

� PID-controller ( ) 






 +
+=

I

I
dPPID sT

sTsTksH 1  with 

kP = 250 (rad/s)/rad, TI = 0.04 s, TD = 0.005 s 
� Complex lead-lag filter 
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where ωcenter = 300 rad/s, kω= 2.5, ζcenter= 0.5, kζ = 1 
 
The Nichols’ chart for this PLL is shown in figure 11-11. It visualizes the total 
open loop frequency curve L(jΩ) for the Phasor Estimator and the regulator links 
as a function of frequency Ω (markers indicate rad/s) in a graph, where the 
magnitude of the open loop gain (in dB) is drawn vertically and the phase shift of 
the open loop is drawn horizontally. For closed loop stability it is required that 
the frequency curve does not enclose the (-180°, 0 dB) point.  
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Figure 11-11      Nichols chart for the frequency controlled PLL. 

 
The grid in the chart indicates locus curves for amplitude and phase of the closed 

loop transfer function ( ) ( )
( )Ω+
Ω

=Ω
jL

jLjGClosedLoop 1
. It can be used to judge the closed 

loop behaviour of the system. E.g. the figure shows that maximum closed loop 
gain will be approximately 2 dB at about 30 rad/s and that the phase shift in the 
closed loop at 100 rad/s (15.9 Hz) is almost -45°. 
Figure 11-12 shows the phase step response of the PLL. Note that the time scale 
is different from that in figure 11-10! In figure 11-13 the corresponding closed 
loop transfer function in frequency domain is presented. The 3 dB magnitude 
bandwidth has been increased to about 20 Hz at the expense of a higher 
sensitivity towards amplitude changes. 
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Figure 11-12    Step response, frequency controlled PLL. 
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Figure 11-13     Closed loop transfer function for the frequency-controlled PLL. 
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CHAPTER 12 
BOOST CONTROL, STIFF LINE CURRENT 
__________________________________________________________________________________________________________ 

12.1 INTRODUCTION 
The themes in this thesis so far have concentrated on 
� describing the SVR concept 
� creating a dynamical model of the TCSC using the idealised description using 

equivalent, instantaneous capacitor voltage reversals 
� describing how the fundamental component of capacitor voltage and line 

current may be extracted using the Phasor Estimator 
� investigating the dynamics of the Phasor Estimator, the boost measuring 

system and the PLL 
In this chapter things will be put together in order to arrive at a dynamical model 
of the boost-controlled TCSC, as it appears in a real power system. 
The objectives of the boost controller are twofold 
� to control the inserted reactance of the TCSC in accordance with the given 

reference kBref; the capability of the TCSC in this respect is characterized by 
its “servo performance” 

� to maintain the inserted reactance of the TCSC at the reference value kBref 
suppressing the impact of external disturbances in the line current; the 
capability of the TCSC in this regard is distinguished as its “regulator 
performance” 

 Within the Synchronous Voltage Reversal (SVR) scheme the TCSC operation is 
described by equivalent, instantaneous voltage reversals rather than in terms of 
the thyristor turn-on angle. The TCSC boost regulator generates the timing 
references, which define the desired capacitor voltage zero-crossing instants. A 
secondary thyristor trigger pulse system then turns on the thyristor in question at 
the correct time instant taking into account the given timing reference, the 
instantaneous values of the capacitor voltage and the line current. 
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Thus, in this thesis the “boost regulator” refers to the regulator that generates the 
timing references for the reversals. These references interface the TCSC model, 
which has been described in chapter 7. 
At this point a few words about the continuous/discrete character of the models 
presented so far are required. The TCSC model represents a discrete, sampled 
system. The output signal from the model is the average relative voltage across 
the TCSC capacitor. The sampling frequency is 300 or 360 Hz, when the rated 
network frequency is 50 or 60 Hz respectively. Thus the Nyquist frequency is 
150/180 Hz (942/1131 rad/s) respectively. We expect that the regulators involved 
in the control will have a far lower bandwidth and accordingly the model used 
can be interpreted as representing a continuous system. 
In this chapter we shall consider the design and tuning of the boost regulator. In a 
first stage the servo performance will be considered. Then only the main circuit 
model, the boost measurement system and the boost regulator are involved. Once 
the servo performance has been investigated focus will be changed towards the 
regulator behaviour and we shall investigate the sensitivity to disturbances in the 
line current. It will be shown that the suppression of such disturbances can be 
improved by introduction of a PLL. In fact the improvement of the regulator 
performance is the main motivation for the use of the PLL in the control system. 
In the design procedure we will use the methodology established in the 
Quantitative Feedback Theory (QFT) [B4]. This method permits control system 
design that meets specifications in time-domain for servo performance (reference 
step response) and sensitivity (disturbance step response) with specified 
uncertainties in the process parameters. It is important to emphasize that it is the 
process uncertainties and the unknown disturbances that determine the need 
for feedback; if the plant were deterministic and not exposed to disturbances 
there would not be any need for the feedback control! 
QFT utilizes the traditional frequency domain design methods according to 
Bode/Nyquist/Nichols. The Nichols’ chart, visualising logarithmic gain versus 
phase displacement of the total (i.e. including both the process and the regulator) 
open-loop transfer function is extensively used during the design procedure. In 
fact the core of the design method deals with frequency shaping of the regulator 
transfer function G so that the total nominal transfer frequency curve for each 
frequency resides outside a given area, defined for that frequency, within the 
Nichol’s chart. This area has a border known as the “Horowitz bound”. It is 
determined by the performance requirements and the process uncertainties. There 
is one such bound for each frequency, but in practice the designer selects a few 
critical frequencies to be used during the design.  
As stated above it is anticipated in the QFT method that a time-domain 
specification for the system closed-loop performance exists. However, often in 
development work no such specification can be defined upfront, but one rather 
wants the performance to be “as good as possible”. This means that one must set 
up a provisional specification and try to meet it with a suitable design. Then the 
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specification must be refined according to the outcome of the design in an 
iterative process. 
The design work is split in two parts in this thesis. In the first one it is assumed 
that the line current is stiff. Then it is assumed that the line current change caused 
by variation of the TCSC inserted reactance is negligible. In the second part, 
reported in chapter 13, we will consider the TCSC response, when it has been 
inserted in a (possibly series compensated) line. 

12.2 STIFF LINE CURRENT CONDITIONS 
Assume that the TCSC is inserted in a line with stiff line current. The TCSC 
operation is governed by a regulator, which controls the generated train of 
equidistant pulses serving as time references for the capacitor voltage reversals. 
The regulator controls the phase shift of the pulse train relative the line current 
fundamental component as has been described earlier in chapter 4. Further 
suppose that the boost factor is being measured and that a feedback regulator 
with transfer function G compensates the deviations ∆kBref from the boost 
reference. The output from the regulator is an angle ∆θBreg, which represents the 
phase deviation of the pulse train from its undisturbed position. It is anticipated 
that the transfer function G includes at least one integrating member. Then, in 
steady state, the regulator will establish a phase shift (if the system is stable) such 
that the boost level remains constant at its reference level kBref even though a 
specific synchronizing system (PLL) is not included in the scheme. Accordingly 
∆θBreg remains at zero in undisturbed conditions. The arrangement is depicted in 
figure 12-1. 
 

∆kBref ∆kB∆kBref1
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Figure 12-1   Simple boost control system for the TCSC. 

 
The blocks incorporated within the shaded area, i.e. the TCSC main circuit and 
the boost measuring system, constitute the “plant” to be controlled by the 
regulator with the transfer function G and the prefilter F. 
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12.3  SERVO PERFORMANCE 
Let us we first consider the servo problem, i.e. the capability of the TCSC to 
follow changes ∆kBref in the reference.  This objective is fully met by the control 
system shown in figure 12-1. As the line current is assumed to be stiff, no 
disturbances will effect the TCSC.  The closed-loop transfer function, the so-
called complementary sensitivity function, is given by 

 

 
GP

GPF
k
kG
Bref

B
servo +

=
∆
∆

=
1

      (12-1) 

12.3.1 Uncertainties 

Even if we are considering the case that line current is stiff there are some 
uncertainties, which must be taken into account in the controller design. The 
following contributions have been identified: 
� the loss factor Df in the TCSC main circuit model is estimated to lie in the 

range [ 0.95 … 1.00 ] 
� in the idealised model instantaneous voltage reversals are being considered. 

This means that, in the model, any control order changes appearing just 
before a reversal will be executed immediately in the upcoming reversal. In a 
real circuit the reversal takes finite time and control values obtained after 
thyristor firing will not be executed until next reversal occurs. An uncertain 
delay τ was introduced at the input of the TCSC module to reflect this delay. 
It also shall cover the program execution time in the control computer. The 
uncertain delay time was specified to be [ 1 … 3 ] ms. 

� the design shall be valid for all operating boost factors kB . The maximum 
variation range was assumed to be [ 1.0 … 3.0 ]. 

A set of “nominal” parameters were selected to be Df = 0.98, τ = 1 ms and kB = 
1.5 . 

12.3.2 Modelling 

The models of the TCSC and the boost reference measuring system have been 
discussed earlier and will not be repeated here. Additionally the following other 
parameters have been selected: 
� line frequency 50 Hz 

� second order Bessel filter (ζ=0.866) with cutoff frequency 15 Hz were 
selected for the average and phasor filters in the Phasor Estimator 

In the simulation one Phasor Estimator using one complex-valued input signal, 
which represents the whole three-phase capacitor voltage vector, has been 
implemented. Similarly one boost controller providing one control angle for the 
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TCSC is utilized in the simulation. It has been shown earlier that the response of 
the Phasor Estimator using single-phase input signal is very close to the response 
of the device using a complex input signal, and this means that the result 
obtained from the simulations are also applicable to the case that Phasor 
Estimator and the regulators have been implemented phase-wise in the TCSC. 
Figure 12-2 shows Bode plots of the open-loop transfer function for the plant. 
The nominal parameters generate the curve marked by the circles and the 
surrounding solid lines indicate the envelop of the transfer functions produced by 
all combinations of the uncertain parameters. 
 

100 101 102 103
-40

-20

0

20

40

m
ag

n 
[d

B
]

TCSC tf tetaBreg -> kB

100 101 102 103

-400

-200

0

ph
as

e 
[d

eg
]

rad/s  
Figure 12-2 Bode plots of nominal and envelops of open-loop transfer function 
  for the TCSC. 
 
It appears that the biggest spread in the transfer functions occur at low frequency 
(due to the uncertainty in loss factor) and at high frequencies (due to spread in 
time delay) 
 Figure 12-3 demonstrates another way to visualize the uncertainties. The 
nominal plant open-loop transfer function is shown in a Nichols’ chart. In 
addition, for a number of frequencies the transfer function has been calculated 
and depicted in the plot for the whole ensemble of parameter combinations. 
Using QFT vocabulary this plot illustrates the “templates”. 
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Figure 12-3 Nominal open-loop plant transfer function with templates showing 
  the uncertainty at certain frequencies  (marks in curve in rad/s). 

12.3.3 Specification 

In QFT the specification normally will be expressed in terms of speed and 
accuracy of the response to step changes in the reference. The following criteria 
are used here: 
� rise time to 90 %  shorter than 50 ms 
� settling time to less than 5 % error shorter than 150 ms 
� overshoot less than 10 % 
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Figure 12-4 Frequency- and time-domain servo specifications. 
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The closed-loop time-domain specification is showed in the lower diagram in 
figure 12-4. It is converted by an approximate transformation into a closed loop 
specification in the frequency domain. This is shown in the upper diagram in 
figure 12-4. 

12.3.4 Feedback regulator design 

In the QFT approach enough feedback is being introduced in order to reduce the 
uncertainty gap at each frequency in the closed loop transfer function to less 
than the width between the curves in the upper diagram of figure 12-4. When the 
width is sufficiently small the closed loop gain is corrected by a prefilter, which 
acts on the regulator input signal. 
From the acceptable uncertainty gap in the frequency-domain specification and 
the templates defined by the plant uncertainties the “Horowitz bounds” in figure 
12-5 have been calculated for a number of selected frequencies. The value of the 
nominal open-loop transfer function at the respective frequency must reside 
above or to the right of the corresponding bound. 
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Figure 12-5 Horowitz bounds for 2, 5, 10, 30, 50  and 100 rad/s for the servo 
  specification and the specified process uncertainties 
 
The control system designer now must construct a transfer function for the 
regulator that fulfils these requirements. In practice this is done by implementing 
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the regulator as a number of simple blocks like PI-regulators, lead-lag links etc.  
connected in cascade. In the actual case a PI controller was selected having the 
transfer function  
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with the parameters PBreg = 0.15 rad/pu, TBreg = 50 ms. 
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Figure 12-6 Open-loop transfer curve together with some Horowitz bounds. 
 
Figure 12-6 shows the selected total frequency transfer function and the 
Horowitz bounds. The nominal transfer function trajectory is located well above 
the corresponding bounds at 2, 5 and 10 rad/s. At 30 rad/s it passes just at the 
limit of the corresponding bound and for 50 and 100 rad/s it passes to the right 
and below the corresponding Horowitz bound. 
This feedback reduces the width of the closed loop transfer function to the same 
level as required in the specification. This is visualized in figure 12-7, where 
nominal closed loop function (thin solid line) is shown together with the 
maximum and minimum values of the closed loop gain (circles) at the selected 
frequencies. In addition the frequency-domain specification (thick solid lines) 
has been drawn in the same graph. 
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Figure 12-7 Close-loop transfer function; specification and calculated without 
  prefilter. 
 
It can be seen that due to the introduction of feedback the variation of the closed 
loop transfer function (the vertical distances between the circles) has been 
reduced to a value that is equal to or smaller than the difference between the 
specification curves. The closed loop gain however peaks at about 40 rad/s, 
which indicates that an overshoot exists in the step response. 
Time domain simulations are presented in figure 12-8. 
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Figure 12-8  Step response and controller output without prefilter 
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The upper graph shows the measured boost response while the lower one depicts 
the regulator output during the transient. Note that a certain change of the steady-
state control angle is required in order to obtain the new boost level. The 
necessary change of the angle varies due to the different loss factor within the 
ensemble of uncertain systems. 

12.3.5 Prefilter design 

The overshoot exceeds the specification a lot. A prefilter F (figure 12-1) can be 
used to improve this situation. This is shown in figure 12-9, which depicts the 
same step response when a prefilter is used. The time domain step response now 
is quite close to the specification. 
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Figure 12-9 Step response and controller output for regulator with prefilter. 

 
The transfer function of the prefilter is given by 
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using the parameters ωn=41.0 rad/s, ζn=0.594, ωd=38.9 rad /s, ζd=1.217. 
The corresponding closed loop characteristics (with prefilter inserted) is shown 
in figure 12-10. It shows that closed loop 3 dB bandwidth of the TCSC controller 
is at least 40 rad/s. 
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Figure 12-10    Specification and calculated close-loop transfer function  
     calculated with prefilter. 

12.3.6 Comparison with detailed model of TCSC 

The results obtained so far are all based on the description of the TCSC in terms 
of instantaneous voltage reversals. How does the results agree with a TCSC 
having a real main circuit, where the capacitor voltage reversals are not 
instantaneous but have a finite duration? The line current is still assumed to be 
stiff. In order to investigate this question a MATLAB model was used, which 
simulates the TCSC main circuit and control. The following parameters were 
used: 
� network frequency 50 Hz 

� LC resonance frequency in the main circuit 125 Hz, i.e. λ=2.5 
� quality factor Q=30 for the valve circuit (inductor plus valve); this 

corresponds approximately to loss factor Df=0.95 according to the results in 
figure 4-19 

The TCSC model comprises three phases. In each phase the capacitor voltage 
and line current phasors are extracted and used to get the boost factor response 
from that specific phase. Each phase further has an individual boost controller 
using the phasors extracted in that phase. 
In addition the space vectors representing the three-phase capacitor voltage and 
line current are created from the phase quantities. They are then fed into phasor 
estimators accepting complex input functions. These estimators generate phasors 
that  represent the whole three-phase system. The apparent impedance is formed 
by dividing the capacitor voltage phasor with the line current phasor. Finally the 
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imaginary part of the quotient, normalized with the capacitor reactance at 
network frequency, delivers the boost factor response. 
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Figure 12-11    Simulation results for fully implemented TCSC model. 
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Figure 12-11 presents some results from such a simulation, where the boost 
factor reference is increased by 0.1 per unit from a steady-state level of kB=1.2.  
The graphs verify the very good agreement between the results obtained from the 
simplified model using instantaneous voltage reversals and from the model using 
detailed representation of the TCSC main circuit. 
An interesting feature with the control system approach based on SVR is that the 
servo dynamical performance is inherently independent of the boost level. This is 
in contrast to systems, which directly generate the control angle, where the strong 
non-linear relation between the control angle and the inserted reactance (shown 
in figure 3-3) must be considered. This fact is illustrated by the graphs in figure 
12-12, which depicts the response of the detailed TCSC model at a 0.1 pu 
reference step at a higher initial steady state boost factor (kBref = 2.5). Specifically 
it should be noticed that the change in the control angle β, which signifies the 
displacement of the turn-on instant of the thyristors, differs about one magnitude 
of order, when the steady-state boost level changes from kB=1.2 to kB=2.5. This 
gain adaptation results from the action of the subsystem denoted as “SVR trig 
pulse generation” in figure 4-13.  
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Figure 12-12    Simulation results with higher boost factor. 
 
The servo performance agrees with that in figure 12-11, but the ripple in the 
control signals is higher and the steady state control angle θBreg has increased 
somewhat. These features result from the increased harmonic content in the 
capacitor voltage and the higher losses at elevated boost levels. 
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12.4 REGULATOR PERFORMANCE 
We are again considering the situation that the line current is stiff. The block 
diagram shown in figure 12-1 still is applicable. Now we shall investigate how 
line current changes impacts on the boost factor, i.e. on the reactance that the 
TCSC inserts in series with the line. Certainly the QFT method can be applied to 
tune the regulator according to a given sensitivity specification and existing 
uncertainties. However, we want to reduce the sensitivity of the TCSC with 
respect to line current changes as much as possible. Therefore stability 
considerations will establish the limits for the performance. The situation is very 
much the same in the servo case and accordingly we will use the boost regulator 
parameters from the preceding section in the simulations that follow. This means 
that the regulator is of PI type with gain PBreg=0.15 rad/pu and integrating time 
constant TBreg=50 ms (transfer function in (12-2)). 

12.4.1 Line current amplitude change, idealized model 

Figure 12-13 exemplifies the simulation results produced by the idealized model 
using instantaneous voltage reversals for the case when line current amplitude is 
suddenly increased by 10 %. The step response has been calculated for the whole 
ensemble of systems defined by the uncertainties given in section 12.3.1. 
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Figure 12-13   Response to 10% amplitude increase in line current. 
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In the step response five different bands can be identified. They are associated 
with the different boost factors kB=1.0, 1.5, 2.0, 2.5, 3.0. The sensitivity for line 
current changes namely depends on the steady-state boost level, contrary to the 
servo performance. The highest impact naturally occurs when the boost level is 
high. The disturbance manifests the inherent property of the SVR control to keep 
the capacitor voltage constant irrespective of the line current changes. 

12.4.2 Line current amplitude change, detailed model 

As before the results are compared with those obtained from the detailed model 
of the TCSC. Such simulation results are presented in figure 12-14 for low and in 
figure 12-15 for high steady state boost level. 
The upper three graphs show from top to bottom 
� instantaneous line current 
� instantaneous capacitor voltage 
� instantaneous valve current 
The lower three graphs show 
� boost factor evaluated from positive sequence components of the space 

vectors representing capacitor voltage and line current 
� output (timing reference for capacitor voltage zero-crossing) from the three 

boost regulators in the individual phases  

� control angles β for the three phases, as determined by the SVR trig pulse 
block 

It can be noted that in each case the boost individual regulator outputs have 
different magnitude. The lowest amplitude occurs in the phase where the line 
current is peaking, when the amplitude step occurs. The maximum magnitude of 
the boost regulators agrees with the value produced by the idealized model using 
instantaneous voltage reversals. 
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Figure 12-14     Response to 10% amplitude in line current at boost kB =1.5. 
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Figure 12-14     Response to 10% amplitude in line current at boost 

kB=3.0. 

12.4.3 Line current phase shift, idealized model 

A line current deviation in the quadrature direction in the IL_SYNC coordinate 
system represents a phase shift. A change of the relative current by 0.1 pu 
corresponds to a phase advance of approximately 0.1 rad (5.7°). Such small 
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phase shifts frequently occurs in transmission systems e.g. due to switching 
operations in the network or tripping of generators or other equipment. Figure 
12-15 depicts the simulation results from the idealized model derived in this 
thesis. 
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Figure 12-15     Response to –0.1 rad phase shift of line current. 

 
In this graphs the whole ensemble of systems defined by the uncertainties have 
been investigated. It appears that only minor variation is obtained in the result. 
We conclude that the boost factor deviation only marginally depends on the 
steady-state boost level. The diagrams show that the TCSC with this regulator 
setup is far more sensitive to line current phase shifts than to amplitude 
changes. The difference is substantial and reaches almost one order of magnitude 
at low steady state boost levels. 
It is not very surprising that the TCSC exhibits such high sensitivity to phase 
shifts in the line current. We have explained already in chapter 4 (figures 4-9  
to 4-11) that the phase of capacitor voltage reversals relative to the line current is 
the determining factor for whether the boost level in the TCSC shall increase or 
decrease. This phase shift also is the variable acted on by the boost regulator 
itself in order to follow the given boost reference. 
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12.4.4 Line current phase shift, detailed model 

Figure 12-16 shows the results from a simulation using the detailed TCSC model. 
The shown graphs are the same as in section 12.4.2. The agreement between the 
results from the two models is very good. 
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Figure 12-16     Response to –0.1 rad phase shift in line current at boost kB =1.5. 
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Very similar results were obtained from simulation at high boost level. The only 
difference is that the control angle β variation is much smaller at the high boost. 

12.5 ADDITION OF A SYNCHRONIZING SYSTEM 
(PLL) 

12.5.1 Motivation and purpose 

Up to this point we have investigated the servo and the regulator performance of 
the TCSC using a simple PI-type boost regulator. It was found that the servo 
performance is adequate and that the sensitivity towards line current amplitude is 
reasonable but that the TCSC is very sensitive to line current phase shifts. 
The reason of course is that the line current phase shift directly impacts on the 
boost changing mechanism in the TCSC. In steady-state the phase error will be 
taken care of by the integral part of the output signal from the boost regulator. 
However, in order to change the integral part of the output signal, a boost factor 
change must first occur, then pass through the measuring system and finally get 
integrated by the boost regulator. This takes a certain time and a substantial 
deviation from the boost factor reference will be obtained during that period. 
Under these circumstances it appears to be a bright idea to design a device that is 
dedicated to observe the line current phase and to adjust the boost regulator 
output immediately, when a phase shift occurs, without awaiting that any boost 
error develops. Such a device is the Phase Locked Loop (PLL) operating on the 
line current. The phase changes detected by the PLL are directly added to the 
boost regulator output as a feed forward signal. The arrangement simply is a 
“synchronizing system” for the TCSC. 
It appears to the author that the feed-forward interpretation of the synchronizing 
system is the correct description of its role in the over-all control. It should be 
noted that the phase reference for the AC quantity that drives the main circuit, i.e. 
the line current for the TCSC, the bus voltage for the SVC etc., must always be 
created from locally measured quantities. The dynamics of the system that 
provides the phase information, like the PLL in the case of TCSC, has an 
essential impact on the control performance. 
Occasionally the question is raised about what is the adequate principle for 
tuning the control system of power electronic equipment. Two alternatives then 
normally will be examined: 
� fast synchronisation system (PLL) and slow regulator 
� slow synchronization system (PLL) and fast regulator 
From the discussion above the answer would be that one would first consider a 
fast acting regulator because it will provide both good servo performance and 
regulator performance. If the system remains too sensitive to phase shifts in the 
AC quantity driving the main circuit, a PLL can be added to provide a feed-
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forward control link. It can contribute to improved performance only if its 
response time is faster than the closed loop response time of the regulator. If the 
regulator performance is much more important than the servo performance it 
might be reasonable that PLL speed is increased as a trade-off of reduced 
regulator speed. 
There may of course be reasons to implement a slow-acting PLL for other 
reasons than control performance. As an example it may be needed in order to 
simplify startup sequences etc. 

12.5.2 Line current phase shift, idealized model including PLL 

Figure 12-17 presents the time-domain simulation results obtained with the 
idealized TCSC model when the PLL described in example 11-4 in section 
11.2.2 is used. The PLL has a phase-correcting filter in the frequency regulator 
so that it can operate with a high gain in order to be fast-acting (figure 11-12). 
The disturbance is the same line current phase shift as in figure 12-15. 
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Figure 12-17     Response to –0.1 rad phase shift of line current with PLL. 

 
A comparison between figure 12-17 and figure 12-15 shows that the sensitivity 
for line current phase shift has been reduced to about one third of its original 
value. The response probably can be further improved by retuning the boost 
regulator and the PLL simultaneously. 
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12.5.3 Line current phase shift, detailed model including PLL 

Finally simulation results results obtained for the detailed TCSC model are 
presented in figure 12-18. Inspection shows that the idealized model reproduces 
the transient at the line current disturbance with very good accuracy. 
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Figure 12-18   Response to –0.1 rad phase shift of line current at 

kBref=1.5. Detailed model including PLL . 
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CHAPTER 13 
BOOST CONTROL, TCSC IN THE SYSTEM  
__________________________________________________________________________________________________________ 

13.1 OBJECTIVES 
In the preceding sections we have investigated the boost control problem of the 
TCSC assuming that the line current is unaffected by the TCSC voltage. Such 
studies have the benefit of simplifying investigations of the regulator 
performance and to find out the basic limits for speed of control, stability etc. 
However, from a practical viewpoint the restriction to stiff line current of course 
does not make sense. If the TCSC does not have any impact on the line current 
there is no reason to install it at all! 
A natural next step is to look at the TCSC when it is inserted in a transmission 
line with given voltages on the line terminal buses. In this study we will use a 
simple resistive-inductive line model. We will also have the possibility to include 
a fixed series capacitor bank. 
We shall investigate the boost control design problem (tuning) of the boost 
controller in view of the uncertainties that are related to the varying parameters 
and the unknown short circuit strength at the line terminal buses. 
The idealized TCSC model using instantaneous voltage reversals is used. 

13.2 SYSTEM MODEL 
The system model according to the description above is depicted in figure 13-1. 
We may consider the line terminal voltages to be given external quantities that 
are independent of the TCSC. Of course only the line terminal voltage difference 
has any impact on the current, so one terminal voltage may be considered to be 
stiff. The boost control system uses locally measurable quantities as its feedback 
signals; they are derived from the line current and capacitor voltage. Certainly 
the TCSC generates some zero-sequence third harmonic voltages. However, due 
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to the high zero-sequence impedance, this zero-sequence current in the line can 
be neglected.  
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Figure 13-1 TCSC inserted in the transmission line. 
 
In this study a small-signal linearized model shall be developed using the TCSC 
blocks that have been derived earlier. Figure 13-2 depicts how the quantities 
associated with the TCSC interact with the system. 
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Figure 13-2     Quantities interacting between the TCSC, the control system and 
     the transmission system. 
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Considering the boost control system its servo performance will be impacted by 
the line current change, which is caused by the change of the inserted reactance. 
The external disturbances will be represented by changes in the line terminal 
voltages. These disturbances may involve a voltage component in phase with the 
line current. This component here is denoted  ∆uTd while the voltage component 
in quadrature direction relative the line current has been designated ∆uTq. 
Here we shall pursue an exercise with the aim to tune the boost regulator for 
servo performance. Such tuning may e.g. be requested in a Power Oscillation 
Damping (POD) application, where the TCSC is installed in order to provide 
damping of electromechanical oscillations in the 0.1-2 Hz frequency range. 
The blocks inside the shaded area of figure 13-2 constitute the “plant” which 
shall be controlled by the boost regulator. The boost regulator’s output, i.e. the 
angle ∆θBreg, is connected to the plant’s control input and the output from the 
plant is the boost factor response from the Phasor Estimation unit. The PLL also 
is included in the plant. Disturbances enter the control system from changes in 
the line terminal voltages. 
As the plant encloses the boost factor measurement system and the synchronizing 
system (PLL) it is necessary to establish the parameters of those systems in order 
to define its open loop transfer function.  A high gain in the PLL is required in 
order to reduce the sensitivity for line current disturbances. As it has been 
demonstrated in chapter 11.2.2 high gain can be used in the PLL if its frequency 
regulator contains a complex lead-lag link in addition to the standard PI link.  
The phasor estimators for the boost measuring system and for the PLL utilize 1st 
order LP filters with -3 dB bandwidth 15 Hz for the average and 25 Hz for the 
phasor components. The frequency regulator is equipped with two cascaded links 
 

� PI-link with transfer function ( )
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Step response to a phase shift of 0.1 rad of the input signal has been depicted in 
figure 13-3 
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Figure 13-3     Step response of the PLL included in the plant. 

 
The system equations can be derived from figure 13-1. We are interested in small 
deviations from a steady state operation with line current amplitude LÎ  and we 
may normalize the line current with its steady-state value as base. Further let the 
physical reactance (at network frequency) of the TCSC capacitor constitute the 
impedance base. When all quantities are represented in the rotating steady-state 
coordinate system IL_SYNC we get the following equations for the line and the 
fixed series capacitor 
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The corresponding state-space system is obtained by resolving the vector 
functions in their real and imaginary parts. This yields the equations (13-2), 
which interface the equations describing the dynamics of the TCSC, and which 
have been discussed in the preceding chapters. 
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In order to derive the transfer functions for the combined TCSC and transmission 
line system we may introduce transfer function notation in order to formulate the 
following linear equation system:  
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The transfer functions qR
TCSC

qqR
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TCSC

dR
TCSC

dqR
TCSC

ddR
TCSC GGGGGG >−>−>−>−>−>− θθ ,,,,,, ,,,,,  represent 

equations (7-26) and (7-30) describing the TCSC dynamics. They have been 
transformed from the discrete state space form in the time domain, where they 
are represented by the matrix quadruple [A,B,C,D], to the frequency domain 
using the standard transformation rule ( ) ( ) DBAeICjG hj +−=Ω

−Ω 1 , where h is 
the sampling time. 

The transfer functions ,,,, ,,,, dCqR
TL

dCdR
TL

dTqR
TL

dTdR
TL GGGG >−>−>−>− ,, ,, qTqR

TL
qTdR

TL GG >−>−  
qCqR

TL
qCdR

TL GG >−>− ,, ,  represent the transmission line, and its interaction with the fixed 
series capacitor and the TCSC. These transfer functions can be obtained from  
(13-2) using the standard formula ( ) ( ) DBAsICsG +−= −1  applicable for any 
linear time-invariant state space systems represented by the quadruple of 
matrices [A,BC,D]. 

The transfer functions qqR
PLL

qdR
PLL GG >−>− ,, ,  describe the PLL and can be obtained from 

(11-5). 
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Finally we can use the formula (11-3) to get the measured boost factor response 
as 
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In order to solve the transfer functions we rewrite the linear system as 
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13.3 SYSTEM UNCERTAINTIES 
Next we shall investigate a simple, but despite that representative, example. 
Assume the following line data and conditions 
� system voltage 500 kV, 50 Hz 
� line length 400 km 

� line impedance 0.025 +  j*0.25 Ω/km, thus total line impedance is 10 + j*100 
Ω/phase 

� resistance deviation due to temperature variation -25 % to +30 % 
� short circuit current capacity in each line terminal is nominally 8 kA but it 

may vary between 3 and 15 kA due to changing network conditions; each 
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source reactance thus is nominally 36 Ω/phase but varies between 19 and 96 
Ω/phase 

� short circuit sources have nominal X/R ratio 8 with a variation in the range 
between 5 and 10; the corresponding resistance is nominally 36/8 = 4.5 
Ω/phase with variation in the range  [19/10 …96/5] = [1.9 … 19.2] Ω/phase 

� fixed series compensation degree is 50 % of the line reactance, thus 50 
Ω/phase 

� TCSC capacitor bank physical reactance 15 Ω/phase 
� TCSC boost level varies in the range 1.0 to 1.5, nominal 1.2 

Using the TCSC capacitor bank reactance (15 Ω/phase) as a base the following 
parameters are obtained: 
� line reactance (including sources) 

nominal:   xL = 100 + 2×36 = 172 Ω/phase = 11.47 pu 
minimum: xL= 100 + 2× 19 = 138 Ω/phase = 9.2 pu 
maximum: xL= 100 + 2× 96 = 292 Ω/phase = 19.47 pu 

� line resistance (including sources) 
nominal:   rL = 10 + 2×4.5 = 19 Ω/phase = 1.27 pu 
minimum: rL= 0.70×10 + 2× 1.9 = 10.8 Ω/phase = 0.72 pu 
maximum: rL= 1.25×10 + 2×19.2 = 50.9 Ω/phase = 3.39 pu 

� fixed series capacitor: xF =50 Ω/phase =  3.33 pu 
 
We further assume that the TCSC operates with a steady state boost factor in the 
range 
� kB = [1…1.5], nominal value 1.2 
� and from the discussion in the preceding chapter we inherit the main circuit 

uncertainties for the loss factor and the control time delay 
� Df =[0.95…1.0], nominal value 0.98 

� τdelay =  [0…3ms], nominal value 1 ms 

13.4 PLANT TRANSFER FUNCTION 
We can now apply the idealized model. The envelops enclosing the open-loop 
plant transfer functions, i.e. the transfer function from control angle θBreg to the 
measured boost factor kB,m for the whole ensemble of parameter combinations 
have been depicted in figure 13-4. The transfer function for the nominal plant 
(marked by circles) also has been included in the drawing. 
The transfer function for the system with stiff line current has been shown earlier 
in figure 12-2. Comparison with the new curves in figure 13-4 shows that the 
TCSC uncertainties dominate at low frequency but that new uncertainty has been 
added in the frequency range 30-200 rad/s. The series-compensated transmission 
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line has a resonance somewhere in this frequency range and this causes a gain 
increase. The resonance frequency is uncertain due to the uncertainty in the 
source inductance and the resonance gain due to the variation in both line and 
source resistance.  
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Figure 13-4     Open loop transfer function from control angle to boost factor 
       response for the plant. 
 
In figure 13-5 the nominal plant transfer function is depicted together with its 
variation at certain frequencies in a Nichols chart. These areas are known as 
‘templates’ in the QFT vocabulary. The figure clearly shows that the biggest 
uncertainty occurs at 125 - 150 rad/s. At these frequencies the gain and phase 
variation exceeds 20 dB and 100 deg respectively. 
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Figure 13-5     Templates for plant transfer function at specific frequencies. 

13.5 SERVO SPECIFICATION AND REGULATOR 
DESIGN 

For the system with the uncertainties described above we may specify the 
following for the measured boost factor response signal at a sudden reference 
step, namely 
� rise time from 0 to 90 % of its final value in less than 100 ms 

� settling time to ±5  % of its final value within 200 ms 
� overshoot less than 10 % 
The corresponding Horowitz bounds may then be calculated. Each such bound, 
valid for a specific frequency, define an area in the Nichol’s chart, where the total 
nominal open loop transfer function must not reside at that frequency. It is the 
task for the control system engineer to find suitable regulator links that fulfils this 
requirement. It is advantageous to use as low feedback gain as possible as this 
will minimize the noise injection to the system. 
Figure 13-6 shows the final nominal open loop gain in the feedback loop together 
with the Horowitz bounds for some interesting frequencies. 
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Figure 13-6     Total open loop transfer function and some Horowitz bounds. 

 
The regulator transfer function was selected to be a PI controller in series with 
two second-order links 
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with the parameters 
 kBreg = 0.55 rad/pu,  TBreg = 80 ms 

 ωd1 =110 rad/s, ωn1 =60 rad/s, ζd1 = 0.54, ζn1 = 0.67 

 ωd2 = 245 rad/s, ωn2 = 165 rad/s, ζd2 = 1.4, ζn2 = 0.18 
 
The second order links serves the purpose of adding some phase to the transfer 
function for frequencies exceeding 30 rad/s and further to keep down the gain at 
200 rad/s. 
Figure 13-7 shows the step responses for the ensemble of parameter 
combinations (243 different combinations).  
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Figure 13-7     Step response without prefilter for the whole ensemble of systems. 
 
Figure 13-8 depicts six different cases, representing the extreme results obtained, 
from the collection of systems.  
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Figure 13-8     Six selected step responses for various parameter combinations. 
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The associated parameters for these cases are given in Table 13-I. 
 
Table 13-I     Parameter values for the selected cases 

 xL (pu) rL (pu) Df (pu) τ (ms) kB  xF (pu) 

case 1 14.2 1.6 1.00 3 1.5 3.33 

case 2 14.2 0.7 1.00 3 1.5 3.33 

case 3 10.8 2.6 1.00 3 1.5 3.33 

case 4 7.4 2.6 1.00 3 1.5 3.33 

case 5 7.4 1.6 1.00 3 1.5 3.33 

case 6 7.4 0.7 1.00 3 1.5 3.33 

 
It appears from the graphs that the rise time is in the order of 50 ms or less, but 
that an overshoot up to 40 % appears in some cases. 
This can also be seen in figure 13-9, where the small circles indicate the variation 
of the closed loop transfer function for the regulator and the uncertain system for 
different parameter combinations (template). The graph also shows the 
corresponding frequency-domain closed loop specification. 
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Figure 13-9   Envelop of closed loop transfer functions (circles) and closed loop 
   nominal and specification limits (solid lines) in the frequency 
   domain. 
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It can be concluded that a prefilter  with a gain reduction in the range of 30 rad/s 
can reduce the overshot. As an example such a prefilter can be have the transfer 
function 
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with the parameters 

ωPF1 = 150 rad/s 

ωPFd2 = 44 rad/s 

ωPFn2 = 36 

ζPFd2 = 1.15 

 ζPFn2 = 0.55 
The step response of the prefilter is shown in figure 13-10. 
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Figure 13-10     Prefilter step response 

 
The closed loop transfer function in figure 13-9 modifies to the one in figure  
13-11, when the prefilter is taken into account. 
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Figure 13-11   Modified closed loop transfer function variation (circles) and 
       nominal and specification limits (solid lines) 
 
Finally we obtain the step responses that are depicted in figure 13-12 for all 
parameter combinations and in figure 13-13 for the special cases according to 
Table 13.I.  
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Figure 13-12    Step response with prefilter for the whole ensemble of systems. 
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Figure 13-13     Six selected step responses for various parameter combinations. 
 
The step responses obtained approximately fulfils the original specification with 
respect to rise time, settling time and overshot. The TCSC servo response may be 
approximately represented, e.g. in power oscillation damping simulations, by an 
equivalent first order filter with a time constant of 50 ms. 
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CHAPTER 14 
TCSC AND SUBSYNCHRONOUS RESONANCE 
  

14.1 BACKGROUND 
In chapter 12 and 13 we have analysed in some detail the control behaviour of 
the TCSC. These studies mainly focus on the boost control, its stability and speed 
of response. The investigations have shown that the small signal model derived 
in the thesis provides a handy tool for tuning the control system. It has also been 
shown that a robust design with respect to varying conditions in the transmission 
system can be obtained, e.g. by using the methods developed in QFT. 
In chapter 5 we have touched upon the subject of how the TCSC reacts when a 
current composant with subsynchronous frequency is being injected in addition 
to the normal 50 or 60 Hz line current. It was shown that the TCSC, when 
controlled according to the SVR scheme, ideally exhibits resistive-inductive 
apparent impedance to the system at subsynchronous frequencies. This is an 
important fact due to its implications with respect to the possible occurrence of a 
phenomenon known as subsynchronous resonance (SSR). The origin of one 
principal type of SSR will be dealt with in the following section. 
The purpose of the investigations in this chapter is to apply the developed small-
signal model in order to make a somewhat deeper analysis of the conditions at 
subsynchronous frequencies. One specific objective of great interest is to 
evaluate the impact of the boost control system (including the synchronization 
system) on the preconditions for SSR. 

14.2 TORSIONAL INTERACTION SSR 
It has been known for several decades that fixed series capacitors under certain 
conditions may interact with the generator-turbine shaft system in a connected 
thermal power station and spontaneously excite exponentially increasing torque 
oscillations. The phenomenon is known as Torsional Interaction Subsynchronous 
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Resonance or shorter TI-SSR. The SSR family also comprises some other related 
incidents like “Induction Generator Effect” and “Transient Torque Effect” [B5]. 
Similar SSR problems may be associated with other transmission installations e.g 
HVDC. 
The TI-SSR can only occur if three conditions are fulfilled 
� the shaft system must have a mechanical resonance at a subsynchronouns 

frequency fm 
� the generator mass must participate and be one of the swinging masses in the 

oscillation mode at frequency fm 
� a matching electrical resonance must exist in the transmission system at the 

“complementary” frequency fN - fm 
Figure 14-1 illustrates the important constituents, which in combination establish 
the conditions for TI-SSR.  
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Figure 14-1     Subsystems interacting at subsynchronous resonance. 

 
The mechanical shaft system is shown on the left-hand side. The shaft connecting 
the generator with the turbines exerts a mechanical torque on the generator mass. 
Typically several masses representing different turbine stages (low-pressure, high 
pressure etc.) must be represented in the model. When a torsional swing mode is 
excited the masses perform small amplitude twisting movements relative each 
other. The phase angle of the generator mass becomes modulated, causing a flux 
variation in the stator circuit. The flux deviation creates a voltage variation in the 
stator and, depending on the network impedance (or rather its admittance), a line 
current disturbance results. The latter is particularly noteworthy if an electrical 
resonance exists in the connected network. 
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The flux in the generator and the stator current create an electrical torque, which 
decelerates the generator mass, and which in the IL_SYNC coordinate system is 
given in normalized units by the expression 
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For small deviations we get 
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where the steady state quantities have been denoted by phasor arrows. The torque 
variation acts on the generator mass and a feedback loop is being established, as 
shown in the lower part of figure 14-1. Our interest will now be concentrated on 
the transfer function between the impressed shaft speed modulation, ∆nsh, and the 
electrical torque, elT~∆ , that it brings about. In other words we will look at the 
gain and phase relation in the open loop feedback branch that represents the 
generator and the electrical transmission system. From this characteristic the 
possibility of SSR conditions can be visualized in the electrical damping curve 
for the system. 
The influence of the TCSC on the possible SSR conditions relates to its impact 
on the electrical resonance conditions in the network. In the frequency range 
where the TCSC exhibits resistive-inductive apparent reactance no electrical 
resonance can be established between the TCSC and the line inductance. 

14.3 GENERIC GENERATOR MODEL 
The generator models used in power system analysis often are quite complicated 
with several winding systems along both the direct and the quadrature axis [B5]. 
These sophisticated models are motivated when low-frequency electro-
mechanical transients shall be modeled with sufficient accuracy. Such transients 
namely mainly involve low rotor frequencies up to a few Hz. For SSR conditions 
the rotor frequency is much higher, typically in the range from 15 to 40 Hz. At 
these rotor frequencies the resistance in the damper windings has little impact. 
These windings therefore serve as a magnetic screen, which captures the rotor 
flux and prevents it from being varied. The leakage between the stator winding 
and the damper windings is represented by the subtransient reactance and the 
rotor flux behind that reactance can be considered to be constant in a rotor-fixed 
coordinate system. If the subtransient reactance is lumped together with the line 
reactance the remaining machine model simply becomes a rotating constant flux. 
Figure 14-2 illustrates this simple generic generator model.  
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Figure 14-2     Generic simple generator model. 

 

Let the normalized rotor flux be Rψ
~̂  and assume that it is constant. The shaft 

angle is θsh(t) in the FIXED coordinate system. Due to the rotor movement the 
flux in the stator circuit in the FIXED coordinate system becomes 
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The induced stator voltage is the time derivative of the stator flux so that 
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(Due to the use of normalized quantities, “per unit values”, a visible factor ωN 
shows up in formulas that involve time derivation). 
Introduce the normalized mechanical shaft speed nsh according to the definition 
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Now assume that the shaft speed contains small sinusoidal deviations with 
frequency Ω  so that 
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where n̂∆  is a complex constant. Due to the relation (14-5) the angle will also be 
modulated. Integration of (14-6) yields 
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We put (14-7) into (14-3) to get the flux variation caused by the rotor shaft speed 
modulation 
 

( )

















∆

Ω
+≈

≈==

Ω









∆

Ω



















∆

Ω
++ ΩΩ

tjNtjj
R

en
j

j
tjj

R

en
j

tj

R
S
S

en
j

jee

eeeet

Nsh

tjN

Nsh

tjN
Nsh

ˆRe1
~̂

~̂~̂~

0

0
0 ˆReˆRe

ωψ

ψψψ

ωθ

ω
ωθ

ω
ωθ)

  (14-8) 

 
This yields in the FIXED coordinate system 
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and, due to (6-6), in the IL_SYNC coordinate system 
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In order to get the deviation voltage caused by the rotor speed variation we insert 
(14-5) - (14-7) in (14-4). We get 
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Due to (6-6) the total voltage in the IL_SYNC coordinate system, aligned with the 
steady state line current, becomes 
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Denote 
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For small deviations we can approximate (14-12) as 
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We can subtract the steady state voltage Rjψ
~r  from (14-14). What remains then is 

the deviation voltage in IL_SYNC  
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The formula (14-15) directly delivers the voltage deviation in two orthogonal 
directions. We will utilize the equation in this form in the following. However, 
the formula may alternatively be developed into  
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In this latter form one can immediately identify the super- and sub-synchronous 
voltage components. 
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14.4 CONNECTION TO THE NETWORK 
We shall consider the situation depicted in figure 13-1, where a TCSC is 
connected in a resistive-inductive line with a fixed series capacitor between two 
nodes.  
 

kBref
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line impedance,
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uC
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uT2

iL

TCSC

rL xL
-xF∆n

inf
bus

 
Figure 14-3     Outline of the generic study case. 

 
Assume that a generic generator is connected to the left hand side node and that it 
feeds power into an infinite bus at the right hand side. This setup is outlined in 
figure 14-3. 

14.4.1 Steady state conditions 

We may assume that the amplitude of the steady state voltage R
TU 2

r
 is known and 

that the power delivered to the line terminal in the receiving end (the right-hand 
terminal) has been given as Prec+jQrec. Then we can calculate the line current 
amplitude LÎ . The steady state line current phasor R

LI
r

 is aligned with the real 
axis in the IL_SYNC coordinate system due to the definition of the latter. The 
argument of the terminal voltage UT2 therefore fulfils 
 

)arg(arg 2 recrec
R
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       (14-17) 

 
Both the terminal voltage and the line current now have been fully determined. In 
the IL_SYNC coordinate system the steady state equation is 
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Here the quantities have been normalized. When the network equations shall be 
interfaced with the TCSC equations they must be normalized using the steady 
state line current and the physical reactance of the TCSC capacitor bank as base 
values. The IL_SYNC coordinate system is aligned with the line current, so the 
line current’s normalized value in this case simply is unity. Further the TCSC 
steady state normalized voltage equals the steady state boost factor kB. Thus  
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Using (13.14) we get in IL_SYNC coordinates that  
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Thus the rotor flux amplitude and phase can be obtained as 
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14.4.2 Fixed series compensation 

In a first case we assume that the line is only compensated by a fixed series 
capacitor. The equations for the transmission system were discussed earlier in 
chapter 13. Equation (13-2) can be used in this case if we put 0~,0~ =∆=∆ R

Cq
R

Cd uu . 
Then we get 
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with 
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The frequency domain transfer function can be immediately obtained by solving 
(14-22). The following result is obtained 
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14.4.3 TCSC and fixed series compensation 

When the TCSC is inserted the calculation gets more complicated. The equations 
governing this system in the frequency domain are given by (13-5) and (13-6). 
Let us introduce the following notation for these equations 
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Here we can insert the boost regulator feedback transfer function GBreg and put  
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This yields (using MATLAB’s notation) 
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This equation system can now be inverted to get the desired transfer functions 
from the line terminal bus voltage components into the line current components. 
One arrives at the similar expression as in (14-24). 
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14.4.4 Line current deviations 

The steady state voltage Rjψ
~r  is given by (14-20). We get 
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The impressed voltage deviations now can be obtained from (14-15) 
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Plugging this result into equation (14-24) or (14-28) yields 
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14.5  ELECTRICAL TORQUE 
The variation of the electrical torque, which is caused by the modulation of the 
shaft speed, is governed by the general equation (14-2). Figure 14-4 illustrates 
how the steady state quantities and the linear deviations interact to create the 
electrical torque deviation from their steady state values. 
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Figure 14-4     Generation of electrical torque deviation {SSRmod2.wmf}. 

 
A first contribution to the electrical torque is obtained by the interaction between 
the deviation of the flux and the steady state line current. The flux variation is 
obtained from (14-10). We get 
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where R
LI

~r
 is the phasor that represents the steady state line current. Due to its 

definition the IL_SYNC system is aligned with the steady state line current, so the 
steady state phasor is real and equals LÎ , which happens to be the current base. 

Thus it turns out that R
LI

~r
 equals unity.  Equation (14-33) therefore reduces to 
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 Note that this contribution to the torque variation has the same frequency as 
variation of the shaft speed. It should also be recognized that this torque variation 
does not depend on the network’s impedance characteristics at frequencies 
deviating from the rated network frequency. 
The second and more important contribution to the electrical torque is produced 
by the interaction between the line current deviations and the steady state flux in 
the generator. The formula is given by 
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The steady state flux is given by 
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The line current deviations are obtained (14-31) and (14-32). Thus we arrive at 
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Addition of (14-34) and (14-37) yields the final result 
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14.6  ELECTRICAL DAMPING CURVE 
Formula (14-38) reveals that a speed modulation of the generator shaft with a 
certain frequency in steady state causes an electrical torque variation with that 
same frequency. Inspection of the formulas for the speed variation and the angle 
variation 
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indicates that the transfer function in (14-38) can be resolved in one part, which 
is  proportional to the speed variation and another part that is proportional to the 
angle variation 
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Putting 
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these two quantities can be identified as the “electrical damping factor” Del in  
[(pu torque)/(pu speed)], and the “electrical spring constant” Kel in [(pu 
torque)/rad]. Note that the per unit base in the above formulas is related to the 
current and reactance of the TCSC, so that the power base and the torque base 
are 
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The electrical damping curve is calculated as a function of frequency. A negative 
dip in this curve at a certain frequency indicates that an SSR condition may exist 
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if the shaft system has a mechanical torsional resonance at that particular 
frequency. 
The theory derived in the preceding sections now shall be illustrated by some 
examples. 
 
Example 14-1 
In the first example the radial line in figure 14-3 is compensated only by a fixed 
series capacitor. The following values have been assumed: 
� 500 kV system voltage, 50 Hz 
� steady state line current 1500 A rms 

� 400 km line with reactance 0.30 Ω/km and resistance 25 mΩ/km; this gives a 
total line reactance of 120 Ω/phase and a line resistance of 10 Ω/phase 

� source impedance corresponding to 5000 MVA short-circuit capacity in the 
feeding end and infinite capacity in the receiving terminal; this gives a source 
reactance of 50 Ω/phase; it is assumed that the source resistance is 10 % of 
the reactance i.e. 5 Ω/phase. 

� fixed capacitor compensates 50 % of the line reactance i.e. –60 Ω/phase 
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Figure 14-5     Electrical characteristics for fixed series compensation. 
 
Figure 14-5 depicts the graphs showing electrical damping Del and spring 
constant Kel. Once again it shall be stressed that the model does not represent the 
damping winding arrangements in the generator rotor, which would improve the 
damping at low mechanical frequencies. However, severe negative damping 
occurs in the frequency range around 20 Hz (mechanical torsion frequency).  
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Example 14-2 
Assume that part of the inserted capacitance is provided by a TCSC. We split the 
series capacitor bank in the preceding example into a fixed bank providing 30 
Ω/phase and a TCSC providing the remaining 30 Ω/phase at a boost level kB = 
1.2 or kB = 2.0. First we assume that both the PLL and the boost regulator operate 
with very low gains. The characteristics obtained then rely upon the use of the 
SVR scheme in the TCSC control. Note that the thyristor firing instants are not 
necessarily equidistant under SVR control. They are rather determined according 
to the equation discussed in section 4.6 in such a way that the consecutive 
capacitor voltage zero-crossings appear equidistantly. 
 
Figure 14-6 shows the obtained characteristics for the generator. The thick lines 
are associated with the case of boost factor kB = 1.2 and the thin lines with kB = 
2.0. It should be noted that the discrepancy between these cases is quite small. 
This fact originates from the use of the SVR principle. The same result will not 
be obtained when a fixed firing angle is used.  
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Figure 14-6     50/50 combination of fixed SC and SVR-TCSC; no PLL a; no 
        boost regulator. Boost factor 1.2 (thick line) and 2.0 (thin line) 
 
The effect of replacing half the inserted fixed series capacitor reactance by a 
TCSC is that the critical undamping frequency range is pushed towards a higher 
mechanical frequency, in the actual case from 20 Hz to 30 Hz. This means that 
the high degree of compensation can be applied even for generators having a 
torsional resonance up to approximately 25 Hz instead of about 15 Hz, when 
fixed compensation only is utilized. The electrical undamping amplitude also has 
decreased somewhat. Finally it can be noticed that some positive damping is 
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being provided by the TCSC at low mechanical frequencies; please note however 
that the model is inappropriate at very low rotor frequencies. 
 
Example 14-3 
Figure 14-7 presents some results from an investigation of the impact of the 
boost regulator dynamics on the electrical damping of the generator in example 
14-2. 
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Figure 14-7     50/50 combination of fixed SC and SVR-TCSC; no PLL; boost 
       factor 1.2; boost regulator with medium gain (thick line) and 
       high gain (thin line) 
 
The graphs show that the boost controller has only a small impact on the 
characteristics for mechanical frequencies exceeding approximately 15 Hz. In 
general the electrical damping curve is being determined by the inherent 
characteristics of  the SVR-TCSC control for higher frequencies. The controller 
of course have a big impact on the generator at low mechanical frequencies, 
however the simple machine model can not be used for such frequencies. The 
general trend, that the low frequency range where the electrical spring constant is 
positive, expands with increasing regulator gain seems reasonable. If power 
oscillation becomes a problem it can be taken care of by a higher-level system, 
which generates a reactance reference that stabilizes the generator. In order to 
provide and tune such a system however appropriate generator models must be 
used.  
 
 
 



14.6 Electrical damping curve 
 

 207

Example 14-4 
For the generator in example 14-3 having medium boost regulator gain we shall 
now investigate the impact of the synchronizing system.  
Figure 14-8 depicts the calculation results. They show that a fast acting PLL may 
reduce the damping at low mechanical frequencies (10-15 Hz). A fast-acting PLL 
also tends to push the critical frequency range with negative electrical damping 
somewhat towards higher mechanical frequencies, but as a tradeoff the 
magnitude of the undamping peaks increases. 
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Figure 14-8     50/50 combination of fixed SC and SVR-TCSC; boost factor 1.2; 
      boost regulator with medium gain; slow PLL (thick line),  
     medium PLL (dashed), fast PLL (thin line) 
 
Example 14-5 
As a final example we shall consider the case that the series compensation is 
provided by TCSC only. Then it seems necessary that the TCSC operates with a 
low boost factor as the inserted harmonic voltage increases in proportion to  
kB – 1. Assume that the TCSC operates with a medium gain boost regulator and 
that the synchronization system operates with medium speed. 
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Figure 14-9     All-TCSC series compensation; boost factor 1.2; medium boost 
       regulator gain; medium speed PLL 
 
Figure 14-9 shows the calculation results. The figure shows that the series 
compensator exhibits positive damping for the whole range of mechanical 
torsional resonances exceeding 5 Hz. 

14.7 CONCLUSION 
It has been shown above that the model derived in this chapter provides some 
very interesting results with respect to the conditions for SSR when series 
compensation is provided partly or totally by means of TCSC. The use of the 
SVR scheme has some important advantages over conventional direct control of  
the firing angle of the thyristors 
� the electrical damping is mainly determined by the inherent characteristics 

obtained by using the SVR algorithm to determine the thyristor firing instants  
� the tuning of the regulators and synchronization system then becomes less 

critical for the SSR behaviour 
� linear controllers can be used  in the boost regulator minimizing the 

dependence of parameters 
� the characteristics of the TCSC behaviour with respect to SSR to a large 

extent is independent of the boost factor 
� the TCSC can provide adequate SSR behaviour even when it operates with 

low boost factor 
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CHAPTER 15 
SUMMARY OF THE THESIS 
  

The intentions and the aim of the work, which has been reported in the preceding 
chapters of this thesis, have been to submit a monograph on the Thyristor 
Controlled Series Capacitor presenting the concept, the potential applications of 
the device and to discuss some relevant aspects of its modelling and control. 
Below some central themes of the work will be high-lighted. 

15.1 CONCEPT 

� simplification 

The Synchronous Voltage Reversal (SVR) method to control the thyristor firing 
instants is based on the concept of equivalent, instantaneous reversals of the 
capacitor voltage. This idea simplifies the description of the TCSC operation 
tremendously and provides an understanding of the inherent dynamics of the 
device. It is surprising how far one can reach with such a simple model. In fact, it 
provides not only a good qualitative description but it also reveals quantitative 
results that are in good agreement with detailed simulations. 

� inherent characteristics 

It is often taken for granted that the output of the regulator (in this case the boost 
regulator) should be the thyristor control angle α. The SVR method, which has 
been presented in the thesis, shows that it might be advantageous to use other 
signals as outputs from the regulator. In the case of SVR the output signal 
determines the time instant of the capacitor voltage zero-crossing. It is an 
important fact the TCSC acquires inherent characteristics from the selection of 
the thyristor firing method. 
This has been discussed in chapter 5 with respect to the use of the SVR method. 
The result in figure 5-2 gives a good illustration. At the onset of a DC current 
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component in the line current the forward and reverse thyristors adapt to different 
firing angles immediately and without any participation of the boost regulator or 
any other capacitor voltage symmetrizing control member. 
Most TCSCs exhibit an apparent inductive impedance at subsynchronous 
frequencies, when it is operating with high boost level. Due to the firing 
mechanism used in the SVR control the characteristics of the TCSC is almost 
independent of the actual boost level and accordingly this characteristic, which 
is advantageous from an SSR point of view, is being preserved even at low boost 
levels. 
It is believed that the best use of TCSC for SSR mitigation purposes is to 
implement such a low-level firing mechanism, which provides suitable inherent 
characteristics of the TCSC independent of the regulators operating at a higher 
level in the control system. This certainly does not provide an active damping of 
SSR oscillations, but it makes the series compensated line appear similarly to a 
line compensated to a lower degree or not compensated at all.  
 It appears that active damping of SSR oscillations by use of TCSC would 
require a speed signal measured directly on the turbine-generator shaft system to 
be available at the TCSC site. But series capacitors are never or seldom located at 
power generation plants, and therefore it is unlikely that such signals would be 
available.  

15.2 MODELLING AND TUNING 
Control system synthesis and investigations of performance require dynamical 
models not only of the TCSC main circuit but also of the auxiliary systems 
providing boost factor measurement and synchronization. 

� phasor estimation 

In the thesis the dynamical performance of a certain class of phasor estimators 
have been derived. Although a large number of methods can be applied to extract 
the fundamental frequency components of measured scalar or complex signals it 
is likely that their dynamical performance are rather similar. 

� performance of TCSC boost control 

The achievable performance of the TCSC boost control system certainly is 
limited by the available speed of response of the measuring devices, which all 
depend in some way on phasor (fundamental frequency component) extraction. 

� uncertainties 

The need for feedback control emerges from uncertainties. In this study two 
categories of uncertainties have been considered. 
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• The first category relates to uncertainties associated with the modelling. The 
simplification of the TCSC main-circuit description and the idealized 
description of the operation introduces unmodelled time delays. Losses in the 
main circuit can only be considered using approximations etc. 

• The second category is the normal operational environment in which the 
power transmission equipment has to operate. The power system has a 
changing topology, where transmission lines are being inserted and taken out 
of service, transformers are being inserted or switched out and generators are 
connected or disconnected. In the thesis this has been considered by varying 
the source impedance at the terminals of the line where the TCSC is inserted. 

� control system design using QFT 

In the thesis the Quantitative Feedback Theory (QFT) method has been applied 
to deal with the uncertainties. It is the author’s opinion that this method offers a 
practical way to synthesize and tune a robust regulator. It is also likely that the 
use of the frequency domain offers advantages when one shall model a large 
object like a power system and define uncertainties related to it. 

15.3 OUT-LOOK 
Although the work in this thesis has been entirely focussing on the TCSC some 
of the questions discussed are common to almost any power converter used in the 
transmission system. One such issue is the problem to extract the fundamental 
component of measured quantities. Such measured values are required for 
controlling converters independent of if they are based on conventional thyristor 
technology or Voltage Source Converter (VSC) technology. 
The concept of the converter-oriented coordinate system described in chapter 6 
originally was intended to establish a framework for time-domain simulation of 
the TCSC. The idea was to lessen the computational burden by approximating 
the capacitor voltage reversals by the equivalent, instantaneous voltage reversals. 
This would make it possible to simulate TCSC in a bigger system with a 
reasonable effort. 
Hopefully, this thesis also has indicated that a simplified description of a power 
electronic system may be utilized in order to gain understanding of its dynamical 
performance. Occasionally it might also generate ideas of unconventional control 
approaches, which may give the apparatus desirable inherent characteristics. 
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APPENDIX A 
Capacitor voltage fundamental frequency Fourier 
component 
 
Here we shall evaluate formula (7-29) for the average relative capacitor voltage 
deviation in the sampling interval in some detail. The given formula is 
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Studying figure 7-6 it can be seen that the deviation between the disturbed and 
the undisturbed capacitor voltage contains two different contributions 
� the difference between the curves in the subintervals preceding and following 

the reversal; this contribution does not depend on the boost level in the steady 
state operating point around which the system has been linearized 

� the voltage deviation caused by the displacement of the reversal; the 
amplitude of this voltage difference is given by the voltage step height in 
steady state operation, i.e. the difference between post- and pre-reversal 
voltages in the undisturbed conditions 

In view of the above we may rewrite (A-1) as 
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The terms containing the capacitor voltages in the interval endpoints can be 
evaluated immediately. The result is 
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In the terms related to the relative line current deviation we will use the general 
approach of describing the line current inside the sampling interval, which has 
been described in section 7.5 with the formula (7-16). Then we get 
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The integrals can be evaluated using e.g. partial integration 
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Now the integrals can be evaluated giving the result 
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We can summarize the averaged relative capacitor voltage deviation formula as 
follows 
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where 
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The relative capacitor voltage difference k
preCx

k
postCx uu ,,

~~ −  is two third of the total 
capacitor voltage step at the reversal in steady state operation. The reason is that 
the total step includes also the step in the zero sequence component. The latter 
step has half the height of the step k

preCx
k
postCx uu ,,

~~ −  according to equation (7-4). 
Thus 
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where the last approximation is motivated by figure 4-7. Now equation (4-3) 
gives that the expression on the right-hand side actually can be expressed in 
terms of the boost factor in steady state, so we end up with the simple expression 
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APPENDIX B 
Phasor Estimator in FIXED coordinates 

� Algorithm 
The “constants” in equation (10-3) can be extracted by rearranging the equation 
and applying lowpass filtering. This process yields the following algorithm to 
obtain the estimates ( ) ( ) ( )tStStS npav

~
,

~
,

~ rrr
 of the phasors. 
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The operators Hav(p), Hp(p), Hn(p) represent low pass linear operator function of 

the operator 
dt
dp = . 

 

Equation (B-1) defines a dynamical system where ( ) ( ) ( )tStStS npav
~

,
~

,
~ rrr

 are states 
and ( ) ( )tts CSθ,)  inputs. The dynamical system appears to be time-varying as 
exponentials in θCS occur as coefficients. A better representation can be obtained 
if we make a variable substitution and transform the phasor estimates to the fixed 
coordinate system. Then put 
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Equation (B-1) then transforms into 
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The following linear equation system results 
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It shall be noted that if the lowpass filters are time-invariant then all the elements 
in the matrices are operators with time-independent coefficients. 

� Frequency domain model 
We can conclude that the phasor estimation algorithm is characterized by linear 
transfer functions with time-independent coefficients from the input vector ( )ts)  
to the output vectors ( ) ( ) ( )twtwtw npav *,, ))) . If the input signal is exponential with 
frequency ω, then also the steady state output signals become exponential with 
the same frequency. Thus we have 
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Accordingly three different transfer functions can be defined 
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� ( )
A
BjGav =ω , which describes the impact of the input signal on the estimated 

average output value 

� ( )
A

CjGp
1=ω , which describes the impact of the input signal on the estimated 

positive sequence output 

� ( )
A

CjGn
2=ω , which describes the impact of the input signal on the estimated 

negative sequence output 
 
From (B-4) we get  
 

( )
( )
( )

NM
jG
jG
jG

n

p

av
1−=

















ω
ω
ω

        

(B-6) 

where 

( ) ( )
( )( ) ( )( )
( )( ) ( )( )
( )

( )( )
( )( )
















+
−=

















++
−−=

CSn

CSp

av

CSnCSn

CSpCSp

avav

jH
jH

jH
N

jHjH
jHjH

jHjH
M

ωω
ωω
ω

ωωωω
ωωωω
ωω

1
1

1

   

(B-7)  

 

� Time domain model 
Equation (B-4) shows that the phasor estimator is a linear filter with time-
independent coefficients. As such it can be represented by a state space model. In 
the following such a model shall be defined. 
Each one of the operators Hav(p), Hp(p), Hn(p) represents a lowpass linear filter 
and each one can be represented by a state space model 
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(B-8) 

 
(Dav=0, Dp=0, Dn=0 because the filters have lowpass characteristics.) 
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Equation (B-3) yields 
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Using the representation (B-8) we can interpret (B-9) as 
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Reduction of the equations yields 
 

( )[ ]
( ) ( )[ ]
( ) ( )[ ]

nn
n

pp
p

avav
av

ppavavnnCSnn

nnavavppCSpp

nnppavavavav

xCw

xCw
xCw

xCxCtsBxjAx
xCxCtsBxjAx

xCxCtsBxAx

=

=

=

−−+−=

−−++=

−−+=

*)

)

)

)
&

)
&

)
&

ω

ω

    

(B-11) 

 
In matrix form 
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APPENDIX C 
Phasor Estimator in IL_SYNC coordinates 

� Algorithm 
When the rotating coordinate system specifically is the IL_SYNC system its 
speed is constant and equals the network frequency. If we also consider (6-5) we 
get in this case 
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If the electrical quantity is being observed in the IL_SYNC system the input 
signal is the space vector ( )ts R) . In view of  (6-6) and (10-2) it comprises the 
following components 
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The estimation algorithm (10-3) now becomes 
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Again a transformation of the states provides a linear equation with time 
independent coefficients. Put 
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and get 
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In matrix form 
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� Frequency domain model 
We may define linear transfer functions with time-independent coefficients from 
the input vector ( )ts R)  to the output vectors ( ) ( ) ( )tvtvtv npav *,, ))) . If the input signal 
is exponential with frequency Ω, then also the steady state output signals become 
exponential with the same frequency. Thus we have  
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Accordingly three different transfer functions can be defined 
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� ( )
D
EjG R

av =Ω , which describes the impact of the input signal on the estimated 

average output value 

� ( )
D
FjG R

p
1=Ω , which describes the impact of the input signal on the estimated 

positive sequence output 

� ( )
D
FjG R

n
2=Ω , which describes the impact of the input signal on the estimated 

negative sequence output 
 
From (C-6) we get 
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where  
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� Component-wise transfer functions in frequency domain 
The transfer functions in (C-8) reflect the complex-to-complex input-output 
signal relations. But in many applications the process exhibits different properties 
for the real and imaginary axis components. Further the control system might be 
configured to act only on the real or on the imaginary component. Then it 
becomes impractical to formulate the relations between complex input and output 
signals. It is preferred to describe directly the relations between the components 
of the input signal and the components of the output signal. Therefore it becomes 
interesting to express the transfer functions between each one of the input 
components to each one of the output components. In the following we consider 
only the output function pv) . Define 
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The complex-complex transfer function ( )ΩjG R
p  gives the relation between 

( )Ωjs R)  and ( )Ωjv p)  at frequency Ω  (in IL_SYNC coordinates) 
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If the components of the input function are sinusoidal at frequency Ω, they can 
be expressed as 
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where A and B are some constants. In this case the output functions become 
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For the components we get  
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We get the following formulas for the component-component transfer functions 
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� Time domain model 
Equation (C-5) shows that the phasor estimator is a linear filter with time-
independent coefficients. As such it can be represented by a state space model. In 
the following such a model shall be defined. 
 
Each one of the operators Hav(p), Hp(p), Hn(p) represents a lowpass linear filter 
and each one can be represented by a state space model 
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(Dav=0, Dp=0, Dn=0 because the filters have lowpass characteristics.) 
 
Equation (C-5) yields 
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Using the representation (C-10) we can interpret (C-11) as 
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Reduction of the equations yield 
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In matrix form 
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The matrix form immediately translates into a version using the components of 
the input and output vectors as 
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APPENDIX D 
Phasor Estimator for single-phase signal 
Assume that a scalar input signal s(t) is measured. It may e.g. be a phase current, 
a capacitor voltage or anything similar. The signal is expected to be comprised 
by an offset signal, ( )tS av , and a sinusoidal contribution. A rotating coordinate 
system is defined by the angle function, θCS(t), and in this frame the sinusoidal 
part may be represented by a complex phasor, phS

r
. Thus the input signal has 

theform 
 

( ) ( )[ ]tjphav CSeSSts θ
r

Re+=        (D-1) 

 

We want to extract the generating phasor phS
r

 and the average value avS . 
It has been described in chapter 10 how the results in Appendix B can be utilized, 
because the input signal may be written as  
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*
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according to (10-9).  

� Frequency domain model 
Assume that the input signal has frequency ω, so that it can be written 
 

( ) [ ]tjAets ωRe=         (D-3) 

 
The output functions (see figure 10-7) become 
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where the transfer functions are given by equations (B-6) and (B-7). We may 
define 
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In the formulas the transfer function Gph(jω)  provides the desired output, while 
Gphx(jω) represents the transfer function that we would like to suppress as much 
as possible. 

� Time domain model 
In a single phase Phasor Estimation the two lowpass filters generating positive 
and negative sequence output signals have identical charactersistics. Thus 
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Direct inspection in (10-3) and (10-4) yields that, when the phasor filters are 
identical, the output function ( )twav  is real-valued and the output functions 

( ) ( )twtw np *, ))  are each other’s complex conjugate. 

In Appendix B, equations (B-11) and (B-12), we derived a time domain model of 
the three-phase Phasor Estimator. Now all lowpass phasor filters are identical so 
we can put 
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All these matrices [Aav, Bav, Cav, Aph,, Bph , Cph]  are real-valued and so is the 
input function s(t). Then the states xp and xn are complex conjugates. The state 
equation in (B-11) then can be reduced as follows 
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where xphd and xphq are the real and imaginary part of the phasor states. In matrix 
form 
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 The output signals are given by 
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APPENDIX E 
Phasor Estimation using RLS algorithm 
The problem to extract the average value avS  and the phasor ph

q
ph

d
ph jSSS +=
r

that 
approximates the input scalar function s(t) has been defined in chapter 10 in 
equations (10-13) – (10-16). The solution is given by the recursive scheme 
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Here the forgetting factor λ has been introduced in order to make the algorithm 
respond dynamically to changes in the input signal. The bandwidth of the 
estimation using sampling time ts is given by the cutoff frequency ωCO  
 

 
s

CO t
λω −

=
1          (E-2) 

 

Let the coordinate system be rotating with fixed angular frequency ωCS and 
assume that (10-11) applies.  The regressors ϕ(t) given in (10-14) are periodic 
and in steady state the gain Kp,k converges to a constant for the average 
component and sinusoidal  time functions for the phasor components. Assume 
that the sampling time is short compared with the cycle time. The steady state 
solution to (E-1) then has the form in (10-17) with the gain 
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The constants depend on the cutoff frequency ωCO,AV for the average component 
and ωCO,PH for the phasor components according to the formulas in (E-4). 
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� Direct time-domain model  
Equation (10-17) together with the gain factor in (E-3) constitutes one time 
domain model, which maps the scalar input function s(t) into the phasor estimate 

phS
r

. 
Example E-1 
We select the cutoff frequencies 10 Hz for the average and 15 Hz for the phasor 
estimation. Figure E-1 depicts the time domain response of the phasor estimation 
at a suddenly applied 50 Hz sinusoidal input signal. Coordinate system also 
rotates with the same frequency.  
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Figure E-1    Time –domain response of phasor estimation using RLS steady-

state gain. 
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The calculated response to suddenly applied cosine or sine input signal is 
depicted in figure E-1. This figure can be compared with the results presented in 
figure 10-8. It seems that the performance of different methods to extract the 
phasor are rather similar. 
 
� Linear time-invariant time-domain model  
The estimated phasor can be transformed back to the FIXED coordinate by the 
transformation 
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The following time-domain model then applies 
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The interesting feature with the model (E-6) is that it is a linear, time-invariant 
(LTI)  model . 
 
� Frequency-domain 
Due to its LTI property any input signal s(t), which is sinusoidal with frequency 
ω, produces sinusoidal output signals in (E.6) that have the same frequency ω. 
The lower formula in (E-6) shows that the following set of signal components is 
obtained 
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The following relations apply  
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Example E-2 
The desired contribution to the output estimated phasor components is provided 
by the transfer function ( )ωjG ph

P . The transfer function ( )ωjG ph
PX  represents the 

undesired disturbance contribution. Figure E-2 shows the calculated transfer 
functions for the phasor estimator in Example E-1. The curves can be compared 
with those in figure 10-8. 
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Figure E-2   Transfer functions for the RLS-based phasor estimator. 
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APPENDIX F 
Time domain model of PLL  
In this appendix the time domain model of the PLL as implemented in figure  
11-8 will be derived. For this purpose we shall assume that the PLL frequency 
regulator (including the integrator from frequency to angle) is represented by a 
linear state-space system according to (F-1) below. 
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The adequate phasor estimator model can be obtained from Appendix C formula 
(C-22) 
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where 
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The combination of (F-1) and (F-2) yields the total state-space system 
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where 
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Coordinate systems 
 
FIXED Coordinate system with phases a,b,c 
IL_SYNC Rotating coordinate system aligned with the 

undisturbed line current 
CONV_ORI Sequence of frames coordinated with the 

switching of the converter 
 
General 
 
Capital letters rms values or magnitude of phasors 
Capital letters ´ A

r
´ phasor/vector 

Capital letters  ´ Â ´ peak value 
Capital letters  ´ A~ ´ estimated value 
 
Lower case letters instantaneous values 
Lower case letters ‘ ( )ta ’ three-dimensional vectors 

Lower case letters ‘ ( )ta) ’ two-dimensional vectors, “space vectors” 
Lower case letters ‘ ( )ta~ ’ normalized quantity 
 
∆ deviation from steady state operating point 
 
 
Subscripts 
 
a,b,c phase quantities in FIXED coordinates 
α,β,γ components in the FIXED coordinates 
d,q,0 components in the rotating IL_SYNC coordinates 
u,v,w phase quantities in the CONV_ORI sequence of frames 
x,y,z components in the CONV_ORI sequence of frames 
 



List of Symbols 
__________________________________________________________________________________________________________ 

 

 244

l-l line-line 
meas measured value 
N nominal/rated value 
post value immediately after reversal 
pre value immediately before reversal 
ref reference value 
 
Superscripts 
 
* complex conjugate 
 
av average 
k (numeric) frame k in CONV_IL sequence of frames 
n negative-sequence 
p positive sequence 
R rotating coordinate system IL_SYNC 
t transponate 
 
Specific Symbols 
 
Arev matrix representing the voltage reversal 
BP  matrix representing impact of line current on capacitor 

voltage 
C series capacitor capacitance 
Del  electrical damping coefficient [pu torque/pu speed  

variation] 
Df loss factor for voltage reversal  
Fbeg, Fend matrices for obtaining averaged capacitor voltage output 
 from states 
F, FXR transfer function for prefilter (acting on boost reference) 
GIL matrix representing direct impact of line current on 
  capacitor voltage  
Gθ matrix representing direct impact of control angle on 
  capacitor voltage  
GP transfer function for scalar input signal 

R
PG  complex-complex transfer function in IL_SYNC  

coordinates 
qdR

PE
ddR

PE GG >−>− ,, ,  transfer functions between components in IL_SYNC 
qqR

PE
dqR

PE GG >−>− ,, ,  coordinates 
Hav, Hp, Hn lowpass filter operators for complex input signals 
Hav, Hph lowpass filter operators for scalar input signals 

PLLH  transfer function in PLL frequency regulator (from angle  
error to angular frequency) 
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cl
PLLq

cl
PLLd HH ,  closed loop transfer function from line current’s d- and 

q-components to PLL’s output = the measured line current 
 phase 

GBreg transfer function in boost regulator  
I unit matrix 
iL line current 

LÎ  steady state line current amplitude 
ILsub subsynchronous line current component 
iV  valve current 
h sampling time (may be half or sixth cycle at network  
 frequency) 
Kel electrical spring constant [pu torque/rad] 
kB boost factor 
∆kB,m measured boost factor (response to regulator) 

dqR
TL

ddR
TL KK >−>− ,, ,  transfer functions from bus voltage deviations to line 

qqR
TL

qdR
TL KK >−>− ,, ,  current deviations between components in IL_SYNC   

 coordinates 
kZ factor for apparent impedance  
L inductance in TCSC valve branch 

R
qsh

R
dsh LL ,, ,  transfer functions from shaft speed deviation to line current 

 deviation in IL_SYNC coordinates 
LTCSC apparent inductance in low-frequency approximation 
Msh transfer function from shaft speed deviation to electrical 
  torque deivation 
∆n generator shaft speed deviation (in pu) 
Pnext  transformation matrix between consecutive member  

frames in CONV_ORI sequence 
Px2d transformation matrix from state to output in IL_SYNC 
P100 column matrix with 1 in first row 
p differentiating operator d/dt 
q time shift operator 
RTCSC apparent resistance in low-frequency approximation 

*
~

,
~

,
~

npav SSS
rrr

 estimated phasors from complex input signal 
phav SS

~
,~ r

 estimated average and phasor from scalar input signal 
Tdel delay time from reference pulse to voltage reversal 
Tel electrical torque in generator (braking) 
∆Tel1 electrical torque deviation due to steady-state line current 
  and deviation in flux 
∆Tel2 electrical torque deviation due to steady-state flux and 
  deviation in line current 
tk reversal time with thyristor k involved 
uC capacitor voltage 
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R
avCu ,

~)  average of space vector representing capacitor voltage in 
  IL_SYNC coordinates (=Fourier fundamental frequency 
  component) 
uCF capacitor voltage at firing 
uCM measured capacitor voltage  

Cmû  amplitude of harmonic component in capacitor voltage 
S
Su~)  stator voltage (normalized) in FIXED  coordinates 

∆uTd, ∆uTq bus voltage deviations  
uZ, uCZ  reversal voltage (at instantaneous reversal) 

addÛ   additional voltage caused by thyristor action 
*,, npav vvv )))  estimated phasors transformed to IL_SYNC coordinates 

*,, npav www )))  estimated phasors transformed back to FIXED coordinates 
X0 reactance at resonance in LC circuit 
Zapp apparent impedance of TCSC 
 
α TCSC firing angle 
β TCSC control angle 
λ TCSC design parameter, ratio ω0/ωN 

σ TCSC conduction angle 
ξ factor that characterize the line current approximation 

within  the sampling interval, 0=constant in FIXED, 
 1=constant in IL_SYNC coordinates 

θCS angle of coordinate system for phasor estimation 
ωCS anglular frequency of coordinate system for phasor 

estimation 
ϕ argument for time functions in CONV_IL  sequence of  
  frames 
∆ϕC angular deviation of instantaneous voltage reversal from its 
 equilibrium position 
∆θPLL phase error between real line current argument and PLL’s  
 output 
∆θk phase advance angle for capacitor voltage reversal  
 (command from regulator and PLL) 
θsh shaft angle in FIXED coordinates 
ω angular frequency in FIXED coordinates  

(argument in transfer functions) 
ω0 resonance angular frequency in TCSC 
ωN network angular frequency 
Ω angular frequency in IL_SYNC coordinates  

(argument in transfer functions) 
Rψ̂  constant rotor flux in generator 
S
Sψ~)  stator flux linkage (normalized) in FIXED coordinates 
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