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Chapter 4 

 

Engagement Perception and Generation for Social Robots and 

Virtual Agents 

Lee J. Corrigan1, Christopher Peters2, Dennis Küster3 and Ginevra Castellano4 

 

Abstract 

Technology is the future, woven into every aspect of our lives, but how are we to interact with all this 

technology and what happens when problems arise? Artificial agents, such as virtual characters and social 

robots could offer a realistic solution to help facilitate interactions between humans and machines—if only 

these agents were better equipped and more informed to hold up their end of an interaction. People and 

machines can interact to do things together, but in order to get the most out of every interaction, the agent 

must to be able to make reasonable judgements regarding your intent and goals for the interaction. We 

explore the concept of engagement from the different perspectives of the human and the agent. More 

specifically, we study how the agent perceives the engagement state of the other interactant, and how it 

generates its own representation of engaging behaviour. In this chapter, we discuss the different stages and 

components of engagement that have been suggested in the literature from the applied perspective of a case 

study of engagement for social robotics, as well as in the context of another study that was focused on gaze-

related engagement with virtual characters. 

 

4.1 Introduction 

Human interactions are a product of millions of years of evolution, and as such they are typically smooth and 

effortlessly coordinated, benefiting massively from the fact that both interactants are able to draw upon a 

multitude of verbal and/or non-verbal cues in ways that help to regulate the interaction. If we are to interact 

with machines, in the way that the future depicts i.e., with robotic tutors, interactive display points, operator 

free terminals and the like, then we need to develop machines that can interact with us in a similarly intuitive 

fashion. However, at present, the way in which we interact with machines is strongly dictated by their design, 

which is often not optimal in terms of user experience, especially in cases where issues arise. Hence, our 

interest in building artificial agents, such as virtual characters and social robots with the ability to maintain 

interactions across a spectrum of task-orientated use cases has a strong applied perspective. Overall, there is 

growing interest in the engagement concept throughout the human-machine-interaction (HMI) and related 

fields, but what is engagement and why is it so important? In this chapter we hope to answer this question by 

unravelling this complex phenomenon, providing both new and existing HMI researchers with an firm 

underpinning of engagement related theory and concepts. 

The remainder of this chapter is organised as follows: In the next section, we provide the reader with some 

general theory of the various stages and components of engagement. Additionally, we detail related concepts, 

such as the perception and generation of engagement related behaviours, and novel experimental 

considerations. In Sect. 4.3, we present two case studies: one of which looks at the perception of engagement 

 
1 School of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham, 
UK, e-mail: ljc228@bham.ac.uk 
2 Royal Institute of Technology (KTH), Stockholm, Sweden, e-mail: chpeters@kth.se 
3 Jacobs University Bremen, Bremen, Germany, e-mail: d.kuester@jacobs-university.de 
4 Department of Information Technology, Uppsala University, Uppsala, Sweden, e-mail: 
ginevra.castellano@it.uu.se 

mailto:ljc228@bham.ac.uk
mailto:chpeters@kth.se
mailto:d.kuester@jacobs-university.de
mailto:ginevra.castellano@it.uu.se


Preprint 

for social robotics and another which considers the perception and generation of engagement related 

behaviours for virtual agents via gaze. 

 

4.2 Theory 

4.2.1 Fundamentals 

When consulting a dictionary in the English language, the term engagement appears to be used in at least two 

different ways—as the starting or intention to start, referring to an initiation of contact, and again in the 

longer term sense, referring to engagement as something that is more involved. In the literature, engagement 

is defined in a number of ways: as a process; as a stage in a process, or the overall process; as an experience; 

as a cognitive state of mind; an empathic connection; or as a perceived or theorised indicator describing the 

overall state of an interaction. Nevertheless, there are two underlying fundamentals that are apparent across 

most engagement related studies; the existence of various stages and components of engagement. In this 

section, we discuss each of these in turn. 

4.2.1.1 Stages of Engagement 

Engagement as a process can be analysed in terms of a number of discrete stages or phases. These may relate 

to the intensity or degree of involvement of a user with respect to the object or entity of engagement. For 

example, in a study of engagement with robots, Sidner and Dzikovska [29] refer to engagement as “a process 

by which individuals in an interaction start, maintain and end their perceived connection to one another”. 

Most often, these stages are considered independently. For example, recognising the desire to start an 

interaction requires the system to detect an intention to engage, e.g., by tracking passers-by to ascertain if 

there are certain indicators which might suggest an initial interest to become involved with the system [22]. 

Whereas, to maintain an interaction suggests that the intention has been established and that the system 

must now adapt to the individual user in such a way that it keeps that user engaged for the term of the 

interaction. Failure to do so may cause the user to end the interaction before the system has achieved its 

purpose, for example to teach, inform or otherwise assist the user. To this extent, the system should be 

equipped to do both: detect when a user has irrecoverably ended an interaction, e.g., by getting up and 

walking away, whilst also being able to use appropriate behaviour to end an interaction once either party has 

achieved their purpose for becoming involved in the interaction. 

It is a natural starting point to consider engagement as consisting of at least three broad stages, i.e., intention 

to engage, engaged and disengaged. However, O’Brien and Toms [17] refer to a fourth possible stage: re-

engagement. The concept of reengagement raises the important issue of when an interaction can be 

considered as complete. If either party is yet to achieve their purpose, but the user is showing signs of 

becoming disengaged, the system might try to utilise any information that is available, e.g., from current and 

previous interactions, in order to “understand” the underlying cause of the disengagement and then attempt 

to re-engage the user with a series of predefined strategies. However, in many cases, disengagement may be 

difficult to determine with certainty. For example, if the user looks away briefly, it may just mean that she has 

been temporarily distracted. In certain cases, looking away may in fact even signal engagement, such as during 

shared attention, when looking at an object under mutual consideration [21]. 

4.2.1.2 Components of Engagement 

While engagement is frequently operationalized by means of measures of visual attention, it is important to 

distinguish conceptually between engagement and attention. Engagement is a complex phenomenon, a 

construct consisting of both cognitive (attention, concentration) and affective components (enjoyment) [17, 

27].  

Attention: As the cognitive component of engagement, attention is often characterised as a global on/off 

activity, whereas concentration is the ability to pay selective attention to one thing in particular, while ignoring 

others. For example, a user paying attention to a particular activity or object for a significant amount of time is 

concentrating. In our work, it is this form of selective attention (relating to concentration) that we are 
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interested in, and in going forward we refer to this as just attention. This is therefore conceptually distinct 

from a global measure of wakefulness, or arousal, although the precise focus of selective attention may 

sometimes be more narrow, and sometimes be wider. Selective attention to a stimulus is a necessary 

component in most definitions in order for basic forms of engagement to occur. A more sustained form of 

attention provides a more elaborate requirement for engagement and also allows the possibility of affective 

involvement [25]. 

Attention: As the cognitive component of engagement, attention is often characterised as a global on/off 

activity, whereas concentration is the ability to pay selective attention to one thing in particular, while ignoring 

others. For example, a user paying attention to a particular activity or object for a significant amount of time is 

concentrating. In our work, it is this form of selective attention (relating to concentration) that we are 

interested in, and in going forward we refer to this as just attention. This is therefore conceptually distinct 

from a global measure of wakefulness, or arousal, although the precise focus of selective attention may 

sometimes be more narrow, and sometimes be wider. Selective attention to a stimulus is a necessary 

component in most definitions in order for basic forms of engagement to occur. A more sustained form of 

attention provides a more elaborate requirement for engagement and also allows the possibility of affective 

involvement [25]. 

Another important factor of engagement is considering exactly what it is that a user is engaged with (i.e., the 

focus of engagement). This can generally only be inferred from the context, particularly for more sophisticated 

forms of engagement where there may be more than one potential focus of engagement. Gaze can signal 

attention [26], however, gazing at a particular object is not always indicative of attention. For example, the 

fact that a user is in the vicinity of a screen or is looking at one does not mean that they are paying attention to 

it (they may be day-dreaming for example), or that they are paying attention to those aspects that would be 

the most important ones from the perspective of the experimenter. In fact, even looking away from a screen 

does not allow the inverse inference that the subject has completely disengaged. Thus, while there is a certain 

probability that this is the case, looking away from the screen might simply indicate a moment in the 

interaction during which the user requires additional resources to process what was being said or presented. 

One way to improve confidence in assessing the attentional component of engagement in this situation is to 

consider only attention towards currently relevant aspects of the scene, in terms of gaze and other forms of 

attention related involvement and interaction. For example, in [20] during interaction with a virtual character, 

three qualities of engagement are defined, relating to the user (1) not looking at the screen at all, (2) looking at 

irrelevant aspects of the scene, and (3) looking at relevant aspects of the scene with respect to the ongoing 

interaction. 

Enjoyment: As the affective component of engagement, enjoyment also plays a direct role in an interaction. 

For example, both positive and negative affect has been shown to influence student performance, motivation 

and effort [4]. More specifically, in terms of object focus, positive emotions such as enjoyment can increase 

the availability of cognitive resources, having a positive influence on the user’s motivation, ability to utilise 

flexible learning strategies and self-regulation [18]. Positive affect also increases general motivation, which 

leads people to try harder in tasks, especially where they feel their effort will make a difference [11]. However, 

these emotions may not always be outwardly expressed, for example, a user is highly unlikely to smile or 

laugh throughout an interaction, nonetheless, enjoyment is an important component of the engagement 

construct. Here, enjoyment is most likely to be expressed indirectly, by continuing the interaction with a strong  

commitment to achieving certain goals. In gaming, for example, players who are immersed in a game tend to 

make very few facial expressions, but are nonetheless still very much enjoying the interaction. Here the effort 

afforded to the interaction could be associated with the positive affect (enjoyment), likewise the inverse could 

also be true, a lack of afforded effort could be associated with negative affect (boredom) [4]. 

4.2.2 Concepts 

So far, in this chapter, we have only discussed engagement in terms of perception. However, if machines are to 

interact with humans in a natural and intuitive manner, it is not sufficient to focus entirely on one side of an 

interaction. Rather, we should consider engagement as a communicative process; a sender-receiver loop; to 
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both perceive and generate engagement-related cues and signals. Here, we discuss the concept of 

engagement in terms of both perception and generation. 

4.2.2.1 Perception 

Perception refers to the use of the term engagement as it relates to the decoding of basic cues from another 

interactant, by a person or by a machine, for example by using computer vision techniques. Of general 

importance to our sense of engagement with others is our perception of their attention [10], which can be 

altered by factors such as the effect of distance between interactants on the salience of visual cues 

and the context of the situation, and by their enjoyment or at least our perception of their interest. 

Importantly, both cognitive and affective components of engagement can be measured (with a certain 

probability) on the basis of certain objective indicators and physiological measures. While this is not a one-to-

one mapping between indicators and engagement, this allows a certain degree of automatic measurement 

of engagement that can be expected to become more reliable with the development of new sensors and 

algorithms. Enjoyment (pleasure) is the affective component of engagement that can be measured on the 

basis of several potential indicators, such as eyebrow activity (reverse sign) in combination with smiling. Here, 

eyebrow activity weighs more than smiling, and a moderately negative weight is added for lip-pressing 

and lip-tightening. Eyebrow movements can also be a predictor for concentration, obstacles and negative 

valence. Therefore, frowning may indicate effortful processing suggesting high levels of cognitive engagement 

which are likely to be associated with negative valence (depending on context and intensity). Smiling is 

expected to be a weak predictor of positive valence, but it might be effective for short-term social 

responsiveness [11]. Mouth movements, such as lip pressing and tightening can also be associated with task-

related attention and concentration. 

Furthermore, important non-verbal cues can be obtained based on head direction and gaze [1], blinking,  

eyebrow movement, posture and posture shifts [14], smiles [3], and engagement gestures [29]. These low-

level signals can in some cases be interpreted as direct measures relating to engagement. However, typically, 

these individual measures become more informative when they are interpreted with respect to specific events 

in the task, or when they occur in a synchronized fashion with other indicators rather than individually. 

4.2.2.2 Generation 

The generation of cues and signals (i.e., their “encoding”) requires at least an equal amount of attention. For 

example, during face-to-face interaction, the face generates a wealth of cues and signals that goes well beyond 

speech and facial expressions. It may be expected that we naturally pay attention to the face if we are engaged 

with that person, and may also display feedback such as nods to display our interest and/or show empathy by 

conducting appropriate facial expressions. In this respect, they might signal engagement, for example, by 

attending to the other and showing interest in what they say. An important distinction here, is whether such 

signals are based on a genuine interest or are superficial displays with the implicit or explicit purpose of 

communicating to the other that one is engaged. One may display signals of interest for a variety of superficial 

reasons, related to the accomplishment of high-level or abstract goals. Sometimes the display of interest is 

more important than the actual motivation [8]. In our previous work, an analysis of data extracted from 

explicit probes [5] and post-experiment questionnaires suggests that one’s own perception of a robot, in terms 

of helpfulness, friendliness and attentiveness can help to maintain a type of engagement which lasts 

throughout an interaction [6]. An artificial agent capable of generating, or at least mimicking, certain 

engagement related behaviours could help to facilitate an intuitive interaction between humans and 

machines, giving the human the impression that the machine is intelligent enough to warrant further 

interaction. 

4.2.3 Experimental Considerations 

Engagement is often reduced to selective visual attention, perhaps as a practical consequence of a limited 

availability of measures within a given paradigm. However, in order to discuss engagement as a meaningful 

construct, we argue that the affective components have to be considered as well. Despite this, in practice, this 

can be difficult to achieve. As part of the work described in Sect. 4.3.1.2, we found the concept of annotating 

for the entire engagement construct to be extremely complex. In fact, we found ourselves asking “how should 
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one annotate for both attention and enjoyment at the same time?”. For this exact reason, we have started to 

explore engagement in a de-constructed format, considering engagement-related components individually. 

4.2.3.1 Decomposition of the Engagement Construct 

Attention and enjoyment are descriptive states in their own right. It is this decomposition of the engagement 

construct into cognitive and affective components that we believe can account for, and thus allow for, the fact 

that high engagement can, and often will, represent rather different socio-emotional states during an 

interaction. For example, a user may show evidence of intense cognitive engagement with a task, while the 

affective component might be anywhere between highly positive and highly negative. In the immediate 

situation, the assessment of attention and cognitive engagement with the task may initially be sufficient since 

it may not appear to matter how much a user is enjoying a task, as long as she/he continues to work hard to 

solve it. However, in order to anticipate eventual frustration and a high probability of disengagement in one of 

the subsequent tasks, it is essential that an engagement detector attempts to track also this affective 

component in order to facilitate appropriate and early interventions by the system. 

4.2.3.2 Implicit Probes 

During complex interactions, feeding sensor data directly into a computational model might not always be able 

to provide a accurate measure of the user’s state of engagement. For example, in an educational interaction 

involving a robotic tutor, the system may need to understand why the user is showing signs of is 

engagement—is it that the task is too difficult, too easy, or is it because the user is simply discounting the 

advice provided by the robot? In this situation, the system could use a probe to answer some of these 

questions, i.e., by evaluating certain elements of the interaction.  

So, what is a probe? A probe is a non-intrusive, pervasive method of extracting additional supporting features 

from within the interaction itself, providing highly standardised moments for analysis. Probes are pervasive in 

the sense that they can be integrated into any stage of an interaction [5]. They do not require the collection of 

any special additional types of data beyond the measures already stated in the consent forms. Rather, the 

probes define standardized situations that are naturally embedded into the flow of the task in such a way that 

they appear to the subject as a completely normal part of the interaction. Their standardization allows the 

formulation of substantially more meaningful predictions of behaviours within one experiment as well as 

between experiments and potentially even across different experimental paradigms. In this sense, they could 

also be described as modular building blocks that can be reused and which remain comparable even when 

other parts of the interaction require more flexibility. For example, experimenters in laboratory experiments, 

or doctors with a lot of experience in interviewing patients, will often use a similar approach using highly 

schematic questions and small talk in order to get a first sense of the participant or patient. 

Furthermore, as probes only describe relatively short schematic modules with few degrees of freedom, they 

do not impede upon the natural flow of the interaction as opposed to, e.g., experimental designs that aim to 

obtain full control throughout the entirety of an experiment. For this reason, we argue that probes may be an 

ideal solution when needs for high levels of experimental control and analyses have to be balanced with 

maintaining a natural flow. Engagement, in this context, is a particularly relevant example because any 

measurement of engagement has to avoid disrupting the user engagement itself. The features extracted from 

these probes are embedded within the context of the main task, and are designed to provide the most 

accurate possible assessment of the user’s engagement state. More specifically, we distinguish between two 

different types of probes: the social probe and the social task probe. This is an additional step beyond the low-

level continuous observation already employed elsewhere in HMI and related fields. 

The design of a probe causes the user to respond in a certain way and it is that response which is then used to 

fortify the system’s confidence that a user is in a particular state. For example, if the agent is unsure of the 

user’s engagement state because confidence levels are low and social interaction hasn’t occurred recently 

enough to make any inferences, then the agent can trigger a probe by attempting to socially engage the user 

in a one-to-one interaction. If the user stops what they are doing and responds to the agent’s attempt, then 

we can increase the value associated with social engagement and also increase the overall confidence. Other 

metrics relating to immediacy, responsiveness and whether or not the user maintains their attention to the 

social interaction will further affect those values.  
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Social Probes: The social probe involves a simple, standardised piece of interaction between the agent and the 

user. Its purpose is to provide a standardised moment in which we can gauge how socially receptive the user is 

to the agent. To illustrate, in Fig. 4.1, we provide a time-line example of a social probe. The first three seconds 

are used to attract the attention of the user and the following two segments, lasting five seconds and three 

and a half seconds respectively, are used for analysis. As an example of this, if the user maintains gaze toward 

the agent across both maintainer segments, he/she is deemed as showing signs of high attention. We can also 

use this highly standardised piece of interaction to detect other non-verbal behaviours, such as smiles and 

facial expressions, including their temporal location within the probe.  

 

Fig. 4.1 An example of an interaction time-line for a social probe. Timings relate to the amount of interaction allocated 

to the attractor and two maintainer segments 

Actual implemented examples of the content used in this particular type of probe are provided in Sect. 4.3.1.2. 

Social-Task Probes: The social-task probe is concerned with the collaborative aspect of an interaction involving 

an agent and a user, such as the teacher-student or master apprentice relationship. With this type of probe we 

can measure how receptive the user is to the agent’s suggestions and assistance, e.g., by directing gaze toward 

specific items, or encouraging specific actions. From this we can also measure how reliant or independent the 

user is on assistance from the agent. In other words, social-task probes are designed to measure aspects of 

engagement in social-task interactions. 

4.3 Practice 

4.3.1 Case Study 1: Engagement in Social Robotics 

To explore the engagement concept in a task-orientated scenario, we conducted a Wizard-of-Oz (WoZ) style 

data collection study using a robot. The study was carried out in the classroom environment of an English 

secondary school. The participants were children aged between 11 and 13; ten boys and ten girls. The 

demographics survey shows that all of the children had some experience using computers and knowledge of 

geography, but none had experience with robots. The WoZ-style approach was adopted as it is a common 

practice in HMI and related fields [24], allowing for a smoother and more believable interaction than what can 

be achieved on the basis of a fully autonomous robot in the early stages of development. With the help of the 

wizard, the robot can display realistic behaviours and respond to the child in a timely fashion, without having 

to implement a fully functioning autonomous system that was not yet available at the time of this case study. 

4.3.1.1 Scenario 

The children were asked, by their geography teacher, if they wanted to take part in an educational map 

reading activity with one-to-one support from a robotic tutor. However, the children were not informed, until 

after the study, that the robot was being controlled by the wizard, i.e., a human. The children were required to 

employ their existing geography-related knowledge, while also learning how to navigate the map using various 

combinations of the compass, ruler and map key. The robot provided the child with support that would not 

only help them to progress further in the task, but also help them to think about how the skills they were 

learning could be applied to a range of map-related problems. An activity script, using the appropriate level of 

difficulty, as identified in previous mock-up studies, was written and tested with the help of several teaching 

experts, ensuring that the content was in-line with the England and Wales National Curriculum for Geography. 

The robot, a NAO,1 started each interaction by introducing himself and then asking the child for his/her name, 

which was then repeated back to the child in a welcome statement.  
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Next, the robot provided the child with a brief tutorial, including an overview of the activity to help familiarize 

the child with the interface, tools and the type of support they could expect from the robot. The robot 

provided support throughout the interaction, and at times when the robot did not need to intervene, it used 

several idling animations to sustain a certain level of activity, realism, and presence. Additionally, when 

addressing the child, the robot would attempt to maintain an acceptable level of mutual gaze, looking away 

occasionally so not to be freaky. It was able to track the child’s face and maintain the gaze even as the child 

moved around in front of the robot. The aim of these activities was to make the robot appear more intelligent 

and lifelike. 

 

Fig. 4.2 Child interacting with the robot in a social exchange 

4.3.1.2 Method 

Technical Set-Up 

The technical set-up for the WoZ study (see Fig. 4.2) comprises of a large touch-screen table that was 

embedded horizontally into a supporting aluminium structure, forming an interactive table-top surface, a 

torso-only version of the NAO humanoid robot, three video cameras positioned in frontal, lateral and top-

down locations, a Microsoft Kinect, an Affectiva Q Sensor for measuring skin conductivity and OKAO vision 

software by OMRON for measuring smile intensity and eye-gaze direction. 

Implementation of Social Probes 

Social Probe 1: 

Attractor: “Nice to meet you Joe” 

[PAUSE] 

Maintainer (A): “I hope that you are doing well today” 

[PAUSE] 

Maintainer (B): “and that you’ll have fun hanging out with me for a little while” 

Social Probe 2: 

Attractor: “Joe, Have you ever seen Wallace and Grommit?” 

[PAUSE] 

Maintainer (A): “I think that there is actually a Wallace and Gromit film with robotic 

trousers.” 

[PAUSE] 

Maintainer (B): “I wonder what it would be like to have legs myself” 

Social Probe 3: 

Attractor: “Thank you so much for all you help!” 

[PAUSE] 

Maintainer (A): “I hope you had a good time!” 

[PAUSE] 

Maintainer (B): “I thought you did really good!” 

 

Level of Automation 

All aspects of the interaction, including robot control, helping the child to progress through the activity, 

implementing the correct teaching strategies, and engaging in social exchanges, were remotely controlled by a 

qualified teacher using a bespoke interaction control interface (see Fig. 4.3). 
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Data Collection 

The corpus of data collected from case study 1 included more than seven hours of video material for each of 

the three viewing angles, interaction data recorded from involvement with the activity and data from the low-

level sensors, such as skin conductance, facial action units, smile intensity, posture-related lean information 

and gaze direction. Data was cleaned of certain artefacts, including sensor noise and incomplete cases, and the 

raw low-level information was binned into discrete instances of time, more specifically 250 ms, which allowed 

us to process, analyse and model the data using statistical and machine learning methods. 

 

Fig. 4.3 Wizard’s view of the interaction control interface 

Annotating the Video Material 

The simplest method of annotating video material is to use relative ratings and discrete segments of video 

media. However, in this work we require continuous measures that allow at least a rough estimation of the 

timing of relevant changes. Such continuous annotation data has the potential to add substantial flexibility to 

use the final computed ‘ground truth’ for different purposes, such as statistical analysis and training of 

machine learning algorithms. However, the trade-off for obtaining continuous data is that the precise moment 

of changes in subjective states such as engagement can be difficult to pinpoint even for trained raters, 

resulting in an overall lower reliability compared to a single global Likert scale. Nevertheless, this work follows 

the more novel approach of adopting the continuous measure which could, potentially, encode far more 

interesting information. 

Annotation Software: Off-the-shelf annotation software could not provide the flexibility to perform  

Continuous annotations that allow the simultaneous presentation of multiple video streams of data, and the 

input modality is typically fixed to either mouse or keyboard. We wanted to explore the use of a game-pad, or 

more specifically the thumb stick of a game-pad. The assumption here is that releasing the thumb stick can be 

used naturally to indicate a return of the annotated measure back to a neutral state extremely quickly, 

whereas a mouse or keyboard would cause periods of uncertainty in the output signal, due to the fact that 

some active effort and time is required to return the rating back to neutral. Furthermore, the latter modalities 

are unable to offer the same fine grained resolution as an analogue thumb stick. CAT, or Continuous 

Annotation Tool, is a custom solution designed to facilitate these seemingly “unusual” annotation 

requirements, i.e., synchronously displaying three different views of the interaction such as, e.g., frontal, 

lateral and top-down, and providing a simple visual representation of the rating intensity (in real-time) on a 

vertical slider bar, which transitions from green at the very top to represent a positive or high intensity, orange 

in the centre to represent a neutral intensity and red at the bottom to represent an extremely low intensity 

(see Fig. 4.4). In CAT, annotator ratings are automatically logged with two decimal point precision, with 

maximum and minimum extremes set to 1 and -1 respectively. 

 

Fig. 4.4 CAT: Continuous Annotation Tool: Bespoke software, developed specifically for the use with continuous ratings 
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Annotators: For each annotated signal, i.e., social attention and valence, we used the same three annotators. 

So, for social attention, the annotators were: (1) a pedagogical researcher who could look at attention from a 

teacher-student perspective, (2) a psychologist to look at attention from a behavioural aspect, and (3) a 

researcher, specialising in automatic non-verbal behaviour analysis for social robotics. 

Annotator Agreement: The issue of reaching agreement is an important part of the annotation process. Our 

methodology was to reach an acceptable level of agreement in advance, ensuring that the final output signals 

were the best that we could achieve with the time and resources we had. We adopted a three-step approach, 

starting with a discussion of the overall objective criteria, in an attempt to pre-emptively list potential 

indicators, and later in the process the annotators were asked to produce a voice over account and a single 

continuous rating for the same randomly selected interaction, to visualise the different output signals in a side-

by-side analysis. Obviously, there were differences between the signals, but an acceptable level of difference, 

i.e., less than a second, was achieved. 

Ground Truth Extraction 

Computing and then extracting a ground truth is an essential process for this type of non-verbal behaviour 

recognition. The output of the extraction process, which involves aggregating the ratings from multiple 

annotations into a single signal, represents the final measure for a particular criterion, such as social attention 

or valence. Producing a ground truth can be a relatively straightforward process when working with discrete 

labels, but the very nature of our continuous rating process renders many existing methodologies as 

impractical [13]. In fact, many researchers choose to completely ignore the concept of agreement in favour of 

simpler methods, such as using the mean from several ratings, or alternatively opting to manually assess 

the ratings [16]. We wanted to ensure that we were not introducing biases or losing information, so we opted 

to explore other more suitable methods. An in-depth review of the literature uncovered two potential 

methods for computing a ground truth, based on annotator agreement. The first method focuses on the 

use of a correlative threshold, specifically 0.45, meaning that ratings from annotator pairs with correlative 

coefficients smaller than 0.45 are quite simply omitted from the computation of the ground truth. In contrast 

to this method, we consider it to be of the utmost importance that the ratings from all annotators are included 

when computing the ground truth, even those who are in disagreement with the others. This provides 

a more realistic ground truth that takes into account the different backgrounds and perspectives of the 

annotators. Therefore, we adopted the alternative method of using weighted correlations, similar to the work 

by Nicolaou et al. [16], which we then further extended for our interaction length non-segmented continuous 

signals. Here, ratings from all annotators are considered in the computation with the condition that 

the most highly correlated annotator pairs are given more weight than disagreeing annotators (see Fig. 4.5 for 

an example of the output ground truth signal). The graph in Fig. 4.6 provides an estimate of inter-rater 

reliability, in terms of intraclass correlation (ICC), more specifically, we have used ICC (2,3), which denotes the 

ICC values are calculated for each interaction using Case 2 from the work by Shrout and Fleiss [28], involving 

the same three annotators for each case. 

 

Fig. 4.5 Segment showing the continuous measure of social attention from three annotators (light dashed lines) with the 

final computed ‘ground truth’ (dark solid line) 



Preprint 

 

Fig. 4.6 Graph showing an estimate of inter-rater reliability for each of the twenty child-robot interactions, i.e., in terms of 

intraclass correlation (ICC) 

4.3.1.3 Analysis and Results 

Analysis of the corpus has, so far, been two-fold: an interaction-length analysis of the gaze with the social 

attention signal, and a social probe-interval focussed analysis of the behaviour-related variables with the social 

attention and valence signals. The motivation for this analysis is to explore what features may be descriptive of 

engagement in HMI.  

Analysis A: Interaction-length 

Here, we report the results of a point biserial correlation analysis between the social attention signal (interval 

scale) and a pre-processed dichotomous nominal scale relating to robot gaze, the two levels are 0 (if the 

learner was not looking at the robot) and 1 (if the learner is looking at the robot). The results of the analysis, 

set out in Table 4.1, show that, on average, gazing at the robot is moderately correlated with social attention (r 

pb = 0.47, p < 0.01). 

 

Table 4.1 Results of a point biserial correlation analysis between social-related attention and gazing at the robot. The 

columns represent interaction ID, point biserial correlation coefficient, statistical significance and number of low-level 

instances used in the analysis, respectively. 

Analysis B: Social Probe-interval 

To understand which, if any, behaviour-related variables are an indication of engagement, samples extracted 

from the social probes are compared with samples taken from similar areas of the interaction, +/-30 s, i.e., 

samples extracted from areas that do not involve social probes, in this work we will refer to these as samples 

taken from “non-social probes”. The samples taken from the social probes have been extracted in a way that 

they surround and capture the entire piece of probe-related interaction. 

There are three social probes embedded into each interaction and the duration of each probe was: 17.75, 

13.5, and 6.25 s, respectively, with no overlap between segments (see Sect. 4.3.1.2). The non-social probe 

samples were extracted from other random moments outside of the probe-intervals, using an identical 

process. This process was repeated for each of the 20 interactions, providing a total of 2420 instances of raw 

low-level data for each case. A comparison of the social probes with just a single case of non-social probes does 

not actually tell us anything useful, therefore, we extracted three different cases of non-social probes to 

further support our analysis. 

Social Attention 

For social attention we consider information from gaze, smile and facial expressions. Pearson product-moment 

correlation coefficients have been computed to assess relationships between gaze, smile and facial  

expressions, and the social attention signal, obtained from the ground truth extraction process (Sect. 4.3.1.2). 

The results of the analysis are set out in Table 4.2.  
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Table 4.2 Results of a Pearson product-moment correlation between the behavioural indicators and the social attention 

signal, i.e., for samples taken from the social probes and three other non-social probes (NSP). This table only shows 

significant correlations, figures marked with ** represent significance at the 0.01 level and others marked with * represent 

significance at the 0.05 level. 

Valence 

For valence, the affective component of engagement, we focus on behavioural indicators. Pearson product-

moment correlation coefficients have been computed to assess relationships between the smile and facial 

expressions, and the valence signal, obtained from the ground truth extraction process (Sect. 4.3.1.2). The 

results of the analysis are set out in Table 4.3. 

 

Table 4.3 Results of a Pearson product-moment correlation between the behavioural indicators and the valence signal, i.e., 

for samples taken from the social probes and three other non-social probes (NSP). This table only shows significant 

correlations, figures marked with ** represent significance at the 0.01 level and others marked with * represent 

significance at the 0.05 level. 

4.3.1.4 Discussion 

The most obvious finding to emerge from the analysis of the social probe versus non-social probe samples, is 

that correlations appear to be stronger, in the majority of cases, in samples taken from the social probes. A 

possible reason for this is that the social probes can be expected to have been particularly engaging in the 

sense of a simultaneous recruitment of different highly over-learned behavioural response systems. That is, in 

this case, the existence of well learned norms appears to have led more clearly and consistently 

communicated social signals—whereas, in the nonsocial probe case there are substantially less contextually 

defined social schemata to help guide the encoding as well as decoding of the behaviours. 

 

4.3.2 Case Study 2: Engagement with Virtual Agents 

The development of autonomous virtual agents and animated characters capable of engaging humans in real-

time interaction faces many of the same challenges as similar attempts using physical embodiments such as 

social robots. These include the task of obtaining robust real-time detection of engagement-related behaviour 

from human users, timely responses from virtual agents, and the generation of appropriate behaviours by 

agents that are capable of properly expressing their state of engagement and focus of attention. This section 

describes an example scenario that involved engagement between a human and a virtual agent. The 

interaction was primarily shaped by gaze behaviour, in particular when it was directed at predefined objects 

and locations within an artificial scene (for a review, see [26]). 
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4.3.2.1 Gaze Detection and Representation 

There are, in principle, a large number of measures that can be used to detect user engagement. These 

include, for example, monitoring verbal and non-verbal behaviours, taking physiological measurements and 

tracking task related actions that are conducted inside an application or virtual environment. However, not all 

of these measured may be needed at once for a basic analysis of engagement processes. In this scenario, the 

main method for detecting engagement was based on the gaze behaviours of the user as they engaged in an 

object identification task with a virtual agent capable of referring to objects non-verbally through its own gaze 

behaviours. 

Gaze Detection 

The gaze detection system used facial feature analysis of the image captured from a standard web camera to 

capture the user’s gaze direction (head and eye directions) inside and outside of the screen. The detection 

process commenced with the eyecenters, which are easily detected, in order to allow the estimation of the 

eye corners and eyelids and positions on the eyebrows, nostrils, and mouth region. These were subsequently 

tracked using a Lucas Kanade tracker [12], capable of operating under a wide variety of conditions. Head-pose 

estimation was calculated based on the displacement of the midpoint of the eye centers from an initial head 

position in which the user was facing the screen frontally. 

Embedded Representations 

Since the user’s focus of attention is usually highly transient as it shifts around a scene, it can be informative to 

use predefined objects to track these changes more systematically. Virtual Attention Objects (VAOs) simplify 

the analysis of what is being looked at in the scene by storing, on a per-object level, when and how much each 

part of the scene has been looked at. A single VAO is attached to each scene object for which we wish to 

accumulate user attention information. For example, a single VAO may be defined for each visible object in the 

scene, including the virtual agent itself. Depending on the requirements of the application, the virtual agent 

may be represented by a single VAO, or a separate VAO may be defined for each part of the virtual agent for 

which information about user attention is required. VAOs may also be defined for more abstract objects. For 

example, a single VAO may be defined to represent the area outside of the screen. This VAO can then be used 

to record whenever the user gaze wanders outside of the scenario area, which renders it a useful metric for 

disengagement. Furthermore, VAOs operate in a simple manner: Screen coordinates relating to user gaze are 

resolved to the specific associated VAO or VAOs. On this basis, the estimated level of attention can be adapted 

accordingly. The combined VAOs therefore represent a history of how much and when the user has fixated on 

each object in the scene. Figure 4.7 illustrates a virtual scene from [21], including a virtual agent and a number 

of objects, and an accompanying VAO representation. 

 

 

Fig. 4.7 A scenario involving a virtual agent and several objects. The user’s gaze behaviour (left) is tracked as the agent 

conducts gaze behaviours towards various objects (centre). Gaze and attentive behaviours towards specific elements of the 

scene are recorded in real-time through Virtual Attention Objects (right) as a basis for monitoring user engagement in the 

scenario [21] 

4.3.2.2 Engagement Modelling 

In this work, the focus was not only on the different components of engagement, but also the level and quality 

of those components. Expanding measures beyond what has already been discussed in this chapter, in order 

to capture varying degrees of engagement and related components. More specifically, we refer to 

directedness, level of attention, level of engagement and quality of engagement. 
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Directedness relates to the momentary orienting of the user’s body parts with respect to another entity or 

object from the perspective of that entity or object. The metric is inspired by Baron-Cohen’s eye, head and 

body direction detectors [2] and related work [21]. Directedness as a concept refers to transient and 

momentary processes that alone do not imply attention or engagement. For example, high directedness was 

assumed if the eye and head direction was sampled from a user while they are in the process of a gaze change 

to an alternative location. However, the consideration of directedness over time (and with respect to other 

aspects of the scene and user) is an important building block towards a model of engagement measurement. 

Depending on the scenario and, especially, the sensory capabilities of the detection system, the directions of 

the eyes, head, body and even locomotion trajectories may contribute to directedness measurements. 

Level of attention is based on directedness and refers to gaze falling within certain regions over a period of 

time. It therefore corresponds to the concept of a focus of attention and corresponding dwell time by the eye. 

An important issue in this respect relates to the clustering of the foci of interest of the user. For scenes that 

are clearly composed of objects, VAOs may be used as one method for clustering fixation locations on a per-

object basis. 

Level of interest is based on the stored attention levels over time for each member of a set of VAOs. Each 

member is categorised according to whether it is a scene object, the agent, the background, or a special object 

representing the area outside of the screen. It is at this level that specific forms of context can be accounted 

for: By dynamically defining a set of VAOs containing only those objects relevant to the current interaction, 

such as recently pointed to or discussed objects, the attention of the user can be compared with this set to 

obtain a measurement of their level of interest in the interaction itself, referred to here as the level of 

engagement. 

Level of engagement encapsulates how much the user has been looking at the relevant objects in the scene at 

appropriate times. These will be recently referenced objects in the interaction, e.g. those looked at, pointed to 

and/or verbally described. These measures are made possible by considering the specific set of VAOs  

corresponding to currently and recently referenced objects in the interaction. When the agent is talking, but 

does not refer to anything in the environment, it will be the only VAO in the set, and when it stops talking, this 

VAO set will be empty. 

Quality of engagement accounts for the fact that attention paid to the scene does not necessarily indicate 

engagement in relation to a particular activity, in this case, interaction with the agent. For example, the user 

may be looking at the scene for superficial reasons without engaging in the interaction. It provides a slightly 

more detailed assessment of the type of engagement that the user has entered into. For example, a user who 

is not engaged in the interaction may not necessarily be looking outside of the scene. Instead, they may be 

attending to the scene in a superficial manner, looking at objects of interest that are irrelevant to the ongoing 

interaction. In particular, they may appear to be affectively disengaged from the interaction. We therefore 

define three broad quality levels: (i) engaged in the interaction (ii) superficially engaged with the scene and 

action space and (iii) uninterested in the scene/action space. In this way, the behaviour of the user is not being 

considered in isolation, but in the context of what the agent is doing. If the agent is describing something 

important for example, a user’s disengagement can be considered more serious than if the agent is not doing 

anything at all. 

4.3.2.3 Human Perception 

In order to support sustained interactions between humans and virtual agents, models of engagement should 

not only account for the detection of behaviour from users and the generation of expressive behaviours by 

agents, but also how humans perceive artificially generated behaviours. This is an important consideration that 

may involve many factors, such as the embodiment and expressive capabilities of the system, the qualities of 

the expressive motion, the effects of context on perception and more. One of the fundamental methods of 

signalling attention and engagement by artificial systems involves gaze [26] and numerous studies have 

considered the human perception of gaze and other attention related behaviours made by artificial systems. 

Gaze and Direction of Attention Perception 

Gaze direction perception, which primarily involves eye and head movements and their relationships with 
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objects in the environment from the perspective of a witness [23], can be extended to a more general concept 

that relates to the perception of the direction of attention of others. Here, the orientation of the eyes, head, 

body, and even locomotion trajectories, may contribute to one’s impression that they are potentially being 

attended to by others. For example, at a distance, the eyes of the other may not be clearly visible in which case 

head and body directions may offer more prominent clues as to the direction that the other is attending to. 

Opening Interactions 

An example of the use of the concept of direction of attention perception is proposed in [19] for the purposes 

of opening interactions between interactants in virtual environments and the human perception of the 

attentive behaviours of virtual characters. Kendon [9] describes a sequence of opening cues for meeting 

interaction, noting interaction fundamentals, such as the requirements for participants to see each other, 

while Goffman notes [7] that we generally seek to avoid the social embarrassment of engaging in interaction 

with an unwilling participant. Therefore, some degree of confidence of interaction reciprocation is necessary, 

through subtle gaze behaviours for example, before more explicit actions are made, such as verbal greetings. 

Based on this, a model of engagement opening is described for virtual agents based on a combination of their 

own gaze behaviours towards others that they wish to interact with and also their interpretations of the gaze 

and locomotion behaviours of others. 

4.3.2.4 Discussion 

Important future work is waiting to be done to establish better relationships between the expressive qualities 

of behaviours of virtual characters, their style and embodiments, and human perception. In humanoid 

characters, for example, small movements, such as saccadic eye movements and eye-blinks, may play 

important roles in signalling that the character is concentrating heavily, rather than simply daydreaming or 

momentarily unresponsive. Embodiment issues related to the use of virtual characters versus their physical 

counterparts is also an interesting research area. For example, [15] have found that faces that are physically-

projected onto face-like surfaces may have a number of advantages over virtual faces constrained to flat 

screens, especially in relation to the character’s ability to engage with individual users and for cueing real 

objects in the environment. The studies represent some important foundations for constructing artificial 

entities capable of engaging humans. 
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