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Abstract

Connected component labeling (CCL) is a traditionally sequential problem
that is hard to parallelize. This report aims to test the performance of
solving CCL using massively parallel hardware through GPGPU. To
achieve this several CCL algorithms were researched and implemented
using C++ and OpenCL. The results showed an improvement of up to a
factor of 2, which is insignificant when also considering memory transfer.
In conclusion, performing CCL on the GPU is not worth it if the data
has to first be transferred to and from the GPU.

Sammanfattning

Lönar sig GPGPU CCL?
Etikettering av sammansatta komponenter (CCL) är ett traditionellt
sekventiellt problem som är svårt att parallellisera. Denna rapport ämnar
att testa prestandan av att lösa CCL med användning av massivt parallell
hårdvara genom metoden GPGPU. För att uppnå detta undersöktes och
implementerades ett flertal CCL algoritmer i C++ och OpenCL Resulta-
ten pekar på en förbättring upp till en faktor av 2, vilket är obetydligt
när man också tar hänsyn till minnesöverföringen. Sammanfattningsvis så
är det ej värt att utföra CCL med GPGPU om data även måste överföras
till och från GPU.
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Terminology

GPU Graphics Processing Unit
GPGPU General-Purpose computing on Graphics Processing

Unit
SIMD Single Instruction Multiple Data
CCL Connected Components Labeling
Pixel An indivisible location on some 2-dimensional data grid.
Foreground pixel A pixel with a value of 1, often displayed as white.
Background pixel A pixel with a value of 0, often displayed as black.
Computing unit A part of an OpenCL device that can execute work

groups. A device usually has several of these.
Work-group A collection of related work units.
Work unit One execution of a kernel, usually on a specific pixel.
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Chapter 1

Introduction

In recent history, a huge amount of algorithms have been developed, most
of which are sequential in nature due to the hardware it was constructed
for. However, nowadays performing calculations on hardware such as a GPU
is growing more popular as they are massively parallel. This means they
have access to a large amount of cores (1000+) to use in their calculations.
As such a GPU offers more efficiency in terms of cost per GFLOPS and
similar measurements than their sequential counterparts. Using this extra
power generally leads to faster solutions to the problems [9]. If the sequential
algorithm only uses one core of this new type of hardware, the execution time
will suffer. So, it would be preferable if we could develop parallel algorithms
for these problems, such that we can use the computing power available in
parallel hardware. Even naive parallel algorithms may, due to this difference
in computational power, be quicker in reality.

However, certain problems seem to be inherently sequential; computations that
need to be completed before some other computation can create dependencies
that are hard to solve in a parallel manner. Still, a more brute-force algorithm
might outperform the sequential algorithm. The problem of connected com-
ponents is one where the normal naive recursive algorithm would seem to be
easily parallelizable, but recursion depth and similar issues create problems.
Similarly, there are a few well-known optimizations that mostly makes the
problem even more sequential. But since parallelization is so important, espe-
cially for real-time systems such as many using this algorithm, we investigated
it.

1.1 Purpose
The purpose of this paper is to present some possible GPGPU algorithms for
the problem of CCL and to elucidate the performance difference that may be
had by using a GPU for the problem. It is of interest as replacing a CPU
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(a) 4-connected mask. (b) 8-connected mask.

Figure 1.1: 4- and 8-connected masks, the blue pixel is the one currently being
processed, the gray are those that it is connected to.

version is a trade-off between a possible performance gain and code complexity
inherent in current GPGPU methods.

1.2 Scope
The problem of connected components mathematically regards graphs. We
will consider only the special case where the graphs represent an image.

The problem requires a definition of which pixels are connected to one another.
A 4-connected system means that a pixel is considered to be connected to
the pixel immediately to the north, south, west or east (in the image). A
8-connected system is the same as 4-connected with the addition of pixels
to the northwest, northeast, southwest and southeast. Figure 1.1 shows the
pixel masks of the two connectedness definitions. We will only consider 4-
connected components as the 8-connected problem is very similar. Choosing
the 4-connected problem also leads to slightly more succinct algorithms.

Certain implementations of CCL manage segmented images or full color images
by using some measure of similarity. For most uses one can instead first
threshold the image into a binary image, where the pixels either belong to the
foreground or background. Two pixels are then connected if they both belong
to the foreground and are 4-connected. This paper will only treat CCL of
binary images.

1.3 Problem statement
This paper attempts to resolve whether implementing CCL using GPGPU
techniques instead of using existing sequential algorithms can result in an
improvement in performance.
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Chapter 2

Background

2.1 GPGPU
GPGPU is a technique where a program can be executed on the GPU. GPUs
are multi core processing units which specialize in floating point calculations.
While that lends itself to graphics processing it can also be useful for more
general algorithms. That is because the GPU structure allows for very potent
SIMD performance.

To utilize GPGPU certain frameworks can be used and an example of such
a framework is CUDA [3]. CUDA however only works on Nvidia GPUs.
An alternative that works on GPUs by other manufacturers is OpenCL [5].
There are some differences between the two frameworks, but they perform
similarly [4].

2.1.1 OpenCL

When using GPGPU techniques one cannot treat the GPU as a platform with
large amounts of completely separate threads. This is since the threads of
execution really are small parts of several bigger cores, usually hosting around
64 threads. If no care is taken to group the threads together one might end up
executing only one thread on each core. And doing so often leads to horrible
performance.

While what the GPU has may very well be likened to a CPU thread, it is
not entirely correct and different terminology needs to be used. The useful
OpenCL terminology for these concepts is that a single thread is called a work
item, belonging to some work-group [11]. Each work-group is executed on a
compute unit, which is the equivalent of a CPU core. In this way, most or all
of the work units in some work-group are executed simultaneously. A key part
of optimizing OpenCL code is to ensure the work-groups are of a reasonable
size such that the compute unit can work fully.
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(a) Original image. (b) Thresholded image
(Otsu’s).

(c) Labeled image.

Figure 2.1: Process of connected components labeling. Original image taken
from the USC-SIPI database.

Each work unit can access both a global id that is dependant on the problem
size and a local id. This local id is thus 0 < id < workgroupsize, for each
dimension of the problem. For our problem we will most often let each pixel
of the image be processed by one work unit. It is then reasonable to call the
rectangular block of pixels that some work-groups’ work units process that
work-groups local area.

2.2 Connected components
Connected components is an interesting problem of graph theory. A subgraph
is a connected component if for every vertex in the subgraph there exists a
path to every other vertex in the subgraph. A path is defined as a set of
distinct vertices v1, v2 . . . vn where there exists an edge between vi and vi+1
for every i ∈ N , 1 ≤ i < n.

This notion is easily extended to images since we can imagine an image being
a graph where every pixel is a vertex, and edges are between immediately
neighbouring pixels. There should then be an edge between two pixels if they
are 4-connected and they are both foreground. This specific instance of the
problem, concerning images, has plenty of uses. For example: any time one
wants to process a logical “object” in the image, such as a car, we would like
some way of finding larger clusters of pixels that are somehow related.

Figure 2.1 shows an example thresholding and connected components labeling.
Note that some labels share colors, all separate components are actually labeled
differently.

2.3 Existing algorithms
There exists several completely different approaches to solving this problem,
we will mention briefly the most important ones. Note that any algorithm
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that executes in O(n) is considered theoretically optimal. While there will
be a difference in performance between these algorithms, most are considered
“optimal”.

2.3.1 One component at a time

The perhaps simplest sequential algorithm only scans through the (binary)
image once [1]. Once it finds a foreground pixel without a label it pauses the
scanning of the whole image. It instead starts to map out the entire component
connected to which that one pixel belongs to. The algorithm accomplishes
this by pushing pixel positions onto a stack whenever new ones are discovered.
It then continues to pop from the stack in order to visit new pixels until the
stack is exhausted.

2.3.2 Two-pass

The traditional way to label connected components when the image is stored
as a binary array is to iterate over it at least twice [14]. The goal of the
first iteration is to find and label as many connected components as possible.
To accomplish that, each pixel is assigned a temporary label. They receive
some label dependant on their neighbours if at least one neighbour belongs to
the foreground. Otherwise the pixel is assigned a previously not introduced
provisional label. For exceptionally simple images this might be enough for a
correct labeling.

The greater problem occurs whenever the available neighbours have several
different labels. In that case, something needs to be done to ensure that those
neighbours’ labels are considered to both belong to the same component. So the
algorithm somehow registers the equivalence between the relevant neighbouring
labels and gives the current pixel either one of the neighbouring labels or some
special flag. Subsequent passes then aim to merge labels that really should be
the same.

A few variations of the algorithm exist, which mostly handle the label equiv-
alence in different ways. The old solution to the label equivalence is to put
n-tuples (n = 2 for 4-connected, n = 4 for 8-connected) into a table whenever
two labels should be equivalent. After the first step the table is then trans-
formed into a new table where the first label is the smallest label belonging
to the set of equivalent labels. The transformation is accomplished through
something similar to algorithm 2.1. As can be seen, such a transformation
requires quite a bit of work depending on the size of the table.
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Algorithm 2.1: Equivalence table transformation for 4-connected.
input : T // S t a r t i n g t a b l e
output : T2

s o r t T on f i r s t element
foreach x in T

move x to T2
foreach y in T

i f y1 = x2
y1 = x1

i f y2 = x2
y2 = x1

A newer version instead employs a union-find data structure in order to not need
to post-process any tables. It instead leads to the data structure automatically
recording equivalences between all equivalent labels due to the union part. Such
data structures have two functions: union(A, B), merging the set belonging to
A with that belonging to B, and find(A). find(A) returns a representative
of the set such that if A and B are in the same set, find(A) = find(B). No
post-processing step is then necessary, and in the second pass the algorithm
simply replaces every label with find(label).

2.3.3 Parallel versions

An example of an existing GPGPU solution to the problem of CCL is an
extension of the algorithm that uses union-find to merge pixels with the same
label [12]. One problem presented with the regular union-find method is the
GPUs reliance on locality of the data it is processing. Connected components
can span the entirety of the input, as in the image. Therefore it is important to
think ahead of how to design an algorithm that can try and break the problem
into smaller parts to make the most of the GPUs power. One that treats each
pixel as such a small part is neighbour propagation [6]. But it instead suffers
from different problems due to looking at a too small area, possibly leading to
bad performance.

Some parallel algorithms also exist that are not optimal for a GPU, due to
techniques that can only use (or otherwise don’t benefit from more than) 2–8
cores. Among those are an image adaptation of Tarjan’s [8], and a strategy
dealing with one row at a time and then merging them [10]. Several parallel
versions also exist for the more general case of graphs [15, 2]. While these
algorithms might not straightforwardly solve our problem, an adaptation of
them might.
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Chapter 3

Method

The first step in this study was to perform a literature study on algorithms
relating to the problem of Connected Components. A number of known CPU
algorithms were studied and then implemented in order to establish a baseline.
Then a few known naive GPGPU algorithms and some CPU algorithms adapted
for the GPU were implemented to elucidate any performance differences. We
then compared the execution time of the algorithms.

The algorithms themselves are explained in chapter 4.

3.1 Language
To accomplish any of the GPGPU programming, we had to choose between the
two most used frameworks, OpenCL and CUDA. But since CUDA is locked
to NVIDIA hardware, we chose OpenCL.

To record the execution time a testing environment was created using C++.
C++ was also used to implement the CPU based algorithms and to gain access
to OpenCL functionality. The GPU algorithms were then coded as ‘OpenCL
C’ kernels.

3.2 Hardware
The CPU algorithms were tested on a system with an Intel i7-4770k. In order
to have some robustness regarding OpenCL vendor implementations, we tested
using both an AMD and an Nvidia graphics card. The Nvidia GPU is an Asus
GTX 960, and the AMD is an MSI Radeon R9 280X.
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3.3 Data
We used The USC-SIPI Image Database [17]. The Textures, Aerials, and
Miscellaneous volumes were downloaded and split into two categories depending
on their size. Sizes of 512x512 pixels were kept in one category, and those
of 1024x1024 in another. Images whose sizes did not fit into one of these
categories were simply discarded.

3.4 Testing
The testing environment records the wall-clock time that it takes for the
algorithm to execute. It also separately records the same time but including
the time it takes for the memory to copy to and from the relevant locations.
In the case of GPU algorithms this memory transfer time was expected to be
quite significant, since the GPU memory is physically separate from the RAM.

The entire tests were repeated 5 times for each of the hardware configurations.
This is in order to reduce variability of the testing environment itself, where
OS scheduling and similar problems may affect the timings slightly.

The environment also checks the output after the timers are stopped in order
to validate that the labeling is correct. It first looks only at the output and
verifies that no two different labels are right next to another, and similar sanity
checks. It then compares the output to a previous output from a verified
algorithm, verifying that they are equivalent.

For a realistic thresholding of the images we first used a smart threshold-
ing scheme before running the testing program. For this we chose Otsu’s
method [13], which is a thresholding that minimizes the intra-class variance.

In the code a choice often has to be made about how large the different work-
groups are. For each system we manually tested different sizes until we found
the optimal values.
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Chapter 4

Algorithms

Here we will briefly explain the algorithms used in the tests. Some algorithms
are fairly naive, and are mostly included for the sake of having some easily
relatable algorithm in the comparison.

All the algorithms receive a 2D image with numbers 0 for background and 1 for
foreground. As output they are expected to provide a labeling with arbitrary
numbers in a similar image. As such, there is no requirement that they are
consecutive in some low numbering. The numbers may not, however, be 0 or
1 as those are reserved for their special property of representing background
and foreground. Not allowing 1 is not generally necessary, but choosing to
start some numbering at 2 instead of 1 is trivial, and it assists in debugging.
Background pixels are expected to remain 0 in the output.

We do not actually store the images as 2D images. This is due to various
requirements of OpenCL regarding 2D images, such as requiring a sampler and
two images in order to both read and write. We instead use a 1-dimensional
buffer of the same size as the 2-dimensional one, but indexed slightly differently.
So instead of image[y][x] we use image[w · y + x] where w is the width of the
image.

4.1 CPU
All the CPU algorithms provided use only a single core.

4.1.1 One-pass

The one-pass algorithm is the same as, and works just like the one described
in section 2.3.1. That is, it iterates through the image looking for unlabeled
foreground pixels [1]. When it finds one it pauses and labels the entire
component that it is connected to. The implementation is accomplished with
the use of a vector that stores the position of pixels contained in the component.
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The vector is initialized to only contain the first pixel’s position. That position
is then removed from the vector and used to check if neighbouring pixels belong
to the foreground. If that is the case then they are assigned their label and
their position added to the vector. The process is then repeated until the
vector contains no new elements at which point the entire component has been
explored and labeled.

4.1.2 Union-find

Union-find as used in this report is implemented as a two-pass algorithm. In
the first pass when a foreground pixel is found the algorithm makes note of
the values contained in the pixels north and west of the found pixel. This is to
compute which label to assign the current pixel.

1. If both neighbours are background pixels then the pixel is assigned a
new label according to a formula of it’s position (location + 2).

2. If only one of the neighbouring pixels belongs to the foreground then the
current pixel is assigned the same label.

3. If both neighbours are in the foreground then their root-pixels are calcu-
lated using algorithm 4.1 and the lowest root is used when assigning the
label.

Once the first scan is completed there are still some label equivalences to solve
however. This is done by performing a second scan where the Find set function
is used again on every foreground pixel.

Algorithm 4.1: Find set
input image[], location

while location 6= image[location]− 2
location← image[location]− 2

return location

4.1.3 Linear Two-scan

An efficient two-scan algorithm for labeling connected components makes use
of three tables to solve the label equivalence in the first scan [7]. This is done
by using three different tables to store the label relation, the next label in
the component and the tail of the component (these tables are referred to as
rl_table, n_label, and t_label respectively in the pseudo code). If a group of
labels are in the same component they will all have the same representative
label, usually the lowest in the component. The next label table is used to
iterate through a component when solving the label equivalence. The tail
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table instead stores which label is the last in the component for a specific
representative label. Since all label equivalence is taken care of in the first
iteration the second is simply used to assign all labels the value of their
representative label.

Algorithm 4.2: Linear two-scan
input : image[], imageHeight, imageW idth
m← 2
w ← imageW idth

//Out o f range checks f o r the image [ ] array a c c e s s e s were omitted
for 0 ≤ y ≤ imageHeight− 1

for 0 ≤ x ≤ imageW idth− 1
i f image[y · w + x] ∈ foreground

i f image[y · w + (x− 1)] ∈ background and image[(y − 1) · w + x] ∈ background
image[y · w + x]← m
rl_table[m]← m
n_label[m]← −1
t_label[m]← m
m = m + 1

e l se i f image[y · w + (x− 1)] ∈ foreground
image[y · w + x]← image[y · w + (x− 1)]

e l se
image[y · w + x]← image[(y − 1) · w + x]

u← rl_table[image[y · w + (x− 1)]]
v ← rl_table[image[(y − 1) · w + x]]
i f u 6= v

i f v < u
swap(u, v)

i← v
while i 6= −1

rl_table[i]← u
i← n_label[i]

n_label[t_label[u]]← v
t_label[u]← t_label[v]

4.1.4 Front Back

To solve the problem of connected components algorithms employing the use
of multiple scans can be implemented [16]. Here an initial scan in the forwards
raster direction is used to create provisional labels and store which component
they are connected to in a label connection table. This table is used for
comparison when the algorithm computes the value of a foreground pixel. The
completion of the first scan is followed by one or more pairs of scans both
in the backwards and forwards raster direction. These scans aim to further
solve label connectivity and will continue until no change is recorded and the
algorithm completes. Figure 4.1 shows a small part of the initial forward scan.

Similar to other implementations the label connection table points keeps track
of root labels. During computation the algorithm will assign label values
equal to the lowest root of the neighbouring labels. Both the current and the
neighbouring pixels will receive this value.
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(a) Before computing center pixel (b) After computing center pixel

Figure 4.1: Example of the initial iteration of the front-back algorithm. The
blue pixel is the current foreground pixel (lacking a label) being processed
and the yellow and orange are already assigned provisional labels, with yellow
representing a lower label value

If both neighbouring labels are 0 as in background pixels then a new provisional
label will be assigned. When performing the initial forwards iteration (in the
raster direction) the neighbouring pixels will be the western and northern
labels. During the subsequent pairs of backwards and forwards iterations that
follow the current pixel’s label will also be taken into account. A backwards
iteration will compare the southern and eastern labels.

4.2 GPU

4.2.1 Neighbour propagation

Neighbour propagation uses the simplest possible kernel, that only checks its
immediate neighbours for some label that is lower than its own [6]. Algo-
rithm 4.3 shows the relevant pseudo code. The code is run for each pixel in
the image.

Algorithm 4.3: Neighbour propagation kernel
input : t ( t h i s l a b e l )
foreach n in connected ne ighbours

i f 1 < n < t
t← n

Unfortunately, this is not sufficient as one iteration almost never is enough
to complete a labeling. We must therefore use some method of reaching
convergence. So we slightly modify the algorithm to write true to changed
whenever it changed anything. Then we can use algorithm 4.4 until reaching
convergence.
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Figure 4.2: Which pixels a certain run of plus propagation will consider. Gray
pixels are foreground, blue is current pixel. Red pixels are those that it
considers for minimum.

Algorithm 4.4: Generic convergence algorithm
changed← true
while changed

changed← false
execute k e r n e l

Since there is no method of synchronizing across work-groups in OpenCL,
algorithm 4.4 has to be implemented in the C++ host code, while algorithm 4.3
is implemented as a kernel.

4.2.2 Plus propagation

Plus propagation works very similarly to neighbour propagation. The main
difference is that it considers all the pixels on a straight line to the north/east-
/south/west when calculating the minimum. The straight line stops as soon as
it encounters some background pixel. Figure 4.2 shows the “plus” that this
creates.

Similarly to neighbour propagation, one iteration of this does not guarantee a
correct labeling. Therefore, the convergence algorithm 4.4 is used in the same
manner as previously.

4.2.3 Line editing

Unlike the previous algorithms line-editing is run on all rows/columns simul-
taneously, instead of each pixel. The algorithm attempts to merge as much
as possible of the row/column it is processing, while going in some direction.
For the directions we use four different kernels, one for each of north, east,
south, and west. Each of these are run after one another in the hopes that the

17



lowest label of a component is propagated quickly in all directions. Like the
previous strategies we cannot guarantee a quick solution, so we must again
use the convergence scheme previously mentioned. Algorithm 4.5 shows the
necessary steps for the kernel going east. The kernels for the other directions
are constructed similarly.

Algorithm 4.5: Line editing, east
input : image[] , y , w //row , width
x← 0
m←∞ // Lowest found l a b e l
while x < w

c← image[w · y + x] // Current
i f c = 0

m←∞
e l se

i f c < m
m← c

e l se i f c > m
image[w · y + x]← m

x← x + 1

4.2.4 Lookahead line editing

Lookahead line editing is very similar to line editing. The difference is that we
don’t write anything until we have explored until the end of any component
on the line. After we have found the minimum of that line of the component it
then writes the entire thing. This implies that every pixel of that line gets the
correct minimum of that line immediately. In terms of line editing, the result
is equivalent to a, for example, east run followed by a west run. That then
means that we only need two different kernels for north+south and east+west.
This should, in most cases, be an optimization, but unfortunately it causes
image access to have slightly worse locality due to long lines and starting over
when writing.

4.2.5 Union-find

Union-find works pretty much like the CPU version with the same name [12].
The difference is that we cannot guarantee which order the pixels are processed,
and thus that the north and west pixel has already completed processing. This
means that cannot rely on the first pass correctly joining the trees of labels.
Therefore we again need to iterate until convergence.

Since a pixel to the left of another might not have completed its labeling first,
it is beneficial to let the left pixel look at the value of the right one. Due to
this, we also modify the algorithm such that it also considers the pixels to the
east and south.
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4.2.6 Stack-based exploration

Stack-based exploration is a GPU adaptation of the CPU one-pass algorithm.
Limitations such as local memory size however mean that we cannot fit any
possible component onto one stack. This breaks a necessary invariant of the
one-pass algorithm; that a component is completely labeled after first being
discovered. We also cannot use the global memory for this stack since that
would either require synchronization between work-groups, or letting a single
work-group deal with possibly huge components, making the algorithm too
sequential for GPU usage.

This adaptation thus foregoes any such invariants, and lets the work-groups
attempt to improve the labeling, while at least not weakening it. Assuming
a work-group cooperates internally and picks the best label it can see locally,
there are still two problems that occur:

• A neighbouring work-group actually has a better label that it is trying
to spread.

• It runs out of the limited local stack space.

The first item has a fairly easy, but costly, solution. If we never write to a
pixel that has a better label, the better label will eventually spread into this
work-groups local area. We can then iterate like the rest of the algorithms,
and pick and spread this better label the next time around. Note that this
means that this algorithm is not one-pass, in any sense of the word.

The second item is solved similarly. As long as we don’t add any pixels to the
stack without also modifying its value, we cannot run out of stack without any
changes. This then means that a new iteration is guaranteed, and the stack
will in the next iteration continue where it left off. As a pleasant surprise,
running out of stack space is thus sometimes beneficial since the next iteration
is more quickly started. It is then very likely that some other work-groups
local area has been touched by this superior label. Those work-groups can then
cooperate with continuing to spread it. The algorithm might then perform well
whenever the best label of some component is quickly picked up and spread by
the cooperative efforts of several work-groups.

The implementation works in a few different phases. First up is the eligibility
phase. Among the labels of pixels inside the work-groups area a choice has
to be made on which to start spreading. Obviously a lower label is generally
better than a higher one, but it is possible that the lower label cannot be
spread further. A pixel is called eligible if any of its connected neighbours are
foreground and have a label that is worse than its own. If that label is picked
it could then spread to its neighbour, resulting in a slightly better solution.
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The eligibility phase can thusly also support the convergence algorithm since
we are guaranteed change if there exist eligible pixels.

Pixels with different labels may then be eligible. Since we never checked
whether a lower label is right by the eligible pixels, a lower choice of label is
wise. We therefore pick the lowest eligible label. It is possible that a more
complex choice of eligible label would result in faster execution time.

Implementing a stack that the work-items cooperate on without race conditions
is a bit tricky. For instance, one work-item could increment the index outside
of the stack, and have some other unit read the data there before being
able to write the correct data. Since there is no atomic operation that both
increments/decrements an index and writes/reads an array at that index, we
need some other solution. It can be solved by requiring that all units read or
write during some phase, but not both. Therefore we alternate between a push
phase and a pop phase.

During the push phase the algorithm has some pixel that it needs to use to
process its neighbouring pixels. The current pixel is either fetched from the
global id (x, y) (for the first push phase) or from a previous pop phase. It then
looks at the neighbouring pixels and reduces their labels to the spreading label,
if it previously was higher than that. If it was higher that pixel is pushed since
its neighbours may have higher labels as well. In this way between 0 and 4
new pixels are added to the stack for every unit running during this phase.

During the pop phase we need to get new values of x and y for this work item,
so we pop from the stack. It is possible that some work items receive no new
pixel. In that case they are marked invalid and does nothing until the next
pop phase. If no pixels are on the stack at all, we instead stop this iteration of
the larger part of the algorithm. During this phase the stack therefore shrinks
by 1 for every work item, though not becoming negative.

Finally we need to actually implement push and pop, since the GPU doesn’t
actually have stacks and we need it to be atomic. A push first has to manage
where in the array to put things, using some kind of index. We manipulate this
index using atomic_inc, which atomically increments the integer and returns
the old value. This is since no two work items will get the same index returned
to them when using it except if any atomic_dec is used in-between. When
they then have their unique index which is inside the bounds of the current
stack, they can manipulate the values there in peace. Care has to be taken to
revert the index with an atomic_dec in case the returned value surpasses the
array size. All subsequent work units will also end up not writing to the stack
since it is full, leading to no clashes between atomic_incs and atomic_decs.
Pop works the same way but opposite.
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4.2.7 Local plus propagation

This algorithm only solves the labeling inside the work-groups respective local
area. The local solving is a labeling that would be correct if the local area
spanned the entire image. But in general it does not imply a global solution
since labels across work-group borders may have completely different labels.

The reasoning behind such an algorithms is that we want to be able to use
the low latency of local memory access. If we copy over only a small area
representing the work-groups area to the local memory it will fit into the
limited space available. We can then do a fair amount of processing of the
area for little total execution time. It is therefore reasonable to completely
solve that area locally.

However, it is thus only usable as a modification of another algorithm. We
simply need some other algorithm to cross the work-group borders. In order
to implement it as a modification one execution of the kernel is run on every
iteration of a converging algorithm. It does not necessarily have to modify
the changed flag, since the original algorithm should be responsible for the
convergence.

Unfortunately we cannot use union-find for this local solving as the root pixels
(and other parent pixels) are very likely to be outside the local area. In
such a situation there is not much of a point in not simply using neighbour
propagation. The stack-based algorithm is believed to have too much overhead
for such a local solver, though it is unverified.

We then found that plus propagation performed better than neighbour propa-
gation in the small space inside such a local area. The implementation is very
straightforward and pretty much as described in the regular plus propagation.
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Chapter 5

Results

Table 5.1 displays the timings of the algorithms on the 512x512 volume of
images. As can be seen, linear two-scan performs the best of the CPU al-
gorithms, outperforming one-pass and union-find slightly. The preparation
(copying) time for the images on the CPU is fairly constant at approximately
250 microseconds.

On the GPU side the union-find algorithm vastly outperforms most of the
others. The Nvidia card performs about twice as well on most algorithms for
this size of image. The preparation time is once again fairly constant, with the
AMD taking approximately 1200 microseconds, and the Nvidia card taking
approximately 750.

The maximum speedup for the GPU against the CPU is 1232
745 ≈ 1.65 for the

Nvidia card and 1232
1253 ≈ 0.98 for the AMD.

Table 5.2 shows the times for the 1024x1024 image set. For this category there
is a slightly larger speedup of 4245

1930 ≈ 2.20 for the Nvidia card and 4245
2051 ≈ 2.07

for the AMD. The preparation time increased by 4 times for the CPU, which
is consistent with a 4 times as large image. For the GPU the same number
is approximately 2 for the AMD and 2.5 for the Nvidia, which implies a
considerable overhead for the memory transfer.

Figure 5.1 displays a summary of the best CPU and GPU algorithms, including
the memory transfer time.
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Make Strategy µs Std.Dev. µs prep
CPU Front back scan 5018 1354 263

Linear two-scan 1232 449 273
One-pass 1663 463 265
Union-find 1490 460 236

AMD Line editing 60267 44560 1479
Lookahead line editing 41124 29951 1327
Neighbour propagation 90982 27073 948
Neighbour propagation +local 20207 6915 1185
Plus propagation 23169 13380 1239
Stack-based 4732 1977 1327
Union-find 1253 395 1211
Union-find +local 1377 1144 1289

Nvidia Line editing 24684 18307 759
Lookahead line editing 22365 17422 759
Neighbour propagation 37858 12353 691
Neighbour propagation +local 19069 6992 776
Plus propagation 24801 14747 758
Stack-based 2469 814 759
Union-find 745 94 762
Union-find +local 1301 218 757

Table 5.1: Resulting times of the tests ran on the database of images of size
512x512. Shown is times in microseconds and one standard deviation, as well
as the difference in time between with and without counting preparation time.
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Make Strategy µs Std.Dev. µs prep
CPU Front back scan 18388 5267 993

Linear two-scan 4245 1136 982
One-pass 7099 2309 1056
Union-find 5093 1210 964

AMD Line editing 199934 190150 3427
Lookahead line editing 141350 134386 2817
Neighbour propagation 214404 518810 2151
Neighbour propagation +local 68539 23837 2745
Plus propagation 167226 224958 3075
Stack-based 10613 6041 2705
Union-find 2051 3762 2488
Union-find +local 2386 3602 2004

Nvidia Line editing 184501 174393 1887
Lookahead line editing 149799 131142 1886
Neighbour propagation 184659 63322 1843
Neighbour propagation +local 104038 36531 1881
Plus propagation 287598 419592 1881
Stack-based 7223 4179 1888
Union-find 1930 303 1880
Union-find +local 3890 745 1882

Table 5.2: Resulting times of the tests ran on the database of images of size
1024x1024.

Best CPU Best GPU

1,505 1,507

1,232

745

(a) 512x512
Best CPU Best GPU

5,227

3,810
4,245

1,930

(b) 1024x1024

Figure 5.1: Comparison of best results from the CPU and GPU, including
memory transfer. Memory transfer is in blue while execution time is in red.
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Chapter 6

Discussion

The main point to consider when reviewing the results is that we obviously
cannot use the same hardware for the CPU and GPU measurements. This
implies that any relative speed difference also depends on how the difference of
performance is between the hardware. A practical reasoning is then to attempt
to match the cost of the different parts, as well as the cost of operation. Due
to this, we have attempted to use consumer hardware that is in the same price
range. There is still a bit of a difference, but it should be within a factor of
1.5 (approximately 2000-3000 SEK).

One also need to take into consideration that the used CPU algorithms only
used a single core. Modern CPUs often have between 4 to 8, and while there
is (as has been shown) some overhead in parallelizing the algorithms, better
results are possible. If such an algorithm is used, the slight speedup of the
GPUs gained here will be mostly nullified.

Since the larger dataset resulted in a larger difference in speed than the
smaller one, a dataset with even larger images might show even better results.
Unfortunately, we could not find such a dataset with quality images. Additional
research might be required to completely explore that possibility.

While linear two-scan was the fastest algorithm, it also required the most
memory. It required three additional tables to resolve label equivalence which
required prior knowledge of the image to specify their sizes [7]. Among others
the amount of background pixels present in the image as two of the tables were
recommended to take on the same size. The safest option is to have them be
the same size as the input image. If memory is a limited resource union-find
might be more reasonable.

The times of the slower GPU algorithms may look erroneous, but they are
simply a bit naive. There is, of course, a slim possibility that we have made
mistakes in the coding of certain algorithms. However, the results in execution
time are reasonable, which lessens this possibility.
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We didn’t manage to create any algorithms focusing on local memory that
were better than the regular global ones. This is likely due to the problem
at hand not having enough work to be done in such a local area, leading to
low reusability. And if the data is brought from the global memory into the
local one only to quickly be brought back, there is nothing to be gained from
using local strategies. There is also a clear trend in the results where the
AMD performs better than the Nvidia on the implemented local algorithms.
This means that there is also the possibility that some local algorithm would
perform better than global one on the AMD, but not the Nvidia. But unless
more complex strategies are used such that more reusability is possible, we
cannot recommend focusing on that for this particular problem.

The reasonable GPU algorithms appear to all scale approximately linearly.
This means that synchronization overhead of the parallel algorithms is not
too great for this problem. That implies that we likely could use extra power
from even greater parallelism, if such hardware is popular in the future. It
may then be more worthwhile in the future to use GPGPU for CCL.
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Chapter 7

Conclusions

The difference in execution time is fairly insignificant. Without counting prepa-
ration time a speedup of approximately 2 was achieved, and with preparation
time it is instead approximately equal. This means that there is little point
to transfer the data to the GPU memory in order to perform CCL. However,
it also means that there is little reason to do the opposite, if the data was
originally on the GPU.

The union-find algorithm was fairly easy to implement on both types of
hardware. Since it also performed very well on both, we note that the different
versions do not require considerably different efforts of coding. All in all, our
recommendation is that the implementation is for the device the data is likely
to be on from the start.

So whether it is worthwhile to use GPGPU techniques to solve the CCL
depends purely on whether the data is on the GPU already.
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