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Raúl Tempone Olariaga

Akademisk avhandling som med tillst̊and av Kungl Tekniska Högskolan
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Abstract

The thesis consists of four papers on numerical complexity analysis of weak approx-
imation of ordinary and partial stochastic differential equations, including illustra-
tive numerical examples. Here by numerical complexity we mean the computational
work needed by a numerical method to solve a problem with a given accuracy. This
notion offers a way to understand the efficiency of different numerical methods.

The first paper develops new expansions of the weak computational error for
Itô stochastic differential equations using Malliavin calculus. These expansions have
a computable leading order term in a posteriori form, and are based on stochastic
flows and discrete dual backward problems. Beside this, these expansions lead to
efficient and accurate computation of error estimates and give the basis for adap-
tive algorithms with either deterministic or stochastic time steps. The second paper
proves convergence rates of adaptive algorithms for Itô stochastic differential equa-
tions. Two algorithms based either on stochastic or deterministic time steps are
studied. The analysis of their numerical complexity combines the error expansions
from the first paper and an extension of the convergence results for adaptive algo-
rithms approximating deterministic ordinary differential equations. Both adaptive
algorithms are proven to stop with an optimal number of time steps up to a prob-
lem independent factor defined in the algorithm. The third paper extends the
techniques to the framework of Itô stochastic differential equations in infinite di-
mensional spaces, arising in the Heath Jarrow Morton term structure model for
financial applications in bond markets. Error expansions are derived to identify
different error contributions arising from time and maturity discretization, as well
as the classical statistical error due to finite sampling.

The last paper studies the approximation of linear elliptic stochastic partial
differential equations, describing and analyzing two numerical methods. The first
method generates iid Monte Carlo approximations of the solution by sampling the
coefficients of the equation and using a standard Galerkin finite elements varia-
tional formulation. The second method is based on a finite dimensional Karhunen-
Loève approximation of the stochastic coefficients, turning the original stochastic
problem into a high dimensional deterministic parametric elliptic problem. Then, a
deterministic Galerkin finite element method, of either h or p version, approximates
the stochastic partial differential equation. The paper concludes by comparing the
numerical complexity of the Monte Carlo method with the parametric finite element
method, suggesting intuitive conditions for an optimal selection of these methods.
2000 Mathematics Subject Classification. Primary 65C05, 60H10, 60H35, 65C30,

65C20; Secondary 91B28, 91B70.
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Chapter 1

Introduction

This work studies numerical methods for weak approximation of stochastic differ-
ential equations. In particular, it focuses on the numerical complexity of different
numerical methods. Here by numerical complexity we mean the computational
work needed by a numerical method to solve a problem with a given accuracy.
This work first considers adaptive numerical methods for weak approximation of
Itô Stochastic Differential Equations (SDEs) and then analyzes Galerkin finite el-
ement approximations for Stochastic Partial Differential Equations (SPDEs) that
are linear and elliptic.

SDEs are often part of mathematical models that describe the evolution of
dynamical systems under uncertainty. A mathematical model establishes mathe-
matical relations between the relevant variables of a given system. For example,
a differential equation modeling the temperature of a hot metal surface subject to
water cooling, describes the relation between the given initial condition –the ini-
tial temperature–, the flux function –which tells how the heat is convected in the
system–, and the final value –the final temperature we want to know–. The purpose
of a mathematical model is to predict the outcome of events –which can be past,
present or future–, for example the result of a certain physical experiment, and
possibly take advantage of that knowledge, since an accurate mathematical model
may be used as a basic tool to control the outcomes.

Mathematical models can be deterministic or stochastic. The first case arises
when the data and the relations described in the model are deterministic, like in
the case of an ordinary differential equation with fixed data, whereas in the sec-
ond either the data or the relations between the variables are stochastic. As an
example of this, consider an ordinary differential equation, whose initial value is
not deterministic, but follows a given probability distribution. Another example is
to consider a perturbation of an ordinary differential equation, where the evolution
itself is affected by some “noise”. Setting a formal description of the this intuitive
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4 Chapter 1. Introduction

notion leads to the concept of Stochastic Differential Equations. The field of ap-
plications is quite wide, e.g. it comprises ground water flow and financial markets
[KP92, Øks98].

Uncertainty comes basically from two sources, namely the lack of complete in-
formation about the dynamics of the system to model, or the fact that, for fixed
data, the system does not always offer the same outcome. As an example of the
second case, when rolling a fair dice a sufficiently large number of times, we tend
to observe that all the values appear in similar proportions in the outcomes. It
is possible then to use this statistical information within a probability model to
answer questions related to dice games. This second step is related with the ap-
proach pursued here, that is, we shall assume that the stochastic model has been
properly identified by some statistical procedure and is given, and then try to com-
pute some related quantities. The need to compute expected values or averages
–functionals– depending on the solution of an SDE will guide us towards the notion
of weak convergence, as opposite to strong convergence, where good approximation
of realization paths is required.

The discretization of an SDE can be more subtle than for ODEs, for example
forward and backward differences do not in general converge to the same limit.
Therefore, the model must also include information on the discretization to be
used.

Numerical methods offer approximate computable solutions to mathematical
problems, and are usually applied when the exact solution is either unknown or its
computation is costly or involved. In particular, adaptive numerical methods aim
for efficient use of computational resources by trying to minimize the degrees of
freedom in the numerical discretizations, as well as to provide accurate estimates of
the different sources of error present in the computations, like the time discretiza-
tion error in the solution of an ordinary differential equation. Efficient adaptive
numerical methods rely on a posteriori information, i.e. information offered by the
computable numerical solution, both to estimate the error present in the numerical
solution and to apply a refinement criterion when adding degrees of freedom to
a given discretization. On the other hand, a priori information, i.e. information
about the unknown and usually non computable exact solution, is of qualitative
kind, e.g. provides smoothness properties of the exact solution, and may be used to
prove convergence of numerical approximations, to identify the order of such con-
vergence, as well as to select an appropriate numerical method [EEHJ95, EEHJ96].

Regarding applications, mathematical finance is an area where stochastic mod-
eling with SDEs has obtained a sound success, in particular when dealing with
contingent claims pricing theory. A derivative product or a contingent claim is a
financial contract whose value depends on a risk factor, also known as the under-
lying, such as the price of a bond, commodity, currency, share, a yield or rate of
interest, an index of prices or yields, etc.

These contracts are also known as ”derivatives”, for short, and are common in
financial markets. The application of derivatives is increasing, consider for example
the case of energy derivatives [Boh98, EL00] currently traded in many new regional
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markets, arising from deregulation of former national monopolies. A simple exam-
ple of a derivative, is the so called European Call Option, which gives to its owner
the right, but not the obligation, to buy the underlying asset at the previously
agreed-upon price on the expiration date [Hul93]. The usual valuation method as-
sumes that the financial markets are efficient, that is, that there is no opportunity
of making riskless profits, or in other words, that there exist no arbitrage oppor-
tunity in the market. This assumption leads to a consistency requirement between
the price of the underlying, e.g. a stock price, which can be observed directly in
the market, and a fair price for a related derivative product, e.g. the call option
introduced above. Mathematically this consistency relation can be expressed by
the existence of a probability measure Q such that given today’s date and today’s
stock price, the price of the derivative is the expectation under Q of its discounted
final payoff. The relevant point is that the expectations must be taken under Q,
which is known as a martingale measure, and not under the objective probability
measure [BR96, Bjö98].

After the celebrated work of Black and Scholes [BS73], stochastic differential
equations have been playing a major role in financial applications. Black and
Scholes’ model can be used to fit observed data through implied quantities, and the
related valuation formula can be interpreted as a nonlinear interpolation procedure
to estimate derivative prices. Even though few of the model’s assumptions are fully
respected in practice, e.g. constant volatility and constant riskless interest rate,
the model is quite robust, specially for relatively short maturity options. However,
when the life of the option becomes larger, extensions of the Black and Scholes
model, e.g. allowing stochastic volatility, are of practical use to explain the so
called volatility smile effect observed in the market [FSP00, SP99, WO97]. On the
other hand, since only relatively few stochastic differential equations have explicit
solutions, as the financial models get more and more refined the need for deeper
understanding and better numerical methods increases.

Thanks to Kolmogorov’s stochastic representation formulae, see [KS88], nu-
merical methods for weak approximation of SDEs can be based either on the
numerical solution of a Kolmogorov backward partial differential equation, see
[Bjö94a, Bjö94b], using finite differences schemes [WHD95], [Wil98], or the finite
element method [BS94], or by the time discretization of the SDE and the com-
putation of sample averages by the Monte Carlo Euler method, see [KP92]. The
convergence properties of finite difference schemes and the finite element method
make them the best tools whenever the dimension of the given system of SDEs is
low, say less or equal than four, since their computational cost increases exponen-
tially with such dimension. On the other hand, the computational cost of Monte
Carlo methods is only polynomial in the dimension of the SDE system, making
them a feasible alternative to compute with large systems of SDEs. Tree methods
[CRR79] are popular and have pedagogical advantages. They may be thought of as
a special case of explicit finite difference schemes, although they are non optimal,
i.e. with the same amount of computational work there exist other finite difference
schemes with better convergence properties.
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This work uses the Euler Monte Carlo method for weak approximation of SDEs,
developing a posteriori error approximations proposing and analyzing related adap-
tive numerical methods for weak approximation that are well suited to solve prob-
lems with systems of SDEs.

Stochastic Partial Differential Equations (SPDEs) are also used to describe the
behavior of systems under uncertainty. Due to the great development in compu-
tational resources and scientific computing techniques, more mathematical models
can be solved efficiently. Ideally, these techniques could be used to solve many
classical partial differential equations (PDEs) to high accuracy. However, in many
cases, the information available to solve a given problem is far from complete. This
is the case when solving a partial differential equation whose coefficients depend on
material properties that are known to some accuracy. The same may occur with its
boundary conditions, and even with the geometry of its domain, see for example the
work [BCa, BCb]. Naturally, since the current engineering trends are toward more
reliance on computational predictions, the need for assessing the level of accuracy
in the results grows accordingly. More than ever, the goal then becomes to repre-
sent and propagate the uncertainties from the available data to the desired result
through our partial differential equation. By uncertainty we mean either intrinsic
variability of physical quantities or simply lack of knowledge about some physical
behavior, cf. [Roa98]. If variability is interpreted as randomness then naturally
we can apply probability theory. To be fruitful, probability theory requires con-
siderable empirical information about the random quantities in question, generally
in the form of probability distributions or their statistical moments. Uncertainties
may arise at different levels. They could appear in the mathematical model, e.g.
if we are not sure about the linear behavior of some material, or in the variables
that describe the model, e.g. if the linear coefficient that describes the material
is not completely known. Here we shall discuss the second alternative, and use a
probabilistic description for the coefficient variability, leading us to the study of
stochastic partial differential equations.

Regarding the approximation of SPDEs, this thesis describes and analyzes two
numerical methods for a linear elliptic problem with stochastic coefficients and
homogeneous Dirichlet boundary conditions. The first method generates iid ap-
proximations of the solution by sampling the coefficients of the equation and us-
ing a standard Galerkin finite elements variational formulation. The Monte Carlo
method then uses these approximations to compute corresponding sample averages.
The second method is based on a finite dimensional approximation of the stochastic
coefficients, turning the original stochastic problem into a deterministic parametric
elliptic problem. A Galerkin finite element method, of either h or p version, then
approximates the corresponding deterministic solution yielding approximations of
the desired statistics. We include a comparison of the computational work required
by each method to achieve a given accuracy, the numerical complexity, to illustrate
their nature and possible use.

The thesis is organized as follows: Section 1.1 describes the problem of weak
approximation of Itô stochastic differential equations and the contributions from
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papers I, II and III. Finally, Section 1.2 describes a problem from linear elliptic
SPDEs and describes the contribution from paper IV.

1.1 Itô Stochastic Differential Equations

1.1.1 Weak Approximation of SDEs

Let (Ω,F , P ) be a probability space, where Ω is a set of outcomes, F is a set of
events in Ω, P : F → [0, 1] is a probability measure; and then let W : R×Ω → R`0
be a Wiener process on (Ω,F , P ). On what follows, {FWt }t∈[0,T ] denotes the natural
filtration, i.e. the filter structure of σ-algebras generated by W , or equivalently the
filter generated by the random variables {W (s) : 0 ≤ s ≤ t}.

Let a(t, x) ∈ Rd and b`(t, x) ∈ Rd, ` = 1, . . . , `0, be given drift and diffusion
fluxes and consider the Itô stochastic differential equation in Rd

dXk(t) =ak(t,X(t))dt+
`0∑
`=1

b`k(t,X(t))dW `(t), k = 1, . . . , d, t > 0,

Xk(0) =X0,k, k = 1, . . . , d.

(1.1)

A classical reference for SDEs is the book [KS88]. An existence proof for strong
solutions of SDEs, based on Piccard iterations and Lipschitz continuity of the drift
and diffusion coefficients can be found in e.g. [Øks98], while a description of an
alternative proof based on the Euler method can be found in [MSTZ00b].

The weak approximation of SDEs consists in approximating the expectation
E[g(X(T ))], where g : Rd → R is a given function, T is a given positive number and
the stochastic process X is the solution of (1.1) with initial datum X(0). In finance
applications the function g can be a discounted payoff function of a T -contingent
claim, and the fluxes a, b describe the dynamics of the underlying process, e.g. a
vector of stock values X. Figure 1.1 shows a simple example of such a problem,
with g(x) = max(X − 0.9, 0) corresponding to the payoff diagram of a call option
with strike price 0.9, maturity time T = 1 and an underlying process that follows a
geometric Brownian motion, in this case dX(t) = X(t)

10 dt+ X(t)
5 dW (t), with initial

condition X(0) = 1. The functional to compute is then

E[g(X(1))] =
∫

R
max(x− 0.9, 0)p(1, x; 0, X0)dx, (1.2)

where p(1, ·; 0, X0) is the probability density of X(1).
A first step towards the development of numerical solutions of the weak ap-

proximation problem is the forward Euler method, which is a time discretization of
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Figure 1.1. Weak approximation example. Left: Realizations for the Wiener
process, ∆t = 0.01. Right: Realizations of the process X(t), the function g and a
final sample density p(1, x; 0, X0) corresponding to M = 1000 realizations.

(1.1). Consider the time nodes 0 = t0 < t1 < · · · < tN = T and define the discrete
time stochastic process X̄ by

X̄(tn+1) = X̄(tn) + a(tn, X̄(tn))∆tn +
`0∑
`=1

b`(tn, X̄(tn))∆W `
n, 0 ≤ n ≤ N − 1

X̄(0) = X0. (1.3)

Even though a realization of X̄(tn) is computable, the expectation E[g(X̄(T )]
is in general not; however, E[g(X̄(T )] can be approximated by a sample average
of M independent realizations, 1

M

∑M
j=1 g(X̄(T ;ωj)), which is the basis of Monte

Carlo methods [KP92].
Therefore, the exact computational error, EC , naturally separates into the two

parts

EC ≡ E[g(X(T ))]− 1
M

M∑
j=1

g(X̄(T ;ωj))

= E
[
g(X(T ))− g(X̄(T ))

]
+
[
E[g(X̄(T ))]− 1

M

M∑
j=1

g(X̄(T ;ωj))
]
≡ ET + ES ,

(1.4)
where the first term, ET ≡ E

[
g(X(T ))− g(X̄(T ))

]
, is the time discretization error,

and the second, Es ≡
[
E[g(X̄(T ))]− 1

M

∑M
j=1 g(X̄(T ;ωj))

]
, is the statistical error.

The time steps for the trajectories X̄ are determined from statistical approximations
of the time discretization error ET . The number of realizations, M of X̄, are
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determined from the statistical error ES . Therefore, the number of realizations can
be asymptotically determined by the Central Limit Theorem

√
MES ⇀ χ,

where the stochastic variable χ has the normal distribution, with mean zero and
variance var[g(X̄(T ))]. The objective here is to choose the time nodes, which may
be different for different realizations of W ,

0 = t0 < t1 < · · · < tN = T,

and the number of realizations, M , so that the absolute value of the computational
error is below a given tolerance, |EC | ≤ TOL, with probability close to one and
with as few time steps and realizations as possible.

Other aspects of the use of the Euler method for the weak approximation of
SDEs have been addressed before. Milstein [Mil78] proved that the weak order of
the Euler method is 1, i.e. that for uniform deterministic time steps ∆t = T

N ,
E[g(X(T )) − g(X̄(T ))] = O

(
1
N

)
, where N is the number of time steps. Later,

Talay and Tubaro [TT90] proved that for uniform deterministic time steps there is
an a priori expansion

E
[
g(X(T ))− g(X̄(T ))

]
=
∫ T

0

T

N
E[Ψ(s,X(s))]ds+O(

1
N2

),

where

Ψ(t, x) ≡ 1
2 (akan∂knu)(t, x) + (aidjk∂ijku)(t, x) + 1

2 (dijdkn∂ijknu)(t, x)

+ 1
2

∂

∂t
u(t, x) + (ai

∂

∂t
∂iu)(t, x) + (dij

∂

∂t
∂iju)(t, x),

is based on the definition of the conditional expectation

u(t, x) ≡ E[g(X(T ))| X(t) = x]

and the following notation

dij ≡
1
2
b`ib

`
j ,

∂k ≡
∂

∂xk
,

∂ki ≡
∂2

∂xk∂xi
,

...

with the summation convention, i.e., if the same subscript appears twice in a term,
the term denotes the sum over the range of this subscript, e.g.

cik∂kbj ≡
d∑
k=1

cik∂kbj .
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For a derivative ∂α the notation |α| is its order. Kloeden and Platen [KP92] ex-
tended the results of Talay and Tubaro on the existence of leading order error
expansion in a priori form, for first and second order schemes, to general weak
approximations of higher order. Bally and Talay [BT95, BT96] extended the proof
to the case where the payoff function g is not smooth, using Malliavin calculus
[Nua95]. This expansion motivates the use of Richardson’s extrapolation for the
development of higher order methods. The case of killed diffusions, e.g. arising in
the computation of barrier options, where the distribution of X is not absolutely
continuous with respect to the Lebesgue measure, was analyzed by Gobet [Gob00].

An introduction to numerical approximation of SDEs and an extensive review
of the literature can be found in the inspiring book by Kloeden and Platen [KP92],
including information about the construction and the analysis of the convergence
order for higher order methods, either implicit or explicit.

Asymptotical optimal adapted adaptive methods for strong approximation of
stochastic differential equations, are analyzed in [HMGR00] and [MG00], which
include the hard problem to obtain lower error bounds for any method based on
the number of evaluations of W and requires roughly the L2norm in time of the
diffusion maxi dii to be positive pathwise. The work [GL97] treats a first study on
strong adaptive approximation.

1.1.2 Overview of Paper 1

The main result is new expansions of the computational error, with computable
leading order term in a posteriori form, based on stochastic flows and discrete dual
backward problems. The expansions lead to efficient and accurate computation of
error estimates. In the first simpler expansion, the size of the time steps ∆tn may
vary in time but they are deterministic, i.e. the mesh is fixed for all samples. This is
useful for solutions with singularities, or approximate singularities, at deterministic
times or for problems with small noise. The second error expansion uses time steps
which may vary for different realizations of the solution X̄. Stochastic time steps
are advantageous for problems with singularities at random times. Stochastic time
steps use Brownian bridges and require more work for a given number of time steps.
The optimal stochastic steps depend on the whole solution X̄(t), 0 < t < T , and
in particular the step ∆t(t) at time t depends also on W (τ), τ > t. In stochastic
analysis the concept adapted to W means that a process at time t only depends
on events generated by {W (s), s < t}. In numerical analysis an adaptive method
means that the approximate solution is used to control the error, e.g. to determine
the time steps. Our stochastic steps are in this sense adaptive non adapted, since
∆t(t) depends slightly on W (τ), τ > t.

The number of realizations needed to determine the deterministic time steps is
asymptotically at most O(TOL−1), while the number of realizations for the Monte
Carlo method to approximate E[g(X̄(T ))] is O(TOL−2). Therefore, the additional
work to determine optimal deterministic time steps becomes negligible as the error
tolerance tends to zero.
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Efficient adaptive time stepping methods, with theoretical basis, use a posteriori
error information, since the a priori knowledge usually cannot be as precise as the
a posteriori. This work develops adaptive time stepping methods by proving in
Theorems 2.2 and 3.3 error estimates of ET with leading order terms in computable
a posteriori form. Theorem 2.2 uses deterministic time steps, while Theorem 3.3
also holds for stochastic time steps, which are not adapted.

The main new idea here is the efficient use of stochastic flows and dual functions
to obtain the error expansion with computable leading order term in Theorems 2.2
and 3.3, including also non adapted adaptive time steps. The use of dual functions
is standard in optimal control theory and in particular for adaptive mesh control for
ordinary and partial differential equations, see [BMV83], [Joh88], [JS95], [EEHJ96],
and [BR96]. The authors are not aware of other error expansions in a posteriori form
or adaptive algorithms for weak approximation of stochastic differential equations.
In particular error estimates with stochastic non adapted time steps seem to not
have been studied before.

Theorem 2.2 describes a computable error expansion, with deterministic time
steps, to estimate the computational error,

E[g(X(T ))− g(X̄(T ))] '
∑
n

E[ρ(tn, ω)](∆tn)2 (1.5)

where ρ(tn, ω)∆tn is the corresponding error density function. Section 3 proves in
Theorem 3.3 an analogous error expansion

E[g(X(T ))− g(X̄(T ))] ' E[
∑
n

ρ(tn, ω)(∆tn)2] (1.6)

which can be used also for stochastic time steps. The leading order terms of the
expansion have less variance compared to the expansion in Theorem 2.2, but use
upto the third variation, which requires more computational work per realization.

The focus in the paper is on computable error estimates for weak convergence of
stochastic differential equations. The technique used here is based on the transition
probability density and Kolmogorov’s backward equation, which was developed in
[SV69] and [SV79] to analyze uniqueness and dependence on initial conditions for
weak solutions of stochastic differential equations. The analogous technique for
deterministic equations was introduced in [Grö67] and [Ale61].

1.1.3 Overview of Paper 2

Convergence rates of adaptive algorithms for weak approximations of Itô stochastic
differential equations are proved for the Monte Carlo Euler method.

Here the focus is on the adaptivity procedures, and we derive convergence rates
of two algorithms including dividing and merging of time steps, with either stochas-
tic or deterministic time steps. The difference between the two algorithms is that
the stochastic time steps may use different meshes for each realization, while the de-
terministic time steps use the same mesh for all realizations. The construction and



12 Chapter 1. Introduction

the analysis of the adaptive algorithms are inspired by the related work [MSTZ00a],
on adaptive algorithms for deterministic ordinary differential equations, and use the
error estimates from [STZ01]. The main step in the extension is the proof of the
almost sure convergence of the error density. Both adaptive algorithms are proven
to stop with optimal number of steps up to a problem independent factor defined
in the algorithm.

There are two main results on efficiency and accuracy of the adaptive algo-
rithms described in Section 3. In view of accuracy with probability close to one,
the approximation errors in (1.4) are asymptotically bounded by the specified error
tolerance times a problem independent factor as the tolerance parameter tends to
zero. In view of efficiency, both the algorithms with stochastic steps and determin-
istic steps stop with the optimal expected number of final time steps and optimal
number of final time steps respectively, up to a problem independent factor. The
number of final time steps is related to the numerical effort needed to compute
the approximation. To be more precise, the total work for deterministic steps is
roughly M ·N where M is the final number of realizations and N is the final num-
ber of time steps, since the work to determine the mesh turns out to be negligible.
On the other hand, the total work with stochastic steps is on average bounded by
M · E[Ntot], where the total number, Ntot, of steps including all refinement levels
is bounded by O(N logN) with N steps in the final refinement; for each realization
it is necessary to determine the mesh, which may vary for each realization.

The accuracy and efficiency results are based on the fact that the error den-
sity, ρ which measures the approximation error for each interval following (1.5,1.6),
converges almost surely or a.s. as the error tolerance tends to zero. This conver-
gence can be understood by the a.s. convergence of the approximate solution, X̄,
as the maximal step size tends to zero. Once this convergence is established, the
techniques to develop the accuracy and efficiency results are similar to those from
[MSTZ00a]. Although the time steps are not adapted to the standard filtration gen-
erated by W for the stochastic time stepping algorithm, the work [STZ01] proved
that the corresponding approximate solution converges to the correct adapted so-
lution X. This result makes it possible to prove the martingale property of the
approximate error term with respect to a specific filtration, see Lemma 4.2. There-
fore Theorem 4.1 and 4.4 use Doob’s inequality to prove the a.s. convergence of X̄.
Similar results of pointwise convergence with constant step sizes, adapted to the
standard filtration, are surveyed by Talay in [Tal95].

This work can be easily modified following [MSTZ02] yielding adaptive algo-
rithms with no merging that have several theoretical advantages.

1.1.4 Weak Approximation of an Infinite Dimensional SDE

The extension of the weak approximation problem described in Section 1.1.1 to
the infinite dimensional case is here motivated by financial applications, in partic-
ular the valuation of contingent claims that have the market interest rate as the
underlaying.
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Due to the relatively long life span of these products, the interest rate is modeled
as a stochastic process, which may be Markovian, like in the case of spot rate
models. In the context of interest rates products, the most elementary one is the
zero coupon bond with maturity time τ that gives to its owner the right to receive
one unit of currency on the date τ . The price at time t < τ of such a contract is
denoted by P (t, τ).

Since we can choose in principle any possible values of τ > t we have an unlimited
number of bonds. However, due to the assumption of absence of arbitrage in the
market, the bond prices corresponding to different maturities are not independent.
Mathematical models that take into account the joint evolution of zero coupon
bonds with different maturities can use the so called forward rate,

f(t, τ) ≡ −∂τ logP (t, τ), for t ∈ [0, τ ] and τ ∈ [0, τmax],

see [BR96, Bjö94b, Bjö98, Hul93]. Intuitively, we can think of the instantaneous
forward rate f(t, τ) as the risk-free rate at which we can borrow and lend money
over the infinitesimal time interval [τ, τ + dτ ], provided that the contract is written
at time t.

In such models, the absence of arbitrage and friction in the market implies that
the drift and the diffusion of the forward rate dynamics must fulfill the Heath-
Jarrow-Morton condition [HJM90, HJM92], i.e. that under a risk neutral probabil-
ity measure, the forward rate f(t, τ) follows an infinite dimensional Itô stochastic
differential equation of the form

df(t, τ) =
J∑
j=1

σj(t, τ)
(∫ τ

t

σj(t, s)ds
)
dt+

J∑
j=1

σj(t, τ)dW j(t),

f(0, τ) = f0(τ), τ ∈ [0, τmax].

(1.7)

Here W (t) = (W 1(t), . . . ,W J(t)), is a J-dimensional Wiener process with inde-
pendent components, and σj(t, T ), j = 1, . . . , J are stochastic processes, adapted
to the filtration generated by W and that may depend on f . Beside this, the initial
data f0 : [0, τmax] → R, is a given deterministic C1 function, obtained from the
observable prices P (0, τ). Figure 1.2 depicts a typical realization of the surface
f(t, τ). Observe that the t-sections, f(t, ·), are smooth functions of τ , while the
τ -sections, f(·, τ), are continuous but not smooth.

A basic contract to price is a call option, with exercise time tmax and strike
price K, on a zero coupon bond with maturity τmax. The price of this option can
be written as

E
[
exp
(
−
∫ tmax

0

f(s, s)ds
)

max
{

exp
(
−
∫ τmax

tmax

f(tmax, τ)dτ
)
−K, 0

}]
.
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Forward rate realization

time t 
maturity τ 

Figure 1.2. Forward rate modeling: a typical realization of f(t, τ).

With this motivation, we consider computation of the functionals

F(f) ≡E
[
F
(∫ tmax

0

f(s, s)ds
)

G
(∫ τmax

τa

Q(f(tmax, τ))dτ
)

+
∫ tmax

0

F (
∫ s

0

f(v, v)dv
)
U(f(s, s))ds

]
The functions F : R → R, G : R → R, Q : R → R, U : R → R, and their derivatives
up to a sufficiently large order m0 are assumed to have polynomial growth. Beside
this 0 < tmax ≤ τa < τmax are given positive numbers.

Here the aim is to provide a computable approximation of the above functional
F(f). This is accomplished in two steps, namely by a t and τ discretization of (1.7),
yielding a numerical solution f , and then the computation of sample averages by
the Monte Carlo method.

As in the previous Section, an important issue is to estimate the different sources
of computational error. Here the new ingredient is the analysis of the τ discretiza-
tion error, which appears together with the time discretization error and statistical
error introduced in Section 1.1.1.

1.1.5 Overview of Paper 3

This work studies the problem introduced in Section 1.1.4. considering numerical
solutions, based on the so called Monte Carlo Euler method, for the price of finan-
cial instruments in the bond market, using the Heath Jarrow Morton model for
the forward rate [HJM90, HJM92]. The main contribution is to provide rigorous
error expansions, with leading error term in computable a posteriori form, offering
computational reliability in the use of more complicated HJM multifactor models,
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Approximate Forward rate realization

maturity τ 
time t 

Figure 1.3. Forward rate modeling: a typical realization of f̄(t, τ), an approxima-
tion for f(t, τ).

where no explicit formula can be found for the pricing of contingent claims. These
error estimates can be used to handle simultaneously different sources of error,
e.g. time discretization, maturity discretization, and finite sampling. To develop
error estimates we use a Kolmogorov backward equation in an extended domain
and carry out further the analysis in [STZ01], from general weak approximation
of Itô stochastic differential equations in Rn, to weak approximation of the HJM
Itô stochastic differential equations in infinite dimensional spaces. Therefore the
main new ingredient here is to provide error estimates useful for adaptive refinement
not only in time t but also in maturity time τ , see Figure 1.3. Another contribution
is the removal of the error in the numerical approximations, produced by the rep-
resentation of the initial term structure in a finite maturity partition. Finally, the
formulae to compute sharp error approximations are simplified by exploiting the
structure of the HJM model, reducing the work to compute such error estimates.

1.2 Stochastic Partial Differential Equations

Let D be a convex bounded polyhedral domain in Rd and (Ω,F , P ) be a complete
probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events
and P : F → [0, 1] is a probability measure. Consider the stochastic linear elliptic
boundary value problem: find a stochastic process, u : Ω × D → R, such that
P -almost everywhere in Ω, or in other words almost surely (a.s.), we have

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.
(1.8)

Here a, f : Ω×D → R are stochastic processes that are correlated in space. If we
denote by B(D) the Borel σ-algebra generated by the open subsets of D, then a, f



16 Chapter 1. Introduction

are jointly measurable with the σ-algebra (F ⊗ B(D)). It is usual to assume that
the elliptic operator is bounded and uniformly coercive, i.e.

∃ amin, amax ∈ (0,+∞) : a(ω, x) ∈ [amin, amax], ∀x ∈ D a.s. (1.9)

To ensure regularity of the solution u we assume also that a has a uniformly bounded
and continuous first derivative, i.e. there exists a real deterministic constant C such
that

a(ω, ·) ∈ C1(D) and max
D

|∇xa(ω, ·)| < C a.s. (1.10)

In addition, the right hand side in (1.8) satisfies∫
Ω

∫
D

f2(ω, x)dx dP (ω) < +∞ which implies
∫
D

f2(ω, x)dx < +∞ a.s. (1.11)

Stochastic Sobolev spaces are used to obtain existence and uniqueness results
for the solution of (1.8). As in the deterministic space, cf. [BS94], the tools are
Hilbert spaces, a suitable weak formulation and then the application of the Lax-
Milgram’s lemma. All the necessary definitions then have to be extended to the
stochastic setting using tensor product of Hilbert spaces, cf. [Lar86] and [ST02],
which is a standard procedure.

Definition 1.1. Let H1,H2 be Hilbert spaces. The tensor space H1 ⊗ H2 is the
completion of formal sums u(y, x) =

∑
i=1,...,n vi(y)wi(x), {vi} ⊂ H1, {wi} ⊂ H2,

with respect to the inner product (u, û)H1⊗H2 =
∑
i,j(vi, v̂j)H1(wi, ŵj)H2 .

For example, let us consider two domains, y ∈ Γ, x ∈ D and the tensor space
L2(Γ)⊗H1(D), with tensor inner product

(u, û)L2(Γ)⊗H1(D) =∫
Γ

(∫
D

u(y, x)û(y, x)dx
)
dy +

∫
Γ

(∫
D

∇xu(y, x) · ∇xû(y, x)dx
)
dy.

Thus, if u ∈ L2(Γ) ⊗ Hk(D) then u(y, ·) ∈ Hk(D) a.e. on Γ and u(·, x) ∈ L2(Γ)
a.e. on D. Moreover, we have the isomorphism

L2(Γ)⊗Hk(D) ' L2(Γ;Hk(D)) ' Hk(D;L2(Γ))

with the definitions

L2(Γ;Hk(D)) ={
v : Γ×D → R | v is jointly measurable and

∫
Γ

‖v(y, ·)‖2Hk(D) < +∞
}
,

Hk(D;L2(Γ)) ={
v : Γ×D → R | v is jointly measurable, ∀|α| ≤ k ∃ ∂αv ∈ L2(Γ)⊗ L2(D) and∫
D

∂αv(y, x)φ(x)dx = (−1)|α|
∫

Γ

∫
D

v(y, x)∂αφ(x)dx, ∀φ ∈ C∞0 (D) a.e. on Γ
}
.
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Intuitively, a function v(ω, x) that belongs to the stochastic Sobolev space W̃ s,q(D)
will have its realizations accordingly regular, i.e. v(ω, ·) ∈ W s,q(D) a.s. We first
recall the definition of stochastic weak derivatives. Let v ∈ L2

P (Ω) ⊗ L2(D), then
the α stochastic weak derivative of v, w = ∂αv ∈ L2

P (Ω)⊗ L2(D), satisfies∫
D

v(ω, x)∂αφ(x)dx = (−1)|α|
∫
D

w(ω, x)φ(x)dx, ∀φ ∈ C∞0 (D), a.s.

We shall work with stochastic Sobolev spaces W̃ s,q(D) = LqP (Ω,W s,q(D)) contain-
ing stochastic processes, v : Ω ×D → R, that are measurable with respect to the
product σ-algebra F ⊗B(D) and equipped with the averaged norms

‖v‖
W̃ s,q(D)

= E[‖v‖qW s,q(D)]
1/q = E

∑
|α|≤s

∫
D

|∂αv|qdx

1/q

, 1 ≤ q < +∞

and
‖v‖

W̃ s,∞(D)
= max
|α|≤s

(
ess supΩ×D|∂αv|

)
.

Observe that if v ∈ W̃ s,q(D) then v(ω, ·) ∈ W s,q(D) a.s. and ∂αv(·, x) ∈ LqP (Ω)
a.e. on D for |α| ≤ s. Whenever q = 2, the above space is a Hilbert space, i.e.
W̃ s,2(D) = H̃s(D) ' L2

P (Ω)⊗Hs(D).
Now we recall the definition of weak solutions for (1.8). Consider the bilinear

form, B : H̃1
0 (D)× H̃1

0 (D) → R,

B(v, w) ≡ E

[∫
D

a∇v · ∇wdx
]
, ∀v, w ∈ H̃1

0 (D).

The standard assumption (1.10) yields both the continuity and the coercivity of B,
i.e.

|B(v, w)| ≤ amax ‖v‖H̃1
0 (D) ‖w‖H̃1

0 (D), ∀v, w ∈ H̃1
0 (D), (1.12)

and
amin ‖v‖2

H̃1
0 (D)

≤ B(v, v), ∀v ∈ H̃1
0 (D). (1.13)

A direct application of the Lax Milgram’s lemma, see [BS94], implies the existence
and uniqueness for the solution to the variational formulation: find u ∈ H̃1

0 (D)
such that

B(u, v) = L(v), ∀v ∈ H̃1
0 (D). (1.14)

Here L(v) ≡ E[
∫
D
fvdx],∀v ∈ H̃1

0 (D) defines a bounded linear functional since the
random field f satisfies (1.11). Moreover, standard arguments from measure theory
show that the solution to (1.14) also solves (1.8).

Usually in practical problems the information about the stochastic processes a
and f is only limited. For example, we may only have approximations for their
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expectations and covariance functions to use in the implementation of a numerical
method for (1.8).

The Karhunen-Loève expansion, known also as the Proper Orthogonal Decom-
position (POD), is a suitable tool for the approximation of stochastic processes.
This expansion is used extensively in the fields of detection, estimation, pattern
recognition, and image processing as an efficient tool to approximate random pro-
cesses.

Now we describe the Karhunen-Loève expansion of a stochastic process. Con-
sider a stochastic process a with continuous covariance function, Cov[a] : D×D →
R. Besides this, let {(λi, bi)}+∞i=1 denote the sequence of eigenpairs associated with
the compact self adjoint operator that maps

f ∈ L2(D) 7→
∫
D

Cov[a](x, ·)f(x)dx ∈ L2(D).

The real and non-negative eigenvalues

λ1 ≥ λ2 ≥ . . .

satisfy

0 ≤ λi ≤

√∫
D

∫
D

(Cov[a](x1, x2))
2
dx1 dx2, i = 1, . . .

+∞∑
i=1

λi =
∫
D

V ar[a](x)dx,

and λi → 0. The corresponding eigenfunctions are orthonormal, i.e.∫
D

bi(x)bj(x)dx = δij

and by Mercer’s theorem, cf. [RSN90] p. 245,

‖Cov[a](x, y)−
N∑
n=1

λnbn(x)bn(y)‖L∞(D×D) → 0. (1.15)

The Karhunen-Loève expansion of the stochastic process a, cf. [Lév92, Yag87a,
Yag87b], is

aN (ω, x) = E[a](x) +
N∑
i=1

√
λibi(x)Yi(ω)

where {Yi}+∞i=1 is a sequence of uncorrelated real random variables, with mean zero
and unit variance. These random variables are uniquely determined by

Yi(ω) =
1√
λi

∫
D

(a(ω, x)− E[a](x))bi(x)dx
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for λi > 0. Then applying (1.15) yields the uniform convergence

sup
x∈D

E[(a− aN )2](x) = sup
x∈D

(
V ar[a](x)−

N∑
i=1

λib
2
i (x)

)
→ 0, as N →∞.

A standard approach then is to approximate the stochastic coefficients from (1.8)
using the Karhunen-Loève expansion and then solve the resulting stochastic partial
differential equation.

In this thesis we study the approximation of some statistical moments of the
solution from (1.8), e.g. the deterministic function E[u]. For example, we are
interested in approximating this function using either L2(D) or H1(D).

Depending on the structure of the noise that drives an elliptic partial stochastic
differential equation, there are different numerical approximations. For example,
when the size of the noise is relatively small, a Neumann expansion around the
mean value of the equation’s operator is a popular alternative. It requires only
the solution of standard deterministic partial differential equations, the number of
them being equal to the number of terms in the expansion. Equivalently, a Taylor
expansion of the solution around its mean value with respect to the noise yields the
same result. Similarly, the work [KH92] uses formal Taylor expansions up to second
order of the solution but does not study their convergence properties. Recently, the
work [BC02] proposed a perturbation method with successive approximations. It
also proves that the condition of uniform coercivity of the diffusion is sufficient for
the convergence of the perturbation method.

When only the load is stochastic, it is also possible to derive deterministic
equations for the moments of the solution. This case was analyzed in [Bab61, Lar86]
and more recently in the work [ST02], where a new method to solve these equations
with optimal complexity is presented.

On the other hand, the work by Babuška et al. [Deb00, DBO01] and by Ghanem
and Spanos [GS91] address the general case where all the coefficients are stochastic.
Both approaches transform the original stochastic problem into a deterministic one
with higher dimensions, and they differ in the choice of the approximating functional
spaces. The work [Deb00] uses finite element to approximate the noise dependence
of the solution, while [GRH99, GS91] uses a formal expansion in terms of Hermite
polynomials.

Monte Carlo methods are both general and simple to code and they are nat-
urally suited for parallelization. They generate a set of independent identically
distributed (iid) approximations of the solution by sampling the coefficients of the
equation, using a spatial discretization of the partial differential equation, e.g. by
a Galerkin finite element formulation. Then, using these approximations we can
compute corresponding sample averages of the desired statistics. The drawback
of Monte Carlo methods is their slow rate of convergence. It is worth mentioning
that in particular cases their convergence can be accelerated by variance reduc-
tion techniques [JCM01] or even the convergence rate improved with Quasi Monte
Carlo methods [Caf98, Sob94, Sob98]. Moreover, if the probability density of the
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random variable is smooth, the convergence rate of the Monte Carlo method for
the approximation of the expected value can be improved, cf. [Nov88, TW98].

Another way to provide a notion of stochastic partial differential equations is
based on the Wick product and the Wiener chaos expansion, see [HØUZ96] and
[V̊ag98]. This approach yields solutions in Kondratiev spaces of stochastic distribu-
tions which are not the same as those from (1.14). The choice between (1.14) and
[HØUZ96] is a modeling decision, based on the physical situation under study. For
example, with the Wick product we have E[a�u] = E[a]E[u] regardless of the corre-
lation between a and f , whereas this is in general not true with the usual product.
A numerical approximation for Wick stochastic linear elliptic partial differential
equations is studied in [The00], yielding a priori convergence rates.

1.2.1 Overview of Paper 4

We describe and analyze two numerical methods for the linear elliptic problem
(1.8). Here the aim of the computations is to approximate the expected value of
the solution. Since the approximation of the stochastic coefficients a and f by the
Karhunen-Loève expansion is in general not exact, we derive related a priori error
estimates. The first method generates iid approximations of the solution by sam-
pling the coefficients of the equation and using a standard Galerkin finite elements
variational formulation. The Monte Carlo method then uses these approximations
to compute corresponding sample averages. More explicitely, we follow:

1. Give a number of realizations, M , and a piecewise linear finite element space
on D, Xd

h.

2. For each j = 1, . . . ,M sample iid realizations of the diffusion a(ωj , ·) and the
load f(ωj , ·) and find a corresponding approximation uh(ωj , ·) ∈ Xd

h such that∫
D

a(ωj , x)∇uh(ωj , x)∇χ(x)dx =
∫
D

f(ωj , x)χ(x)dx, ∀χ ∈ Xd
h.

3. Finally use the sample average 1
M

∑M
j=1 uh(ωj , ·) to approximate E[u].

Here we only consider the case where Xd
h ⊆ H1

0 (D) is the same for all realizations,
i.e. the spatial triangulation is deterministic.

The second method is based on a finite dimensional approximation of the
stochastic coefficients, turning the original stochastic problem into a determinis-
tic parametric elliptic problem. In many problems the source of the randomness
can be approximated using just a small number of mutually uncorrelated, some-
times mutually independent, random variables. Take for example the case of a
truncated Karhunen-Loève expansion described previously.
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Assumption 1.2. Whenever we apply some numerical method to solve (1.8) we
assume that the coefficients used in the computations satisfy

a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x) (1.17)

where {Yj}Nj=1 are real random variables with mean value zero, unit variance, are
mutually independent, and their images, Γi,N ≡ Yi(Ω) are bounded intervals in
R for i = 1, . . . , N . Moreover, we assume that each Yi has a density function
ρi : Γi,N → R+ for i = 1, . . . , N . Use the notations ρ(y) = ΠN

i=1ρi(yi) ∀y ∈ Γ,
for the joint probability density of (Y1, . . . , YN ), and Γ ≡ ΠN

i=1Γi,N ⊂ RN , for the
support of such probability density.

After making assumption (1.17), we have by Doob-Dynkin’s lemma, cf. [Øks98],
that u, the solution corresponding to the stochastic partial differential equation
(1.8) can be described by just a finite, hopefully small, number of random vari-
ables, i.e. u(ω, x) = u(Y1(ω), . . . , YN (ω), x). Now the goal is to approximate the
function u(y, x). The stochastic variational formulation (1.14) now has a determin-
istic equivalent in the following: find u ∈ L2

ρ(Γ)⊗H1
0 (D) such that∫

Γ

ρ(y)
∫
D

a(y, x)∇u(y, x) · ∇v(y, x)dxdy =
∫

Γ

ρ(y)
∫
D

f(y, x)v(y, x)dxdy,

∀ v ∈ L2
ρ(Γ)⊗H1

0 (D).
(1.18)

A Galerkin finite element method, of either h or p version, then approximates
the corresponding deterministic solution yielding approximations of the desired
statistics, i.e. we seek ūh ∈ Zpk ⊗Xd

h, that satisfies∫
Γ

ρ(y)
∫
D

a(y, x)∇ūh(y, x) · ∇χ(y, x)dx dy =
∫

Γ

ρ(y)
∫
D

f(y, x)χ(y, x)dxdy,

∀ χ ∈ Zpk ⊗Xd
h.

(1.19)
Here Zpk ⊆ L2

ρ(Γ) is a finite element space that contains tensor products of polyno-
mials with degree less than or equal to p on a mesh with size k. Section 7 explains
how to use the tensor product structure to efficiently compute ūh from (1.19). Fi-
nally, Section 8 uses the a priori convergence rates of the different discretizations to
compare the computational work required by (1.16) and (1.19) to achieve a given
accuracy in the approximation of E[u], i.e. their numerical complexity, offering a
way to understand the efficiency of each numerical method.
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