
Security and Privacy of Sensitive Data in Cloud
Computing

ALI GHOLAMI

Doctoral Thesis
Stockholm, Sweden 2016

TRITA-CSC-A-2016:11
ISSN 1653-5723
ISRN KTH/CSC/A--16/11--SE
ISBN 978-91-7595-941-2

Department of Computational Science and Technology
KTH School of Computer Science and Communication

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläg-
ges till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi
onsdagen den 8 juni 2016 klockan 10.00 i Kollegiesalen, Administrationsbyggnaden,
Kungl Tekniska högskolan, Valhallavägen 79, Stockholm.

© Ali Gholami, April 2016

Tryck: Universitetsservice US AB

iii

Abstract

Cloud computing offers the prospect of on-demand, elastic computing,
provided as a utility service, and it is revolutionizing many domains of com-
puting. Compared with earlier methods of processing data, cloud computing
environments provide significant benefits, such as the availability of auto-
mated tools to assemble, connect, configure and reconfigure virtualized re-
sources on demand. These make it much easier to meet organizational goals as
organizations can easily deploy cloud services. However, the shift in paradigm
that accompanies the adoption of cloud computing is increasingly giving rise
to security and privacy considerations relating to facets of cloud computing
such as multi-tenancy, trust, loss of control and accountability. Consequently,
cloud platforms that handle sensitive information are required to deploy tech-
nical measures and organizational safeguards to avoid data protection break-
downs that might result in enormous and costly damages.

Sensitive information in the context of cloud computing encompasses data
from a wide range of different areas and domains. Data concerning health
is a typical example of the type of sensitive information handled in cloud
computing environments, and it is obvious that most individuals will want
information related to their health to be secure. Hence, with the growth of
cloud computing in recent times, privacy and data protection requirements
have been evolving to protect individuals against surveillance and data disclo-
sure. Some examples of such protective legislation are the EU Data Protection
Directive (DPD) and the US Health Insurance Portability and Accountabil-
ity Act (HIPAA), both of which demand privacy preservation for handling
personally identifiable information.

There have been great efforts to employ a wide range of mechanisms to
enhance the privacy of data and to make cloud platforms more secure. Tech-
niques that have been used include: encryption, trusted platform module,
secure multi-party computing, homomorphic encryption, anonymization, con-
tainer and sandboxing technologies.

However, it is still an open problem about how to correctly build usable
privacy-preserving cloud systems to handle sensitive data securely due to two
research challenges. First, existing privacy and data protection legislation
demand strong security, transparency and audibility of data usage. Second,
lack of familiarity with a broad range of emerging or existing security solutions
to build efficient cloud systems.

This dissertation focuses on the design and development of several sys-
tems and methodologies for handling sensitive data appropriately in cloud
computing environments. The key idea behind the proposed solutions is en-
forcing the privacy requirements mandated by existing legislation that aims
to protect the privacy of individuals in cloud-computing platforms.

We begin with an overview of the main concepts from cloud computing,
followed by identifying the problems that need to be solved for secure data
management in cloud environments. It then continues with a description of

iv

background material in addition to reviewing existing security and privacy
solutions that are being used in the area of cloud computing.

Our first main contribution is a new method for modeling threats to pri-
vacy in cloud environments which can be used to identify privacy requirements
in accordance with data protection legislation. This method is then used to
propose a framework that meets the privacy requirements for handling data
in the area of genomics. That is, health data concerning the genome (DNA)
of individuals. Our second contribution is a system for preserving privacy
when publishing sample availability data. This system is noteworthy because
it is capable of cross-linking over multiple datasets. The thesis continues by
proposing a system called ScaBIA for privacy-preserving brain image analysis
in the cloud. The final section of the dissertation describes a new approach
for quantifying and minimizing the risk of operating system kernel exploita-
tion, in addition to the development of a system call interposition reference
monitor for Lind - a dual sandbox.

v

Sammanfattning

“Cloud computing”, eller “molntjänster” som blivit den vanligaste svens-
ka översättningen, har stor potential. Molntjänster kan tillhandahålla exakt
den datakraft som efterfrågas, nästan oavsett hur stor den är; dvs. molntjäns-
ter möjliggör vad som brukar kallas för “elastic computing”. Effekterna av
molntjänster är revolutionerande inom många områden av datoranvändning.
Jämfört med tidigare metoder för databehandling ger molntjänster många
fördelar; exempelvis tillgänglighet av automatiserade verktyg för att monte-
ra, ansluta, konfigurera och re-konfigurera virtuella resurser “allt efter behov”
(“on-demand”). Molntjänster gör det med andra ord mycket lättare för or-
ganisationer att uppfylla sina målsättningar. Men det paradigmskifte, som
införandet av molntjänster innebär, skapar även säkerhetsproblem och förut-
sätter noggranna integritetsbedömningar. Hur bevaras det ömsesidiga förtro-
endet, hur hanteras ansvarsutkrävandet, vid minskade kontrollmöjligheter till
följd av delad information? Följaktligen behövs molnplattformar som är så
konstruerade att de kan hantera känslig information. Det krävs tekniska och
organisatoriska hinder för att minimera risken för dataintrång, dataintrång
som kan resultera i enormt kostsamma skador såväl ekonomiskt som poli-
cymässigt. Molntjänster kan innehålla känslig information från många olika
områden och domäner. Hälsodata är ett typiskt exempel på sådan informa-
tion. Det är uppenbart att de flesta människor vill att data relaterade till
deras hälsa ska vara skyddad. Så den ökade användningen av molntjänster på
senare år har medfört att kraven på integritets- och dataskydd har skärpts
för att skydda individer mot övervakning och dataintrång. Exempel på skyd-
dande lagstiftning är “EU Data Protection Directive” (DPD) och “US Health
Insurance Portability and Accountability Act” (HIPAA), vilka båda kräver
skydd av privatlivet och bevarandet av integritet vid hantering av informa-
tion som kan identifiera individer. Det har gjorts stora insatser för att utveckla
fler mekanismer för att öka dataintegriteten och därmed göra molntjänsterna
säkrare. Exempel på detta är; kryptering, “trusted platform modules”, säker
“multi-party computing”, homomorfisk kryptering, anonymisering, container-
och “sandlåde”-tekniker.

Men hur man korrekt ska skapa användbara, integritetsbevarande moln-
tjänster för helt säker behandling av känsliga data är fortfarande i väsentliga
avseenden ett olöst problem på grund av två stora forskningsutmaningar. För
det första: Existerande integritets- och dataskydds-lagar kräver transparens
och noggrann granskning av dataanvändningen. För det andra: Bristande kän-
nedom om en rad kommande och redan existerande säkerhetslösningar för att
skapa effektiva molntjänster.

Denna avhandling fokuserar på utformning och utveckling av system och
metoder för att hantera känsliga data i molntjänster på lämpligaste sätt.
Målet med de framlagda lösningarna är att svara de integritetskrav som ställs
i redan gällande lagstiftning, som har som uttalad målsättning att skydda
individers integritet vid användning av molntjänster.

Vi börjar med att ge en överblick av de viktigaste begreppen i molntjäns-
ter, för att därefter identifiera problem som behöver lösas för säker databe-
handling vid användning av molntjänster. Avhandlingen fortsätter sedan med

vi

en beskrivning av bakgrundsmaterial och en sammanfattning av befintliga
säkerhets- och integritets-lösningar inom molntjänster.

Vårt främsta bidrag är en ny metod för att simulera integritetshot vid
användning av molntjänster, en metod som kan användas till att identifiera
de integritetskrav som överensstämmer med gällande dataskyddslagar. Vår
metod används sedan för att föreslå ett ramverk som möter de integritetskrav
som ställs för att hantera data inom området “genomik”. Genomik handlar
i korthet om hälsodata avseende arvsmassan (DNA) hos enskilda individer.
Vårt andra större bidrag är ett system för att bevara integriteten vid publice-
ring av biologiska provdata. Systemet har fördelen att kunna sammankoppla
flera olika uppsättningar med data. Avhandlingen fortsätter med att före-
slå och beskriva ett system kallat ScaBIA, ett integritetsbevarande system
för hjärnbildsanalyser processade via molntjänster. Avhandlingens avslutan-
de kapitel beskriver ett nytt sätt för kvantifiering och minimering av risk vid
“kernel exploitation” (“utnyttjande av kärnan”). Denna nya ansats är även
ett bidrag till utvecklingen av ett nytt system för (Call interposition reference
monitor for Lind - the dual layer sandbox).

Acknowledgements

I would like to express my sincere gratitude to Prof. Erwin Laure, for supervising the
thesis, helpful criticism and advice. Indeed, his incredible knowledge of computer
systems and scientific approach to face research problems was always inspiring. I
would also like to thank my co-advisor Prof. Seif Haridi, for letting me work with
his excellent research group.

During my doctoral studies, I was fortunate to work with several brilliant people
who I always admire. First, a special mention goes to Dr. Jim Dowling for his
technical excellence and patience. Second, I would greatly appreciate Dr. Justin
Cappos for providing me an internship at NYU and deepening my knowledge of
cloud security. Third, I would like to thank all my co-authors and those who helped
me to accomplish this thesis. Most notably, Prof. Jane Reichel for her invaluable
comments, Prof. Jan-Eric Litton for his support, Prof. Ulf Leser for his feedback
on the usability aspects of my research, Dr. Sonja Buchegger for her suggestions,
Dr. Åke Edlund for always being helpful, Gert Svensson for his understanding
and support, Gilbert Netzer for always providing good answers to my questions,
Michael Schliephake for his helpfull suggestions, Genet Edmonson for improving
my technical writing, and Laeeq Ahdmad for proof-reading of the thesis.

I would like to extend my gratitude to Prof. Schahram Dustdar for being my
opponent. I am also grateful to Prof. Cecilia Magnusson Sjöberg, Dr. Rose-Mharie
Åhlfeldt, Dr. Javid Taheri, Prof. Jeanette Hellgren-Kotaleski and Dr. Lars Arvestad
to be the committee members of the thesis.

Financial support from the Swedish e-Science Research Center (SeRC), National
Science Foundation (NSF) and the European FP7 framework is acknowledged.

Contents

Contents viii

List of Figures xiii

List of Tables xv

I Prologue 1

1 Introduction 3
1.1 Motivation . 3
1.2 Reference Platforms . 6

1.2.1 Scalable Secure Storage BioBankCloud 6
1.2.2 VENUS-C . 10

1.3 Research Questions and Contributions 13
1.4 Research Method . 14
1.5 List of Scientific Papers . 15
1.6 Thesis Outline . 17

2 Background 19
2.1 Big Data Infrastructures . 19
2.2 Cloud Computing . 20

2.2.1 Concepts in Cloud Computing 22
2.2.2 Virtualization . 24
2.2.3 Container Technology . 26

2.3 Security Techniques to Ensure Privacy 31
2.3.1 The EU DPD Key Concepts 31
2.3.2 Authentication . 32
2.3.3 Data Anonymization Techniques 34
2.3.4 Secret Sharing . 37

2.4 Summary . 39

3 Related Work 41

viii

CONTENTS ix

3.1 Identification of Research . 41
3.2 Cloud Security . 42

3.2.1 Authentication and Authorization 42
3.2.2 Identity and Access Management 44
3.2.3 Confidentiality, Integrity and Availability (CIA) 45
3.2.4 System Call Interposition: . 49
3.2.5 Security Monitoring and Incident Response 50
3.2.6 Security Policy Management 50

3.3 Data Security and Privacy . 51
3.3.1 Big Data Infrastructures and Programming Models 52
3.3.2 Privacy-Preserving Solutions in the Cloud 54
3.3.3 Privacy-Preservation Database Federation 56

3.4 Summary . 57

II Privacy by Design for Cloud Computing 59

4 Privacy Threat Modeling Methodology for Cloud Computing
Environments 61
4.1 Introduction . 61
4.2 Characteristics of a Privacy Threat Modeling Methodology for Cloud

Computing . 62
4.2.1 Privacy Legislation Support 62
4.2.2 Technical Deployment and Service Models 62
4.2.3 Customer Needs . 62
4.2.4 Usability . 63
4.2.5 Traceability . 63

4.3 Methodology Steps and Their Products 63
4.3.1 Privacy Regulatory Compliance 64
4.3.2 Cloud Environment Specification 65
4.3.3 Privacy Threat Identification 66
4.3.4 Risk Evaluation . 66
4.3.5 Threat Mitigation . 67

4.4 Summary . 67

5 Case Study: BioBankCloud Privacy Threat Modeling 69
5.1 Introduction . 69
5.2 Scenario . 70
5.3 Privacy Requirements . 71
5.4 Cloud Environment Specification . 74
5.5 Privacy Threat Identification . 77
5.6 Risk Evaluation . 80
5.7 Threat Mitigation . 83
5.8 Summary . 85

x CONTENTS

6 Design and Implementation of the Secure BioBankCloud 87
6.1 Introduction . 87
6.2 Security Architecture . 88

6.2.1 Comparison of Existing Solutions 88
6.2.2 Proposed Selection of Components 97

6.3 Design . 98
6.3.1 Assumptions . 98
6.3.2 Identity and Access Management 98
6.3.3 Authentication . 99
6.3.4 Authorization . 102
6.3.5 Auditing . 103

6.4 Implementation . 106
6.4.1 The Middleware and Libraries 106
6.4.2 Identity and Access Management 106
6.4.3 Custom Authentication Realm 110
6.4.4 Authorization . 112
6.4.5 Privacy and Ethical Settings 113
6.4.6 Auditing . 115

6.5 Verification and Validation . 117
6.6 Discussion . 118
6.7 Summary . 120

III Trustworthy Privacy-Preserving Cloud Models 121

7 Privacy-Preserving Data Publishing for Sample Availability Data123
7.1 Introduction . 123
7.2 Privacy-Preservation Mechanisms . 124
7.3 Obscuring the Key Attributes . 125

7.3.1 Hashing and Encryption . 125
7.4 Threat Assumptions . 126

7.4.1 Inference Attacks . 126
7.4.2 Malicious Sample Publication 126
7.4.3 Audit and Control . 127
7.4.4 Server Private Key Compromised 127
7.4.5 Ethical Constraints . 127
7.4.6 Static Passwords . 127
7.4.7 Query Reply Limitation . 127

7.5 Design and Implementation . 128
7.5.1 Scenario . 128
7.5.2 Integration Service . 130
7.5.3 Secure Data Management . 131
7.5.4 Data Pseudonymization and Anonymization 132
7.5.5 Re-identification Risk . 133

CONTENTS xi

7.5.6 Auditing Process . 134
7.6 Summary . 135

8 Privacy-Preserving Brain Image Analysis in the Cloud 137
8.1 Introduction . 137
8.2 Statistical Parametric Mapping (SPM) 138
8.3 Design . 139

8.3.1 Security Management (SM) 140
8.3.2 Data Management (DM) . 140
8.3.3 Job Management (JM) . 140
8.3.4 Application Management (AM) 141

8.4 Security and Privacy . 141
8.4.1 Authentication . 142
8.4.2 Authorization . 142

8.5 Implementation . 143
8.5.1 Anonymization . 143
8.5.2 Secure Deployment of the Generic Worker 143
8.5.3 Building the Application . 144
8.5.4 Job Submission . 144
8.5.5 Data Management . 145

8.6 Summary . 146

IV Secure Multi-Tenancy in the Cloud 147

9 Quantifying and Minimizing the Risk of Kernel Exploitation 149
9.1 Introduction . 149
9.2 Lind Dual-Layer Sandbox . 150

9.2.1 Native Client (NaCl) . 150
9.2.2 Seattle’s Repy . 152

9.3 Quantitative Evaluation . 153
9.3.1 Hypothesis . 153
9.3.2 Data Sources and Experiments 153
9.3.3 Kernel-Level Data Collection 156
9.3.4 Data Transformation . 157
9.3.5 Kernel Traces Analysis and Evaluation 157

9.4 Summary . 157

10 Lind Reference Monitor 159
10.1 Introduction . 159
10.2 System Call Interposition Model . 159

10.2.1 Policy Configurations . 160
10.2.2 System Call Filtering . 160

10.3 Implementation . 161

xii CONTENTS

10.4 Validation . 162
10.5 Summary . 162

V Epilogue 163

11 Discussion 165
11.1 Discussion on Formulating the Cloud Privacy Requirements 165

11.1.1 Cloud Privacy Threat Modeling 166
11.2 Discussion on Building Privacy-Preserving Cloud Solutions 166
11.3 Discussion on Quantifying and Minimizing the Risk of Kernel Exploits167

12 Future Work 169
12.1 Privacy by Design for Cloud Computing 169

12.1.1 Applications of the CPTM in Other Domains 169
12.1.2 Emerging Data Protection Laws 170
12.1.3 Security and Usability of the BioBankCloud 170

12.2 Trustworthy Privacy-Preserving Cloud Models 170
12.3 Secure Multi-Tenancy in the Cloud 171

Bibliography 173

Appendices 193

A BioBankCloud 193
A.1 Identity and Access Management . 193
A.2 Auditing Users Actions . 198

B eCPC Toolkit 203
B.1 k-anonmity . 203
B.2 l-diversirty . 204
B.3 Reidentification Risk . 205

C Lind Dual Sandbox 207
C.1 Porting Applications in NaCl and Repy 207
C.2 Lind’s Parser for Gcov . 209

D Lind Reference Monitor 213
D.1 Policy Definition in Lind . 213
D.2 System Call Filtering in Lind . 216
D.3 System Call Forwarding in Lind . 251

List of Abbreviations 255

List of Figures

1.1 Scalable, Secure Storage Biobank (BioBankCloud) Architecture 8
1.2 Study1 has John and Mary as users and includes DataSet1, while Study2

has only John as as a user and includes DataSet1, DataSet2, and DataSet3. 8
1.3 HopsFS and HopsYARN architectures. 9
1.4 The software stack of the scientific workflow management system SAAS-

FEE, which comprises the functional workflow language Cuneiform as
well as the Hi-WAY workflow scheduler for Hadoop. Cuneiform can exe-
cute foreign code written in languages like Python, Bash, and R. Besides
Cuneiform, Hi-WAY can also interpret the workflow languages of the
SWfMSs Pegasus and Galaxy. SAASFEE can be run both on Hadoop
Optimized File System (HOPS) as well as Apache Hadoop. SAASFEE
and HOPS can be interfaced and configured via the web interface pro-
vided by the Lab Information Management System (LIMS). 11

1.5 VENUS-C architecture . 11
1.6 Simplified internal GW architecture . 12

2.1 Big data ecosystem reference architecture (image courtesy of NIST [1]) . 19
2.2 Cloud computing reference architecture (image courtesy of NIST [2]) . . 24
2.3 Comparison of Type-I and Type II virtualization architectures for Xen

and KVM . 26
2.4 Docker architecture (image courtesy of [3]) 30
2.5 Linking to re-identify data (image courtesy of [4]) 34

4.1 Privacy threat modeling in requirements engineering and design of a
SDLC . 64

4.2 The Cloud Privacy Threat Modeling (CPTM) methodology steps 64

5.1 BioBankCloud Physical architectures . 76
5.2 Logical architecture . 76

6.1 Security architecture of the BioBankCloud including various security
modules . 97

6.2 Identity lifecycle in the BioBankCloud 98

xiii

xiv List of Figures

6.3 Custom authentication realm to support authentication for users with
and without mobile devices. 100

6.4 Scanning the QRC using the Autneticator App in smartphones 101
6.5 Account registration in the AngularJS frontend 101
6.6 Yubikey accounts provisioning . 101
6.7 BioBankCloud authorization system to enforce permissions to access

study data. 103
6.8 Audit system . 104
6.9 Account recovery options to be selected for reseting the users accounts . 109
6.10 Accounts management functinoalities to add/remove roles or changing

the users status . 109
6.11 Activation of new incoming user accounts requests 109
6.12 User’s profile with the functionalities to change information, security

credentials or terminate the account . 110
6.13 Steps to change password, security question or terminate the account in

the user’ profile . 110
6.14 Adding/removing roles or blocking/activating/deactivating user accounts 110
6.15 User authentication login page . 111
6.16 Controlling privacy settings including uploading consent forms or up-

dating the retention period of data by the data owner 114
6.17 Reviewing overall project status . 114
6.18 Reviweing the new consents to be approved or rejected 114
6.19 Expired data sets to be removed by the administrator 115
6.20 Audit panel accessible for administrator and auditor roles 116
6.21 Role access and entitlement events audit panel 116
6.22 Auditing the login events of users . 116
6.23 Auditing of account management activities 116
6.24 Auditing project information including based on several parameters such

as the study name, date of access and username 117

7.1 PID pseudonymization through a two-level hashing mechanism to pro-
vide the functionality for joint queries over different data sources. . . . 126

7.2 The eCPC toolkit design based on the privacy-preserving data publish-
ing methods to upload the pseudonymized data to an external trusted
third-party service. 129

7.3 Overview of the e-Science for Cancer Prevention and Control (eCPC)
integration server that is protected with firewall to filter the ingoing/out-
going traffic. 130

7.4 Public key encryption of the large sensitive data sets using the TTP´s
private key. 132

7.5 Anonymization of the sensitive data using sdcMicro library. 133
7.6 Individual risk estimation of the pseudonymized data using sdcMicro

library. 134

List of Figures xv

8.1 Resulting activation map of an experiment 138
8.2 A series of stages to do an fMRI data analysis over N subjects (S1, S2,

. . . , SN) each subject i containing n images (IMGi,1, IMGi,2, . . . , IMGi,n)139
8.3 Architectural view of the ScaBIA in the Cloud 139
8.4 Job execution on a GW instance . 141
8.5 Installing the application requirements 141
8.6 Process of creating SPM scripts and making them compatible with GW 145

9.1 Architecture of Lind including various components such as NaCl, NaCl’
glibc, and Repy Sandbox. User level applications will issue system calls
that are dispatched through the Repy OS connector that bridges the
Lind system to the OS Kernel. 151

9.2 Various activities performed to capture and analyze the kernel traces
generated by legacy applications, system fuzzers, LTP, and CVE bug
reports. The traces are collected using gcov and a Python-based pro-
gram that transforms the gcov data to macrodata-level information of
each traversed path for final data analysis. 153

9.3 Percentage of different kernel areas that were reached during LTP and
Trinity system call fuzzing experiments to measure the reachable kernel
surface . 157

10.1 Reference monitor architecture . 160

List of Tables

2.1 Evolution of Big Data from batch to real-time analytics processing [5] . 21
2.2 Cloud computing characteristics [6] . 22
2.3 Raw private patient dataset without anonymization 35
2.4 A sample patient dataset with k-anonymity, where k=4 36
2.5 k-anonymity description of attributes to prevent record linkage through

Quasi Identifier (QID) . 36
2.6 A sample patient dataset with `-diversity, where `=2 37

3.1 Security and privacy factors of cloud providers [7] 42

4.1 Prioritization of the identified threats, L (Low), M (Moderate), H(High) 67

5.1 Correlating the domain actors to the cloud actors 75
5.2 Correlating the BioBankCloud actors with the DPD roles 77
5.3 Risk evaluation matrix for the identified threats. I indicates the likeli-

hood of threat and E indicates the effect of exploiting the threat on the
whole BioBankCloud. 83

6.1 Access control table to define the permissions for each role in the plat-
form in regard to using the BioBankCloud services. For example, a
researcher can create (C) a new study and will be assigned the data
provider role afterwards. Then, as a data provider, the user will be able
to read (R), update (U) and add new members or delete (D) or execute
(X) the study. 104

6.2 Implementation of the BioBankCloud roles 112

8.1 Microsoft Azure basic tier general purpose compute 143

9.1 Repy sandbox kernel capabilities that supports NaCl functions, such as
networking, file I/O operations and threading. 152

9.2 Exploitable CVEs that we triggered under VirtualBox, VMWare Work-
station, Docker, LXC, QEMU, KVM and Graphene virtualization systems156

xvi

List of Algorithms

1 The HMAC-based One-time Password (HOTP) algorithm 33
2 The Time-based One-time Password (TOTP) algorithm 33

xvii

Part I

Prologue

1

Chapter 1

Introduction

1.1 Motivation

Many organizations that handle sensitive information are considering using cloud
computing as it provides resources that can be scaled easily, along with significant
economic benefits in the form of reduced operational costs. However, it can be
complicated to correctly handle sensitive data in cloud computing environments
due to the range of privacy legislation and regulations that exist. Some examples
of such legislation are the European Union (EU) Data Protection Directive (DPD)
[8] and the US Health Insurance Portability and Accountability Act (HIPAA) [9],
both demand privacy-preservation for handling personally identifiable information.
This thesis discusses the challenges faced by such organizations and describes how
cloud computing can be used to provide innovative solutions that ensure the safety
of sensitive information.

The main focus of this thesis is on security and privacy issues concerning data
produced by medical research, which requires particularly strict privacy-preserving
solutions [10]. For example, a researcher that seeks to understand the human body
and gain insights into disease processes by utilizing big data analytics and cloud
computing technologies. However, when using data in the cloud, it is necessary
to take into account the ethical and regulatory considerations that relate to data
ownership. Such data must be processed transparently so that the identities of
the individuals who “own” the data are not revealed. Consequently, cloud-based
solutions must protect data privacy in an appropriate manner. Meanwhile, much
of the existing privacy legislation hinders medical institutions from using cloud
services - partly because of the way data management roles for medical data are
defined at present and also due to restrictions imposed by the current rules for
managing medical data.

Cloud computing has raised several security issues including multi-tenancy, loss
of control and trust. Consequently the majority of cloud providers - including

3

4 CHAPTER 1. INTRODUCTION

Amazon Web Services (AWS)1, the Google Compute Engine2, HP3, Microsoft’s
Azure4, Citrix CloudPlatform5, and RackSpace6 do not guarantee specific levels
of security and privacy in their Service Level Agreement (SLA)s, as part of the
contractual terms and conditions between cloud providers and consumers.

Cloud computing providers virtualize and containerize their computing plat-
forms to be able to share them between different users (or tenants). Multi-tenancy
refers to sharing physical devices and virtualized resources between multiple inde-
pendent users or organizations.

Loss of control is another potential breach of security that can occur where
consumers’ data, applications, and resources are hosted at the cloud provider’s
owned premises. As the users do not have explicit control over their data, this
makes it possible for cloud providers to perform data mining on the users’ data,
which can lead to security issues. In addition, when the cloud providers backup
data at different data centers, the consumers cannot be sure that their data is
completely erased everywhere when they delete their data. This has the potential
to lead to misuse of the unerased data. In these types of situations where the
consumers lose control over their data, they see the cloud provider as a black-box
where they cannot directly monitor the resources transparently.

Trust plays an important role in attracting more consumers by assuring on
cloud providers. Due to loss of control (as discussed earlier), cloud users rely
on the cloud providers using trust mechanisms as an alternative to giving users
transparent control over their data and cloud resources. Therefore, cloud providers
build confidence amongst their customers by assuring them that the provider’s
operations are certified in compliance with organizational safeguards and standards.

The security issues in cloud computing lead to a number of privacy concerns,
because privacy is a complex topic that has different interpretations depending
on contexts, cultures, and communities. In addition, privacy and security are two
distinct topics although security is generally necessary for providing privacy [11, 12].

The right to privacy has been recognized as a fundamental human right by the
United Nations [13]. Several efforts have been made to conceptualize privacy by
jurists, philosophers, researchers, psychologists, and sociologists in order to give us
a better understanding of privacy - for example, Alan Westin’s research in 1960 is
considered to be the first significant work on the problem of consumer data privacy
and data protection. Westin [14] defined privacy as follow.

“Privacy is the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them is communicated
to others.”

1https://aws.amazon.com/s3/sla/
2https://cloud.google.com/compute/sla
3http://www.hpcloud.com/sla
4http://azure.microsoft.com/sv-se/support/legal/sla/
5https://www.citrix.se/products/cloudplatform/overview.html
6http://www.rackspace.com/information/legal/cloud/sla

1.1. MOTIVATION 5

The International Association of Privacy Professionals (IAPP) glossary7 refers
to privacy as appropriate use of information under the circumstances. The notion
of what constitutes appropriate handling of data varies depending on several factors
such as individual preferences, the context of the situation, law, collection, how the
data would be used and what information would be disclosed.

In jurisdictions such as the US, “privacy” is the term that is used to encom-
pass the relevant laws, policies and regulations, while in the EU the term “data
protection” is more commonly used when referring to privacy laws and regulations.

Over the past 60 years privacy laws and data protection regulations have been
introduced or have evolved, starting from the Universal Declaration of Human
Rights in 1948, the European Conventions on Human Right in 1953, the first data
protection law passed in Hesse, Germany, in 1970, the Swedish Data Act in 1973,
the US Privacy Act in 1974, the OECD Fair Information Principles in 1980, the
EU DPD in 1995, the EU e-Privacy Directive in 2002, the California Senate Bill
1386 , which introduces Breach Notification in 2013, and the proposed reform to
the EU Directive in 2012.

Legislation that aim to protect privacy of individuals - such as the EU DPD
[8], the Gramm-Leach-Bliley Act (GLBA) [15], the Right to Financial Privacy Act
(RFPA) [16], the Telecommunications Act of 1996 [17], and the HIPAA [9] can
become very complicated and have a variety of specific requirements. Organizations
collecting and storing data in clouds that are subject to data protection regulations
must ensure that the privacy of the data is preserved appropriately to lay the
foundations for legal access to sensitive personal data.

This evolution of privacy legislation over time highlights the importance of pri-
vacy in societies that are embracing new technologies - most notably cloud com-
puting and the emerging big data technologies - to cope with the huge amounts of
sensitive personal data that are being generated. The resulting deluge of data poses
risks for the privacy of individuals. For example, we are seeing sophisticated attacks
leading to the theft of databases containing social security data, tax records, and
credit card information from online shops. This results in privacy breaches, and the
stolen information is often used for identity theft and fraud. Additionally, privacy
policies that could be changed periodically in accordance with the preferences of
the cloud providers (such as Microsoft, Amazon, and Google) often mean there
are unexpected changes in their products privacy settings, which can threaten the
privacy of individuals.

The development of a legal definition of cyber crime, the issue of jurisdiction
(who is responsible for what information and where are they held responsible for it)
and the regulation of data transfers to third-party countries [18] are among other
challenging issues when it comes to security in cloud computing. For example, the
DPD is the EU’s initial attempt at privacy protection and it contains 72 recitals
and 34 articles to harmonize the regulations for information flow within the EU
Member States.

7https://iapp.org/resources/glossary

6 CHAPTER 1. INTRODUCTION

There is an ongoing effort [19] to replace the EU DPD with a new data protection
regulation containing 91 articles that aim to lay out a data protection framework in
Europe. The proposed regulations expand the definition of personal data protection
to cover any information related to the data subjects irrespective of whether the
information is private, public or professional in nature. It also includes definitions
of new roles (such as data transfer officers) and proposes restricting the transfer of
data to third-party countries that do not guarantee adequate levels of protection.
Currently, Argentina, Canada, Guernsey, Jersey, the Isle of Man, Israel, Switzer-
land, and the US Transfer of Air Passenger Name Data Record are considered to
offer adequate protection according to the DPD. The new regulation considers im-
posing significant penalties for privacy breaches that result from violations of the
regulations, for example, such a penalty could be 0.5% of the worldwide annual
turnover of the offending enterprise.

In this thesis, we used two main reference platforms, BioBankCloud and Vir-
tual Multidisciplinary EnviroNments USing Cloud Infrastructures (VENUS-C), to
build privacy-preserving clouds. The BioBankCloud provides scalable data infras-
tructure for storage and analysis of Next-Generation Sequencing (NGS) data using
an optimized distribution of Apache Hadoop. The aim of VENUS-C was to provide
infrastructure for e-Science community to build scalable cloud applications. In the
following of this chapter (Section 1.2.1 and Section 1.2.2), we will present these two
platforms.

1.2 Reference Platforms

This section presents an architectural view of the BioBankCloud components that
has been used in Chapter 5 and Chapter 6. We introduce a new privacy threat model
for biomedical clouds in Chapter 4 and as a proof of concept the BioBankCloud
case study has been used to validate the proposed model in chapter 5. Chapter
6 describes the implementation of a security framework to build a working proto-
type of the BioBankCloud. Section 1.2.2 presents an overview of the VENUS-C
infrastructure and its middleware Generic Worker (GW) that is used to build a
privacy-preserving brain image analysis in Chapter 8.

1.2.1 Scalable Secure Storage BioBankCloud
1.2.1.1 Definition

The BioBankCloud [20] is a collaborative project bringing together computer sci-
entists, bioinformaticians, pathologists, and biobankers. The system is designed
as a Platform-as-a-Service (PaaS), i.e., it can be easily installed on cloud comput-
ing environments using Karamel and Chef8. Primary design goals are flexibility in
terms of the analysis being performed, scalability up to very large data sets and

8http://www.karamel.io

1.2. REFERENCE PLATFORMS 7

very large cluster set-ups, ease of use and low maintenance cost, strong support for
data security and data privacy, and direct usability for users.

The platform encompasses (a) a scientific workflow engine running on top of
the popular Hadoop platform for distributed computing, (b) a scientific workflow
language focusing on the easy integration of existing tools and simple rebuilding
of existing pipelines, (c) support for automated installation, and (d) Role Based
Access Control (RBAC). It also features (e) HopsFS, a new version of Hadoop Dis-
tributed File System (HDFS) with improved throughput, supported for extended
metadata, and reduced storage requirements compared to HDFS, (f) Charon, which
enables the federation of clouds at the file system level, and (g) a simple Laboratory
Information Management Service with an integrated web interface for authenticat-
ing/authorizing users, managing data, designing and searching for metadata, and
support for running workflows and analysis jobs on Hadoop. This web interface
hides much of the complexity of the Hadoop backend, and supports multi-tenancy
through first-class support for Studies, SampleCollections (DataSets), Samples, and
Users.

As the BioBankCloud name implies, it aims to process biobanks’ data within
cloud computing environments. A biobank is a biorepository that stores and cat-
alogs human biological material from identifiable individuals for both clinical and
research purposes. Recent initiatives in personalized medicine created a steeply in-
creasing demand for sequencing the human biological material stored in biobanks.
As of 2015, such large-scale sequencing is under way in hundreds of projects around
the world, with the largest single project sequencing up to 100.000 genomes9. Fur-
thermore, sequencing also is becoming more and more routine in a clinical setting
for improving diagnosis and therapy, especially in cancer [21]. However, software
systems for biobanks traditionally managed only metadata associated with sam-
ples, such as pseudo-identifiers for patients, sample collection information, or study
information. Such systems cannot cope with the current requirement to, alongside
such metadata, also store and analyze genomic data, which might mean everything
from a few Megabytes (e.g., genotype information from a Single Nucleotide Poly-
morphism (SNP) array) to hundreds of Gigabytes per sample (for whole genome
sequencing with high coverage).

For a long time, such high-throughput sequencing and analysis were only avail-
able to large research centers that (a) could afford enough modern sequencing de-
vices and (b) had the budget and expertise to manage high-performance computing
clusters. This situation is changing. The cost of sequencing is falling rapidly, and
more and more labs and hospitals depend on sequencing information for daily re-
search and diagnosis/treatment. However, there is still a pressing need for flexible
and open software systems to enable the computational analysis of large biomedi-
cal datasets at a reasonable price. Note that this trend is not restricted to genome
sequencing; very similar developments are also happening in other medical areas,

9http://www.genomicsengland.co.uk/

8 CHAPTER 1. INTRODUCTION

such as molecular imaging [22], drug discovery [23], or data generated from patient-
attached sensors [24].

Figure 1.1: BioBankCloud Architecture

The platform has a layered architecture (see Figure 1.1). In a typical installa-
tion, users will access the system through the web interface after authentication.
From there, she can access all services, such as the enhanced file system HopsFS
(see Section 1.2.1.3), the workflow execution engine SAASFEE (see Section 1.2.1.5),
the federated cloud service CharonFS, and an Elastic search instance to search
through an entire installation. SAASFEE is built over YARN while CharonFS can
use HopsFS as a backing store. HopsFS and Elastic search use a distributed, in-
memory database for metadata management. Note that all services can also be
accessed directly through command-line interfaces.

1.2.1.2 Data Sets for Hadoop

The web interface has integrated a LIMS to manage the typical data items in-
side a biobank, and to provide fine-grained access control to these items. These
items are also reflected in the Hadoop installation. Specifically, BioBankCloud in-
troduces DataSets as a new abstraction, where a DataSet consists of a related
group of directories, files, and extended metadata. DataSets can be indexed and
searched (through Elasticsearch) and are the basic unit of data management in
BioBankCloud; all user-generated files or directories belong to a single DataSet.
In biobanking, a sample collection would be a typical example of a DataSet. To
allow for access control of users to DataSets, which is not inherent in the DataSet

1.2. REFERENCE PLATFORMS 9

concept, we introduce the notion of Studies. A Study is a grouping of researchers
and DataSets (see Figure 1.2) and the basic unit of privacy protection (see below).

DataSet1

Study1

DataSet2
John

Mary

Study2

John

MaryDataSet3

DataSet1

DataSet2

DataSet3

Figure 1.2: Study1 has John and Mary as users and includes DataSet1, while Study2
has only John as as a user and includes DataSet1, DataSet2, and DataSet3.

1.2.1.3 Hadoop Open Platform-as-a-Service (Hops)

A full installation of the platform builds on an adapted distribution of the HDFS,
called HopsFS, which builds on a new metadata management architecture based
on a shared-nothing, in-memory distributed database (see Figure 1.3). Provided
enough main memory in the nodes, metadata can grow to TBs in size with this
approach (compared to 100GB in Apache HDFS [25]), which allows HopsFS to
store 100s of millions of files. The HopsFS architecture includes multiple stateless
NameNodes that manage the namespace metadata stored in the database. HopsFS’
clients and DataNodes are aware of all NameNodes in the system. HopsFS is highly
available: whenever a NameNode fails the failed operations are automatically re-
tried by clients and the DataNodes by forwarding the failed requests to a different
live NameNode. MySQL Cluster [26] is used as the database, as it has high through-
put and is also highly available, although any distributed in-memory database that
supports transactions and row level locking could be used. On database node
failures, failed transactions are re-scheduled by NameNodes on surviving database
nodes.

[HopsFS] [HopsYARN]

Scheduler

Figure 1.3: HopsFS and HopsYARN architectures.

The consistency of the file system metadata is ensured by implementing serial-
ized transactions on well-ordered operations on metadata [27]. A leader NameNode

10 CHAPTER 1. INTRODUCTION

is responsible for file system maintenance tasks, and leader failure triggers our own
leader-election service based on the database [28].

HopsFS can reduce the amount of storage space required to store genomic data
while maintaining high availability by storing files using [29] erasure coding, instead
of the traditional three-way replication used in HDFS. Erasure-coding can reduce
disk space consumption by 44% compared to three-way replication. In HopsFS, an
ErasureCodingManager runs on the leader NameNode, managing file encoding and
file repair operations, as well as implementing a policy that places file blocks on
DataNodes in such a way that ensures that, in the event of a DataNode failure,
affected files can still be repaired.

1.2.1.4 HopsYARN

HopsYARN is our implementation of Apache YARN, in which we have (again) mi-
grated the metadata to MySQL Cluster. YARN’s ResourceManager is partitioned
into (1) ResourceTracker nodes that process heartbeats from and send commands
to NodeManagers, and (2) a single scheduler node that implements all other Re-
sourceManager services, see Figure 1.3. If the scheduler node fails, our leader
election service will elect a ResourceTracker node as the new scheduler that then
loads the scheduler state from the database. HopsYARN scales to handle larger
clusters than Apache YARN as resource tracking has been offloaded from the sched-
uler node to other nodes and resource tracking traffic grows linearly with cluster
size. This will, in time, enable larger numbers of genomes to be analyzed in a single
system.

1.2.1.5 SAASFEE

To process the vast amounts of genomic data stored in today’s biobanks, researchers
have a diverse ecosystem of tools at their disposal [30]. Depending on the research
question at hand, these tools are often used in conjunction with one another, result-
ing in complex and intertwined analysis pipelines. Scientific workflow management
systems (SWfMSs) facilitate the design, refinement, execution, monitoring, sharing,
and maintenance of such analysis pipelines. SAASFEE [31] is a SWfMS that sup-
ports the scalable execution of arbitrarily complex workflows. It encompasses the
functional workflow language Cuneiform as well as Hi-WAY, a higher-level scheduler
for both Hadoop YARN and HopsYARN. See Figure 1.4 for the complete software
stack of SAASFEE.

1.2.2 VENUS-C
The VENUS-C project was an initiative to develop, test and deploy an industry-
quality, highly-scalable and flexible cloud infrastructure for e-Science [32]. The
overall goal was to empower the many researchers who do not have access to super-
computers or big grids, by making it easy to use cloud infrastructures. For this to

1.2. REFERENCE PLATFORMS 11

Figure 1.4: The software stack of the scientific workflow management system SAAS-
FEE, which comprises the functional workflow language Cuneiform as well as the
Hi-WAY workflow scheduler for Hadoop. Cuneiform can execute foreign code writ-
ten in languages like Python, Bash, and R. Besides Cuneiform, Hi-WAY can also
interpret the workflow languages of the SWfMSs Pegasus and Galaxy. SAASFEE
can be run both on HOPS as well as Apache Hadoop. SAASFEE and HOPS can
be interfaced and configured via the web interface provided by the LIMS.

be feasible, the project minimized the efforts that such researchers need to spend
for development and deployment in order to do computations in the cloud. This
has the added advantage of reducing the costs of operating the cloud.

Requirements from different scientific use cases were collected in the project
and, as a result, the platform was designed with the capability of supporting mul-
tiple programming models, such as batch processing, workflow execution or even
Map/Reduce (MR) [33] at the same time.

1.2.2.1 VENUS-C Architecture

Figure 1.5 illustrates the generalized VENUS-C architecture and shows the basic
steps that a researcher must perform in order to use VENUS-C. These steps are
independent of the programming model that is used. Firstly the researcher uploads
the locally available data to the cloud storage. The next step is to submit a job. So-
called dedicated Programming Model Enactment Services (PMES) are provided for
this purpose. These services enable the researchers to perform tasks such as man-
aging jobs or scaling the resources used in the cloud while simultaneously shielding
the researchers from the underlying cloud infrastructure and the specific implemen-
tations of different infrastructures through Open Grid Service Architecture - Basic
Execution Services (OGSA-BES) compliant interfaces [34]. OGSA-BES is an open
standard for basic execution services and widely used in grid communities for sub-
mitting jobs. The third step involves carrying out the required computations. For
this, the necessary application and job specific data are transferred to the compute
node. After the computation has finished, the fourth step consists of transferring
the resulting data to the cloud storage. In the fifth and final step, the researcher
can download the results from the cloud to local facilities.

12 CHAPTER 1. INTRODUCTION

Figure 1.5: VENUS-C architecture

1.2.2.2 Generic Worker

The GW module has been developed in the VENUS-C project. Following the
general VENUS-C architecture, the GW represents a reference implementation for
a batch processing programming model and is available for public download.

The GW is basically a worker process (similar to Windows Service or UNIX
daemon processes) that can be started on Virtual Machines (VM)s in the cloud.
Being able to run many VM at the same time with a GW worker process provides
great horizontal scaling capabilities and allows work items to be distributed across
the machines according to the user’s requirements.

Figure 1.6 shows how the GW is designed internally. Using this approach,
researchers are able to upload applications and data to storage, which is connected
to the Internet so that the GW can also access it. The GW design supports a
broad selection of different protocols and storage services. In addition to the data
and the application that should be run, the GW also needs a description of this
application containing meta-data about it. This information allows the GW to
understand parameters like input and output files enabling a proper execution of
the application by the GW.

Jobs are submitted using the PMES. To make this safe, different security mecha-
nism such as a Security Token Service (STS) to validate, issue and exchange security
tokens based on the well-known WS-Trust protocol and username/password can be
used. The PMES stores all the incoming jobs in an internal job queue based on a
table (Job Index); an additional table is used for the job details. The GW driver
processes continuously look for new jobs in this queue. As soon as a driver process
finds a job in the queue, it will pull the job from the queue, and check the applica-
tion and data storage to find out if everything that is needed is available, namely

1.3. RESEARCH QUESTIONS AND CONTRIBUTIONS 13

Figure 1.6: Simplified internal GW architecture

all the required input data and the relevant application binaries. If these are in
place, the job can be executed. The driver process that found the job marks the job
as being processed by that particular driver in the Job Details Table (JDT), and
starts downloading the input data to the local hard disk of the VM. If application
or data are not yet available, the job will be put back into the queue to wait for
the missing files. The driver process also checks whether the application is already
present on the VM and, if necessary, the application will be downloaded as well.
Thus, the GW process follows a data-driven pull model, allowing simple workflows
where jobs rely on the output of other jobs.

Once the application is available, the driver process retrieves information on
how to call the application and then launches it. After the application terminates,
the results are made persistent by uploading them to the data storage. Finally, the
driver process uses the JDT to mark the job as either completed or failed, depending
on the exit code of the application. Researchers who used the PMES client-side
notification will be notified about this event. There are several notification-plug-
ins available, e.g., sending emails or putting messages in a queue for every event.
Researchers can also query the PMES to check the current state of a job.

1.3 Research Questions and Contributions

The main contributions (C1-C3) of this dissertation are aligned along three main
research questions (Q1-Q3), which are introduced and briefly discussed in the fol-

14 CHAPTER 1. INTRODUCTION

lowing.

• Q1: Can we develop a methodology to formulate privacy requirements and
threats to facilitate compliance with data protection regulations?

• Q2: How do we build privacy-preserving cloud-based systems from existing
approaches in security and privacy?

• Q3: How do we increase the safety of an Operating System (OS) by reducing
the risk of kernel exploits?

• C1: The first contribution of this thesis is to offer a better understanding of
privacy requirements and corresponding threats. For this purpose, a specific
methodology for modeling threats to privacy in relation to processing sen-
sitive data in various cloud computing environments has been constructed.
This is known as the CPTM methodology. This methodology involves apply-
ing Method Engineering (ME) [35] in order to specify the relevant character-
istics of a cloud privacy threat modeling methodology, different steps in the
proposed methodology and the corresponding products (Chapter 4). We ap-
plied the CPTM to a cloud computing software project that aims to provide a
PaaS model for storing and processing sensitive medical data according to the
EU DPD. This case study consisted of identifying the privacy requirements
of the DPD to produce a privacy threat model that includes threat analysis,
risk evaluation and threat mitigation measures (Chapter 5). The outcome
publications of this part are [36, 37, 38].

• C2: We propose three usable privacy-preserving cloud-based architectures
(Chapters 6, 7 and 8) to process genomics, clinical and brain imaging datasets.
For this purpose, we studied an array of existing and state of the art research
projects to identify the gap in the field and implemented three architectures.
The data that is stored in these architectures includes information about
population-scale genomic data, patient cancer data, and brain images and
hence must conform to privacy requirements. These architectures ensure that
all storage and processing of the sensitive data will be appropriate and will
not involve risks to the privacy of the subjects. The outcome publications of
this part are [39, 40, 41, 42].
In summary, the following proposed architectures contribute to building trust-
worthy cloud models with the capability of providing appropriate control ac-
cording to privacy regulations over the users data in the cloud.

– The first architecture was implemented as a proof-of-concept for the
CPTM. This included implementation of 8 key privacy requirements
and implementing countermeasures for 26 critical threats to privacy of
genomic data in a PaaS cloud (Chapter 6).

1.4. RESEARCH METHOD 15

– The second architecture was implemented to demonstrate the feasibility
of a privacy-preservation solution for aggregated queries over multiple
datasets from different data sources. This solution provides a platform-
independent and open-source anonymization toolkit that can be used for
publishing the data about sample availability to a private cloud (Chapter
7).

– The third implementation was Scalable Brain Image Analysis (ScaBIA)
architecture that incorporates a privacy-preserving implementation of a
new model for running Statistical Parametric Mapping (SPM) jobs using
Microsoft Azure. The proposed model enhances the methods for secure
access and sharing of raw brain imaging data and improves scalability
compared to the “single PC”-execution model (Chapter 8).

• C3: Finally, we introduce quantitative measuring and evaluation of the secu-
rity of privileged code (such as in a hypervisor or kernel. This investigation
included examining the kernel traces generated by running popular user ap-
plications and produced recommendations at the lines-of-code level. The pro-
posed solution contributes to providing better isolation of user processes for
the challenging issue of multi-tenancy. Our approach can be used to identify
the risky portions of the OS kernel and secure them through a new concept
called “safely-reimplement” (Chapter 9 and Chapter 10).

1.4 Research Method

This section lists the steps that have been undertaken in the research that is de-
scribed in this thesis.

• A preliminary study of the appropriate literature was performed. This en-
compassed background theory for relevant topics including big data, cloud
computing, virtualization, security protocols, privacy-enhancing technologies,
personal data protection legislation, threat modeling, and software engineer-
ing.

• The background literature review was followed by a literature review of the
state-of-the-art in security and privacy for cloud computing. This included
classification of the cloud provider activities for the search strategy to identify
relevant literature. The results of this review were then used to identify ex-
isting gaps in the current research on privacy-preservation in order to suggest
areas for further investigation.

• Theoretical models consisting conceptual, logical, and physical architectures
of the developing privacy-preserving systems were provided.

• Implemented and conducted experiments in several open source architectures
using popular cloud programming and software environments such as Apache

16 CHAPTER 1. INTRODUCTION

Hadoop, Amazon EC2, Microsoft Azure, Vagrant, Docker, Java, Python,
MATLAB and R. We verified our implementations by various test scenar-
ios to identify any potential defects.

• Presented papers at workshops and conferences and publication of proceedings
for reviews, comments, and valuable feedback.

• Visited external research groups in the field, in addition to participating in
various summer schools and tutorials.

1.5 List of Scientific Papers

Publications that have directly stemmed from this work are:

I A. Gholami, A.-S. Lind, J. Reichel, J.-E. Litton, A. Edlund, and E. Laure,
“Design and implementation of the advanced cloud privacy threat modeling,”
International Journal of Network Security & Its Applications, Vol. 8, No. 2,
March 2015.
Author’s contributions: I am the main author, identified the privacy threats
according to the DPD and developed a proof-of-concept for the Advanced
CPTM methodology.

II A. Gholami and E. Laure, “Big data security and privacy issues in the cloud,”
International Journal of Network Security & Its Applications, Vol. 8, No. 1,
January 2016.
Author’s contributions: I am the main author, identified the related re-
search and state-of-the-art in the area of big data security and privacy.

III A. Gholami and E. Laure, “Advanced cloud privacy threat modeling,” The
Fourth International Conference on Software Engineering and Applications,
CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM, PDCTA, NetCoM, pp.
229–239, 2016.
Author’s contributions: I am the main author, performed the requirements
analysis, devised the design and implemented the methodology.

IV A. Gholami and E. Laure, “Security and privacy of sensitive data in cloud
computing: a survey of recent developments,” The Seventh International Con-
ference on Network and Communication Security (NCS), Wireless & Mobile
Networks (WiMoNe-2015), pp. 131–150, 2015.
Author’s contributions: I am the main author, classified the related research
and state-of-the-art according to the cloud provider activities.

V A. Bessani, J. Brandt, M. Bux, V. Cogo, L. Dimitrova, J. Dowling, A. Gho-
lami, K. Hakimzadeh, M. Hummel, M. Ismail, E. Laure, U. Leser, J.-E. Lit-
ton, R. Martinez, S. Niazi, J. Reichel, and K. Zimmermann, “Biobankcloud:

1.5. LIST OF SCIENTIFIC PAPERS 17

a platform for the secure storage, sharing, and processing of large biomedical
data sets,” in The First International Workshop on Data Management and
Analytics for Medicine and Healthcare (DMAH 2015), September 2015.

Author’s contributions: All authors contributed equally to this work. I
wrote the Security Model Section and also revised other parts of the paper.

VI A. Gholami, J. Dowling, and E. Laure, “A security framework for population-
scale genomics analysis,” in 2015 International Conference on High Perfor-
mance Computing & Simulation, HPCS 2015, Amsterdam, Netherlands, July
20-24, 2015, pp. 106–114, IEEE, DOI: 10.1109/HPCSim.2015.7237028.

Author’s contributions: I am the main author, proposed the security archi-
tecture, devised the design, built the components and validated the proposed
framework.

VII A. Gholami, A.-S. Lind, J. Reichel, J.-E. Litton, A. Edlund, and E. Laure,
“Privacy threat modeling for emerging biobankclouds,” Procedia Computer
Science, vol. 37, no. 0, pp. 489 – 496, 2014. The 5th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2014)/The
4th International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH 2014)/ Affiliated Work-
shops.

Author’s contributions: I am the main author, contributed extensively to
formulate the privacy requirements, conducted risk analysis for the identified
threats and defined the methodology.

VIII A. Gholami, E. Laure, P. Somogyi, O. Spjuth, S. Niazi, and J. Dowling,
“Privacy-preservation for publishing sample availability data with personal
identifiers,” Journal of Medical and Bioengineering, vol. 4, pp. 117–125, April
2014.

Author’s contributions: I am the main author, devised the design, provided
the pilot implementation of the anonymization toolkit and partial implemen-
tation of the integration server.

IX A. Gholami, G. Svensson, E. Laure, M. Eickhoff, and G. Brasche, “Scabia:
Scalable brain image analysis in the cloud,” in CLOSER 2013 - Proceedings of
the 3rd International Conference on Cloud Computing and Services Science,
Aachen, Germany, 8-10 May, 2013 (F. Desprez, D. Ferguson, E. Hadar, F.
Leymann, M. Jarke, and M. Helfert, eds.), pp. 329–336, SciTePress, 2013,
DOI=10.5220/0004358003290336, ISBN=978-989-8565-52-5.

Author’s contributions: I am the main author, devised the design, pro-
vided the pilot implementation and performed the experiments in the Microsoft
Azure Cloud.

18 CHAPTER 1. INTRODUCTION

Other scientific papers during my pre-doctoral studies that are not included in
this thesis:

• D. Cameron, A. Gholami, D. Karpenko, and A. Konstantinov, “Adaptive
Data Management in the Arc Grid Middleware,” Journal of Physics: Confer-
ence Series, vol. 331, no. 6, p. 062006, 2011.

• F. Hedman, M. Riedel, P. Mucci, G. Netzer, A. Gholami, M. Memon, A.
Memon, and Z. Shah, “Benchmarking of Integrated OGSA-BES with the Grid
Middleware,” in Euro-Par 2008 Workshops - Parallel Processing, vol. 5415 of
Lecture Notes in Computer Science, pp. 113–122, Springer Berlin Heidelberg,
2009.

1.6 Thesis Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents the
background material. Chapter 3 presents the previous research in the field. Chap-
ter 4 describes the CPTM methodology. Chapter 5 describes a case study to be
implemented using CPTM for compliance with the EU DPD. Chapter 6 describes
the design and implementation of a security framework according to the CPTM.
Chapter 7 presents a privacy-preserving solution for publishing the sample availabil-
ity data with personal identifiers. Chapter 8 describes ScaBIA to securely process
the brain imaging data using statistical parametric approach. Chapter 9 presents
a novel approach for quantifying and minimizing the risk of kernel exploitation.
Chapter 10 presents a reference monitor for Lind. Chapter 11 summarizes our
findings and conclusions. Finally, Chapter 12 discusses the future work.

Chapter 2

Background

2.1 Big Data Infrastructures

Computers produce soaring rates of data [43, 44, 5] that is primarily generated by
Internet of Things (IoT), telescopes, NGS machines, scientific simulations and other
high throughput instruments which demand efficient architectures for handling the
new datasets. In order to cope with this huge amount of information, “Big Data”
solutions such as the Google File System (GFS) [45], MR [33], Apache Hadoop and
the HDFS [46, 47] have been proposed both as commercial or open-source.

Key vendors in the IT industry such as IBM [48], Oracle [49], Microsoft [50],
HP [51], Cisco [52] and SAP [53] have customized these big data solutions. There
have been different definitions and claims relating to “Big Data” that have been
put forward as the concept has emerged in recent times. Over the past few years,
the National Institute of Standards (NIST) has formed a big data working group.
This is a community with joint members from industry, academia and government
that aims to develop consensus definitions, taxonomies, secure reference architec-
tures, and a technology roadmap [54]. This group has characterized big data as
extensive datasets that are diverse; that include structured, semi-structured, and
unstructured data from different domains (variety); that are of large orders of mag-
nitude (volume); that arrive at a fast rate (velocity); and that change their other
characteristics (variability) [1].

Figure 2.1 shows the four main parts of the big data ecosystem: data sources,
data transformation processes, the data storage and retrieval infrastructure and the
users of the data [1]. In addition, there are supporting subsystems for ensuring the
security of the big data and for managing the big data - these subsystems provide
services to the other components of the big data ecosystem.

The data sources part of the ecosystem contains the big data to be served for
a specific purpose that can transform in different ways. When sets of big data are
initially collected, the datasets with similar source structures are combined.

Then metadata is created to facilitate lookup methods for the combined data.

19

20 CHAPTER 2. BACKGROUND

Figure 2.1: Big data ecosystem reference architecture (image courtesy of NIST [1])

Datasets with dissimilar metadata are also aggregated into a larger collection for
matching purposes, for example, by correlating the aggregated data with identifiers
after applying security policies.

Data mining may then be used for analyzing the resulting aggregated data from
different perspectives or to extract specific information from the data. The result of
the data mining process will be a summary of the information that identifies rela-
tionships within the data - this could either be descriptive (for example, information
about the existing data) or predictive (such as forecasts based on data).

The big data infrastructure (which is on the right-hand side in Figure 2.1) con-
sists of data storage systems, servers, and networking to support the data trans-
formation functions and for storing data in Structured Query Language (SQL)
and NoSQL databases on-demand. The storage component of the infrastructure
supports the efficient processing of big data by providing computing and storage
technologies that are appropriate for the transformation and usage scenarios where
conditioning (de-identification, sampling and fuzzing) may be required.

Table 2.1 summarizes the big data technologies from batch processing to real-
time streaming analytics with most significant stages and products [5]. The concept
of big data and related technologies are used in Chapter 6 to build a secure NGS
data analytic engine.

2.2 Cloud Computing

When considering cloud computing, we need to be aware of the types of services
that are offered, the way those services are delivered to those using the services,

2.2. CLOUD COMPUTING 21

Stage/Year Characteristics Examples
Batch Processing
/ 2003 - 2008

Big amount of data is collected,
entered, processed and then the
batch results are produced. Dis-
tributed file systems are used for
fault-tolerant and scalability. Paral-
lel programming models such as MR
are used for efficient processing of
data.

GFS, MR, HDFS,
Apache Hadoop

Ad-hoc (NoSQL)
/ 2005 - 2010

Support random read/write access
to overcome shortcomings of dis-
tributed file systems that are ap-
propriate for sequential data access.
NoSQL databases solve this issue
by offering column based or key-
value stores, in addition, to sup-
port for storage of large unstruc-
tured datasets such as documents or
graphs.

CoachDB, Redis,
Amazon DynamoDB,
Google Big Table,
HBase, Cassandra,
MongoDB

SQL-like
/ 2008 - 2010

Simple programming interfaces to
query and access the data stores.
This approach provides functional-
ities similar to the traditional data
warehousing mechanisms.

Apache Hive/Pig,
PrestoDB, HStore,
Google Planner

Stream Pro-
cessing
/ 2010 - 2013

Data are pushed continuously as
streams to servers for processing be-
fore storing them. Streaming data
usually have unpredictable incom-
ing patterns. Such data streams are
processed using fast, fault-tolerant,
and high availability solutions.

Hadoop Streaming,
Google Big Query,
Google Dremel,
Apache Drill, Samza
Apache Flume/Hbase,
Apache Kafka/Storm

Real-time Ana-
lytical Processing
/ 2010 - 2015

Automated decision making for
streams that are generated from the
machine-to-machine applications or
other live channels. This architec-
ture helps to apply real-time rules
for the incoming events and existing
events within a domain.

Apache Spark, Ama-
zon Kinesis, Google
Dataflow

Table 2.1: Evolution of Big Data from batch to real-time analytics processing [5]

22 CHAPTER 2. BACKGROUND

and the different types of people and groups that are involved with cloud services.
Many formal definitions of cloud computing exist. In 2011, the NIST defined

cloud computing and its characteristics as follows [6].
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three service models, and
four deployment models.”

The five essential characteristics of cloud computing are briefly described in
Table 2.2.

Characteristic Description Application
On-demand
Self-service

For automatically providing a con-
sumer with provisioning capabilities
as needed

Server, Time, Network
and Storage

Broad Network
Access

For heterogeneous thin or thick
client platforms

Smartphones, tablets,
PCs, wide range of lo-
cations

Resource Pool-
ing

The provider’s computing resources
are pooled to serve multiple con-
sumers using a multi-tenant model

Physical and vir-
tual resources with
dynamic provisioning

Rapid Elasticity Capabilities can be elastically pro-
visioned and released, in some cases
automatically, to scale rapidly out-
ward and inward with demand

Adding or remov-
ing nodes, servers,
resource or instances

Measured Ser-
vice

Automated control and optimiza-
tion of a resource through measur-
ing or monitoring services for vari-
ous reasons, including billing, effec-
tive use of resources, or predictive
planning

Storage, billing, pro-
cessing, bandwidth,
and active user ac-
counts

Table 2.2: Cloud computing characteristics [6]

2.2.1 Concepts in Cloud Computing
Cloud computing delivers software, platforms and infrastructure as services based
on pay-as-you go models. Cloud service models can be deployed for on-demand stor-
age and computing power as Software-as-a-Service (SaaS), PaaS and Infrastructure-
as-a-Service (IaaS), as shown in Figure 2.2 (service layer). Cloud service models
can be summarized as follows [6].

2.2. CLOUD COMPUTING 23

• SaaS allows consumers to run applications by virtualizing hardware on cloud
providers, e.g., Salesforce Customer Relationship Management (CRM)1 or
Oracle Sales Cloud.

• PaaSmakes it possible to deploy custom applications with their dependencies
within an environment called a container. Containers deliver isolation and
resource management in Linux environments. An OS container isolates a
process from the rest of the system. The Google App Engine2, Oracle Java
Cloud3, Heroku4, OpenShift5, dotCloud6, and Cloud Foundry7 are examples
of PaaS clouds.

• IaaS provides a hardware platform (including, for example, virtual machines,
processing, storage, networks and database services) as a service, such as
with the Amazon Elastic Compute Cloud (EC2)8, Google Compute Engine
or Oracle Compute Service.

Cloud services can be delivered to consumers using different cloud deployment
models: private cloud, community cloud, public cloud, and hybrid cloud.

• Private Cloud: In a private cloud, the cloud infrastructure is provided
within the Intranet of an organization. It can be owned and operated by the
organization or by third-party partners within the premises of the organiza-
tion.

• Community Cloud: The cloud infrastructure of a community cloud is
shared among a community of organizations with common concerns, such
as their missions, security requirements, policies and regulatory compliance.

• Public Cloud: For a public cloud, the cloud infrastructure is built for open
use over the public Internet and it is delivered to consumers through sub-
scription. A public cloud can be operated by a business, or by an academic
or government organization, or by a combination of these.

• Hybrid Cloud: The cloud infrastructure of a hybrid cloud is built from
two or more other types of clouds (that is, private, community, or public
clouds). Hybrid clouds make it possible to share resources and support data
and application portability.

1https://www.salesforce.com/crm/
2https://appengine.google.com/
3https://cloud.oracle.com/java/
4https://www.heroku.com
5https://www.openshift.com/
6https://www.dotcloud.com/
7https://www.cloudfoundry.org/
8https://aws.amazon.com/ec2/

24 CHAPTER 2. BACKGROUND

Such cloud deployment models are usually built within data centers for cloud
computing that belong to one or multiple organization, where depending on the
deployment model can have relatively homogeneous or heterogeneous software and
hardware platforms. A data center or computer center is a facility used to house
computer systems and associated components, such as storage and network sys-
tems. It generally includes redundant or backup power units, redundant network
connections, air conditioning, and fire safety controls. Cloud data centers run a
small number of very large applications, where cloud computing workloads are de-
signed to gracefully tolerate large numbers of component faults with little or no
impact on service level performance and availability.

The NIST cloud computing reference architecture in Figure 2.2 defines five
major actors in the cloud arena: cloud consumers, cloud providers, cloud carriers,
cloud auditors and cloud brokers. Each of these actors is an entity (either a person
or an organization) that participates in a transaction or process, and/or performs
tasks in cloud computing [2].

Figure 2.2: Cloud computing reference architecture (image courtesy of NIST [2])

A cloud consumer is a person or organization that uses services from cloud
providers in the context of a business relationship. A cloud provider makes cloud
services available to interested users. A cloud auditor conducts independent as-
sessments of cloud services, operations, performance and security in relation to the
cloud deployment. A cloud broker manages the use, performance and delivery of
cloud services and establishes relationships between cloud providers and cloud con-
sumers. A cloud carrier provides connectivity and transport of cloud services from
cloud providers to cloud consumers through the underlying network.

2.2. CLOUD COMPUTING 25

While it is practical and cost effective to use cloud computing, there can be is-
sues with security when using systems that are not provided in-house. To look into
these and find appropriate solutions, there are several key concepts and technolo-
gies that are widely used in cloud computing that need to be understood, such as
virtualization mechanisms, varieties of cloud services, and “container” technologies.

2.2.2 Virtualization

The use of virtualization technology as an engine of cloud computing has been
growing over the past few decades. Historically, virtualization technology appeared
concurrently with time-sharing systems around the late 1960s when IBM developed
Control Program (CP)/Cambridge Monitor System (CMS) [55]. The CMS was an
existing single-user OS machine. Later in 1970, IBM introduced VM370 [56], where
a CP acted as the piece of software to bridge between an application and the relevant
hardware.

After few years, in 1974, Gerald J. Popek and Robert P. Goldberg [57] formalized
the properties of virtual machines. They defined a VM as “an efficient, isolated
duplicate of the real machine.” Efficiency ensures that the speed of the VM is close
to the the real hardware speed. Isolating the VM ensures several instances of a
particular VM to be run without interfering with each other. Duplicating the real
machine means that the VM behaves identically to the real machine, so programs
that run inside a VM cannot tell whether they are running on the real machine or
a VM.

During the 1990s, other organizations, such as VMWare, introduced more so-
phisticated products such as Elastic Sky X (ESX)9 servers, VMWare workstation
and a Personal Computer (PC)10 for Macintosh systems (as Macs were then called)
to run Microsoft Windows.

Over the past few years, major vendors (such as Amazon, Microsoft, and
Google) have provided VMs, via their clouds, that customers could rent. These
clouds utilize the hardware resources and support live migration of VMs in addi-
tion to dynamic load-balancing and on-demand provisioning. This means that, by
renting VMs via a cloud, the entire datacenter footprint of a modern enterprise
could be reduced from thousands of physical servers to a few hundred (or even
dozens) of virtualization hosts.

Virtualization Mechanisms: A Virtual Machine Monitor (VMM) or hyper-
visor is a key component in virtual computer systems - it resides between the VMs
and the real machine hardware and is used to control the virtualized resources [58].
The VMM or hypervisor makes it possible to run several isolated virtual machines
on the same physical host. Hypervisors can be divided into two groups [59] as
follows.

9http://www.vmware.com/products/es-xi-and-esx/overview
10https://support.microsoft.com/en-us/kb/958559

26 CHAPTER 2. BACKGROUND

• Type I: Here the hypervisor runs directly on the real system hardware, and
there is no OS under it. This approach is efficient as it eliminates any inter-
mediary layers. Another benefit with this type of hypervisor is that security
levels can be improved by isolating the guest VMs. That way, if a VM is com-
promised, it can only affect itself and will not interfere with the hypervisor
or other guest VMs.

• Type II: The second type of hypervisor runs on a hosted OS that provides vir-
tualization services, such as Input/Output (I/O) device support and memory
management. All VM interactions, such as I/O requests, network operations,
and interrupts, are handled by the hypervisor.

• Trap/Emulate: In the “trap and emulate” approach, a guest VM will at-
tempt to access a physical resource. This will trigger a trap (exception) to
invoke the hypervisor. The hypervisor will, in turn, emulate the instruction,
for example, updating the state of the Central Processing Unit (CPU).

• Binary Translation: This approach translates the instructions before they
are executed, and sensitive instructions are replaced with traps and other
code.

• Paravirtualization: In this approach the processor instruction set architec-
ture is augmented with hyper calls and the sensitive instructions are removed
or the number of traps is reduced. A hypercall is a trap from a domain to the
hypervisor (similar to a system call from an application to the kernel). Hyper-
calls are used by domains to request privileged operations such as updating
page tables.

• Hardware Support: In the period 2005-2006, AMD and Intel introduced
two new architectures with similar functionalities to support virtualization
through AMD-V [60] and Intel Virtualization Technology (VT) [61].

Figure 2.3 shows a comparison of two popular open source hypervisors Xen11

and Kernel Virtual Machine (KVM)12 (respectively of Type I and Type II). As it
is depicted, Xen runs directly on the underlying hardware system and inserts a vir-
tualization layer between the system hardware and the virtual machines. The OSs
running in the VM interact with the virtual resources as if they were actually physi-
cal resources. While KVM is a virtualization feature in the Linux Kernel that makes
it possible to safely execute guest code directly on the host CPU. As illustrated in
Figure 2.3, KVM provides full native virtualization solution for Linux on x86 hard-
ware containing virtualization extensions (Intel VT or AMD-V). A modified version
of Quick Emulator (QEMU)13 provides emulation for Basic Input/Output System

11http://xen.org/products/xenhyp.html
12http://www.linux-kvm.org/
13http://wiki.qemu.org/

2.2. CLOUD COMPUTING 27

(BIOS), Peripheral Component Interconnect (PCI) bus, Universal Serial Bus (USB)
bus, Small Computer System Interface (SCSI) disk controllers, network cards, file
systems and serial I/O. KVM provides strong isolation between VMs through the
default use of mandatory access control policies. VM instances inside KVM run as
processes that are confined using SELinux policies.

Figure 2.3: Comparison of Type-I and Type II virtualization architectures for Xen
and KVM

2.2.3 Container Technology
Linux Container (LXC) technology is considered as a next-generation cloud and
it has become an important part of the cloud computing infrastructure because
of its ability to run several OS-level isolated VMs within a host with a very low
overhead. LXCs are built on modern kernel features. A LXC resembles a light-
weight execution environment within a host system that runs instructions native to
the core CPU while eliminating the need for instruction level emulation or just-in-
time compilation [62]. LXCs contain applications, configurations, and the required
storage dependencies, in a manner similar to the “just enough OS”.

Using containers, several applications can share an OS, binaries or libraries,
which results in significant increases in efficiency compared to using hypervisors.
For example, the portability of applications and the provisioning time of VMs is
very low with container technologies [63]. LXC technologies were introduced in
the 1980s, starting with the chroot (change root) command, and evolving into to
popular container managers such as Docker.

• Chroot: The Unix chroot system call, which was introduced as part of
Unix version 7 in 1979, can be considered as the first step in the evolution

28 CHAPTER 2. BACKGROUND

of containerization. The chroot call changes the root directory of the calling
process to a specified path, where the root directory is known by all children
of the calling process. This feature is used by some containers for isolation
and sharing the underlying file system. The Unix chroot is often used when
building system images by changing root to a temporary directory, download-
ing and installing packages in chroot or compressing chroot as a system root
file system.

• FreeBSD Jail [64] extended chroot in 1998 to provide enhanced security.
FreeBSD jail settings can explicitly restrict access outside the sandbox envi-
ronment by files, processes, and user accounts (including accounts created by
the Jail definition specifically for that purpose). Jail can, therefore, define
a new root user, which has full control inside the sandbox, but that cannot
reach anything outside.

• Namespaces were introduced in 1992 [65] for process-based resource isola-
tion. Namespaces provide tools for isolating each Control Groups (cgroups)
view of global resources such as details about file systems, processes, network
interfaces, Inter Process Communication (IPC), host names, and user iden-
tifiers. Processes in a particular namespaces are invisible to other processes
because they think that they are the only processes on the system and be-
cause “connectivity” is only permitted with the parent namespaces. The Unix
namespaces are categorized as follows.

– mnt: Processes in different mount namespaces can have different views of
the file system hierarchy. One use of mount namespace is to create envi-
ronments that are similar to chroot Jail. However, mount namespaces
are more secure and flexible than chroot.

– pid: Each process has a /proc/[pid]/ns/ subdirectory containing one
entry for each namespace. The pid namespaces also allow each container
to have its own init with PID = 1 as the ancestor of all other processes
to manage various system initialization tasks and to terminate child
processes. The init (initialization) is the first process that starts when
an operating system is booted and it continues running until the system
is shut down. The init process can be considered as the parent of all
the processes in the system and it is executed and responsible for all
other processes.

– net: Network namespace provides isolation for network devices, IPv4
and IPv6 stacks, port numbers (sockets), routing, and firewalls. Each
container can have its own (virtual) network device and its own applica-
tions that bind to the per-namespace port number, where routing policies
in the host can forward network packets to the network device bound to
a specific container. For example, a host can run multiple separate con-
tainers with web servers running on port 80. Network namespace also

2.2. CLOUD COMPUTING 29

supports bridge filtering, stateful firewalls and Virtual LAN (VLAN)s
through the exclusive use of virtual network devices.

– ipc: AT&T’s Unix System V introduced three forms of IPC facilities:
message queues, semaphores, and shared memory. Objects created in
an IPC namespace are visible to all other processes that are members
of that namespace, but are not visible to processes in other IPC names-
paces. This feature makes it possible for a process to think it is the
only process running on the server. Each IPC object has a unique IPC
identifier associated with it. The container can run its own init process
with PID = 1 while the host sees that process with a different process
identifier.

– uts: A process has a separate copy of the hostname and a domain name,
so the process can set it to something else without affecting the rest of
the system. For example, in a container, the Unix Time Sharing (UTS)
namespaces feature allows each container to have its own cgroups and
domain name.

– user: Isolation of identifiers and attributes are achieved in the user
namespace. The user´s proccess and group identifiers can be different
inside and outside a user namespace. This permits a process with full
privileges for operations inside the user namespace but makes it unpriv-
ileged for operations outside the namespace. For example, a root user
within a container might have a UID = 0 but on the host system might
have a non-privileged user identifier.

• Control Groups cgroups14 are kernel mechanisms introduced by Google in
2007 to provide fine-grained control by grouping processes and their children
into a tree structure for resource management. Each group can be assigned a
task for CPU, memory, disk and network. For example, to isolate two groups
such as applications resources and OS resources, two groups (group 1 and 2)
can be created to assign resource profiles individually.
A cgroup assigns a set of tasks with a set of parameters for subsystems. A sub-
system can be considered to be a module that makes use of the task grouping
facilities provided by cgroup to handle groups of tasks in the desired man-
ner. A subsystem acts as a “resource controller” within the process hierarchy.
This feature provides access (which devices can be used per cgroup), limits
(memory, CPU, device accessibility, block I/O, prioritization (who gets more
of the CPU, memory), accounting (resource usage per cgroup) and control
(freezing and checkpointing).

• Linnx Security Module (LSM) kernel modules provide a framework for
mandatory access control security implementations, where the administra-

14https://www.kernel.org/doc/Documentation/cgroups/

30 CHAPTER 2. BACKGROUND

tor (user or process) assigns access controls to subject/initiator. In Dis-
cretionary Access Control (DAC), the resource owner (user) assigns access
controls to individual resources. Existing LSM implementations include Ap-
pArmor, SELinux, Grsecurity 15, and so forth to prevent virtual machines
from attacking other virtual machines or the host. For this purpose, policies
are used to define what actions a process can perform on a particular system.

• Containers are built on the hardware and OS but they make use of kernel
features called chroots, cgroups and namespaces to construct a contained
environment without the need for a hypervisor. The most recent container
technologies are Solaris Zones, OpenVZ, and LXC.

In 2004, Solaris 10 used zones as facilities to provide protected virtualized
environments within a single host. Every Solaris system includes a global
zone for both system and system-wide administrative control, and may have
one or more non-global zones. All processes run in the global zone if there is no
non-global zone. The global zone is aware of all devices and all file systems
while non-global zones are not aware of the existence of any other zones.
Zone-based containers provide isolation, security, and virtualization. Zones
are similar to jails with additional features such as snapshots and cloning that
make it possible to clone efficiently or to duplicate a current zone into a new
zone.

In 2005 OpenVZ16 containers were introduced using a modified Linux kernel
with a set of extensions. OpenVZ is based on the namespaces and cgroup
concepts in contrast to Jails, which were used in FreeBSD17.

Later in 2008, LXC18 emerged as a container management tool and it com-
bined namespaces and control groups to create a fully isolated environment.
It provides libraries and command-line support to enable administrators to
create new containers. LXC containers can be used in either privileged (as
a root user) or unprivileged (as a non-root user) modes to easily customize
kernel capabilities or configure cgroups to satisfy the particular requirements.

Docker is another container management tool - it was introduced in 2013 and
is based on namespaces, cgroups and SELinux. Docker provides automation
for the deployment of containers through remote Application Programming
Interface (API)s and has additional features that make it possible to create
standardized environments for developing applications. This has made Docker
a popular technology. Creating the standardized environments is achieved
using a layered image format that enables users to add or remove applications

15https://en.wikibooks.org/wiki/Grsecurity
16https://openvz.org/
17http://www.cybera.ca/news-and-events/tech-radar/contain-your-enthusiasm-part-two-jails-

zones-openvz-and-lxc/
18https://linuxcontainers.org/

2.2. CLOUD COMPUTING 31

and their dependencies within a trusted image. Figure 2.4 represents a layered
view of Docker to run applications through different APIs.

Figure 2.4: Docker architecture (image courtesy of [3])

Docker adds portable deployment of LXCs across different machines. In cloud
terms, one can think of LXC as the hypervisor and Docker as both the open
virtualization appliance and the provision engine [3]. Docker images can run
unchanged on any platform that supports Docker. In Docker, containers can
be created from “build" files such as Chef/Puppet19, Maven20 and there are
both command-line or Representational State Transfer (REST) API available
for interacting with Docker.

Rocket21 is another alternative to Docker that was introduced in 2014. It
utilizes systemd for creating containers and also has an image management
mechanism. Rocket is used to serve in environments with demands for lay-
ered security, composability, speed and production requirements. The Rocket
software consists of two components (Actool and Rkt), each with stand-alone
command-line support. Actool is used for launching containers and includes
facilities for container validation and discovery. Rkt deals with fetching and
running container images.

19www.chef.io
20https://maven.apache.org/
21https://coreos.com/blog/rocket/

32 CHAPTER 2. BACKGROUND

The momentum of container technology with the capability of application porta-
bility by encapsulating application within containers has become very interesting
for cloud providers. However, integrity and isolation of the container instances
within a host still are major security concerns.

The concepts of cloud computing, virtualization, containers are used to design
and implement secure systems such as proposed solutions throughout this thesis.
We mainly use virtualization and container technologies in chapters 9 and 10.

2.3 Security Techniques to Ensure Privacy

This section describes the EU DPD as one of the most prominent data protection di-
rectives that are widely used by the EU Member States. We build a cloud platform
that processes genomic data according to the EU DPD requirements to ensure the
privacy of sensitive information, as described in Chapter 6. This platform utilizes
two-factor authentication and PolyPasswordHashser (PPH) in the BioBankCloud
security framework. In Chapter 7 and Chapter 8 we use X.509 certificates and
anonymization to ensure confidentiality and integrity of sensitive data through mu-
tual and strong authentication.

2.3.1 The EU DPD Key Concepts
We use the DPD as one of the most widely adopted privacy regulations that have
been deployed in many countries, to build proof-of-concept for privacy-preserving
cloud systems.

The term “sensitive data” that is used in the DPD may fit into various classifi-
cations based on the legal requirements and use case. Some personal data elements
are considered more sensitive than others. The definition of what is considered
sensitive may vary depending on jurisdiction and particular regulations. Sensitive
data require more privacy and security when it comes to collection, processing and
disclosure.

The Personal Data refers to any Personally identifiable information (PII) di-
rectly or indirectly, in particular by reference to an identification number or to one
or more factors specific to his physical, physiological, mental, economic, cultural
or social identity (Article 2.a). The DPD aims to protect the rights and freedoms
of persons with respect to the processing of personal data by laying down the key
criteria for making processing lawful and the principles of data quality.

The DPD applies to data processed by automated tools such as a digital database
of patients and data stored in or intended to be part of non-automated filing sys-
tems such as simple paper documents. It does not apply to the processing of data
by a natural person in the context of personal or household activities or in the
context of an activity which relates out of the scope of Community law, such as
issues concerning State or public security and defense.

The main entities (participants) of the DPD are Data Subject, Controller, and
Processor:

2.3. SECURITY TECHNIQUES TO ENSURE PRIVACY 33

• Data Subject: Article 2.a of the DPD defines data subject as an identifiable
individual associated with the personal data.

• Controller: In Article 2.d, the controller is defined as the natural or legal
person, public authority, agency or any other body which alone or jointly with
others determines the purpose and means of the processing of personal data.

• Processor: The processor acts as the natural or legal person, public author-
ity, agency or any other body which processes personal data on behalf of the
controller, as defined in Article 2.e. [8].

The obligation of the Controller of personal data to ensure that personal data
are adequately secured is one of the fundamental principles of EU DPD (Article
17 of the DPD). Data Controller is the responsible authority to decide about the
transmission of data to non-Member States. Transfers of personal data from a
Member State to a third country with an adequate level of protection are authorized.
There are scenarios where transfers may not have an adequate level of protection.
There are exceptions to this rule, i.e., the data subject agrees to the transfer, in
the event of deploying a contract or if Binding Corporate Rules (BCR) or Standard
Contractual Clauses have been approved by the Member States.

2.3.2 Authentication
The proposed authentication systems in the next chapters are implemented based
on the One Time Password (OTP) and X.509 public key certificates.

OTP is a password that can be only used once for login or performing a trans-
action. Compared to regular passwords that are static, OTPs provides additional
security due to avoiding the vulnerabilities of regular passwords caused by replay at-
tacks or credentials theft. OTPs are considered as two-factor authentication where
one factor is what user knows and another factor is what user possesses. Since
OTPs change after usage, it is difficult to remember them.

The OTP-based authentication can be divided into two subtypes: HMAC-based
One-time Password (HOTP) that relies on a counting events and Time-based One-
time Password (TOTP) using timing events. Both these approaches are governed
by the Open Authentication (OATH) Initiative. In the followings, we will describe
the differences between these algorithms that are utilized in the BioBankCloud
two-factor authentication system.

2.3.2.1 HMAC-based One-time Password (HOTP)

HOTP is an event-based algorithm that relies on the transformation of a shared
secret and an event count (the moving factor) that is synchronized between the
server and the client. HOTP was published by Internet Engineering Task Force
(IETF) Request for Comments (RFC) 4226 [66]. Keyed-Hashing for Message Au-
thentication (HMAC) includes a hash function internally (HMAC-SHA-1) to hash

34 CHAPTER 2. BACKGROUND

the moving counter factor using the secret key. Then, these bytes are taken modulo
10 n, where n is the number of digits in the passcode. The counter factor value
increases monolithically. Each client has a unique shared secret, typically 128-bit
or 160-bit in length that is generated randomly. Algorithm 1 describes the steps to
generate an OTP.

Algorithm 1 The HMAC-based One-time Password (HOTP) algorithm
Require: K be a shared secret between client and server
Require: C be a 8-byte counter value (the moving factor)
Require: T be throttling parameter:
Ensure: HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))
Let HS = HMAC-SHA-1(K,C) // Generate an HMAC-SHA-1 value
Let Sbits = DT(HS) // Generate a 4-byte string (Dynamic Truncation)
Let Snum = StToNum(Sbits) // Convert S to a number 0...231 − 1
Let D = Snum mod 10Digit // D is a number in the range 0...10Digit − 1

2.3.2.2 Time-based One-time Password (TOTP)

TOTP is a time-based algorithm that relies on the transmission of a shared secret
and a time value that is synchronized between the server and the client. TOTP
is adopted as IETF RFC 6238 [67]. TOTP also uses HMAC to combine a secret
key with the current timestamp using a cryptographic hash function to generate
a one-time password. The timestamp typically increases in 30-second intervals, so
passwords generated close together in time from the same secret key will be equal.
Algorithm 2 describes the steps to generate an OTP.

Algorithm 2 The Time-based One-time Password (TOTP) algorithm
Require: K be a shared secret between client and server
Require: T0 is the Unix time to start counting time steps
Require: X = 30 //represents the time step in seconds
Ensure: TOTP = HOTP(K, T/X)
T = (Current Unix time - T0)
Let HS = HMAC-SHA-1(K,T/X) // Generate an HMAC-SHA-1 value
Let Sbits = DT(HS) // Generate a 4-byte string (Dynamic Truncation)
Let Snum = StToNum(Sbits) // Convert S to a number 0...231 − 1
Let D = Snum mod 10Digit // D is a number in the range 0...10Digit − 1

2.3.2.3 X.509 Public Key Certificates

The X.509 public key certificate provides scalable secure communication in open
networks based on an asymmetric pair of keys known as public (shared with all

2.3. SECURITY TECHNIQUES TO ENSURE PRIVACY 35

parties) and private (owned only by the user). It provides two main features: a
digital signature to sign a document and data encryption between two participants.
The usage of the keys is defined through the certificate policy along the validation of
the private key and by the public key and certificate revocation list. A certification
authority distributes such policy. There are several public certificate types that
contain additional information such as attributes but the most common are X.509
version 3.0 which is built on trust between the issuing certification authority of the
certificate and the public key users.

2.3.3 Data Anonymization Techniques
Researchers need to access valuable medical microdata that is accumulated over
time to perform experiments and analysis to get insight into diseases. Microdata is
a series of unaggregated records containing information of an individual such as a
person or an institution. The final recipients of such specific data are able to perform
analytical tasks compared to macrodata that is in precomputed statistical formats.
Organizations that have collected such data are subject to legal requirements to
prevent the identification of data subjects while allowing data to be analyzed and
used.

Data anonymization as a sanitation technique can help to build privacy-reserving
cloud solutions to increase security, either by encrypting or removing PII such as
name, social security number, telephone number and email of microdata. In con-
trast, with access control mechanisms that protect the information from unautho-
rized access, data anonymization controls disclosure of private data to publish useful
information. This will reduce the risk of re-identification in published data through
removing attributes that clearly identify data subjects by removing or replacing
them with random values.

Despite removing the direct identifiers from the disclosed information that pro-
duce de-identified micro datasets, there are scenarios where an adversary can join
the published databases through background knowledge with external databases on
attributes such as gender, date of birth, and Zone Improvement Plan (ZIP) code
to re-identify individuals who are required by data protection legislation to remain
private. This re-identification attack is pointed out by Sweeney [68] that naive re-
moving of PII such as name and Social Security Number (SSN) leaves possibility of
open attacks by combining the microdata with other publicly available information.

A well-known example is provided by the report [4] that describes the com-
bination of only on {5-digit ZIP code, gender, date of birth} can result in unique
re-identification of approximately 87% (216 million of 248 million) of the population
in the United States. Figure 2.5 shows how Sweeney could re-identify individuals
through QIDs over two public databases data source I and data source II. Data
source I represents the voters lists including name, address, ZIP code, date of birth
(DoB), and gender of each voter which is publicly available. Data source II rep-
resents the de-identified medical data with no explicit identifier such as name or
address.

36 CHAPTER 2. BACKGROUND

Figure 2.5: Linking to re-identify data (image courtesy of [4])

In literature, variable values or combination of such attributes that are not struc-
turally unique but can result in re-identification of a population unit (a data sub-
ject) is called as a QID [69]. To avoid such linking attacks via QIDs, k-Anonymity
was proposed by Sweeney and Samarati [68, 70, 71] as a formal model of privacy.
The goal is to make each record in the microdata sets indistinguishable from a (k)
number of other records, i.e., in scenarios where an adversary attempts to reidentify
the data subjects.

2.3.3.1 k-Anonymity

Assume table T with tuples {t1,t2,..,tn} over an attribute set A {a1,a2,. . . ,an}.
Table T satisfies k-anonymity, if, for any tuple with a given set of attributes in
A, there are at least (k-1) other tuples that equal those attributes. Each tuple is
associated with a key that represents a unique identifier which is required to be
removed or obscured.

For example, table 2.3 shows a private patient dataset that is recorded in a
hospital. The table contains ZIP code and age as QID attributes. The disease
attribute is the actual sensitive attribute that must remain private despite disclosing
the dataset.

Table 2.4 shows a 4-anonymous dataset over the QID (ZIP code, age)in the
original patient data (table 2.3). The 4-anonymity property is satisfied because the
minimum equivalence group size on the QID for is at least 4 for the anonymized
groups in the table (two groups with sizes of 4 and 5).

To achieve higher levels of privacy, the value of (k) should be increased. Because
the probability of linking a data subject to a specific tuple through QID is at most

2.3. SECURITY TECHNIQUES TO ENSURE PRIVACY 37

ZIP code Age Disease
17601 31 Cancer
17601 32 BRCA Mutation
17605 33 Cancer
17605 34 Alzheimer
13059 36 Cancer
13056 38 Cancer
13054 37 Viral Infection
13055 38 Viral Infection
13059 39 Viral Infection

Table 2.3: Raw private patient dataset without anonymization

ZIP code Age Disease
176** [30,35) Cancer
176** [30,35) BRCA Mutation
176** [30,35) Cancer
176** [30,35) Alzheimer
1305* [35,40) Cancer
1305* [35,40) Cancer
1305* [35,40) Viral Infection
1305* [35,40) Viral Infection
1305* [35,40) Viral Infection

Table 2.4: A sample patient dataset with k-anonymity, where k=4

1/k. The properties of k-anonymity for various attributes are summarized in Table
2.5.

Attribute Description Example
Key Uniquely identifiers of data subjects Name, SSN and address
QID Combination of attributes that can

be linked with external information
to re-identify data subjects

ZIP code, birthday and
gender

Sensitive Data that a data subject is sensitive
about revealing

Disease, ethnicity and
salary

Table 2.5: k-anonymity description of attributes to prevent record linkage through
QID

Even k-anonymity provides an effective approach for anonymization due to its
simplicity and algorithmic supports, it is still vulnerable mainly using homogeneity
or background knowledge attacks. Because in k-anonymity model sensitive at-

38 CHAPTER 2. BACKGROUND

tributes that exist in the equivalence class lack diversity, which leaves it open to
adversarial attacks.

A homogeneity attack can be launched due to the fact that the values for a
sensitive attribute within a set of the k tuple are identical. Despite k-anonymization
over a dataset, values of sensitive attributes might be predictable. For example in
the 4-anonymous table, Eve (an attacker) can make a prediction over Alice (a
patient) that lives in a specific area and her age that is known to Eve. Since Eve
knows Alice’s age and that Alice is present in the dataset, then she will know Alice
has cancer.

Background knowledge attack is another approach that an attacker is able to
make the association between one or more QID with the sensitive attributes through
reducing the sensitive attribute value range. Machanavajjhala et al. [72] in 2007
showed that the knowledge of common diseases in a specific geographical area could
be used to narrow the range of values for a sensitive attribute of a patient dataset.
For example, if Eve the attacker knows Alice (the patient) is in the dataset and
since young women are not likely to have cancer at the age of 30 then Eve can
conclude Alice has a viral infection.

2.3.3.2 `-Diversity

`-diversity is another privacy model proposed by Machanavajjhala et al. [72] to
diversify the sensitive attributes in k-anonymity model. The goal of `-diversity is
to prevent attribute linkage through ensuring that each QID group contains at least
` “well-represented” sensitive values. `-diversity improves anonymization beyond k-
anonymity and it makes it possible to counter both of homogeneity and background
knowledge attacks.

Table 2.6 shows a `-diversity, where `=2 wherein the first group a factious value
has been replacing with the Alzheimer disease to satisfy the diversity constraint.
This replacement causes in the loss of quality of data and it should be compensated
during analysis.

ZIP code Age Disease
176** [30,35) Cancer
176** [30,35) BRCA Mutation
176** [30,35) Cancer
176** [30,35) BRCA Mutation
1305* [35,40) Cancer
1305* [35,40) Cancer
1305* [35,40) Viral Infection
1305* [35,40) Viral Infection
1305* [35,40) Viral Infection

Table 2.6: A sample patient dataset with `-diversity, where `=2

2.3. SECURITY TECHNIQUES TO ENSURE PRIVACY 39

Similar to k-anonymity that prevents record linkage, `-diversity also assumes
the attacker’s knowledge of the presence of a data subject in the dataset. But
`-diversity ensures the attribute linkage over sensitive values.

2.3.4 Secret Sharing
Secret sharing is one of the main building blocks in the modern cryptography that
provides efficient mechanisms for many applications and protocols for distributing
a secret among n parties. The original secret can be reconstructed only if a specific
number of shares are present. Secret sharing schemes can be utilized for many
sensitive operations and applications that require high levels of security. The idea
of secret sharing originates from the Liu’s book on combinatorial mathematics [73]
that discussed the following problem:

“Eleven scientists are working on a secret project. They wish to lockup the
documents in a cabinet so that the cabinet can be opened if and only if six or more
of the scientists are present. What is the smallest number of locks needed? What
is the smallest number of keys to the locks each scientist must carry?”

Prior to formalizing the definition of threshold secret sharing, there have been
several informal definitions. Most notably, t-out-of-n threshold scheme, where the
need for having trusted parties to access the shared secret is relaxed. This scheme
has the following proprieties.

• At least, t (the threshold) parties are needed to recover the secret (privacy
level).

• There are n parties in total, where (n − t) is the redundancy level.

The t-out-of-n threshold scheme can provide maximum privacy in terms of per-
fect privacy or perfect secret sharing. For this purpose, (t − 1) parties have no
knowledge of anything related to the secret from their (t − 1) shares. This is equiv-
alent to storing n shares in a safe over different banks. The value of t can be
increased for scenarios with little trust to the bank managers (key repositories).

Secret sharing can be verifiable in the presence of active adversaries. For ex-
ample, if a dealer (distributor) sends inaccurate shares instead of a correct share.
In such scenario, reconstruction of the original secret collapses. To solve this issue,
participants can verify that they received shares of the same secret, to guarantee,
that any honest party can recompute the same secret k.

Secret sharing can be used by several real-life applications that suffer from weak-
nesses originating from vulnerabilities in computer systems. For example untrusted
communication, key escrow and secure multi-party computation can benefit from
the secret sharing scheme. Communication network vulnerabilities include channel
destruction, eavesdropping, and altering the contents in transit. Key escrow is a
special case of secret sharing through trusted government or industry agencies that
still demands a trusted third party. Secure multi-party computation is based on

40 CHAPTER 2. BACKGROUND

the idea of zero knowledge proof that allows n parties to compute a function of
private inputs without leaking more than required knowledge about the inputs.

Threshold cryptography is another application of secret sharing that requires
decrypting an encrypted message by k parties, where k is larger than the number
of participants. For example, a message can be encrypted using a public key and
the corresponding private key is shared among the different parties.

In 1979, Shamir [74] proposed a secret sharing solution based on the threshold
cryptography and Lagrange interpolation polynomial semantics. Shamir proposed
this approach to solving the issue of reconstructing a share where the presence of all
required shares is impractical. Therefore, the (k, n)-threshold scheme is used where
any k (threshold) of the n parts are sufficient to reconstruct the original secret,
otherwise no information about the secret is provided.

Suppose S is a secret that is required to be hidden using the (k, n)-threshold
scheme where k < n. Shamir Secret Sharing produces a k − 1 random coefficients
for a k − 1 degree polynomial f(x). The kth element is the secret that is supposed
to remain hidden.

A value between 1 and k − 1 is chosen to compute a share. The polynomial is
constructed with x equal to the share value, where x and f(x) represents the share.
To reconstruct the secret from at least k shares, a shareholder can interpolate the
values to compute the secret.

The following example illustrates the algorithm. Suppose that a secret, “1234” is
required to be hidden. The secret “1234” can only be reconstructed if three shares
are presented by different parties. Because the threshold is three, two random
values (94 and 166) are generated as the first step to represent a polynomial, such
as f(x) = 94x2 + 166x + 1234. Then other shares are generated by computing x
and f(x). For example (1, 1494), (2, 1942), (3, 2598), (4, 3402), (5, 4414), and (6,
5614). A party that has, at least, three shares can interpolate to reconstruct the
full polynomial of f(x) and knows the secret “1234”.

PPH [75] is a password protection solution based on the Shamir secret shar-
ing and it provides additional levels of security to make cracking users passwords
very hard in a database. PPH proposes a hybrid solution including cryptographic
hashing and threshold cryptography to combine password hash data with shares so
that users credentials are used to protect the database safely. It also combines a
share that is derived using a threshold cryptography system with a salted password
hash. The result then will be stored as a combined value in the password database.
The key idea in PPH is to not storing the share nor the password hash on disk.
This way, an attacker cannot recover either piece with only the password database
information. To crack a password that is created by the PPH, an adversary requires
knowing a threshold of passwords.

The difference between PPH and salted hash is that a salted hash database
stores a username, salt and a salted hash, while a PPH database, stores the secure
hash XORed with the related share. The resulting PPH database also stores an
extra field called the share number that demonstrates which share was XORed with
which salted hash. Upon supplying validate passwords, the server XORs the salted

2.4. SUMMARY 41

hash with the stored data and concludes whether the result is a valid share of the
threshold cryptography system.

2.4 Summary

This chapter provided a brief overview of big data and cloud computing concepts
that are used throughout this dissertation. It introduced the big data infrastructure
technologies such as Hadoop ecosystem and its evolving building blocks. Summa-
rized definition of cloud computing concepts and virtualization mechanisms that
are used in chapters 4, 5, 6, 8, and 9 were presented. We also discussed the widely
used EU DPD privacy regulation to be enforced through security measures such
as authentication, anonymization and secret sharing in chapters 5, 6, 7. We will
identify the state-of-the-art related to this research in the next chapter.

Chapter 3

Related Work

This chapter is mainly based on publications II and IV. It reviews related research
on security and privacy for the cloud within two aspects. First, it identifies the
related research on different elements of cloud provider activities. Second, it reviews
the existing developments in the area of privacy-preservation for sensitive data in
cloud computing.

3.1 Identification of Research

There has been numerous research on security and privacy of sensitive data in
cloud computing in both industry and academia [76, 77, 78, 79, 80, 81]. Most
notably developing protocols and tools for anonymization or encryption of data for
confidentiality purposes.

To identify the related research on security and privacy of sensitive data in the
cloud, we categorized the activities of cloud providers into five main categories:
service deployment, resource abstraction, physical resources, service management,
security, and privacy [2]. Service deployment consists of delivering services to cloud
consumers according to one of the service models (SaaS, PaaS, IaaS). Resource ab-
straction refers to providing interfaces for interacting with networking, storage and
compute resources. The physical resources layer includes the physical hardware
and facilities that are accessible via the resource abstraction layer. Service man-
agement includes providing business support, resource provisioning, configuration
management, portability and interoperability to other cloud providers or brokers.
The security and privacy responsibilities of cloud providers include integrating so-
lutions to ensure legitimate delivery of cloud services to the cloud consumers. The
security and privacy features that are necessary for the activities of cloud providers
are described in Table 3.1 [7].

43

44 CHAPTER 3. RELATED WORK

Security Context Description
Authentication and
Authorization

Authentication and authorization of cloud consumers using
pre-defined identification schemes

Identity and Access
Management

Cloud consumer provisioning and provisioning via hetero-
geneous cloud service providers

Confidentiality, In-
tegrity and Avail-
ability

Assuring the confidentiality of the data objects, authorizing
data modifications and ensuring that resources are available
when needed

Security Monitor-
ing and Incident
Response

Continuous monitoring of the cloud infrastructure to ensure
compliance with consumer security policies and auditing
requirements

Security Policy
Management

Defining and enforcing rules to enforce certain actions such
as auditing and proof of compliance

Privacy Protect PII within the cloud from adversarial attacks that
aim to find out the identity of the person that the PII relates
to

Table 3.1: Security and privacy factors of cloud providers [7]

3.2 Cloud Security

This section reviews the research on security solution such as authentication, au-
thorization, and identity management that were identified in Table 3.1 [2] as being
necessary so that the activities of cloud providers are sufficiently secure.

3.2.1 Authentication and Authorization
Multifactor authentication is a mechanism that requires more than one factor to
verify the identity of users to achieve strong authentication. For example, smart
cards and tokens [82] or two-factor authentication [83] through popular services such
as Short Message Service (SMS) or direct phone calls are multi-factor authentica-
tion mechanisms that effectively protect classified information. We use two-factor
authentication using mobile devices and Yubikey tokens because setting up the in-
frastructure for smart cards, phone calls or SMS based authentication can become
costly to maintain.

Public Key Infrastructure (PKI) is another strong authentication approach that
provides scalable secure communication solutions in open networks based on an
asymmetric pair of keys known as public (shared with all the parties) and private
(owned only by the user) keys [84], [85]. There is a usability issue with the PKI cer-
tificate authentication, since non-IT users might have difficulties understanding how
to keep public/private keys secret and yet available on a computer for login. Fermi-
Cloud [86] uses this approach for authentication and authorization - it utilizes PKI
X.509 certificates for user identification and authentication. FermiCloud is built

3.2. CLOUD SECURITY 45

in OpenNebula1 and it develops both X.509 authentication in Sunstone OpenNeb-
ula - a Web interface intended for user management – and X.509 authentication
via command-line interfaces. To avoid the limitations of OpenNebula access control
lists that are used for authorization after successful authentication of users, authors
integrated an existing local credential mapping service. This solution has also been
extended in cloud federations to authorize users across different cloud providers
that have established trust relationships through trusted certification authorities.

Biometrics authentication is another evolving field for secure password authen-
tication [87], [88]. This method offers authentication based on the measurement
of unique physiological characteristics of a user, such as fingerprints (to replace
passwords), face recognition, iris codes and behavioral characteristics.

In [89], Gonzalez et al. propose a credential classification and a framework for
analyzing and developing solutions for credential management that include strate-
gies to evaluate the complexity of cloud ecosystems. This study identifies a set of
categories relevant for authentication and authorization for the cloud focusing on
the infrastructural aspects which include classifications for credentials and adapt
those categories to the cloud context. The study also summarizes important factors
that need to be taken into consideration when adopting or developing a solution
for authentication and authorization – for example, identifying the appropriate re-
quirements, categories, services, deployment models, lifecycle, and entities. In other
work, a design model for multi-factor authentication in cloud computing environ-
ments is proposed in [90] by Banyal et al., and this model includes an analysis of
the potential security threats in the proposed model. Another authentication solu-
tion is seen with MiLAMob [91], which provides a SaaS authentication middleware
for mobile consumers of SaaS cloud applications. MiLAMob is a middleware layer
that handles the real-time authentication events on behalf of consumer devices with
minimal Hypertext Transfer Protocol (HTTP) traffic. The middleware currently
supports mobile consumption of data on IaaS clouds such as Amazon’s Simple Stor-
age Service (S3). Different to these approaches, we provide authentication in IaaS
and SaaS layers.

Tang et al. [92] introduce collaborative access control properties such as central-
ized facilities, agility, homogeneity, and outsourcing trust. They have introduced an
authorization-as-a-service (AaaS) an approach using a formalized multi-tenancy au-
thorization system, and providing administrative control over enhanced fine-grained
trust models. Integrating trust with cryptographic RBAC is another solution [93]
by Ferraiolo et al. that ensures trust for secure sharing of data in the cloud. The
authors propose using cryptographic RBAC to enforce authorization policies re-
garding the trustworthiness of roles that are evaluated by the data owner [94].
Another feature of the authorization system in this solution is that it develops a
new concept using role inheritance for evaluating the trustworthiness of the system.
In another study, Sendo et al. [95] propose a user-centric approach for platform-
level authorization of cloud services using the OAuth2 protocol to allow services to

1http://opennebula.org/

46 CHAPTER 3. RELATED WORK

act on behalf of users when interacting with other services in order to avoid sharing
usernames and passwords across services.

Similar to these approaches, we use PKI X.509 certificates for mutual authen-
tication in the proposed architectures in Chapter 7 and Chapter 8, in addition for
fine-grained encryption of clinical data in Chapter 7. However, the above authen-
tication and authorization mechanisms have been designed for specific use cases
which make them hard to fit other models such as BioBankCloud that aims to
satisfy slightly different architectural goals. Or other technical limitation such as
flexibility of web servers to offer several authentication methods in parallel to pro-
vide a higher degree of usability.

3.2.2 Identity and Access Management
The important functionalities of identity management systems for the success of
clouds in relation to consumer satisfaction are discussed by Leonardo et al. in
[96]. The authors also present an authorization system for cloud federation using
Shibboleth - an open source implementation of the Security Assertion Markup
Language (SAML) for single sign-on with different cloud providers. This solution
demonstrates how organizations can outsource authentication and authorization to
third-party clouds using an identity management system. Stihler et al. [97] also
propose an integral federated identity management for cloud computing. A trust
relationship between a given user and SaaS domains is required so that SaaS users
can access the application and resources that are provided. In a PaaS domain, there
is an interceptor that acts as a proxy to accept the user’s requests and execute them.
The interceptor interacts with the STS, and requests the security token using the
WS-Trust specification.

IBHMCC [98] introduced by Li et al. provides Identity-Based Encryption (IBE)
and Identity-Based Signature (IBS) schemes. Based on the IBE and IBS schemes,
an identity-based authentication for cloud computing has been proposed. The idea
is based on the identity-based hierarchical model for cloud computing along with
the corresponding encryption and signature schemes without using certificates for
simplified key management.

Contrail [99] is another approach that aims to enhance integration among het-
erogeneous clouds both vertically and horizontally. Vertical integration provides
a unified platform for the different kinds of resources while horizontal integration
abstracts the interaction models of different cloud providers. In Contrail, Carlini et
al. [99] develop a horizontal federation scheme as a requirement for vertical integra-
tion. The proposed federation architecture contains several layers, such as users’
identities, business logic, and a federation manager to support APIs for resources,
storage, and networking across different providers.

E-ID authentication and uniform access to cloud storage service providers [100]
is an effort by Gouveia et al. to build identity management systems for authen-
ticating Portuguese citizens using national e-identification cards for cloud storage
systems. In this approach, the OAuth protocol is integrated for authorizing the

3.2. CLOUD SECURITY 47

cloud users. The e-ID cards contain PKI certificates that are signed by several lev-
els of governmental departments. A certification authority is responsible for issuing
the e-ID cards and verifying them. The e-ID cards enable users for identity-based
encryption of data in cloud storage.

Hummer et al. introduce a model-driven specification and enforcement of task-
based entailment constraints in distributed service-based business processes [101],
where the authors describe challenges of secure sharing of data using RBAC. Iden-
tity and access management tasks are enforced using Web services where SAML
tokens are used for authentication users across various identity providers.

In [102], Dreo et al. consider the issues related to the inter-cloud federation
and the proposed ICEMAN identity management architecture. ICEMAN discusses
identity life cycle, self-service, key management, provisioning and deprovisioning
functionalities that need to be included in an appropriate intercloud identity man-
agement system.

In [103], Sipos et al. discuss delivery of a hybrid federated cloud as a collabora-
tion of communities developing, innovating, operating and using clouds for research
and education that is called European Grid Infrastructure (EGI). The EGI feder-
ated cloud provides IaaS, persistent block storage attached to VMs, and object-level
storage for transparent data sharing. The EGI controls access to resources using
X.509 certificates and the concept of Virtual Organization (VO). VO refers to a dy-
namic set of users or institutions using resource-sharing rules and conditions. The
authorization attributes are issued through a VO management system that can be
integrated with SAML for federation.

However, these solutions mainly use Shibboleth (an open source implementa-
tion of SAML) to outsource the authentication to a third-party or use PKI for
authentication. Both these approaches have usability issues in our solutions. First,
Shibboleth does not support Glassfish integration [104]. Second, PKI as we will
discuss in the later chapters, PKI non-IT users have difficulty to use PKI infras-
tructure in addition to its maintainability.

3.2.3 Confidentiality, Integrity and Availability (CIA)
This section summarizes other virtualization approaches related to our work in
Chapters 9 and Chapter 10 that aim to ensure the safety of privileged code in
userspace and kernelspace through Confidentiality, Integrity, Availability (CIA)
properties.

Santos et al. [105] extend the Terra [106] design that enables users to verify
the integrity of VMs in the cloud. The proposed solution is called the Trusted
Cloud Computing Platform (TCCP), and the whole IaaS is considered to be a sin-
gle system instead of granular hosts in Terra. In this approach, all nodes run a
trusted virtual machine monitor to isolate and protect virtual machines. Users are
given access to cloud services through the cloud manager component. The Exter-
nal Trusted Entity (ETE) is another component that provides a trust coordinator
service in order to keep track of the trusted VMs in a cluster. The ETE can be

48 CHAPTER 3. RELATED WORK

used to attest the security of the VMs. A TCCP guarantees confidentiality and
integrity in data and computation and it also enables users to attest to the cloud
service provider to ensure whether the services are secure prior to setting up their
VMs. These features are based on the Trusted Platform Module (TPM) chip. The
TPM contains a private endorsement key that uniquely identifies the TPM and
some cryptographic functions that cannot be altered.

In 2011, Popa et al. [107] proposed CloudProof as a secure storage system to
guarantee confidentiality, integrity and write-serializability using verifiable proofs of
violation by external third parties. Confidentiality is ensured by private keys that
are known only to the owner of the data that is to be encrypted. The main idea
behind CloudProof is the use of the attestation mechanism. Attestations provide
proof of sanity of users, data owners, and cloud service providers. Data owners use
a block identifier to acquire the content of a block. This mechanism enables users
to store data by putting a block identifier and the contents of the block in the cloud.
The attestation structure implements a solution called “block hash” for performing
integrity checks through signature verification. The block hash provides proof for
write-serializable using a forked sequence of the attestations while a chain hash is
used for a broken chain of attestations which are not sequenced correctly.

Fuzzy authorization for cloud storage [108] is another flexible and scalable ap-
proach to enable data to be shared securely among cloud participants. Fuzzy au-
thorization ensures confidentiality, integrity, and secure access control by utilizing
secret sharing schemes for users with smartphones who are using the cloud services.

In [109], Perez-Botero et al. define threats to the cloud server hypervisors by
analyzing the codebase of two popular open-source hypervisors: Xen and KVM. In
addition, they discuss the vulnerabilities reports associated with them. As a result,
a model is proposed for characterization of hypervisor vulnerabilities in three di-
mensions: the trigger source, the attack vector, and the attack target. The attack
vector consists of the Hypervisor functionality that makes security breaches possible
- for example, virtual CPUs, symmetric multiprocessing, soft memory management
units, interrupt and timer mechanisms, I/O and networking, para-virtualized IO,
VM exits, hyper call, VM management (configure, start, pause and stop VMs),
remote management, and software hypervisor add-ons. Successful exploitation of a
vulnerability in these functionalities enables an attacker to compromise the confi-
dentiality, integrity, or availability of the Hypervisor or one of its guest VMs.

The vulnerability reports in [109] show 59 vulnerability cases for Xen and 38
cases for KVM. Approximately, 50 percent of all vulnerabilities are common regard-
ing confidentiality, integrity, and availability. The remote management software of
Xen contributes to 15.3 percent of the vulnerabilities that demonstrates the increase
attack surface by non-essential services. VM management component contains 11.9
percent of the vulnerabilities in Xen compared to 5.3 percent in KVM. The lower
vulnerability rate in KVM is due to the libvirt toolkit inside the hypervisor, where
Xen allocates an entire privileged are in Dom0. Other dimensions that have been
studied in [109] are trigger sources and attack targets, including network, guest
VM’s userspace, guest VM’s kernel-space, Dom0/host OS, and hypervisor. The

3.2. CLOUD SECURITY 49

most common trigger source is the guest VM userspace contributing to 39.0 percent
of Xen’s and 34.2 percent of KVM’s vulnerabilities. This makes it possible for any
user-space guest VM to be a threat to the hypervisor. The guest VM kernel-space
is in the second place with around 32 percent of the total in both cases. Finally, the
results show that Dom0 to be a more common target than the hypervisor in Xen.
While in KVM the host OS is less common target compared to the hypervisor.
The location of the I/O device emulation backend drivers plays an important fac-
tor in this difference. The I/O and network device emulation functionalities cause
one-third of the 15 vulnerabilities in both Xen and KVM hypervisors.

In [110] Brasser et al. propose Swap and Play as a new approach for live
updating of hypervisors without the need to reboot the VM for high availability.
The proposed design is scalable, usable and applicable in cloud environments and
it has been implemented in Xen as one of the most popular hypervisors. Swap and
Play provide methods for transferring the in-memory state of the running hypervisor
to the updating state, in addition to updating the underlying host. Swap and Play
consists of three independent phases: preparation, distribution and update. In
the preparation phase, information for the later state transfer is collected. The
distribution phase deploys the update package on the target host for updating. In
the last step, the update package is patched to individual hosts in the cloud. Each
host applies the update package independently of the others and does not require
any network resources. The Xen implementation of the Swap and Play solution is
called SwapVisor. SwapVisor introduces a new hyper call in the Xen architecture.
A hyper call is a trap from a domain to the hypervisor (similar to a system call
from an application to the kernel). Hypercalls are used by domains to request
privileged operations such as updating page tables. The experiments show that
updating from Xen version 4.2.0 to version 4.2.1 is fulfilled within approximately
45 ms which seems to be intangible and have almost zero effect on the network
performance.

Klein et al. [111] improve cloud service resilience using a load-balancing mech-
anism called brownout. The idea behind this solution is to maximize the optional
contents to provide a mechanism that is resilient to volatility in terms of flash crowds
and capacity shortages (through load-balancing over replicas) when compared to
other approaches that are implemented using response-time or queue length. In
another effort [112], Lakew et al. proposed a synchronization mechanism for cloud
accounting systems that are distributed. The runtime resource usage generated
from different clusters is synchronized to maintain a single cloud-wide view of the
data so that a single bill can be created. The authors also proposed a set of ac-
counting system requirements and an evaluation method which verifies that the
solution fulfills these requirements.

Language-based virtualization provide safety through virtualization such as
Java, JavaScript, Lua [113], and Silverlight [114] are commonly used in application-
level sandboxing. These safe languages provide virtualized environments to check
the safety of the running code by a monitor process. They combine untrusted appli-
cation code with an interpreter and standard libraries that consolidate routines to

50 CHAPTER 3. RELATED WORK

perform I/O, network communication, and other sensitive functions. For example,
the Java Virtual Machine (JVM) [115] functions as an application-level sandbox to
separate untrusted code from the OS in addition to performing safety checks for
avoiding unauthorized branching in memory.

There are also sandboxing solutions based on type-safety of programming lan-
guages, i.e. validating through a type-checker [116] or enforcing security policies
on an untrusted system through a reference monitor [117]. Compared to these ap-
proaches, Lind (see chapter 9) provides more portability than just executing the
code in a safe sandbox browser.

Though many sandboxes implement the bulk of standard libraries in a memory-
safe language like Java or C#, flaws in memory-safe code can still pose a threat. In
fact, many security critical bugs can be found in the standard libraries [118, 119].
Any bug or failure in a programming language virtual machine is usually fatal. In
contrast, Lind with a very small Trusted Code Base (TCB) (approximately 8,000
Line of Code (LOC)) enhances security compared to the above virtual machines.

OS virtualization techniques can be divided into two categories: bare-metal
hardware virtualization such as VMware ESX Server, Xen, LXC [120], BSD’s jail,
Solaris zones, and Hyper-V, and hosted hypervisor virtualization such as VMware
Workstation, VMware Server, VirtualPC and the open-source counterpart Virtu-
alBox. Security by isolation [121, 122, 123, 124] is a feature of OS virtualization
to provide safe executing environments through containment for multiple user-level
virtual environments that share the same hardware. This approach relies on the
VMM to confine untrusted applications within guest OSs. However, there are
limitations due to the large attack vectors against the hypervisors including vul-
nerabilities of software and configuration risk. Lind deals with these concerns by
using a much smaller and safer TCB.

Library OSes are useful for applications to efficiently obtain the benefits of
virtual machines, including security isolation, host platform compatibility, and mi-
gration. Drawbridge [125] uses lightweight processes and a library OS to present a
Windows persona to a wide variety of Windows applications. This is accomplished
by moving a large portion of the OS into the process, and presenting a simplified
system virtual machine-like interface to each process. Bascule [126], an architecture
for library OS extensions based on Drawbridge, allows application behavior to be
customized by extensions loaded at runtime. Graphene [127] is a recent library OS
system that seamlessly and efficiently executes both single OS and multi-process
applications, with low memory and performance overheads. Haven [128] uses a
library OS to implement shielded execution of unmodified server applications in an
untrusted cloud host.

Its library OS technique is similar to Lind but differs in the fact that existing li-
brary OS systems rely heavily on the underlying kernels to perform system functions
while Lind only relies on a very limited set of system functions, and reconstructs
most OS functions with its own safe Repy code.

3.2. CLOUD SECURITY 51

3.2.4 System Call Interposition:
System call interposition offers a number of properties that make it attractive for
building sandboxes though it can be error prone [129]. Approaches for delegation
and filtering have been extensively studied. For example,

Janus Version 2 (J2) [130, 131] uses filtering and sandboxing, and Ostia [129]
uses a delegation. Ostia also provides a hybrid interposition architecture, which
allows for kernel level enforcement and user policies.

However, system call interposition has many problems. OS semantics are very
difficult to replicate correctly. Indirect paths to resources are often overlooked, and
there are side effects to denying system calls [132].

Nevertheless, this technique is very useful and has inspired many new techniques,
such as library OSes. The concepts behind system call interposition have evolved
into other modern techniques and has benefited many security systems, including
Lind.

Software Fault Isolation (SFI) is an alternative to hardware memory protec-
tion for running two applications in one address space by instruction rewriting. SFI
provides sandboxing in which native instructions can only be executed if they do
not violate the sandbox’s constraints [133]. This goal is achieved through machine-
level code analysis to enforce security policies. In this approach, memory writes are
protected and code jumps cannot access predefined memory of other programs or
execute other programs codes in memory.

The preliminary design of SFI approach built on RISC architectures. The au-
thors of PittSFIeld [134] optimized and extended the original SFI to support CISC
architectures. For this purpose, the source instructions are padded with no-ops to
fit, i.e. in the 16-byte x86 byte chunk alignment, where a call instruction is ap-
pended. A sequence of instructions forms instruction streams that ensure execution
order of the sequence. The final code before execution will be checked by a verifier
component to ensure safety. The authors used machine-checked proof for increased
assurance that verifier only approves safe operations.

SFI has been also used in MisFIT [135] to ensure kernel modules integrity for
x86. The authors emphasized the extendability of object-oriented programming
languages to eliminate the need for remote calls to achieve high throughput sand-
boxes.

Nooks [136] is another SFI-based solution that provides protected environment
for running device drivers by isolating kernel modules and device derives mainly for
reliability and fault resistance. Nooks runtime environment is located within the
kernel and it includes the majority of drivers that needs to be protected from each
other.

Recently, Google provided Google Native Client (NaCl) [137] for Chrome browser
to allow native executable code to be run directly in a browser using the PittSFIeld
semantics. NaCl prevents suspicious code from memory corruption or direct access
to the underlying system resources. For this purpose, NaCl loads untrusted mod-
ules from the trusted modules into two different address spaces, wherein most SFI

52 CHAPTER 3. RELATED WORK

approaches both untrusted and trusted codes are loaded into a common address
space.

3.2.5 Security Monitoring and Incident Response
Anand [138] present a centralized monitoring solution for cloud applications con-
sisting of monitoring the server, monitors, agents, configuration files and notifi-
cation components. Redundancy, automatic healing, and multi-level notifications
are other benefits of the proposed solution which are designed to avoid the typi-
cal drawbacks of a centralized monitoring system, such as limited scalability, low
performance and single point of failure.

Brinkmann et al. [139] present a scalable distributed monitoring system for
clouds using a distributed management tree that covers all the protocol-specific
parameters for data collection. Data acquisition is done through specific handler
implementations for each infrastructure-level data supplier. Data suppliers provide
interoperability with cloud software, virtualization libraries, and OS-level monitor-
ing tools. The authors review the limitations of existing intrusion detection systems
and discuss VM-level intrusion detection as an emerging area for securing VMs in
cloud environments. The requirements for an efficient intrusion detection system
for cloud infrastructures - including multi-tenancy, scalability, and availability - are
identified and a VM introspection detection mechanism via a hypervisor is pro-
posed.

Hypervisor-based cloud intrusion detection systems are a new approach (com-
pared to existing host-based and network-based intrusion detection systems) that
is discussed in [140]. The idea is to use hypervisor capabilities to improve perfor-
mance over data residing in a VM. Performance metrics are defined as networking
transmitted and received data, read/write over data blocks, and CPU utilization.
These metrics are retrieved in near real-time intervals by endpoint agents that are
connected directly to a controller that analyzes the collected data using signatures
to find any malicious activity. The controller component sends an alert to a notifi-
cation service in case there is any potential attack.

3.2.6 Security Policy Management
In [141], Basescu et al. propose a generic security management framework allowing
providers of cloud data management systems to define and enforce complex security
policies through a policy management module. The user activities are stored and
monitored for each storage system and are made available to the policy management
module. Users’ actions are evaluated by a trust management module based on their
past activities and are grouped as “fair” or “malicious”. An appropriate architecture
for security management which satisfies the requirements of policy definitions (such
as flexibility, expressiveness, extendibility, and correctness) has been implemented.
The authors evaluated the proposed system on a data management system that is
built for data storage.

3.3. DATA SECURITY AND PRIVACY 53

Takabi et al. [142] introduce policy management as a service to provide users
with a unified control point for managing access policies in order to control access
to cloud resources independently of the physical location of cloud providers. The
proposed solution is designed specifically to solve the issue of having multiple access
control authorization mechanisms employed by cloud service providers that restrict
the flexibility of applying custom access control to a particular service. For this
purpose, the architecture includes a policy management service provider that is the
entry point for cloud users to define and manage the policies. The cloud service
provider imports the user-defined policies and acts a policy decision point to enforce
the user policies.

The challenges associated with policy enforcement in heterogeneous distributed
environments are discussed in [143]. Hamlen et al. propose a framework to support
flexible policy enforcement and a feedback system using rule- and context-based
access control to inform cloud users about the effect of defined policies. There
are three main requirements for building a general policy enforcement framework.
First it must support various data types such as image, structured and textual
data. Secondly, in a distributed environment there need to be several compute
engines such as Map/Reduce, relational database management systems or clusters.
Finally, access policy requirements in terms of access control policies, data sharing
policies, and privacy policies need to be integrated with the general policy man-
agement framework. Several policy enforcement mechanisms (such as extensible
access control markup language or inline reference monitors to enforce user-centric
policies in accord with cloud provider approval) were also discussed.

In [144], Pearson et al. describe A4Cloud with the aim of developing solutions
to ensure accountability and transparency in cloud environments. Users need to be
able to track their data usage to know how the cloud provider satisfies their expec-
tations for data protection. For this purpose cloud providers must employ solutions
that provide users with appropriate control and transparency over their data, e.g.
tools to define policies for compliance with regulatory frameworks. In another effort
[145], Hansen et al. discuss the issue of usable transparent data processing in cloud
computing and also consider how to enable users to define transparency policies
over their data. They identify the requirements for transparent policy management
in the cloud based on two aspects: user demands and legal aspects of transparent
data processing.

In this dissertation, we develop transparency mechanisms from both cloud provider
and cloud consumer perspectives. Because, we believe to enforce transparent pro-
cessing of data, it is necessary to involve diverse participants in the developmnt
lifecycle.

3.3 Data Security and Privacy

This section outlines several efforts and projects on big data security and privacy
including big data infrastructures and programming models. It focuses on the

54 CHAPTER 3. RELATED WORK

Apache Hadoop that is a widely-used infrastructure for big data projects such as
HDFS and Hive, HBase, Flume, Pig, Kafka, and Storm. We also summarize the
state-of-the-art for privacy-preserving data-insensitive solutions in cloud computing
environments.

3.3.1 Big Data Infrastructures and Programming Models
Many data infrastructures have been deployed based on the Apache Hadoop without
demand for strong security [146]. Only a few companies have deployed secure
Hadoop environments such as Yahoo!. Therefore, Hadoop built-in security requires
tailoring for different security requirements. Hadoop operates in two modes: normal
(non-secure) and secure modes.

Hadoop normal mode configurations are in non-secure mode. The default mode
has no authentication enforcement. It relies on client-side libraries to send the
credentials from the user machine operating system in the context of the protocol
[146]. Clusters are usually deployed onto private clouds with restricted access to
authorized users.

In this model, all users and programs have similar access rights to all data in
HDFS. Any user that submits a job could access any data in the cluster and reads
any data belonging to other users. Also MR framework does not authenticate or
authorize submitted tasks. An adversary is able to tamper with the priorities of
other Hadoop jobs in order to make his job complete faster or terminate other jobs
[147].

Data confidentiality and key management are also missing in the Hadoop default
mode. There is no encryption mechanism deployed to keep data confidential in
HDFS and MR clusters. For scenarios where confidentiality is a requirement, other
distribution of Hadoop can be utilized to achieve security.

Hadoop secure´s mode consist of authentication, service level authorization and
authentication for web consoles. By configuring Hadoop in secure mode, each user
and service require authentication by Kerberos in order to use Hadoop services.
Since Hadoop requires a user identifier string to identify users, a Portable Operating
System Interface (POSIX)-compliant username can be used for authentication
purposes. The usernames can also be used during authorization to check the access
control lists. Additionally, Hadoop supports the notion of POSIX groups to allow
a group of users to access HDFS resources. Authorization checks through access
control lists and file permissions are still performed against the client supplied user
identifiers.

There is a Remote Procedure Call (RPC) library that is used to provide clients
secure access to Hadoop services through sending username over Simple Authenti-
cation and Security Layer (SASL). SASL is built on Kerberos or DIGEST-MD5. In
Kerberos mode, users acquire a ticket for authentication using SASL for mutual au-
thentication. The digest Message-Digest algorithm 5 (MD5) mechanism uses shared
symmetric keys for user authentication with servers to avoid overheads of using a
Key Distribution Center (KDC) as a third party for authentication. RPC also

3.3. DATA SECURITY AND PRIVACY 55

provides data transmission confidentiality between Hadoop services clients through
encryption in contrast to the Web console that utilized Hypertext Transfer Protocol
Secure (HTTPS).

Kerberos can be used for user authentication in Hadoop secure deployments
over encrypted channels. For organizations that require other security solutions
not involving Kerberos, this demands setting up a separate authentication system.
Hadoop implements SASL/Generic Security Services Application Program Interface
(GSS-API) for mutual authentication of users with Kerberos, running processes,
and Hadoop services on RPC connections [147]. A secure deployment requires
Kerberos settings where each service reads authentication information saved in a
key tab file with appropriate permission. A key tab is a file that contains pairs of
Kerberos principals and encrypted keys. Keytabs are used by the Hadoop services
to avoid entering a password for authentication.

There are several efforts from the industry to enhance the Hadoop security [148]
such as Apache Rhino2, Apache Knox 3, Apache Ranger4 and Apache Sentry5.

Apache Rhino is an initiative started by Intel at the beginning of 2013 to re-
markably enhance the Hadoop ecosystem security. It aims at providing a framework
for Hadoop key management, authorization, audit, and logging. Rhino provides a
framework support for encryption and key management, a common authorization
framework for the Hadoop ecosystem, a token based authentication and single sign-
on, and it improves audit logging.

Apache Knox (Gateway) is another effort that aims to provide perimeter security
for confidential access to Hadoop clusters through organizational policies within
enterprises. Apache Knox enhances the Hadoop security through simplifying users’
access to the cluster data and job execution. Client interactions are performed
through RESTWeb services over HTTP. Knox also aims to provide easy integration
with existing identity providers and abstracting Kerberos authentication. This is
done through encapsulating Kerberos to eliminate the need for client software or
client configuration of Kerberos by clients. In addition, it provides integration with
SAML, open authorization (OAuth) and OpenID.

Apache Ranger proposes a framework for data security across the Hadoop plat-
forms to enable enterprises to run multiple workloads in a multi-tenant environment.
Ranger aims to provide centralized security administration to manage all security
related tasks in a central user interface or using REST APIs. Fine grained autho-
rization for specific operations through a central user interface is another goal of
Ranger. Support for RBAC and Attribute-Based Access Control (ABAC), in addi-
tion to centralized auditing services are among the functionalities of this software.

Enforcing fine-grained role-based authorization for data and metadata located
in a Hadoop cluster is provided by Apache Sentry. Sentry implements a policy

2https://github.com/intelhadoop/projectrhino
3https://knox.apache.org/
4http://ranger.incubator.apache.org/
5https://blogs.apache.org/sentry/entry/getting_started

56 CHAPTER 3. RELATED WORK

provider to define the access control. This is done by defining a single global policy
file that cab be applied to enforce access control.

There have been also efforts from academia [149], [150] to formulate the security
and privacy issues of big data and also to enhance the security of existing Hadoop
distributions. For example, Yu et al. [149] proposed SEHadoop to enhance the
Hadoop security in public clouds by increasing the isolation level among the Hadoop
components and enforcing the least access privilege for various Hadoop processes.
The SEHadoop implements optimized Block Token and Delegation Tokens to avoid
authentication key vulnerability and ensuring fine-grained access control. In [150],
Dowling et al. implement a solution to isolate multiple studies in HOPS to restrict
cross-linking over unauthorized data sources in the Hadoop environment.

Recently in [151], Bertino discuss the specific challenges for big data security
and privacy. Similar to traditional information security models, big data solutions
must ensure the CIA properties to ensure secure computing. For example, to en-
sure integrity, big data platform must enforce authorization mechanisms to restrict
execution of arbitrary MR jobs over multiple datasets from different owners. Data
trustworthiness is another property that ensures accurate analysis for effective de-
cision making. This work also highlights the privacy challenges including efficiency
of existing cryptographic techniques to ensure the privacy of data due to scalability
issues within big data. The trade-off between security and privacy, data ownership
and privacy-aware data lifecycle framework are other privacy challenges that have
been discussed.

However, none of these solutions offer flexible Identity and Access Manage-
ment (IAM), strong authentication mechanisms such as two-factor authentication
or provide auditing report for various customized contexts. Our security framework
supports the development of multi-tenant Hadoop environment [150].

3.3.2 Privacy-Preserving Solutions in the Cloud
Over the time, organizations have collected valuable information about the indi-
viduals in our societies that contain sensitive information, e.g. medical data. Re-
searchers need to access and analyze such data using big data technologies [152, 153]
in cloud computing, while organizations are required to enforce data protection
compliance.

There has been considerable progress in privacy preservation for sensitive data
in both industry and academia, e.g., solutions that develop protocols and tools
for anonymization or encryption of data to ensure confidentiality. This section
categorizes work related to this area according to different privacy protection re-
quirements.

Pearson [11] discusses a range of security and privacy challenges that are raised
by cloud computing. Lack of user control, lack of training and expertise, unautho-
rized secondary usage, the complexity of regulatory compliance, transborder data
flow restrictions and litigation are among the challenges faced in cloud computing
environments. In [154], Dove et al. describe the privacy challenges of genomic

3.3. DATA SECURITY AND PRIVACY 57

data in the cloud including Terms of Service (ToS) of cloud providers that are
not developed with a privacy mindset. Awareness of patient to upload their data
into the cloud without their consent, multi-tenancy, data monitoring, data security
and accountability are among other issues that have been discussed. The authors
also provide recommendations for data owners when aiming to use cloud provider
services.

In [155], Ayday et al. discussed several privacy issues associated with genomic
sequencing. This study also described several open research problems (such as
outsourcing to cloud providers, genomic data encryption, replication, integrity, and
removal of genomic data) along with giving suggestions to improve privacy through
collaboration between different entities and organizations. In another effort by
Ayday et al. [156], raw genomic data storage through encrypted short reads is
proposed.

Outsourcing privacy is another topic that is discussed by Huang et al. in [157].
The authors define the concept of “outsourcing privacy” where a database owner
updates the database over time on untrusted servers. This definition assumes that
database clients and the untrusted servers are not able to learn anything about
the contents of the databases without authorized access. The authors implement
a server-side indexing structure to produce a system that allows a single database
owner to privately and efficiently write data to, and multiple database clients to
privately read data from, an outsourced database.

Privacy preserving workflow (data, tasks, and structures) scheduling under SLA
requirements such as deadline or budget is another effort conducted by Sharif et al.
[158, 159]. The authors propose Multiterminal Cut for Privacy in Hybrid Clouds
(MPHC) - a multiterminal cut algorithm to partition a workflow with regard to mul-
tiple levels of privacy in hybrid cloud environments. This approach ensures private
tasks to be accessible only for users with adequate privileges through implementing
three levels of privacy in hybrid and private clouds.

Homomorphic encryption is another privacy-preserving solution that is based
on the idea of computing with encrypted data without knowing the keys belonging
to different parties. To ensure confidentiality, the data owner may encrypt data
with a public key and store data in the cloud. When the process engine reads the
data, there is no need to have the DP’s private key to decrypt the data. In private
computation on encrypted genomic data [160], Lauter et al. proposed a privacy-
preserving model for genomic data processing using homomorphic encryption on
genome-wide association studies.

Blockchain is a decentralized cryptography system that is used in Bitcoin [161]
to ensure anonymity. Each blockchain collects information about the history of
spending and it acts as a ledger. Each user has a wallet identifier that is public to
the world and a private key that is known only to the owner of the bitcoins. In
other words, the ownership of bitcoins is determined by the ownership of private
keys.

58 CHAPTER 3. RELATED WORK

BaseSpace6 is an industrial product of Illumina as NGS cloud platform for the
biologists in collaboration with AWS. BaseSpace redirects the produced genetic
data from the NGS machines to the amazon data centers and biologists are able
to perform specific analysis tasks. Data are secured using Advanced Encryption
Standard (AES) 256-bit encryption and transferred through Secure Socket Layer
(SSL) channels. Data centers are also compliant with several regulations such as
service organization auditing standard No. 70 (SAS70) [162], ISO 27007, payment
card industry, and the Federal Information Security Management Act (FISMA)
[163]. Less is known about the implementation and efficiency of BaseSpace internals
as it’s a proprietary commercial product.

However, majority of these solutions to a large extent rely on the trust between
various participants and there is no appropriate privacy threat modeling to effi-
ciently enforce the privacy regulations requirements. Additionally, some solutions
such as different flavors of homomorphic encryption are still not applicable for com-
plicated data analysis over large datasets. As the first effort in the neuroimaging
community, propose a privacy-preserving brain image analysis framework for cloud
computing in Chapter 8.

3.3.3 Privacy-Preservation Database Federation
A longtime confidentiality protection strategy is to dilute data by degrading the
precision of given data records in a controlled process, so that the database can
still satisfy the intended purpose, but is not specific enough to allow for easy re-
identification. This challenge can be expressed as a task of managing re-identification
risks, based on the identifying level of the attributes while taking into considera-
tion the background knowledge available. The approach relies on an iterative opti-
mization process without providing hard guarantees, mirroring risk management in
other aspects of life such as being hit by an accident. A multilingual terminology
for talking about privacy by data minimization including anonymity, unlinkabil-
ity, undetectability, unobservability, pseudonymity, and identity management can
be found in [164]. A recording or observational data set is called microdata. Ev-
ery recording or observation has a set of variables. This set of variables needs to
be categorized and may need to be modified in order to apply privacy-preserving
data publishing measures. Microdata is expected to be safe when its deliberate or
accidental disclosure does not do any harm to the population involved.

To produce safe microdata, variables are categorized into at least three, not nec-
essarily distinct groups: variables that are explicitly and directly identifying, such as
personal numbers, social security numbers, serial numbers etc. Key variables (also
called pseudo keys, QID or non-sensitive attributes) are a group of variables that
are identifying when used together. Linking based on key variables is applied when
archived records are processed that have no explicit identifiers, e.g., [165] or when

6https://basespace.illumina.com/home/sequence
7http://www.27000.org/

3.4. SUMMARY 59

linking attacks are performed such as [4, 166] for the purpose of re-identification.
Choosing is often based on mandatory items set forth by law (EU DPD [8], HIPAA
[9] and such) or by managing the risk of being fined [167].

And last but not least, by using common sense: as a rule of thumb, non-sensitive
attributes are the ones that are likely to appear in other databases, whether publicly
accessible or not, therefore, which can potentially be used for linking. A canonical
example is a seemingly innocuous gender, date of birth and ZIP code triplet which
is highly identifying to the majority of a population and can be found in a vast
number of databases. Remaining variables (also called sensitive or non-confidential
variables) that are not in the two groups mentioned above. They are either not
expected to appear in any other database and, therefore, cannot be used for linking
or are not identifying by nature.

Preset software settings for acceptable risk levels may be set by legal require-
ments to be licensed as public use files or microdata files under contract for research
purposes. As an indicator of the current state of affairs, data protected by HIPAA
and Safe Harbor regulations result in a re-identification risk measure of approxi-
mately 0.04% (that is 4/10.000), ranging between 0.01% to 0.25% and being 10%
to 60% in case of restricted data sets under non-disclosure agreements according to
[168]. Further experimental measurements can be found in [169].

There are many existing toolkits to help produce safe microdata, providing com-
monly used anonymization algorithms such as k-anonymity [68] and `-diversity [72].
Argus [170], sdcMicro [171], and University of Texas at Dallas (UTD) anonymiza-
tion toolbox [172], based on Incognito [173], are examples of open-source toolkits
that provide workflow support for anonymizing sensitive data.

There have been several other attempts to provide support for federated queries
over different data sources through database federation [174, 175, 176], where there
are also two levels (local Personal Identifier (PID) and global PID, collection PID
and analysis PID hashes – using PKI keys). The identifier (global PID number,
analysis PID etc.) is used to join different study data, not unlike in this case [176].
The Clinical E-Science framework [177] is another attempt to provide data privacy
protection using pseudonymization.

There have been also industrial efforts such as Custodix [178] to offer federated
queries through implementing Trusted Third Party (TTP) approach, however, such
TTP can not be deployed in some jurisdictions because of the existing restrictions.

Different to these solutions we implement a platform-independent anonymiza-
tion toolkit using R, in Chapter 7, and also propose a two-layer encryption mecha-
nism to enable researchers to issue cross-linking queries over multiple clinical data
sources.

3.4 Summary

This chapter reviewed several security and privacy issues on big data in the cloud.
It described several key concepts such as virtualization, and containers. We also

60 CHAPTER 3. RELATED WORK

discussed several security challenges that are raised by existing or forthcoming
privacy legislation, such as the EU DPD and the HIPAA.

The presented results in the area of cloud security and privacy are based on cloud
provider activities, such as providing orchestration, resource abstraction, physical
resource and cloud service management layers. Security and privacy factors that
affect the activities of cloud providers in relation to the legal processing of consumer
data were identified and a review of existing research was conducted to summarize
the state-of-the-art in the field.

The results of our survey demonstrate that currently there is no developed
methodology to properly identify privacy requirements according to privacy legis-
lation for processing sensitive data in cloud computing. There are comprehensive
security threat models but privacy is not emphasized. Also, there is not a common
protection solution or a simple combination of existing mechanisms to build usable
cloud systems while ensuring security and privacy of sensitive data. In the remain-
der of this thesis, we explore this gap through proposing several usable solutions
that can be used to ensure security and privacy in cloud computing environments.

Part II

Privacy by Design for Cloud
Computing

61

Chapter 4

Privacy Threat Modeling
Methodology for Cloud Computing
Environments

This chapter is mainly based on publications I, III and VII. It describes a new
methodology for privacy threat modeling to process sensitive data in cloud com-
puting environments.

4.1 Introduction

Threat modeling is an important part of the process of developing secure software -
it provides a structured approach that can be used to identify attacks and to propose
countermeasures to prevent vulnerabilities in a system from being exploited [179].

As described earlier, the issues of security and privacy are really two distinct
topics [11] as security is a core privacy concept, and the current focus of the existing
threat modeling methodologies is not on privacy in cloud computing, which makes
it difficult to apply these methodologies to developing privacy-preserving software
in the context of cloud computing environments.

We introduce a cloud privacy threat modeling methodology according to the
principles of ME [35]. The method that has been applied is one known as “Extension-
based”, which is used for enhancing the process of identifying privacy threats by
applying meta-models/patterns and predefined requirements. This new method-
ology that is being proposed provides strong methodological support for privacy
legislation and regulation in cloud computing environments. We describe a top-
down approach to identify the requirements for an ideal privacy threat modeling
methodology in cloud computing and build a new methodology by applying the
requirements that were identified.

The rest of this chapter is organized as follows. Section 4.2 describes the char-
acteristics that are desirable in privacy threat modeling for cloud computing en-

63

64
CHAPTER 4. PRIVACY THREAT MODELING METHODOLOGY FOR

CLOUD COMPUTING ENVIRONMENTS

vironments. Section 4.3 describes the steps and products for the proposed new
methodology. Section 4.4 summarizes the conclusions from this research.

4.2 Characteristics of a Privacy Threat Modeling
Methodology for Cloud Computing

This section describes the features that we believe a privacy threat model should
have in order to be used for developing privacy-preserving software in clouds in an
efficient manner. Based on the properties that are identified, we then apply the
Extension-based methodology design approach to constructing an extension of the
CPTM for supporting various privacy legislation.

4.2.1 Privacy Legislation Support

Methodological support for the regulatory frameworks that define privacy require-
ments for processing personal or sensitive data is a key concern. Privacy legislation
and regulations can become complicated for cloud customers and software engi-
neering teams, particularly because of the different terminologies in use in the IT
and legal fields. In addition, privacy threat modeling are not emphasized in ex-
isting threat modeling methodologies, which causes ambiguity for privacy threat
identification.

4.2.2 Technical Deployment and Service Models

Cloud computing delivers computing software, platforms, and infrastructures as
services based on pay-as-you-go models. Cloud service models can be deployed for
on-demand storage and computing power SaaS, PaaS and IaaS [6]. As described
earlier, cloud services can be delivered to consumers using different cloud deploy-
ment models: private cloud, community cloud, public cloud, and hybrid cloud.

4.2.3 Customer Needs

The actual needs of the cloud consumers must be taken into consideration through-
out the whole life-cycle of a project. Additionally, during the course of a project,
requests for changes often arise and these may affect the design of the final system.
Consequently, it is important to identify any privacy threats arising from the cus-
tomer needs that result from such change requests. Customer satisfaction can be
achieved through engaging customers from the early stages of threat modeling so
that the resulting system satisfies the customer’s needs while maintaining adequate
levels of privacy.

4.3. METHODOLOGY STEPS AND THEIR PRODUCTS 65

4.2.4 Usability
Cloud-based tools aim at reducing IT costs and supporting faster release cycles of
high-quality software. Threat modeling mechanisms for cloud environments should,
therefore, be compatible with the typical fast pace of software development in
clouds based projects. However producing easy-to-use products with an appropriate
balance between maintaining the required levels of privacy while satisfying the
consumer’s demands can be challenging when it comes to cloud environments.

4.2.5 Traceability
Each potential threat that is identified should be documented accurately and be
traceable in conjunction with the associated privacy requirements. If threats can
be traced in this manner, it means that threat modeling activities are efficient in
the tracing of the original privacy requirements that are included in the contextual
information and changes over the post requirement steps such as design, implemen-
tation, verification, and validation.

4.3 Methodology Steps and Their Products

Motivated by the facts that privacy and security are two distinct topics and that
no single methodology could fit all possible software development activities, we
apply ME that aims to construct methodologies to satisfy the demands of specific
organizations or projects [180]. In [35], ME is defined as “the engineering discipline
to design, construct, and adapt methods, techniques, and tools for the development
of information systems”.

There are several approaches to ME [180, 181] such as a fundamentally “ad-
hoc” approach where a new method is constructed from scratch, “paradigm-based”
approaches where an existing meta-model is instantiated, abstracted or adapted to
achieve the target methodology, “Extension-based” approaches that aim to enhance
an existing methodology with new concepts and features, and “assembly-based”
approaches where a methodology is constructed by assembling method fragments
within a repository.

Figure 4.1 represents different phases in a common Secure Development Life
Cycle (SDLC). Initial security requirements are collected and managed in the re-
quirements engineering phase (A). This includes identifying the quality attributes
of the project and assessing the risk associated with achieving them. A design is
composed of the architectural solution, attack surface analysis, and the privacy
threat model. Potential privacy threats against the software that is being devel-
oped are identified and solutions are proposed to mitigate for adversarial attacks
(B). The proposed solution from the design phase is implemented through a tech-
nical solution and deployment (C). This includes performing static analysis on the
source code for software comprehension without actually executing programs. The
verification process (D) includes extensive testing, dynamic analysis on the execut-

66
CHAPTER 4. PRIVACY THREAT MODELING METHODOLOGY FOR

CLOUD COMPUTING ENVIRONMENTS

ing programs on virtual resources and fuzzing as a black-box testing approach to
discover coding errors and security loopholes in the cloud system. Finally, in the
Validation phase, the end-users participate to assess the actual results versus their
expectations, and may put forth further change requests if needed.

Figure 4.1: Privacy threat modeling in requirements engineering and design of a
SDLC

Our proposed methodology identifies the privacy requirements in the Require-
ments Engineering step, as shown in Figure 4.2. The results from the Requirements
Engineering, which include specifications for privacy regulatory compliance, are fed
into the Design step, where activities such as specifying the appropriate cloud en-
vironment, identifying privacy threats, evaluating risks and mitigating threats are
conducted. Then the produced privacy threat model would be used in the imple-
mentation step finally it would be verified and validated in the subsequent steps.

Figure 4.2: The CPTM methodology steps

4.3. METHODOLOGY STEPS AND THEIR PRODUCTS 67

Cloud stakeholders and participants such as cloud users, software engineering
team and legal experts will engage in the activities shown in Figure 4.2 to imple-
ment the threat model in the context of steps A and B in Figure 4.1. Cloud software
architect as a member of the software engineering team initiates a learning session
to clarify the methodology steps and their products, privacy requirements (intro-
ducing the law title that is needed to be enforced in the cloud environment), and
quality attributes such as performance, usability. The legal experts will identify
the definitive requirements that ensure the privacy of data in the platform. In the
Design step, the cloud software architect presents the architecture of the developing
cloud environment for various participants. This will result in a unified terminology
to be used in the privacy threat model.

The rest of this section outlines the implementation model of the steps that are
represented in Figure 4.2.

4.3.1 Privacy Regulatory Compliance
Interpreting privacy regulatory frameworks can be often complex for software en-
gineering teams. In the privacy regulatory compliance step, learning sessions with
privacy experts, end-users and requirements engineers facilitates the elicitation of
privacy requirements (PR). For example, in the EU DPD some of the privacy re-
quirements are lawfulness, informed consent, purpose binding, transparency, data
minimization, data accuracy, data security, and accountability [36]. Each of the
requirements that are identified will be labeled with an identifier, e.g., (PRi), name
and description to be used in later stages.

4.3.2 Cloud Environment Specification
To ensure that the final cloud software will comply with the relevant legal and regu-
latory framework, several of the key characteristics that are affected by cloud com-
puting services (including virtualization, outsourcing, off-shoring, and autonomic
technologies) must be specified. For this purpose, the physical/logical architectures
of the deployment and service model can be developed according to the following
steps.

• Step A: Define the cloud actors (such as Cloud Consumer, Cloud Provider,
Cloud Auditor, Cloud Broker, and Cloud Carrier) [2]. Cloud consumer is
a person or organization uses service from cloud providers in the context
of a business relationship. Cloud provider makes service available to inter-
ested users. Cloud auditor conducts an independent assessment of cloud ser-
vices, operations, performance and security of the deployment. Cloud broker
manages the use, performance and delivery of cloud services and establishes
relationships between cloud providers and cloud consumers. Cloud carrier
provides connectivity and transport of cloud services from cloud providers to
cloud consumers through the network.

68
CHAPTER 4. PRIVACY THREAT MODELING METHODOLOGY FOR

CLOUD COMPUTING ENVIRONMENTS

• Step B: Describe a detailed model of the cloud deployment physical architec-
ture where the components will be deployed across the cloud infrastructure.
This should give details of where the components will be deployed and run,
for example, the operating system version, the database version, the virtual
machine location, and where the database server will run.

• Step C: Describe the logical architecture of the cloud services model where
the major cloud services, along with and the relationships between them that
are necessary to fulfill the project requirements, are recorded. This should
include the data flow and connections between the relevant cloud services and
actors. Note that in this context, an entity is a cloud service with a set of
properties that meet a specific functional requirement.

• Step D: Describe the assets that need to be protected, the boundaries of
the cloud and any potential attackers that might endanger either the cloud
environment or the assets that have been identified as being associated with
that particular cloud.

The cloud environment specification step consists of composing an architectural
report including assets that are subject to privacy protection, cloud actors, physical
architecture of the deployment model, and logical architecture of the service model.

4.3.3 Privacy Threat Identification
In this step, privacy threats against the PRs that were established in privacy regu-
latory compliance definition phase will be identified and analyzed. To achieve this,
the system designers will undertake the following steps.

• Step A: Select a privacy requirement from the PR list for threat analysis,
e.g., (PR2).

• Step B: Correlate identified cloud actors (Step A from Section 3.2) with the
actor roles that are defined in the project’s privacy law. For example, corre-
lating the Data Controller role as a Cloud Consumer, or the Data Processor
role as a Cloud Provider in the DPD.

• Step C: Identify all the technical threats that can be launched by an ad-
versary to privacy and label them in the specified cloud environment. Each
identified threat can be named as a Ti.j, where i indicates that threat T that
corresponds to PRi and j indicates the actual threat number. For example,
in T2.5, digit 2 indicates the relevance of the threat to PR2 and digit 5 is the
actual threat number.

• Step D: Repeat the previous steps until all PRs are processed.

The threat identification step consists of composing an analysis report including
a list of threats including id, name, date, author, threat scenario for each class of
the PRs.

4.3. METHODOLOGY STEPS AND THEIR PRODUCTS 69

4.3.4 Risk Evaluation

In this step, all actors participate to rank the threats that have been identified in
previous step (Section 4.3.3) with regard to their estimated level of importance and
the expected severity of their effect on the overall privacy of the cloud environment.
The Importance indicates the likelihood of a particular threat occurring and the
level of the Effect indicates the likely severity of the damage if that threat against
the cloud environment were carried out.

Assume there are three identified PRs (PR1, PR2, PR3) in addition to related
privacy threats T1.4, T2.1, and T3.3 from previous steps for an imaginary cloud sys-
tem. In this imagined cloud, various participants in the project such as Alice (Cloud
Consumer), Bob (Cloud Provider), Dennis (Software Architect), Tom (Lawyer) and
Rosa (Cloud Carrier) evaluate the corresponding risk of each identified threats, as
illustrated in Table 4.1.

ID Name Exploit Scenario I E Participants
T1.4 Data Ac-

cumulation
over Time

The cloud system stores a huge
amount of data from Cloud Con-
sumers over the time. This can
be done through extensive anal-
ysis of collected data from differ-
ent sources.

H M Alice, Bob,
Dennis, Tom

T2.1 Linkability
of Records

A record owner can be linked
through the adversarial back-
ground knowledge for the
published data to the Cloud
Provider.

H H Alice, Bob,
Dennis, Tom

T1.4 Cross-
linking of
data pro-
cessing

A Cloud Consumer is able to run
cross-linking queries over multi-
ple data sets from different data
sources.

M H Alice, Bob,
Dennis, Tom

Table 4.1: Prioritization of the identified threats, L (Low), M (Moderate), H(High)

4.3.5 Threat Mitigation

In this step, the threat modeling team proposes countermeasures to the threats that
were identified in the previous step as having the highest likelihood of occurrence
and the worst potential effects on the cloud environment. Each countermeasure
should clearly describe a solution that reduces the probability of the threat occur-

70
CHAPTER 4. PRIVACY THREAT MODELING METHODOLOGY FOR

CLOUD COMPUTING ENVIRONMENTS

ring and that also reduces the negative effects of the cloud if the threat was carried
out.

Finally, the recommended countermeasures from this step should be documented
and fed into the implementation step to be realized through coding and for their
effectiveness to be assessed by static analysis. In the later stages of verification
and validation, each such countermeasure will be evaluated and approved by the
participants.

4.4 Summary

In this chapter, we identified the requirements to build a privacy threat modeling
methodology for cloud computing environments using an Extension-based ME ap-
proach. For this purpose, we introduced Cloud Privacy Threat Modeling (CPTM)
for compliance with various legal and regulatory frameworks, in addition to im-
proving the threat identification process.

As proof of concept, we will apply the proposed methodology within the BioBankCloud
that aims to process the sensitive data, as discussed in next Chapter 5. This will be
a first step to validate our proposed methodology for providing customized privacy
threat modeling in bioinformatics cloud computing environments.

Chapter 5

Case Study: BioBankCloud
Privacy Threat Modeling

This chapter is mainly based on publications I, III and VII. It describes the im-
plementation of our proposed methodology in Chapter 4 for a PaaS cloud. This
includes a high-level definition of the BioBankCloud and an exemplary workflow.

5.1 Introduction

BioBankClouds are gaining popularity due to flexibility and scalability in process-
ing big genomic data. BioBankClouds are cost-efficient for biobanks as commodity
hardware ownership is no longer required. However, it can be complicated to cor-
rectly identify the relevant privacy requirements for processing sensitive data in
cloud computing environments due to the range of privacy legislation and regula-
tions that exist.

Some examples of such legislation are the EU DPD [8] and the US HIPAA
[9], both of which demand privacy-preservation for handling personally identifiable
information. In addition, there is no consensus within International law whether
specific requirements should be applicable to genetic information. There are several
documents at the regional and international level that include some guidelines, for
example, UNESCO International Declaration on Human Genetic Data (2003) and
the Guidelines on Human Biobanks and Genetic Research Databases (2009). The
Council of Europe has enacted an Additional Protocol to the Convention on Human
Rights and Biomedicine, concerning Genetic Testing for Health Purposes (2008),
which is legally binding to the states that have ratified it.

Also national law might contain specific regulation entailing further conditions
and criteria for the handling to be legal and thereby legitimate. In Sweden for
example, the Act on Genetic Integrity1 lays down specific requirements when per-

1Lag (2006:351) om genetic integritet m.m.

71

72
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

forming genetic testing or taking part of the genetic information. These types of
requirements also exist in the other Member States.

The EU DPD is considered as a general super-national law that specifies ob-
jectives and requirements that must be adopted by the Member States. Recent
biobank legislation in several jurisdictions in Europe (such as Finland [182] and
Sweden [183]) has lead to the definition of a role for managing sensitive medical
data, such as Data Access Controllers, Data Processors, and Auditors as the adop-
tion of the EU DPD.

Privacy threat modeling, an essential stage of secure software engineering, en-
courages communication of privacy requirements among stakeholders of the biobank
when developing privacy-preserving cloud services. There has been considerable
progress in development of information security threat modeling frameworks and
tools, for example, OCTAVE [184] and STRIDE [179]. Unfortunately, the com-
plexity of such frameworks makes them difficult to be used for a project that de-
mands agile methods with limited resources. It is also worth noting that privacy-
preservation is not emphasized in the existing security threat modeling frameworks.

To this end, we aim to formulate the privacy requirements and identify the
privacy threats of a BioBankCloud according to the EU DPD [8]. As a result of
applying our methodology, a set of 8 key privacy requirements of the EU DPD, in
addition, to 26 critical privacy threats have been identified. The threats have been
evaluated and their exploit paths by an adversary have been described. Finally,
we have proposed countermeasures to mitigate effects of exploiting those threats in
the BioBankCloud through adversarial attacks.

This chapter is organized as follows. Section 5.2, describes a generic scenario of
the BioBankCloud. Section 5.3, outlines the privacy requirements of the EU DPD.
Section 5.4 specifies the design of the BioBankCloud environment. Section 5.5,
describes the threat identification process. Section 5.6 risk evaluation. Section 5.7,
describes the countermeasures for the identified threats. Section 5.8, summarizes
our findings and conclusions.

5.2 Scenario

As described earlier, the BioBankCloud platform is a collaborative project bringing
together computer scientists, bioinformaticians, pathologists, and biobankers [39].
BioBankCloud aims to provide the capability of deploying sequencing applications
with their dependencies within an environment called a container within a cloud
computing environment.

Assume the BioBankCloud participants are Alice (Researcher) as Cloud Con-
sumer representative, Bob (BioBankCloud) as Cloud Provider, Dennis as Auditor,
Tom as Lawyer and Ove as Cloud Software Architect both evaluate the correspond-
ing risk of each identified threats. A typical scenario to use the BioBankCloud
platform by Alice (Researcher) is as following steps.

5.3. PRIVACY REQUIREMENTS 73

1. Alice registers an account in the platform and by default a guest account will
be created for her.

2. Bob enables Alice and entitles appropriate access control levels.

3. Alice opens the login page and enters the authentication credentials.

4. Bob authenticates the user according to the presented credentials.

5. If the Alice is authenticated, Bob will permit her login to the platform.

6. Alice uploads genomics data and tries to run a workflow on the platform.

7. Bob ensures that Alice has enough permission to run the workflow.

8. Depending on the permission check:
a) If Alice is not authorized to run the workflow she will be denied by Bob.
b) If Alice is granted to access the resources demanded by the workflow, she
will be permitted

9. Bob authorizes Alice to run the workflow and access the genomic data in
the platform through the platform execution cluster. This cluster stores the
results in the platform and presents the results to Alice.

10. The platform stores the log information from the above steps for auditing
purposes by Dennis (Auditor).
This usage scenario will be used in Sections 5.4 for the actor-role correlations
step.

5.3 Privacy Requirements

The BioBankCloud platform demands to enforce the DPD requirements. As de-
scribed earlier, the EU DPD is the EU’s initial attempt at privacy protection to
harmonize the regulations for information flow within the EU Member States. The
identified privacy requirements include the main roles of the EU DPD and the
fundamental PRs are lawfulness, informed consent, purpose binding, data mini-
mization, data accuracy, transparency, data security, and accountability.

The DPD also highlights the demand for cross-border transfer of data through
non-legislative measures and self-control. One example of where these types of
privacy principles are being used is the Safe Harbor Agreement which made data
transfer possible to US-based cloud providers that are assumed to have appropri-
ate data protection mechanisms. However, as seen above, the European Court of
Justice declared the Safe Harbor Agreement invalid in a ruling in October 2016
[185].

There is an ongoing effort [19, 186] to replace the EU DPD with a new General
Data Protection Regulation containing more than 130 recitals and 91 articles that

74
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

aim to lay out a data protection framework in Europe [187]. The proposed regula-
tion will have a wider scope of application, covering the processing of data from the
third state that is directed to the EU, such as to offer goods and services. Also, the
understanding of what is personal data is expanded in one specific context, namely
through recital 25a of the proposal of the Regulation where it is stated that genetic
data should be defined as personal data relating to the genetic characteristics of
an individual which have been inherited or acquired as they result from an analy-
sis of a biological sample from the individual in question, in particular, Deoxyribo
Nucleic Acid (DNA) or Ribo Nucleic Acid (RNA). This will restrict the processing
of genetic data since it could never be considered to fall outside the Regulation.
The regulation also includes definitions of new roles related to handling data (such
as data transfer officers) and considerably strengthens the role and functions of
national data authorities [186]. For example, the regulation confers the power to
the authorities to impose significant penalties for privacy breaches that result from
violations of the regulations, for example, such a penalty could be 0.5 percent of
the worldwide annual turnover of the offending enterprise [188].

In the following, we describe the key requirements of the EU DPD to handle
genomic data.

• PR1 Lawfulness2 sets out the basic premises for the legitimate processing
of data, that all processing must be conducted within the regulatory frame-
work of the DPD. Data processing can be allowed on the basis of for example
statutory permissions (such as legislation), or with data subject consent, if
necessary for the performance of a contract or on the basis of statutory per-
mission such as legislation. In regards to sensitive data such as health data,
the DPD holds that the EU Member States must provide further safeguards,
for example through the involvement of a research ethics committee. Pro-
cedures and processes to disclose the sensitive genomic data are governed
strictly by the lawfulness requirement. It can also be seen as an umbrella
principle, reflecting other requirements and being the point of departure for
true data protection.

• PR2 Informed Consent3 informed consent justifies processing of genomic
data in the BioBankCloud. The genomic data may have been provided with
informed consent through the controller which constitutes the main justifica-
tion for processing. In cases where data has been collected a long time ago,
where the data subject is diseased, or in the case of data on anonymous cell
lines, the data may no longer be able to connect to an individual person and
thereby fall outside the scope of the DPD. In such case, even non-consented
use of data may be permitted. Further, there might be some room to re-use
previously consented data if it conforms to the law applicable to the controller
and this legislative act indicates the purpose for processing and the purpose is

2Paras 18, 23, 28 of the Preamble, Article 6 of the DPD.
3Para 30 of the Preamble, Article 7 of the DPD.

5.3. PRIVACY REQUIREMENTS 75

of substantial public interest. This law or the decision must include necessary
safeguards so that the interests of the data subjects are effectively protected.

• PR3 Purpose Binding4 ensures that personal data processing is performed
according to predetermined purposes. The collected genetic data in the
BioBankCloud will only be processed according to the purposes covered by
the informed consent given by the subject or, if the law applicable to the DP
so admits, according to further purposes within the legal framework.

• PR4 Data Minimization5 restricts extra and unnecessary disclosure of
information to third parties, such as a processor, to reduce the risk of infor-
mation leakage that leads to privacy breaches. This requirement of the DPD
demands a retention period of the published genetic data to be monitored
closely. Storage over time can only be permitted if in accordance with the
law applicable to the controller.

• PR5 Data Accuracy6 describes the necessity to keep data accurate and
to be updated by the controller. A controller holding personal information
shall not use that information without taking steps to ensure with reasonable
certainty that the data are accurate and up to date. The obligation to ensure
the accuracy of data must be seen in the context of the purpose of data
processing. In line with the principle of accuracy, data subjects must have
the right under national law to obtain from the controller the rectification,
erasure or blocking of their data if they think that their processing does
not comply with the provision of the directive, in particular because of the
inaccurate or incomplete nature of the data. Data accuracy requirement is
closely linked with Transparency (PR6), as described in the following.

• PR6 Transparency7 entitles the data subjects to have information about
the processing of their data and thereby a means to learn of the process-
ing operation of their data. Transparency thus functions as a prerequisite
for the data subjects to monitor that the data is accurate, in accordance
to PR5. Transparent data processing is required to be implemented in the
BioBankCloud with a clear description of technical, physical and organiza-
tional measures that processor has in place to infer if data are processed
appropriately.

• PR7 Data Security8 proposes implementing technical measures to provide
legitimate access and organizational safeguards. The controller shall ensure

4Paras 28-31 of the Preamble, Articles 6 and 7 of the DPD.
5Paras 59-61 of the Preamble, Articles 16-17 of the DPD.
6Paras 28 and 41 of the Preamble.
7Paras 38-40 of the Preamble, Articles 10-15 of the DPD.
8Para 46 of the Preamble, Articles 6, 16-17 of the DPD.

76
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

that whoever processes the data on his behalf, e.g., the processor provides
adequate levels of security against unlawful data processing. It is stated in
Article 17 DPD that Member States shall provide that the controller (data
provider) must implement appropriate technical and organizational measures
to protect personal data against accidental or unlawful destruction or acci-
dental loss, alteration, unauthorized disclosure or access, in particular where
the processing involves the transmission of data over a network and against all
other unlawful forms of processing. Data security covers the equipment (hard-
ware, software, etc.) but also organizational aspects such as internal rules on
how communication with and from the staff of the processor is dealt with,
how responsibilities are handled internally etc., and how access to facilities of
data storage is regulated.

• PR8 Accountability9 mandates internal, external auditing and control for
various assurance reasons. The data provider is responsible for ensuring com-
pliant of supplied genomic data usage to the processors. For instance, to
ensure that confidentiality and integrity of data have been preserved by the
acting processors. The processors shall put in place measures which would un-
der normal circumstances guarantee that data protection rules are adhered to
in the context of processing operations; and have documentation ready which
proves to the data provider and to supervisory authorities what measures have
been taken to achieve adherence to the data protection rules. This criterion
requires the controller to act in a proactive manner, to actively demonstrate
compliance and not merely wait for data subjects or supervisory authorities
to point out shortcomings.

5.4 Cloud Environment Specification

• Step A: The BioBankCloud actors are identified through the general use
cases. For example, from the usage scenario, Researcher, Guest, Data Provider,
Administrator, and Auditor actors are identified as described in Table 5.1 .

• Step B: BioBankCloud Physical Architecture
The BioBankCloud is designed as a PaaS to be easily installed on a private
cloud using Karamel and Chef. The Chef recipes parametrize Vagrant to
create the virtualized clusters and services over 14.04 images using HOPS, as
shown in Figure fig:physical. HOPS utilize the Hadoop version 2.x within a
Hadoop Cluster (Hops-YARN) and HOPS infrastructure containing MySQL
7.x cluster and HOPS file system (Hops-FS).
GlassFish server version 4.0.1 over JDK 7.0 is used to run the big data lab
LIMS. This server is confined between external and internal firewalls to sep-
arate it from the trusted private network behind the internal firewall. The

9Paras 55-64 of the Preamble, Articles 22-24 of the DPD.

5.4. CLOUD ENVIRONMENT SPECIFICATION 77

Table 5.1: Correlating the domain actors to the cloud actors

Domain Actor Cloud Actor Description

1. Researchers
2. Guest
3. Data Provider

Cloud Consumer:
A person or orga-
nization that uses
service from the
BioBankCloud.

1. Researchers who are affili-
ated with the institutions
that hold the genomic data.
The researcher acts under
the responsibility of the
Data Provider, as described
in this section. The guest
researcher conducts experi-
ments on subjects genomic
data.

2. The Guest is able to log
into the BioBankCloud and
browse the public content of
the platform.

3. Data Provider is the person
responsible for data shar-
ing. The Guest can only
access the resources and
data in the BioBankCloud
after permission has been
granted by the data
provider.

Administrator Cloud Provider:
The BioBankCloud
platform that
makes service avail-
able to interested
users.

The administrator enables the
users of the platform and installs
new libraries. This actor can
also assign/revoke roles from the
users.

Auditor Cloud Auditor:
Conducts indepen-
dent assessment
of cloud services,
operations, perfor-
mance and security
of the deployment.

The Auditor is able to see ma-
jor identity and access man-
agement events, in addition to
user authentication, authoriza-
tion events to ensure compliance
with the privacy legislation.

platform users are able to access the web pages from the browsers on their

78
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

Figure 5.1: BioBankCloud Physical architectures

computers through an external firewall while platform administrator can only
access the platform within the trusted network.

• Step C: BioBankCloud Logical Architecture
The BioBankCloud LIMS consists of several components for secure access,
workflow execution, data sharing, as shown in Figure 5.2. Hops-FS as the
next-generation of the HDFS supports multiple stateless Name Nodes but it
keeps the metadata in a MySQL Cluster. Hops-YARN is another component
that provides distributed stateless resource management with storing states
in the MySQL Cluster for fault-tolerant.
The BioBankCloud services will be deployed in a PaaS private cloud. The
user requests will be dispatched to a multi-tenant Hadoop cluster that is
managed by the Hops-YARN. The Hadoop cluster runs submitted jobs and
will notify the user through the LIMS interfaces. The Node Manager is an
agent that is responsible for containers, monitoring their resource usage such
as CPU, memory, network and reporting to the Hops-YARN resource man-
ager. A DataNode manages storage of each container node using keeping a
set of blocks related to files. When a workflow is executed, its algorithmic
dependencies will be fetched into the container as a data-staging phase.

• Step D: Assets, Boundaries and Attackers
The BioBankCloud platform stores genomic data which constitute as the
main asset. The platform services that are provided to the external users can
also be considered as assets. The security boundaries consist of firewalls that
control the incoming/outgoing traffic through the BioBankCloud along with
the physical means to deny access to the computing platform for unautho-
rized persons. Eavesdroppers and malicious users are known as attackers or
adversaries that are able to exploit the possible vulnerabilities in the platform.

5.5. PRIVACY THREAT IDENTIFICATION 79

Figure 5.2: Logical architecture

5.5 Privacy Threat Identification

• Step A: Select a privacy requirement from the PR list for threat analysis
from PR1, PR2,. . . , PR8.

• Step B: Correlate the domain actors to the DPD roles, as shown in Table
5.2.

• Step C: Identify the technical threats that can be launched by an adversary
to privacy and label them in the specified cloud environment. Each identified
threat can be named as a Ti.j, where i indicates that threat T that corresponds
to PRi and j indicates the actual threat number. For example, in T2.5 value,
2 indicates the relevance of the threat to PR2 and value 5 is the actual threat
number.

T1: Lawfulness
Lawfulness can be considered an umbrella principle. In this context, any viola-

tion the PR’s may amount to a lawless threat.

• T1.1: Lack of relevant information on legal rights and duties to allow data
subject and other interested parties to use effective means for accessing the
data.

80
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

Table 5.2: Correlating the BioBankCloud actors with the DPD roles

Cloud Domain
Actor

DPD Role Role Description

Cloud Consumer Data Subject or
Data Controller

Data Subject: The individual
person from which the genomic
data has been extracted
Data Controller: The entity that
owns or provides the genomic
data to the platform and decides
on the processing of the data.

Cloud Provider Data Processor The BioBankCloud platform and
all the administrative resources
that provide the computing ser-
vices to the Cloud Consumers.
The Data Processor may only act
on behalf of the Controller.

Cloud Auditor Data Processor or
Data Controller

Auditor inspects compliance
with legal and accountable
processing and storage of the
genomic data according to the
DPD rules. If the auditor simply
processes the data on behalf
of the controller (e.g, internal
control) then she is a processor.
Otherwise, she can act as a
controller on her own right.

• T1.2: Amendments to legal requirements or unawareness of new rules. In-
correct interpretation or application of legal concepts leading to unlawful
processing of (complex) data.

• T1.3: Lack of agreement between all entities regarding the processing the
genomic data.

• T1.4: If data are not obtained in accordance with the law, or without approval
(informed consent or ethics board).

T2: Informed Consent

• T2.1: Excessive ToS containing too much specific information that is not clear
enough, e.g., legal terms that are not easily understandable to a layman.

5.5. PRIVACY THREAT IDENTIFICATION 81

• T2.2: Lack of possibility to give consent dynamically to a specific subset of
genomic data.

T3: Purpose Binding

• T3.1: Researcher does not use the data according to the initial purpose or
the Data Provider does not use the data according to the purposes.

• T3.2: Researcher who has access to multiple data studies makes cross-link
analysis to the genomic data that does not consent and, hence illegal, accord-
ing to the PR1 and PR2.

T4: Data Minimization

• T4.1: The requested sensitive data to be used by a cloud provider or guest
researcher is not certain or well defined in advance.

• T4.2: If the Data Provider does not define the retention period of the sensitive
(genomic) data, there is a threat of accumulating more and more sensitive
data over time, that can be used for inference and linking attacks.

T5: Data Accuracy

• T5.1: If the Data Provider cannot or will not update data when having wrong
information has been found to be incorrect.

• T5.2: Data Provider uploads data to the cloud provider but data source
validity is not affirmed.

T6: Transparency

• T6.1: Lack of communication and information between entities. The threat
is even more severe when the lack of information or openness is harmful to
weaker parties, the sample donor/data subject.

• T6.2: Researchers or Data Provider cannot get access to modify or erase data,
due to unclear data processing procedures.

T7: Data Security

• T7.1: Theft of authentication credentials by an adversary through phishing
attacks or network eavesdropping, brute force attacks to guess authentication
credentials or identities of users.

• T7.2: Injecting code such as SQL injection, Identity-Based Encryption (XSS)
format, type or length of input data.

• T7.3: Wide access to data by a large group of people.

82
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

• T7.4: Elevation of privileges by an attacker to change the access rights to
higher privileges.

• T7.5: Unavailability of data due to Denial of Service (DoS) attacks.

• T7.6: Session replies through message theft by eavesdropping to steal a ses-
sion.

• T7.7: Inference attacks through guessing or background knowledge to the
minimized data, required by PR4.

• T7.8: Storing passwords, credentials, database connections, keys in plain text
or within the source code.

• T7.9: Existing bugs in the OS kernel that can be a target for an attacker to
exploit them.

T8: Accountability

• T8.1: Lack of mechanism for secure auditing to provide evidence of confiden-
tiality and integrity.

• T8.2: Logging information or audit trails contain sensitive information about
the subjects.

• T8.3: Excessive information in the audit logs to make audit and inspection
about the usage of the genomic data by an auditor.

5.6 Risk Evaluation

The BioBankCloud participants such as analyst, architects and lawyers participate
and evaluate the important of the threats as summarized in the Table 5.3.

ID Name Exploit Scenario I E Participants
T1.1 Lack of Lawful-

ness
An adversary uses the
BioBankCloud to process
or store genomics informa-
tion due to lack of lawful-
ness information.

L H Bob, Dennis,
Tom

T1.2 Amendments of
Regulations

An adversary uses the
BioBankCloud to avoid
compliance with new
regulations that may have
strict privacy require-
ments.

L M Alice, Bob,
Tom, Ove

5.6. RISK EVALUATION 83

T1.3 Lack of Agree-
ment

An adversary is able to
process and achieve re-
sults on the platform
without agreeing to the
BioBankCloud ToS.

M H Alice, Bob,
Tom, Ove,
Dennis

T1.4 Illegally Col-
lected Data

An adversary unlawfully
process data without ethi-
cal and legal permissions.

M M Alice, Bob,
Tom, Ove,
Dennis

T2.1 Excessive ToS The BioBankCloud ToS
contains many compli-
cated legal terms that
clients are not able to
understand.

H H Alice, Bob,
Tom, Ove

T2.2 Dynamic Con-
sents

The BioBankCloud plat-
form restricts user to up-
date the consent and ethi-
cal information.

H M Alice, Bob,
Tom, Ove

T3.1 Misuse of Data Researcher does not use
the data according to the
initial purpose or the DP
does not use the data ac-
cording to the purposes.
Also the BioBankCloud
should not share the ge-
nomics data or users data
to other external entities.

L H Alice, Bob,
Ove, Dennis

T3.2 Cross-linking
over Datasets

Researcher who has access
to multiple data studies
makes cross-link analysis
to the genomic data that
does not consent.

M H Alice, Bob,
Ove, Dennis

T4.1 Excessive Infor-
mation

A Researcher uploads un-
necessary information of
data subjects that is not
required by the platform.

M L Alice, Bob,
Ove

T4.2 Data Minimiza-
tion

The BioBankCloud plat-
form accumulates huge
amount of information
over time from users
who have not set data
retention period.

M M Alice, Bob,
Tom, Ove,
Dennis

84
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

T5.1 Data Modifica-
tion

The BioBankCloud is not
able to update the user
information or genomics
data when Data Provider
or Cloud Consumer de-
cides to update the infor-
mation.

M M Alice, Bob,
Tom, Ove,
Dennis

T5.2 Data Source Va-
lidity

An adversary uploads
compromised genomics
data without valid data
source references.

L L Alice, Bob,
Tom, Dennis

T6,1 Unclear Pro-
cessing of Data

The BioBankCloud re-
stricts other participants
to access the information
about the data usage in
the platform and how ge-
nomic data is processed.

H M Alice, Bob,
Tom, Ove

T6.2 Transparent
Data Access

Researchers or Data
Provider cannot get ac-
cess to modify or erase
data, due to unclear data
processing procedures.

L M Alice, Bob,
Tom, Ove,
Dennis

T7.1 Weak Authenti-
cation

An adversary is able to
steal user credentials
through network eaves-
dropping or password
theft and make reply
attacks.

H H Alice, Bob,
Tom, Ove,
Dennis

T7.2 Input Valida-
tion

An adversary is able to is-
sue SQL injection or XSS
over web pages.

H H Alice, Bob,
Ove

T7.3 Misusing the
Roles

Wide access to data by a
large group of people.

M H Alice, Bob,
Tom, Ove,
Dennis

T7.4 Unauthorized
Access

An adversary is able to
change her privileges in
order to get permissions
from other roles that she
is not entitled.

M H Alice, Bob,
Ove

5.6. RISK EVALUATION 85

T7.5 Unavailable Ser-
vices

The BioBankCloud plat-
form is not accessible due
to technical or adversarial
attacks.

M M Alice, Bob,
Ove

T7.6 Session Theft An adversary is able to
steal other users sessions
to compromise the in-
tegrity of data.

M M Alice, Bob,
Ove

T7.7 Re-
identification of
Individuals

An adversary is able to re-
identify individuals from
the data sets with prior
background knowledge.

M H Alice, Bob,
Ove

T7.8 Theft of Cre-
dentials in
Source Code

An adversary is able to
steal the platform mas-
ter keys and credentials
that are written in the
source code or unsecured
text storage.

M H Alice, Bob,
Ove

T7.9 Kernel Exploits An attacker is able to ex-
ploit OS kernel bugs to
gain access over the host
VM or other guest VMs.

H H Alice, Bob,
Ove

T8.1 Unsecured Au-
diting

The auditor is not able to
infer proof of CIA from
the audit trails.

M M Alice, Bob,
Tom, Ove,
Dennis

T8.2 Sensitive Info in
Logs

An adversary is able to ex-
tract sensitive information
such as data subjects per-
sonally identifiable infor-
mation or credentials from
the platform.

L M Bob, Tom,
Ove, Dennis

T8.3 Unusable Log
Files

Auditor is not able to ex-
tract information from us-
able audit reports. For
example too much infor-
mation or inconsistent log
files due to time synchro-
nization in the distributed
systems.

H M Bob, Tom,
Ove, Dennis

Table 5.3: Risk evaluation matrix for the identified threats. I indi-
cates the likelihood of threat and E indicates the effect of exploiting
the threat on the whole BioBankCloud.

86
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

5.7 Threat Mitigation

The cloud participants propose trade-off mitigation solutions as a countermeasure
for the evaluated threats from the previous step to meet the architectural goals such
as privacy vs. usability. Each proposed countermeasure refers to the corresponding
threat in Section 5.5, i.e. C4.1 indicates countermeasure for the threat T4.1.

• C1.1: Establish procedures with legal basis according to PR1, PR2,. . . , PR8
to clarify the legitimate rights and responsibilities for each role.

• C1.2: Apply the possible changes from the new laws or regulations that might
affect processing of the genomic data within the DPD framework.

• C1.3: Upon registration, new users provide definitions of the platform ToS
and user responsibilities.

• C1.4: Assume uploaded data could have been collected illegally by a Cloud
Consumer and for this purpose ethical and consent forms of data subject must
be presented and validated by Administrator role.

• C2.1: The BioBankCloud ToS should not contain complicated legal terms or
conditions that are difficult for a non-law expert to interpret. It only requires
to clearly describe the responsibilities short and precisely.

• C2.2: The consents and ethical information can be updated by the Cloud
Consumer whenever there are new forms. The platform stores older versions
for auditing purposes.

• C3.1: For every new data set there should be new consents and ethical forms.
For example, if there are a running approved project and a set of new data
is uploaded, the Administrator should be provided with further evidence of
ethical permits over the study.

• C3.2: Restrict users with the aim to run cross-linking analytical jobs over
multiple independent data sets that are not consented by the data subjects.
Also, data sets or Cloud Consumer information must be kept confidential to
the BioBankCloud.

• C4.1: The platform should not be implemented in a way to require excessive
information from the Researchers or data subjects.

• C4.2: Users will update the data retention period and when this date expires
the Administrator manually delete the data after notifying the user.

• C5.1: Allow all users to be able to update their information on-demand in
addition to update or erasure of genomics data.

5.7. THREAT MITIGATION 87

• C5.2: Administrator should be able to approve or reject projects based on
their validity. For example, if an uploaded data is incompatible with the
platform or data has been acquired from unknown sources, the Administrator
can reject processing that project.

• C6.1: The platform data usage should be transparent for authorized parties
such as Administrators and Auditors to see all the activities. Data Provider
to see the data access attempts on the uploaded data sets.

• C6.2: Provide functionalities to update the information such as genomics data
or ethical consent forms that are required to be modified by the authorized
roles. Updated information should be transparent to the user who made the
changes.

• C7.1: Implement usable strong authentication mechanisms such as two-factor
authentication, biometrics authentication or public key certificates to avoid
compromising the security of the platform through stealing user credentials.

• C7.2: Validate the input at least in the LIMS server to restrict any possible
SQL injection, XSS or cookie/query string/HTTP manipulation.

• C7.3: The platform should classify the responsibilities and permissions of
each role to avoid granting a broad range of responsibilities to each user. For
example, restrict Auditor to have Administrator permissions.

• C7.4: For every attempt to access the resources ensure the identity of the
user and enforce the predefined policies for that user. For example, in the
LIMS platform ensure RBAC while in the HOPS enforce discretionary access
control in a fine-grained approach.

• C7.5: Protect the internal services through the internal firewall that restricts
the I/O web traffic to the external firewall. Using intrusion detection tech-
niques identify the intruders and block their Internet Protocol (IP) address.

• C7.6: Do not trust the safety of user computers and keep the session state
information on the server side and do not send more than an opaque session
identifier to the users. Encrypt whatever that is sent to the client with the
server keys for making it confidential in the client machine over secure HTTPS
channels. Also, for every new session create new session information both on
the server and for the client.

• C7.7: Anonymize the microdata that contains an explicit identifier of data
subjects. For example, apply k-anonymity or `-diversity to generalize the
sensitive attributes.

• C7.8: Avoid using the secret credentials such as connection names, passwords
in the source code or storing them in plain text in the platform.

88
CHAPTER 5. CASE STUDY: BIOBANKCLOUD PRIVACY THREAT

MODELING

• C7.9: Run the HOPS and other services in virtualized secure environments
where the integrity of images are ensured prior to installation. Apply lat-
est patches to ensure the safety of the VMs and ensure all communications
between the user and LIMS server are encrypted.

• C8.1: The platform should store log files related to study data, consents
management, authentication, authorization, identity and access management
for all users actions. Store the log files in the high availability HOPS services.
Do not modify or delete the log files.

• C8.2: Prevent the application, server, database components or the logger of
the LIMS server to include sensitive credentials and information. For example
default setting of the application server can be turned off to avoid printing
the contents of issued queries.

• C8.3: Implement custom audit modules for consistent logging of an impor-
tant feature such as a browser, OS, IP/Mandatory Access Control (MAC)
addresses, timestamp, initiator of events, targets and outcome of the actions.
This will ensure excessive information from the log files will not be displayed
in the audit report. Additionally, the log server should be synchronized with
the rest of process in the BioBankCloud to ensure time consistency in the
audit reports.

5.8 Summary

Privacy-preservation for sensitive data has become a challenging issue in cloud com-
puting. Threat modeling as a part of requirements engineering in secure software
development provides a structured approach for identifying attacks and proposing
countermeasures against the exploitation of vulnerabilities in a system.

This chapter described implementation of the CPTMmethodology for BioBankCloud
case study. It described the modeling methodology that involved applying ME
to specify characteristics of a cloud privacy threat modeling methodology, differ-
ent steps in the proposed methodology and corresponding products. The results
demonstrate the usability of the proposed methodology. We believe that the ex-
tended methodology facilitates the application of a privacy-preserving cloud soft-
ware development approach from requirements engineering to design.

The results of this threat model will be used to build a functional prototype of
the BioBankCloud in Chapter 6 for compliance with the EU DPD requirements.

Chapter 6

Design and Implementation of the
Secure BioBankCloud

This chapter is mainly based on publication VI. It outlines the design, implemen-
tation, and validation of a security framework for BioBankCloud, a platform that
supports the secure storage and processing of genomic data in cloud computing
environments.

6.1 Introduction

In this chapter, we present design, implementation and validation of a privacy-
preserving framework according to the CPTM to ensures the legal processing of
genomic data in cloud computing according to the DPD requirements such as law-
fulness, informed consent, purpose binding, data minimization, transparency, data
accuracy, data security and accountability.

The design step includes proposing a security architecture to provide a trade-
off solution to meet the BioBankCloud overall goals such as flexibility in terms
of the analysis being performed, scalability up to very large data sets and very
large cluster setups, ease of use and low maintenance cost, strong support for data
security and data privacy, and direct usability for users. Additionally, it includes a
detailed description of each component in the security framework that is needed to
be constructed.

To develop and build the privacy-preserving BioBankCloud the design recom-
mendations are implemented thoroughly to avoid any possible software flaws in the
proposed system. This includes a technical solution that implements the logical
components and deploys them in terms of a prototype.

The rest of this paper is organized as follows. Section 6.2 explains the choice
of architecture through evaluating existing security solutions and libraries. Section
6.3 sketches the design of each component in the security framework. Section
6.4 discusses the implementation of proposed design. Section 6.5 briefly describes

89

90
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

the validation strategy. Section 6.6 discusses how privacy requirements have been
enforced. Finally, Section 6.7 summarizes our findings.

6.2 Security Architecture

6.2.1 Comparison of Existing Solutions
There are several widely used popular authentication, authorization and auditing
solutions that can be used for building secure systems that are summarized as
followings.

Password: A password is a simple word or a combination of letters and num-
bers typically between 8-15 characters that are provided by the user upon authenti-
cation. Password-based authentication enables a user to claim an identity (usually
a user identifier or email address) by presenting the knowledge of a secret known
only by the owner and the system. As a good practice, passwords should be as
much as possible complex and random and also easy to remember by the owner.

• Pros: Very common and deployed in many systems, convenient for users,
easy to be implemented, no special hardware/software requirements, can be
changed at the user’s request

• Cons: Users often create simple passwords or forget complicated passwords
if not used frequently, not scalable in multi-server environments. In case of
encrypted data, loss of password results in the loss of data, weak against
several attacks such as sniffers, or crackers

Quick Response Code (QRC):1 A QRC is the trademark for a type of matrix
barcode. A barcode is a machine-readable optical label that contains information
about the item to which it is attached. A QRC uses four standardized encod-
ing modes: numeric, alphanumeric, binary and kanji to efficiently store data. A
QRC consists of square dots in a square grid over a white surface. These dots are
readable by a camera or scanner. The Reed–Solomon error correction algorithm
is used for processing until the image is interpreted [29]. Reed–Solomon codes are
error-correcting codes that were proposed by Irving S. Reed and Gustave Solomon.
Reed–Solomon code belongs to the class of non-binary cyclic error-correcting codes.

• Pros: Ease of installation of new accounts, reducing account registration pro-
cess, easy to implement, easy to maintain

• Cons: Difficulty for novice users to install, requires to implement custom
libraries

1http://www.qrcode.com/en/

6.2. SECURITY ARCHITECTURE 91

Authenticator: The Google Authenticator (Authentication)2 is an open-source
mobile application that implements TOTP security tokens from RFC6238 [67]. It
generates a 6-digit code in 30 second periods. The user supplies this code as one
factor and a plain password as the second factor of authentication.

• Pros: Easy to install, easy to use by users, open-source software

• Cons: Depends on smartphones, for every login user should open the App

Smart Card: This technology delivers a credit-card sized hardware with an
embedded integrated circuit that must be plugged into a reader device [189]. For
example, a flash memory card to store the digital information that is protected by
a PIN code. A smart card also can be a microprocessor with processing power for
encryption capabilities such as public key encryption, signatures, and verification
to provide secure identification [190]. Smart cards provide some mechanisms to
store a user’s certificate and private key.

• Pros: Limits the number of login attempts that locks the smart card, lightweight,
portable and easy to use, tamper-proof identity of users, common in the gov-
ernmental branches with demand on strong authentication

• Cons: The PIN can be forgotten or compromised, requires a reader device,
lost smart cards can cause extra costs

USB contains a smart card and a built-in reader chip to provide functionality
of both USB token and smart card. USB token delivers two-factor authentication
similar to smart cards [191]. Yubikey devices3 can be considered as USB tokens
which can be plugged in USB ports to automatically fill in the OTP code for each
authentication attempt by pressing a button. Yubikey token doesn’t have a notion
of time compared to the Authenticator that every 30 seconds generates a new OTP.
Instead, it uses a counter value that is embedded in the device and it increases when
users press the OTP button. A Yubikey token consists of two slots. One slot can be
used to store static passwords and another one can be used to generate OTP using
different protocols such as Yubikey One-time Password (YOTP), OATH-HOTP or
challenge-response.

• Pros: No reading device is required, can be easily plugged into the user de-
vices, low deployment costs compared to biometric and smartcard

• Cons: Lost tokens can cause extra costs, must be always carried by the user

PKI X.509 Certificates that can be considered as an standard for the PKI to
manage digital certificates and public key encryption. Another usage of the X.59
certificates is in the Transport Layer Security (TLS) protocol for secure Web and
email communication.

2https://code.google.com/p/google-authenticator/
3https://www.yubico.com/

92
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

• Pros: Simple authentication without administration efforts of user passwords,
scalability for the joining organizations and users, higher security than basic
password authentication, capability of creating a proxy certificate for delega-
tion purposes, support for TLS/SSL secure communication and Single Sing-on
(SSO)

• Cons: Many users do not understand the purpose of certificates, certificates
must be carried by users and private keys must be kept secure, certificate
distribution to user and installation can be difficult, establishing revocation
mechanism in case of compromised private keys

Biometrics: Biometric authentication methods are based on a measurement of
the unique physiological characteristics of a user, such as a fingerprint (to replace
password), face recognition, iris code and behavioral characteristics such as voice
recognition, handwriting, and signature scan [192]. Generally, the identity provider
stores the biometric data in the encrypted format in a database. Biometric au-
thentication uses pattern matching of the claimed biometric characteristic against
a stored template. An accurate biometric authentication balances the equation
between a false negative (rejecting authorized user) and a false positive (accepting
unauthorized user) rate [193].

Authentication based on fingerprints can be based on embedded sensors or spe-
cial devices for fingerprint recognition. Some devices such as mice are equipped
with embedded sensors which are built in 3D imaging which eliminates the need to
buy standalone devices for user authentication.

Voice authentication is another form of biometric authentication which resem-
bles “what the user is”. This form of biometric is based on voiceprint technology. A
microphone captures the user’s voice and matches it with the backend for successful
authentication.

• Pros: No key management issues such as secure key preserving, lost and
compromised keys, secure against different threats, devices such as webcam
and microphone are available in most user devices, easy to use by users

• Cons: Voice recognition may not be secure against background noise, sick-
ness, and abnormal conditions, not perfect solutions to satisfy the false reject
and false accept rate, user privacy concerns, involves cost for support and
maintenance and deployment (fingerprint and iris-scan devices are costly)

Kerberos v5 [194] is an authentication protocol based on symmetric key en-
cryption to provide authentication in client/server scenarios in open networks with-
out exposing the shared symmetric key between the principals (client or server in-
stances). Both client and servers mutually authenticate each other without trans-
mission of any password in the plain or encrypted form. The Kerberos server sends
encrypted tickets with the user shared a symmetric key that only can be decrypted
by the user knowing the password. A ticket is a token protected by encryption that

6.2. SECURITY ARCHITECTURE 93

allows a user to be authenticated without requiring her credentials, such as her
password. Tickets can also be used to identify a user who has been authenticated
to use SSO to avoid re-authentication for frequent access. After the authentication
phase, encrypted channels will be established to provide secure communication to
ensure confidentiality and integrity of the data.

In the Kerberos protocol, the KDC is a service composed of the authentication
server and the Ticket Granting Server (TGS). The authentication server acts as
a trusted third-party in charge of user authentication in a realm that users and
servers belong. The TGS issues a Ticket Granting Ticket (TGT) during the user
first authentication. There are several open source implementations of Kerberos v5
protocol, mainly such as Heimdal version 1.64 and MIT Kerberos5 versions. Heim-
dal supports the Kerberos raw API, in addition to PKI, GSS-API [195]. GGSS-API
provides an abstraction layer using a standard API for applications to use for the
underlying protocols.

Heimdal also supports simple and protected GSS-API negotiation mechanism
[196], to authenticate client application to a remote server, but neither end knows
what authentication protocols the other uses. SASL [197] also implemented in
Heimdal as a layer to provide pluggable authentication and data security for the ex-
isting application protocols such as Lightweight Directory Access Protocol (LDAP)
[198]. Heimdal is used on several platforms and it also supports cross-realm au-
thentication where trust between different realms is required to be established.

• Pros: Strong authentication for network-based services, cross-realm authen-
tication using cross-realm tickets, delegation through forwardable tickets

• Cons: KDC can become a single point of failure against DoS attacks or insuf-
ficient security, brute-force attacks against weak passwords, enabling applica-
tions with Kerberos authentication can be a cumbersome task, complicated
for ordinary users to set up and use

LDAP: LDAP is a client-server access control protocol for accessing directory
services. LDAP defines how entities in a database can be queried and accessed.
LDAP defines a simple protocol for updating and searching hierarchical directories
over open networks. LDAP v3.0 supports secure communication through trans-
port layer security (TLS v1) to encrypt the communication channel using client
and server X.509 certificates by an regular LDAP connection (ldap://:389). Also
Netscape SSL v3 can be used to establish secure connection (ldaps://:636). LDAP
can be used to store information about users, including usernames and passwords
to be validated by applications.

The LDAP schema specifies objects and attributes and their relation to be stored
in the LDAP server in directories for instance “ou=roles, ou=resource, ou=projects”
to provide scalability in distributed environments. Common attributes of an LDAP

4http://www.h5l.org/
5http://web.mit.edu/kerberos/

94
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

entry are: distinguished name (dn) as primary keys, common name (cn), domain
component (dc), and organizational unit (ou).

There are different implementations of the LDAP protocol such as OpenLDAP
v.24 that is open source and widely popular6 or the Microsoft active directory
implementation of the LDAP that can be utilized through plugins for integration
with UNIX based systems7. OpenLDAP supports several databases as backend
such as Berkeley database, which is a key/value database, hierarchical Berkeley
database as default backends. Other backends such as Network Database Technol-
ogy (NDB), in-memory databases. OpenLDAP offers several replication strategies
such as multi-master (to allow multiple servers to act as masters), mirror mode and
synchronization-replication mode.

• Pros: High availability and resilience topologies, easy to implement and back-
end with various databases, secure communication using TLS/SSL

• Cons: Mostly suitable for hierarchical structures, difficult to implement and
deploy with applications, i.e., schemas, replication, interoperability with web
development frameworks

OpenID8 is an open standard to provide user-centric authentication without
the need for users to release their credentials such as a password or other sensitive
credentials to a relying party who relies on the OpenID provider to offer services.
Users create accounts with an identity provider they prefer and use them for au-
thentication. OpenID authenticates users dynamically based on the information in
the identifier to the related identity provider. Identities or subjects identifiers are
represented as HTTP or HTTPS Unified Resource Locator (URL) or extensible
resource identifier that can be used in different domains.

OpenID delivers federated SSO for web applications in different realms through
one identifier provided by the user. Attribute exchange is an approach to fetch or
store user attributes such as username, email address to RP during authentication
phase based on user consent.

Provider authentication policy extension is another feature of OpenID to enforce
strong authentication by relying on the party through multifactor authentication
or anti-phishing authentication methods. OpenID provides a mechanism for simple
registration to free users from multi-registration in different relying parties [199].

OpenID Connect is the next generation of OpenID which operates as a layer on
top of OAuth v2.0 to provide passing the delegation access instead of the authen-
tication access to different sites [200].

• Pros: Can be easily integrated with the web applications, provides user-centric
approach, trust all users and no need for preconfigured trust, commercial
support from major cloud vendors and social networks

6http://www.openldap.org/doc/admin24
7http://technet.microsoft.com/library/bb463150.aspx
8http://openid.net/developers/specs/

6.2. SECURITY ARCHITECTURE 95

• Cons: Not interoperable with the networked services, no built-in authorization
mechanisms, weak against Domain Name System (DNS) cache poisoning

Open Authorization (OAUTH) v 2.0 [201] is an open standard to provide
web applications possibility of authenticating and authorizing users based on their
credentials instead of a direct password. For instance, it allows users to share their
private resources such as photos, calendar and contact lists stored on one site with
another site without releasing their credentials such as username/password.

OAuth specification defines resource server as an entity that protects data. Users
are defined as resource owner who grants or deny access to their protected data.
The term client refers to the applications that operate on the data, according to
the resource owner granted permission acquired by an authorization server.

Another feature of OAuth is to deliver delegated authorization to grant another
application or person to operate on behalf of the data owner. Delegated authoriza-
tion is done through bearer tokens which are acquired from an authorization server
to be sent to other participants to act on behalf of the owner. This token is opaque
for clients and can be decoded for the endpoints [202]. OAUTH provides interop-
erability with OpenID Connect for federated Web SSO across different realms.

• Pros: Lightweight and compatible with REST web services, strong industry
support by vendors such Facebook and Google

• Cons: No support for non-web service authentication, weak against DNS
cache poisoning

SAML [203] is an open standard based on Extensible Markup Language (XML)
introduced in 2002 by OASIS for exchanging user authentication and authorization
information between identity provider and service provider. SAML is based on
the concept of assertions that can be handed to the client who created the ac-
cess request, the authentication service, and the access decision point. Assertions
are statements about a user that can be passed around between different part-
ners. SAML provides a standard request/response protocol for exchanging XML
messages.

SAML provides “Portable Trust” for a verified user in one domain to invoke
services in another domain using SSO capabilities within a federation. Also for
web services, SAML provides a means by which security assertions about messages
and service requesters can be exchanged. SAML is built on XML Schema, XML
signature, XML encryption, HTTP, and Simple Authentication and Security Layer
(SOAP). SAML IdP and SP establish communication through exchange of SAML
metadata.

The SAML specification defines assertions, protocols, bindings and profiles. As-
sertion (XML) is a claim, statement, or declaration of fact made by some SAML
authority about the subjects. SAML protocols define a mechanism to exchange

96
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

request/response messages and data between different parties. SAML bindings pro-
vide a mapping of a SAML protocol and communication protocols such as HTTP
and SOAP to send the SAML messages with SOAP.

SAML profiles provide message exchange information related to a set of func-
tions to be used by different participants. There are several implementations of
the SAML protocol such as OpenSAML, which is a set of open source C++ and
Java libraries. OpenSAML 2, the current version, supports SAML 1.0, 1.1, and 2.0
[203].

• Pros: Support for strong authentication and SSO, standard message exchange
protocol, extendible to support different use cases, PKI recommended

• Cons: Complexity of SAML 2.0 specification, no dynamic identity provider
discovery (usually there is a trust list), major public cloud providers such as
AWS and Google App engine don’t support SAML

Shibboleth9 v2.5 is an open-source project that provides federated SSO capa-
bilities to allow sites to make informed authorization decisions for individual access
of protected online resources. The Shibboleth software builds SAML 2.0 to deliver
federated SSO and attribute exchange framework through authenticating user to
their home institutions.

A federation in Shibboleth is built through an agreement between different or-
ganizations where users belong. Users not belonging to a federation are not able to
login to the service provider services.

The Shibboleth identity provider delivers authentication to users in addition to
providing the service provider with several attribute information. Therefore, users
do not have to provide manual data every time user logs in to the service provider.
The service provider handles the access to a protected resource or application en-
try point through issuing a SAML authentication request to an identity provider
selected by the user- “where are you from” concept in Shibboleth - to choose the
home organization, and processing the authentication response. Shibboleth also
supports SAML SSO profile with HTTP with the purpose to facilitating usage of
SSO for different environments.

For networked-based services that do not rely on web services, Shibboleth has
limited support through SAML enhanced client SASL and GSS-API. But none of
these mechanisms are used in any production release yet10.

• Pros: Authentication and authorization based on user attributes, interoper-
ability with Kerberos, LDAP, Java Database Connectivity (JDBC), proven
solution in higher education and governmental organizations, strong authen-
tication through smartcard/PKI certificates

• Cons: User has to choose the identity provider, costly to maintain
9http://shibboleth.net/

10https://wiki.shibboleth.net/confluence/display/SHIB2/ECP

6.2. SECURITY ARCHITECTURE 97

eXtensible Access Control Markup Language (XACML) [204] is an
XML based standard which defines a policy language, request/response protocol,
and architecture that implements ABAC for access control. However, OASIS also
has defined a XACML profile for RBAC [93].

XACML deals with user attributes such as subjects (users), resources (objects
which are required to be accessed), actions (operations on resources such as read,
write), and the environment (time, location) to create fine-grained policies.

There are several free implementations of XACML such as EGEE Argus, XACM-
Light11, XEngine12. The Argus authorization framework13 provides an attribute-
based authorization decisions software for distributed systems such as web and net-
work, compute and storage. The services are implemented based on the XACML
2.0, and use authorization policies to determine if a user is allowed or denied to
perform a certain action on a particular service.

Argus consists of three main components: Policy Administration Point (PAP)
to define the policies and store them, Policy Decision Point (PDP) to validate au-
thorization requests against the XACML policies retrieved from the PAP server
and Policy Enforcement Point (PEP) server to ensures the integrity and consis-
tency of the authorization requests received from the PEP client. PEP client is a
lightweight C/Java library which can be integrated easily with different applica-
tions. Argus provides interoperability with Shibboleth and SAML to exchange the
XACML attributes through SAML assertions. It also provides the command line
capabilities to create human readable policies, based on the simple policy language.
These features make it possible to ban a user globally over all sites.

• Pros: Suitable for creating complex authorization policies

• Cons: No standard interaction between PAP, PDP, PEP and client

Virtual Organization Management Service (VOMS)14 is a centralized
system to store authorization information of VO (a group of collaborating organi-
zations) such as user roles, group hierarchies and capabilities to complement lim-
itations of Access Control List (ACL). VOMS issues attributes based on X.509
certificate information and SAML attribute assertions15. VOMS administrator
server provides interfaces based on web services to manage and keep track of user
roles.VOMS can use relational databases such as MySQL and Oracle as backend.

• Pros: Rich authorization decisions based on roles for VOs, interoperable with
SAML and PKI

• Cons: Single point of failure, difficult to build and maintain
11http://sourceforge.net/projects/xacmllight/
12http://xacmlpdp.sourceforge.net/
13https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework.
14http://www.globus.org/grid_software/security/voms.php
15https://twiki.cern.ch/twiki/bin/view/EMI/EMIVomsDocumentation

98
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

System for Cross-domain Identity Management (SCIM)16 is an indus-
try initiative to define a simple JavaScript Object Notation (JSON) schema and
a standard based on REST API for automated user provisioning. SCIM also con-
tains bindings to define transportation of SCIM information with other protocols
such as SAML. SCIM core defines attributes such as user, group, and resource.
SCIM connections can be established through secure channels using TLS/SSL and
it provides operation such as GET, PUT, POST, PATCH and DELETE for identity
management.

• Pros: Lightweight and easy to integrate with cloud application and services,
interoperable with SAML

• Cons: Not interoperable with network–based services

Flume17 is an open source distributed log management streaming mechanism to
transfer all log files from different sources to a centralized log server to be analyzed
by Hadoop. Flume provides fault-tolerant, scalable and centralized management of
the log files based on the ideas of flows. Flume nodes are controller or agents. Each
node runs source that accepts the input message from servers or applications and
sinks to redirect the messages to storage.

Channels deliver events of 4 kbyte size from source to the sink. A Flume stream
defines a schema to store the output from the source in the storage where all logs
are stored. In distributed settings a master node keeps track of the nodes.

• Pros: High throughput log management system, SQL-based language to cre-
ate complicated queries, interoperable with Avro, log4j, Syslog, HTTP post
with JSON body

• Cons: Difficult to deploy and configure

Distributed Audit Service (XDAS) provides accountability and compli-
ance through an audit service. XDAS specification mainly defines a set of generic
events across the system, a portable audit record, API for applications to submit
their events to XDAS or read records from an audit trail. XDAS satisfies audit
requirements of different scenarios through audit event services, audit service man-
agement, audit event management, audit log management, and audit event inquiry
[205]. XDAS defines a standard record format including event, originator, initiator,
target, source, and data.

In a distributed environment with several platforms, an XDAS agent collects the
audit events through the API or direct import and can send them to a centralized
event management service. XDAS event consumers will be able to use the XDAS
service through audit event analysis service.

16http://www.simplecloud.info
17http://archive.cloudera.com/cdh/3/flume/UserGuide

6.2. SECURITY ARCHITECTURE 99

OpenXDAS18 is a complement open source implementation of the XDAS spec-
ification including the client-side instrumentation and filtering. There is also the
library XDAS4J which is a Java implementation of XDAS.

• Pros: Consistent auditing

• Cons: Difficult to integrate with the existing applications, might require de-
velopment of the API for custom applications

CloudAudit/A619 (The automated audit, assertion, assessment and assur-
ance) CloudAudit/A6 is a group member of Cloud Security Alliance (CSA) to
address audit and compliance for cloud providers through a specification for auto-
mated audit, assertion, assessment, and assurance API (A6). CloudAudit goal is to
enable users to audit and assess remote infrastructure using platform independent
API and namespaces.

According to the IETF draft version, CloudAudit provides a set of conventions,
standards, and API to utilize the HTTP protocol to enable cloud users and ex-
ternal third parties to get automated detailed performance and security statistics
about the cloud services. The CSA has released a free toolkit20 for governance,
risk and compliance consisting of a namespace to clarify how different compliance
requirements are defined.

• Pros: A lightweight audit mechanism for cloud-based services

• Cons: No standardization exists yet

6.2.2 Proposed Selection of Components
According to the platform architectural goals and analysis, we identified the main
trade-off of the platform as security/privacy vs. usability. For this purpose, a
set of components that satisfy these architectural goals efficiently were selected.
Figure 6.1 shows the security architecture of the platform including user machine,
authentication, authorization, IAM and auditing modules.

The platform provides secure interfaces for several services such as account reg-
istration, account recovery, authentication by the Authenticator or Yubikey tokens
that are present on the user´s machine. After successful authentication, the user
submits a task that will be validated by the authorization component. Depending
on the task LIMS or Hops authorization system will enforce the predefined permis-
sions. Authentication, authorization, and IAM events will be registered in the log
repository and will be available for auditing.

18http://xdas4j.codehaus.org
19http://tools.ietf.org/html/draft-hoff-cloudaudit-00
20https://cloudsecurityalliance.org/research/cloudaudit/

100
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Figure 6.1: Security architecture of the BioBankCloud including various security
modules

6.3 Design

6.3.1 Assumptions
In our design, we assume only a limited number of certified personnel have access
to the cloud provider’s physical infrastructure. Internal or external auditors ensure
that cloud provider implements service organization control (SOC 1/SSAE 16/ISAE
3402) [206] requirements for individual controls to the infrastructure.

6.3.2 Identity and Access Management
The BioBankCloud IAM system plays a critical role for user management to realize
the architectural goals of the system in terms of cost-reduction and maintainability.
The proposed system contains people, procedures and assets to define the right
access at the right time to the right people. This component provides several
functionalities for registering new accounts, verifying, activating or terminate them.
Figure 6.2 shows the process of user registration and activation in the system.

Each element of this state machine has been described in the following.

6.3. DESIGN 101

Figure 6.2: Identity lifecycle in the BioBankCloud

• New (1): Set the status of new accounts requests to new. In this step,
accounts are considered as inactive.

• Verified (2): New account requests are validated by the actual user who
created the request.

• Spam (3): To distinguish between verified accounts and suspicious requests.

• Blocked (4): User with this status can not access the resources. This can
be due to the suspicious behavior of users. For example multiple false login
attempts.

• Pending (5): Upon successful reset of passwords status of blocked will be
changed to pending. The user will be able to reset the temporary password
using the status.

• Active (6): When user’s request is approved by an administrator to use the
platform.

• Deleted (7): Administrator decides to delete spam accounts from the system
as such accounts are not associated with an actual user.

102
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

• Closed (8): Users that are no longer granted to access the platform. Users
with this state, can not log in or change profile information. Either an account
holder terminates her account or an administrator closes the account.

When users are created, a system username will be assigned to them for identifi-
cation. Identification can be referred as the first step to establish a relationship with
the users and provide services to them. There are several identification methods
such as username, account number, email and IP/MAC addresses for computing
devices. A good identity scheme usually provides uniqueness (a unique identifier
in different domains), non-descriptiveness (not to disclose extra information such
as user role or plain names) and secures issuance (logging and documentation of
identities) [207].

To meet the demands for HOPS authorization [150] a unique alphanumeric
username with length of 8 characters was designed that is compatible with the
POSIX semantics. Every time new user registers using the IAM service, a new
username will be generated and stored in the user credential store. The username
scheme is composed of 3 letters that indicate the prefix of the institution name, and
the other 5 digits are the user identifiers. For example, meb10003 demonstrates a
user from the MEB organization with user identifier 10003.

This scheme makes the system flexible to link this username with more con-
venient user identifiers such as email address. In such scenario, the IAM system
will map the POSIX username with the email address of user without posing any
usability issue for the user. Besides, when users change their email addresses, still
integrity of audit logs are preserved. To hide this complexity, we link the POSIX
username with the user’s actual email address so that users do not require to re-
member an additional element for authentication.

6.3.3 Authentication
Authentication is the process of validating a user’s physical claimed identity or
the digital identity of a process or a computer. User authentication can be cat-
egorized into three main categories: authentication by knowledge - i.e., what the
user knows such as a password (memo metrics), authentication by possession - i.e.,
what the user has, such as a smartcard token (cognometrics), and authentication
by characteristics - i.e., biometrics such as fingerprints, retinal, iris, voice, face,
handwritten (biometrics) [191]. These authentication approaches can be combined
or used separately, depending on the demanded level of functionality and security.
The BioBankCloud supports strong two-factor authentication using Mobile and Yu-
bikey Tokens. This provides a trade-off solution between security and usability by
allowing users to select a convenient authentication method.

We provide a custom authentication realm that delivers both functionalities of
the Authenticator and Yubikey device tokens. Users send authentication requests
via a browser to the authentication module or to the security policy domain (custom
realm) [208]: TOTP and YOTP plugins.

6.3. DESIGN 103

Figure 6.3 demonstrates the custom login context that reads the Java Authen-
tication and Authorization Service (JAAS) configuration to validate the authen-
tication requests using TOTP and YOTP algorithms. The login modules contain
interfaces to access the credentials using the JDBC driver. The JAAS configuration
represents the configuration of the login modules to be defined by the BioBankCloud
platform.

Figure 6.3: Custom authentication realm to support authentication for users with
and without mobile devices.

A typical scenario for mobile account registration and authentication is as fol-
lows.

1. The user installs the authenticator in a mobile device.

2. The user opens the mobile registration page and creates an account request
by entering organizational information, giving consent to the platform ToS
and creating a plain password (a minimum 6-character alphanumeric string).

3. The platform creates a guest account and sends a QRC to the user’s browser.

4. The user scans the QRC code with the mobile device and the authenticator
configures the account (see Figure 6.4).

104
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

5. The platform sends a validation email to the user’s email address. The user
verifies her email address through clicking an URL.

6. An administrator activates the account on the platform and a notification is
sent to the user by email, as shown in Figure 6.11.

7. The user opens the mobile login page and enters the username and plain
password as one factor of the authentication.

8. The user opens the Authenticator and enters the OTP in the login page as
the second factor of the authentication.

9. The user issues an authentication request and the platform verifies the plain
password and the OTP.

Figure 6.4: Scanning the QRC using the Autneticator App in smartphones

For users without mobile devices, the platform offers Yubikey authentication
through YOTP. The YOTP (44 characters password) consists of two parts: the
first 12 characters indicate the public identifier of the Yubikey token [209]. The
remaining 32 characters are a unique code for each OTP. A Yubikey token gen-
erates the OTPs through a push-button. Generated YOTPs are sent as emulated
keystrokes via the keyboard input path, thereby allowing the OTPs to be received
by any text input field.

A typical scenario for Yubikey account registration and authentication is as
follows.

1. The user opens the Yubikey registration page and creates an account request
by entering organizational information, giving consent to the platform ToS
and creating a plain password (a minimum 6-character alphanumeric string).

2. The platform creates a guest account to be approved by an administrator.

3. The platform sends a validation email to the user´s email address. The user
verifies her email address through clicking an URL.

4. The administrator activates the account (see Figure 6.6) and programs a Yu-
bikey token through the personalization Graphical User Interface (GUI) [209].
Afterward, the administrator sends the Yubikey token through a trusted
postal system to the end user.

6.3. DESIGN 105

Figure 6.5: Account registration in the AngularJS frontend

5. The user receives the Yubikey and inserts it into the client machine´s universal
bus port.

6. The user opens the Yubikey login page and enters the username and plain
password as one factor of the authentication.

7. The user pushes the Yubikey button and an OTP will be redirected to the
OTP input field of the authentication page as the second factor of authenti-
cation.

8. The user issues an authentication request and the platform verifies the plain
password and the OTP.

6.3.4 Authorization
Authorization is the process of granting or denying access to the platform resources
based on the identity of users. An authorization module enforces security policies
that are configured for each role in the active security domain where authentication
is performed.

106
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Figure 6.6: Yubikey accounts provisioning

The authorization process checks permission rights when an authenticated user
requests access to a service. The BioBankCloud deploys a flexible RBAC model to
ensure confidentiality and integrity of data. The RBAC model contains information
about the potential roles of individuals within the organization and the associated
levels of access to services, as shown in Table 6.1. The platform roles are categorized
as administrator, auditor, data provider, guest, and researcher. This role model can
be extended for new requirements. The definition of each role is as follows.

• Administrator a group of users who acts as the platform manager and Ethics
Board.

• Auditor a group of users with access to audit trails for auditing.

• Data Provider a group of users who create studies, upload data and assign
members to studies.

• Guest general visitors to the platform who are able to request an account to
use the services.

6.3. DESIGN 107

• Researcher users of the platform that can join a study to run workflows.
Researchers also can become data providers through creating a new study
and uploading data to the platform.

The authorization system retrieves the groups’ information through the custom
authentication realm for users with the valid authenticated sessions. For example,
when a user is authenticated, a permission check retrieves all the user’s related
groups. If the requested action is permitted on a service or a resource, the user will
be granted access.

Assume that Alice and Bob are two authenticated users in the system. Alice
needs to enable Bob to access her data, as shown in Figure 6.7. For this purpose,
the following actions are taken by Alice, Bob, and the platform.

Figure 6.7: BioBankCloud authorization system to enforce permissions to access
study data.

1. Alice, as study data owner, gives Bob read access to her study.

108
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Service Ad
mi
nis
tra
to
r

Au
dit
or

Da
ta
Pr
ov
ide
r

Gu
est

Re
sea
rch
er

Audit Management R R
Anonymization Service X X
Platform Public Pages C,R,U,D R R R R
Privacy Management R,U C,R,U,D R
Study Audit Trails R R R R
Study Browser R C,R,U,D R,U
Study Data R,U,D R R,U,D C,R
Study Members R R
User Administration R,U,D R R
Workflow Execution C,R,U,D,X C,R,U,D,X

Table 6.1: Access control table to define the permissions for each role in the platform
in regard to using the BioBankCloud services. For example, a researcher can create
(C) a new study and will be assigned the data provider role afterwards. Then, as a
data provider, the user will be able to read (R), update (U) and add new members
or delete (D) or execute (X) the study.

2. The access control component updates the ROLES database where users
are mapped to GROUPS. In this example, Alice and Bob are respectively
mapped to the Administrator and Researcher groups.

3. Bob initiates a read request to access Alice´s study in the cloud.

4. The access control component enforces the existing policies for Bob´s request
through a permission check (which will have returned either permit or denial.

5. The platform enforces the results of the permission check as permitted or
denied:

a) If Bob is authorized to access Alice´s study, he will be permitted to
perform a read operation.

b) If Bob´s operation is not permitted on Alice´s study, he will be denied
access to Alice´s data.

The proposed RBAC model has provided the capability for the Hops platform
to ensure authorized access in multi-tenant Hadoop environment through a DAC
model [150].

6.3. DESIGN 109

Figure 6.8: Audit system

6.3.5 Auditing
Auditing is the process of providing proof for resource usage in the platform, for
example, giving details of who has accessed each resource and what operations are
performed during a given period of time. Auditing helps to ensure that users are
accountable and also helps to detect unauthorized attempts to access the resources.
The auditing component stores the audit trails with timestamps in the audit stor-
age. All users are assigned a unique POSIX compatible user identifier that is an
8-character length alphanumeric username to run the actual workflows in Hadoop
environment.

The Audit context component provides secure logging and audit trail browsing
for the authorized roles defined in Table 6.1. A user with different roles might
have different interests and choose different contexts to get information from the
audit trails. For example, a data provider may only want to audit the usage of a
particular study that belongs to him/her, while an auditor may need to audit all
the user administration and data access events with different audit options.

Security event logger provides the following security events and pushes the mes-
sages to the audit logs data store:

• Authentication Events: Authentication requests that a user initiates to

110
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

access to the platform are recorded by the security event logger. The log
events include information such as user identifier, IP/MAC address, epoch,
browser, OS, and the result of the authentication action.

• Authorization Events: Authorization requests that a user initiates to ac-
cess to a resource in the platform are recorded by the security event logger.
The log events include information such as user identifier, IP/MAC address,
epoch, role, browser type, OS version, and the result of the authorization
action.

• Identity and Access Management Events: Events related to identity and
access management as following along with IP/MAC address, epoch, browser
type, OS version, are stored by the security event logger.

– Profile update: When a user updates her information in the platform
– Password Change: Information regarding the password change by a user
– User Management: Changing the user’s account’s status by the admin-

istrator role
– Security Questions change: When a user changes the current security

question for account recovery purposes
– Mobile Requests: When a new user makes a mobile account request
– Yubikey Request: When a new user makes a Yubikey account request
– Role Assignments: Entitlement or removal of roles/permissions to users
– Lost Devices: Yubikey or compromised/lost mobile accounts

Privacy and Data Access Events:

• Retention Period: Changing the study retention period by the data provider

• Consent Upload: When data provider uploads new consent or ethical approval
forms

• Study Status: When administrator role updates or changes status of a study

• Consent Status: When administrator role approves or rejects uploaded con-
sents by the data provider

The audit management component provides interfaces for the administrator,
auditor, and data provider to generate audit reports or browse the audit trails
using different contexts.

A study consent is approved by an administrator who acts as the platform
manager and the Ethics Board to ensure legal processing of genomic data. The
status of a consent can be approved, rejected or not specified, for example, someone
with an administrator role might reject consents without legal basis or informed

6.4. IMPLEMENTATION 111

consent in order to stop users with data provider and researcher roles from running
experiments. The “not specified” status is used to indicate that a consent form is
waiting to be approved by someone with an administrator role.

Privacy management enforces the requirement to provide evidence of consent to
allow a data provider to share data or run experiments. The privacy management
component controls the granular consent of uploaded genomic data since each study
has its own privacy settings. The data provider uploads the consent form after
uploading the study data.

6.4 Implementation

This section describes the implementation of the BioBankCloud security framework
including extended libraries, IAM, QRC, custom two-factor authentication, autho-
rization, auditing and privacy control components. We published the implemen-
tation as open-source in this repository [210], however we are currently improving
the security feature continuesly under this repository [211].

6.4.1 The Middleware and Libraries
To meet the privacy requirements of the BioBankCloud, we implemented a platform-
independent security framework using Java Enterprise Edition (enterprise edition)21.
The proposed solution includes several plugins and modules embedded in the secu-
rity framework, as shown in Figure 6.1. The logic is implemented using the Java
Server Faces (JSF) version 2 model-view-controller pattern. We also use Enterprise
JavaBeans (EJB)22 version 3 technology that is the server-side component archi-
tecture of Java Enterprise Edition. EJB facilitates the development of distributed,
transactional, secure and portable applications based on Java technology. The
GUI for various functionality is implemented using Primefaces 5.123 however we
re-implemented user registration, privacy settings and login GUI using AngularJS
version 1.3.x24 due to the platform constraints.

6.4.2 Identity and Access Management
The IAM implementation supports two groups of users: users with smartphones
and Yubikey users who don’t use smartphones (see Figure 6.5). There is another
alternative for organizations that do not need strong security to allow regular au-
thentication based on username/password that can be switched on on-demand.

Users are registered after an agreement to the BioBankCloud simplified ToS
that aims to articulate different rights and responsibilities between the users and
platform. After registering of accounts users are identified through unique email

21https://docs.oracle.com/javaee/7/tutorial/
22http://www.oracle.com/tech network/java/javaee/ejb/index.html
23http://www.primefaces.org/
24https://angularjs.org/

112
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

addresses for better usability. However, we keep the 8-character username for the
internal job execution and consistency of event logs for auditing/accounting pur-
poses.

• Mobile Accounts: When a user with smartphone registers an account, a
random symmetric secret key is generated (see Listing 6.1). This code ei-
ther can be sent in encrypted human readable or a machine readable format.
We sent this code a QRC over HTTPS so user scans it easily through the
Authenticator.

Listing 6.1: Random secret key algorithm to build the QRC

public static String calculateSecretKey() throws
NoSuchAlgorithmException {

byte[] secretKey = new byte[10];
// use SHA1PRNG to setup a random seed
SecureRandom sha1Prng = SecureRandom.getInstance("SHA1PRNG");
sha1Prng.nextBytes(secretKey);
Base32 codec = new Base32();
byte[] encodedKey = codec.encode(secretKey);
return new String(encodedKey);

}

We implemented a customized QRC library that contains usernames and their
association information. Users only require facing their mobile devices with
the Authenticator towards the generated QRC. This will load the account
information automatically to the scanning device. The QRCs are presented
in portable network graphics with the size of 200 * 200 pixels (see Figure 6.4).

Listing 6.2: QRC algorithm

public static byte[] getQRCodeBytes(String user, String host,
String secret) throws UnsupportedEncodingException,

IOException,
WriterException {

// Format of the QR code
String chl = "otpauth://totp/" + user + "?secret=" + secret +

"&issuer="
+ host;

// Build a stream content to be loaded by user mobile
ByteArrayOutputStream stream =

QRCodeGenerator.qrCodeURLFormat(chl).
qrcodeStream();

6.4. IMPLEMENTATION 113

BufferedImage bufferedImg = new BufferedImage(100, 25,
BufferedImage.TYPE_INT_RGB);

// Build portable network graphics to be sent to user
Graphics2D g2 = bufferedImg.createGraphics();
ImageIO.write(bufferedImg, "png", stream);

return stream.toByteArray();

}

• Yubikey Accounts: To register a Yubikey account, the user enters the
personal security credentials and organization information. Platform register
such data in users, address, organization and yubikey tables in the credential
repository. The platform administrator will be able to see the new request
and issue an account according to the YOTP - a Yubikey implementation of
HOTP.

• Validation Request: After submitting a new account request (for both mo-
bile and Yubikey), a validation request is generated and sent to the email that
was provided during the registration phase. The validation email contains a
URL with a 64-characters random string. This URL contains the context, a
key/value pair indicating username and associated activation key. The user-
name in this URL is used for user lookup in the credential repository to vali-
date the code. For example, a validation email that contains a URL with a 64-
characters random string 40f65087-3712-442f-b859-9100c88be7d13b731b51-9400-
4ff2-938d-efbf that is appended to a POSIX compliant username (meb10002).
This 64-characters random string makes it nearly impossible for a spammer
or an attacker to register an account with someone else’s email address. We
set up a threshold so that if there are more than a certain number of false
attempts to validate an email address, the account request will be marked as
spam. When the user clicks on the validation link, the platform considers the
registered account as a valid request. This step makes the request visible for
an administrator to approve the new account request as a final decision.

• Account Recovery: Account recovery functionalities such as resetting for-
gotten passwords, compromised mobile accounts or lost Yubikey devices were
also implemented in the IAM system, as shown in Figure 6.9. Depending on
the issue for login to the platform, a user may select an option in such cases
when their normal password is forgotten or their mobile or Yubikey device is
compromised somehow. For the forgotten passwords, the user may reset the
normal password by supplying the answer to the security question that was
provided during the registration. After successful authentication, a tempo-
rary code is sent to the user’s email address and after the first login to the
platform, the user is required to change the password for security reasons. If
user’s mobile device is compromised, after authenticating the user with her

114
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

normal password, a temporary random code is generated, as shown in Listing
6.3. This random password is sent to the user’s email. This code is required
to be entered in the account recovery window by the user.

Listing 6.3: Random Password Algorithm
public static String getRandomPassword(int length) {

String randomStr = UUID.randomUUID().toString();
while (randomStr.length() < length) {

randomStr += UUID.randomUUID().toString();
}
return randomStr.substring(0, length);

}

The platform invalidates the previous account information. In this way, an
adversary will not be able to use the compromised credentials. After valida-
tion of the temporary code, the platform issues a new QRC to be scanned by
user’s mobile Authenticator and set up a new account. Figure 6.9 presents
the account recovery functionalities.

Figure 6.9: Account recovery options to be selected for reseting the users accounts

• User Provisioning: Upon login to the platform, administrator roles will be
notified of the new requests through an alarm window. The alarm window
redirects the administrator to an associated functionality (see a list of options
in Figure 6.10).
The administrator may decide to activate or delete new requests in case of
being spam accounts. The administrator can verify the identity of requests

6.4. IMPLEMENTATION 115

Figure 6.10: Accounts management functinoalities to add/remove roles or changing
the users status

in several ways based on the supplied information by the user. Figure 6.11
shows how an administrator enables a new mobile account.

Figure 6.11: Activation of new incoming user accounts requests

116
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

• Profile Information: As shown in Figure 6.12, the user may change the
personal information, address, organization, password, security question or
terminate the account. The personal, address and organization information
can be changed in place using the Primefaces methods.

Figure 6.12: User’s profile with the functionalities to change information, security
credentials or terminate the account

Other functionalities such as changing security credentials or account termi-
nation require multiple steps that we reduced as much as possible for usability
reasons. Because users may get bored by interacting frequently through click-
ing and browsing different pages. Even we further explored the possibility to
replace the whole profile interactions to be implemented in AngularJS. Fig-
ure 6.13 shows different functionalities that are available to users for changing
their credentials using the preliminary JSF implementation.

• Role and Access Entitlement: When users are activated in the platform
there may be the demand to change the roles within the organization or block
or deactivate accounts for any reason. These functionalities have been imple-

6.4. IMPLEMENTATION 117

Figure 6.13: Steps to change password, security question or terminate the account
in the user’ profile

mented, as shown in Figure 6.14. The administrator can select a user and
then a list of user’s existing roles, status, last login to the platform (including
IP addresses/ browser, and OS type) will be displayed. The administrator
may decide to add or remove more roles or change the status accordingly.
This information will be displayed for each view using JSF ViewScoped that
is valid for each page navigation.

6.4.3 Custom Authentication Realm
The implementation of the authentication systems contains a custom realm that
extends the existing Glassfish JDBC realm. For this purpose, we implemented a
plugin module called CauthRealm that contains two main components for au-
thenticating mobile and Yubikey users. This module supports TOTP and YOTP
methods according to the BioBankCloud authentication demands. Algorithm in 6.4
is the implementation of authentication functionality that intercepts the incoming
events from the REST login calls from the LIMS GUI.

Listing 6.4: Authentication of users in the Customized Realm

public String[] authenticate(String username, String password) {

118
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Figure 6.14: Adding/removing roles or blocking/activating/deactivating user ac-
counts

String[] groups = null;
// check if Yubikey login request
if (password.endsWith(AuthenticationConstants.YUBIKEY_USER_MARKER)) {

// extract the actual YOTP
String hpwd = password.substring(0, password.length()

- AuthenticationConstants.YUBIKEY_USER_MARKER.length());
// authenitcate the request
if (isValidMobileUser(username, password) ||

isValidYubikeyUser(username, hpwd)
) {

groups = findGroups(username);
groups = addAssignGroups(groups);
setGroupNames(username, groups);

6.4. IMPLEMENTATION 119

}

}
return groups;

}

Figure 6.15 shows the login page for user authentication.

Figure 6.15: User authentication login page

Mobile Authentication. A mobile user needs to install the Authenticator
App. The supplied credentials will be validated in the backend using the Mobile
OTP validator. For this purpose, the received OTP will be decoded using the
Base32 encoding of the symmetric secret key in the users table. We apply a vari-
ance, i.e. 5 seconds for the code verification. The verification method loads the
HMACSHA1 secret and decrypts the OTP for verification.

Yubikey Authentication. A Yubikey user inserts the token into a USB and
then pushes the button to generate an OTP. For every attempt, a new code is
generated as below, where the first 12 characters fifjgjgkhchb resemble the public
identity of the Yubikey token. The OTP part comprises 128-bit AES encrypted in-
formation of 32 characters with Modhex encoding. This encryption is done through
the embedded symmetric AES key of the Yubikey device.

• fifjgjgkhchbirdrfdnlnghhfgrtnnlgedjlftrbdeut

• fifjgjgkhchbgefdkbbditfjrlniggevfhenublfnrev

• fifjgjgkhchblechfkfhiiuunbtnvgihdfiktncvlhck

Our validation module converts the received string to a byte string to be de-
crypted using the symmetric 128-bit AES key. This will be fetched from the cre-
dential store (yubikey relation in Listing A.1). Then the string’s checksum will be

120
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

checked and if not valid, the OTP will be rejected. As next step, the non-volatile
counter will be compared with the existing value in the yubikey table. If it is lower
than or equal to the stored value, the received OTP will be rejected. If greater
than the stored value, the received value is stored and the OTP will be validated.

6.4.4 Authorization
We implement the authorization system using the declarative security in the busi-
ness method of an enterprise bean class that specifies method permissions. To
enforce these rules, after successful authentication, the role information of the tar-
get user will be available for authorization of users. All users in the platform may
be assigned single or multiple roles as described in Table 6.2. Such information is
stored in the people_group relation, as illustrated in Appendix A.1.

Table 6.2: Implementation of the BioBankCloud roles

Group Name Group Description Identifier
BBC ADMIN Data Owner 1001

BBC RESEARCHER Users to run experiment 1002
BBC GUEST New users 1003
AUDITOR To audit the platform 1004
SYS ADMIN Platform administrator 1005
BBC USER Registered users in the system 1006

We specified the resources to protect, such as a LIMS URL or an EJB method,
and a logical role that has access to the resource in the standard deployment de-
scriptors (i.e., web.xml for the JSF modules or annotation for AnuglarJS REST
calls). Then we mapped the logical roles to enforce the permissions that were de-
fined in Table 6.1. For example, Listing 6.5 shows that only an administrator is
allowed to access the user management functionalities.

Listing 6.5: Logical role mapping in the deployment descriptor to enforce LIMS
permissions

<security-constraint>
<web-resource-collection>

<web-resource-name>User Management</web-resource-name>
<url-pattern>/security/protected/admin/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>SYS_ADMIN</role-name>
</auth-constraint>

</security-constraint>

6.4. IMPLEMENTATION 121

Furthermore, this authorization model can be extended to MAC or DAC to
support Hadoop job submission scenarios in multi-tenant environments, where a
DAC model is developed to assign members to a specific data set while protecting
RBAC model permissions [150].

Upon successful login to the platform, there is a policy decision point that
enforces the BioBankCloud roles. For example, if an auditor is authenticated, she
will be redirected to the auditing related functionalities. This is done in parallel
with a filter that we implemented to periodically checks the user roles and redirect
the HTTP requests to authorized resources accordingly.

6.4.5 Privacy and Ethical Settings
Privacy management includes functionalities to upload different consent forms and
ethical approvals.

Consent Forms: The platform accepts the following consent and ethical forms
that are uploaded by the data provider: Standard Information About Consent
(SIAC), Standard Research Project Approval (SRPA), and Standard Information
on Non-Consented (SINC) data. When this information is uploaded, they will be
visible to the administrator for final approval. We initially implemented the fron-
tend in Primefaces and JSF, however, we changed the GUI to AngularJS to meet
the platform requirements.

Figure 6.16 demonstrates the initial GUI of the privacy settings for a study called
BRCA. BRCA includes two BRCA1/BRCA2 genes that are associated with breast
and ovarian cancers. A data provider modifies the privacy settings of the BRCA
study that aims to sequence BRCA1/BRCA2 genes in a large cohort of women to
identify new pathogenic mutations. In this example, the data provider can change
the privacy settings through two panels: consent and audit. The consents (top
panel) contains interfaces to upload new consent forms or renew an existing consent.
On the right-hand side of this panel, the data provider updates the retention period.
The study owner who acts as a data provider can search audit trails in the audit
panel. There are filters in the audit panel to make it possible to search in audit
trails based on username, role, epoch, and action.

Retention Period: As shown in Figure 6.16, a data provider may update
the data retention period accordingly. We set the initial retention period to a
reasonable long period when data are uploaded by the user. However, this deadline
is demanded to be set by the data provider later. When the retention date is
passed, the administrator will be notified through the panel in Figure 6.19 to delete
the datasets by pressing the delete button. This event triggers a method in the
platform that removes the information from the HOPS data storage.

Ethical Approval: Each project has an ethical status that is approved by the
administrator when consent forms have been reviewed. To achieve this functionality,
we implemented the consent management panels as illustrated in Figure 6.17 to
allow fine-grained management of consents for each project. This implementation

122
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Figure 6.16: Controlling privacy settings including uploading consent forms or up-
dating the retention period of data by the data owner

also includes filtering of the information according to a specific project or consent
information.

Figure 6.17: Reviewing overall project status

Project or study consents are approved by an administrator who acts as the
platform manager and Ethics Board to ensure legal processing of genomic data.
Status of consent can be Approved, Rejected or Pending. For example, adminis-
trator role rejects consents without legal basis or informed consent to restrict data
provider and researcher roles for running experiments. Pending is another status
that indicates consent form is waiting to get approved by administrator role. Fig-

6.4. IMPLEMENTATION 123

ure 6.18 shows the consent management GUI for new consents that are in pending
state. Administrator is able to approve or reject them through the action buttons
column

Figure 6.18: Reviweing the new consents to be approved or rejected

When retention period of a study is expired, the administrator is notified through
the “Expired Studies” tab as shown in Figure 6.19. The administrator selects the
expired study and presses the delete button (the red button in action section).
This will remove all the data related to that specific study. However, for auditing
purposes, the platform keeps track of the study meta-data which cannot be used
for re-identifying of individuals.

Figure 6.19: Expired data sets to be removed by the administrator

6.4.6 Auditing
The auditing system is implemented using the JSF and EJB technologies of the
Java Enterprise Edition. We mapped the auditing related relations such as ac-
count_audit, user_logins, activity, projects, consents_audit and roles_audit. For
example, in Listing A.2, we show how account_audit relation has been mapped
to the roles related entity in the model layer. In addition, we developed several

124
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

managed beans view scoped and stateless EJB to store or retrieve the security re-
lated events. Listing 6.6 shows the implantation of creating audit events for role
entitlement by the administrator.

Listing 6.6: Example of creating role entitlement events in the database
public boolean registerRoleChange(Users user, String action, String

outcome, String message, Users target, HttpServletRequest request) {

// create an role audit event
RolesAudit rolesAudit = new RolesAudit();

// initialize the object with the event info
rolesAudit.setInitiator(user);
rolesAudit.setBrowser(AuditUtil.getBrowserInfo(request));
rolesAudit.setIp(AuditUtil.getIPAddress(request));
rolesAudit.setOs(AuditUtil.getOSInfo(request));
rolesAudit.setEmail(u.getEmail());
rolesAudit.setAction(action);
rolesAudit.setOutcome(outcome);
rolesAudit.setTime(new Timestamp(new Date().getTime()));
rolesAudit.setMac(AuditUtil.getMacAddress(AuditUtil.getIPAddress(request)));
rolesAudit.setMessage(message);
rolesAudit.setTarget(target);

// persist the info in the data layer
entityManager.persist(rolesAudit);

return true;
}

The audit panel is accessible for both administrator and auditor roles, as shown
in Figure 6.20. Through this panel, different auditing contexts can be selected to
generate custom auditing reports. The audit contexts consist of Roles Audit, Login
Audit, Account Audit and Project Audit.

Role Audit Context provides audit trails related to changing the roles of
users by administrator role (see Figure 6.21). For example, when a new account
is approved and is assigned a role by the administrator. Through this GUI, an
administrator or an auditor is able to generate audit reports for a specific username
in a period of time for different options such as login, logout, and registration.

Login Audit Context provides information related to user login, log out at-
tempts or registration. Figure 6.22 shows an audit report for all users’ logins events
during a specific period of time. The report can be filtered using different parame-
ters such as username, browser, OS, IP/MAC address, or outcome of the event.

Account Audit Context helps top generate audit trails for user accounts
modifications, such as password change, status change, and security question change

6.5. VERIFICATION AND VALIDATION 125

Figure 6.20: Audit panel accessible for administrator and auditor roles

Figure 6.21: Role access and entitlement events audit panel

(see Figure 6.23).
Project Audit Context provides fine-grained audit reports for studies be-

longing to different projects in the platform. Figure 6.24 shows the audit report for
the registered studies. The Auditor specifics the study name which is an optional
parameter, in addition to start and end dates of an action.

6.5 Verification and Validation

The verification and validation of our proposed solution included extensive testing,
dynamic analysis on the executing codes and fuzzing to highlight coding errors and
the potential security bugs. Additionally, we involved the end-users in assessing
the actual platform and expressing their expectations. In summary, following steps
were carried out.

• Fuzz Testing: We examined different scenarios where unexpected data were
given using WebScarab [212] which is a popular open source web security

126
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

Figure 6.22: Auditing the login events of users

Figure 6.23: Auditing of account management activities

application testing tool. Using WebScarab we managed to intercept and alter
both HTTP and HTTPS requests header fields and web server responses
for different functionalities in the IAM, authentication, auditing and privacy
control. For example, testing the session identifier strength (cookie values
over time), altering the encodings such as Base32, initiating SQL injection or
XSS attacks that are included in the full-featured interface of WebScarab.

Adversarial attacks such as cookie-theft, session hijacking or SQL injection or

6.5. VERIFICATION AND VALIDATION 127

Figure 6.24: Auditing project information including based on several parameters
such as the study name, date of access and username

XSS were denied due to the strong support from Java Enterprise Edition that
enabled us to encrypt the sessions and cookies or enforcing security through
the EJB API that makes SQL injection almost impossible. However, we didn’t
perform any DNS cache poisoning or network-level DoS attacks because our
focus is to ensure security on layers above infrastructure (PaaS and SaaS).

• Authentication: To ensure that authentication requirements are always en-
forced we performed several test scenarios to bypass the two-factor authen-
tication system through direct page requests, reusing expired sessions after
30 minutes or brute-force attacks which were not succeeded. Also, we tested
the “remember me passwords” for being stored in a cookie. We ensured that
such credentials or QRCs are not stored in the browser’s cache.

We also examined the strengths of our pre-generated security questions and
elaborated not to choose fairly simplistic questions that can lead to insecure
answers. For example “What is your favorite singer?” or “What is your
favorite car?”. For this purpose, we started guessing answers to such questions
through brute-forcible answers. However, the security framework is able to
block the accounts after a fair amount of wrong answers (in our case we
decided 5 incorrect answers).

Resetting passwords or account recovery options were also tested at this stage.
The security framework sends a verification code to the user’s email to be
entered for account recovery. The framework allows only a specific number
of attempts and after it blocks the account. To avoid DoS attacks we allow
users with valid credentials to activate their blocked accounts due to false

128
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

attempts.

• Authorization: Verification of the authorization system included defining
single-role and multi-role test cases, where users with lower predigest access
attempted to perform tasks with higher role permissions. For example, a
simple researcher to perform administrative tasks or access functionalists of a
data provider that were prohibited by our policy. Our authorization system
in the server-side was able to deny such attempts and enforce the required
permissions.

• Information Disclosure: We published our source code under the Apache
version 2 License in Github and consider several security issues when de-
ploying the framework in real infrastructures. We did an analysis to ensure
the published source code, log files or documentation will not pose any risk
on the security credentials or sensitive information. All communications in
the public networks are encrypted over TLS/SSL channels. Internals of the
BioBankCloud are protected inside an isolated network behind the firewall to
minimize the eavesdropping through the man-in-the-middle attacks.

To validate our implementation we deployed the security framework in a private
cloud that was provisioned using Chef/Karamel. We then tested all the function-
alities we discussed in this chapter and could improve any possible defects.

The security framework was presented in several workshops and training events
for bioinformaticians, biobankers, data scientists and administrator. All users were
able to successfully create accounts and run their experiments on the platform.
Despite the rigorous development of smartphones in our daily lives surprisingly
there were approximately 40% of workshop participants preferred to use Yubikey
for authentication due to more simplicity.

Feedbacks from workshop participants and also other users motivated us to
improve the GUI for a more efficient and trendy framework using AngularJS. As
we discussed throughout this chapter we have started re-implementing several func-
tionalities in AngularJS that have direct interaction with users, which is an ongoing
research25.

6.6 Discussion

This section describes how our implementation of the key privacy requirements of
the BioBankCloud from the previous chapter complies with the DPD. We provided
technical and non-technical measures, in addition to organizational safeguard for a
privacy-preserving cloud platform that handles genomic data within the EU’s juris-
dictions. For each category of the privacy requirements, we provided the following
solutions.

25https://github.com/hopshadoop/hopsworks

6.6. DISCUSSION 129

• Lawfulness: To ensure lawfully and legal processing of genomic data in the
BioBankCloud, we require evidence including informed consent, ethical ap-
proval and other evidence that provide ground for the lawfulness of activities.
Such proofs and documents can be uploaded in the privacy settings menu
per-study or project as described in Section 6.4.5.

• Informed Consent: During the registration process, users are required to
read and accept the ToS of the BioBankCloud that clearly states the platform
responsibilities and user rights individually. This ToS declares what happens
to genomic data and what responsibilities are on each party. This feature is
implemented on the account registration page as discussed in Sections 6.4.2.
Further, our solution includes renewing different categories of consents that
are defined in Section 6.4.5, granularly for each study or project.

• Purpose Binding: The BioBankCloud administrator monitors the activi-
ties of the researchers and will ensure that experiments are according to the
consent and ethical approval information. In the BioBankCloud, administra-
tor or data provider are able to monitor the researcher activities through the
project audit context (Section 6.4.6) to ensure data is only used according to
the original purposes defined in the provided contracts.

• Data Minimization: The BioBankCloud platform stores genomic data for
the defined period of time demanded by the data provider. The platform will
erase all expired data after pre-defined retention periods, that are set by data
providers (see Figure 6.19). This feature also ensures the principle of being
forgotten in the event of a removal request by the data provider.

• Data Accuracy: Users and data providers are able to modify and update
their data and erase what is believed to be inaccurate information. For exam-
ple, through removing a study, uploading new consents, or modifying personal
information (Section 6.4.5).

• Transparency: The BioBankCloud platform maintains a transparent pro-
cessing of the genomic data, where users are clarified about the physical han-
dling of the data till fine-grained access by other authorized researchers. Users
are able to get evidence on their data usage as discussed in Section 6.4.6. Any
changes in the data processing procedures or platform and regulations will be
immediately propagated to the users. In addition, we will notify the users
upon any privacy breach or unauthorized access to their data.

• Data Security: We implemented several strong security measures such as
two-factor authentication and using encrypted HTTPS channels to ensure
confidentiality. We used encrypted sessions in JSF, secure cookies in the
AngularJS frontend, input validation to prevent SQL injection attacks prior
to forwarding the user requests to the backend. In addition, we deployed an
RBAC control so that different roles with different permissions are able to

130
CHAPTER 6. DESIGN AND IMPLEMENTATION OF THE SECURE

BIOBANKCLOUD

perform their tasks without any conflict to ensure the integrity of data. The
security implementation details are described in Section 6.4.

• Accountability: We proposed organizational safeguards through Service Or-
ganization Controls (SOC1) reports [206] in addition to providing internal
auditing for administrator and auditor roles. Administrator and auditor roles
are able to generate audit reports for different contexts for data access and
usage of data and access management (Section 6.4.6).

6.7 Summary

This chapter discussed the implementation of the BioBankCloud as a platform that
supports scalable processing of genomics analysis. The CPTM is applied to identify
the privacy requirements of the DPD to be deployed in the BioBankCloud security
framework.

The security framework includes a role model for sharing genomics data among
different participants. The proposed framework lays out the privacy requirements
of the DPD through implementing various technical countermeasures and organi-
zational safeguards to prevent or mitigate effects of the identified threats.

We believe this work empowers the BioBankCloud to be run by a trusted cloud
provider within the EU’s jurisdiction for processing and storing sensitive genomics
data.

Part III

Trustworthy Privacy-Preserving
Cloud Models

131

Chapter 7

Privacy-Preserving Data
Publishing for Sample Availability
Data

This chapter is mainly based on publication VIII and it presents an architecture
that provides privacy-preservation for sample availability data across multiple data
providers.

7.1 Introduction

Over the last number of years, valuable data has been accumulated in many healthcare-
related databases throughout the developed world. By definition, these repositories
contain sensitive medical data, which are fragmented depending on the type of clin-
ical and research activities. Although it would be technically possible to merge the
different data silos into a central database that could be queried by medical experts
and researchers alike to allow for new insights previously thought impossible, the
security risks of doing so are unacceptably high. Therefore, there is need to some-
how combine the data from different databases, i.e., Bob’s study DB and Alice’s
study DB in a way that minimizes the risk of exposing sensitive personal data.

In its simplest form, a use-case for the combined databases would be the follow-
ing. Two databases are given: Bob’s DB and Alice’s DB. The Bob’s DB contains
entries of people who have some samples deposited related to their illness and are
potentially eligible for research purposes. Alice DB is also a list of persons, along
with their record of hospitalization and treatments they were subjected to. Both
databases contain personal information, such as name, birth date, and the Personal
Identifier, which uniquely identifies them in the database. The proposed identifier
can be used to link the different records in the different databases, but there is
the obvious need to provide anonymity for the patients. While the combination
of the information contained in different databases is extremely useful for research

133

134
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

purposes, the actual information used to identify each individual is not essential for
the studies to be performed by the investigators themselves.

Existing sample availability systems, such as [165] provide individual level in-
formation on the availability of specific data types within a collection, not across
foreign collections. That is, researchers are not able to cross-link (similar to an
equality join in SQL) data from different outside studies, as the identity of the
samples is completely anonymized. However, researchers would like to discover
correlations between individuals in different studies, and this is not possible in the
existing systems.

In this chapter, we present a privacy-preserving system for publishing availabil-
ity data about samples from patients to address the limitations of existing solutions,
which allows researchers to cross-link sample availability data from different med-
ical study databases while preserving the privacy of the patients. To this end, we
build an anonymization toolkit to anonymize and measure the re-identification risk
of the sensitive data to be published, while cross-linking queries can be executed
by the researcher.

The structure of this chapter is as follows. Section 7.2 describes the privacy-
preserving data publishing approaches. In section 7.3, we introduce the pseudonymiza-
tion data model for personal identifiers. In section 7.4, we define the threat model
including main threats to the privacy of the sensitive data. Section 7.5 presents an
architectural overview of our solution and implementation details. Finally, section
7.6 summarizes our findings.

7.2 Privacy-Preservation Mechanisms

Dalenius [213] defines privacy-preservation as:
“access to the published data should not enable the adversary to learn any-

thing extra about any targeted victim compared to no access to the database, even
with the presence of any adversary´s background knowledge obtained from other
sources.”

To anonymize the data, several statistical disclosure control techniques can be
applied to achieve privacy-preservation through anonymity, such as k-anonymity
and `-diversity. This anonymity model ensures privacy-preservation in record and
attribute linkage.

• Record Linkage: Sweeny [68] proposed k-anonymity as a model for privacy
preserving of QIDs. The k value is the minimum number of the records in a
table that have similar QIDs. This notion of k records in a group reduces the
risk of re-identification of a participant to the probability of 1/k. However,
k-anonymity is weak regarding the background knowledge of the adversary
about a victim [72].

• Attribute Linkage: To overcome the limitations of k-anonymity, we use
`-diversity [72] as an extra privacy measure to protect the anonymity of the

7.3. OBSCURING THE KEY ATTRIBUTES 135

individuals from re-identification through the adversary’s background knowl-
edge. The value of ` defines, at least, ` “well-represented” sensitive values in
the table to reduce the confidence of inferring a sensitive attribute within a
group. Entropy (E) of the entire table must hold E > log(`) to ensure every
distinct QID block, at least has ` distinct values for the sensitive attribute.

7.3 Obscuring the Key Attributes

Data anonymization methods remove PII of patients, helping to reduce the risk
of patient re-identification when patient data is used for research purposes. Re-
searchers often want to cross-link different sample databases, for example, to dis-
cover correlations between different studies. For cross-linking, a PII could be used to
link the individuals to their original records, however, using the original PII allows
for patient re-identification. Pseudonymization is an alternative approach, where
the PII are not stored in their original format, but cross-linking sample databases
are still possible. There are two well-known pseudonymization schemes: to build
a database to store mappings of the PIIs-to-pseudonyms or using cryptographic
mechanisms applied to the pseudonyms [214].

Our proposed pseudonymity model to extract and obscure the key attributes
using a two-level mechanism that maintains the possibility of joint queries over
anonymous records in different collections.

We assume that our data model as a sample table (T) of a population, frag-
mented as PIDs, QIDs, sensitive and non-sensitive attributes: T (PID, QID, Sensi-
tive, Non-Sensitive). A QID can be considered as a combination of attributes that
can be linked with external information to re-identify an individual i.e., ZIP code,
date of birth and gender [4].

7.3.1 Hashing and Encryption
To de-identify the records, we use the Secure Hash Algorithm (SHA-3) [215] to
convert the PIDs to irreversible pseudonyms. To add another level of security, the
de-identified records will be encrypted using the AES [216] with an embedded key
in a slot of a Yubikey device that is distributed off-line to the data providers.

As an example, assume in Sweden, a personal number (Swedish civic registration
number) is a 10-digit PIN issued by the National Tax Board for all residents in the
country. The personal number or PID is structured in three parts: date of birth, a
three-digit birth number, and a check digit. The date of birth construction contains
two digits each for the year, month, and date of birth, i.e., 610514. This is followed
by a three-digit birth number (i.e., 323) and a check digit (i.e., 4), as shown in
Figure 7.1. The birth number value will be a number between 001 and 999, where
the last digit is also used to indicate the gender, with men were given an odd
number and women an even number.

Figure 7.1 illustrates the two-level mechanism, where SHA-3 de-identifies a
Swedish PID and AES encrypts the pseudonymized (PPID).

136
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

Figure 7.1: PID pseudonymization through a two-level hashing mechanism to pro-
vide the functionality for joint queries over different data sources.

7.4 Threat Assumptions

To ensure privacy protection through the proposed data model discussed in section
7.3, we define a threat model to declare the possible attacks and security breaches
that cause loss of confidentiality and integrity of the data. The main threats to our
data model, are mainly due to cross-linking of the data sets with the de-identified
PIDs that are not fully anonymized. Hence, we use an integration server, that can
be considered as a safe third-party server behind a firewall that will be updated reg-
ularly with the patches and libraries, with restricted access to only administrative
staff to ensure sufficient security and reliability.

7.4.1 Inference Attacks
If a malicious adversary has access to both unencrypted anonymized data stored
by the TTP and the key to pseudonymize the PIDs, then the adversary will be able
to make inference attacks through linking the victim’s generated hashed personal
identifier to the data acquired from the integration server i.e., through dictionary
attacks. To mitigate the likelihood of such threats, all published data will be stored
encrypted with the TTP’s private key.

When a researcher issues join queries over different databases, inference attacks
become possible. For instance, issuing a query containing a small number of par-
ticipants to find out, whether a specific person is available in any of the samples

7.4. THREAT ASSUMPTIONS 137

that are published on the integration server. As a countermeasure, the integration
server will not accept queries less than N number of participants.

7.4.2 Malicious Sample Publication

We assume that sample data providers are trusted bodies and that biobanks or
other parties publish correct data sets to the integration server. But, a malicious
or incorrect data provider could publish incorrect data sets either intentionally or
by mistake. To reduce the effects inaccurate disclosed data, our system will keep
track of the registered data and provide a flexible approach to remove the stored
data.

7.4.3 Audit and Control

The TTP stores the audit trails and log files securely, to enable data providers
to audit access to their data by the users. To ensure the integrity of the audit
trails, our system encrypts the audit logs and information using AES symmetric
keys stored in the integration server key store.

7.4.4 Server Private Key Compromised

If server’s private key will be compromised or stolen by an adversary, then the
server’s public key and associated private key should be revoked. In such a case,
data providers should be notified about the incident and the anonymized datasets
in the server’s database should be re-encrypted with the server’s new private key.

7.4.5 Ethical Constraints

The usage of the system to issue and get results of the joint queries should be
considered as a potential threat to the purpose of the collected data samples in
the integration server. For instance, if a researcher uses the information for other
studies that are out of the scope of the agreed framework.

7.4.6 Static Passwords

The Yubikey static passwords are vulnerable against a keylogger that records keystrokes
by a user. The information collected by a key logger usually saved as a file or sent
directly to third parties. Because of the Yubikey function, as a USB keyboard, it
will be possible for a keylogger to intercept the text stream when in static mode.
Therefore, users should be aware of underlying platforms and as a good recommen-
dation use their local PCs to reduce the risk of password thefts.

138
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

7.4.7 Query Reply Limitation
The final results of a query will be a set of records, combined within a table that is
generated by the TTP. Though the combined table contains only the anonymized
data but uniqueness of the entries in the intersection of different tables might raise
the re-identification risk of the records through inference attacks. As a counter-
measure, the TTP will check the anonymity of the combined table and will apply
another level of minimization to ensure at least k-anonymity with the value of
k = 3.

7.5 Design and Implementation

7.5.1 Scenario
Assume eCPC is a medical research center with the aim to develop a modular system
for prediction of cancer initiation and progression using modeling and simulation 1.
An important part of this ambition is to integrate data from different sources, such
as biobanks containing data about samples, and clinical health registries (quality
registries) containing information about patients and their diseases, treatments,
and outcomes. This integrated data can then be used in subsequent modeling and
simulation efforts. A key concern in medical data integration is the acceptance and
participation of data providers.

We present a first step in the data integration on sample availability data, which
lowers the barriers for data providers to participate. To this end, we developed a
toolkit, illustrated in 7.2, that pseudonymizes sample availability data and then
securely publishes the pseudonymized data to an integration server that can be
queried by researchers (including support for cross-linking queries).

In order to ensure the privacy of sensitive patient data, the eCPC toolkit applies
the guidelines for safe microdata, outlined as follows.

• The eCPC toolkit removes all explicit identifiers, and it will extract and de-
identify all the PIDs, as described in Section 7.3.

• Then it categorizes the remaining attributes to determine the key variables
according to both legal requirements and domain specific judgments, which
may be subjective. Key variables might also be split into further categories
according to the level that they are identifying.

This distinction is useful when prioritizing which variables need to be modified
to enhance safety: more identifying keys are modified first for observations
that have a considerable high risk. This graded approach allows for better
data quality preservation and, therefore, higher data utility.

1http://www.e-science.se/community/eCPC

7.5. DESIGN AND IMPLEMENTATION 139

Figure 7.2: The eCPC toolkit design based on the privacy-preserving data publish-
ing methods to upload the pseudonymized data to an external trusted third-party
service.

• When key variables have been identified, the re-identification risk needs to be
assessed. This is done by looking at the uniqueness of the observed entries
through frequency counting and calculating probability estimates based on
extrapolating models taking population frequencies into account.

• Entries that stand out from the rest and, therefore, have a considerable risk
to be subject to re-identification are then modified. Numerous modification
algorithms exist, namely generalization or global recoding and local suppres-
sion of outstanding values, swapping, rank swapping or perturbing with post
randomization – not to be confused with randomized questionnaires when
collecting data, hence the name post randomization. The methods to be ap-
plied depend on the nature of the variables, whether they are categorical or
continuous, their structure such as significance order, hierarchy, geography,
semantics and the size of the dataset in question. Each algorithm applied is

140
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

recorded in a logbook for the analyst’s documentation, i.e., the nature of the
added noise, if any.

• The re-identification risk has to be measured again and the information loss
has to be evaluated. If the risk is deemed acceptable and the quality of the
data remains adequate, then the resulting microdata can be considered as
safe. If not, the previous step needs to be repeated.

• Finally, the data provider i.e., biobank or quality registry, publishes the
pseudonymized data sets to the integration server.

7.5.2 Integration Service
The eCPC integration service provides a SaaS model in a private trusted cloud in-
frastructure using the Java Enterprise Edition, as shown in Figure 7.3. Researchers
can visit the main page of the eCPC service and then they will be asked to au-
thenticate to the system through TLS/SSL encrypted channels to protect their
credentials from eavesdropping attacks. Users are authenticated using container-
supported application-level authentication provided by the web application server.

Figure 7.3: Overview of the eCPC integration server that is protected with firewall
to filter the ingoing/outgoing traffic.

As Figure 7.3 demonstrates, the integration server consists of three main com-
ponents: security enforcement, integration engine, and REST Web services API.
The security enforcement component handles the security related tasks using en-
cryption/decryption of the data sets, log files, user’s authentication and auditing
processes through the Java Enterprise Edition application server. The integration
engine deals with query processing and joins over different data sets. The meta-
data service, as a part of the integration engine, provides all available attributes

7.5. DESIGN AND IMPLEMENTATION 141

from each data source that can be selected by the researcher when issuing a query.
The REST Web services API receives incoming requests from the eCPC clients
behind the firewall. We set up a firewall2 in a Linux server VM to filter the traffic
between the internal and external zones through the HTTPS connections in the
eCPC integration server.

In a typical usage scenario, a researcher authenticates via a web page with the
web application server and after successful authentication, she will be redirected to
a web page where she can issue queries. This is enforced through a RBAC model
with the following roles.

• Administrator: Provisions or provisions users in the system and manages
access to multiple datasets

• Data Provider: Uploads or deletes datasets to the integration server through
secure channels

• Researcher: Issues cross-linking queries to the authorized data sources

We preliminary designed a solution to store the data sets in a MongoDB but for
re-usability and interoperability purposes with the Java Enterprise Edition middle-
ware, we decided to use the open-source MySQL database as backend. This design
choice enabled us to re-use as much as possible from the BioBankCloud project for
authentication, authorization or auditing in the service. This way, researchers can
browse available data sets and select attributes of datasets for cross-linked queries
(see Figure 7.3). For example, a researcher might search for cross-linked samples
in the prostate and diabetes quality registries by issuing a query like: “how may
samples are available for patients who have had both prostate cancer and diabetes
and have a BMI greater than 30”. The join will run over different data sets. As
our queries are executed at application-level, we can still join across encrypted data
sets by decrypting the contents of each data collection on the fly using the server’s
private key, stored in a secure key store.

The integration server also stores the logging events in a separate database by
encrypting them using AES 256-bit symmetric keys, where keys are stored securely
in the key store. When data providers wish to know about the access to their data in
a specific period of time, the auditing component retrieves the logs associated with
the data published by the owner and sends back the results to the data provider
through a REST API component.

7.5.3 Secure Data Management
In order to deploy a secure solution to store the pseudonymized published infor-
mation on the integration server, we used public key certificates for encryption/de-
cryption of the data sets. Although our data providers typically store their data

2https://help.ubuntu.com/lts/server guide/firewall.html

142
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

sets in relational databases, the analysis of that data is typically carried out on
Comma Separated Values (CSV) files. As such, the main data format used for
publishing data is a CSV file. The integration server provides an X.509 public key
certificate to the client for data encryption, prior to data publishing. Figure 7.4
illustrates the data encryption/decryption process, where a data provider encrypts
its CSV files with the server’s X.509 public key, and the integration server decrypts
the uploaded data on-demand using its private key.

A limitation imposed on us by public key certificates is that the length of in-
dividual fields cannot exceed a size determined by the server’s public key size, i.e.,
512 bytes for a 4098-bit public key. However, this is not a problem for our toolkits
as all fields are significantly smaller than 512 bytes.

Figure 7.4: Public key encryption of the large sensitive data sets using the TTP´s
private key.

The data management component (Figure 7.2) uses JDBC to export sensitive
data sets from a relational data source to CSV files for pseudonymization. We
implemented JDBC because the majority of data providers use clinical data in
structured formats. However, the toolkit allows the data provider to upload CSV
files if not provided by a relation storage. The data sets are then securely pub-
lished to the integration server via a REST API running over HTTP on top of the
TLS/SSL protocol, preventing eavesdropping attacks.

7.5.4 Data Pseudonymization and Anonymization
The eCPC toolkit leverages microdata protection through anonymization algo-
rithms implemented by k-anonymity and `-diversity. Although the microdata as

7.5. DESIGN AND IMPLEMENTATION 143

a whole is pseudonymized, we leverage existing data anonymization algorithms to
anonymize sensitive attributes in the microdata. We now describe the anonymiza-
tion phase in our pseudonymization process. A data provider selects a CSV data
set that is generated from a relational database and defines the key and sensitive
attributes to be anonymized. For this purpose, the CSV toolkit visualizes the meta-
data of a specific CSV file, as shown in Figure 7.5.4, to enable a data provider to tag
attributes as sensitive, key or non-sensitive. We implemented our solution based
on sdcMicro [171] that provides R-based API for both data anonymization and risk
estimation. As our toolkit is implemented in Java, we ran sdcMicro in batch-mode.
We did not find any existing anonymization toolkits, i.e., µ-Argus [170] or UTD
Anonymization Toolkit [172] that supports both the calculation of re-identification
risk and our anonymization algorithms, k-anonymity and `-diversity, in a platform-
independent approach. Moreover, the R Java environments such as Rcaller3 and
Renjin4 were not stable enough to run our sdcMicro tasks.

Figure 7.5: Anonymization of the sensitive data using sdcMicro library.

When a user presses the “Anonymize” button, two things happen: the PID is
pseudonymized and the key attributes are anonymized. Afterward, the user ensures
that `-diversity is satisfied by setting the `-diversity value and pressing the relevant
button.

The pseudonymization process converts PIDs using converted by the SHA-3
function, as described in Section 7.3.1.

3RCaller, A library for calling R from Java, http://code.google.com/p/rcaller/
4Renjin, a JVM-based Interpreter for the R Language for Statistical Computing,

http://code.google.com/p/renjin/

144
CHAPTER 7. PRIVACY-PRESERVING DATA PUBLISHING FOR SAMPLE

AVAILABILITY DATA

The pseudonymization process reads the embedded key in the Yubikey device
to be used by the AES encryption function prior to data publishing.

The anonymization phase provides the user with visual feedback in the form
of a chart containing the number of suppressions for each sensitive attribute. An
example of such a chart given in Figure 7.5.

Anonymization will result in attribute values being suppressed when either k-
anonymity or `-diversity constraints are not met. Our toolkit enables data providers
to iteratively change the values of k and ` to minimize the number of suppressions
for a desired re-identification risk level. The actual implementation of k-anonymity
and `-diversity are presented in Appendix B: Listing B.1 and Listing B.2.

7.5.5 Re-identification Risk
The purpose of the re-identification risk estimation process is to enable the data
provider to measure the re-identification risk of anonymized sensitive attributes as
a result of the data anonymization process (see Section 7.5.4). The eCPC toolkit
allows the data provider to select the sensitive attributes for risk calculation (see
Listing B.3 for the actual implementation). The risk measurement diagram of
Figure 7.6 demonstrates different levels of risk for different individual records. In
this example, 43 out of 100 records will be re-identified with the risk of r ≤0.1.

If the risk levels are deemed to be unsafe, the data provider will repeat the
anonymization process with different values of k and ` until the risk is considered
to be acceptable.

7.5.6 Auditing Process
Our integration server supports researchers issuing queries for data availability from
different data sources. In order to reduce the threat of malicious queries, we securely
audit queries, identifying the queries that have been issued, by whom, and when.
The eCPC toolkit client (a Java GUI) uses a REST API to allow data providers to
download an audit trail for the queries that accessed their data source. For each
query, the audit trail includes the name and institution of the requester, date of
access, the purpose of the study, the IP address of the host that issued the query,
and the actual query. Data providers can use this information to infer whether
there has been a breach of privacy, and who was responsible for that breach. The
audit trails can also be used to determine when a researcher is executing a brute
force attack on the data sets.

7.6 Summary

This chapter introduced a privacy-preservation publishing toolkit that supports
the secure publishing of pseudonymized data sets to an integration server by data
providers and audited querying of the data sources by researchers. Our toolkit in-
cludes a secure de-identification mechanism for publishing pseudonymised patient

7.6. SUMMARY 145

Figure 7.6: Individual risk estimation of the pseudonymized data using sdcMicro
library.

identifiers through a two-level hashing mechanism, as well as tools to anonymize sen-
sitive clinical data using k-anonymity and `-diversity algorithms. Our toolkit also
estimates the re-identification risk for individual records, providing data providers
with feedback for configuring the k-anonymity and `-diversity parameters. Data
providers can encrypt their large data sets using the public key certificate of the
integration server for additional security. We also securely audit queries, helping
to reduce the risk of misbehavior by researchers, and enabling subsequent identifi-
cation of rogue users.

Furthermore, we proposed a solution that allows researchers to access mul-
tiple data sources to run cross-linking queries to get insight into diseases. The
proposed architecture contains several modules for secure access to storage of en-
crypted datasets through RBAC. There is also an auditing module designed to
provide evidence of data access and platform usage to the interested participants
such as data providers or other external auditing entities.

The eCPC toolkit is designed to support anonymization of clinical structured
datasets. There are scenarios that involve usage of sensitive medical data with
other data types such as brain imaging. Next chapter outlines a privacy-preserving
for brain imaging data.

Chapter 8

Privacy-Preserving Brain Image
Analysis in the Cloud

This chapter is mainly based on publication IX and it presents a privacy-preserving
SaaS cloud that provides scalable analysis of brain images datasets.

8.1 Introduction

Functional neuroimaging has been used to study a wide array of psychological traits,
including aspects of personality and intelligence. Cloud computing as an enabling
technology helps to eliminate the barriers such as restricted resource scalability
imposed on researchers by the existing systems in the brain imaging area. Among
the most prominent of these concerns is the potential use of functional neuroimaging
to obtain personal information about individuals, i.e., correlation of personality,
attitudes, and intelligence.

Similar to the genetics or clinical data, brain images contain sensitive infor-
mation about the individuals that is demanded by privacy laws to be protected.
Different from such data type, brain images require different tools due to different
semantics and data formats. In this chapter, we apply anonymization and other
security measures such as authentication and authorization on the functional anal-
ysis of 3D brain imaging data acquired mainly from magnetic resonance scanners
so-called Functional Magnetic Resonance Imaging (fMRI).

We implement our prototype using GW on top of Microsoft Azure to bridge
the gap between PaaS and SaaS layers [32], since Microsoft Windows is used as
a de facto platform by many brain imaging research groups and individuals. The
prototype has been developed based on an open source toolkit called SPM1 which
utilizes MATLAB2.

1http://www.fil.ion.ucl.ac.uk/spm/
2http://mathworks.com/products/matlab/

147

148
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

The rest of this chapter is structured as follows: Section 8.2 describes how neu-
roscientists use SPM. Section 8.3 outlines the architecture of our prototype and the
functions of the main components, such as the application manager, job manager,
and data manager. Section 8.4 describe the security and privacy features of the
application. In Section 8.5, we describe the deployment, integration and implemen-
tation aspects of SPM on Microsoft Azure using MATLAB. Finally, Section 8.6
summarizes the findings from the development of the application.

8.2 Statistical Parametric Mapping (SPM)

SPM is one of the most popular toolkits in neuroscience for running compute-
intensive brain image analysis tasks. However, issues such as sharing raw data and
results, as well as scalability and performance are major bottlenecks in the “single
PC”-execution model.

The goal of the functional analysis of brain images is to find the parts of the
brain that are activated when people (subjects) perform certain tasks. Since the
signals that can be measured from the brain are noisy and there is considerable
variation between individuals, many subjects, and many images of each subject’s
brain, are required to get any statistically significant results from the analysis.
There are also several parameters that need to be varied during the analysis. This
means that the analysis normally has to be executed many times with different
hypotheses and parameters.

A typical study consists of hundreds to thousands of 3D images of each subject;
the resolution of a single image is normally in the order of a few mm which gives an
image size of several Mbytes. There are normally 10 to 100 subjects in each study,
and it usually takes over a day for a single analysis on a normal PC. Hence, there
is a need for scalable compute and storage resources.

A typical analysis of brain images generally consists of several steps as shown
in Figure 8.1:

• Re-align (compensate for subject head movement),

• Co-register (align structural and functional images),

• Normalize (transform to standard brain space),

• Segment (remove the skull bone etc. and leave only the brain),

• Filter (remove noise by low-pass filter), and

• Apply statistic methods, which normally use the General Linear Model (GLM).

After running all stages required for an analysis described in Figure 8.1, users
may try to make inference using different parameters in their model or do Bayesian
analysis or several other methods on the results. As an example, Figure 8.2 il-
lustrates results of estimation stage - the last process in Figure 8.1- to make an
inference by the user in a parametric approach.

8.2. STATISTICAL PARAMETRIC MAPPING (SPM) 149

Figure 8.1: Resulting activation map of an experiment

Figure 8.2: A series of stages to do an fMRI data analysis over N subjects (S1, S2,
. . . , SN) each subject i containing n images (IMGi,1, IMGi,2, . . . , IMGi,n)

150
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

8.3 Design

In order to make it easy for researchers to use the cloud, the proposed design focuses
on a system that would not require the end user to be aware of the complexity
of cloud computing or of any dependencies on GW libraries. It was important to
preserve the job execution style of SPM, so that users could run their brain imaging
jobs using the MATLAB command line. Thus, in our architecture, we opted for a
user-friendly interface, with minimal necessary dependencies on third party libraries
(to provide a secure communication channel between the GW endpoint and the
clients).

To enable users to communicate with and submit brain imaging tasks to the GW,
four main components are included in this prototype: a security management, an
application management, a job management and a data management, as illustrated
in Figure 8.3.

Figure 8.3: Architectural view of the ScaBIA in the Cloud

User requirements for execution of cloud-based SPM can be divided into three
major areas. Users need to be able to prepare the execution infrastructure without
experiencing difficulties caused by the cloud middleware. Secondly, the users need
to be able to execute their jobs and keep track of all submissions. Finally, users
need to be able to transfer and share data securely between the cloud storage and
their local hard disk over the Internet without encountering cross-organizational
restrictions introduced by the network services.

8.3. DESIGN 151

8.3.1 Security Management (SM)
The Security Management (SM) component ensures secure interaction of the user
and clients to the SPM instances in the server. To achieve this, the SM authenticates
the user with the STS and after successful authentication, the user presents the
issued security tokens along with other credentials to access the services such as
Data Management (DM), Job Management (JM), and Application Management
(AM).

The user and application credentials are defined by the data owner in the Mi-
crosoft Azure portal. For example, the data owner can act as the administrator
to assign permissions to users from a specific host which is identified through an
X.509 certificate to access and perform experiments on the brain images in the
cloud storage.

8.3.2 Data Management (DM)
Each SPM job requires hundreds of granular images that must be present for the
job execution. Therefore, we required an effective data transfer solution and also
had to be able to download results with names that humans could read. The DM
enables users to upload or download data results from/to their local hard disk, and
lets them rename data in the data storage. An excellent example can be a scenario
where the user completes the analysis stages (Figure 8.1) and wishes to download
the results locally to visualize the results within the SPM toolkit.

Furthermore, in a distributed environment which is typical for the research
world, since users are scattered among different organizations, the DM provides a
useful facility for sharing brain images between users and cloud applications. The
DM acts as a cross-boundary client enabling users to perform create, read, update
and delete (CRUD) operations. External users who wish to access the brain imaging
data can easily invoke the client independent of their geographical locations.

8.3.3 Job Management (JM)
To submit SPM jobs, the user provides a job description defining the arguments for
the job and their values, in addition to the SPM script created by the user through
the SPM GUI (which is the real job that will be executed). The JM compresses all
the brain images, together with the SPM scripts and job description, to submit to
the GW endpoint. GW job description API implements Job Submission Description
Language (JSDL) that is a specification to define submission aspects of jobs such as
job name, resource requirements and so on [217]. There are some scenarios where
data, such as brain images, are already stored in the data storage in the cloud and
there is no need to re-transfer the input data. For instance, Figure 8.5 shows a
situation where, in a chain of SPM tasks, the results from task N − 1 will be used
as input for a new task N . In such scenarios, the user only needs to use the JM as
a job submitter and provide the location of the input files within the data storage.

152
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

Figure 8.4: Job execution on a GW instance

Furthermore, the JM provides functions to check the status of submitted jobs
and to terminate jobs at any stage of execution. To check the status of jobs, the JM
periodically polls the GW with the job id returned from the earlier job submission
steps. Thus, the JM can notify the job owner when a job is completed. Moreover,
the JM is able to get the status of a list of jobs, or of all the jobs in the job table
that belong to a specific user.

8.3.4 Application Management (AM)

Prior to accepting any requests from users, the cloud environment, has to set up
any mandatory library and software. To successfully install an application in GW,
the AM packs all the files that are necessary for running that application into a
compressed file. The AM then creates an application description which defines
the command line execution format for the application. Next, the AM uploads the
application to the application repository that is based on the Azure blob storage. To
do this, the AM has to serialize the application description into an XML structure
that is uploaded to the application repository. Users need to remember the location
of both the application and of the description for job submission purposes. As
shown in Figure 8.4, the AM archives different user pre-requisites (for running a
library-dependent job) into a single zip-file and uploads it to the pre-defined cloud
storage.

8.4 Security and Privacy

To ensure confidentiality and integrity of brain images, strong authentication,
RBAC and anonymization mechanisms have been implemented in our architecture.

8.4. SECURITY AND PRIVACY 153

Figure 8.5: Installing the application requirements

8.4.1 Authentication

The GW operates in two modes: security with STS and security without STS. To
ensure that only authorized users are allowed to register applications and submit
jobs we used the security with the STS mode. We used the STS and added a
thumbprint of a Secure Hash Algorithm (SHA-1) 2048-bits certificate with key
exchange enabled in the Azure Portal.

We divided the certificates into two different categories: one for managing the
deployment and another for securing the endpoints. In principle, user certificates
are used when invoking commands to submit jobs to the GW or when establishing
secure channels and encrypted communication SSL/STS to the Microsoft Azure
platform, i.e., using management certificates for scaling the number of VMs running
at the same time. Another certificate is needed for managing the Azure deployment
for scaling the number of VMs. Azure uses PKI for managing the deployment. This
way, a public key is configured in the Azure portal and whoever has the private key is
able to manage the Azure resources. The users can obtain an X.509 certificate from
a trusted certification authority or create a custom certificate through OpenSSL.

Microsoft Azure includes another layer of protection for storage. Therefore,
users are required to create a storage account in the Azure portal. This will generate
a pair of storage primary and secondary keys. The primary key is a mandatory 512-
bits symmetric key (i.e., AD5052E7C5A41C1B8862071555E91A3E157DD2BD) that
will be used as the main authentication key. The secondary storage key is optional
to have and it can be generated independently from the primary key to act as a
backup with similar access rights. A designated host with a management certificate
is allowed to add or remove users belonging to different domains.

154
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

8.4.2 Authorization
There are two roles for setting up and using the platform: Administrator and
Researcher. An administrator will set up the platform and have full access to the
resources and adding/removing users while researcher has the possibility to upload
and run SPM jobs. More precisely:

• Administrator: This role will assign new users to the Research role category
or will revoke existing members for the group belong to the Researcher role
through the Microsoft Azure management portal to a project, and

• Researcher: Users in the role are able to submit analytical SPM jobs to the
GW and access the results.

Prior to any attempts by users to access the storage, the data owner must
grant access privileges to the storage according to users storage access keys through
Microsoft Azure management portal. The GW STS enforce authorized access after
successful authentication of users.

8.5 Implementation

The GW provides a Microsoft.NET API for applications to implement all function-
ality that is needed to execute SPM job successfully. We integrated the GW and
Software Development Kit (SDK) assemblies (DLLs) into the MATLAB R2011a en-
vironment. To relax the licensing issues, we used the MATLAB Compiler Runtime
(MCR) Windows 64-bits version 7.15 associated with MATLAB R2011a [218].

8.5.1 Anonymization
To comply with the privacy regulations that demand protection of patient data such
as HIPAA [9], we anonymized the brain images by removing any explicit identifier
such as name, SSN or other QIDs including date of birth and ZIP code from the
metadata. We used the open source Dicom toolkit3 (dcmtk) to anonymize brain
images by modifying the open source code of dcmtk. Dicom tags including the
identity and the name of the participants were removed from the datasets.

8.5.2 Secure Deployment of the Generic Worker
As a preliminary step, we deployed SPM using GW on top of Azure to facilitate
deployment, initialization, and invoking SPM stand-alone over Azure without any
modification of the SPM API. The Azure management portal provides user inter-
faces to upload security credentials, along with the GW and configurations. The
GW is provided in different deployable packages as extra small, small, medium,
large and extra-large [219] as summarized in Table 8.1.

3http://dicom.offis.de/dcmtk

8.5. IMPLEMENTATION 155

Instance Cores RAM Disk
Size

Extra Small 1 0.75 GB 20 GB
Small 1 1.75 GB 40 GB
Medium 2 3.5 GB 60 GB
Large 4 7 GB 120 GB
Extra Large 8 14 GB 240 GB

Table 8.1: Microsoft Azure basic tier general purpose compute

We deployed a production-hosted service composed of 20 medium-sized dual
core machines and 3.5 Gigabyte memory with a bandwidth of 200 Mbit/s.

This hosted service also required an XML service configuration file that defines
how the hosted service should run, for example, specifying the number of running
instances or user and management X.509 certificate thumbprints, or other infor-
mation (such as the job submission to GW end-points). Using OpenSSL we issued
two self-signed X.509 certificates, one for management and one for job submission:
both based on their distinguished names. We added the thumbprint of these cer-
tificates to the hosted service configuration file and uploaded the certificates to the
management portal. The uploaded certificate contains both public and private keys
in a single file, with a protected private key defined by the user’s secret.

8.5.3 Building the Application
GW instances search for the MCR and standalone SPM dependencies during the
initialization process. Therefore, prior to running the GW instances, we have to
upload the MCR v7.15 and standalone SPM for Microsoft Windows 64-bits platform
[220].

We implemented an MATLAB function to act on behalf of the user to compress
the SPM dependencies and to upload them to the application repository using the
following command line:

install_application(mcr_path,spm_path, app_rep)
The first argument of this command is the location of the MCR. The second and

third arguments are the SPM standalone location and the name on Azure of the
application repository name where the user pre-requisites should be stored. After
successful installation of the application pre-requisites, the GW will load and install
the pre-requisites for all the new VMs.

8.5.4 Job Submission
For job submission purposes, we developed two MATLAB functions. The user
enters these on the command line to submit a job, either for a single subject or for

156
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

several subjects to run in parallel to ensure scalability for scenarios with a large
number of subjects. The signature of the function to submit SPM jobs is as below:

submit_job(job_script, data_path, output_name, flag)
This function needs the following arguments: the real SPM script as the execu-

tion job, the path to the brain images, the name to be used for the output results,
and a flag that is set in cases of multiple job submission (where an SPM job will
be iterated over several subjects within different running GWs). To clarify, the
SPM job is a script where the user creates an iteration of a set of instructions over
a number of brain images for a group of one or more subjects. The second argu-
ment specifies the directory path where the images from that subject reside. Those
images need to be uploaded with the submission of the SPM job. This command
adapts the local file system names according to the GW standard by eliminating
the root directory and replacing that with the current working path in GW. Figure
8.6 illustrates the process of creating SPM scripts by the user through the GUI
and making them compatible to run on Azure by JM, in respect to the GW file
addressing conventions.

Figure 8.6: Process of creating SPM scripts and making them compatible with GW

Moreover, to store the result of the executions in the cloud storage, the user
should define a name in the third argument that will be used for the output. There
are some cases that do not require uploading of data when the clients submit jobs,
for instance, in a specific scenario where job n−1 produces results that are required
by the next job n as input. In such cases, the user can pass an explicit “no_data”-
signal in the flag argument. This notifies the application to fetch the input data
from the storage.

To fulfill other job management tasks, we implemented the following functions

8.6. SUMMARY 157

to track the status of submitted tasks, and to cancel a specifically submitted job
on GW when required by user:

poll_status(id) and terminate_job(id)
The first function resolves a job identifier that is returned from the submit_job

function and periodically polls the status of a defined job. The status could be
Pending, Running, Finished or Canceled. Furthermore, the client is also able to
terminate any job using its job identifier.

These two additional commands are very useful when an SPM user needs to
submit a large number of jobs in parallel together on different running instances of
the GW. All the submitted jobs can easily be tracked, and terminated instantly if
needed, using these commands.

8.5.5 Data Management
In order to upload, download or eliminate brain images on the cloud storage, we
developed a set of functions to enable SPM users to run those functions from the
MATLAB command line. In the first step, the DM acquires a container reference
from the storage using a GW API according to the container’s name:

GetContainerReference(container)
The argument of this function refers to the container that the user provided to

invoke the data transfer functions. We also increased the default time-out of the
client (by setting the TimeSpan to a reasonable value) so that large amounts of
data could be transferred successfully even if there were delays in the underlying
communication networks or storage server timeouts.

To upload a file (that is, a set of brain images as a single file) to a specific
container, the client should issue the command:

upload_subject(container, file_name, local_path)
Moreover, to facilitate the distributed access of data for a set of results, the

client can query the container that stores a particular file. For this purpose, the
user needs the file name that is stored in the container and the local path to save
the result. The user must define at least a 512-bits storage access key as primary
key, based on Azure management portal in combination with the storage account
name to authorize user requests to storage services:

download_subject(container, file_name, local_path)
SPM users can issue another command to remove the storage contents associated

with file names in distinguished containers. We implemented the following function
with the same interaction pattern, with upload/download provided by the GW
API:

delete_subject(container_name, file_name)

8.6 Summary

Our prototype demonstrated that cloud computing, and specifically Microsoft Azure,
can enable neuroscientists to exploit the benefits of cloud computing while ensuring

158
CHAPTER 8. PRIVACY-PRESERVING BRAIN IMAGE ANALYSIS IN THE

CLOUD

security and privacy.
Users and organizations no longer need to be concerned about hardware require-

ments or storage capacities as the cloud provides scalability on demand. Also, our
implementation shows that it is feasible to share anonymized data securely between
users belonging to different organizations to avoid limitations of data privacy laws
to process sensitive data in the cloud.

Part IV

Secure Multi-Tenancy in the
Cloud

159

Chapter 9

Quantifying and Minimizing the
Risk of Kernel Exploitation

9.1 Introduction

As discussed earlier the underpinning for the clouds are infrastructures that virtu-
alize the operating system. The kernel is the core software of the operating system
that makes hardware usable and it provides the software that provides basic ser-
vices for all other parts of the operating system. Kernel size in terms of LOC has
been growing during the past decades which unfortunately has introduced or will
introduce new bugs constantly over time [134, 221, 222, 223]. These vulnerabili-
ties can be exploited by malicious attackers mainly to get privileged access to the
underlying systems through executing untrusted code in userspace. An exhaustive
list of such publicly known information security flaws can be found in the Common
Vulnerabilities and Exposures (CVE)1 database.

To achieve secure multi-tenancy through isolating untrusted code from the priv-
ileged code, the security community has introduced several protection mechanisms
with the aim to restrict untrusted code to access unauthorized resources on the user
machine such as user’s data or hardware devices. For example, OS virtualization
(e.g., Xen, KVM, VirtualBox), system call filtering [131, 129], and library OSes
[126, 125]. Common security wisdom is that by running software in a virtual ma-
chine, one can prevent the attacker from exploiting flaws in the underlying kernel.
However, the security of virtualization itself is a challenging issue [224] because
some vulnerabilities on the Linux kernel are not prevented from being exploited.

Limiting access to kernel code by itself is insufficient to build a secure virtu-
alization system because of two issues: 1) if a complex program can not access a
part of the kernel, its functionality must exist somewhere else or the program will
not work, 2) it is typical for virtualization systems to add new privileged code as
their TCB. As a result, a vulnerability in the privileged codebase is as much of

1https://cve.mitre.org/

161

162
CHAPTER 9. QUANTIFYING AND MINIMIZING THE RISK OF KERNEL

EXPLOITATION

a security risk as a flaw in the kernel. CVE-2008-2100 and CVE-2011-1751 are
two examples of weaknesses in the virtualized system, where exploits from guest
to host OS have been possible. In CVE-2008-2100, a vulnerability in VMWare’s
codebase was caused by buffer overflows. This could allow local users to bypass the
guest VM and gain privilege escalation to execute arbitrary code in the host OS.
In CVE-2011-1751, missing check in KVM’s QEMU emulation of PCI-ISA bridge
could allow an attacker for root exploit in the host OS being triggered from a guest
[225].

This chapter presents a metric that helps to identify likely locations within
the kernel where vulnerabilities may exist, based on examination of 40 kernel bug
fixing patches [226, 227, 228]. We aim to validate the proposed metric using a
dual sandbox that is implemented using the concept of safely-reimplement for most
common kernel functionalities. Lind contains the POSIX implementation to limit
access to the kernel. This implementation is integrated with the NaCl for software
fault isolation through memory safety of the application.

The remainder of this Chapter is organized as follows. Section 9.2 presents the
dual-layer sandbox architecture of Lind. Section 9.3 describes the key hypothesis
and how the security of Lind is tested against other virtualization systems. Finally,
in Section 9.4, we summarize our findings and concluding remarks.

9.2 Lind Dual-Layer Sandbox

Lind consists of two main modules: NaCl [137] as the computation module for
efficient execution of legacy code in the form of x86 or Advanced RISC Machine
(ARM) binaries and Seattle’s Repy [226] as the library OS. The userspace appli-
cation system calls are either dispatched through NaCl or directly invoked by the
system call interface as shown in Figure 9.1 according to the policy definitions. The
core functionalities of NaCl and Repy modules are described in the following.

9.2.1 Native Client (NaCl)
The NaCl module is used to isolate the user application activities from the under-
lying OS kernel in Lind. NaCl provides APIs that allow Lind to deploy and run
legacy code by compiling the programs to produce a binary with the SFI property.
This step prevents the majority of the application from performing system calls or
executing arbitrary instructions.

When the compiled application is executed the invoked system calls jump into
a small privileged part of the NaCl TCB that directs system calls to the OS for
processing. In Lind, the system call forwarding is slightly different and the NaCl
TCB forwards the call to the Lind library OS that we call SafePOSIX for the ac-
tual execution. The issued system calls then reach the kernel that is divided into
several subsystems. For example in Linux there are mainly these subsystems: ipc
(process management), net (network), mm (memory management), fs (file system),

9.2. LIND DUAL-LAYER SANDBOX 163

security (security module), and drivers (device drivers). As we discussed ear-
lier in Section 9.1, kernel modules might contain undiscovered bugs that can be
triggered through executing untrusted code in userspace.

Figure 9.1: Architecture of Lind including various components such as NaCl, NaCl’
glibc, and Repy Sandbox. User level applications will issue system calls that are
dispatched through the Repy OS connector that bridges the Lind system to the OS
Kernel.

9.2.2 Seattle’s Repy
Lind isolates computation and only allows access to commonly used kernel paths
in order to build an API to access the safe parts of the underlying kernel. Seattle’s
Repy [226] sandbox is the key component in Lind that provides this functionality.
The POSIX API is used to run applications within the sandbox. Lind integrates
Seattle’s Repy system API that is a tiny sandbox comprised of around 8K LOC.
Repy provides Lind with the ability of access to a minimal set of the system call
API needed to build general computational functionality.

164
CHAPTER 9. QUANTIFYING AND MINIMIZING THE RISK OF KERNEL

EXPLOITATION

Repy provides access only to the safe portions of the OS kernel with 33 basic API
functions, including 13 network functions, 6 file functions, 6 threading functions,
and 8 miscellaneous functions [226, 229]. The code is written using style guidelines
designed to ease security auditing of the code [230], as shown in Table 9.1.

Table 9.1: Repy sandbox kernel capabilities that supports NaCl functions, such as
networking, file I/O operations and threading.

Repy Function Available System Calls
Networking gethostbyname, openconnection, getmyip,

socket.send, socket.receive, socket.close, lis-
tenforconnection, tcpserversocket.getconnection,
tcpserversocket.close, sendmessage, listenformes-
sage, udpserversocket.getmessage, and udpserver-
socket.close.

I/O Operations openfile, file.close, file.readat, file.writeat, listfiles,
and removefile.

Threading createlock, sleep, lock.acquire, lock.release, cre-
atethread, and getthreadname.

Miscellaneous
Functions

getruntime, randombytes, log, exitall, createvirtual-
namespace, virtualnamespace.evaluate, getresources,
and getlasterror.

The Repy functionalities have been used since 2010 in real-life applications in
the Seattle’s [231] testbed. It has been also audited through penetration testing
and unit testing for each system call. The system call requests are issued from
the userspace code are received by NaCl and then will be redirected to the system
API module that includes a POSIX API to serve those requests. The POSIX
API contains a set of standard interfaces that deliver the OS functionalities to the
userspace code. The POSIX API could become big and complex enough which
makes it hard to assure as a bug-free piece of code. To resolve this issue, Repy as a
programming language sandbox has been used in Lind to provide the ideal isolation
needed to construct the custom POSIX API. In Lind, complex system functions are
reimplemented using the Repy code, based on the “safely-reimplement” principle.

9.3 Quantitative Evaluation

This section describes our approach for quantitatively evaluation risk of kernel
exploitation and measuring the effectiveness of Lind compared to other systems.

9.3.1 Hypothesis
The key hypothesis of our approach is that executed kernel paths by popular appli-
cations are likely to contain fewer exploitable bugs than uncommonly used paths.

9.3. QUANTITATIVE EVALUATION 165

Because if there are bugs in such common kernel paths they are most probably
identified before being exploited by malicious adversaries.

To test our hypothesis we performed an analysis of two different versions of
the Linux kernel, 3.13.0 and 3.14.1 at the level of lines of code against existing
kernel bugs for a better understanding of the security features of the OS kernel.
The kernel coverage safety metric provide us information about the potential risks
and consequently, it helps us to safely-reimplement those risky kernel interface (or
system calls) to avoid the potential exploits. We also selected a variety of CVE bug
reports to experiment and understand which parts of the kernel have been used in
common (Section 9.3.2).

9.3.2 Data Sources and Experiments
To compare the efficiency of security in various virtualization mechanisms compared
to our approach in Lind, we selected several other popular systems such as Virtu-
alBox, VMWare Workstation, Docker, LXC, QEMU, KVM and Graphene [127].
Naturally, we also included measuring native Linux as a baseline for our evaluation
due to lack of any virtualization. These experiments were decided to be conducted
under Linux kernel 3.14.1. Figure 9.2 demonstrate the activities from trace gen-
eration performed in target virtualization systems and transforming the collected
traces for code-level analysis.

Data sources We decided to set up our experiments in three major environ-
ments: Lind platform, virtualization platforms, and native Linux. For each cate-
gory, we ran a group of legacy applications, comprehensive fuzzing using Trinity
system call fuzzer, a group of Linux Test Project (LTP) programs and 35 CVE
exploits.

• Legacy applications: Common paths were captured by running popular
user applications or open-source libraries. Most notably, these experiments
were conducted in data collection phase included running several applications
such as two large-scale browsers (Mozilla Firefox and Google Chrome), in
addition to running 50 packages among the top 200 popular Debian packages
[232]. To port these packages to Lind, first we compiled them with NaCl
Pepper version 392 and then run the executables under Lind. Listing C.1 in
Appendix C shows an example script to port a curl library into Lind through
the NaCl toolchain.
During this step, we conducted several other operations needed to access com-
mon paths, including intensive file management tasks to create/read/update
or delete files and directories from the underlying file system. These tests
were completed during a discrete period of 20 hours over 5 days.

• Trinity Fuzzer: The system call fuzzing experiments were designed to utilize
the Trinity system call fuzz tester [233]. This included sequential execution

2https://developer.chrome.com/native-client/sdk/download

166
CHAPTER 9. QUANTIFYING AND MINIMIZING THE RISK OF KERNEL

EXPLOITATION

Figure 9.2: Various activities performed to capture and analyze the kernel traces
generated by legacy applications, system fuzzers, LTP, and CVE bug reports. The
traces are collected using gcov and a Python-based program that transforms the
gcov data to macrodata-level information of each traversed path for final data
analysis.

of more than 300 system calls with 1 million iterations for executing each
system call by 16 child processes as Trinity workers. Trinity traces were used
as an indication of the total reachable paths to be captured by comprehensive
system call fuzzing and running the Linux kernel test suite.

• LTP: We also used LTP [234] to capture the total reachable kernel trace
as it provides a mature and well-maintained tool to test the Linux kernel.
We tested all the available system calls in LTP, in addition to 23 test cases:
accept, bind, chown, close, connect, date, exit, exit_group, getegid, geteuid,
getgid, getpeername, getpid, getsockname, getsockopt, getuid, listen, rmdir,
setsockopt, sleep, and socketpair3. This traces helped us to validate the kernel
trace generated by Trinity and also catch any possible missing paths. More
precisely, the LTP was able to capture approximately 20% of kernel trace that

3https://github.com/gholamiali/ltp_tests.git

9.3. QUANTITATIVE EVALUATION 167

was ignored by Trinity. While Trinity traces included 15% of kernel trace that
was not available in the LTP traces.

• Linux Kernel Bug Test and Evaluation: We compiled and ran the exploit
C code under each virtualization system to obtain their kernel traces, and then
used our kernel trace safety metric to determine if a specific bug was triggered.
To this end, we reused some existing C code that was available publicly on
the Internet with the capability of exploiting each of the kernel bugs [235] as
shown in Table 9.2.

Vulnerability Description
CVE-2015-5706 allows local users to cause a denial of service
CVE-2015-0239 allows guest OS users to gain guest OS privileges or cause

a denial of service (guest OS crash)
CVE-2014-9584 allows local users to obtain sensitive information from ker-

nel memory
CVE-2014-9529 allows local users to cause a denial of service (memory cor-

ruption or panic)
CVE-2014-9322 allows local users to gain privileges
CVE-2014-9090 allows local users to cause a denial of service (panic)
CVE-2014-8989 allows local users to bypass intended file permissions by

POSIX ACL
CVE-2014-8559 denial of service (deadlock and system hang)
CVE-2014-8369 allows guest OS users to cause a denial of service (host OS

page unpinning)
CVE-2014-8160 allows remote attackers to bypass intended access restric-

tions
CVE-2014-8134 allows guest OS users to bypass the Address Space Layout

Randomization (ASLR) ACL protection mechanism
CVE-2014-8133 allows local users to bypass the ASLR protection mecha-

nism
CVE-2014-8086 allows local users to cause a denial of service (file unavail-

ability)
CVE-2014-7975 allows local users to cause a denial of service (loss of

writability)
CVE-2014-7970 allows local users to cause a denial of service (mount-tree

loop)
CVE-2014-7842 allows guest OS users to cause a denial of service (guest OS

crash)
CVE-2014-7826 allows local users to gain privileges or cause a denial of

service (invalid pointer dereference)
CVE-2014-7825 allows local users to cause a denial of service (out-of-bounds

read and OOPS)

168
CHAPTER 9. QUANTIFYING AND MINIMIZING THE RISK OF KERNEL

EXPLOITATION

CVE-2014-7283 allows local users to cause a denial of service (filesystem
corruption, or panic)

CVE-2014-5207 allows local users to gain privileges
CVE-2014-5206 allows local users to bypass an intended read-only restric-

tion and defeat certain sandbox protection mechanisms
CVE-2014-5045 allows local users to cause a denial of service (memory con-

sumption or use-after-free)
CVE-2014-4943 allows local users to gain privileges
CVE-2014-4667 allows remote attackers to cause a denial of service (socket

outage
CVE-2014-4508 allows local users to cause a denial of service (system crash)
CVE-2014-4171 allows local users to cause a denial of service
CVE-2014-4157 allows local users to bypass intended access control restric-

tions
CVE-2014-4014 allows local users to bypass intended chmod restrictions by

first creating a user namespace
CVE-2014-3940 allows local users to cause a denial of service (memory cor-

ruption or system crash)
CVE-2014-3917 allows local users to obtain potentially sensitive single-bit

values from kernel memory or cause a denial of service
CVE-2014-3153 allows local users to gain privileges
CVE-2014-3144 allows local users to cause a denial of service (integer un-

derflow and system crash)
CVE-2014-3122 allows local users to cause a denial of service (system crash)
CVE-2014-2851 allows local users to cause a denial of service (use-after-free

and system crash)
CVE-2014-0206 allows local users to obtain sensitive information from ker-

nel memory
Table 9.2: Exploitable CVEs that we triggered under VirtualBox,
VMWare Workstation, Docker, LXC, QEMU, KVM and Graphene
virtualization systems

9.3.3 Kernel-Level Data Collection
We used gcov [236] which is a standard utility with the GNU compiler collection
suite4 to get the kernel footprints. gcov provides a profiling tool that indicates
which lines of kernel code are executed while an application runs. However, gcov is
not installed by default in the Linux kernel distributions and we had to recompile
and install a new Linux kernel to enable this feature. The trace collection procedure
was as the following.

4https://gcc.gnu.org/

9.4. SUMMARY 169

1. Compile and boot kernel with gcov-kernel active

2. Use lcov to clear all coverage: lcov -z

3. Run the program inside Lind, virtualized environments and native Linux

4. Collect coverage using lcov:lcov -c -o coverage.info and genhtml coverage.info
-o coverage.out

9.3.4 Data Transformation
We implemented a Python parser based on the gcov data to identify the usage of
each line of code for each kernel module C.2. This program generates a report from
kernel areas that are triggered by an application (i.e. coverage.out from Section
9.3.3). It prints out the lines of each source file that are used according to the
coverage info from gcov-kernel. Each source file might have been run several times
and therefore, we aggregate all the executions in one source file.

9.3.5 Kernel Traces Analysis and Evaluation
We evaluated Lind’s efficiency for the confinement of untrusted code and protecting
the OS kernel and subsequently other processes within the same host. To this end,
we conducted numerous experiments designed to proof how Lind assure isolation
to achieve better multi-tenancy compared to other virtualization systems against
historical Linux kernel bugs or how much of the underlying kernel code is exposed
and, therefore, vulnerable to different virtualization systems?

The preliminary evaluations suggest that Lind outperforms other isolation mech-
anisms due to applying a dual-layer sandbox. The first security layer of Lind con-
tains a tiny TCB and SafePOSIX API based on the concept of safely-reimplement
which makes it an excellent choice to prevent untrusted programs to exploit any i.e.,
zero-day bugs. Adding the NaCl layer makes it nearly impossible for the userspace
applications to violate the pre-define policies, i.e., restricting a subset of system
calls that are not permitted by the untrusted programs.

Furthermore, we collected the results for different systems and measured how
much of the underlying kernel is reached during our experiments. As an example,
Figure 9.3 demonstrate that 12.4 % of the kernel surface were reachable when
performing the fuzzing experiments using LTP and Trinity, while 55.4% of the
kernel were not reachable at all, which is a promising indication of Lind effectiveness
to protect a significant portion of the kernel.

9.4 Summary

This chapter presented Lind - a novel confinement solution to achieve higher levels
of multi-tenancy through isolation of userspace applications. In addition, we intro-
duced a hypothesis to investigate the risky portions of the OS kernel that contains

170
CHAPTER 9. QUANTIFYING AND MINIMIZING THE RISK OF KERNEL

EXPLOITATION

Figure 9.3: Percentage of different kernel areas that were reached during LTP and
Trinity system call fuzzing experiments to measure the reachable kernel surface

higher rates of bugs. For this purpose, we designed a metric and performed ex-
tensive experiments within Lind and other existing virtualization systems that are
widely used to isolate untrusted applications that share the same hardware.

The preliminary results show Lind can prevent zero-day bug exploits to a greater
extent than other isolation approaches due to its architecture. This indicates a
positive proof of our hypothesis that Lind can be efficient to restrict access to
untrusted programs to the OS kernel. However, the evaluation part still is ongoing
research and we would like to gather more data to strongly proof efficiency of our
metric.

The next chapter of this thesis discusses the implementation of a reference mon-
itor that was developed in the course of this work for debugging purposes. This
reference monitor can be used to apply different policies to enable/disable specific
system calls that interact with the Repy sandbox.

Chapter 10

Lind Reference Monitor

10.1 Introduction

There are several reference monitor systems that have been proposed to enforce
security properties on programs they isolate. These systems employ trusted code
which monitors and restricts the set of system calls a program is able to execute.
We call such systems check-and-pass-through security systems. If an application
issues an untrusted call, it is blocked and thus prevented from causing damages to
the underlying infrastructures or other tenants in the same physical host.

Unfortunately, despite great efforts to develop research systems such as [130,
131] or Ostia [129], we could not apply them to the Lind architecture to enforce
custom system call filtering policies. The main reason was compatibility of these
approaches with the POSIX API inside Repy.

In this chapter, we discuss design and implementation of a reference monitor to
be applied in Lind. This enables us to verify the intended functionalities of Lind
and also facilitate debugging of potential bugs in the SafePOSIX implementations,
i.e., allowing or denying a specific set of system calls to monitor the Lind core
components behavior.

The rest of this chapter is organized as follows. Section 10.2 presents an overview
of the proposed reference monitor architecture. Section 10.3 describes implementa-
tion of each components such policy management or system call filtering. Section
10.4 discusses the validation process to verify the proposed solution. Finally in
Section 10.5, we present our findings and conclusions.

10.2 System Call Interposition Model

The Lind reference monitor is a standalone module that aims to intercept system
calls that are issued by a client program for isolation purpose. A client program is an
untrusted program that our reference monitor wishes to execute without negatively
impacting the security of the executing system.

171

172 CHAPTER 10. LIND REFERENCE MONITOR

Figure 10.1 presents the proposed architecture for system call interposition over
Repy connector. Each system call will be categorized as allowed by Lind, allowed
by OS or denied.

• If a system call is allowed to be executed by Lind, then the associated system
call in Safe POSIX in Repy will be invoked.

• If a system call is allowed to be executed by OS, then it will be forwarded
directly to the underlying kernel to be executed.

• If a specific system call is denied to be invoked, then the reference monitor
aborts the execution of that call immediately.

Figure 10.1: Reference monitor architecture

These functionalities are delivered through two components: policy configura-
tions and system call filtering inside the reference monitor.

10.2.1 Policy Configurations
The policy configuration component includes management of system call interposi-
tion rules. There is a definition of permitted system calls in each module and such

10.3. IMPLEMENTATION 173

information will be loaded in the runtime to be accessed by the system call filtering
component.

All the available system calls in Lind have API defined in this component to
ensure appropriate marshaling or unmarshaling of the arguments needed to be
passed to the underlying API. Such arguments are originated from the intermediary
layer that intercepts the calls and redirects them to the appropriate system.

10.2.2 System Call Filtering
This component enforces the pre-defined policies from the rules database to allow
only permitted system calls to be executed by Lind or by the underlying OS kernel.
The system call filtering intercepts the incoming calls and determines the number
of the system call. This way, the associated number of the system call can be
correlated with the SafePOSIX implementation which can have different values
depending on the hardware, i.e. x86_64 or ARM.

10.3 Implementation

To provide an efficient implementation that is capable of manipulating the system
call arguments we decided to use C. However, the reference monitor should be
capable of communicating with the SafePOSIX API that are a safe subset system
calls implemented in Python. For this purpose, we used a Python extension library
in C, as it has been illustrated in Listing 10.1.

Listing 10.1: Invoking SafePOSIX system calls through Python extension in C

PyObject* MakeLindSysCall(int syscall, char* format, ...) {
PyObject* callandarg = NULL;
PyObject* response = NULL;
PyObject* args = NULL;
PyGILState_STATE gstate;
va_list varg;

gstate = PyGILState_Ensure();
va_start(varg, format);
args = Py_VaBuildValue(format, varg);
va_end(varg);
callandarg = Py_BuildValue("(iO)", syscall, args);
response = CallPythonFunc(context, "LindSyscall", callandarg);
Py_XDECREF(callandarg);
Py_XDECREF(args);
PyGILState_Release(gstate);
return response;

174 CHAPTER 10. LIND REFERENCE MONITOR

}

To intercept and manipulate the system calls we developed our solution using
a standard Linux system call that is called ptrace1. As the first step, we initialize
a process to be traced using fork() system call. The monitor checks if the fork was
successful otherwise aborts the execution. In the case of success, the parent process
starts to trace the child by initiating a execve() system call (see Appendix D Listing
D.2).

We implemented a Linux shell script that depending on the underlying OS
generates the list of available system calls. These system calls are fed into a config-
uration file for the monitor to define the rules to be enforced for the incoming calls
from the client program (see Appendix D Listing D.1).

Furthermore, we implemented all the system calls in the configuration manage-
ment component to forward incoming calls to the SafePOSIX API. Listings D.3
and D.4 in Appendix D demonstrate our approach to convert the incoming calls to
be compatible with Lind and forwarding them to the Repy server.

Client programs can be easily run inside the reference monitor by passing the
name of the executable binary as an argument. For example $reference_monitor
myapp will execute myapp which is an executable binary that is available in Repy
file system.

10.4 Validation

We executed the reference monitor for several popular Debian libraries and packages
such as editors, text processing and also apache web server. These experiments
enabled us to discover few bugs within the Repy server implementation through
applying different system call forwarding policies. In addition, we implemented
unit tests for all the available system calls in Lind and we experimented them to
verify the behavior of each system call when communicating with the Repy server.
However, we did not perform any overhead measurement of applying the ptrace-
based reference monitor because our intention was to only debug the possible bugs
in the Lind TCB.

10.5 Summary

This chapter described design and implementation of a reference monitor for Lind
that can be used for debugging purposes in the Lind dual-sandbox. For this aim,
we developed a solution using the ptrace system call to intercept all the incoming
calls from the client program and apply appropriate rules.

Our solution demonstrated to be able to run reallife programs and to be used
inside Lind for debugging and getting insight into various functionalities that are
implemented in the TCB.

1http://man7.org/Linux/man-pages/man2/ptrace.2.html

Part V

Epilogue

175

Chapter 11

Discussion

In this chapter, the work described in the previous parts (I, II, III, and IV) of
this thesis are summarized and discussed. Let us start with the following research
questions from Chapter 1.

• Q1: Can we develop a methodology to formulate privacy requirements and
threats to facilitate compliance with data protection regulations?

• Q2: How to build privacy-preserving cloud-based systems from existing ap-
proaches in security and privacy?

• Q3: How to increase the safety of an OS by reducing the risk of kernel
exploits?

We briefly discuss what strategies were used to answer the first question (Q1)
in Section 11.1. Our approach to answering the second question (Q2) is discussed
in Section 11.2. Finally, Section 11.3 discusses the last research question (Q3).

11.1 Discussion on Formulating the Cloud Privacy
Requirements

Privacy of individuals in cloud computing encompasses several contexts depending
on the nature of the sensitive data to be protected or the applicable data protection
regulation. In this thesis, we emphasized the security and privacy issues of medical
health care clouds that process NGS, clinical or brain imaging data.

For this purpose, we surveyed the literature in software engineering method-
ologies that offer comprehensive guidelines for building software correctly. In this
step several existing security threat modeling approaches such as STRIDE [179]
or OCTAVE [184] were studied but, unfortunately, we could not find any evidence
of their usage to build privacy-preserving cloud computing in the healthcare do-
main. Additionally, privacy-preservation was not emphasized in those methodolo-
gies which cause substantial overhead when building cloud systems. To this end,

177

178 CHAPTER 11. DISCUSSION

we built a new Cloud Privacy Threat Modeling (CPTM) methodology according to
the Method Engineering (ME) method [35] that can efficiently facilitate the process
of privacy threat modeling.

11.1.1 Cloud Privacy Threat Modeling
To build the CPTM, we first applied the ME guidelines to identify the characteris-
tics that satisfy the requirements of such methodology. This included applying an
‘Extension-based” paradigm for enhancing the process of identifying privacy threats
by applying meta-models/patterns and predefined requirements. The demanded
features to build the threat model were 1) privacy legislation support, 2) support
for technical deployment and service models, 3) customer needs, 4) usability, and
5) traceability.

Afterward, the CPTM was proposed consisting of five products: privacy reg-
ulatory compliance, cloud environment specification, privacy threat identification,
risk evaluation, and threat mitigation. These products will be used to compose a
threat modeling artifact that can be used in the design step by the cloud software
development teams to deploy a privacy-preserving solution.

This new methodology was applied to an emerging BioBankCloud in the context
of the EU DPD. As the first step, key requirements of the DPD were identified.
Physical and logical architectures of the target cloud environments were sketched
to highlight any possible threat that poses a risk to the identified privacy require-
ments. As the next step, a risk evaluation of the identified threats was conducted
to prioritize the threats according to their overall impact on the developing cloud
environment. Furthermore, several countermeasures were proposed to mitigate the
possibility of realizing the platform threats through adversarial attacks. The out-
comes of this proof of concept were 8 key privacy requirements and mitigation
recommendations for 26 critical threats to the privacy of genomic data in a PaaS.
These facts enabled us to build and validate the prototype in part II.

11.2 Discussion on Building Privacy-Preserving Cloud
Solutions

To explore the possibility of using privacy-preserving clouds, we proposed three
usable privacy-preserving cloud-based architectures to process genomics, clinical
and brain imaging datasets. For this purpose, we conducted a comprehensive survey
on cloud provider activities to identify the state-of-the-art and existing approaches
that could benefit us in this research.

We realized that the requirements of cloud based solutions vary from the context
of the applicable privacy laws to the technical limitations of existing security solu-
tions. We could not find a common set of security standards or technologies that
fit the three architectures proposed in parts II and III. The main reason was the
ethical and regulatory considerations when processing different types of sensitive

11.3. DISCUSSION ON QUANTIFYING AND MINIMIZING THE RISK OF
KERNEL EXPLOITS 179

data. The existing laws and legislation are complex enough by nature that require
appropriate considerations prior to the development of cloud-based solutions. The
second reason was the architectural trade-offs in each cloud environment that make
it complicated to integrate different pieces of security standards or existing tech-
nologies. We faced several shortcomings of existing security solutions to achieve
strong security while offering a practical level of usability in our proposed solu-
tions. For example, to offer several authentication mechanisms from the simplest
approach based on username/password to more secure mechanisms such as two-
factor authentication or X.509 certificates for different classes of users. To offer
these authentication mechanisms there is no yet a single solution available that we
are aware of, in best of our knowledge. Therefore, we extended and implemented
our custom libraries and plugins to achieve our architectural goals for each target
system.

However, a common balance in our proposed solutions was between usability vs.
security and privacy. With a security mindset, we offered trade-off architectures
that take into consideration a reasonable level of usability. But when we validated
the BioBankCloud prototype by end-users we experienced a considerable demand
for usability. Otherwise the proposed solutions were yet another piece of software
out there with no direct usage.

11.3 Discussion on Quantifying and Minimizing the Risk of
Kernel Exploits

The OS kernel is one of the most critical components of cloud computing because all
other layers of the cloud stack rely on this part. Ensuring strong isolation between
user processes in PaaS and SaaS layers are crucial to offering secure multi-tenancy
in cloud-based solutions.

For this purpose, we made a hypothesis that most kernel exploits reside in the
portion of the OS kernel that is not reachable by most popular applications. To
verify this hypothesis, we designed a metric to quantify the risk of kernel exploits
based on the collection and analyzing the kernel traces from various existing vir-
tualization technologies against Lind - a dual layer sandbox based on the Repy
SafePOSIX and NaCl that aim to deliver strong isolation in multi-tenant cloud
environments.

Our experiments to collect the kernel traces were composed of reproducing ap-
proximately 40 CVE exploits in a Linux Kernel, in addition to running existing
fuzzers such as LTP or Trinity to collect a fair amount of kernel usage. As another
source of kernel traces, we developed and experimented with a set of unit tests for
the supported system calls in Repy and NaCl. All these data sources provided us
evidence to verify our hypothesis.

The preliminary results of our evaluations suggest that most existing kernel bugs
are located in areas of the kernel that are not reachable by common applications and,
therefore, Lind SafePOSIX API that is built on the concept of “safely-reimplement”

180 CHAPTER 11. DISCUSSION

can significantly isolate the untrusted client programs in the user space from ac-
cessing the underlying kernel space functions. That is if an attacker tries to exploit
a zero-day vulnerability in the host OS, it will be restricted in the Lind dual-layer
of protection.

Chapter 12

Future Work

In this chapter, work from the previous parts (I, II, III, and IV) of this thesis that
leads to many other interesting future research questions is discussed. Section 12.1
outlines the future research in the area of privacy by design. Then in Section 12.2,
new dimensions to be explored in the area of trustworthy privacy-preserving cloud
models are discussed. Finally, Section 12.3 discusses the new questions and future
research in the area of secure multi-tenant cloud environments.

12.1 Privacy by Design for Cloud Computing

The future research related to the part II are categorized into three dimensions.
First, studying the feasibility of the CPTM for other sectors. Second, validat-
ing CPTM against emerging data protection legislation and third, enhancing the
security and usability of the BioBankCloud.

12.1.1 Applications of the CPTM in Other Domains

As discussed earlier, we developed the CPTM as an applicable methodology to
different ecosystems such as healthcare, telecoms or finance. This thesis presented
a proof of concept for the healthcare clouds as an appropriate choice. Because
healthcare clouds usually process medical data which contains highly sensitive in-
formation.

An interesting research question that can be investigated in future work is the
feasibility of using CPTM in other domains. For example in IoT where devices
produce a huge amount of traffic data events including Call Detail Record (CDR)s
that contain sensitive information. For organizational cost reduction benefits, such
data can be stored in the cloud. The proposed model can be applied to identify
the strengths or shortcomings for further improvements.

181

182 CHAPTER 12. FUTURE WORK

12.1.2 Emerging Data Protection Laws
Data protection regulations and laws are evolving. For example, in May 2016,
there will be a new law to replace the EU DPD. The new regulation contains more
than 130 recitals and 91 articles in addition to including new roles such as Data
Protection Officer [187]. Hence, further expanding the CPTM for compatibility
with this new law, indeed, would be useful in designing privacy-preserving cloud
systems.

12.1.3 Security and Usability of the BioBankCloud
Another aspect that can be interesting for future research is to provide more usabil-
ity and enhancing the existing functionalities e.g., resilience against SQL injection
attacks for some internal queries. We already built a fully functional prototype,
however, it will be interesting to add more features in addition to performing more
bug analysis against the existing implementation to discover any potential bugs in
the software. This includes:

• PPH:We designed a password protection mechanism in the later stage of the
BioBankCloud project. We implemented a library using Java [237] to provide
support in the IaaS level. Therefore, this integration was out of the scope
of the BioBankCloud that was built on a PaaS cloud. This implementation
can be integrated to efficiently protect user passwords and answer to security
questions.

• Federated Authentication: As we described earlier, there were technical
limitations for using federation to outsource the authentication to the users
home organizations. The main issue was the fact that Shibboleth as a popular
SAML implementation did not support Glassfish that was tightly integrated
with the BioBankCloud infrastructure. In future work, it will be interesting
to replace the Glassfish with a more mature software such as Apache Tomcat
in the BioBankCloud. This makes it possible to authenticate users from their
home institutions to achieve better security and usability.

• Secure Data Discovery: Providing the functionality of secure browsing of
the platform for external users to discover the public datasets via REST calls
is another area to be further explored.

12.2 Trustworthy Privacy-Preserving Cloud Models

The proposed eCPC toolkit in part III was able to anonymize sample availability
clinical data efficiently and upload the anonymized data to a trusted third-party
SaaS cloud. We were able to verify and validate the functionality of the client
toolkit. We proposed a design for the integration server and partially implemented
some basic functionalities such as uploading data to the server. However, we believe

12.3. SECURE MULTI-TENANCY IN THE CLOUD 183

that several components from the BioBankCloud can be reused in the integration
server and this will be a straightforward engineering effort that is out of the scope
of this thesis.

Other interesting dimensions to explore in this area are: 1) comparison of the
eCPC approach with a secure multi-party computing to provide the functionality
of cross-linking over multiple data sources, and 2) extending the RBAC model to
a DAC model for more fine-grained sharing of the brain imaging data between
researchers. In this way, data providers can directly grant privileges to other re-
searchers with ought being concerned to have a wide level of permissions for a group
of users.

12.3 Secure Multi-Tenancy in the Cloud

To provide meaningful insights into secure multi-tenant solutions, it would be very
beneficial to perform a deep bug analysis for various virtualization systems such
as Docker, QEMU, LXC, VMWare, and Graphene against Lind. This will make
it possible to demonstrate the full quantitative measures for the security of Lind.
This work is currently ongoing research and we anticipate to get the quantitative
measures in a near future.

Lind has not been optimized for performance, so the results we present here
should be taken as a baseline. We would like to explore what existing OS VM
optimizations can be safely applied to enhance the overhead caused by the dual-
layer sandbox compared to a virtualization system that performs emulation.

We would also like to test our metric in other popular operating systems, such
as Windows and Mac OS. Our experiments were limited to Linux kernel 3.14.1
and some of the typical virtualization systems that existed in Linux. It would be
interesting if similar tests could be run in other widely-used operating systems. In
particular, it would be interesting to see if having the host and guest VM utilize
different operating systems provides better protection.

Bibliography

[1] R. A. S. NIST Big Data Public Working Group, “DRAFT NIST Big Data
Interoperability Framework,” April 2015. Accessed July 2015.

[2] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, NIST
Cloud Computing Reference Architecture: Recommendations of the National
Institute of Standards and Technology (Special Publication 500-292). USA:
CreateSpace Independent Publishing Platform, 2012.

[3] B. Russell, “Realizing Linux Containers (LXC).” http://www.slideshare.
net/BodenRussell/. Accesed October 2015.

[4] L. Sweeney, “Simple Demographics Often Identify People Uniquely,” Carnegie
Mellon University, Pittsburg, Working Paper 3, 2000.

[5] S. Rusitschka and A. Ramirez, “Big Data Technologies and Infrastructures.”
http://byte-project.eu/research/, Sept. 2014. Deliverable D1.4, Version
1.1.

[6] P. Mell and T. Grance, “The NIST Definition of Cloud Computing.” http:
//www.csrc.nist.gov/groups/SNS/cloud-computing/, July 2009.

[7] M. Hogan, F. Liu, and A. Sokol, “Nist cloud computing standards roadmap,”
2011.

[8] E. U. Directive, “95/46/EC of the European Parliament and of the Coun-
cil of 24 October 1995 on the Protection of Individuals with Regard to the
Processing of Personal Data and on the Free Movement of such Data,” 1995.

[9] U. States., “Health insurance portability and accountability act of 1996 [mi-
croform] : conference report (to accompany h.r. 3103).” http://nla.gov.au/
nla.cat-vn4117366, 1996.

[10] R.-M. Åhlfeldt, “Information security in distributed healthcare: Exploring
the needs for achieving patient safety and patient privacy,” 2008.

[11] S. Pearson, “Privacy, security and trust in cloud computing,” in Privacy
and Security for Cloud Computing (S. Pearson and G. Yee, eds.), Computer
Communications and Networks, pp. 3–42, Springer London, 2013.

185

http://www.slideshare.net/BodenRussell/
http://www.slideshare.net/BodenRussell/
http://byte-project.eu/research/
http://www.csrc.nist.gov/groups/SNS/cloud-computing/
http://www.csrc.nist.gov/groups/SNS/cloud-computing/
http://nla.gov.au/nla.cat-vn4117366
http://nla.gov.au/nla.cat-vn4117366

186 BIBLIOGRAPHY

[12] A. Cavoukian, “The Security-Privacy Paradox: Issues, misconceptions,
and Strategies.” https://www.ipc.on.ca/images/Resources/sec-priv.
pdf, 2003. Accessed November 2015.

[13] United Nations, “The Universal Declaration of Human Rights.” http://www.
un.org/en/documents/udhr/index.shtml, 1948. Accessed August 2015.

[14] A. Westin, Privacy and Freedom. New York Atheneum, 1967.

[15] U. States., “Gramm-leach-bliley act.” http://www.gpo.gov/fdsys/pkg/
PLAW-106publ102/pdf/PLAW-106publ102.pdf, November 1999.

[16] U. S. F. Law, “Right to financial privacy act of 1978.” https://epic.org/
privacy/rfpa/, 1978.

[17] “Telecommunications Act of 1996.” http://transition.fcc.gov/Reports/
tcom1996.pdf, 1996. No. 104-104, 110 Stat. 56.

[18] D. Bigo, G. Boulet, C. Bowden, S. Carrera, J. Jeandesboz, and
A. Scherrer, “Fighting cyber crime and protecting privacy in the
cloud.” European Parliament, Policy Department C: Citizens’ Rights and
Constitutional Affairs, http://www.europarl.europa.eu/committees/en/
studiesdownload.html?languageDocument=EN&file=79050, Oct. 2012.

[19] S. Stalla-Bourdillon, “Liability exemptions wanted! internet intermediaries’
liability under uk law,” Journal of International Commercial Law and Tech-
nology, vol. 7, no. 4, 2012.

[20] “Scalable, secure storage biobank.” http://www.biobankcloud.eu. EU FP7
Framework, Grant Agreement No: 317871, Accessed January 2015.

[21] M. Janitz, ed., Next-generation genome sequencing: towards personalized
medicine. John Wiley & Sons, 2011.

[22] R. Weissleder and M. Y. Pittet, “Imaging in the era of molecular oncology,”
Nature, vol. 452, no. 7187, 2008.

[23] F. F. Costa, “Big data in biomedicine,” Drug discovery today, vol. 19, no. 4,
2014.

[24] M. Swan, “The quantified self: fundamental disruption in big data science
and biological discovery,” Big Data, vol. 1, no. 2, 2013.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in Mass Storage Systems and Technologies, 2010, pp. 1–10, May
2010.

[26] M. Ronström and J. Oreland, “Recovery Principles of MySQL Cluster 5.1,”
in Proc. of VLDB’05, pp. 1108–1115, VLDB Endowment, 2005.

https://www.ipc.on.ca/images/Resources/sec-priv.pdf
https://www.ipc.on.ca/images/Resources/sec-priv.pdf
http://www.un.org/en/documents/udhr/index.shtml
http://www.un.org/en/documents/udhr/index.shtml
http://www.gpo.gov/fdsys/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf
https://epic.org/privacy/rfpa/
https://epic.org/privacy/rfpa/
http://transition.fcc.gov/Reports/tcom1996.pdf
http://transition.fcc.gov/Reports/tcom1996.pdf
http://www.europarl.europa.eu/committees/en/studiesdownload.html?languageDocument=EN&file=79050
http://www.europarl.europa.eu/committees/en/studiesdownload.html?languageDocument=EN&file=79050
http://www.biobankcloud.eu

BIBLIOGRAPHY 187

[27] K. Hakimzadeh, H. Peiro Sajjad, and J. Dowling, “Scaling hdfs with a strongly
consistent relational model for metadata,” in Distributed Applications and
Interoperable Systems, pp. 38–51, 2014.

[28] S. Niazi, M. Ismail, G. Berthou, and J. Dowling, “Leader election using newsql
database systems,” in DAIS, pp. 158–172, 2015.

[29] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2,
pp. 300–304, 1960.

[30] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M. Efremova,
B. Krabichler, M. R. Speicher, J. Zschocke, and Z. Trajanoski, “A survey of
tools for variant analysis of next-generation genome sequencing data,” Brief-
ings in Bioinformatics, vol. 15, pp. 256–278, Mar. 2014.

[31] M. Bux, J. Brandt, C. Lipka, K. Hakimzadeh, J. Dowling, and U. Leser,
“SAASFEE: Scalable Scientific Workflow Execution Engine,” in VLDB
Demonstrations Track, forthcoming, (Hawaii, USA), 2015.

[32] “VENUS-C FP7 Project, (2010). Grant Agreement No. 261565.” http://
www.venus-c.eu. Accessed January 2015.

[33] J. Dean and S. Ghemawat, “Mapreduce: A flexible data processing tool,”
Commun. ACM, vol. 53, pp. 72–77, Jan. 2010.

[34] I. Foster and A. Grimshaw, “OGSA basic execution service version 1.0.”
https://www.ogf.org/documents/GFD.108.pdf.

[35] S. Brinkkemper, “Method engineering: engineering of information systems de-
velopment methods and tools,” Information and Software Technology, vol. 38,
no. 4, pp. 275–280, 1996.

[36] A. Gholami, A.-S. Lind, J. Reiche, J.-E. Litton, A. Edlund, and E. Laure,
“Privacy threat modeling for emerging biobankclouds,” in The 5th Interna-
tional Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN-2014)/ The 4th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare (ICTH
2014)/ Affiliated Workshops, September 22-25, 2014, Halifax, Nova Scotia,
Canada, vol. 37 of Procedia Computer Science, pp. 489–496, Elsevier, 2014.

[37] A. Gholami and E. Laure, “Advanced cloud privacy threat modeling,” Jan
Zizka et al. (Eds) : CCSIT, SIPP, AISC, CMCA, SEAS, CSITEC, DaKM,
PDCTA, NeCoM, p. 229–239, 2016.

[38] A. Gholami, A.-S. Lind, J. Reiche, J.-E. Litton, A. Edlund, and E. Laure,
“Design and implementation of the advanced cloud privacy threat modeling,”
International Journal of Network Security & Its Applications (IJNSA), 2016.

http://www.venus-c.eu
http://www.venus-c.eu
https://www.ogf.org/documents/GFD.108.pdf

188 BIBLIOGRAPHY

[39] A. Bessani, J. Brandt, M. Bux, V. Cogo, L. Dimitrova, J. Dowling, A. Gho-
lami, K. Hakimzadeh, M. Hummel, M. Ismail, et al., “Biobankcloud: a plat-
form for the secure storage, sharing, and processing of large biomedical data
sets,” the First International Workshop on Data Management and Analytics
for Medicine and Healthcare (DMAH 2015), 2015.

[40] A. Gholami, J. Dowling, and E. Laure, “A security framework for population-
scale genomics analysis,” in 2015 International Conference on High Perfor-
mance Computing & Simulation, HPCS 2015, Amsterdam, Netherlands, July
20-24, 2015, pp. 106–114, IEEE, 2015.

[41] A. Gholami, E. Laure, P. Somogyi, O. Spjuth, NiaziSalman, and J. Dowling,
“Privacy-preservation for publishing sample availability data with personal
identifiers,” Journal of Medical and Bioengineering, vol. 4-2, pp. 117–125,
April 2014.

[42] A. Gholami, G. Svensson, E. Laure, M. Eickhoff, and G. Brasche, “Scabia:
Scalable brain image analysis in the cloud,” in CLOSER 2013 - Proceedings
of the 3rd International Conference on Cloud Computing and Services Sci-
ence, Aachen, Germany, 8-10 May, 2013 (F. Desprez, D. Ferguson, E. Hadar,
F. Leymann, M. Jarke, and M. Helfert, eds.), pp. 329–336, SciTePress, 2013.

[43] A. Szalay and J. Gray, “2020 Computing: Science in an exponential world,”
Nature, vol. 440, pp. 413–414, Mar. 2006.

[44] C. Lynch, “Big data: How do your data grow?,” Nature, vol. 455, pp. 28–29,
Sept. 2008.

[45] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles 2003,
SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pp. 29–43,
2003.

[46] A. S. Foundation, “Apache hadoop 2.7.1 documentation,” 2015. Accessed
July 2015.

[47] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed., 2009.

[48] IBM, “Big data and analytics hub.” http://www.ibmbigdatahub.com. Ac-
cessed July 2015.

[49] Oracle, “Big data in the cloud.” https://www.oracle.com/big-data/
index.html, 2015. Accessed July 2015.

[50] Microsoft, “Data and insights.” http://www.microsoft.com/enterprise/
it-trends/big-data/, 2015. Accessed July 2015.

http://www.ibmbigdatahub.com
https://www.oracle.com/big-data/index.html
https://www.oracle.com/big-data/index.html
http://www.microsoft.com/enterprise/it-trends/big-data/
http://www.microsoft.com/enterprise/it-trends/big-data/

BIBLIOGRAPHY 189

[51] Hewlett-Packard, “Big data solutions.” http://www8.hp.com/us/en/
business-solutions/big-data.html, 2015. Accessed July 2015.

[52] CISCO, “Big data.” http://www.cisco.com/c/en/us/solutions/
data-center-virtualization/big-data/index.html, 2015. Accessed
July 2015.

[53] SAP, “Sap makes big data real.” http://go.sap.com/docs/download/2014/
04/2e777923-0a7c-0010-82c7-eda71af511fa.pdf, 2015. Accessed July
2015.

[54] N. B. Data, “Nist big data group.” http://bigdatawg.nist.gov/home.php,
2015. Accessed July 2015.

[55] S. E. Madnick and J. J. Donovan, “Application and analysis of the virtual
machine approach to information system security and isolation,” in Proceed-
ings of the Workshop on Virtual Computer Systems, (New York, NY, USA),
pp. 210–224, ACM, 1973.

[56] “Timeline of virtualization development.” https://en.wikipedia.org/
wiki/Timeline_of_virtualization_development. Accessed June 2015.

[57] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Commun. ACM, vol. 17, pp. 412–421, July 1974.

[58] “Hypervisors, virtualization, and the cloud: Learn about hypervisors, system
virtualization, and how it works in a cloud environment.” http://www.ibm.
com/developerworks/cloud/library/cl-hypervisorcompare/. Accessed
June 2015.

[59] M. Portnoy, Virtualization Essentials. Alameda, CA, USA: SYBEX Inc.,
1st ed., 2012.

[60] AMD, “Secure virtual machine architecture reference manual,” tech. rep.,
Advanced Micro Devices, May 2005.

[61] “Intel® Virtualization Technology Specification for the Intel® Itanium® Ar-
chitecture (VT-i),” April 2005. Accessed October 2015.

[62] R. Dua, A. Raja, and D. Kakadia, “Virtualization vs containerization to
support paas,” in Cloud Engineering (IC2E), 2014 IEEE International Con-
ference on, pp. 610–614, March 2014.

[63] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
Cloud Computing, IEEE, vol. 1, pp. 81–84, Sept 2014.

[64] “FreeBSD Jails.” https://wiki.freebsd.org/Jails. Accessed September
2015.

http://www8.hp.com/us/en/business-solutions/big-data.html
http://www8.hp.com/us/en/business-solutions/big-data.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/big-data/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/big-data/index.html
http://go.sap.com/docs/download/2014/04/2e777923-0a7c-0010-82c7-eda71af511fa.pdf
http://go.sap.com/docs/download/2014/04/2e777923-0a7c-0010-82c7-eda71af511fa.pdf
http://bigdatawg.nist.gov/home.php
https://en.wikipedia.org/wiki/Timeline_of_virtualization_development
https://en.wikipedia.org/wiki/Timeline_of_virtualization_development
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/
https://wiki.freebsd.org/Jails

190 BIBLIOGRAPHY

[65] R. Pike, D. Presotto, K. Thompson, H. Trickey, and P. Winterbottom, “The
use of name spaces in plan 9,” SIGOPS Oper. Syst. Rev., vol. 27, pp. 72–76,
Apr. 1993.

[66] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen, “HOTP:
An HMAC-Based One-Time Password Algorithm.” RFC 4226 (Informa-
tional), Dec. 2005.

[67] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-Based One-
Time Password Algorithm.” RFC 6238 (Informational), May 2011.

[68] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 10, pp. 557–570, Oct. 2002.

[69] G. on Statistical Disclosure Control, “Quasi Identififer.” http://stats.oecd.
org/glossary/detail.asp?ID=6961. Accessed January 2013.

[70] L. Sweeney, “Achieving k-anonymity privacy protection using generalization
and suppression,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10,
pp. 571–588, Oct. 2002.

[71] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when
disclosing information (abstract),” in Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’98, (New York, NY, USA), pp. 188–, ACM, 1998.

[72] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L-
diversity: Privacy beyond k-anonymity,” ACM Trans. Knowl. Discov. Data,
vol. 1, Mar. 2007.

[73] C. L. Liu, Introduction to combinatorial mathematics. New York, St Louis,
San Francisco: McGraw-Hill, 1968.

[74] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–613,
Nov. 1979.

[75] J. Cappos and S. Torres, “PolyPasswordHasher: Protecting Passwords
In The Event Of A Password File Disclosure.” https://github.com/
PolyPasswordHasher/. Accessed May 2015.

[76] M. Himmel and F. Grossman, “Security on distributed systems: Cloud secu-
rity versus traditional it,” IBM Journal of Research and Development, vol. 58,
pp. 3:1–3:13, Jan 2014.

[77] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and privacy in
cloud computing: A survey,” in Semantics Knowledge and Grid (SKG), 2010
Sixth International Conference on, pp. 105–112, Nov 2010.

http://stats.oecd.org/glossary/detail.asp?ID=6961
http://stats.oecd.org/glossary/detail.asp?ID=6961
https://github.com/PolyPasswordHasher/
https://github.com/PolyPasswordHasher/

BIBLIOGRAPHY 191

[78] L. Kaufman, “Data security in the world of cloud computing,” Security Pri-
vacy, IEEE, vol. 7, pp. 61–64, July 2009.

[79] D. Chen and H. Zhao, “Data security and privacy protection issues in cloud
computing,” in Computer Science and Electronics Engineering (ICCSEE),
2012 International Conference on, vol. 1, pp. 647–651, March 2012.

[80] M. Shankarwar and A. Pawar, “Security and privacy in cloud computing: A
survey,” in Proceedings of the 3rd International Conference on Frontiers of
Intelligent Computing: Theory and Applications (FICTA) 2014 (S. C. Sat-
apathy, B. N. Biswal, S. K. Udgata, and J. K. Mandal, eds.), vol. 328 of
Advances in Intelligent Systems and Computing, pp. 1–11, Springer Interna-
tional Publishing, 2015.

[81] H. Li, X. Tian, W. Wei, and C. Sun, “A deep understanding of cloud com-
puting security,” in Network Computing and Information Security (J. Lei,
F. Wang, M. Li, and Y. Luo, eds.), vol. 345 of Communications in Computer
and Information Science, pp. 98–105, Springer Berlin Heidelberg, 2012.

[82] G.-J. Ahn and D. Shin, “Towards scalable authentication in health services,”
in Enabling Technologies: Infrastructure for Collaborative Enterprises, 2002.
WET ICE 2002. Proceedings. Eleventh IEEE International Workshops on,
pp. 83–88, 2002.

[83] R. D. Pietro, G. Me, and M. A. Strangio, “A two-factor mobile authentication
scheme for secure financial transactions,” in 2005 International Conference on
Mobile Business (ICMB 2005), 11-13 July 2005, Sydney, Australia, pp. 28–
34, 2005.

[84] D. W. Chadwick, D. P. Mundy, and J. P. New, “Experiences of using a PKI
to access a hospital information system by high street opticians,” Computer
Communications, vol. 26, no. 16, pp. 1893–1903, 2003.

[85] H. Gomes, J. a. P. Cunha, and A. Zúquete, “Authentication architecture for
ehealth professionals,” in Proceedings of the 2007 OTM Confederated Interna-
tional Conference on On the Move to Meaningful Internet Systems: CoopIS,
DOA, ODBASE, GADA, and IS - Volume Part II, OTM’07, (Berlin, Heidel-
berg), pp. 1583–1600, Springer-Verlag, 2007.

[86] H. Kim and S. Timm, “X.509 authentication and authorization in fermi
cloud,” in Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th In-
ternational Conference on, pp. 732–737, Dec 2014.

[87] M. J. Atallah, K. B. Frikken, M. T. Goodrich, and R. Tamassia, “Secure bio-
metric authentication for weak computational devices,” in Proceedings of the
9th International Conference on Financial Cryptography and Data Security,
FC’05, (Berlin, Heidelberg), pp. 357–371, Springer-Verlag, 2005.

192 BIBLIOGRAPHY

[88] R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large-scale evalu-
ation of multimodal biometric authentication using state-of-the-art systems,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
pp. 450–455, March 2005.

[89] N. Mimura Gonzalez, M. Torrez Rojas, M. Maciel da Silva, F. Redigolo,
T. Melo de Brito Carvalho, C. Miers, M. Naslund, and A. Ahmed, “A frame-
work for authentication and authorization credentials in cloud computing,” in
Trust, Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on, pp. 509–516, July 2013.

[90] R. Banyal, P. Jain, and V. Jain, “Multi-factor authentication framework for
cloud computing,” in Computational Intelligence, Modelling and Simulation
(CIMSim), 2013 Fifth International Conference on, pp. 105–110, Sept 2013.

[91] R. Lomotey and R. Deters, “Saas authentication middleware for mobile con-
sumers of iaas cloud,” in Services (SERVICES), 2013 IEEE Ninth World
Congress on, pp. 448–455, June 2013.

[92] B. Tang, R. Sandhu, and Q. Li, “Multi-tenancy authorization models for col-
laborative cloud services,” in Collaboration Technologies and Systems (CTS),
2013 International Conference on, pp. 132–138, May 2013.

[93] D. F. Ferraiolo and D.R.Kuhn, “Role-Based Access Control,” in Proc. of the
15th National Computer Security Conference, pp. 554–563, 1992.

[94] L. Zhou, V. Varadharajan, and M. Hitchens, “Integrating trust with cryp-
tographic role-based access control for secure cloud data storage,” in Trust,
Security and Privacy in Computing and Communications (TrustCom), 2013
12th IEEE International Conference on, pp. 560–569, July 2013.

[95] J. Sendor, Y. Lehmann, G. Serme, and A. Santana de Oliveira, “Platform-
level support for authorization in cloud services with oauth 2,” in Proceedings
of the 2014 IEEE International Conference on Cloud Engineering, IC2E ’14,
(Washington, DC, USA), pp. 458–465, IEEE Computer Society, 2014.

[96] M. A. Leandro, T. J. Nascimento, D. R. dos Santos, C. M. Westphall, and
C. B. Westphall, “Multi-tenancy authorization system with federated identity
for cloud-based environments using shibboleth,” in Proceedings of the 11th
International Conference on Networks, ICN 2012, pp. 88–93, 2012.

[97] M. Stihler, A. Santin, A. Marcon, and J. Fraga, “Integral federated iden-
tity management for cloud computing,” in New Technologies, Mobility and
Security (NTMS), 2012 5th International Conference on, pp. 1–5, May 2012.

[98] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based authentication for cloud
computing,” in Cloud Computing (M. Jaatun, G. Zhao, and C. Rong, eds.),

BIBLIOGRAPHY 193

vol. 5931 of Lecture Notes in Computer Science, pp. 157–166, Springer Berlin
Heidelberg, 2009.

[99] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud federations
in contrail,” in Euro-Par 2011: Parallel Processing Workshops (M. Alexan-
der, P. D’Ambra, A. Belloum, G. Bosilca, M. Cannataro, M. Danelutto,
B. Di Martino, M. Gerndt, E. Jeannot, R. Namyst, J. Roman, S. Scott,
J. Traff, G. Vallée, and J. Weidendorfer, eds.), vol. 7155 of Lecture Notes in
Computer Science, pp. 159–168, Springer Berlin Heidelberg, 2012.

[100] J. Gouveia, P. Crocker, S. Melo De Sousa, and R. Azevedo, “E-id authenti-
cation and uniform access to cloud storage service providers,” in Cloud Com-
puting Technology and Science (CloudCom), 2013 IEEE 5th International
Conference on, vol. 1, pp. 487–492, Dec 2013.

[101] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar, “En-
forcement of Entailment Constraints in Distributed Service-Based Business
Processes,” Information and Software Technology, 2013.

[102] G. Dreo, M. Golling, W. Hommel, and F. Tietze, “Iceman: An architec-
ture for secure federated inter-cloud identity management,” in Integrated Net-
work Management (IM 2013), 2013 IFIP/IEEE International Symposium on,
pp. 1207–1210, May 2013.

[103] G. Sipos, D. Scardaci, D. Wallom, and Y. Chen, “The user support pro-
gramme and the training infrastructure of the egi federated cloud,” in High
Performance Computing Simulation (HPCS), 2015 International Conference
on, pp. 9–18, July 2015.

[104] “Shibboleth support for glassfish.” https://wiki.shibboleth.net/
confluence/display/SHIB2/IdpGlassfishPrepare. Accessed October
2013.

[105] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud com-
puting,” in Proceedings of the 2009 Conference on Hot Topics in Cloud Com-
puting, HotCloud’09, (Berkeley, CA, USA), USENIX Association, 2009.

[106] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003,
(New York, NY, USA), pp. 193–206, ACM, 2003.

[107] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang, “Enabling
security in cloud storage slas with cloudproof,” in Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, USENIX-
ATC’11, (Berkeley, CA, USA), pp. 31–31, USENIX Association, 2011.

https://wiki.shibboleth.net/confluence/display/SHIB2/IdpGlassfishPrepare
https://wiki.shibboleth.net/confluence/display/SHIB2/IdpGlassfishPrepare

194 BIBLIOGRAPHY

[108] S. Zhu and G. Gong, “Fuzzy authorization for cloud storage,” Cloud Com-
puting, IEEE Transactions on, vol. 2, pp. 422–435, Oct 2014.

[109] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor vulner-
abilities in cloud computing servers,” in Proceedings of the 2013 International
Workshop on Security in Cloud Computing, Cloud Computing ’13, (New York,
NY, USA), pp. 3–10, ACM, 2013.

[110] F. F. Brasser, M. Bucicoiu, and A.-R. Sadeghi, “Swap and play: Live updating
hypervisors and its application to xen,” in Proceedings of the 6th Edition of
the ACM Workshop on Cloud Computing Security, CCSW ’14, (New York,
NY, USA), pp. 33–44, ACM, 2014.

[111] C. Klein, A. Papadopoulos, M. Dellkrantz, J. Durango, M. Maggio, K.-E.
Arzen, F. Hernandez-Rodriguez, and E. Elmroth, “Improving cloud service
resilience using brownout-aware load-balancing,” in Reliable Distributed Sys-
tems (SRDS), 2014 IEEE 33rd International Symposium on, pp. 31–40, Oct
2014.

[112] E. Lakew, L. Xu, F. Hernandez-Rodriguez, E. Elmroth, and C. Pahl, “A syn-
chronization mechanism for cloud accounting systems,” in Cloud and Auto-
nomic Computing (ICCAC), 2014 International Conference on, pp. 111–120,
Sept 2014.

[113] “The programming language Lua.” http://www.lua.org. Accessed October
2015.

[114] “Microsoft Silverlight.” http://www.microsoft.com/silverlight/. Ac-
cessed October 2015.

[115] P. W. L. Fong, “Reasoning about safety properties in a jvm-like environment,”
Sci. Comput. Program., vol. 67, pp. 278–300, July 2007.

[116] J. G. Politz, A. Guha, and S. Krishnamurthi, “Typed-based verification of
Web sandboxes,” Journal of Computer Security, vol. 22, no. 4, pp. 511–565,
2014.

[117] P. H. Phung, D. Sands, and A. Chudnov, “Lightweight self-protecting
javascript,” in Proceedings of the 4th International Symposium on Informa-
tion, Computer, and Communications Security, ASIACCS ’09, (New York,
NY, USA), pp. 47–60, ACM, 2009.

[118] “Learn about java technology.” http://www.java.com/en/about/. Accessed
November 2014.

[119] N. Paul and D. Evans., “Comparing java and .net security: Lessons learned
and missed,” in Computers and Security, pp. 338–350, 2006.

http://www.lua.org
http://www.microsoft.com/silverlight/
http://www.java.com/en/about/

BIBLIOGRAPHY 195

[120] “Linux Container (LXC).” https://linuxcontainers.org. Accessed
September 2015.

[121] “Qubes OS.” http://www.qubes-os.org. Accessed November 2015.

[122] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems,”
SIGPLAN Not., vol. 43, pp. 2–13, Mar. 2008.

[123] C. Li, A. Raghunathan, and N. Jha, “Secure virtual machine execution under
an untrusted management os,” in Cloud Computing (CLOUD), 2010 IEEE
3rd International Conference on, pp. 172–179, July 2010.

[124] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’08, (New York, NY, USA), pp. 71–80, ACM, 2008.

[125] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt, “Re-
thinking the library os from the top down,” in Proceedings of the ASPLOS’11,
(Newport Beach, California, USA), pp. 291–304, 2011.

[126] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch, B. Bond,
R. Olinsky, and G. C. Hunt, “Composing os extensions safely and efficiently
with bascule,” in Proceedings of the Eurosys’13, 2013.

[127] C. C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and
security isolation of library oses for multi-process applications,” in Proceedings
of the EuroSys’14, (Amsterdam, Netherlands), 2014.

[128] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in Proceedings of the OSDI’14, 2014.

[129] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A delegating architecture
for secure system call interposition,” in Proceedings of the NDSS’04, 2004.

[130] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, “A secure environment
for untrusted helper applications (confining the wily hacker),” in Proceedings
of the USENIX UNIX Security Symposium’96, 1996.

[131] D. A. Wagner, “Janus: An approach for confinement of untrusted applica-
tions,” in Tech. Rep. CSD-99-1056, University of California, Berkeley, 1999.

[132] T. Garfinkel et al., “Traps and pitfalls: Practical problems in system call
interposition based security tools.,” in NDSS, vol. 3, pp. 163–176, 2003.

https://linuxcontainers.org
http://www.qubes-os.org

196 BIBLIOGRAPHY

[133] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-
based fault isolation,” in SIGOPS Oper. Syst. Rev. 27, 5, pp. 203–216, 1993.

[134] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study
of operating systems errors,” vol. 35, no. 5, 2001.

[135] C. Small and M. Seltzer, “Misfit: constructing safe extensible systems,” Con-
currency, IEEE, vol. 6, pp. 34–41, Jul 1998.

[136] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability of
commodity operating systems,” in Proceedings of the SOSP’03, pp. 207–222,
2003.

[137] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable, untrusted
x86 native code,” in Proceedings of the IEEE Symposium on Security and
Privacy, (Berkeley, CA, USA), pp. 79–93, 2009.

[138] M. Anand, “Cloud monitor: Monitoring applications in cloud,” in Cloud Com-
puting in Emerging Markets (CCEM), 2012 IEEE International Conference
on, pp. 1–4, Oct 2012.

[139] A. Brinkmann, C. Fiehe, A. Litvina, I. Lück, L. Nagel, K. Narayanan, F. Os-
termair, and W. Thronicke, “Scalable monitoring system for clouds,” in Pro-
ceedings of the 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing, UCC ’13, (Washington, DC, USA), pp. 351–356, IEEE
Computer Society, 2013.

[140] J. Nikolai and Y. Wang, “Hypervisor-based cloud intrusion detection system,”
in Computing, Networking and Communications (ICNC), 2014 International
Conference on, pp. 989–993, Feb 2014.

[141] C. Basescu, A. Carpen-Amarie, C. Leordeanu, A. Costan, and G. Antoniu,
“Managing data access on clouds: A generic framework for enforcing secu-
rity policies,” in Advanced Information Networking and Applications (AINA),
2011 IEEE International Conference on, pp. 459–466, March 2011.

[142] H. Takabi and J. Joshi, “Policy management as a service: An approach to
manage policy heterogeneity in cloud computing environment,” in System
Science (HICSS), 2012 45th Hawaii International Conference on, pp. 5500–
5508, Jan 2012.

[143] K. W. Hamlen, L. Kagal, and M. Kantarcioglu, “Policy enforcement frame-
work for cloud data management.,” IEEE Data Eng. Bull., vol. 35, no. 4,
pp. 39–45, 2012.

BIBLIOGRAPHY 197

[144] S. Pearson, V. Tountopoulos, D. Catteddu, M. Sudholt, R. Molva, C. Reich,
S. Fischer-Hubner, C. Millard, V. Lotz, M. Jaatun, R. Leenes, C. Rong,
and J. Lopez, “Accountability for cloud and other future internet services,”
in Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on, pp. 629–632, Dec 2012.

[145] S. Fischer-Hubner, J. Angulo, and T. Pulls, “How can cloud users be sup-
ported in deciding on, tracking and controlling how their data are used?,”
in Privacy and Identity Management for Emerging Services and Technologies
(M. Hansen, J.-H. Hoepman, R. Leenes, and D. Whitehouse, eds.), vol. 421
of IFIP Advances in Information and Communication Technology, pp. 77–92,
Springer Berlin Heidelberg, 2014.

[146] D. Das, O. O’Malley, S. Radia, and K. Zhang, “Adding Security to Apache
Hadoop.” Hortonworks Technical Report, 2010.

[147] “Hortonworks technical report.” http://www.infoq.com/articles/
HadoopSecurityModel. Accessed February 2015.

[148] A. Gholami, J. Dowling, L. Dimitrova, and R. Merino Martinez, “Se-
curity Toolset Implementation (alpha version) of the Scalable, Secure
Storage BiobankCloud (D3.3),” tech. rep., Department of High Perfor-
mance Computing and Visualization, KTH Royal Institute of Technol-
ogy, Submitted to the European Commission, February 2015. Available
at: http://www.biobankcloud.eu/sites/default/files/deliverables/
2014/D3.3-final.pdf.

[149] Y. Xianqing, P. Ning, and M. Vouk, “Enhancing security of hadoop in a
public cloud,” in Information and Communication Systems (ICICS), 2015
6th International Conference on, pp. 38–43, April 2015.

[150] J. Dowling, S. Grohsschmiedt, M. Ismail, and S. Niazi, “Object model im-
plementation the scalable, secure storage biobankcloud (d3.5),” tech. rep.,
KTH Royal Institute of Technology, Submitted to the European Commission,
May 2015. Available at: http://www.biobankcloud.com/sites/default/
files/deliverables/2015/D3.5-final.pdf.

[151] E. Bertino, “Big data - security and privacy,” in 2015 IEEE International
Congress on Big Data, New York City, NY, USA, June 27 - July 2, 2015,
pp. 757–761, 2015.

[152] S. Sharma, U. S. Tim, J. S. Wong, S. K. Gadia, and S. Sharma, “A brief
review on leading big data models,” Data Science Journal, vol. 13, pp. 138–
157, 2014.

[153] S. Sharma, U. S. Tim, S. K. Gadia, J. S. Wong, R. Shandilya, and S. K.
Peddoju, “Classification and comparison of nosql big data models,” IJBDI,
vol. 2, no. 3, pp. 201–221, 2015.

http://www.infoq.com/articles/HadoopSecurityModel
http://www.infoq.com/articles/HadoopSecurityModel
http://www.biobankcloud.eu/sites/default/files/deliverables/2014/D3.3-final.pdf
http://www.biobankcloud.eu/sites/default/files/deliverables/2014/D3.3-final.pdf
http://www.biobankcloud.com/sites/default/files/deliverables/2015/D3.5-final.pdf
http://www.biobankcloud.com/sites/default/files/deliverables/2015/D3.5-final.pdf

198 BIBLIOGRAPHY

[154] E. S. Dove, Y. Joly, A.-M. Tassé, P. Burton, R. Chisholm, I. Fortier, P. Good-
win, J. Harris, K. Hveem, J. Kaye, et al., “Genomic cloud computing: legal
and ethical points to consider,” European Journal of Human Genetics, 2014.

[155] E. Ayday, J. Raisaro, U. Hengartner, A. Molyneaux, and J.-P. Hubaux,
“Privacy-preserving processing of raw genomic data,” in Data Privacy Man-
agement and Autonomous Spontaneous Security (J. Garcia-Alfaro, G. Li-
oudakis, N. Cuppens-Boulahia, S. Foley, and W. M. Fitzgerald, eds.),
vol. 8247 of Lecture Notes in Computer Science, pp. 133–147, Springer Berlin
Heidelberg, 2014.

[156] E. Ayday, E. D. Cristofaro, J.-P. Hubaux, and G. Tsudik, “The chills and
thrills of whole genome sequencing,” Computer, vol. 99, no. PrePrints, p. 1,
2013.

[157] Y. Huang and I. Goldberg, “Outsourced private information retrieval,” in
Proceedings of the 12th ACM Workshop on Workshop on Privacy in the Elec-
tronic Society, WPES ’13, (New York, NY, USA), pp. 119–130, ACM, 2013.

[158] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Mphc: Preserving privacy
for workflow execution in hybrid clouds,” in Parallel and Distributed Comput-
ing, Applications and Technologies (PDCAT), 2013 International Conference
on, pp. 272–280, Dec 2013.

[159] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Online multiple work-
flow scheduling under privacy and deadline in hybrid cloud environment,” in
Proceedings of the 2014 IEEE 6th International Conference on Cloud Com-
puting Technology and Science, CLOUDCOM ’14, (Washington, DC, USA),
pp. 455–462, IEEE Computer Society, 2014.

[160] K. Lauter, A. Lopez-Alt, and M. Naehrig, “Private computation on encrypted
genomic data,” Tech. Rep. MSR-TR-2014-93, June 2014.

[161] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”
http://fastbull.dl.sourceforge.net/project/bitcoin/Design%
20Paper/bitcoin.pdf/bitcoin.pdf.

[162] “Statement on auditing standards (sas) no. 70.” http://sas70.com/sas70_
overview.html. Accessed January 2013.

[163] S. D. Gantz and D. R. Philpott, FISMA and the Risk Management Frame-
work: The New Practice of Federal Cyber Security. Syngress Publishing,
1st ed., 2012.

[164] A. Pfitzmann and M. Hansen, “Anonymity, unobservability, and
pseudonymity: A consolidated proposal for terminology,” July 2000.

http://fastbull.dl.sourceforge.net/project/bitcoin/Design%20Paper/bitcoin.pdf/bitcoin.pdf
http://fastbull.dl.sourceforge.net/project/bitcoin/Design%20Paper/bitcoin.pdf/bitcoin.pdf
http://sas70.com/sas70_overview.html
http://sas70.com/sas70_overview.html

BIBLIOGRAPHY 199

[165] M. Gostev, J. Fernandez-Banet, J. Rung, J. Dietrich, I. Prokopenko, S. Ri-
patti, M. I. McCarthy, A. Brazma, and M. Krestyaninova, “Sail - a software
system for sample and phenotype availability across biobanks and cohorts.,”
Bioinformatics, vol. 27, no. 4, pp. 589–591, 2011.

[166] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich, “Identi-
fying personal genomes by surname inference.,” Science (New York, N.Y.),
vol. 339, pp. 321–324, Jan. 2013.

[167] A. Pearlgood, “The impact of mandatory data infringement reporting,” Com-
puter Fraud & Security, vol. 2012, pp. 11–13, May 2012.

[168] K. Benitez and B. Malin, “Evaluating re-identification risks with respect to
the hipaa privacy rule,” JAMIA, vol. 17, no. 2, pp. 169–177, 2010.

[169] J. Qian and N. Qamar, “An experimental evaluation of de-identification tools
for electronic health records,” CoRR, vol. abs/1211.3836, 2012.

[170] A. J. Hundepool and L. C. R. J. Willenborg, “Mu-and tau-argus: Software
for statistical disclosure control,” 1996.

[171] M. Templ, “Statistical disclosure control for microdata using the r-package
sdcmicro,” Trans. Data Privacy, vol. 1, pp. 67–85, Aug. 2008.

[172] Data and Privacy Lab, The University of Texas at Dallas, “Man-
ual for anonymization toolbox.” http://cs.utdallas.edu/dspl/cgi-
bin/toolbox/anonManual.pdf.

[173] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Incognito: efficient full-
domain k-anonymity,” in Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’05, (New York, NY,
USA), pp. 49–60, ACM, 2005.

[174] J. Litton, J. Muilu, A. Björklund, A. Leinonen, and N. Pedersen, “Data
modeling and data communication in genomeutwin.,” Twin Res, vol. 6, no. 5,
pp. 383–90, 2003.

[175] J. Muilu, L. Peltonen, and J. Litton, “The federated database–a basis for
biobank-based post-genome studies, integrating phenome and genome data
from 600,000 twin pairs in Europe.,” Eur J Hum Genet, vol. 15, no. 7, pp. 718–
723, 2007.

[176] G. Ölund, P. Lindqvist, and J.-E. Litton, “Bims: An information management
system for biobanking in the 21st century,” IBM Syst. J., vol. 46, pp. 171–182,
Jan. 2007.

[177] B. Riedl, V. Grascher, and T. Neubauer, “A secure e-health architecture
based on the appliance of pseudonymization,” JSW, vol. 3, no. 2, pp. 23–32,
2008.

200 BIBLIOGRAPHY

[178] “CATS.” https://www.custodix.com/index.php/products. Accessed De-
cember 2015.

[179] F. Swiderski and W. Snyder, Threat Modeling. Redmond, WA, USA: Mi-
crosoft Press, 2004.

[180] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a generic model for situ-
ational method engineering,” in Advanced Information Systems Engineering
(J. Eder and M. Missikoff, eds.), vol. 2681 of Lecture Notes in Computer
Science, pp. 95–110, Springer Berlin Heidelberg, 2003.

[181] V. Rahimian and R. Ramsin, “Designing an agile methodology for mobile
software development: A hybrid method engineering approach,” in Research
Challenges in Information Science, 2008. RCIS 2008. Second International
Conference on, pp. 337–342, June 2008.

[182] “The Finnish biobanks.” http://www.biopankki.fi/en/
suomalaiset-biopankit/. Accessed January 2015.

[183] “Biobanks, Ethics and Regulations.” http://www.biobanks.se/ethics.
html. Accessed January 2015.

[184] C. J. Alberts and A. Dorofee, Managing Information Security Risks: The
Octave Approach. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[185] “Article 29 Working Party, Statement on the implementation of the judg-
ment of the Court of Justice of the European Union of 6 October 2015
in the Maximilian Schrems v Data Protection Commissioner case (C-
362-14).” http://ec.europa.eu/justice/data-protection/article-29/
index_en.htm. Accessed January 2016.

[186] A.-S. Lind and J. Reiche, “Administrating Data Protection - or the Fort Knox
of the European Composite Administration.” European Critical Quarterly for
Legislation and Law. 2014.

[187] “Proposal for a Regulation of the European Parliament and of the Council on
the protection of individuals with regard to the processing of personal data
and on the free movement of such data (General Data Protection Regula-
tion).” Interinstitutional File: 2012/0011 (COD). Accessed December 2015.

[188] J. Reiche and A.-S. Lind, “Administrating Data Protection - or the Fort Knox
of the European Composite Administration.” in Dorr, Dieter and Weaver,
Russell L. (Eds), Perpectives on Privacy, de Gruyters publisher. 2014.

[189] K. M. Shelfer and J. D. Procaccino, “Smart card evolution,” Commun. ACM,
vol. 45, pp. 83–88, July 2002.

https://www.custodix.com/index.php/products
http://www.biopankki.fi/en/suomalaiset-biopankit/
http://www.biopankki.fi/en/suomalaiset-biopankit/
http://www.biobanks.se/ethics.html
http://www.biobanks.se/ethics.html
http://ec.europa.eu/justice/data-protection/article-29/index_en.htm
http://ec.europa.eu/justice/data-protection/article-29/index_en.htm

BIBLIOGRAPHY 201

[190] “Types of Smart Cards.” http://www.smartcardbasics.com/
smart-card-types.html. Accessed February 2013.

[191] L. Cranor and S. Garfinkel, Security and Usability: Designing Secure Systems
that People Can Use. O’Reilly Media, 2005.

[192] R. J. Anderson, Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. New York, NY, USA: John Wiley & Sons, Inc., 1st ed.,
2001.

[193] L. O’Gorman, “Comparing passwords, tokens, and biometrics for user au-
thentication,” Proceedings of the IEEE, vol. 91, pp. 2021–2040, Dec 2003.

[194] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Network
Authentication Service (V5).” RFC 4120 (Proposed Standard), http://www.
ietf.org/rfc/rfc4120.txt, July 2005. Updated by RFCs 4537, 5021.

[195] P. J. Leach, K. Jaganathan, L. Zhu, and W. Ingersoll, “The Simple and
Protected Generic Security Service Application Program Interface (GSS-API)
Negotiation Mechanism.” IETF RFC 4178, https://rfc-editor.org/rfc/
rfc4178.txt, Oct. 2015.

[196] E. Baize and D. Pinkas, “The Simple and Protected GSS-API Negotiation
Mechanism.” RFC 2478 (Proposed Standard), http://www.ietf.org/rfc/
rfc2478.txt, December 1998. Obsoleted by RFC 4178.

[197] J. Myers, “Simple authentication and security layer (sasl).” RFC Editor,
United States, 1997.

[198] IETF, “RFC 4510 - lightweight directory access protocol (LDAP): Technical
specification road map,” tech. rep., IETF, 2006.

[199] E. Bertino and K. Takahashi, Identity Management: Concepts, Technologies,
and Systems. Norwood, MA, USA: Artech House, Inc., 2010.

[200] “Trust Models Guidelines.” https://www.oasis-open.org/committees/
download.php/6158/sstc-saml-trustmodels-2.0-draft-01.pdf. Ac-
cessed December 2012.

[201] D. Hardt, “The OAuth 2.0 Authorization Framework.” IETF RFC 6749, Oct.
2015.

[202] R. Boyd, Getting started with OAuth 2.0. Beijing: O’Reilly, 2012.

[203] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0,” tech. rep.,
Mar. 2005.

 http://www.smartcardbasics.com/smart-card-types.html
 http://www.smartcardbasics.com/smart-card-types.html
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt
https://rfc-editor.org/rfc/rfc4178.txt
https://rfc-editor.org/rfc/rfc4178.txt
http://www.ietf.org/rfc/rfc2478.txt
http://www.ietf.org/rfc/rfc2478.txt
https://www.oasis-open.org/committees/download.php/6158/sstc-saml-trustmodels-2.0-draft-01.pdf
https://www.oasis-open.org/committees/download.php/6158/sstc-saml-trustmodels-2.0-draft-01.pdf

202 BIBLIOGRAPHY

[204] The OASIS technical commitee, “XACML: eXtensible Access Control Markup
Language.” http://www.oasisopen.org/committees/xacml/repository/, 2005.

[205] “XDAS v2.” https://collaboration.opengroup.org/projects/
security/xdas/. Accessed December 2015.

[206] “SOC 1 Report (Service Organization Controls Report.” http://www.
ssae-16.com/soc-1/. Accessed June 2014.

[207] C. Steven Hernandez, Official (ISC)2 Guide to the CISSP CBK, Third Edi-
tion. (ISC)2 Press, CRC Press, 2013.

[208] “Custom JAAS realm.” http://docs.oracle.com/cd/E19226-01/
820-7695/6niugeskh/index.html. Accessed December 2014.

[209] “Yubikey Manual,YubiKey-Manual. V3-1.” http://www.yubico.com/. Ac-
cessed August 2013.

[210] “Biobankcloud repository.” https://github.com/biobankcloud/. Accessed
March 2016.

[211] “Hops repository.” hhttps://github.com/hopshadoop/hopsworks. Accessed
March 2016.

[212] “Webscarab getting started.” https://www.owasp.org/index.php/
WebScarab_Getting_Started. Accessed October 2015.

[213] T. Dalenius, “Towards a methodology for statistical disclosure control,”
Statistik Tidskrift, vol. 15, no. 429-444, pp. 2–1, 1977.

[214] C. A. Shoniregun, K. Dube, and F. Mtenzi, Electronic Healthcare Information
Security, vol. 53 of Advances in Information Security. Springer, 2010.

[215] NIST, Secure Hash Standard. Washington: National Institute of Standards
and Technology, 2002. Federal Information Processing Standard 180-2.

[216] N. I. of Standards and Technology, “Advanced encryption standard,” NIST
FIPS PUB 197, 2001.

[217] A. Savva and Others, “Job submission description language (JSDL) specifica-
tion, version 1.0.” http://www.ogf.org/documents/GFD.56.pdf, Nov. 2005.

[218] “MATLAB Runtime Compiler.” http://www.mathworks.com/products/
compiler. Accessed October 2011.

[219] “Microsoft Windows Azure.” http://www.microsoft.com/windowsazure.
Accessed July 2012.

[220] “Microsoft Azure Documentation Center.” https://azure.microsoft.com/
en-us/documentation/. Accessed August 2015.

https://collaboration.opengroup.org/projects/security/xdas/
https://collaboration.opengroup.org/projects/security/xdas/
 http://www.ssae-16.com/soc-1/
 http://www.ssae-16.com/soc-1/
http://docs.oracle.com/cd/E19226-01/820-7695/6niugeskh/index.html
http://docs.oracle.com/cd/E19226-01/820-7695/6niugeskh/index.html
http://www.yubico.com/
https://github.com/biobankcloud/
hhttps://github.com/hopshadoop/hopsworks
https://www.owasp.org/index.php/WebScarab_Getting_Started
https://www.owasp.org/index.php/WebScarab_Getting_Started
http://www.ogf.org/documents/GFD.56.pdf
http://www.mathworks.com/products/compiler
http://www.mathworks.com/products/compiler
http://www.microsoft.com/windowsazure
https://azure.microsoft.com/en-us/documentation/
https://azure.microsoft.com/en-us/documentation/

BIBLIOGRAPHY 203

[221] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as deviant
behavior: A general approach to inferring errors in systems code,” ACM,
vol. 35, no. 5, 2001.

[222] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards automatic
generation of vulnerability-based signatures,” in Security and Privacy, 2006
IEEE Symposium on, pp. 15–pp, IEEE, 2006.

[223] A. C. Chou, “Static analysis for bug finding in systems software,” 2003.

[224] T. Garfinkel and M. Rosenblum, “When virtual is harder than real: Security
challenges in virtual machine based computing environments,” in Proceedings
of the 10th Conference on Hot Topics in Operating Systems - Volume 10,
HOTOS’05, (Berkeley, CA, USA), pp. 20–20, USENIX Association, 2005.

[225] Nelson Elhage, “Virtunoid: A KVM Guest: Host privilege escalation exploit.”
BlackHat, 2011.

[226] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,
A. Krishnamurthy, and T. Anderson, “Retaining sandbox containment de-
spite bugs in privileged memory-safe code,” in Proceedings of the CCS’10,
2010.

[227] Y. Li, C. Matthews, A. Gholami, Y. Zhuang, and J. Cappos, “Lind: A
portable lightweight single-process sandbox.” http://systems.cs.brown.
edu/nens/2014, October 2014. The First New England Networking and Sys-
tems (NENS) Day, Boston, MA.

[228] Y. Li, C. Matthews, A. Gholami, Y. Zhuang, and J. Cappos, “Lind: A
portable lightweight single-process sandbox.” hhttp://catt.poly.edu, De-
cember 2014. Center for Advanced Technology in Telecommunications
(CATT) Research Review, Brooklyn, NY.

[229] “Seattle’s Repy V2 Library.” https://seattle.poly.edu/wiki/RepyV2API.
Accessed September 2014.

[230] “Code style guidelines for the seattle project.” https://seattle.poly.edu/
wiki/CodingStyle. Accessed October 2015.

[231] “Seattle testbed.” https://seattle.poly.edu/. Accessed September 2014.

[232] “Debian Popularity Contest.” http://popcon.debian.org/main/index.
html. Accessed December 2014.

[233] “Trinity, a Linux System call fuzz tester.” http://codemonkey.org.uk/
projects/trinity/. Accessed November 2014.

[234] “Linux Test Project.” https://linux-test-project.github.io/. Accessed
February 2015.

http://systems.cs.brown.edu/nens/2014
http://systems.cs.brown.edu/nens/2014
hhttp://catt.poly.edu
https://seattle.poly.edu/wiki/RepyV2API
https://seattle.poly.edu/wiki/CodingStyle
https://seattle.poly.edu/wiki/CodingStyle
https://seattle.poly.edu/
http://popcon.debian.org/main/index.html
http://popcon.debian.org/main/index.html
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://linux-test-project.github.io/

204 BIBLIOGRAPHY

[235] “Exploit Database.” https://www.exploit-db.com. Accessed October 2014.

[236] “gcov(1) - Linux man page.” http://linux.die.net/man/1/gcov. Accessed
October 2014.

[237] “Polypasswordhasher repository.” https://github.com/
PolyPasswordHasher/PolyPasswordHasher-Java. Accessed March 2016.

https://www.exploit-db.com
http://linux.die.net/man/1/gcov
https://github.com/PolyPasswordHasher/PolyPasswordHasher-Java
https://github.com/PolyPasswordHasher/PolyPasswordHasher-Java

Appendix A

BioBankCloud

A.1 Identity and Access Management

Listing A.1: BioBankCloud ideneity and Access Management backend

CREATE TABLE ‘bbc_group‘ (
‘group_name‘ VARCHAR(20) NOT NULL,
‘group_desc‘ VARCHAR(200) DEFAULT NULL,
‘gid‘ INT(11) NOT NULL,
PRIMARY KEY (‘gid‘)

) ENGINE=ndbcluster;

CREATE TABLE ‘users‘ (
‘uid‘ INT(11) NOT NULL AUTO_INCREMENT,
‘username‘ VARCHAR(10) NOT NULL,
‘password‘ VARCHAR(128) NOT NULL,
‘email‘ VARCHAR(150) DEFAULT NULL,
‘fname‘ VARCHAR(30) DEFAULT NULL,
‘lname‘ VARCHAR(30) DEFAULT NULL,
‘activated‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,
‘title‘ VARCHAR(10) DEFAULT ’-’,
‘orcid‘ VARCHAR(20) DEFAULT ’-’,
‘false_login‘ INT(11) NOT NULL DEFAULT ’-1’,
‘status‘ INT(11) NOT NULL DEFAULT ’-1’,
‘isonline‘ INT(11) NOT NULL DEFAULT ’-1’,
‘secret‘ VARCHAR(20) DEFAULT NULL,
‘validation_key‘ VARCHAR(128) DEFAULT NULL,
‘security_question‘ VARCHAR(20) DEFAULT NULL,
‘security_answer‘ VARCHAR(128) DEFAULT NULL,
‘mode‘ INT(11) NOT NULL DEFAULT ’0’,
‘password_changed‘ TIMESTAMP NOT NULL DEFAULT ’0000-00-00 00:00:00’,

205

206 APPENDIX A. BIOBANKCLOUD

‘notes‘ VARCHAR(500) DEFAULT ’-’,
‘mobile‘ VARCHAR(15) DEFAULT ’-’,
‘max_num_projects‘ INT(11) NOT NULL,
PRIMARY KEY (‘uid‘),
UNIQUE KEY ‘username‘ (‘username‘),
UNIQUE KEY ‘email‘ (‘email‘)

) ENGINE=ndbcluster AUTO_INCREMENT=10000;

CREATE TABLE ‘yubikey‘ (
‘yubidnum‘ INT(11) NOT NULL AUTO_INCREMENT,
‘uid‘ INT(11) NOT NULL,
‘public_id‘ VARCHAR(40) DEFAULT NULL,
‘created‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
‘aes_secret‘ VARCHAR(100) DEFAULT NULL,
‘accessed‘ TIMESTAMP NULL DEFAULT NULL,
‘status‘ INT(11) DEFAULT ’-1’,
‘counter‘ INT(11) DEFAULT NULL,
‘low‘ INT(11) DEFAULT NULL,
‘high‘ INT(11) DEFAULT NULL,
‘session_use‘ INT(11) DEFAULT NULL,
‘notes‘ VARCHAR(100) DEFAULT NULL,
PRIMARY KEY (‘yubidnum‘),
FOREIGN KEY (‘uid‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE CASCADE ON

UPDATE NO ACTION
)ENGINE=ndbcluster;

CREATE TABLE ‘address‘ (
‘address_id‘ INT(11) NOT NULL AUTO_INCREMENT,
‘uid‘ INT(11) NOT NULL,
‘address1‘ VARCHAR(100) DEFAULT ’-’,
‘address2‘ VARCHAR(100) DEFAULT ’-’,
‘address3‘ VARCHAR(100) DEFAULT ’-’,
‘city‘ VARCHAR(40) DEFAULT ’-’,
‘state‘ VARCHAR(50) DEFAULT ’-’,
‘country‘ VARCHAR(40) DEFAULT ’-’,
‘postalcode‘ VARCHAR(10) DEFAULT ’-’,
PRIMARY KEY (‘address_id‘),
FOREIGN KEY (‘uid‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE CASCADE ON

UPDATE NO ACTION
) ENGINE=ndbcluster;

CREATE TABLE ‘people_group‘ (
‘uid‘ INT(11) NOT NULL,
‘gid‘ INT(11) NOT NULL,
PRIMARY KEY (‘uid‘,‘gid‘),
FOREIGN KEY (‘gid‘) REFERENCES ‘bbc_group‘ (‘gid‘) ON DELETE NO ACTION

ON UPDATE NO ACTION,

A.1. IDENTITY AND ACCESS MANAGEMENT 207

FOREIGN KEY (‘uid‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE CASCADE ON
UPDATE NO ACTION

) ENGINE=ndbcluster;

CREATE TABLE ‘account_audit‘ (
‘log_id‘ BIGINT(20) NOT NULL AUTO_INCREMENT,
‘initiator‘ INT(11) NOT NULL,
‘target‘ INT(11) NOT NULL,
‘action‘ VARCHAR(45) DEFAULT NULL,
‘time‘ TIMESTAMP NULL DEFAULT NULL,
‘message‘ VARCHAR(100) DEFAULT NULL,
‘outcome‘ VARCHAR(45) DEFAULT NULL,
‘ip‘ VARCHAR(45) DEFAULT NULL,
‘browser‘ VARCHAR(45) DEFAULT NULL,
‘os‘ VARCHAR(45) DEFAULT NULL,
‘mac‘ VARCHAR(45) DEFAULT NULL,
‘email‘ VARCHAR(254) DEFAULT NULL,
PRIMARY KEY (‘log_id‘),
KEY ‘initiator‘ (‘initiator‘),
KEY ‘target‘ (‘target‘),
FOREIGN KEY (‘initiator‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE NO ACTION

ON UPDATE NO ACTION,
FOREIGN KEY (‘target‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE NO ACTION ON

UPDATE NO ACTION
) ENGINE=ndbcluster;

CREATE TABLE ‘project‘ (
‘id‘ INT(11) NOT NULL AUTO_INCREMENT,
‘inode_pid‘ INT(11) NOT NULL,
‘inode_name‘ VARCHAR(255) NOT NULL,
‘projectname‘ VARCHAR(100) NOT NULL,
‘username‘ VARCHAR(150) NOT NULL,
‘created‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
‘retention_period‘ DATE DEFAULT NULL,
‘ethical_status‘ VARCHAR(30) DEFAULT NULL,
‘archived‘ TINYINT(1) DEFAULT ’0’,
‘deleted‘ TINYINT(1) DEFAULT ’0’,
‘description‘ VARCHAR(2000) DEFAULT NULL,
PRIMARY KEY (‘id‘),
UNIQUE KEY(‘projectname‘),
UNIQUE KEY(‘inode_pid‘, ‘inode_name‘),
FOREIGN KEY (‘username‘) REFERENCES ‘users‘ (‘email‘) ON DELETE NO

ACTION ON UPDATE NO ACTION,
FOREIGN KEY (‘inode_pid‘,‘inode_name‘) REFERENCES

‘hops‘.‘hdfs_inodes‘(‘parent_id‘,‘name‘) ON DELETE CASCADE ON UPDATE
NO ACTION

) ENGINE=ndbcluster;

208 APPENDIX A. BIOBANKCLOUD

CREATE TABLE ‘activity‘ (
‘id‘ INT(11) NOT NULL AUTO_INCREMENT,
‘activity‘ VARCHAR(128) NOT NULL,
‘user_id‘ INT(10) NOT NULL,
‘created‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
‘flag‘ VARCHAR(128) DEFAULT NULL,
‘project_id‘ INT(11) NOT NULL,
PRIMARY KEY (‘id‘),
FOREIGN KEY (‘project_id‘) REFERENCES ‘project‘ (‘id‘) ON DELETE CASCADE

ON UPDATE NO ACTION,
FOREIGN KEY (‘user_id‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE NO ACTION

ON UPDATE NO ACTION
) ENGINE=ndbcluster;

CREATE TABLE ‘userlogins‘ (
‘login_id‘ BIGINT(20) NOT NULL AUTO_INCREMENT,
‘ip‘ VARCHAR(45) DEFAULT NULL,
‘os‘ VARCHAR(30) DEFAULT NULL,
‘browser‘ VARCHAR(40) DEFAULT NULL,
‘action‘ VARCHAR(80) DEFAULT NULL,
‘outcome‘ VARCHAR(20) DEFAULT NULL,
‘mac‘ VARCHAR(45) DEFAULT NULL,
‘uid‘ INT(11) NOT NULL,
‘email‘ VARCHAR(150) DEFAULT NULL,
‘login_date‘ TIMESTAMP NULL DEFAULT NULL,
PRIMARY KEY (‘login_id‘),
KEY (‘login_date‘),
FOREIGN KEY (‘uid‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE CASCADE ON

UPDATE NO ACTION
) ENGINE=ndbcluster;

CREATE TABLE ‘organization‘ (
‘id‘ INT(11) NOT NULL AUTO_INCREMENT,
‘uid‘ INT(11) DEFAULT NULL,
‘org_name‘ VARCHAR(100) DEFAULT ’-’,
‘website‘ VARCHAR(2083) DEFAULT ’-’,
‘contact_person‘ VARCHAR(100) DEFAULT ’-’,
‘contact_email‘ VARCHAR(150) DEFAULT ’-’,
‘department‘ VARCHAR(100) DEFAULT ’-’,
‘phone‘ VARCHAR(20) DEFAULT ’-’,
‘fax‘ VARCHAR(20) DEFAULT ’-’,
PRIMARY KEY (‘id‘),
FOREIGN KEY (‘uid‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE CASCADE

) ENGINE=ndbcluster;

CREATE TABLE ‘consents_audit‘ (

A.1. IDENTITY AND ACCESS MANAGEMENT 209

‘log_id‘ BIGINT(20) NOT NULL AUTO_INCREMENT,
‘initiator‘ INT(11) NOT NULL,
‘consent_id‘ int(11) NOT NULL,
‘action‘ VARCHAR(45) DEFAULT NULL,
‘time‘ TIMESTAMP NULL DEFAULT NULL,
‘message‘ VARCHAR(500) DEFAULT NULL,
‘outcome‘ VARCHAR(45) DEFAULT NULL,
‘ip‘ VARCHAR(45) DEFAULT NULL,
‘browser‘ VARCHAR(45) DEFAULT NULL,
‘os‘ VARCHAR(45) DEFAULT NULL,
‘mac‘ VARCHAR(45) DEFAULT NULL,
PRIMARY KEY (‘log_id‘),
KEY ‘initiator‘ (‘initiator‘),
FOREIGN KEY (‘initiator‘) REFERENCES ‘users‘ (‘uid‘) ON DELETE NO ACTION

ON UPDATE NO ACTION,
FOREIGN KEY (‘consent_id‘) REFERENCES ‘consents‘ (‘id‘) ON DELETE NO

ACTION ON UPDATE NO ACTION
) ENGINE=ndbcluster;

210 APPENDIX A. BIOBANKCLOUD

A.2 Auditing Users Actions

Listing A.2: Mapping of backend relations with the role auditing model inside the
security framework

package se.kth.bbc.security.audit.model;

@Entity
@Table(name = "hopsworks.roles_audit")
@XmlRootElement
@NamedQueries({

@NamedQuery(name = "RolesAudit.findAll",
query = "SELECT r FROM RolesAudit r"),

@NamedQuery(name = "RolesAudit.findByLogId",
query = "SELECT r FROM RolesAudit r WHERE r.logId = :logId"),

@NamedQuery(name = "RolesAudit.findByInitiator",
query = "SELECT r FROM RolesAudit r WHERE r.initiator =

:initiator"),
@NamedQuery(name = "RolesAudit.findByAction",

query = "SELECT r FROM RolesAudit r WHERE r.action = :action"),
@NamedQuery(name = "RolesAudit.findByTime",

query = "SELECT r FROM RolesAudit r WHERE r.time = :time"),
@NamedQuery(name = "RolesAudit.findByMessage",

query = "SELECT r FROM RolesAudit r WHERE r.message = :message"),
@NamedQuery(name = "RolesAudit.findByIp",

query = "SELECT r FROM RolesAudit r WHERE r.ip = :ip"),
@NamedQuery(name = "RolesAudit.findByOs",

query = "SELECT r FROM RolesAudit r WHERE r.os = :os"),
@NamedQuery(name = "RolesAudit.findByOutcome",

query = "SELECT r FROM RolesAudit r WHERE r.outcome = :outcome"),
@NamedQuery(name = "RolesAudit.findByBrowser",

query = "SELECT r FROM RolesAudit r WHERE r.browser = :browser"),
@NamedQuery(name = "RolesAudit.findByMac",

query = "SELECT r FROM RolesAudit r WHERE r.mac = :mac")})
public class RolesAudit implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Basic(optional = false)
@Column(name = "log_id")
private Long logId;
@Size(max = 45)
@Column(name = "action")
private String action;
@Column(name = "time")
@Temporal(TemporalType.TIMESTAMP)

A.2. AUDITING USERS ACTIONS 211

private Date time;
@Size(max = 45)
@Column(name = "message")
private String message;
@Size(max = 45)
@Column(name = "ip")
private String ip;
@Size(max = 45)
@Column(name = "outcome")
private String outcome;
@Size(max = 45)
@Column(name = "browser")
private String browser;
@Size(max = 45)
@Column(name = "os")
private String os;
@Size(max = 254)
@Column(name = "email")
private String email;
@Size(max = 45)
@Column(name = "mac")
private String mac;
@JoinColumn(name = "target",

referencedColumnName = "uid")
@ManyToOne
private Users target;

@JoinColumn(name = "initiator",
referencedColumnName = "uid")

@ManyToOne
private Users initiator;

public RolesAudit() {
}

public RolesAudit(Long logId) {
this.logId = logId;

}

public Long getLogId() {
return logId;

}

public void setLogId(Long logId) {
this.logId = logId;

}

212 APPENDIX A. BIOBANKCLOUD

public Users getInitiator() {
return initiator;

}

public void setInitiator(Users initiator) {
this.initiator = initiator;

}

public String getAction() {
return action;

}

public void setAction(String action) {
this.action = action;

}

public Date getTime() {
return time;

}

public void setTime(Date time) {
this.time = time;

}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

public String getIp() {
return ip;

}

public void setIp(String ip) {
this.ip = ip;

}

public String getOutcome() {
return outcome;

}

public void setOutcome(String outcome) {
this.outcome = outcome;

A.2. AUDITING USERS ACTIONS 213

}

public String getBrowser() {
return browser;

}

public void setBrowser(String browser) {
this.browser = browser;

}

public String getMac() {
return mac;

}

public void setMac(String mac) {
this.mac = mac;

}

public Users getTarget() {
return target;

}

public void setTarget(Users target) {
this.target = target;

}

public String getOs() {
return os;

}

public void setOs(String os) {
this.os = os;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

@Override
public int hashCode() {

int hash = 0;
hash += (logId != null ? logId.hashCode() : 0);

214 APPENDIX A. BIOBANKCLOUD

return hash;
}

@Override
public boolean equals(Object object) {

if (!(object instanceof RolesAudit)) {
return false;

}

RolesAudit other = (RolesAudit) object;
if ((this.logId == null && other.logId != null) || (this.logId != null

&& !this.logId.equals(other.logId))) {
return false;

}
return true;

}

@Override
public String toString() {

return "se.kth.bb.security.audit.model.RolesAudit[logId=" + logId + "
]";

}

}

Appendix B

eCPC Toolkit

B.1 k-anonmity

Listing B.1: k-anonymization in sdcMicro integration

public void anonymizeCSV(String csvFilePath, String keyColumns, int k)
throws IOException, InterruptedException {

String cmd0 = "library(’sdcMicro’)";
String cmd1 = "library(’sdcMicroGUI’)";
String cmd2 = "csvfile <- read.csv(’" + csvFilePath + "’, sep=’" +

CSVColumnSeperator + "’, na.strings =’’)";
String cmd3 = "kanonym <- localSuppression(csvfile, keyVars = c(" +

keyColumns + "),"
+ " k=" + k + ", importance=NULL)";

String cmd4 = "plot(kanonym)";
String cmd5 = "write.table(kanonym$xAnon, quote = FALSE, row.names

= FALSE, "
+ "sep =’" + CSVColumnSeperator + "’, eol =’\n’, file=’" +

AnonymizedCSVFile + "’)";

String jointCmd = cmd0 + "\n" + cmd1 + "\n" + cmd2 + "\n" + cmd3 +
"\n" + cmd4 + "\n" + cmd5;

String inFile = ECPCUtils.createBatch(jointCmd);

String cmd = "R CMD BATCH " + inFile;

Process pr = Runtime.getRuntime().exec(cmd);
pr.waitFor();

}

215

216 APPENDIX B. ECPC TOOLKIT

B.2 l-diversirty

Listing B.2: l-Diversity in sdcMicro integration

public void checkLDiversity(String csvFilePath, String keyColumns,
String sensitive, int k, int l)

throws IOException, InterruptedException {
String cmd0 = "library(’sdcMicro’)";
String cmd1 = "library(’sdcMicroGUI’)";
String cmd2 = "csvfile <- read.csv(’" + csvFilePath + "’, "

+ "sep=’"+ CSVColumnSeperator+"’, na.strings =’’)";
String cmd3 = "kanonym <- localSuppression(csvfile, keyVars =

c(" + keyColumns+ "),"
+ " k=" + k + ", importance=NULL)";

String ldivCmd= "ldiv<-
ldiversity(kanonym$xAnon,keyVars=c("+keyColumns+"),"

+ "ldiv_index=c("+ sensitive+"))";
String ldivPlot= "print(ldiv) \n plot(ldiv)";

String ldivCmd1= "TFfk <- apply(ldiv,1,function(x)any(x<"+l+"))";

String ldivCmd2= "print(TFfk)";
String jointCmd = cmd0 + "\n" + cmd1 + "\n" + cmd2 + "\n" + cmd3

+ "\n" +
ldivCmd+ "\n" +ldivPlot + "\n"+ ldivCmd1+ "\n"+ ldivCmd2;

String inFile = ECPCUtils.createBatch(jointCmd);

String cmd = "R CMD BATCH " + inFile;

Process pr = Runtime.getRuntime().exec(cmd);
pr.waitFor();

}

B.3. REIDENTIFICATION RISK 217

B.3 Reidentification Risk

Listing B.3: Measuring the reidentification risk using sdcMicro

public void calcReidentificationRisk(String csvFile, String sensitive)
throws IOException, InterruptedException {

CSVUtils.cleanUp();
String libCmd = "library(’sdcMicroGUI’)";
String cmd0 = "library(’sdcMicro’)";
String cmd1 = "csvfile <- read.csv(’" + csvFile + "’, sep=’" +

CSVColumnSeperator + "’, na.strings=’’)";
String cmd2 = "freq <- freqCalc(csvfile, keyVars= c(" + sensitive

+ "))";
String cmd3 = "indRisk <- indivRisk(freq, survey=TRUE)";
String cmd4 = "plot(indRisk)";
String jointCmd = libCmd + "\n" + cmd0 + "\n" + cmd1 + "\n" + cmd2

+ "\n"
+ cmd3 + "\n" + cmd4;

String inFile = ECPCUtils.createBatch(jointCmd);

String cmd = "R CMD BATCH " + inFile;

Process pr = Runtime.getRuntime().exec(cmd);
pr.waitFor();

}

Appendix C

Lind Dual Sandbox

C.1 Porting Applications in NaCl and Repy

Listing C.1: Porting popular open source packages in NaCl to be used in Lind

#!/bin/bash

export NAME=Grep
export VERSION=2.14
export NACL_ARCH=x86_64
export TOOLCHAIN=glibc
export NACLPORTS_PREFIX=${REPY_PATH}/usr
export NACLPORTS_PREFIX_BIN=${REPY_PATH}/bin
source /usr/lind_project/lind/naclports/src/build_tools/common.sh

export NACL_SEL_LDR
export NACL_IRT
export NACL_SDK_LIB
export CC=${NACLCC}
export CXX=${NACLCXX}
export AR=${NACLAR}
export RANLIB=${NACLRANLIB}
export PKG_CONFIG_PATH=${NACLPORTS_LIBDIR}/pkgconfig
export PKG_CONFIG_LIBDIR=${NACLPORTS_LIBDIR}
export FREETYPE_CONFIG=${NACLPORTS_PREFIX_BIN}/freetype-config
export PATH=${NACL_BIN_PATH}:${PATH};

export NETTLE_CFLAGS=${NACLPORTS_PREFIX}/include
export GMP_CFLAGS=${NACLPORTS_PREFIX}/include

conf_host=${NACL_CROSS_PREFIX}

219

220 APPENDIX C. LIND DUAL SANDBOX

Banner "Configure grep-2.14"
ChangeDir "grep-2.14"
./configure\

--prefix=${NACLPORTS_PREFIX} --enable-shared --host=x86_64-linux
make clean
make

C.2. LIND’S PARSER FOR GCOV 221

C.2 Lind’s Parser for Gcov

Listing C.2: Gcov parser to collect the data usage in the target platforms

import sys, os, string, getopt

def main(argv):
inputfile = ’’
outputfile = ’’
try:

opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
except getopt.GetoptError:

print ’analyzer.py -i <coverage.info> -o <outputfile>’
sys.exit(2)

for opt, arg in opts:
if opt == ’-h’:

print ’analyzer.py -i <coverage.info> -o <outputfile>’
sys.exit()

elif opt in ("-i", "--ifile"):
inputfile = arg

elif opt in ("-o", "--ofile"):
outputfile = arg

if os.path.isfile(inputfile):
infile = open(inputfile, ’r’)
outfile = open(outputfile, ’w’)
kernel_usage(infile, outfile)
infile.close()
outfile.close()

else:
print "File: ", inputfile, " does not exist!"
sys.exit(2)

"""
This function generates the lines that are used used by each source file in

the kernel.
"""

def kernel_usage(infile, outfile):

"""
A set of lines used in the SF. Each SF might be run several times
and therefore we need a way to make each run identical:
SF:/usr/src/linux-3.13.0/arch/x86/include/asm/atomic.h
DA:38,3

222 APPENDIX C. LIND DUAL SANDBOX

DA:117,3
LF:2
LH:2
SF:/usr/src/linux-3.13.0/arch/x86/include/asm/atomic.h:
DA:38,3
DA:40:0
DA 117,30
LF:2
LH:2
Result will be as follow which duplicated lines are removed:
SF:/usr/src/linux-3.13.0/arch/x86/include/asm/atomic.h
DA:38
DA:117
"""
da_values = set()

"Create a unique mapping of SFs with the executed lines-"
usage_dict = {}

"Put the SF path in a tmp variable to test if it already exist not to
be duplicated."

tmp_path= ""

"Generate the executed lines for each SF and write the unique results
in an outputfile."

for lines in infile:
if ("SF:" in lines):

tmp_path = lines.rstrip(os.linesep)

if ("DA:" in lines) and ("FNDA" not in lines):
lines = lines.replace("DA:", "")
line = lines.split(",")

if ("=====" not in line[1]):
if(int(line[1]) > 0):

da_values.add(int(line[0]))

if ("end_of_record" in lines):
tmp_set = usage_dict.get(tmp_path)
if tmp_set is not None:

union = set().union(da_values,tmp_set)
usage_dict[tmp_path] = union.copy()

else:
usage_dict[tmp_path]= da_values.copy()

da_values.clear()

for sf,da in usage_dict.iteritems():

C.2. LIND’S PARSER FOR GCOV 223

if(da):
outfile.write(sf+’\n’)
da_sorted = sorted(da)
for lines in da_sorted:

outfile.write(’%d\n’%lines)

outfile.write(’\n’)

pass

Appendix D

Lind Reference Monitor

D.1 Policy Definition in Lind

Listing D.1: Lind’s reference monitor policy definition

// Define the syscalls that are file system related
access=ALLOW_LIND
close=ALLOW_LIND
chdir=ALLOW_LIND
chmod=ALLOW_LIND
chown=ALLOW_LIND
creat=ALLOW_LIND
// dup* is not only for FS calls...
dup=ALLOW_LIND
dup2=ALLOW_LIND
dup3=ALLOW_LIND
fstat=ALLOW_LIND
fstatfs=ALLOW_LIND
//Lots of uses for fcntl...
fcntl=ALLOW_LIND
flock=ALLOW_LIND
stat=ALLOW_LIND
statfs=ALLOW_LIND
open=ALLOW_LIND
openat=ALLOW_LIND
read=ALLOW_LIND
mkdir=ALLOW_LIND
rmdir=ALLOW_LIND
rename=ALLOW_LIND
link=ALLOW_LIND
lseek=ALLOW_LIND
ioctl=ALLOW_LIND

225

226 APPENDIX D. LIND REFERENCE MONITOR

pread64=ALLOW_LIND
pwritev=ALLOW_LIND
getdents=ALLOW_LIND
unlink=ALLOW_LIND
write=ALLOW_LIND

// Define network related system calls
accept=ALLOW_LIND
bind=ALLOW_LIND
connect=ALLOW_LIND
getpeername=ALLOW_LIND
getsockname=ALLOW_LIND
getsockopt=ALLOW_LIND
listen=ALLOW_LIND
setsockopt=ALLOW_LIND
socketpair=ALLOW_LIND
sendto=ALLOW_LIND
recvfrom=ALLOW_LIND
sendmsg=ALLOW_LIND
recvmsg=ALLOW_LIND
socket=ALLOW_LIND
shutdown=ALLOW_LIND

// Define generic user ID - gid syscalls
getegid=ALLOW_LIND
geteuid=ALLOW_LIND
getgid=ALLOW_LIND
getuid=ALLOW_LINd
getgroups=ALLOW_LIND
getpid=ALLOW_LIND

// Concurrency related
epoll_create=ALLOW_LIND
epoll_ctl=ALLOW_LIND
epoll_wait=ALLOW_LIND
epoll_create1=ALLOW_LIND
select=ALLOW_LIND
poll=ALLOW_LIND

// Define the syscalls that should go through OS
munmap=ALLOW_OS
mmap=ALLOW_OS
brk=ALLOW_OS
setgroups=ALLOW_OS
arch_prctl=ALLOW_OS
mprotect=ALLOW_OS

D.1. POLICY DEFINITION IN LIND 227

// TEMP CHANGES TO DEBUG APACHE
execve=ALLOW_OS
set_tid_address=ALLOW_OS
futex=ALLOW_OS
set_robust_list=ALLOW_OS
getrlimit=ALLOW_OS
rt_sigaction=ALLOW_OS
rt_sigprocmask=ALLOW_OS
exit_group=ALLOW_OS
exit=ALLOW_OS
clone=ALLOW_OS
kill=ALLOW_OS

// Calls that are not yet implemented
lstat=DENY_LIND
accept4=DENY_LIND
acct=DENY_LIND
...

228 APPENDIX D. LIND REFERENCE MONITOR

D.2 System Call Filtering in Lind

Listing D.2: Lind’s reference monitor system call filtering implementation

void monitor_ns()
{

if (entering) {
entering = 0;

} else {
regs.retval = EINVAL;
fprintf(stdout, "%s () not supported by lind\n",

syscall_names[regs.syscall]);

set_args(®s);
entering = 1;

}
}

void monitor_execve()
{

if (entering) {
entering = 0;

char *execve_path;
char **execve_args;

execve_path = get_path(regs.arg1);
char** p;
int i = 0, argc;
while (1) {

p = (char**) get_mem(regs.arg2 + i * sizeof(char*), sizeof(char*));
++i;
if (!*p)

break;
}
argc = i;
execve_args = malloc(sizeof(char*) * argc);
execve_args[argc - 1] = 0;
i = 0;
fprintf(stdout, "[monitor] execve(%s, [", execve_path);
for (i = 0; i < argc; ++i) {

p = get_mem(regs.arg2 + i * sizeof(char*), sizeof(char*));
if (*p) {

execve_args[i] = (char *) get_path((uintptr_t)*p);
fprintf(stdout, "%s ", execve_args[i]);

}

D.2. SYSTEM CALL FILTERING IN LIND 229

}
} else {

fprintf(stdout, "]");
fprintf(stdout, ") = %d\n", (int) regs.retval);
entering = 1;

}
}

void monitor_deny()
{

if (entering) {
regs.retval = EINVAL;
set_args(®s);
entering = 0;
fprintf(stdout, "[monitor] BEFORE Deny call by Lind: %s() = %d\n",

syscall_names[regs.syscall], (int) regs.retval);
fprintf(stdout, "Aborting\n");
exit(1);

} else {
fprintf(stdout, "[monitor] AFTER Deny call by Lind: %s() = %d\n",

syscall_names[regs.syscall], (int) regs.retval);
entering = 1;

}
}

void monitor_close()
{

if (entering) {
entering = 0;

} else {
if ((int32_t) regs.arg1 >= 0) {

regs.retval = lind_close(regs.arg1);
set_args(®s);
fprintf(stdout, "[monitor] close(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);

}
entering = 1;

}
}

void monitor_getuid()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_getuid();

230 APPENDIX D. LIND REFERENCE MONITOR

set_args(®s);
fprintf(stdout, "[monitor] getuid() = %d\n", (int) regs.retval);
entering = 1;

}
}

void monitor_read()
{

if (entering) {
entering = 0;

} else {
void *buff = malloc(regs.arg3);
regs.retval = lind_read(regs.arg1, buff, regs.arg3);
set_mem(regs.arg2, buff, regs.arg3);
set_args(®s);
fprintf(stdout, "[monitor] read(%d, 0x%lx[], %d) = %d\n", (int)

regs.arg1,
(long) regs.arg2, (int) regs.arg3, (int) regs.retval);

entering = 1;
}

}

void monitor_open()
{

if (entering) {
entering = 0;

} else {

char *path = get_path(regs.arg1);
int lind_fd = lind_open(path, regs.arg2, regs.arg3);

if (lind_fd >= 0) {
add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;
set_args(®s);
fprintf(stdout, "[monitor] open(%s, %d, %d) = %d\n", path,

(int) regs.arg2, (int) regs.arg3, (int) regs.retval);

}
entering = 1;

}
}

void monitor_fstat()
{

if (entering) {
entering = 0;

D.2. SYSTEM CALL FILTERING IN LIND 231

} else {
struct lind_stat st;
regs.retval = lind_fstat(regs.arg1, &st);
set_mem(regs.arg2, &st, sizeof(st));
set_args(®s);

fprintf(stdout, "[monitor] fstat(%d, {st_mode = %d, st_size = %d}) =
%d\n", (int) regs.arg1, (int) st.st_mode, (int) st.st_size,

(int) regs.retval);
entering = 1;

}

}

void monitor_openat()
{

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg2);
int lind_fd = lind_openat(regs.arg1, path, regs.arg3, regs.arg4);

if (lind_fd >= 0) {
add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] openat(%d, %s, %d, %d) = %d\n",

(int) regs.arg1, path, (int) regs.arg2, (int) regs.arg4,
(int) regs.retval);

entering = 1;
}

}

void monitor_access()
{

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
int lind_fd = lind_access(path, regs.arg2);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {

232 APPENDIX D. LIND REFERENCE MONITOR

regs.retval = -1;
}
set_args(®s);
fprintf(stdout, "[monitor] access(%s, %d, %d) = %d\n", path,

(int) regs.arg2, (int) regs.arg3, (int) regs.retval);
entering = 1;

}
}

void monitor_statfs()
{

struct lind_statfs stfs;

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
regs.retval = lind_statfs(path, &stfs);
set_mem(regs.arg2, &stfs, sizeof(stfs));
set_args(®s);
fprintf(stdout, "[monitor] statfs(%s) = %d\n", path,

(int) regs.retval);
entering = 1;

}
}

void monitor_stat()
{

struct lind_stat st;

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
regs.retval = lind_stat(path, &st);
set_mem(regs.arg2, &st, sizeof(st));
set_args(®s);
fprintf(stdout, "[monitor] stat(%s) = %d\n", path, (int) regs.retval);
entering = 1;

}
}

void monitor_fstatfs()
{

struct lind_statfs stfs;

if (entering) {

D.2. SYSTEM CALL FILTERING IN LIND 233

entering = 0;
} else {

regs.retval = lind_fstatfs(regs.arg1, &stfs);
set_mem(regs.arg2, &stfs, sizeof(stfs));
set_args(®s);
fprintf(stdout, "[monitor] fstatfs(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_rmdir()
{

if (entering) {
entering = 0;

} else {
char* path = get_path(regs.arg1);
regs.retval = lind_rmdir(path);
set_args(®s);
fprintf(stdout, "[monitor] rmdir(%s) = %d\n", path, (int)

regs.retval);
entering = 1;

}
}

void monitor_getpid()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_getpid();
set_args(®s);
fprintf(stdout, "[monitor] getpid() = %d\n", (int) regs.retval);
entering = 1;

}
}

void monitor_geteuid()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_geteuid();
set_args(®s);
fprintf(stdout, "[monitor] geteuid() = %d\n", (int) regs.retval);
entering = 1;

}

234 APPENDIX D. LIND REFERENCE MONITOR

}

void monitor_getgid()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_getgid();
fprintf(stdout, "[monitor] getgid() = %d\n", (int) regs.retval);
set_args(®s);
entering = 1;

}
}

void monitor_getegid()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_getegid();
set_args(®s);
fprintf(stdout, "[monitor] getegid() = %d\n", (int) regs.retval);
entering = 1;

}
}

void monitor_write()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_write(regs.arg1, get_mem(regs.arg2, regs.arg3),

regs.arg3);

set_args(®s);
fprintf(stdout, "[monitor] write(%d, 0x%lx[], %d) = %d\n", (int)

regs.arg1,
(long) regs.arg2, (int) regs.arg3,
(int) regs.retval);

entering = 1;
}

}

void monitor_unlink()
{

if (entering) {

D.2. SYSTEM CALL FILTERING IN LIND 235

entering = 0;
} else {

char *path = get_path(regs.arg1);
regs.retval = lind_unlink(path);
set_args(®s);

fprintf(stdout, "[monitor] unlink(%s) = %d\n", path,
(int) regs.retval);

entering = 1;
}

}

void monitor_link()
{

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
char *path1 = get_path(regs.arg2);
regs.retval = lind_link(path, path1);
set_args(®s);
fprintf(stdout, "[monitor] link(%s, %s) = %d\n", path, path1,

(int) regs.retval);
entering = 1;

}
}

void monitor_fcntl()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_fcntl(regs.arg1, regs.arg2);
set_args(®s);
fprintf(stdout, "[monitor] fcntl(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.retval);
entering = 1;

}
}

void monitor_listen()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_listen(regs.arg1, regs.arg2);

236 APPENDIX D. LIND REFERENCE MONITOR

set_args(®s);
fprintf(stdout, "[monitor] listen(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.retval);
entering = 1;

}
}

void monitor_shutdown()
{

if (entering) {
entering = 0;
} else {
regs.retval = lind_shutdown(regs.arg1, regs.arg2);
set_args(®s);
fprintf(stdout, "[monitor] shutdown(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.retval);
entering = 1;

}
}

void monitor_mkdir()
{

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
regs.retval = lind_mkdir(path, regs.arg2);
set_args(®s);
fprintf(stdout, "[monitor] mkdir(%s) = %d\n", path, (int)

regs.retval);
entering = 1;

}
}

void monitor_chdir()
{

if (entering) {
entering = 0;

} else {
char *path = get_path(regs.arg1);
regs.retval = lind_chdir(path);
set_args(®s);
fprintf(stdout, "[monitor] chdir(%s) = %d\n", path, (int)

regs.retval);
entering = 1;

}
}

D.2. SYSTEM CALL FILTERING IN LIND 237

void monitor_getcwd()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] getcwd(%s)\n", get_path(regs.arg1));
entering = 1;

}
}

void monitor_dup()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_dup(regs.arg1);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] dup(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_dup2()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_dup2(regs.arg1, regs.arg2);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] dup2(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.retval);
entering = 1;

}

238 APPENDIX D. LIND REFERENCE MONITOR

}

void monitor_dup3()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_dup3(regs.arg1, regs.arg2, regs.arg3);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] dup3(%d, %d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.arg3, (int) regs.retval);
entering = 1;

}
}

void monitor_flock()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_flock(regs.arg1, regs.arg2);
set_args(®s);
fprintf(stdout, "[monitor] flock(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.retval);
entering = 1;

}
}

void monitor_epoll_create1()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_epoll_create1(regs.arg1);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);

D.2. SYSTEM CALL FILTERING IN LIND 239

fprintf(stdout, "[monitor] epoll_create1(%d) = %d\n", (int) regs.arg1,
(int) regs.retval);

entering = 1;
}

}

void monitor_epoll_create()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_epoll_create(regs.arg1);
if (lind_fd >= 0) {

add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] epoll_create(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_getdents()
{

if (entering) {
entering = 0;

} else {

char *buf = malloc (regs.arg3);
regs.retval = lind_getdents(regs.arg1, buf,

regs.arg3);
set_mem(regs.arg2, buf, regs.arg3);
set_args(®s);
fprintf(stdout, "[monitor] getdents(%d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg3, (int) regs.retval);
free(buf);
entering = 1;

}
}

void monitor_lseek()
{

if (entering) {

240 APPENDIX D. LIND REFERENCE MONITOR

entering = 0;
} else {

regs.retval = lind_lseek(regs.arg1, regs.arg2, regs.arg3);
set_args(®s);
fprintf(stdout, "[monitor] lseek(%u, %d, %d) = %d\n", (int) regs.arg1,

(int) regs.arg2, (int) regs.arg3, (int) regs.retval);
entering = 1;

}
}

void monitor_pwritev()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_pwrite(regs.arg1, get_mem(regs.arg2, regs.arg3),

regs.arg3, regs.arg4);
set_args(®s);
fprintf(stdout, "[monitor] pwritev(%d, 0x%lx[], %d) = %d\n",

(int)regs.arg1,
(long) regs.arg2, (int) regs.arg4,
(int) regs.retval);

entering = 1;
}

}

void monitor_pread64()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_pread(regs.arg1, get_mem(regs.arg2, regs.arg3),

regs.arg3, regs.arg4);
set_args(®s);
fprintf(stdout, "[monitor] pread64(%d, 0x%lx[], %d) = %d\n",

(int) regs.arg1, (long) regs.arg2,
(int) regs.arg4, (int) regs.retval);

entering = 1;
}

}

void monitor_socket()
{

if (entering) {
entering = 0;

} else {

D.2. SYSTEM CALL FILTERING IN LIND 241

int lind_fd = lind_socket(regs.arg1, regs.arg2, regs.arg3);

if (lind_fd >= 0) {
add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] socket(%d, %d, %d) = %d\n", (int)

regs.arg1,
(int) regs.arg2, (int) regs.arg3, (int) regs.retval);

entering = 1;
}

}

void monitor_bind()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_bind(regs.arg1,

get_mem(regs.arg2, sizeof(struct lind_sockaddr)), regs.arg3);

set_args(®s);
fprintf(stdout, "[monitor] bind(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_connect()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_connect(regs.arg1,

get_mem(regs.arg2, sizeof(struct lind_sockaddr)), regs.arg3);

fprintf(stdout, "[monitor] connect(%d) = %d\n", (int) regs.arg1,
(int) regs.retval);

set_args(®s);
entering = 1;

}
}

void monitor_accept()

242 APPENDIX D. LIND REFERENCE MONITOR

{
if (entering) {

entering = 0;
} else {

int lind_fd = lind_accept(regs.arg1,
get_mem(regs.arg2, sizeof(struct lind_sockaddr)),
(lind_socklen_t*) regs.arg3);

if (lind_fd >= 0) {
add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}

set_args(®s);
fprintf(stdout, "[monitor] accept(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_sendto()
{

if (entering) {
entering = 0;

} else {
regs.retval = lind_sendto(regs.arg1, get_mem(regs.arg2, regs.arg3),

regs.arg3, regs.arg4,
get_mem(regs.arg2, sizeof(struct lind_sockaddr)), regs.arg5);

set_args(®s);
fprintf(stdout, "[monitor] sendto(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_recvfrom()
{

if (entering) {
entering = 0;

} else {
char *var = malloc(regs.arg3);
struct lind_sockaddr * buff = malloc(regs.arg6);

regs.retval = lind_recvfrom(regs.arg1, var, regs.arg3, regs.arg4,
buff, (lind_socklen_t *) regs.arg6);

D.2. SYSTEM CALL FILTERING IN LIND 243

set_mem(regs.arg2, var, regs.arg3);
set_mem(regs.arg5, buff, regs.arg6);

free(var);
free(buff);
set_args(®s);

fprintf(stdout, "[monitor] recvfrom(%d) = %d\n", (int) regs.arg1,
(int) regs.retval);

entering = 1;
}

}

void monitor_recvmsg()
{

if (entering) {
entering = 0;

} else {
struct lind_msghdr msg_orig;

struct lind_msghdr* msg = get_mem(regs.arg2,
sizeof(struct lind_msghdr));

msg_orig = *msg;

struct lind_iovec* iovs = get_mem((uintptr_t)msg->msg_iov->iov_base,
sizeof(struct lind_iovec) * msg->msg_iovlen);

struct lind_iovec* iovs_orig = malloc(
sizeof(struct lind_iovec) * msg->msg_iovlen);

memcpy(iovs_orig, iovs, sizeof(struct lind_iovec) * msg->msg_iovlen);

for (int i = 0; i < msg->msg_iovlen; ++i) {
iovs[i].iov_base = malloc(iovs[i].iov_len);

}

msg->msg_iov = iovs;
msg->msg_name = malloc(msg->msg_namelen);
msg->msg_control = malloc(msg->msg_controllen);

regs.retval = lind_recvmsg(regs.arg1, msg, regs.arg3);

set_mem((uintptr_t)msg_orig.msg_name, msg->msg_name,
msg->msg_namelen);

set_mem((uintptr_t) msg_orig.msg_control, msg->msg_control,
msg->msg_controllen);

244 APPENDIX D. LIND REFERENCE MONITOR

for (int i = 0; i < msg->msg_iovlen; ++i) {
set_mem((uintptr_t) iovs_orig[i].iov_base, iovs[i].iov_base,

iovs_orig[i].iov_len);
}

free(iovs);
free(iovs_orig);
free(msg);

set_args(®s);

fprintf(stdout, "[monitor] recvmsg(%d, %d) = %d\n", (int) regs.arg1,
(int) regs.arg3, (int) regs.retval);

entering = 1;
}

}

void monitor_sendmsg()
{

if (entering) {
entering = 0;

} else {
struct lind_msghdr* msg = get_mem(regs.arg2,

sizeof(struct lind_msghdr));

struct lind_iovec* iovs = get_mem((uintptr_t) msg->msg_iov->iov_base,
sizeof(struct lind_iovec) * msg->msg_iovlen);

struct lind_iovec* iovs_orig = (struct lind_iovec*) malloc(
sizeof(struct lind_iovec) * msg->msg_iovlen);

memcpy(iovs_orig, iovs, sizeof(struct lind_iovec) * msg->msg_iovlen);
for (int i = 0; i < msg->msg_iovlen; ++i) {

iovs[i].iov_base = get_mem((uintptr_t) iovs[i].iov_base,
iovs[i].iov_len);

}
msg->msg_iov = iovs;
msg->msg_name = malloc(msg->msg_namelen);
msg->msg_control = malloc(msg->msg_controllen);

regs.retval = lind_sendmsg(regs.arg1, msg, regs.arg3);

free(msg);
free(iovs);
free(iovs_orig);
set_args(®s);

fprintf(stdout, "[monitor] sendmsg(%d) = %d\n", (int) regs.arg1,
(int) regs.retval);

entering = 1;

D.2. SYSTEM CALL FILTERING IN LIND 245

}
}

lind_socklen_t* addrlen;
void monitor_getsockname()
{

if (entering) {
entering = 0;

} else {

struct lind_sockaddr *buff = malloc(sizeof (struct lind_sockaddr));
regs.arg3 = (long)get_mem(regs.arg3, sizeof(lind_socklen_t));
regs.retval = lind_getsockname(regs.arg1, buff,

(lind_socklen_t*) regs.arg3);

set_mem(regs.arg2, buff, sizeof(struct lind_sockaddr));
set_args(®s);
fprintf(stdout, "[monitor] getsockname(%d, %d) = %d\n", (int)

regs.arg1,
(int) regs.arg2, (int) regs.retval);

free(buff);
entering = 1;
}

}

void monitor_getsockopt()
{

if (entering) {
entering = 0;

} else {
struct lind_sockaddr *buff = malloc(sizeof(struct lind_sockaddr));
regs.retval = lind_getsockopt(regs.arg1, regs.arg2, regs.arg3, buff,

(lind_socklen_t*) regs.arg5);
set_mem(regs.arg4, buff, sizeof(struct lind_sockaddr));
set_args(®s);

fprintf(stdout, "[monitor] getsockopt(%d, %d, %d, %d) = %d\n", (int)
regs.arg1,

(int) regs.arg2, (int) regs.arg3, (int) regs.arg5, (int)
regs.retval);

free(buff);
entering = 1;

}
}

void monitor_setsockopt()

246 APPENDIX D. LIND REFERENCE MONITOR

{
if (entering) {

entering = 0;
} else {

regs.retval = lind_setsockopt(regs.arg1, regs.arg2, regs.arg3,
get_mem(regs.arg4, sizeof(struct lind_sockaddr)), regs.arg5);

set_args(®s);
fprintf(stdout, "[monitor] setsockopt(%d, %d, %d, %d) = %d\n", (int)

regs.arg1,
(int) regs.arg2, (int) regs.arg3, (int) regs.arg5, (int)

regs.retval);
entering = 1;

}
}

void monitor_socketpair()
{

if (entering) {
entering = 0;

} else {
int lind_fd = lind_socketpair(regs.arg1, regs.arg2,

regs.arg3, get_mem(regs.arg4, 2 * sizeof(int)));

if (lind_fd >= 0) {
add_mapping(regs.retval, lind_fd);
regs.retval = lind_fd;

} else {
regs.retval = -1;

}
set_args(®s);
fprintf(stdout, "[monitor] socketpair(%d, %d) = %d\n", (int)

regs.arg1,
(int) regs.arg2, (int) regs.retval);

entering = 1;
}

}

void monitor_getpeername()
{

if (entering) {
entering = 0;
} else {
fprintf(stdout, "[monitor] getpeername(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}

D.2. SYSTEM CALL FILTERING IN LIND 247

}

void monitor_select()
{

if (entering) {
entering = 0;

} else {

void* set1 = get_mem(regs.arg2, sizeof(fd_set));
void* set2 = get_mem(regs.arg3, sizeof(fd_set));
void* set3 = get_mem(regs.arg4, sizeof(fd_set));
void* tv = get_mem(regs.arg5, sizeof(struct timeval));

regs.retval = lind_select(regs.arg1, set1, set2, set3, tv);
set_mem(regs.arg2, set1, sizeof(fd_set));
set_mem(regs.arg3, set2, sizeof(fd_set));
set_mem(regs.arg4, set3, sizeof(fd_set));
set_mem(regs.arg5, tv, sizeof(struct timeval));
set_args(®s);
fprintf(stdout, "[monitor] select(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_poll()
{

if (entering) {
entering = 0;

} else {
struct lind_pollfd * lpfd = malloc(sizeof(struct lind_pollfd));
regs.retval = lind_poll(lpfd, regs.arg2, regs.arg3);
set_mem(regs.arg1, lpfd, sizeof(struct lind_pollfd));
set_args(®s);
fprintf(stdout, "[monitor] poll(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_epoll_ctl()
{

if (entering) {
entering = 0;

} else {

struct lind_epoll_event *event = malloc(

248 APPENDIX D. LIND REFERENCE MONITOR

sizeof(struct lind_epoll_event));
regs.retval = lind_epoll_ctl(regs.arg1, regs.arg2, regs.arg3,

get_mem(regs.arg4, sizeof(struct lind_epoll_event)));

set_mem(regs.arg4, event, sizeof(struct lind_epoll_event));
set_args(®s);
fprintf(stdout, "[monitor] epoll_ctl(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_epoll_wait()
{

if (entering) {
entering = 0;

} else {
struct lind_epoll_event *event = malloc(

sizeof(struct lind_epoll_event));
regs.retval = lind_epoll_wait(regs.arg1, event, regs.arg3, regs.arg4);
set_mem(regs.arg2, event, sizeof(struct lind_epoll_event));
set_args(®s);
fprintf(stdout, "[monitor] epoll_wait(%d) = %d\n", (int) regs.arg1,

(int) regs.retval);
entering = 1;

}
}

void monitor_os()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] %s() = %d\n", syscall_names[regs.syscall],

(int) regs.retval);
entering = 1;

}
}

void monitor_gettid()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] gettid() = %d\n",

(int) regs.retval);
entering = 1;

D.2. SYSTEM CALL FILTERING IN LIND 249

}
}

void monitor_arch_prctl()
{

if (entering) {
entering = 0;

} else {
if (((int32_t) regs.arg5) >= 0) {

fprintf(stdout, "[monitor] arch_prctl() = %d\n",
(int) regs.retval);

}
entering = 1;

}
}

/* Handle the mmap call through the monitor */
void monitor_mmap()
{

if (entering) {
entering = 0;

if (regs.arg5 >= 0){
regs.arg5 = get_mapping(regs.arg5);
set_args(®s);
}

} else {
if (!regs.arg1) {

fprintf(stdout, "[monitor] mmap(NULL, %lu, %d, %d, %d, %#llx) =
0x%lx\n",

(long) regs.arg2, (int) regs.arg3, (int) regs.arg4, (int)
regs.arg5, (long long unsigned int) regs.arg6,

(long int) regs.retval);
} else {

fprintf(stdout, "[monitor] mmap(0x%lx, %lu, %d, %d, %d, %#llx) =
0x%lx\n", (long) regs.arg1,

(long) regs.arg2, (int) regs.arg3, (int) regs.arg4, (int)
regs.arg5, (long long unsigned int) regs.arg6, (long
int) regs.retval);

}
entering = 1;

}
}

void monitor_munmap()
{

250 APPENDIX D. LIND REFERENCE MONITOR

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] munmap(%#lx, %lu) = %d\n", (long)

regs.arg1, (long) regs.arg2, (int) regs.retval);
entering = 1;

}
}

void monitor_mprotect()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] mprotect(%#lx, %lu, %d) = %d\n", (long)

regs.arg1, (long) regs.arg2, (int) regs.arg3, (int) regs.retval);
entering = 1;

}
}

void monitor_brk()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] brk(%#lx) = 0x%llx \n", regs.arg1,

regs.retval);
entering = 1;

}
}

void monitor_exit_group()
{

fprintf(stdout, "[monitor] exit_group(%d) \n",(int) regs.arg1);
}

void monitor_exit()
{

fprintf(stdout, "[monitor] exit(%d) \n", (int) regs.arg1);
}

void monitor_tgkill()
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitor] tgkill() = %d\n", (int) regs.retval);

D.2. SYSTEM CALL FILTERING IN LIND 251

entering = 1;
}

}

/* Handle generic the generic system calls */
void monitor_gscall(int call_no)
{

if (entering) {
entering = 0;

} else {
fprintf(stdout, "[monitro] %s() = %d\n", syscall_names[call_no],

(int) regs.retval);
entering = 1;

}
}

int main(int argc, char** argv)
{

/* Check the command line arguments to see if a process is defined for
trace */

if (argc <= 0) {
fprintf(stderr, "Usage %s <program> <options>\n", argv[0]);
exit(-1);

}

init_ptrace(argc, argv);
LindPythonInit();
intercept_calls();
return 0;

}

/* Initialize a process to be traced */
void init_ptrace(int argc, char** argv)
{

char ** argv1 = malloc(sizeof(char*) * argc);
memcpy(argv1, argv + 1, sizeof(char*) * (argc - 1));
argv1[argc - 1] = NULL;

load_config();
tracee = fork();

/* Check if fork was successful */
if (tracee < 0) {

fprintf(stderr, "No process could be monitored.\n");
exit(-1);

}

252 APPENDIX D. LIND REFERENCE MONITOR

/* Trace the child */
if (tracee == 0) {

/* Let the parent process to trace the child*/
ptrace(PTRACE_TRACEME, tracee, 0, 0);

/* Stop the current process*/
kill(getpid(), SIGSTOP);

extern char **environ;

execve(argv[1], argv1, environ);

fprintf(stderr, "Unknown command %s\n", argv[1]);
exit(1);

}

}

/* Intercept the system calls issued by the tracee process */
void intercept_calls()
{

int status = -1, syscall_num = -1;

/* Wait for the child to stop */
waitpid(tracee, &status, 0);

ptrace(PTRACE_SETOPTIONS, tracee, 0,
PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEEXIT);

while (1) {

/* Get every sysacall and notify in the tracee stops */
ptrace(PTRACE_SYSCALL, tracee, 0, 0);

/* Wait for other syscalls */
waitpid(tracee, &status, 0);

/* Check if tracee is terminated */
if (WIFEXITED(status))

break;

if (!WIFSTOPPED(status)) {
fprintf(stderr, "wait(&status)=%d\n", status);
exit(status);

}

D.2. SYSTEM CALL FILTERING IN LIND 253

get_args(®s);
syscall_num = regs.syscall;

if (WSTOPSIG(status) == (SIGTRAP | 0x80)) {
if (monitor_actions[syscall_num] == DENY_LIND) {

monitor_deny();
break;

} else if (monitor_actions[syscall_num] == ALLOW_OS) {

switch (syscall_num) {

case __NR_execve:
monitor_execve();
break;

case __NR_tgkill:
monitor_tgkill();
break;

case __NR_getcwd:
monitor_getcwd();
break;

case __NR_exit_group:
monitor_exit_group();
break;

case __NR_exit:
monitor_exit();
break;

case __NR_arch_prctl:
monitor_arch_prctl();
break;

case __NR_munmap:
monitor_munmap();
break;

case __NR_mmap:
monitor_mmap();
break;

case __NR_mprotect:
monitor_mprotect();
break;

254 APPENDIX D. LIND REFERENCE MONITOR

case __NR_gettid:
monitor_gettid();
break;

case __NR_brk:
monitor_brk();
break;

default:
monitor_os();
break;

} /* switch*/

} else if (monitor_actions[syscall_num] == ALLOW_LIND) {

switch (syscall_num) {

case __NR_getuid:
monitor_getuid();
break;

case __NR_read:
monitor_read();
break;

case __NR_open:
monitor_open();
break;

case __NR_openat:
monitor_openat();
break;

case __NR_access:
monitor_access();
break;

case __NR_close:
monitor_close();
break;

case __NR_rmdir:
monitor_rmdir();
break;

case __NR_stat:

D.2. SYSTEM CALL FILTERING IN LIND 255

monitor_stat();
break;

case __NR_statfs:
monitor_statfs();
break;

case __NR_fstat:
monitor_fstat();
break;

case __NR_fstatfs:
monitor_fstatfs();
break;

case __NR_write:
monitor_write();
break;

case __NR_mkdir:
monitor_mkdir();
break;

case __NR_chdir:
monitor_chdir();
break;

case __NR_getcwd:
monitor_getcwd();
break;

case __NR_dup:
monitor_dup();
break;

case __NR_dup2:
monitor_dup2();
break;

case __NR_dup3:
monitor_dup3();
break;

case __NR_getpid:
monitor_getpid();
break;

256 APPENDIX D. LIND REFERENCE MONITOR

case __NR_geteuid:
monitor_geteuid();
break;

case __NR_getgid:
monitor_getgid();
break;

case __NR_getegid:
monitor_getegid();
break;

case __NR_unlink:
monitor_unlink();
break;

case __NR_link:
monitor_link();
break;

case __NR_fcntl:
monitor_fcntl();
break;

case __NR_listen:
monitor_listen();
break;

case __NR_shutdown:
monitor_shutdown();
break;

case __NR_flock:
monitor_flock();
break;

case __NR_getdents:
monitor_getdents();
break;

case __NR_lseek:
monitor_lseek();
break;

case __NR_pread64:
monitor_pread64();
break;

D.2. SYSTEM CALL FILTERING IN LIND 257

case __NR_pwritev:
monitor_pwritev();
break;

case __NR_socket:
monitor_socket();
break;

case __NR_bind:
monitor_bind();
break;

case __NR_connect:
monitor_connect();
break;

case __NR_accept:
monitor_accept();
break;

case __NR_sendto:
monitor_sendto();
break;

case __NR_recvfrom:
monitor_recvfrom();
break;

case __NR_recvmsg:
monitor_recvmsg();
break;

case __NR_sendmsg:
monitor_sendmsg();
break;

case __NR_getsockname:
monitor_getsockname();
break;

case __NR_getsockopt:
monitor_getsockopt();
break;

case __NR_setsockopt:
monitor_setsockopt();

258 APPENDIX D. LIND REFERENCE MONITOR

break;

case __NR_socketpair:
monitor_socketpair();
break;

case __NR_getpeername:
monitor_getpeername();
break;

case __NR_select:
monitor_select();
break;

case __NR_poll:
monitor_poll();
break;

case __NR_epoll_create:
monitor_epoll_create();
break;

case __NR_epoll_create1:
monitor_epoll_create1();
break;

case __NR_epoll_ctl:
monitor_epoll_ctl();
break;

case __NR_epoll_wait:
monitor_epoll_wait();
break;

default:
monitor_ns();
break;

} /* switch*/
}

} /* WSTOPSIG*/
}/* while */

}

/* Get the path of files required by a system call through the defined
address */

char *get_path(uintptr_t addr)
{

D.2. SYSTEM CALL FILTERING IN LIND 259

size_t len = PATH_MAX;
char *buffer = buffer = malloc(len);

uint32_t tmp;
int i = 0;

while (1) {
if (i >= len) {

len *= 2;
buffer = realloc(buffer, len);

}

tmp = ptrace(PTRACE_PEEKDATA, tracee, addr + i, NULL);
memcpy(buffer + i, (void *) &tmp, sizeof(tmp));

if (memchr(&tmp, 0, sizeof(tmp)) != NULL) {
break;

}

i += 4;
}

return buffer;
}

/* Set the memory from an address to a specific buffer */
void set_mem(uintptr_t addr, void * buff, size_t count)
{

long ret = -1;
int i;

int fullblocks = count / sizeof(long);
int remainder = count % sizeof(long);

for (i = 0; i < fullblocks; i++) {
ret = ptrace(PTRACE_POKEDATA, tracee,

(char *) (addr + sizeof(long) * i),
(long) ((char*) buff + sizeof(long) * i));

}

if (remainder) {
unsigned long value = ptrace(PTRACE_PEEKDATA, tracee,

(char *) (addr + sizeof(long) * fullblocks), 0);
value = (ret & (ULONG_MAX << (remainder * 8)))

| (*(long*) ((char*) buff + sizeof(long) * fullblocks)
& (~(ULONG_MAX << (remainder * 8))));

ret = ptrace(PTRACE_POKEDATA, tracee,

260 APPENDIX D. LIND REFERENCE MONITOR

(char *) (addr + sizeof(long) * fullblocks), value);
}

}

/* Get count number of memory defined through an address */
void *get_mem(uintptr_t addr, size_t count) {

long ret;
int i;
long *mem = malloc((count / sizeof(long) + 1) * sizeof(long));

for (i = 0; i < count / sizeof(long) + 1; i++) {
ret = ptrace(PTRACE_PEEKDATA, tracee,

(char *) (addr + sizeof(long) * i), 0);
mem[i] = ret;

}

return (void*) mem;
}

/* Return system call number by name */
int get_syscall_num(char *name)
{

int i;

for (i = 0; i < TOTAL_SYSCALLS; i++){
if (syscall_names[i] && !strcmp(syscall_names[i], name))

return i;
}
fprintf(stderr, "Syscall %s not found.\n", name);
return -1;

}

/* Return the arguments of a system call by PTRACE */
void get_args(struct syscall_args *args)
{

if (ptrace(PTRACE_GETREGS, tracee, 0, &args->user) < 0) {
fprintf(stderr, "ptrace could not get the register arguments. \n");
return;

}
args->syscall = args->user.regs.orig_rax;
args->retval = args->user.regs.rax;

args->arg1 = args->user.regs.rdi;
args->arg2 = args->user.regs.rsi;
args->arg3 = args->user.regs.rdx;

D.2. SYSTEM CALL FILTERING IN LIND 261

args->arg4 = args->user.regs.r10;
args->arg5 = args->user.regs.r8;
args->arg6 = args->user.regs.r9;

}

/* Set the arguments of a system call by PTRACE */
void set_args(struct syscall_args *args)
{

args->user.regs.orig_rax = args->syscall;
args->user.regs.rax = args->retval;
args->user.regs.rdi = args->arg1;
args->user.regs.rsi = args->arg2;
args->user.regs.rdx = args->arg3;
args->user.regs.r10 = args->arg4;
args->user.regs.r8 = args->arg5;
args->user.regs.r9 = args->arg6;

if (ptrace(PTRACE_SETREGS, tracee, 0, &args->user) < 0) {
fprintf(stderr, "ptrace could not set registers . \n");
return;

}
}

/* Load the config file containing the policies to dispatch the system
calls */

int load_config()
{

char *str, buff[100];
char *key, *value;
enum monitor_action mact = ALLOW_LIND;
const char * config_file = get_lind_config();

FILE *fp = fopen(config_file, "r");
if (fp == NULL) {

fprintf(stderr, "[monitor] Config file %s could not be opened. \n ",
config_file);

exit(-1);
}

int var;
for (var = 0; var < TOTAL_SYSCALLS; var++) {

monitor_actions[var] = NO_VAL;
}

while ((str = fgets(buff, sizeof buff, fp)) != NULL) {

262 APPENDIX D. LIND REFERENCE MONITOR

if (buff[0] == ’\n’ || buff[0] == ’#’)
continue;

char* sep;
if ((sep = strchr(str, ’=’))) {

*sep++ = 0;
key = strdup(str);
value = strdup(sep);

if(strcmp(value, "ALLOW_LIND\n") == 0) {
mact = ALLOW_LIND;

} else if (strcmp(value, "DENY_LIND\n") == 0) {
mact = DENY_LIND;

} else if (strcmp(value, "ALLOW_OS\n") == 0) {
mact = ALLOW_OS;

}

int sys = get_syscall_num(key);

if (monitor_actions[sys] == NO_VAL){
monitor_actions[sys] = mact;

} else {
fprintf(stderr, "Duplicated call definitions %s %d \n",

syscall_names[sys], sys);
exit(-1);

}
}

}

fflush(fp);

if (fclose(fp) <0) {
fprintf(stderr, "Could not close %s \n", config_file);
return -1;

}

return 0;
}

D.3. SYSTEM CALL FORWARDING IN LIND 263

D.3 System Call Forwarding in Lind

Listing D.3: Example of invoking Repy library system calls through the monitor to
send a message

/* This function packs the msg_iovec to a string and passes it to be
handled by Repy. */

ssize_t lind_sendmsg(int sockfd, const struct lind_msghdr *msg, int flags) {

/* Strip the msg->iov vector and extract each individual vector to be
joined in a string. */

unsigned int i = 0;
/* Total length of all iovec elements */
int total = 0;
/* Length of individual iovec elements */
int * lengths;
char * concatenated;
char * final_message;

/* Memory allocation to store the lengths of the individual elements */
lengths = malloc(msg->msg_iov->iov_len * sizeof(int));

concatenated = malloc(total + 1);

for (i = 0; i < msg->msg_iov->iov_len; i++) {
lengths[i] = msg->msg_iov[i].iov_len;
total += lengths[i];

}

/* memory allocation for the concatenated strings */

concatenated = malloc(total);
final_message = concatenated;

for (i = 0; i < msg->msg_iov->iov_len; i++) {
int j;
for (j = 0; j < lengths[i]; j++) {

memcpy(final_message + j, msg->msg_iov[i].iov_base,
msg->msg_iov[i].iov_len);

}

final_message += lengths[i];

}

264 APPENDIX D. LIND REFERENCE MONITOR

free(lengths);
free(concatenated);

return ParseResponse(
MakeLindSysCall(LIND_safe_net_sendmsg, "[is#s#is#ii]", sockfd,

msg->msg_name, msg->msg_namelen, final_message,
msg->msg_iovlen, msg->msg_control, msg->msg_controllen,
msg->msg_flags, flags), 0);

}

D.3. SYSTEM CALL FORWARDING IN LIND 265

Listing D.4: Example of invoking Repy library system calls through the monitor to
receive a message

/* Delivers the received message from a socket to Repy */
ssize_t lind_recvmsg(int sockfd, struct lind_msghdr *msg, int flags) {

/* Strip the msg->iov vector and extract each individual vector to be
joined in a string. */

unsigned int i = 0;
/* Total length of all iovec elements. */
int total = 0;
/* Length of individual iovec elements. */
int * lengths;
char * concatenated;
char * final_message;

/* Memory allocation to store the lengths of individual elements. */
lengths = malloc(msg->msg_iov->iov_len * sizeof(int));

concatenated = malloc(total + 1);

for (i = 0; i < msg->msg_iov->iov_len; i++) {
lengths[i] = msg->msg_iov[i].iov_len;
total += lengths[i];

}

/* Memory allocation for the concatenated strings. */

concatenated = malloc(total);
final_message = concatenated;

for (i = 0; i < msg->msg_iov->iov_len; i++) {
int j;
for (j = 0; j < lengths[i]; j++) {

memcpy(final_message + j, msg->msg_iov[i].iov_base,
msg->msg_iov[i].iov_len);

}

final_message += lengths[i];
}

free(lengths);
free(concatenated);

return ParseResponse(
MakeLindSysCall(LIND_safe_net_recvmsg, "[is#s#is#ii]", sockfd,

266 APPENDIX D. LIND REFERENCE MONITOR

msg->msg_name, msg->msg_namelen, final_message,
msg->msg_iovlen, msg->msg_control, msg->msg_controllen,
msg->msg_flags, flags), 0);

}

List of Abbreviations

ABAC Attribute-Based Access Control
ACL Access Control List
AES Advanced Encryption Standard
AM Application Management
API Application Programming Interface
ARM Advanced RISC Machine
ASLR Address Space Layout Randomization
AWS Amazon Web Services

BCR Binding Corporate Rules
BioBankCloud Scalable, Secure Storage Biobank
BIOS Basic Input/Output System

CDR Call Detail Record
CIA Confidentiality, Integrity, Availability
CMS Cambridge Monitor System
CP Control Program
CPTM Cloud Privacy Threat Modeling
CPU Central Processing Unit
CRM Customer Relationship Management
CSA Cloud Security Alliance
CSV Comma Separated Values
CVE Common Vulnerabilities and Exposures

DAC Discretionary Access Control
DM Data Management
DNA Deoxyribo Nucleic Acid
DNS Domain Name System
DoS Denial of Service
DPD Data Protection Directive

EC2 Elastic Compute Cloud
eCPC e-Science for Cancer Prevention and Control

267

268 LIST OF ABBREVIATIONS

EGI European Grid Infrastructure
EJB Enterprise JavaBeans
ESX Elastic Sky X
ETE External Trusted Entity
EU European Union

fMRI Functional Magnetic Resonance Imaging

GFS Google File System
GLBA Gramm-Leach-Bliley Act
GLM General Linear Model
GSS-API Generic Security Services Application Program

Interface
GUI Graphical User Interface
GW Generic Worker

HDFS Hadoop Distributed File System
HIPAA US Health Insurance Portability and Account-

ability Act
HMAC Keyed-Hashing for Message Authentication
HOPS Hadoop Optimized File System
HOTP HMAC-based One-time Password
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output
IaaS Infrastructure-as-a-Service
IAM Identity and Access Management
IAPP International Association of Privacy Profession-

als
IBE Identity-Based Encryption
IBS Identity-Based Signature
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPC Inter Process Communication

JAAS Java Authentication and Authorization Service
JDBC Java Database Connectivity
JDT Job Details Table
JM Job Management
JSDL Job Submission Description Language
JSF Java Server Faces
JSON JavaScript Object Notation

LIST OF ABBREVIATIONS 269

JVM Java Virtual Machine

KDC Key Distribution Center
KVM Kernel Virtual Machine

LDAP Lightweight Directory Access Protocol
LIMS Lab Information Management System
LOC Line of Code
LSM Linnx Security Module
LTP Linux Test Project
LXC Linux Container

MAC Mandatory Access Control
MCR MATLAB Compiler Runtime
MD5 Message-Digest algorithm 5
ME Method Engineering
MPHC Multiterminal Cut for Privacy in Hybrid

Clouds
MR Map/Reduce

NaCl Google Native Client
NDB Network Database Technology
NGS Next-Generation Sequencing
NIST National Institute of Standards

OATH Open Authentication
OAUTH Open Authorization
OGSA-BES Open Grid Service Architecture - Basic Execu-

tion Services
OS Operating System
OTP One Time Password

PaaS Platform-as-a-Service
PAP Policy Administration Point
PC Personal Computer
PCI Peripheral Component Interconnect
PDP Policy Decision Point
PEP Policy Enforcement Point
PID Personal Identifier
PII Personally identifiable information
PKI Public Key Infrastructure
PMES Programming Model Enactment Services
POSIX Portable Operating System Interface
PPH PolyPasswordHashser

270 LIST OF ABBREVIATIONS

QEMU Quick Emulator
QID Quasi Identifier
QRC Quick Response Code

RBAC Role Based Access Control
REST Representational State Transfer
RFC Request for Comments
RFPA Right to Financial Privacy Act
RNA Ribo Nucleic Acid
RPC Remote Procedure Call

S3 Simple Storage Service
SaaS Software-as-a-Service
SAML Security Assertion Markup Language
SASL Simple Authentication and Security Layer
ScaBIA Scalable Brain Image Analysis
SCIM System for Cross-domain Identity Management
SCSI Small Computer System Interface
SDK Software Development Kit
SDLC Secure Development Life Cycle
SFI Software Fault Isolation
SHA-1 Secure Hash Algorithm
SHA-3 Secure Hash Algorithm
SIAC Standard Information About Consent
SINC Standard Information on Non-Consented
SLA Service Level Agreement
SM Security Management
SMS Short Message Service
SNP Single Nucleotide Polymorphism
SOAP Simple Authentication and Security Layer
SOC1 Service Organization Controls
SPM Statistical Parametric Mapping
SQL Structured Query Language
SRPA Standard Research Project Approval
SSL Secure Socket Layer
SSN Social Security Number
SSO Single Sing-on
STS Security Token Service

TCB Trusted Code Base
TCCP Trusted Cloud Computing Platform
TGS Ticket Granting Server
TGT Ticket Granting Ticket

LIST OF ABBREVIATIONS 271

TLS Transport Layer Security
ToS Terms of Service
TOTP Time-based One-time Password
TPM Trusted Platform Module
TTP Trusted Third Party

URL Unified Resource Locator
USB Universal Serial Bus
UTD University of Texas at Dallas
UTS Unix Time Sharing

VENUS-C Virtual Multidisciplinary EnviroNments USing
Cloud Infrastructures

VLAN Virtual LAN
VM Virtual Machines
VMM Virtual Machine Monitor
VO Virtual Organization
VOMS Virtual Organization Management Service
VT Virtualization Technology

XACML eXtensible Access Control Markup Language
XDAS Distributed Audit Service
XML Extensible Markup Language
XSS Identity-Based Encryption

YOTP Yubikey One-time Password

ZIP Zone Improvement Plan

	Contents
	List of Figures
	List of Tables
	 Prologue
	Introduction
	Motivation
	Reference Platforms
	Scalable Secure Storage BioBankCloud
	VENUS-C

	Research Questions and Contributions
	Research Method
	List of Scientific Papers
	Thesis Outline

	Background
	Big Data Infrastructures
	Cloud Computing
	Concepts in Cloud Computing
	Virtualization
	Container Technology

	Security Techniques to Ensure Privacy
	The EU DPD Key Concepts
	Authentication
	Data Anonymization Techniques
	Secret Sharing

	Summary

	Related Work
	Identification of Research
	Cloud Security
	Authentication and Authorization
	Identity and Access Management
	Confidentiality, Integrity and Availability (CIA)
	System Call Interposition:
	Security Monitoring and Incident Response
	Security Policy Management

	Data Security and Privacy
	Big Data Infrastructures and Programming Models
	Privacy-Preserving Solutions in the Cloud
	Privacy-Preservation Database Federation

	Summary

	 Privacy by Design for Cloud Computing
	Privacy Threat Modeling Methodology for Cloud Computing Environments
	Introduction
	Characteristics of a Privacy Threat Modeling Methodology for Cloud Computing
	Privacy Legislation Support
	Technical Deployment and Service Models
	Customer Needs
	Usability
	Traceability

	Methodology Steps and Their Products
	Privacy Regulatory Compliance
	Cloud Environment Specification
	Privacy Threat Identification
	Risk Evaluation
	Threat Mitigation

	Summary

	Case Study: BioBankCloud Privacy Threat Modeling
	Introduction
	Scenario
	Privacy Requirements
	Cloud Environment Specification
	Privacy Threat Identification
	Risk Evaluation
	Threat Mitigation
	Summary

	Design and Implementation of the Secure BioBankCloud
	Introduction
	Security Architecture
	Comparison of Existing Solutions
	Proposed Selection of Components

	Design
	Assumptions
	Identity and Access Management
	Authentication
	Authorization
	Auditing

	Implementation
	The Middleware and Libraries
	Identity and Access Management
	Custom Authentication Realm
	Authorization
	Privacy and Ethical Settings
	Auditing

	Verification and Validation
	Discussion
	Summary

	 Trustworthy Privacy-Preserving Cloud Models
	Privacy-Preserving Data Publishing for Sample Availability Data
	Introduction
	Privacy-Preservation Mechanisms
	Obscuring the Key Attributes
	Hashing and Encryption

	Threat Assumptions
	Inference Attacks
	Malicious Sample Publication
	Audit and Control
	Server Private Key Compromised
	Ethical Constraints
	Static Passwords
	Query Reply Limitation

	Design and Implementation
	Scenario
	Integration Service
	Secure Data Management
	Data Pseudonymization and Anonymization
	Re-identification Risk
	Auditing Process

	Summary

	Privacy-Preserving Brain Image Analysis in the Cloud
	Introduction
	Statistical Parametric Mapping (SPM)
	Design
	Security Management (SM)
	Data Management (DM)
	Job Management (JM)
	Application Management (AM)

	Security and Privacy
	Authentication
	Authorization

	Implementation
	Anonymization
	Secure Deployment of the Generic Worker
	Building the Application
	Job Submission
	Data Management

	Summary

	 Secure Multi-Tenancy in the Cloud
	Quantifying and Minimizing the Risk of Kernel Exploitation
	Introduction
	Lind Dual-Layer Sandbox
	Native Client (NaCl)
	Seattle's Repy

	Quantitative Evaluation
	Hypothesis
	Data Sources and Experiments
	Kernel-Level Data Collection
	Data Transformation
	Kernel Traces Analysis and Evaluation

	Summary

	Lind Reference Monitor
	Introduction
	System Call Interposition Model
	Policy Configurations
	System Call Filtering

	Implementation
	Validation
	Summary

	Epilogue
	Discussion
	Discussion on Formulating the Cloud Privacy Requirements
	Cloud Privacy Threat Modeling

	Discussion on Building Privacy-Preserving Cloud Solutions
	Discussion on Quantifying and Minimizing the Risk of Kernel Exploits

	Future Work
	Privacy by Design for Cloud Computing
	Applications of the CPTM in Other Domains
	Emerging Data Protection Laws
	Security and Usability of the BioBankCloud

	Trustworthy Privacy-Preserving Cloud Models
	Secure Multi-Tenancy in the Cloud

	Bibliography
	Appendices
	BioBankCloud
	Identity and Access Management
	Auditing Users Actions

	eCPC Toolkit
	k-anonmity
	l-diversirty
	Reidentification Risk

	Lind Dual Sandbox
	Porting Applications in NaCl and Repy
	Lind's Parser for Gcov

	Lind Reference Monitor
	Policy Definition in Lind
	System Call Filtering in Lind
	System Call Forwarding in Lind

	List of Abbreviations

