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Abstract 
 
Synthetic Aperture Radar (SAR) is an active remote sensing technique 
capable of imaging regions of interest independent from daytime and to 
great extent unimpaired by weather conditions. However, the acquired 
data are imaged with single polarization. Along with the launch of 
airborne and spaceborne Polarimetric Synthetic Aperture Radar (PolSAR) 
sensors, PolSAR has been used for various remote sensing applications 
since more information could be obtained in multiple polarizations. As a 
consequence, it is feasible and promising to use PolSAR data for urban 
information extraction and analysis. The overall objective of this thesis is 
to investigate urban area information extraction from PolSAR data with 
the following specific objectives: (1) to exploit polarimetric scattering 
model-based decomposition methods for urban areas, (2) to investigate 
effective methods for man-made target detection, (3) to develop edge 
detection and superpixel generation methods, and (4) to investigate 
urban area classification and segmentation. Six PolSAR images acquired 
from airborne and spaceborne sensors were used in this research. 
 
Urban scattering model-based decomposition of PolSAR data plays a key 
role in urban classification, segmentation and target detection. Many 
decomposition techniques have been proposed for urban areas, mainly 
resolving the overestimation problem of volume scattering. Paper 1 
proposes a new scattering coherency matrix to model the cross-polarized 
scattering component from urban areas, which adaptively considers the 
polarization orientation angles of buildings. Thus, the HV scattering 
components from forests and oriented urban areas can be modelled 
respectively. Paper 2 presents two urban area decompositions using this 
scattering model. After the decomposition, urban scattering components 
can be effectively extracted. 
 
Detection of man-made targets in urban areas has a close relationship 
with urban planning, rescue service, etc. Paper 3 presents an improved 
man-made target detection method for PolSAR data based on 
nonstationarity and asymmetry. Nonstationarity in azimuth direction is 
already utilized to separate man-made and natural targets in urban areas. 
However, there are still some drawbacks. Some small man-made targets 
and roads cannot be effectively detected. In addition, nonstationarity can 
also occur in some other natural surfaces, such as cropland with Bragg 
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resonance. Therefore, to resolve these problems, reflection asymmetry 
was incorporate into the azimuth nonstationarity extraction method to 
improve the man-made target detection accuracy, i.e., removing the 
natural areas and detecting the small targets. 
 
In Paper 4, the edge detection of PolSAR data was investigated using 
SIRV model and Gauss-shaped filter. The classic CFAR edge detector 
with rectangle-shaped filter is proved to be effective and widely used in 
PolSAR images. However, the assumption of Wishart distribution is 
often not respected in heterogeneous urban areas. In addition, as a 
simple smoothing filter, the rectangle-shaped window is often shown to 
be easy to incur false edge pixels near the true edges. To overcome this 
restriction, a new edge detector for PolSAR images was proposed, which 
utilized SIRV product model to estimate the normalized covariance 
matrix for each pixel and then replaced the rectangle-shaped filter with 
the Gauss-shaped filter. This detector can locate the edge pixels 
accurately with fewer omissions. Therefore, it could be quite useful for 
speckle noise reduction, superpixel generation and other applications. 
 
On the basis of decomposed scattering components, Paper 5 investigates 
an unsupervised urban area classification method for PolSAR data. The 
discrimination abilities of different scattering components are compared 
and analysed. After that, unsupervised K-means classifier is adopted to 
discriminate the buildings and natural areas. The ortho and oriented 
buildings can be discriminated very well. Based on Paper 4, Paper 6 
proposes an adaptive superpixel generation method for PolSAR images. 
Regarding the superpixels as objects, the pixel-based classification result 
could be further improved with the object-based processing. 
 
Keywords: Polarimetric SAR, Scattering Decomposition, Man-Made 
Target Detection, Edge Detection, Superpixel, Urban Classification 
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Sammanfattning 
 
Synthetic Aperture Radar (SAR) är en aktiv fjärranalysteknik som kan 
skanna regioner av intresse oberoende från dagtid och i stor utsträckning 
av väderförhållanden. Dock är det insamlade data enkelpolariserad. 
Tillsammans med lanseringen av luft- och rymdburna polarimetriska 
Synthetic Aperture Radar (PolSAR) sensorer har PolSAR använts för 
olika fjärranalystillämpningar, eftersom mer information kan erhållas från 
multipolarisad data. Som en följd av detta är det möjligt och lovande att 
använda PolSAR data för informationsutvinning och analys över urbana 
områden. Det övergripande syftet med denna avhandling är att 
undersöka informationshämtning över urbana områden från PolSAR 
data med följande särskilda mål: (1) att utnyttja polarimetrisk 
spridningsmodellbaserade nedbrytningsmetoder för stadsområden, (2) 
att undersöka effektiva metoder för upptäckt av konstgjorda objekt, (3) 
att utveckla metoder som kantavkänning och superpixel generation, och 
(4) för att undersöka klassificering och segmentering av stadsområden. 
Sex PolSAR bilder som förvärvats från luftburna och rymdburna 
sensorer användes i denna forskning. 
 
Modellbased nedbrytning över urbana områden av spridning från 
PolSAR data spelar en nyckelroll i klassificering av urbana områden, 
segmentering och upptäckt av föremål. Många nedbrytningstekniker har 
föreslagits för stadsområden, framför allt för att lösa 
överskattningsproblematiken med volymspridning. Artikel 1 föreslår en 
ny spridnings-koherens matris för att modellera korspolariserade 
spridningskomponent från tätorter, som adaptivt utvärderar 
polariseringsorienteringsvinkel av byggnader. Således kan HV 
spridningskomponenter från skogar och orienterade stadsområden 
modelleras respektive. Artikel 2 presenterar nedbrytningstekniken över 
två urbana områden med hjälp av denna spridningsmodell. Efter 
nedbrytningen kunde urbana spridningskomponenter effektivt extraheras. 
 
Upptäckt av konstgjorda föremål i stadsområden har en nära relation 
med stadsplanering, räddningstjänst, etc. Artikel 3 presenterar en 
förbättrad detekteringsmetod för konstgjorda mål med PolSAR data 
baserade på icke-stationaritet och asymmetri. Icke-stationaritet i azimut 
riktning redan används för att separera konstgjorda och naturliga föremål 
i stadsområden. Det finns emellertid fortfarande vissa nackdelar. Några 
små konstgjorda föremål och vägar kan inte effektivt upptäckas. 
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Dessutom kan icke-stationaritet också förekomma hos vissa andra 
naturliga ytor, såsom åkermark med Bragg resonans. För att lösa dessa 
problem, integrerades reflektionsasymmetri i icke-stationaritetsmetoden 
för att förbättra noggrannheten i upptäckten av konstgjorda föremål, dvs. 
att ta bort naturområden och upptäcka de små föremålen. 
 
I artikel 4 undersöktes kantdetektering av PolSAR data med hjälp av 
SIRV modell och ett Gauss-formad filter. Den klassiska CFAR 
kantdetektor med rektangel-formade filtret visat sig vara effektiv och 
används i stor utsträckning i samband med PolSAR bilder. Emellertid är 
antagandet av Wishart-fördelning ofta inte iakttagits i heterogena 
stadsområden. Dessutom är det enkla rektangelfiltret benäget att skapa 
falska kantpixlar nära riktiga kanter. För att åtgärda denna begränsning 
har en ny kantdetektor för PolSAR bilder föreslagits som utnyttjade 
SIRV produktmodell för att uppskatta den normaliserade 
kovariansmatrisen för varje pixel och ersattes sedan rektangeln format 
filter med Gauss-formade filter. Denna detektor kan hitta kantpixlarna 
noggrant med mindre utelämnande. Därför skulle den vara ganska 
användbar för reduktion av brus, superpixel generation och andra 
tillämpningar. 
 
Artikel 5 utforskar en oövervakad klassificeringsmetod av PolSAR data 
över stadsområden baserande på nedbrutna spridningskomponenter. 
Olika spridningskomponenters förmåga att urskilja jämförs och 
analyseras. Efter det används en oövervakande K-medel klassificerare för 
att diskriminera byggnader och naturområden. Orto- och orienterade 
byggnader kan särskiljas mycket väl. Baserat på artikel 4 föreslår artikel 6 
en adaptiv superpixel generationensmetod för PolSAR data. När 
superpixen anses som objekt, kan en pixel-baserad klassificering 
förbättras ytterligare med den objektbaserad behandling. 
 
 
Nyckelord: Polarimetrisk SAR, Spridningsnedbrytning, Upptäckt av 
artificiella objekt, Kantupptäckt, Superpixel, Urban klassificering 
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1 Introduction 
 
An urban area is a location characterized by high population density and 
many built-up features in comparison to the areas surrounding it. In 
1950, the number of people living in urban areas was only 746 million. 
But in 2014 there were 7.25 billion people living on the planet, of which 
the global urban population comprised 3.9 billion (United Nations 
Department of Economic and Social Affairs 2014). Fast process of 
urbanization with increasing population leads to socioeconomic and 
environmental problems, such as traffic jams, environmental pollution, 
construction huddle, etc (Zhang et al. 2011). Urban planning and 
development have a close relationship with the life of residents and the 
environment. Urban information extraction and analysis are essential to 
support sustainable decision making. 
 
Synthetic Aperture Radar (SAR) is an active remote sensing technique 
capable of providing remote sensing imagery independent from solar 
illumination and to great extent unimpaired by weather conditions. It 
was previously designed only on airborne platforms and then 
implemented on various launched satellites, making it perform multi-
polarization, multi-frequency, and multi-temporal acquisitions over 
global areas. Multi-polarization can be achieved by Polarimetric Synthetic 
Aperture Radar (PolSAR) system, which can obtain more information 
than SAR system with single-polarization. SAR and PolSAR have long 
been recognized as useful tools to exploit and analyse forest biomass 
information (Le Toan et al. 1992, 2011; Santoro et al. 2009, 2010), 
agriculture monitoring and mapping (Le Toan et al. 1997; Davidson et al. 
2000; Bouvet et al. 2009), urban information such as disaster mitigation, 
damage assessment, land use and land cover (LULC) mapping, urban 
change detection, urban ground subsidence monitoring etc (Ulander et al. 
2005; Voigt et al. 2005; Martinez et al. 2007; Dell'Acqua et al. 2001, 
2003a, 2003b, 2006; Liao, Zhang, and Balz 2009; Ban et al. 2010; Soergel 
2010; Ban and Yousif 2012; Ban and Jacob 2013; Chen and Sato 2013; 
Niu and Ban 2013a; Yamaguchi 2012; Ban et al. 2015; Minh et al. 2015; 
Cuong et al. 2015). In recent decades, when high resolution PolSAR data 
have become available with the launch of many advanced airborne and 
spaceborne SAR sensors such as Pi-SAR2, UAVSAR, TerraSAR-X, 
RADARSAT-2, and PALSAR-2, urban information extraction from 
PolSAR data has already become an attractive and promising topic not 
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only to academia but also to governmental authorities and user 
communities. 
 
Nevertheless, there still exist a lot of challenges and problems remain 
unresolved. Until now, the Wishart distribution (Lee et al. 1995; Lee, 
Grunes, and Kwok 1994) seems to be the most widely used model in 
various statistical PolSAR image processing methods (Anfinsen, Eltoft, 
and Doulgeris 2009; Dabboor et al. 2013; Lee et al. 1999). However, the 
Wishart distribution is proved to be more effective for distributed targets 
(Lee and Pottier 2009; Soergel 2010). Therefore, it is mainly optimal to 
analyse natural targets. Regarding high-resolution PolSAR data, the basic 
assumption of this distribution that a high number of independent 
scatterers with comparable strength is contained in each cell would be 
wrong, especially in urban areas (Bombrun et al. 2011; Wu, Guo, and Li 
2013; Wu, Guo, and Li 2015). Therefore, it is essential to find a statistical 
distribution which can accurately model the urban clusters in high 
resolution PolSAR data. Another challenge comes from the scattering 
analysis of urban areas, which makes it a difficult task for polarimetric 
decomposition (Chen, Li, and Wang 2014), man-made target detection 
(Ferro-Famil, Reigber, and Pottier 2005; Wu, Guo, and Li 2013), urban 
classification (Deng, Yan, and Sun 2015), etc. The urban environment is 
usually comprised of various natural and man-made targets with several 
kinds of materials, different orientations, various shapes and sizes, which 
complicate the backscattering discrimination and analysis (Niu 2012). 
During PolSAR imaging, buildings aligned along the radar flight 
direction can usually have double-bounce scattering. However, when the 
buildings do not align along radar flight direction, a significant cross-
polarized component is produced, which can lead to confusion with 
forests (Ainsworth, Schuler, and Lee 2008; Yamaguchi 2012). Until now, 
this scattering ambiguity is still a challenge in PolSAR data interpretation. 
 
Although many valuable techniques and promising results have been 
reported in recent studies (Yamaguchi 2012; Salehi, Sahebi, and 
Maghsoudi 2014; Susaki, Kajimoto, and Kishimoto 2014; Niu, Ban, and 
Dou 2015; Sieg 2015), detailed urban information extraction from high 
resolution PolSAR data is still a challenging task. In the meantime, the 
accuracies of current processing techniques for polarimetric scattering 
decomposition, man-made target detection, edge detection, and urban 
classification are still unsatisfactory and need to be improved urgently. 
 



 3 

Therefore, evaluation of existing PolSAR data processing algorithms for 
urban analysis and the development of efficient approaches for detailed 
urban information extraction from airborne and spaceborne PolSAR 
data are of great importance for remote sensing applications. Regarding 
the method for urban information extraction in this thesis, there are 
three main parts, which are urban scattering analysis stage, urban 
extraction stage and urban classification stage, respectively. Specifically, 
the urban scattering analysis stage contains scattering analysis and model-
based decomposition approaches. The urban extraction stage contains 
man-made target detection, edge detection and superpixel generation. 
The urban classification stage includes unsupervised pixel-based and 
object-based urban classification. Comparisons and analyses with other 
existing algorithms will be presented and discussed. 

1.1 Research Objectives 
This research mainly investigates airborne and spaceborne PolSAR data 
for detailed urban information extraction. Particular research objectives 
include the following: 
 
• Exploit the scattering coherency model for urban areas with 

different orientation angles and develop model-based polarimetric 
decomposition algorithms. 

• Investigate man-made target detection by incorporating target 
reflection asymmetry into azimuth nonstationarity extraction, 
removing natural areas and improving detection accuracy of small 
man-made targets and roads. 

• Develop edge detection for PolSAR data, especially in the urban 
areas using the spherically invariant random vector (SIRV) product 
model and Gauss-shaped filter. Then the detected edges are utilized 
for superpixel generation and segmentation for PolSAR images. 

• Analyse the discrimination ability of different scattering components. 
Investigate unsupervised urban area classification using scattering 
powers and further improve the result using superpixels. 

 
In order to achieve the above objectives, six PolSAR datasets acquired 
with airborne and spaceborne sensors were used for evaluation and 
comparison. 
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1.2 Thesis Structure 
This thesis is a collection of six papers with a summery organized into 
six chapters. Chapter 1 provides a short introduction to the thesis. The 
objectives of this research are defined and an overview of how the thesis 
is organised is given alongside the statement of contribution. The theory 
background and state of the art relevant studies are reviewed in Chapter 
2. Chapter 3 presents the study areas and the description of PolSAR 
datasets. The proposed methods that were applied and developed are 
shown in Chapter 4. Chapter 5 gives the analyses and discussions of 
experimental results. Conclusions and suggestions for future research are 
presented in Chapter 6. 
 
Below is the list of papers included in the thesis. The relationship 
between the listed papers is graphically illustrated in Figure 1.1. 
 
[1] D. Xiang, Y. Ban and Y. Su. “Model-Based Decomposition With 

Cross Scattering for Polarimetric SAR Urban Areas,” IEEE 
Geoscience and Remote Sensing Letters, vol. 12, no. 12, pp. 2496-2500, 
Dec. 2015. 

[2] D. Xiang Y. Ban and Y. Su. “The Cross-Scattering Component of 
Polarimetric SAR in Urban Areas and Its Application to Model-
Based Scattering Decomposition,” International Journal of Remote 
Sensing, accepted, 2016. 

[3] D. Xiang, T. Tang, Y. Ban and Y. Su. “Man-Made Target Detection 
from Polarimetric SAR Data via Nonstationarity and Asymmetry,” 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, vol. 9, no. 4, pp. 1459-1469, Apr. 2016. 

[4] D. Xiang, Y. Ban, W. Wang and Y. Su. “Edge Detector of 
Polarimetric SAR Images Using SIRV Model and Gauss-Shaped 
Filter,” 2016. (submitted to IEEE Geoscience and Remote Sensing Letters). 

[5] D. Xiang, T. Tang, Y. Ban, Y. Su, and G. Kuang. “Unsupervised 
Polarimetric SAR Urban Area Classification Based on Model-Based 
Decomposition with Cross Scattering” ISPRS Journal of 
Photogrammetry and Remote Sensing, vol. 116, pp. 86-100, 2016. 

[6] D. Xiang, Y. Ban, W. Wang and Y. Su. “Adaptive Superpixel 
Generation for Polarimetric SAR Images with Local Iterative 
Clustering and SIRV Model,” 2016. (submitted to IEEE Transactions on 
Geoscience and Remote Sensing). 
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Figure 1.1 Relationship of the six papers 

1.3 Statement of Contribution 
Paper 1 

All methodologies and analyses of paper 1 were developed and 
implemented by the main author under the supervision of Professor Ban, 
the 2nd author. Professor Su helped to improve the conception and 
analysis, and wrote part of the paper. 

Paper 2 

Deliang Xiang developed the ideas, performed the experiments and the 
analysis, and wrote the major part of the paper. Professor Ban initiated 
the experimental comparison using UAVSAR data. Professor Ban and 
Professor Su helped to edit the paper. 

Paper 3 
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Deliang Xiang conceived and developed the ideas, performed the 
experiments and the analysis, and wrote the major part of the paper. Tao 
Tang, the 2nd author, helped implement the algorithm. Professor Ban and 
Professor Su helped to improve the conception and analysis, and edited 
the paper. 

Paper 4 

Deliang Xiang developed the ideas, performed the experiments and the 
analysis, and wrote the paper. Wei Wang helped to implement part of the 
algorithm. Professor Ban and Professor Su helped to improve the 
conception and analysis, and edited the paper. 

Paper 5 

The ideas, experiments and analysis were all developed by the main 
author Deliang Xiang. Tao Tang helped to write part of the paper. 
Professor Ban, Professor Su, and Professor Kuang helped to improve 
the conception and analysis, and edited the paper. 

Paper 6 

Professor Ban initiated the ideas for the paper. Deliang Xiang developed 
the ideas and performed the experiments. Wei Wang helped to 
implement part of the algorithm. Professor Ban and Professor Su helped 
to improve the conception and analysis, and edited the paper. 
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2 Theory Background and Literature Review 
 
This chapter contains a detailed review of urban information extraction 
techniques using PolSAR data. The principles of PolSAR imagery, the 
existing polarimetric decomposition algorithms, man-made target 
detection approaches, statistical properties of PolSAR data, edge 
detection and superpixel generation methods, and urban area 
classification methodologies are reviewed in the following sections. 

2.1 Polarimetric Radar Remote Sensing of Urban Areas 

 2.1.1 SAR Polarimetry Fundamentals 
SAR imaging is a well-developed coherent and microwave remote 
sensing technique for providing large-scaled two-dimensional (2-D) high 
spatial resolution images of the Earth’s surface reflectivity (Lee and 
Pottier 2009). Polarization is a fundamental property of electromagnetic 
waves, which is defined by orientations of the electric and magnetic field 
vectors. In this context, radar polarimetry is a technique that allows 
describing the properties of the target via changing the polarization state 
of electromagnetic waves (Antropov 2014; Jin and Xu 2013). In a full 
polarimetric SAR system, the transmitting and receiving antennas can be 
freely configured with two orthogonal polarization states. The general 
transformation from incident wave to backscattered wave  can be 
described as (Zyl, Zebker, and Elachi 1987; Boerner, Mott, and 
Luneburg 1997) 
 

s i ijkr jkr
pp pqp p p

s i i
qp qqq q q

S SE E Ee e
S SE E Er r

      
= =      

           
S                  (2.1) 

 
where ( , )s s

p qE E  and ( , )i i
p qE E  are the Jones vectors representing the 

backscattered and incident waves, respectively. 2 /k π λ=  denotes the 
wave number and λ  is the wavelength. r  is the distance to the 
observation target. Scattering matrix S , also called the Sinclair matrix, 
contains the information to interpret the scattering mechanisms, which is 
the fundamental measured entity in SAR polarimetry. The linear 
horizontal and vertical polarization basis are often used in S  like 
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.hh hv

vh vv

S S
S S
 

=  
 

S                                     (2.2) 

 
Usually it can be expanded into the target scattering vector, represented 
in the Lexicographic format as 
 

[ ]T4L hh hv vh vvS S S S=k                       (2.3) 
 
and the Pauli format as 
 

( ) T
4P

1
2 hh vv vv hh hv vh hv vhS S S S S S j S S= + − + −  k  (2.4) 

 
where the superscript T  denotes the transpose. In the monostatic case 
(Henderson and Lewis 1998; Boerner, Mott, and Luneburg 1997), the 
reciprocity theorem can be applied and yields vh hvS S= , then the 
corresponding target scattering vectors could be redefined in the 
Lexicographic format as 
 

T

3L 2hh hv vvS S S =  k                      (2.5) 

 
and the Pauli format as 
 

[ ]T3P
1 2 .
2 hh vv vv hh hvS S S S S= + −k           (2.6) 

 
These three-dimensional Lexicographic and Pauli target scattering 
vectors can be transformed into each other (Cloude and Pottier 1996; 
Lee and Pottier 2009). The Sinclair matrix S  usually describes the 
information of the pure target exhibiting a particalar scattering 
mechnism. But in general, the earth features are more complicated or 
distributed with a variery of scattering responses. In such cases, the 
information obtained from S  is insufficient to describe the physical 
properties of the surface. Based on the Sinclair matrix S , the second 
order polarimetric representations of PolSAR data can be derived in 
form of the polarimetric covariance matrix [ ]C  as 
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2 * *

2† * *
3L 3L

2* *

2

[ ] 2 2 2

2

hh hh hv hh vv

hv hh hv hv vv

vv hh vv hv vv

S S S S S

S S S S S

S S S S S

 
 
 = =  
 
  

C k k  (2.7) 

 
and coherency matrix [ ]T  as  
 

†
3P 3P

2 * *

2* *

2* *

[ ]

1 1 ( )( ) ( )
2 2

1 1( )( ) ( )
2 2

( ) ( ) 2

hh vv hh vv hh vv hh vv hv

hh vv hh vv hh vv hh vv hv

hv hh vv hv hh vv hv

S S S S S S S S S

S S S S S S S S S

S S S S S S S

=

 + + − + 
 
 = − + − − 
 

+ − 
  

T k k

(2.8) 

 
where the superscript †  denotes the complex conjugate transpose, * 
represents the complex conjugate only, | |⋅  denotes the determinant and 
⋅  indicates spatial averaging, assuming homogeneity of the random 

scattering medium. The resulting second order polarimetric descriptors 
of the covariance and coherency matrices are able to better characterize 
distributed scatterers and are employed to extract physical information 
from the observed scattering process (Lee 2013). The relation between 
[ ]C  and [ ]T  is described in (Hajnsek, Pottier, and Cloude 2003). 

They are both 3×3 Hermitian positive semi-definite matrices, and 
contain the same information about the polarimetric scattering 
amplitudes, phase angles and correlations (Stefan 2014). Anyhow, [ ]C  
is considered to be closer to the physical and geometrical scattering 
properties, whereas [ ]T  is directly related to the system measurables 
(Lee and Pottier 2009). 

 2.1.2 SAR Polarimetry for Urban Analysis 
SAR data cannot provide complete urban scene information because 
radar systems operate on a single band of acquisition with single 
polarization. This limitation can be partly compensated by their 
increasingly available polarimetric capabilities (Treitz, Howarth, and 
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Soulis 1996). It has been proven that fully polarimetric SAR can provide 
detailed information on scattering mechanisms that could enable the 
complex targets or structures in the urban areas to be identified (e.g., 
buildings, bridges, ships, and other complex-shaped man-made targets) 
(Lee and Pottier 2009). Some semi-automatic procedures are already 
available providing outputs at a commercially acceptable level (Horn et al. 
2007; Armando 2012).  
 
Some examples of using PolSAR data for urban analysis can be found in 
a lot of articles. Most of the studies focus on urban area extraction 
(Schou et al. 2003; Kimura et al. 2004; Moriyama et al. 2004; Guillaso et 
al. 2005; Moriyama, Yamaguchi, et al. 2005; Ferro-Famil and Pottier 
2007; Reigber et al. 2007; Ainsworth, Schuler, and Lee 2008; He et al. 
2008; Wang et al. 2008; Guo, Li, and Zhang 2009; Wang, Tupin, and C. 
2010; Zhang, Guo, et al. 2010; Li, Guo, et al. 2012; Kajimoto and Susaki 
2013a; Deng and Wang 2014; Liu, Zhang, Liu, et al. 2014; Yang et al. 
2014; Azmedroub and Ouarzeddine 2015; Wu, Guo, and Li 2015), urban 
density estimation (Iwasa and Susaki 2011; Cao, Su, and Liang 2012; 
Kajimoto and Susaki 2012, 2013b; Susaki, Kajimoto, and Kishimoto 
2014), change detection (Li, Zhang, et al. 2012; Liu et al. 2012; Mishra 
and Susaki 2013; Xu et al. 2013; Lê et al. 2015; Xie et al. 2015), 
classification (Pellizzeri 2003; Iwasa and Susaki 2011; Bhattacharya and 
Touzi 2012; Niu and Ban 2013b; Salehi, Sahebi, and Maghsoudi 2014; 
De and Bhattacharya 2015; Deng, Yan, and Sun 2015), segmentation 
(Bombrun et al. 2011; Alonso-González, López-Martínez, and Salembier 
2012; Lang et al. 2014; Cheng, Ji, and Liu 2015; Doulgeris 2015; Liu et al. 
2015; Qin, Guo, and Lang 2015), and urban disaster assessment (Sato, 
Chen, and Satake 2012; Chen and Sato 2013; Susaki 2013; Zhao et al. 
2013; Chen et al. 2015). Moreover, the interferometric capabilities of 
PolSAR, where available, allow the exploitation of terrain and man-made 
target height to improve the urban information extraction accuracy 
(Guillaso et al. 2003, 2005; Li et al. 2010; Antropov 2014; Sieg 2015). 
Since it is usually not easy to acquire the polarimetric interferometric 
SAR (PolInSAR) data over the regions of interest, PolSAR images are 
chosen by most of the urban information techniques. 
 
Even though using PolSAR data to extract urban information seems 
promising, complexity still remains stemming from overlap of surface 
scattering, double bounce scattering, and triple- and higher-order bounce 
scattering from various components of man-made structures that make 
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physical interpretation a challenge (Lee and Pottier 2009). Therefore, 
there is still a lot of work to do for urban analysis using PolSAR data. 

2.2 Polarimetric Target Decomposition 
Polarimetric target decomposition is a powerful technique which can 
provide physical interpretations of the PolSAR observations such as 
scattering mechanisms or polarimetric properties. With this technique, 
an observed polarimetric matrix can be decomposed into a summation 
of several individual scattering mechanisms. The dominant scattering 
mechanism can be determined and physical parameters can be retrieved. 
Based on the decomposed parameters, a number of remote sensing 
applications, such as land use land cover classification (Qi et al. 2012; 
Chen, Kuang, et al. 2013), target detection (Deng and Wang 2014; Touzi 
2007; Zhang, Zou, and Tang 2012), soil moisture estimation (Hajnsek et 
al. 2009), forest study (Antropov, Rauste, and Hame 2011a; Shimada 
2011), ocean study (Schuler and Lee 2006), agriculture study (Merzouki, 
McNairn, and Pacheco 2010; Antropov, Rauste, and Hame 2011b), 
glacier study (Sharma et al. 2011), and disaster estimation (Sato, Chen, 
and Satake 2012; Chen and Sato 2013; Susaki 2013; Chen et al. 2015) 
were successfully applied. Over the past few decades, there have been a 
lot of polarimetric decomposition approaches proposed to interpret the 
scattering mechanisms present in PolSAR data (Cloude 2009; Lee and 
Pottier 2009; Zyl and J 2011). Polarimetric decomposition methods can 
be mainly divided into two major categories according to the 
assumptions of the target types, i.e., coherent target decomposition and 
incoherent target decomposition, which will be introduced in the 
following subsections. Moreover, the analysis of scattering mechanisms 
in urban areas will be discussed, followed by an overview of the state-of-
the-art polarimetric model-based scattering decomposition methods. 

 2.2.1 Coherent Target Decomposition 
In case of coherent decomposition, the scattering matrix is expressed as 
a weighted combination of scattering response of simple or canonical 
objects. The polarized scattered waves for which the scattering matrix 
holds the full polarimetric information can be completely characterized. 
These types of decompositions are applicable only to pure or coherent 
targets which give completely polarised backscatter (Cloude and Pottier 
1996; Boerner, Mott, and Luneburg 1997). Thereby, the measured 
scattering matrix S can be expressed as 
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1

N

k k
k

c
=

=∑S S                                         (2.9) 

 
where each scattering mechanism kS  stands for the scattering from a 
simple object weighted by a complex coefficient kc . Therefore, the main 
goal of coherent decomposition is to interpret the physical properties 
through analysing the standard target contributions kS  (planes, dihedral, 
and helices). In the following, brief descriptions of three different 
coherent decomposition approaches are given, i.e., the Pauli (Cloude and 
Pottier 1996), the Krogager (Krogager 1990), and the Cameron 
(Cameron and Leung 1990) decompositions. 

A. Pauli decomposition 

The scattering matrix S  is expressed as the complex sum of four 
scattering mechanisms, namely sphere surface, dihedral, di-plane 
oriented at 45 degrees and helix related, where each elementary scattering 
mechanism is associated with one Pauli basis matrix as the following 
 

[ ] [ ] [ ] [ ]hh hv
a b c d

vh vv

S S
a b c d

S S
 

= = + + + 
 

S S S S S         (2.10) 

 

[ ] [ ]

[ ] [ ]

1 0 1 01 1
0 1 0 12 2
0 1 01 1
1 0 02 2

a b

c d

j
j

   
= =   −   

−   
= =   

   

S S

S S

             (2.11) 

 
where , ,a b c , and d  are all complex and given by 
 

, , ,
2 2 2 2

hh vv hh vv hv vh hv vhS S S S S S S Sa b c d j+ − + −
= = = =    (2.12) 

 
In the monostatic case with the reciprocal assumption, where vh hvS S= , 
the Pauli matrix basis in Eq. (2.11) can be reduced to the first three 
matrices leading to 0d = . In general, the Pauli decomposition is usually 
used to display the PolSAR data with an image by a false colour scheme, 
i.e., Pauli coded image. 
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B. Krogager decomposition 

The Krogager decomposition exploits the fact that any scattering matrix 
S  can be uniquely represented as the combination of a sphere, a di-plane 
and a helix scattering model. In the linear orthogonal basis, the Krogager 
decomposition has the formulation as follows: 
 

[ ] [ ] [ ]( )j j s
s d hs d h

e e k k kj j= + +S S S S             (2.13) 
 
where ,s dk k  and hk  correspond to the weights of the three scattering 
components, respectively. The main goal of the Krogager decomposition 
is to resolve different scattering characteristics independent from the 
incidence angles (Lee and Pottier 2009). 

C. Cameron decomposition 

In the Cameron decomposition, the scattering matrix S  is decomposed 
using the Pauli matrices into the non-reciprocal part and the reciprocal 
part. The reciprocal part is further factorized into the max symmetric 
component and min symmetric component. Cameron decomposition 
emphasizes the importance of a class of symmetric targets that have 
linear Eigen polarizations on the Poincaré sphere and have a restricted 
target vector parameterization. 
 
It should be noted that there are two problems with coherent 
decompositions (Lee and Pottier 2009). One is that the high speckle 
noise effect associated with SLC data is ignored in these types of 
decompositions, which will distort physical interpretation and scattering 
mechanisms of the coherent data. The second major problem is that 
there are many ways of decomposing a given scattering matrix S  without 
a priori information, making it impossible to apply a unique 
decomposition. 

 2.2.2 Incoherent Target Decomposition 
In general, the scattered wave is partially polarized and extracting 
physical parameters from a distributed target with incoherent scatterers 
is usually of more interest; moreover, to overcome the limitations of 
coherent decompositions, the incoherent target decomposition 
techniques were developed to represent the second order polarimetric 
representations of PolSAR data (such as covariance matrix [ ]C  or 



 14 

coherency matrix [ ]T ) into a sum of single scattering matrices. 
Incoherent target decompositions can provide a better interpretation of 
the underlying distributed scattering and simpler ways of extracting the 
physical parameters from the measured radar data (Cloude and Pottier 
1996; Cloude 2009; Lee and Pottier 2009). Until now, there have been 
many incoherent target decomposition techniques proposed for PolSAR 
data, which can be mainly divided into two categories, i.e., eigenvalue-
eigenvector-based decompositions and model-based decompositions. 

A. Eigenvalue-eigenvector-based decomposition 

Since the eigenvalue-eigenvector-based decomposition techniques have a 
clear mathematical background and only one decomposition solution, 
this kind of methods become relatively mature. Among them, 
entropy/anisotropy/averaged alpha angle ( / /H A α ) polarimetric 
decomposition is a typical representative which is based on the analysis 
of the eigenvectors and eigenvalues of the 3×3 Hermitian averaged 
coherency matrix [ ]T  (Cloude and Pottier 1997) with the form of 
 

3
†

01 02 03
1

[ ] i i i
i
λ

=

= = + +∑T μ μ T T T                  (2.14) 

 
where iλ  and iμ  denote the ith eigenvalue and eigenvector respectively. 

Therefore, [ ]T  can be decomposed into the sum of three independent 

targets 01 02,T T , and 03T , each of which indicating a deterministic 
scattering mechanism associated with an individual scattering matrix. 
Note that the eigenvalue iλ  determines the contribution from the ith 
deterministic scattering mechanism and iμ  relates to the type of 
scattering (Cloude 1992; Cloude and Pottier 1997), which can be further 
expressed as  
 

T[cos sin cos sin sin ] .i i ij j j
i i i i i ie e ej δ γα α β α β=μ     (2.15) 

 
Moreover, Cloude and Pottier defined entropy H , mean alpha angle α , 
and anisotropy A  for the analysis of the physical information related to 
the scattering mechanisms of a medium as 
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l=

=

= − =∑
∑

         (2.16) 

3
2 3

12 3

, .i i
i

A pλ λ α α
λ λ =

−
= =

+ ∑                   (2.17) 

 
It should be noted that the entropy 0 1H≤ ≤  represents the 
randomness of a scattering medium between isotropic scattering ( 0H = ) 
and fully random scattering ( 1H = ). Specifically, when H  is low, one 
dominant scattering corresponding to the largest eigenvalue can be 
extracted and the other eigenvalue components can be ignored whereas 
when H  is high, a mixture of various types of scatterings should be 
considered. The mean alpha angle α  is related to the average scattering 
mechanisms from single-bounce scattering with 0α =  , dipole scattering 
with 45α =  , and double-bounce scattering with 90α =  . The anisotropy 
A  is a complementary parameter to H , indicating the relative 
importance of the second and third eigenvalues. Polarimetric entropy, 
mean alpha angle, and anisotropy are widely used in a lot of studies for 
scattering mechanisms understanding (Ferro-Famil, E., and Lee 2001; 
Pellizzeri 2003; Cao et al. 2007; Deng and Wang 2014; Deng, Yan, and 
Sun 2015). 

B. Model-based scattering decomposition 

Compared to eigenvalue-eigenvector-based decompositions, model-
based decompositions can obtain different decomposition results with 
various combinations of scattering models. The Freeman-Durden three-
component decomposition (Freeman and Durden 1998) is the pioneer 
of incoherent model-based decompositions. It considers the covariance 
(or coherency) matrix as a combination of three scattering mechanisms, 
namely a volume scattering from a cloud of randomly oriented dipoles, 
double-bounce scattering from a pair of orthogonal surfaces with 
different dielectric constants, and surface scattering from a moderately 
rough surface. This decomposition process can be depicted using the 
covariance matrix as 
 

[ ] [ ] [ ][ ] v d sv d s
f f f= + +C C C C                      (2.18) 

 
where ,v df f , and sf  correspond to the contributions of volume 
scattering component, double-bounce scattering component, and surface 



 16 

scattering component, respectively. The volume, double-bounce, and 
surface scattering covariance matrices [ ]vC , [ ]d

C , and [ ]s
C  are given as 

 

[ ] [ ] [ ]

2 21 0 1/ 3 0 0
0 2 / 3 0 , 0 0 0 , 0 0 0 .

1/ 3 0 1 0 1 0 1
v d s

α α β α

α α∗ ∗

    
    = = =    
         

C C C (2.19) 

 
This composite scattering model is widely used and has been proven to 
be effective to describe the polarimetric backscatter from natural 
scatterers. To improve the polarimetric decomposition performance in 
urban areas, a popular four-component model-based decomposition 
method was introduced (Yamaguchi et al. 2005; Yamaguchi, Yajima, and 
Yamada 2005). The helix scattering is added to address the co-pol and 
cross-pol correlations, which generally appears in complicated geometric 
scattering structures and disappears in natural areas. Therefore, this term 
is mainly relevant for modelling the scattering of man-made targets in 
urban areas. This four-component decomposition can be expressed as 
 

[ ] [ ] [ ] [ ]( )
[ ] v d s cv d s c

f f f f
θ

= + + +C C C C C             (2.20) 

 
where cf  is the contribution of helix scattering component and [ ]cC  is 
the helix scattering covariance matrix given by 
 

[ ]
1 2 1

1 2 2 2 .
4

1 2 1
c

j

j j

j

 − −
 

= − 
 
−  

C                          (2.21) 

 
Nevertheless, model-based decompositions with models or assumptions 
that do not fit the actual observations may induce deficiencies, such as 
the negative powers solved for scattering mechanisms, overestimation or 
underestimation of volume scattering power, scattering mechanism 
ambiguities, etc (Chen, Li, and Wang 2014). Thereby, many advances 
have been proposed in the recent decades to improve the model-based 
decompositions, such as orientation compensation strategy (An, Cui, and 
Yang 2010; Lee and Ainsworth 2011; Yamaguchi et al. 2011), 
nonnegative eigenvalue constraint (Zyl, Arii, and Y. Kim 2011; Cui, 
Yamaguchi, and Yang 2014; Kusano, Takahashi, and Sato 2014), and 
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generalized scattering models (Freeman 2007; Arii, Zyl, and Kim 2011; 
Chen et al. 2014; Chen, Wang, and Sato 2014), etc. But until now, 
developing an effective and robust decomposition technique for PolSAR 
data is still a promising and challenging research topic, especially for 
urban areas with complicated scattering mechanisms. 

 2.2.3 Modelling and Interpretation of Scattering Mechanisms 
in Urban Areas 

It is still difficult to extract urban information from PolSAR data due to 
the various orientation angles of buildings and the complex backgrounds, 
which can significantly influence the urban scattering mechanisms (Niu 
and Ban 2013b; Wu, Guo, and Li 2013; Deng and Wang 2014; Yang et al. 
2014). As stated in many PolSAR interpretation studies, vegetation 
usually exhibits strong cross-polarized scattering (HV) (Lee and Pottier 
2009). Since the scattering mechanisms of urban areas are related to the 
building orientation angles, buildings in PolSAR data can be divided into 
two categories, i.e., ortho buildings and oriented buildings. The former 
are buildings with walls perpendicular to the radar range direction while 
the latter buildings are not. The scattering reflection symmetry of 
oriented buildings is usually broken and the mixed polarization scattering 
terms can be quite large (Ainsworth, Schuler, and Lee 2008). Some 
studies pointed out that vegetation and oriented built-up areas both 
contribute to the HV scattering, which leads to scattering mechanism 
ambiguity between these two land covers (Sato and Yamaguchi 2012; 
Chen, Ohki, et al. 2013). 
 
Another issue that needs to be raised is how to determine the scattering 
mechanism of oriented buildings. Many decomposition algorithms tried 
to identify the scattering of oriented buildings as double-bounce 
scattering, which is the same as that of ortho buildings (Shan, Zhang, 
and Wang 2012; Chen, Ohki, et al. 2013; Chen, Li, and Wang 2014; Chen 
et al. 2014; Chen, Wang, and Sato 2014; Chen et al. 2015). Nevertheless, 
it is not reasonable if all of the oriented buildings show double-bounce 
scattering like the ortho buildings after decomposition. On one hand, 
although oriented buildings and vegetation both generate cross-polarized 
scattering, they are not the same land cover. Thus it is not reasonable to 
use the volume scattering model designed for forests to describe the HV 
scattering from oriented buildings. On the other hand, the HV scattering 
of oriented buildings is not the same as the double-bounce scattering of 
ortho buildings. Therefore, the objective of polarimetric decomposition 
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should be urban scattering analysis and not to get pure double-bounce 
scattering for all of the buildings. Hence it is not enough to use double-
bounce scattering model for polarimetric decomposition in urban areas. 
A new scattering model should be studied to describe the cross-polarized 
scattering component from oriented buildings. 
 
Many model-based decomposition techniques have been studied over 
recent decades, among them, several approaches can be utilized for 
urban areas. Based on the four-component model-based decomposition 
(Yamaguchi et al. 2005; Yamaguchi, Yajima, and Yamada 2005; 
Yamaguchi et al. 2011), Sato and Yamaguchi (2012) proposed an 
extended volume scattering model for oriented urban areas. An et al. 
(2010) proved that the identity matrix is suitable for urban area 
decomposition for the reason that this scattering matrix can model pure 
volume scattering and be helpful to reduce the volume scattering 
overestimation in urban areas. Shan et al. (2012a, 2012b) utilized this 
matrix as the volume scattering model instead of the traditional ones in 
four-component decomposition. Moriyama et al. (2005) stated that in 
urban areas, surface, double-bounce, and cross scatterings are all 
significant. Furthermore, they proposed a new cross scattering matrix. 
Inspired by this theory, a new multiple-component model-based 
decomposition method for urban areas was proposed (Zhang et al. 2008). 
In this method, the wire scattering of built-up areas is analysed and then 
added to the Yamaguchi four-component model-based decomposition. 
The decomposition results in urban areas are improved and satisfactory. 
However, this method has a drawback, which is the underestimation of 
volume scattering in vegetated areas. A well-designed decomposition 
technique for urban areas should have the ability of reducing the HV 
scattering overestimation in oriented urban areas and underestimation in 
vegetated areas at the same time. Furthermore, the scatterings of ortho 
and oriented buildings should also be distinguished. 

2.3 Man-Made Target Extraction from Urban Areas 
Man-made target detection in urban areas is of high relevance for 
research on topics such as city expansion, construction monitoring, 
disaster damage evaluation, or some military applications such as target 
location and tracking (Yamaguchi 2012; Chen and Sato 2013; Zhao et al. 
2013). For PolSAR data, it is challenging to extract man-made targets 
from complex built-up areas due to speckle effect and complex 
backscatter. This section will give an overview of widely used techniques 
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for man-made target detection first, and then followed by the scattering 
properties analysis, especially the target refection asymmetry. 

 2.3.1 Overview of Man-Made Target Detection Methods 
Full polarization acquisition can enhance the radar capability in man-
made target parameter (e.g., material, shape, and orientation) retrieval 
(Chen, Li, and Wang 2014). In general, many man-made targets with 
dominant double-bounce scattering, such as buildings aligned along 
radar flight direction, can be extracted effectively in the polarimetric 
dimension. However, when the buildings do not align along radar flight 
direction, a significant cross-polarized component is produced, which 
can lead to confusion with forests (Sato and Yamaguchi 2012; Shan, 
Zhang, and Wang 2012; Chen, Ohki, et al. 2013). Moreover, some small 
man-made targets such as metallic fences along the road are also very 
difficult to be extracted. In recent years, many effective algorithms have 
been proposed for man-made target extraction from PolSAR data. For 
instance, the phase-difference characteristics of urban areas for various 
orientation angles were analysed and an effective phase-difference 
parameter to detect buildings was proposed (Lee, Oh, and Kim 2012). In 
this method, co-polarized phase-difference (CPD) is adequate for aligned 
urban areas while cross-polarized phase-difference (XPD) is suitable for 
oriented urban areas with 45 degrees. Kajimoto and Susaki (2013a) 
proposed a novel building detection method that utilizes polarization 
orientation angle (POA), volume scattering power, and total power, 
where the POA randomness parameter between neighbouring pixels is 
used to discriminate urban areas from forest areas. Yang et al. (2014) 
utilized scattering mechanism-based statistical features from adaptive 
model decomposition (Arii, Zyl, and Kim 2011) to extract urban 
buildings. Xiao et al. (2014) maximized the correlation coefficient 
between two polarimetric channels by rotating a polarimetric coherence 
matrix in the rotation domain around the radar line of sight. Then the 
coherence of oriented man-made targets is enhanced while that of 
forests remains relatively low. It can be seen that these methods all 
concentrate on distinguishing oriented man-made targets from forest 
areas since these two land covers are easily misinterpreted by the model-
based scattering decomposition techniques. 
 
Nonstationarity analysis based on time-frequency decomposition is a 
useful tool in SAR and PolSAR image information extraction (Touzi et al. 
2007; Spigai, Tison, and Souyris 2011). Complex man-made targets with 
anisotropic geometrical structures are illuminated from different 
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positions and may show changing electromagnetic characteristics 
(Ainsworth et al. 1999). More information can be provided for buildings 
not facing the radar and man-made targets can effectively be 
discriminated from forest areas. Based on this theory, an azimuth 
nonstationarity extraction method over the Wishart distribution was 
developed and then utilized to detect man-made targets from PolSAR 
data (Ferro-Famil et al. 2003; Ferro-Famil, Reigber, and Pottier 2005; 
Ferro-Famil and Pottier 2007; Reigber et al. 2007). To achieve better 
detection results, this method was further modified by employing Rician 
distribution and nonzero-mean statistical model instead of Wishart 
distribution, which are more suitable for high resolution PolSAR data 
(Wu, Guo, and Li 2013, 2014; Wu, Guo, and Li 2015). Although 
nonstationarity analysis can describe the anisotropic characteristic of 
man-made targets, there are some deficiencies, as stated in (Wu, Guo, 
and Li 2013). One reason is that anisotropy can also occur with other 
natural surfaces. For instance, cropland with Bragg resonance also 
exhibits the behaviour of a nonstationary target (Ulander et al. 1999; 
Ferro-Famil, Reigber, and Pottier 2005), resulting in some false alarms of 
the man-made target detection. Another reason is the number of sub-
aperture images. A small number of sub-apertures cannot effectively 
describe the target anisotropy while a large number of sub-apertures can 
seriously degrade the image resolution, leading to the detection 
omissions of small man-made targets and roads. 

 2.3.2 Reflection Property of Man-Made Targets 
Symmetry in the background usually leads to symmetries in the scattered 
field (Yueh, Kwok, and Nghiem 1994). Reflection symmetry makes the 
co- and cross-polarized scattering amplitudes uncorrelated (Nghiem et al. 
1992). As a result, this important reflection property, becomes robust 
and independent of any particular assumed scattering mechanism 
(Nunziata, Migliaccio, and Brown 2012). Symmetry in electromagnetics 
was first exploited to discriminate targets in Baum (1997) and Baum 
(2003). There have been a lot of studies demonstrating that backscatter 
from natural areas is often reflection symmetric; i.e., characterized by 
near zero values for coherency matrix off-diagonal elements and their 
conjugates due to * * 0hv hh hv vvS S S S≈ ≈  (Yueh, Kwok, and Nghiem 
1994). In contrast, backscatter from complex man-made structures in 
urban areas often occurs from different geometries and, therefore, 
reflection symmetry is often broken (Ainsworth, Schuler, and Lee 2008; 
Nunziata, Migliaccio, and Brown 2012; Yamaguchi et al. 2005; Kimura et 
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al. 2004; Zou et al. 2015). The coherency matrix mixed polarization 
terms (e.g., 13 23,T T , and their conjugates) can be quite large for these 
scattering cases, which was also discussed in (Yamaguchi et al. 2005; 
Yamaguchi, Yajima, and Yamada 2005) and (Ferro-Famil and Lavalle 
2009). Nunziata et al (2012) and Migliaccio et al. (2011) developed a 
symmetry-based detector in a processing chain to provide two added-
value products: sea oil slick maps and metallic targets at sea maps. 
Ainsworth et al. normalized the conventional RR-LL correlation 
coefficient by a circular-pol RR-LL correlation coefficient (Ainsworth, 
Schuler, and Lee 2008), which was constructed from the same 
covariance or coherency matrix terms, but with the mixed terms 

* *,hv hh hv vvS S S S  artificially set to zero, i.e. reflection symmetry. This 
normalized circular-pol correlation coefficient can effectively detect 
scattering from reflection asymmetric structures. Nevertheless, the man-
made target details are reduced, which may omit the small targets and 
roads. Wang et al. derived the statistical models of the magnitude of the 
(2, 3) term in the coherency matrix within different degrees of 
homogeneity and proposed an automatic constant-false-alarm-rate 
(CFAR) detection scheme. This detector has the capability of detecting 
non refection symmetry ships, oil stores, buildings, etc., in homogeneous 
and heterogeneous areas (Wang et al. 2012). Therefore, the reflection 
property of man-made targets has a great potential ability for detection. 

2.4 PolSAR Edge Detection and Superpixel Generation 

 2.4.1 Statistical Properties of PolSAR Data 
The statistics of PolSAR data are usually based on the analysis of SAR 
speckle. Speckle of SAR images results from the coherent interference of 
waves reflected from many elementary scatterers (Goodman 1976). A 
random walk model was utilized to describe the scattering process 
(Touzi 2002; Goodman 2007), which describes the measured 
electromagnetic wave as a vector sum of the wave components by the 
scatters in the same resolution cell. The speckle leads to a pixel-to-pixel 
variation which is represented as a granular speckle pattern on the SAR 
image. Understanding the speckle statistics of SAR and PolSAR data is 
essential for better information extraction by designing robust algorithms 
for speckle filtering, geophysical parameter estimation, target detection, 
classification and segmentation, etc (Lee and Pottier 2009). In this 
section, the speckle statistics of a single polarization SAR will be 
discussed first, followed by the statistics of PolSAR data. The complex 
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Wishart distribution for the polarimetric covariance or coherency 
matrices will be emphasized and some more complex distributions which 
better describe the heterogeneous urban areas will be further discussed. 

A. Speckle statistics of a single polarization SAR 

A single polarization observation A  can be formed as the product of 
two independent components: speckle Z  and texture τ  (Oliver and 
Quegan 2004) like 
 

2= ,    = ,   =A Z I P P Zτ τ                             (2.22) 
 
where A  and I  denote the amplitude and intensity of the SAR 
observation, respectively. Texture τ  indicates the ideal scattering of the 
target and Z  is a complex random variable representing the amplitude 
of speckle. P  denotes the speckle intensity. For single-look SAR data, 
P  follows the negative exponent distribution as (Lee and Pottier 2009) 
 

1( ) = exp( ),       ( >0)Pf p p p
p

−                      (2.23) 

 
whereas for multi-look SAR data, P  follows a Gamma distribution as 
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                (2.24) 

 
where L  is the equivalent number of looks (ENL) of SAR data, and 

( )Γ ⋅  is the gamma function. With the above product model and speckle 
distribution, we can derive various intensity distributions for multi-look 
SAR data by assuming different texture distributions, as shown in Table 
2.1. 
 
According to the degrees of homogeneity, these intensity distributions 
could be used to model the backscatter of different types of classes. For 
instance, pasture is usually more homogeneous than forest and urban 
areas and can be modelled by the Gamma distribution. For forest, the K 
distribution is better since it is derived based on a physical scattering 
process (Jakeman 1980) and it can reduce to the Rayleigh distribution in 
the case of homogeneous media (Lee, Hoppel, et al. 1994; Lee and 
Pottier 2009). However, to model extremely heterogeneous clutter, such 
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as urban areas, the K distribution cannot work very well and G0 
distribution is more appropriate (Frery et al. 1997). To further model the 
cluster of very high-resolution SAR images over urban areas, the Fisher 
distribution seems to be better (Tison et al. 2004). 
Table 2.1: Texture distributions and the corresponding SAR intensity distributions 
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B. Statistics of PolSAR data 

The statistical characteristics of PolSAR data are not limited to the 
intensities or amplitudes. Speckle noise not only appears in the HH, HV, 
and VV intensity images, but also appears in the complex cross product 
terms between different polarizations (Lee and Pottier 2009). By using 
the product model, the single-look complex (SLC) target scattering 
vector k  can be decomposed as (Freitas, Frery, and Correia 2005) 
 

τ=k Z                                       (2.25) 
 
where Z  is a complex random vector following a zero mean multivariate 
complex Gaussian distribution (Goodman 1963). Therefore, the multi-
look complex (MLC) covariance or coherency matrix can be written as 
 

†[ ] [ ] .or τ= =C T kk Z                  (2.26) 
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The average complex speckle Z  obeys a scaled multivariate complex 
Wishart distribution (Goodman 1963; Srivastava 1965; Lee, Schuler, et al. 
1994; Lee, Hoppel, et al. 1994) with density given by 
 

1exp( Tr( ))
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where Tr( )⋅  denotes the trace and d  is the dimension of k . The scaling 
function ( , )h L d  is given by ( 1)/2( , ) ( ) ( 1)d dh L d L L dπ −= Γ Γ − +  and 

† †( ) ( )∑ = Ε = Εkk ZZ . Therefore, various distributions for PolSAR MLC 
covariance or coherency matrix can be derived by assuming different 
texture distributions. Table 2.2 presents some common distributions 
formed in this way. 
Table 2.2. Texture distributions and the corresponding PolSAR distributions 
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As a classic statistical model, the Wishart distribution has been widely 
used in various PolSAR image processing techniques (Lee, Grunes, and 
Kwok 1994; Lee et al. 1999; Ferro-Famil, E., and Lee 2001; Schou et al. 
2003; Anfinsen, Eltoft, and Doulgeris 2009; Dabboor et al. 2013; Silva et 
al. 2013; Frery, Nascimento, and Cintra 2014). It has been demonstrated 
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that the Wishart distribution can perform very well for low resolution 
PolSAR data. However, with the new PolSAR sensors, the number of 
scatterers present in each resolution cell decreases considerably, which 
makes the assumption that PolSAR clutter is homogeneous easily be 
violated. To overcome this difficulty, the K distribution was introduced 
to model the PolSAR data, which has shown promising results in the 
forested scenes (Lee, Schuler, et al. 1994). Compared to the K 
distribution, the G0 and the KummerU distributions can be able to fit an 
extremely heterogeneous clutter, such as the urban areas (Bombrun and 
Beaulieu 2008; Bombrun et al. 2011; Khan and Guida 2014). 

 2.4.2 Review of Edge Detection Methods 
Edge detection of PolSAR data is essential for various applications, e.g., 
speckle noise reduction (Lang, Yang, and Li 2015), superpixel 
segmentation (Lang et al. 2014; Qin, Guo, and Lang 2015) and so on. 
Extracting edges of urban buildings can be helpful for urban planning 
and urban mapping. In simple terms, the purpose of PolSAR edge 
detection is to identify boundaries between regions with different 
polarimetric information, as well as structural characteristics 
(Nascimento et al. 2014). 
 
There have been several algorithms proposed for PolSAR edge detection. 
On the basis of ratio edge detector for SAR images (Fjortoft et al. 1998), 
a new approach to edge detection in PolSAR data using a statistical test 
for equality of complex covariance matrices following a complex Wishart 
distribution was proposed (Schou et al. 2003). Zhou et al. (2011) 
proposed a two-scale edge detection method, consisting of a coarse level 
and a fine level. The former extracts the linear features using a curvelet 
transform and the latter accurately locates the linear features via a fuzzy 
polarimetric detector. Under the scaled complex Wishart distribution, 
Frery et al. (2014) and Nascimento et al. (2014) compared the 
performances of four stochastic distances, two differences of entropies, 
and the maximum likelihood criterion on PolSAR edge detection. Liu et 
al. (2014) presented a degenerate filter design integrated with the 
weighted maximum likelihood estimation to overcome the limitation of 
the traditional constant-false-alarm-rate (CFAR) edge detector. After that, 
Liu et al. (2015) further proposed a multiscale edge detection method 
based on wedgelet analysis for PolSAR images to capture the local 
geometrical information. Lang et al. (2015) analysed the line features in 
PolSAR data and proposed a line-and-edge detector on the basis of 
traditional CFAR edge detector, which can detect both lines and edges. 
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Most of these methods are developed under the assumption of complex 
Wishart distribution. However, in heterogeneous urban areas, this 
assumption is usually violated (Bombrun and Beaulieu 2008; Soergel 
2010; Bombrun et al. 2011). In the meantime, it is quite difficult to find a 
particular distribution to describe the backscatters of urban areas since 
they are extremely complex (Wu, Guo, and Li 2015; Liu, Zhang, Wang, 
et al. 2014). Therefore, the edge detection for heterogeneous urban areas 
still remains unsolved. 

 2.4.3 Superpixel Generation Methods for PolSAR Data 
A superpixel is defined as a local region which preserves most of the 
object information and well adheres to object boundaries (Li and Lu 
2011; Xiang et al. 2013). Superpixels are approximately regular in size 
and shape just like pixels, especially in homogeneous regions. They have 
actively been used for a wide range of applications such as classification 
(Cheng, Liu, and Xu 2013), segmentation (Liu et al. 2011) and stereo 
matching or tracking. Until now, numerous superpixel algorithms have 
been proposed for optical images, among them the simple linear iterative 
clustering (SLIC) method is popular and shows good performance in 
superpixel generation (Achanta et al. 2012). In contrast, there are very 
few superpixel generation approaches proposed for SAR and PolSAR 
images. Some existing superpixel algorithms such as Meanshift 
(Comaniciu and Meer 2002) and Turbopixel (Levinshtein et al. 2009) 
originally designed for optical images were adopted for SAR and PolSAR 
image classification (Su et al. 2011). Xiang et al. (2013) developed a novel 
superpixel generation algorithm based on pixel intensity and location 
similarity, which modified the similarity measure of SLIC to make it 
applicative for SAR images. For PolSAR data, Liu et al. (2013) 
incorporated the revised Wishart distance and edge map into the 
Normalized cuts (Shi and Malik 2000) algorithm to produce superpixels. 
On the basis of SLIC, Feng et al. (2014), Song et al. (2015), and Qin et al. 
(2015) utilized the symmetric revised Wishart distance, Bartlett distance 
and revised Wishart distance respectively as the similarity measures 
instead of the original one to generate superpixels. In (Qin, Guo, and 
Lang 2015), the PolSAR edge map obtained by traditional CFAR edge 
detector (Schou et al. 2003) was introduced to replace the simple 
gradient calculation. It can be seen that these methods are all designed 
based on the assumption of Wishart distribution, which can well model 
the backscatter of natural areas. However, for heterogeneous urban areas, 
this assumption is usually violated, making the superpixels not well 
adhere to urban boundaries and preserve the polarimetric features. In the 
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meantime, it is quite difficult to find a particular distribution to describe 
the backscatters of urban areas since they are extremely complex. 
Therefore, superpixel generation for PolSAR images, especially in 
heterogeneous urban areas, still remains unsolved. Another drawback of 
these methods lies in the non-adaptive selection of the trade-off factor, 
which balances polarimetric similarity and spatial proximity while 
simultaneously providing control over the shape and compactness of the 
superpixels. This parameter is usually set manually by trial and error, 
which might cause over- or under-segmentation in some spatially 
complex areas. 

2.5 Urban Area Classification Using PolSAR Data 
State of the art urban area classification methods using PolSAR data will 
be reviewed in the next subsection, followed by the discussion of the 
challenges in this research field. 

 2.5.1 Pixel- and Object-based Classification 
The classification of PolSAR images has become an important research 
topic since a lot of airborne and spaceborne PolSAR data are available. 
The remote sensing image classification methods can be defined as pixel-
based or object-based according to whether the basic processing element 
is either a single pixel or a segment. Many classification methods for 
SAR and PolSAR data have been explored with pixel-based strategies 
(Rignot, Chellappa, and Dubois 1992; Chen, Huang, and Amar 1996; 
Barnes and Burki 2006; Gamba P et al. 2006; Shimoni et al. 2009; 
Dell'Acqua et al. 2009; Niu and Ban 2012, 2013b, 2014; Niu et al. 2015). 
Recently, on the basis of various polarimetric decomposition theorems, 
classification methods based on decomposition results have been 
explored (Lee, Grunes, and Kwok 1994; Cloude and Pottier 1997; Lee et 
al. 1999; Cao et al. 2007; Wang et al. 2013). These scattering features 
cover the H/alpha, the Yamaguchi, the Neumann, the Huynen, the 
Krogager, and the Cameron decomposition results, etc. Moreover, some 
studies have indicated that the fusion of physical and textural 
information derived from various SAR polarizations is helpful in 
improving classification results. Tu et al. (2012) utilized Pauli, Krogager, 
Cloude, Freeman-Durden, and Huynen decomposition scattering powers, 
as well as co-polarized, cross-polarized backscattering coefficients, phase 
difference, depolarization ratio and the degree of polarization 
polarimetric signatures for PolSAR image classification. Zhang et al. 
(2010) used the multiple component decomposition powers and gray 
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level co-occurrence matrix (GLCM) texture features to classify ESAR 
image. However, there exist some deficiencies in these pixel-based 
classification methods. On one hand, utilizing the textural and spatial 
information of PolSAR images through pixel-based methods is difficult. 
On the other hand, the results of pixel-based methods are insufficient 
for extracting objects of interest and can be easily influenced by speckle 
noise (Niu 2012). 
 
Compared with pixel-based image classification methods, object-based 
classification is a promising scheme. After segmenting images under 
some constraints such as intensity, location, texture, and edge, many 
homogeneous regions can be obtained, and then classification is based 
on these regions instead of pixels. Xiang et al. (2013) proposed a 
superpixel generating algorithm based on pixel intensity and location 
similarity for SAR image and extracted the Gabor filters and GLCM 
from each superpixel for classification. The results are less affected by 
speckle and the computational cost is lower. Hu and Ban (2012) 
investigated the potential of very high resolution SAR data for urban 
mapping using the object-based approach. Qi et al. (2012) proposed a 
novel object-based classification method for RADARSAT-2 data using 
polarimetric decomposition, PolSAR interferometry and image texture 
information. Esch et al. (2010) developed an object-based approach to 
depict the urban footprints using TerraSAR-X data. Niu and Ban (2013a) 
investigated object-based support vector machine urban land-cover 
classification for multi-temporal PolSAR data. Ban and Jacob (2013) 
developed an edge-aware region growing and merging algorithm for 
segmentation of multitemporal SAR and optical data for detailed urban 
land-cover mapping. Deng et al. (2014) developed a new effective 
hierarchical segmentation method for multitemporal ultrafine-beam SAR 
data in urban areas. Ban et al. (2015) evaluated spaceborne SAR data for 
improved global urban mapping using the KTH-Pavia Urban Extractor, 
which is also an object-based method. So far, most studies have focused 
on the classification of single or dual polarization SAR data with coarse 
categories of only one or few urban classes. There is still a lack of studies 
on detailed urban classification using PolSAR data. 

 2.5.2 Challenges in Urban Area Classification with PolSAR 
We have discussed the classification strategy using decomposed 
scattering components in the previous subsection. However, there are 
some misclassifications. Some land covers belong to different classes but 
may have the same scattering mechanism. Some land covers within the 
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same class but can have different scattering mechanisms (Kajimoto and 
Susaki 2013a; Deng and Wang 2014). Moreover, because many objects 
are sensitive to the polarization orientation angle during imaging, a set of 
features with a very small number of polarimetric signatures, from one to 
four parameters, are not enough for terrain classification. 
 
To resolve this issue, a wide variety of polarimetric features are used, 
including the decomposition powers and several polarimetric indexes 
such as backscattering coefficients of different polarizations (linear: HH, 
HV, VV; circular: LL, RR, RL; and linear 45°, 45C, 45X), and their ratios. 
In addition to polarimetric information, some studies on PolSAR image 
classification are also proposed from the prospects of image 
understanding, indicating the effectiveness of image texture on 
classification (Qi et al. 2012). However, with the addition of polarimetric, 
interferometric, textural, and spatial information, hundreds of features 
can potentially be incorporated into the classification of PolSAR images, 
resulting in feature information redundancies. For instance, the Krogager 
rotation angle is relative to the polarization orientation angles and the 
H/alpha parameters describe the chaotic volume scattering, which is also 
considered in the Freeman-Durden methods, etc. These information 
redundancies may lead to confusion for classifier and decrease the 
classification accuracy. Therefore, feature selection is quite import and 
needs to be considered. 
 
The detailed discrimination of urban areas, e.g., high/low density urban 
classification and ortho/oriented building classification, is also an 
important problem. Urban spaces are rapidly becoming extremely dense, 
especially in some Asian countries. To understand the details of urban 
areas, urban density classification can be one of the effective methods 
(Niu 2012; Niu and Ban 2012, 2013a, 2013b, Niu et al. 2015). Even 
though using PolSAR data for urban density classification could be a 
useful method, it has not been practical because of the complex 
scattering mechanisms of urban areas (Iwasa and Susaki 2011; Kajimoto 
and Susaki 2013b; Susaki, Kajimoto, and Kishimoto 2014). In terms of 
ortho/oriented building classification, most of the classification methods 
regard the ortho and oriented buildings as the same class. However, they 
depict different scattering mechanisms in PolSAR image and should be 
regarded as different classes. This point will be focused in this thesis. 
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3 Study Areas and Data Description 

3.1 Study Areas 
Since this thesis focuses on urban information extraction, all of the study 
areas cover cities including Tsukuba in Japan, Oberpfaffenhofen in 
Germany, San Francisco Bay in USA, Long Beach in USA, and Southern 
California Coast in USA. 
 
Tsukuba is a city located in Ibaraki Prefecture, in the northern part of 
Japan. This city has an estimated population of 223,151 and a population 
density of 787 persons per square kilometres. Oberpfaffenhofen is a 
village which is part of Bavaria in Germany. It is 20 kilometres from the 
city centre of Munich. This village is home to a major site of the German 
Aerospace Centre (DLR) and became hence known to a wide audience. 
Eight scientific institutes are located in this site and the current 
population approximates 1700. There are a lot of buildings and an 
airport here, which makes this site suitable for urban target detection and 
scattering analysis (Shan, Zhang, and Wang 2012; Zhang, Zou, and Tang 
2012). San Francisco Bay is in the U.S. state of California, surrounded by 
a contiguous region known as the San Francisco Bay Area, dominated by 
the large cities San Francisco, Oakland, and San Jose. The waterway 
entrance to San Francisco Bay from the Pacific Ocean is called the 
Golden Gate. Across the strait spans the Golden Gate Bridge. The 
buildings and Golden Gate Bridge can be helpful for urban scattering 
analysis (Zhang, Zou, and Tang 2012; Deng and Wang 2014; Deng, Yan, 
and Sun 2015). Long Beach is a city in Los Angeles County in Southern 
California, on the Pacific coast of the United States. The city is the 36th-
largest city in the United States and the seventh-largest in California. As 
of 2010, its population was 462,257. In addition, Long Beach is the 
second largest city in the Greater Los Angeles Area and a principal city 
of the Los Angeles metropolitan area. The Port of Long Beach is the 
United States' second busiest container port and one of the world's 
largest shipping ports. Therefore, this study area has coverage of 
different types of land covers and should be suitable for urban area 
classification. The South Coast is a term used in the West Coast region 
of the United States to refer to both the south Pacific Coast of California 
and the adjacent resort and residential communities. This area also 
covers buildings, sea, and farms and therefore is good for urban 
scattering analysis (Bhattacharya et al. 2015). 
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3.2 Data Description 

 3.2.1 PolSAR Data 
Both airborne and spaceborne PolSAR data acquired with different 
frequencies and resolutions were used throughout the studies. Table 3.1 
summarizes all datasets and Figure 3.1 shows the corresponding Pauli 
coded images used in this thesis, where the definition of Pauli coded is 
described in Section 2.2.1. 
 
Table 3.1 Overview of the PolSAR data that was used in this thesis including 
instrument, spatial resolution, band, and acquisition period. 

Paper Instrument Band (resolutions) Acquisition date 
1, 2, 5 AIRSAR C/L (9.26 m) 1995/04/07 
1, 2, 5 RADARSAT-2 C (5 m) 2008/04/09 

2 UAVSAR L (7.2 m) 2014/11/20 
3 PALSAR L (9.36 m) 2009/11/11 

4, 6 PiSAR L (3 m) 1997/09/30 
3, 4, 6 ESAR L (3 m) 1999/07/20 

 
AIRSAR 
The NASA/JPL airborne SAR (AIRSAR) system can operate in fully 
polarimetric mode at P-, L- and C-band or in the interferometric mode 
in both L- and C-band. This system became operational in late 1987 and 
flew its first mission aboard a DC-8 aircraft in Mountain View, 
California. Since then, the AIRSAR system has flown missions every year 
and acquired a huge amount of data in North, Central and South 
America, Europe and Australia. The AIRSAR data are usually processed 
to 9 looks or 18 looks with a resolution of about 5 meters and 10 meters, 
respectively. The data in this thesis was acquired with C band and has a 
resolution of about 10 meters. 
 
RADARSAT-2 
RADARSAT-2 is an Earth observation satellite that was launched on 
December 14, 2007 for the Canadian Space Agency. This satellite has a 
SAR with multiple polarization modes, including a fully polarimetric 
mode. Its highest resolution is 1 meter in Spotlight mode (3 meters in 
Ultra Fine mode). The SAR data used in this thesis is the fine-beam 
polarimetric SAR data. The centre frequency at this beam mode is 
5.4GHz, i.e., C-band, and the pixel spacing is 4.7 meters in the range 
direction and 5.1 meters in the azimuth direction. 
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UAVSAR 
UAVSAR is an airborne SAR system with L-band, which firstly acquired 
data on 18 September 2007. Since 2009, over 1,800 flight lines have been 
acquired during more than 160 flights, acquiring over 40 terabytes of raw 
signal data. These data have already been used in various remote sensing 
applications (Migliaccio, Nunziata, and Buono 2015; Collins et al. 2015). 
UAVSAR can provide high-resolution, fully-polarimetric data products. 
The single look complex data have a pixel spacing of 0.6 m in azimuth 
direction and 1.6 m in range direction. Usually the available products are 
36-look slant-range polarimetric products at 5 m x 7.2 m pixel spacing. 
 
PALSAR 
The Phased Array type L-band Synthetic Aperture Radar (PALSAR) is 
an active microwave sensor using L-band frequency to achieve cloud-
free, day-and-night land observation. PALSAR was one of three 
instruments on the Advanced Land Observing Satellite-1 (ALOS-1), 
developed to contribute to the fields of mapping, precise regional land-
coverage observation, disaster monitoring, and forest surveying. ALOS-1 
was a mission of the Japan Aerospace Exploration Agency (JAXA). This 
spaceborne sensor can provide higher performance than the JERS-1 
SAR. Apart from the conventional mode, PALSAR has another 
observation mode, i.e., ScanSAR, which will enable us to acquire a SAR 
image with 250 to 350km swath width. In addition, it also provides the 
polarimetric mode. In this thesis, the SAR data have the nominal pixel 
spacing of 9.36 and 3.54 meters in the range and azimuth directions 
respectively. 
 
PiSAR 
The Pi-SAR system is a dual-frequency airborne polarimetric and 
interferometric SAR imaging sensor. The frequencies of this system are 
X-band (9.55GHz) and L-band (1.27GHz), where the X-band SAR was 
developed by the National Institute of Information and Communication 
Technology (NICT), and the L-band SAR by Japan Aerospace 
Exploration Agency (JAXA) (Uratsuka et al. 2010). The resolution for 
the X-band radar is 1.5 meters and for the L-band it is 3 meters. Both X-
band and L-band systems have polarimetry function. Experiments and 
observations using this PolSAR system have been carried out in Japan 
since 1995. The observations have been applied in various remote 
sensing areas such as urban analysis, forestry and agriculture monitoring, 
disaster damage assessment, oceanography etc. 
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                        (a) PiSAR                                               (b) ESAR  

(Tsukuba)                                       (Oberpfaffenhofen) 

  
                             (c) AIRSAR                                  (d) UAVSAR 

(Long Beach of California)        (Southern California Coast) 

  
                                 (e) PALSAR                          (f) RADARSAT-2 

(San Francisco Bay)                    (San Francisco Bay) 

Figure 3.1 PolSAR datasets used in this thesis. 
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ESAR 
ESAR identifies the DLR airborne experimental synthetic aperture radar 
system which is operated by the Microwaves and Radar Institute. Being 
developed in the Institute ESAR delivered first images in 1988 in its 
basic system configuration. Since then the system has been continuously 
upgraded to become what it is today: a versatile and reliable workhorse 
in airborne Earth observation with applications worldwide. ESAR can 
operate in four frequency bands, X-, C-, L- and P-band, hence it covers a 
range of wavelengths from 3 to 85 cm. The polarisation of the radar 
signal is selectable, horizontal as well as vertical. The ESAR data used for 
this thesis is in L-band with a resolution of about 3 meters in both 
azimuth and range direction. 

 3.2.2 Ancillary data 
In addition to the above PolSAR images, some ancillary data were also 
used to support the experiments. To verify the results, some optical 
images from Google Earth covered the same study areas were employed 
as the reference images. Moreover, some field data were also collected 
during the SAR observations. 
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4 Methodology 
 
This chapter describes urban area information extraction methodologies 
using PolSAR data. The chapter consists of three main parts. The first 
part focuses on urban scattering analysis, which considers polarimetric 
decomposition techniques. The second part is target extraction from 
urban areas, where the research work consists of man-made target 
detection and edge detection. The edge pixels are helpful for superpixel 
generation. The third part concentrates on urban area classification and 
segmentation, which is based on the first part and the second part. Here, 
the urban scattering mechanisms are analysed and scattering powers of 
different land covers are obtained after decomposition. After that, 
classification can be implemented using the scattering components. This 
pixel-based classification result can be further improved with the 
superpixels. The flowchart in Figure 4.1 gives an overview of all major 
analytic steps: 
 

Full PolSAR 
Data

Pre-processing

Polarimetric 
Decomposition

Edge 
Detection

Superpixel 
Generation

Urban Scattering 
Analysis

Pixel-based 
Classification

Target 
Detection

Object-based
Classification

 
Figure 4.1 Methodology flowchart of the whole thesis 

 
There are mainly two stages in the pre-processing. Firstly, co-registration 
should be performed on the optical images. The optical reference data 
should be co-registered to the PolSAR data scenes, which will be useful 
to validate the detection and classification results. And then speckle 
filtering is carried out on the full PolSAR data. There are many speckle 
reduction algorithms proposed for PolSAR data, in this thesis, the 
classical refined Lee filter (Lee, Grunes, and De Grandi 1999) was 
chosen since it can preserve statistical characteristics similar to multilook 
processing, and also can avoid introducing cross-talk. Moreover, this 
filter is easy to be implemented and can perform efficiently. 
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4.1 PolSAR Model-Based Decomposition 
In this section, a new cross scattering matrix for urban areas and two 
modified four-component model-based decompositions are presented. If 
we regard the HV scattering as an independent cross scattering and add 
it to the Yamaguchi four-component model-based decomposition, we 
can distinguish the cross-polarized scattering of built-up areas from that 
of forests. This decomposition procedure is designed to validate the 
proposed scattering model. After that, like most of the other urban area 
decomposition techniques, the cross-polarized scattering of urban areas 
is regarded as their volume scattering, which can reduce the volume 
scattering overestimation. We first introduce the new cross scattering 
model, followed by two modified decomposition procedures. 

 4.1.1 New Cross Scattering Model 
As shown in Chapter 2, the sample coherency matrix T  can be created 
from k  as 
 

11 12 13
† *

12 22 23
* *

13 23 33

[ ]
T T T
T T T
T T T

 
 = =  
  

T kk                          (4.1) 

 
Then we can get the polarization orientation angle θ  as (Lee 2002) 
 

{ }231

22 33

2 Re1 tan
4

T
T T

θ −  
=  − 

                            (4.2) 

 
where { }23Re T  represents the real component of 23T . 

 
Ortho buildings usually exhibit strong double-bounce scattering, which 
can be modelled by dihedral corner reflectors with zero polarization 
orientation angle (Freeman and Durden 1998; Yamaguchi et al. 2005). 
For oriented buildings, the dominant orientation angle of buildings is 
incorporated into the cosine function to obtain the cross scattering 
model. Here, the orientation angle distribution is 
 

dom dom dom
1 π π( ) cos( ) for
2 2 2

p θ θ θ θ θ θ= − − + < < +     (4.3) 
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where domθ  is the dominant orientation angle or direction of buildings, 
which can be get by Eq. (4.3). Then the theoretical ensemble matrix for 
oriented building reflection can be derived as 
 

[ ] [ ]
dom

dom

π /2

cross
π /2

( ) ( )dT p d
θ

θ

θ θ θ
+

− +

= ∫T                  (4.4) 

 
where ( )dT θ  is the coherency matrix of dihedral corner reflectors and 
the scattering matrix can be expressed as 
 

[ ] domcross

dom

0 0 0
1 10 cos(4 ) 0 .
2 30

1 10 0 cos(4 )
2 30

θ

θ

 
 
 
 = −
 
 
 +
 

T      (4.5) 

 
It is apparent that this cross scattering matrix is influenced by the 
building orientation angles. If we use this model to modify four-
component decomposition, it is interesting to see that the cross 
scattering power of buildings with large orientation angles is larger than 
that of buildings with small orientation angles. This adaptivity is 
beneficial for urban scattering analysis. Further detailed discussion can 
be found in Paper 2. 

 4.1.2 Modifying the Four-Component Decomposition Using 
Procedure One 

This procedure is designed to validate the ability of the proposed 
scattering matrix to model the HV scattering from urban areas. Even 
though it has been reported by Moriyama et al. (2005) that scattering 
response from urban areas can be represented by a sum of responses 
from surface, double-bounce, and cross scattering, without loss of 
generality and for the sake of comparison with helix and wire scattering, 
we apply this decomposition on the whole PolSAR data and check the 
results in natural and built-up areas respectively. Similar to the 
framework in (Zhang et al. 2008; Hong and Wdowinski 2014), we also 
regard this cross scattering component as an independent component 
and add it to the original four-component model-based decomposition. 
Therefore, there are five scattering components in the decomposition, 
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which can be described as follows: 
 

[ ] [ ] [ ] [ ]
[ ] [ ]

[ ]

s d vsurface double volume

c crohelix cross

* 2

2 * v
s d

c
cro cross

1 0 0 2 0 0
0 1 0 0 1 0

4
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0 1

2
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f f f

f f
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f j f
j

b aa
bba 

= + +

+ +

          = + +               
 
 + ± + 
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T T

T


    (4.6) 

 
where s d v c, , , ,f f f f and crof are the expansion coefficients to be 

determined while [ ] [ ] [ ]
surface double volume

, , ,T T T and [ ]
helix

T are the 
well-known expansion matrices corresponding to surface, double-
bounce, volume, and helix scattering mechanisms, respectively. For 
simplicity, the volume scattering here is the symmetric form in 
(Yamaguchi et al. 2005), employing a randomly oriented dipole model. 
Eq. (4.7) gives five equations with seven unknowns, where 22m  and 33m  
are the second and third diagonal element in Eq. (4.5). 
 

2
s d v 11

2
s d v c 22 cro 22

v c 33 cro 33
*

s d 12

c 23

/ 2 (a)

/ 4 / 2 (b)
/ 4 / 2 (c)

(d)
/ 2 Im( ) (e)

f f f T

f f f f m f T
f f m f T
f f T
f T

a

b

ba

+ + =

+ + + + =

+ + =

+ =

=

               (4.7) 

 
We can obtain cf  directly from Eq. (4.7e). After obtaining cf , there are 
four equations with six unknowns. To solve these equations, , additional 
assumptions should be made and two unknowns need to be fixed similar 
to (Yamaguchi et al. 2005). According to the sign of *Re( )hh vvS S , either 
surface scattering or double-bounce scattering is dominant can be 
determined, i.e. s 0f =  when *Re( ) 0hh vvS S <  whereas d 0f =  when 

*Re( ) 0hh vvS S > . Therefore, we can have four unknown parameters with 
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four equations. However, the analytic expressions are still complex. To 
make the results clear, the equations can be simplified in the following 
manner. From Eq. (4.7b) and Eq. (4.7c) we have 
 

*
d 22 33 cro 22 33

2 *
s 22 33 cro 22 33

( ) , Re( ) 0

( ) , Re( ) 0.
hh vv

hh vv

f m m f T T S S

f m m f T T S Sβ

+ − = − <

+ − = − >
          (4.8) 

 
In these two equations, we can omit 22 33 cro( )m m f−  because it is much 

smaller than df  and 2
sf β . Then df and sf can be obtained directly with 

Eq. (4.7d). Now, the seven unknowns can be estimated as 
 

2 2
12 12 22 33
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22 33 22 33 12

c v
d c 23 cro 33 33

, 2 ,

0, 2 Im( ) , /
2 4
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         (4.9) 

 
when *Re( ) 0hh vvS S > and as 
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d 22 33 v 11
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s c 23 cro 33 33

, 2 ,
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         (4.10) 

 
when *Re( ) 0hh vvS S < . If the result cro 0f < , we set cro 0f =  and follow the 
same solutions of Yamaguchi four-component decomposition. Then the 
decomposed powers can be obtained as 
 

2 2
s s d d v v

c c cro cro

(1 ), (1 ),
,

P f P f P f
P f P f

β α= + = + =

= =
                  (4.11) 

 
where s d v c, , , ,P P P P  and croP  are the surface, double-bounce, volume, helix, 
and cross scattering powers, respectively. 
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 4.1.3 Modifying the Four-Component Decomposition Using 
Procedure Two 

4.1.3.1 Discrimination of Urban and Natural Areas in PolSAR images 
Urban and natural areas need to be discriminated before decomposition 
in this procedure and then two scattering coherency matrices are used to 
model the HV components of these two terrains respectively. It should 
be noted that the urban areas can be extracted using the proposed target 
detection method in Paper 2. However, it is a bit complicated. There are 
several ways to distinguish urban buildings from natural areas quickly. 
For instance, Moriyama et al. (2005) utilized the correlation coefficient 
between co- and cross-polarized channels to discriminate these two land 
covers. The evaluated area can be judged as urban area if the correlation 
coefficient is close to one and as natural area if the correlation coefficient 
is close to zero. Sato et al. discriminated these two scattering 
mechanisms using the sign of { }*Re hh vvS S , i.e. urban areas if 

{ }*Re 0hh vvS S < whereas natural areas if { }*Re 0hh vvS S >  (Sato and 

Yamaguchi 2012). In (Singh, Yamaguchi, and Park 2013), this criterion 
was adopted to discriminate these two terrains. In (Shan et al. 2012; Shan, 
Zhang, and Wang 2012), the densely vegetated areas and the residual 
areas were separated via the H/A/α  classification. The urban areas are 
considered in zone1, zone2, and zone5. In (Lee, Oh, and Kim 2012), the 
co-polarized phase-difference (CPD) was found to be useful to indicate 
the aligned urban areas, while the cross-polarized phase-difference (XPD) 
was suitable for the oriented urban areas. In this section, we also use this 
criterion to distinguish urban areas from natural areas. The formulas for 
CPD and XPD are given as 
 

*

* *
exp(j ) hh vv

hhvv hhvv

hh hh vv vv

S S

S S S S
ρ j =                     (4.12) 

*

* *
exp(j ) hh hv

hhhv hhhv

hh hh hv hv

S S

S S S S
ρ j =                     (4.13) 

 
where hhvvϕ and hhhvϕ are the CPD and XPD respectively. hhvvρ and hhhvρ
are correlation coefficients. As we know, the CPD equals 180 degrees for 
ideal double-bounce scattering and zero degree for ideal surface 
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scattering (Lee and Pottier 2009). However, when the orientation angles 
of buildings are large, e.g., 45 degrees, the dominated scattering 
mechanism of urban areas is not double-bounce scattering any more. 
The CPD is not high enough, and consequently the CPD cannot be used 
to describe the urban scattering in such cases (Lee, Oh, and Kim 2012). 
For most natural surfaces such as bare and vegetation covered fields, the 
XPD is uniformly distributed over [0, 2 ]π , and therefore contains less 
target specific information. However, for oriented built-up urban areas, 
since there are many structures such as tilted metallic edges which make 
large contributions to the cross-polarization due to the orientation angle 
effects (Lee 2002), the XPD is close to 180 degrees. Hence, the XPD can 
be used to discriminate the oriented built-up areas. Lee et al. (2012) 
stated that buildings with orientation angles less than 22.5 degrees can be 
well discriminated by the CPD, buildings with orientation angles larger 
than 22.5 degrees can be discriminated by the XPD.  

4.1.3.2 Framework of the Proposed Decomposition 
Similar to (Sato and Yamaguchi 2012), the proposed cross scattering 
model is used to model the HV component of urban areas and the 
decomposed power is regarded as their volume scattering. For natural 
areas, the volume scattering matrices of Yamaguchi four-component are 
adopted. Therefore, in this section, we only focus on solving the 
equations for urban areas. The decomposed powers for natural areas can 
be obtained using the same way in (Yamaguchi et al. 2005; Yamaguchi, 
Yajima, and Yamada 2005). Similar to (Sato and Yamaguchi 2012), the 
decomposition equation can be represented as 
 

[ ] [ ] [ ] [ ]
[ ]
[ ]

s d csurface double helix

v Y4

v cross

for natural areas

for urban areas

f f f

f

f

= + +

+ 
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T T T T

T

T

              (4.14) 

 
where s d v, , ,f f f and cf are the expansion coefficients to be determined. 

[ ] [ ]
surface double

, ,T T and [ ]
helix

T are the expansion matrices 
corresponding to surface, double-bounce, and helix scattering 
mechanisms, respectively. [ ]

Y4
T represents the volume scattering 

coherency matrix of Yamaguchi four-component decomposition and 
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[ ]
cross

T is the proposed cross scattering model. Then we can get five 
equations with six unknowns as shown in Eq. (4.15). 
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                     (4.15) 

 
It can be seen that cf and vf can be obtained from Eq. (4.15e) and Eq. 
(4.15c) directly. The remaining four unknowns with three equations can 
be solved using the same manner in (Yamaguchi et al. 2005). Therefore, 
the decomposed volume scattering power for urban areas can be 
obtained as 
 

v 33 c dom
1 1 1/ cos(4 ) .
2 2 30

P T f θ   = − +   
   

                   (4.16) 

 
Specifically, when dom 0θ =  ,

v 33 c
15 1
8 2

P T f = − 
 

, which is the same as (Sato 

and Yamaguchi 2012). When dom 22.5θ =  , 
v 33 c

12
2

P T f = − 
 

, the same as 

(Hong and Wdowinski 2014). When dom 45θ =  ,
v 33 c

15 1
7 2

P T f = − 
 

. We can 

see that the volume scattering power of buildings with large orientation 
angles is larger than that of buildings with small orientation angles. This 
is reasonable because the former can generate stronger cross-polarized 
scattering component. Consequently, the proposed scattering model can 
reduce the underestimation of HV component for urban areas with large 
orientation angles. If we use the volume scattering model in (An, Cui, 

and Yang 2010), 
v 33 c

13
2

P T f = − 
 

. However, this scattering matrix is 

also a cloud of dipole scatterers like that of the Freeman volume 
scattering model, the volume scattering of urban areas may be still 
overestimated. Figure 4.2 shows the proposed decomposition scheme 
using procedure two. 
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Figure 4.2 The proposed decomposition framework using procedure two. 

4.2 Man-Made Target Detection 

 4.2.1 Reflection Asymmetry Ratio of Man-Made Targets 
In Chapter 2 we show that the sample coherency matrix T obeys a 
scaled multivariate complex Wishart distribution with density given by  
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     (4.17) 

 
where n  represents the number of looks, and q  represents the number 
of elements of the target vector k . ( )Γ ⋅  is the gamma function. Σ  
denotes the averaged sample coherence matrix with H( )EΣ = kk . Tr
and | |⋅  denote the trace and the determinant, respectively. Ainsworth et 
al. (2008) pointed out the above full coherency matrix determines the 
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conventional RR-LL correlation coefficient ρ . Forcing reflection 

symmetry in Eq. (4.17) by setting matrix elements 13 23 0T T= = defines 

the normalized RR-LL correlation coefficient 0ρ . For reflection 

symmetric scattering the ratio 0/ρ ρ is one, since both linear co-pol 
and cross-pol correlations are already zero. In contrast, the ratio has 
larger values for scattering from reflection asymmetric structures. 
 
Normalized circular-pol correlation coefficient will reduce the man-made 
target details and may omit the small targets and roads. Here we consider 
the asymmetry test for man-made targets using the coherency matrix 
directly. The averaged sample coherency matrix for each pixel is 
obtained using a sliding local window. Under the hypothesis of reflection 
symmetry, the maximum likelihood estimate of the coherency matrix is 
given by 
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                             (4.18) 

 
Then the likelihood ratio is 
 

P( | ) .
P( | )Sym

λ S
=

S
T

T
                               (4.19) 

 
The denominator of Eq. (4.19) is the probability evaluated under the 
hypothesis of reflection symmetry, whereas the numerator is the 
probability evaluated under the hypothesis of reflection asymmetry. Thus 
we can conclude that the ratio λ  is one or nearly one for reflection 
symmetric structures and has larger values for reflection asymmetric 
structures. The results are not always satisfactory if we do not consider 
the time-frequency decomposition. Some complicated man-made targets 
mixed with vegetation cannot be detected at one azimuth look angle. 
Since the nonstationarity analysis can provide much more information 
about complex man-made targets based on the time-frequency 
decomposition, we combine target reflection asymmetry and 
nonstationarity analysis to detect man-made targets in the following 
subsections. 
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 4.2.2 Time-Frequency Decomposition 
Full polarimetric SAR images are generally selected for time-frequency 
analysis. We can use the decomposition technique in both azimuth and 
range directions. A set of coarser-resolution sub-aperture images 
containing different parts of the SAR Doppler spectrum can be obtained 
in the azimuth direction decomposition and another set of sub-aperture 
images with different observation frequencies is derived from the range 
direction. As man-made target scattering is more significantly affected by 
radar looking directions than frequency effects (Ferro-Famil et al. 2003), 
as well as for the sake of improving the efficiency, time-frequency 
decomposition in azimuth direction is enough to deal with man-made 
target extraction problem.  
 
The procedure of full PolSAR data time-frequency decomposition is as 
follows. Firstly, a 2D Fourier transform is utilized to transform a 
PolSAR image into the spectral domain. Then the total frequency 
spectrum is divided into regions, called sub-spectrums, centered around 
specific spectral locations using a window function such as Hamming 
window. At last, using a 2D inverse Fourier transform, every sub-
spectrum is transformed back into the spatial domain, and thus we can 
get a sub-aperture image representing the focused PolSAR response 
around a specific spectral location. The sub-aperture images can be used 
to characterize some properties of the man-made target scatterers. 

 4.2.3 Likelihood Ratio Test Based on Nonstationarity and 
Target Reflection Asymmetry 

The likelihood ratio test based on nonstationarity and reflection 
asymmetry discussed here is similar to the original azimuth 
nonstationarity detection method (Ferro-Famil et al. 2003), the 
difference is the null hypothesis. This hypothesis is employed to extract 
the man-made target characteristics via testing whether the backscatter is 
nonstationary and asymmetric or not in different sub-aperture images. 
Therefore, we can have the null hypothesis as 0 1 R SymH S = = S = S: , 

where iΣ is the original sample coherence matrix of ith sub-aperture 
image. The likelihood ratio in the ith sub-aperture image is defined as the 
ratio of the probability calculated from the ith sub-image and the 
probability calculated from the average of all the sub-images as depicted 
in Eq. (4.20). 0Σ  is the averaged coherence matrix obtained from all the 
sub-aperture images under the hypothesis of reflection asymmetry. 
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                                (4.20) 

 
Similar to Eq. (4.19), the denominator of Eq. (4.20) is also under the 
hypothesis of reflection symmetry whereas the numerator is under the 
hypothesis of reflection asymmetry. If the scatter is stationary and the 
reflection is symmetric, then this ratio is close to one. If the scatter is 
nonstationary or the reflection is asymmetric, this ratio becomes larger. 
If the scatter is nonstationary and the reflection is asymmetric, this ratio 
is even larger. The test will select the alternative hypothesis if the result 
exceeds a discrimination threshold. In that case we can remove the 
natural areas and detect man-made targets. 
 
The overall likelihood ratioΛ is calculated as the product of all iλ , where
R is the total number of sub-aperture images. The examination operator 
shown in Eq. (4.22) is obtained to simplify the calculation. 
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This operator is asymptotically distributed as a chi-squared distribution, 
and the discrimination threshold can be obtained from the quantile 
(1 )α−  for an arbitrary false alarm rate α .  

4.3 Edge Detection 
This section gives a new edge detection method for PolSAR images, 
which is designed on the basis of the SIRV product model. Using this 
new edge map, a superpixel generation method is then proposed, which 
will be discussed in the next section. 

 4.3.1 SIRV Product Model 
In the SIRV product model, the m -dimensional complex measurement 
k is defined as (Yao 1973) 
 

τ=k z                                               (4.23) 
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where z  is an independent complex circular Gaussian vector with zero 
mean and normalized covariance matrix †E{ }=C zz . † denotes the 
conjugate transpose operator. τ is a positive random variable and its 
PDF is not explicitly specified. Therefore, the SIRV model can describe 
a whole class of stochastic distributions. For PolSAR data, the 
normalized covariance matrix C  characterizes polarimetric diversity 
while the random variable τ  can be considered as the spatial texture, 
which represents the randomness of spatial variations and only affects 
the scattering power. The PDF of k is denoted as (Vasile et al. 2010) 
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=
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where N represents the number of independent data used in the 
estimation. For PolSAR applications, the target vector k  is usually 
formed using the Pauli basis as 
 

[ ]T1 , , 2
2 hh vv hh vv hvS S S S S= + −k                   (4.25) 

 
here ,hh vvS S and hvS are the elements of complex scattering matrix, T is 
the transpose operator. For a given C , the texture estimator îτ can be 
obtained by maximizing the log likelihood function of Eq. (4.24) like 
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i m
τ

−

=
k C k

                                  (4.26) 

 
Replacing iτ in Eq. (4.24) with Eq. (4.26), we can obtain the maximum 
likelihood estimator of C  as 
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                    (4.27) 

 
which can be obtained by a recursive algorithm as 
 

1
ˆ ˆ( ).i if+ =C C                                  (4.28) 
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Note that the convergence of Eq. (4.28) can be assured regardless the 
initialization (Vasile et al. 2010). The algorithm can be initialized with the 
identity matrix 0

ˆ
m=C I . In practice, five or six iterations are usually 

sufficient for this convergence. The maximum likelihood estimator of 
span is then defined as 
 

† 1

1

1 ˆP̂= .
N

i i i
iN

−

=
∑k C k                             (4.29) 

 
In terms of the number of samples N used in the estimation, existing 
studies have shown that the span driven adaptive neighbourhood 
(SDAN) (Vasile et al. 2008) can achieve a good trade-off between 
preserving signal characteristics and collecting a large number of samples. 
Algorithm 1 gives the estimation process of normalized covariance 
matrix with SDAN spatial support for one pixel. 
 

Algorithm 1: normalized covariance estimation with SDAN

Begin

End

1. Initial estimation
Estimate (I)ˆ ,C for each pixel within 3*3 neighborhood using (5) and (7)(I)P̂

2. Region growing
( , )i j
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⇒

elseif
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For pixel        ,  while ( )Count nThre<

Re−estimate              of pixel         using (5) and (7) within AN        (II)ˆ ,C (II)P̂ ( , )i j( , )i j
3. Reinspection of the background pixels

if satisfy

( '', '') AN( , )i j i j∈⇒

For pixel                                   ,  

Re−estimate        of pixel         using (5) and (7) within AN        as the final ˆ ,C P̂ ( , )i j( , )i j
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results,  then move to next pixel and repeat Step 1, 2, 3

d denotes the coefficient of variation. AN represents adaptive neighborhood.
AN_B is set of background pixels.           is the predefined upper limit of neighbor pixels.nThre

are two thresholds to control the range of AN.low high,T T
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 4.3.2 Gauss-Shaped Edge Detector with SIRV Model 
Originally proposed by Schou et al. (2003), a set of filters with different 
orientations are applied on each pixel of a PolSAR image to calculate the 
edge map. The filter, displayed in Figure 4.4 (a), is controlled by four 
parameters, i.e., the length fl , the width fw , the spacing fd  between two 
rectangular regions, and the angular increment fθ between two filter 
orientations. These filters estimate the average covariance matrix within 
the rectangular window on both sides of the center pixel and then 
calculate the Wishart distance as a measure of the probability of an edge 
pixel. The edge strength of each pixel is represented by the maximum 
distance from different sets of filters in this pixel. This method has been 
widely used in various PolSAR image applications (Lang et al. 2014; Qin, 
Guo, and Lang 2015). There are two limitations: 
i) Rectangle window functions are poor 2-D smoothing filters. Strong 

speckle in PolSAR data will diminish the average accuracy of the 
covariance matrix since all the pixels are given equal weights; 

ii) Wishart distribution is not suitable for heterogeneous urban areas, 
resulting in incorrect covariance matrix estimation and the 
corresponding distance measure. 

 

fl
fw

fd

fθ fθ

(a) (b)

fd

1R

2R

 
Figure 4.3 Filter configuration. (a) Rectangle-shaped filter. (b). Gauss-shaped filter. 

 
Filter banks have been proven to be effective for edge detection since 
they can extract directional intensity variations (Shui and Cheng 2012). 
Inspired by this idea, we replace the rectangle-shaped filter with Gauss-
shaped filter to overcome the first limitation of traditional CFAR edge 
detector, as shown in Figure 4.4 (b). The horizontal Gauss-shaped 
window function is defined as: 
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       (4.30) 

 
where xσ and yσ control the window length and width, respectively. W is 
the Gauss weight for each pixel, which will be used for the average of 
covariance matrix on both sides of the central pixel. From Eq. (4.30) it 
can be observed that the pixels near the centre pixel have larger weights 
than other pixels. This is in accordance with the fact that information 
contained at the pixels near the centre pixel is more important than those 
at other pixels when deciding whether the centre pixel is an edge pixel. 
Therefore, we can get more accurate average covariance matrix on both 
sides of the central pixel. At each orientation, the local averaging 
function for a PolSAR image can be computed as 
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Since the normalized covariance matrix estimated based on SIRV model 
does not respect the Wishart distribution any more, the Wishart distance 
cannot be used as the dissimilarity measure. We utilize the SIRV distance 
(Vasile et al. 2010) to calculate the dissimilarity of covariance matrices on 
both sides of the central pixel, which can be depicted as 
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        (4.32) 

 
where 1 2,Z Z are the average normalized covariance matrix on both sides 
of the central pixel, respectively. M is the cardinality of the Gauss-shaped 
window. Note that computing this distance requires the original 
scattering vector k . Furthermore, we can also observe that when the 
texture is high, the second term of Eq. (4.32) becomes small, and the 
distance is dominated by the determinant ratio. This usually corresponds 
to strongly polarized targets. However, when the span values are low, the 
distance is dominated by the second term which takes into account the 
neighbourhood pixel information. This can reduce the effect of speckle 
noise to some extent. Therefore, from Eq. (4.31) and Eq. (4.32), we can 
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see that after incorporating the normalized covariance matrix estimated 
based on SIRV model and the corresponding dissimilarity measure into 
the edge detector, the edge detection performance of heterogeneous 
urban areas should be improved. Hence, the second limitation can be 
overcome. Inherited from the framework of traditional CFAR edge 
detector, the proposed method is shown in Algorithm 2. 
 

Algorithm 2: proposed edge map calculation for PolSAR data

Begin

End

1. Set the parameters                  and  

3. For             models with different orientations    , calculate the Gauss weight 

f, , ,x y dss  f .θ

f
f

N p
θ

=

2. Calculate normalized  covariance matrix for each pixel using Algorithm 1.

and local averaging covariance matrix using (8) and (9).
fθ

4. Calculate SIRV distance on both sides of the central pixel according to (10).
5. Find the maximum SIRV distance       of the     values, and the correspondingmaxD

max .θ
fN

orientation 
6. Save the distance        and the orientation       , move to the next pixel, 

and continue from Step 3.
maxD maxθ

 
 
After obtaining the edge map maxD for each pixel, we can get the final 
edge pixels via few post-processing steps as the following. Similar to 
(Schou et al. 2003), it is tested whether maxD is larger than a given 
threshold, and if this is true, an edge is detected. Since maxD
approximately satisfies the chi-square distribution (Schou et al. 2003), we 
can get the threshold through setting a probability of false alarm. Then 
morphological operations are applied on the thresholding result to fine 
the final edge pixels. 

4.4 Urban Area Classification and Segmentation 

 4.4.1 Unsupervised Pixel-Based Classification 
This subsection will introduce one unsupervised classification method 
based on the decomposed scattering powers. The objective is to illustrate 
the ability of scattering components to discriminate different land covers. 
Therefore, this method only chooses the scattering powers for pixel-
based classification without considering the spatial features of PolSAR 
image. This pixel-based classification result can be further improved with 
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the superpixels. Since we have discussed the challenges and difficulties of 
urban area classification in Chapter 2, here we try to resolve the 
misclassification of ortho and oriented buildings. These two kinds of 
buildings have quite different polarization orientation angles, leading to 
different scattering mechanisms. Hence, in order to improve the 
accuracy of urban area classification, they have to be distinguished. 
 
The whole classification workflow is given in Figure 4.5. First of all, the 
polarization orientation angle is calculated using the coherency matrix. 
Then, after polarimetric decomposition using procedure one, five 
scattering powers are regarded as the inputs of unsupervised K-means 
classifier. It should be noted that there is only one input parameter in 
this step, which is the number of classes. In this thesis, the difference of 
scattering mechanisms of ortho and oriented buildings need to be 
discussed, therefore, these two kinds of buildings should be regarded as 
two different classes. Finally, the urban area distribution map can be 
obtained after the fast unsupervised classification. To further evaluate 
the urban classification accuracy, the extraction results, including edges 
and man-made targets, will be utilized as the reference information. 
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Figure 4.4 Urban area classification framework based on the proposed polarimetric 
decomposition method. 
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 4.4.2 Adaptive Superpixel Generation 
The new edge map introduced in the previous section not only can be 
beneficial to the initialization of cluster centres in SLIC, but also will be 
helpful to analyse the homogeneity in PolSAR images. Coefficient of 
variation (CoV) was firstly proposed in (Lopes, Touzi, and Nezry 1990) 
for SAR image homogeneity measurement and has been widely used in 
two decades. This method is dependent on the ENL of the whole image, 
which can be estimated from a manually selected homogeneous region. 
However, in fact, the ENL values of different regions may be different, 
and the estimated ENL of the whole image may not be appropriate for 
some areas (Anfinsen, Doulgeris, and Eltoft 2009). Inspired by (Lang, 
Yang, and Li 2015), we utilize the ENL estimation method proposed in 
(Anfinsen, Doulgeris, and Eltoft 2009) to calculate the ENL value for 
each pixel and then combine the proposed edge map to define a 
homogeneity measurement for PolSAR data. It is worth to point out that 
this ENL estimator is less affected by texture and thus provides more 
accurate results than other estimators. Therefore, although the technique 
in (Anfinsen, Doulgeris, and Eltoft 2009) is based on the Wishart 
distribution, it can be used for ENL estimation in this study. 
 
Since the ENL and edge map are both related to target polarimetric 
information and more importantly, their value trends in homogeneous 
and heterogeneous regions are opposite, combining the ENL and edge 
map can significantly improve the probability of discriminating 
homogeneous and heterogeneous areas. The homogeneity measurement 
can be represented as 
 

ENLHoM=
EDGE

                                      (4.33) 

 
where EDGE  denotes the proposed edge map. 
 
The distance measure for PolSAR superpixel generation in this study 
considers the polarimetric, texture, and spatial information at the same 
time. The homogeneity measurement is incorporated into the distance 
measure, making the trade-off factor adaptive to balance the shape and 
compactness of the superpixels. The SIRV distance between two 
normalized covariance matrices is given in Eq. (4.32) and can measure 
the polarimetric information similarity. However, this distance measure 
is not symmetric, which makes it unsuitable for superpixel generation. 
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Similar to the definition of symmetric revised Wishart distance in 
(Anfinsen, Jenssen, and Eltoft 2007), we define the symmetric SIRV 
distance as 
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             (4.34) 

 
where it can be seen that the first term of Eq. (4.32) is removed and the 
symmetric distance is dominated by the second term which takes into 
account the neighbour observed samples. This is beneficial for 
distributed targets, such as complex buildings in heterogeneous urban 
areas. 
 
In subsection 4.3.1, the conventional covariance matrix can be 
decomposed into two parts, i.e., the normalized covariance matrix which 
contains the polarimetric information and the span that contains scalar 
texture information. Since the distance measure in Eq. (4.34) mainly 
considers the polarimetric information, we define a texture distance 
based on the estimated span like 
 

T

ˆ ˆ( , ) ( , )
ˆmax( )

i i j jP x y P x y
D

P

−
=                              (4.35) 

 
where ˆmax( )P  denotes the maximum value of P̂  and | |⋅  represents the 
absolute value operator. It should be noted that since the estimated span 
only contains the scalar texture information without polarimetric 
information, simple subtraction operation can be applied directly. 
 
In conventional SLIC, a weighting factor is set manually to balance the 
spectral similarity and spatial proximity. Similarly, in (Feng, Cao, and Pi 
2014; Qin, Guo, and Lang 2015; Song et al. 2015), this parameter is also 
chosen to be a constant to balance the polarimetric and spatial similarity. 
This parameter is usually set by trial and error, which might cause over- 
or under- superpixel segmentation in some spatially complicated areas. 
In this study, this parameter is set adaptively according to the local 
spatial complexity of the scene, which can be defined as 
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( )adp
1 HoM( , ) HoM( , ) .
2 i i j jx y x yβ = +              (4.36) 

 
It can be seen that this adaptive parameter considers the homogeneity 
measurement of two compared pixels. Let pN  be the total pixel number, and 

K  is the desired superpixel number. Initially, K  cluster centres are sampled on a 
regular grid of uniform step size p /S N K= . Then the complete adaptive 
distance measure for superpixel generation is defined as 
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          (4.37) 

 
where sd  is the spatial distance between two superpixels with centre 
locations at ( , )i ix y  and ( , )j jx y , respectively and defined as 
 

2 2
s ( ) ( ) .i j i jd x x y y= − + −                       (4.38) 

 
Since this presented research is designed on the basis of traditional SLIC 
superpixel generation algorithm, the implementation procedure of this 
superpixel generation method is similar to that of SLIC except the steps 
before local iterative clustering. 
 
Input: original PolSAR image 

1) Normalized covariance matrix and span estimation using 
Algorithm 1. 

2) Edge map calculation based on normalized covariance matrix 
using Algorithm 2. 

3) ENL estimation using the method in (Anfinsen, Doulgeris, and 
Eltoft 2009). 

4) Homogeneity measurement calculation using Eq. (4.33). 
5) Set the number of superpixels K  and initialize the cluster centres. 
6) Local iterative clustering with the adaptive distance calculated 

using Eq. (4.37), detailed explanation can be found in Paper 6. 
7) Post-processing to eliminate the disjointed pixels. 

Output: superpixel map. 
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5 Results and Discussion 

5.1 Polarimetric Decomposition 
This section depicts the urban scattering analysis based on the model-
based polarimetric decomposition. Paper 1 gives the cross scattering 
model for urban areas, and Paper 2 shows the two decomposition 
procedures with this cross scattering model. The results of these papers 
are the basis of urban area classification, which will be displayed in the 
Section 5.4. 

 5.1.1 Validation of Two Decomposition Procedures 

5.1.1.1 Results of Decomposition Procedure One 
In this thesis, three datasets are utilized to test the effectiveness of the 
proposed decomposition method. To compare the results, Yamaguchi 
four-component model-based decomposition method with rotation of 
coherency matrix (Y4R) (Yamaguchi et al. 2011), and the multiple-
component model-based decomposition method (MCSM) (Zhang et al. 
2008) are also implemented. Figure 5.1 gives the decomposition results 
of spaceborne RADARSAT-2 data. Figure 5.2 shows the percentages of 
different scattering powers in two selected sites, i.e. one oriented urban 
area (area A in Figure 5.1) and one vegetation area (area B in Figure 5.1). 
From Figure 5.1 (b), we can see that for ortho buildings, the double-
bounce scattering power is very strong whereas for oriented buildings, it 
becomes quite low. In contrast, the oriented buildings have strong cross 
scattering power whereas ortho buildings do not, as shown in Figure 5.1 
(e). It is also interesting to see that vegetated areas have quite low cross 
scattering power compared to oriented buildings although they both 
contribute to the overall HV scattering. These facts indicate that the 
proposed cross scattering model can effectively describe the HV 
scattering component from oriented buildings. Figure 5.1 (d) gives the 
helix scattering power, where we can see that the oriented buildings also 
have the strongest powers among different land covers. What we can see 
from Figure 5.1 (f)-(h) is that this cross scattering makes the difference 
between oriented buildings and vegetation more clear. In contrast, in 
Y4R decomposition, these two land covers both show strong volume 
scattering. Although wire scattering can also enhance the urban 
characteristic in MCSM decomposition, the volume scattering of 
vegetation and the surface scattering of sea are suppressed, as shown in 
Figure 5.1 (h). 
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(a)                                       (b)                                     (c) 

   
(d)                                        (e)                                       (f) 

  
(g)                                      (h) 

Figure 5.1 Scattering powers and decomposition results of RADARSAT-2 data. (a)-(e) 
Surface, double-bounce, volume, helix, and cross scattering powers of the proposed 
method. (f)-(h) Decomposition results (blue—surface scattering, red—urban scattering 
(from double-bounce, helix and cross or wire scattering), and green—volume 
scattering.) of the proposed, Y4R, and MCSM methods, respectively. 
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Figure 5.2 Detailed decomposition results of two selected sites. (a)-(c) Decomposition 
results and the scattering power distribution of the proposed, Y4R, and MCSM 
methods in area A. (e)-(g) Decomposition results and the scattering power distribution 
of the proposed, Y4R, and MCSM methods in area B. (d) and (h) Optical image and the 
estimated polarization orientation angle histogram of area A and B, respectively. 

 
From Figure 5.2, we can see that in urban areas, the scattering powers of 
double-bounce and helix of the proposed method are similar to those of 
Y4R. However, the cross scattering power is very strong and the volume 
scattering power is reduced significantly. Furthermore, the surface 
scattering power also increases slightly. This fact indicates that our 
proposed method can successfully separate the cross scattering caused 
by oriented buildings from the overall HV scattering component. Even 
though MCSM can also reduce the volume scattering in urban areas, the 
surface scattering is too strong and the wire scattering is not evident. 
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Therefore, the urban characteristic is weaker than that of the proposed 
method. The scattering of oriented buildings is still mixed with that of 
vegetation after decomposition. From Figure 5.2 (e) to Figure 5.2 (g), it 
can be observed that the scattering powers of our proposed method are 
similar to those of Y4R method in vegetated areas. The cross scattering 
power contribution is only 0.2%. Nevertheless, the result of MCSM 
decomposition is quite different, where the volume scattering power is 
lower than those of other methods and the wire scattering still exists. 
Therefore, there exists slight volume scattering underestimation in 
vegetated areas. Figure 5.2 (d) and Figure 5.2 (h) display the 
corresponding optical images and the estimated polarization angle 
distributions of two sites, respectively. It is clear to see that the 
orientation angles of these two areas are both mainly around 45 degrees; 
however, the cross scattering powers are quite different. According to 
the above analysis, it can be summarized that the proposed cross 
scattering model is effective to describe the HV scattering component 
from oriented buildings. In contrast, the dipole volume scattering matrix 
of Yamaguchi four-component decomposition is more suitable to model 
the HV component from vegetation. 
 
Figure 5.3 gives the decomposition results of three different methods 
using AIRSAR data. What we can see from Figure 5.3 (a) is that the 
cross scattering of oriented buildings is generated clearly whereas water 
and ortho buildings have quite low cross scattering powers, as shown in 
the area marked with red ellipse. From Figure 5.3 (b) and Figure 5.3 (c), 
it can be observed that there is an apparent difference in oriented built-
up areas, which results from the cross scattering contribution. Moreover, 
the scattering mechanisms of water and vegetation in Figure 5.3 (b) are 
similar to those in Figure 5.3 (c), indicating that the proposed cross 
scattering model mainly describes the HV component caused by 
oriented buildings. Therefore, the volume scattering underestimation in 
forest areas is low. MCSM decomposition result is shown in Figure 5.3 
(d), compared to Figure 5.3 (c), the volume scattering power of oriented 
buildings is reduced and the wire scattering also enhances the urban 
characteristics. Nevertheless, the decomposed scatterings of vegetation 
and water are worse than those of Y4R and the proposed approach. The 
volume scattering of vegetation is not strong, in addition, some water 
areas show volume scattering not the surface scattering. Therefore, wire 
scattering has negative influence on the decomposition of vegetation and 
water areas. It is worth mentioning that MCSM decomposition seems to 
perform better than the proposed method in oriented urban areas. This 
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is because in this AIRSAR data, the buildings have small orientation 
angles (about 15 degrees). The HV scattering component is not 
significant, leading to low cross scattering power. Further analyses and 
discussions are shown in Paper 1 and Paper 2. 
 

(a) (b)

(c) (d)

Double-bounce, helix, and 
cross or wire scattering

Volume scattering

Surface scattering

 
Figure 5.3 Cross scattering power and the decomposition results of AIRSAR data. (a) 
Cross scattering powers of the proposed method. (b)-(d) Decomposition results 
(blue—surface scattering, red—urban scattering (from double-bounce, helix and cross 
or wire scattering), and green—volume scattering.) of the proposed, Y4R, and MCSM 
methods, respectively. 

 
The decomposition results of UAVSAR are similar to those of AIRSAR, 
which are shown in Figure 5.4. We can observe from Figure 5.4 (a) that 
cross scattering powers of the forests and oriented buildings are different. 
There are quite few cross scatterings in forests (e.g., red rectangular area) 
and ortho buildings whereas the cross scattering in oriented buildings is 
apparent. Two patches of ortho and oriented buildings (area A and area 
B in Figure 5.4 (a)) are selected and the histograms of their cross 
scattering powers are displayed in the right column of Figure 5.4. It can 
be observed that buildings with large orientation angles exhibit larger 
cross scattering powers than those with small orientation angles. From 
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Figure 5.4 (b) - Figure 5.4 (d), we can see that for forest areas, the result 
of our proposed method is very similar to the result of Y4R whereas in 
MCSM decomposition, it seems that the volume scattering is 
underestimated. For ortho urban buildings, the results of three methods 
are all satisfactory; however, for oriented buildings, the colour in Figure 
5.4 (b) is a little bit yellow, resulting from the cross scattering. 
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Figure 5.4 Cross scattering power and the decomposition results of UAVSAR data. (a) 
Cross scattering powers of the proposed method. (b)-(d) Decomposition results 
(blue—surface scattering, red—urban scattering (from double-bounce, helix and cross 
or wire scattering), and green—volume scattering.) of the proposed, Y4R, and MCSM 
methods, respectively. Right column is the cross scattering power and corresponding 
histograms of area A and B in (a). 
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5.1.1.2 Results of Decomposition Procedure Two 
Like most of the other urban area decomposition techniques, in this 
subsection we only apply this cross scattering model on urban areas to 
model the HV components caused by oriented buildings and regard 
them as their volume scattering. For natural areas, the volume scattering 
coherency matrices of Yamaguchi four-component are still adopted. The 
above RADARSAT-2 data are used and two existing methods, which are 
proposed in (Sato and Yamaguchi 2012) and (Shan, Zhang, and Wang 
2012), are implemented for comparison in this experiment. 
 

  
(a)                                     (b) 

  
(c)                                       (d) 

Figure 5.5 (a) Binary image of the region where threshold value was exceeded. (b)-(d) 
Decomposition results of the proposed method, method in (Sato and Yamaguchi 2012), 
and method in (Shan, Zhang, and Wang 2012), respectively. 

Firstly, to discriminate between the urban areas and the natural 
distributed areas, the threshold value of CPD and XPD is chosen to be 
120 degrees. The region where the threshold value is exceeded is shown 
in Figure 5.5 (a). Figure 5.5 (b)–(c) depict the decomposition results of 

A 

B 

Surface scattering 

Volume scattering 

Double-bounce and 
helix scattering 



 63 

our proposed technique using procedure two, method in (Sato and 
Yamaguchi 2012), and method in (Shan, Zhang, and Wang 2012) 
respectively. Since natural areas have the same decomposition, in the 
following analysis, we only focus on urban areas. It can be seen that the 
results of these three methods are very similar, this is because the 
volume scattering power difference is not significant. To make the 
difference clear, we select two urban areas, which are marked with A and 
B in Figure 5.5 (b), and then list the quantitative comparison in Table 5.1 
and Table 5.2, respectively. 
Table 5.1 Distribution of scattering components with different methods (area A) 

Scattering components 
Proportion of scattering components (%) 

Proposed method Sato’s method Shan’s method 

Surface 35.6 35.2 37.4 
Double-bounce 56.1 56.3 52.0 

Volume 6.0 6.0 8.4 
Helix 2.3 2.5 2.3 

 
Table 5.2 Distribution of scattering components with different methods (area B) 

Scattering components 
Proportion of scattering components (%) 

Proposed method Sato’s method Shan’s method 

Surface 2.8 8.3 0.9 
Double-bounce 5.3 8.8 2.6 

Volume 84.2 75.0 89.1 
Helix 7.7 7.9 7.5 

 
What we can find from Table 5.1 is that for ortho buildings, the 
scattering component distributions of Figure 5.5 (b) and Figure 5.5 (c) 
are almost the same; however, the double-bounce scattering power of 
Figure 5.5 (d) is lower and the volume scattering power is higher. This is 
because the volume scattering model in Figure 5.5 (d) is also a cloud of 
dipole scatterers as that of the Freeman volume scattering model. 
Therefore, the volume scattering of urban areas may be still 
overestimated. From Table 5.2, it can be observed that for our proposed 
method, the volume scattering power of the oriented urban areas is 9% 
higher than that in (Sato and Yamaguchi 2012). As we discussed in the 
former sections, the proposed cross scattering model can compensate 



 64 

the loss of HV component from urban areas with large orientation 
angles. Further discussions and comparisons can be found in Paper 2. 

5.1.1.3 Discussion of These Two Decomposition Procedures 
The two decomposition procedures in this thesis can both be used for 
urban scattering analysis. Decomposition procedure one can validate the 
ability of cross scattering coherency matrix on modelling the HV 
component from oriented buildings. Therefore, in this decomposition, 
the scattering mechanisms of ortho and oriented buildings can be clearly 
discriminated, which will be beneficial for urban area classification 
without discriminating the natural and urban areas. However, the 
scattering powers of natural areas may be not very accurate. This 
coherency matrix is only suitable for urban areas whereas dipole volume 
scattering coherency matrix is more appropriate for natural areas. Similar 
to many other existing decomposition methods, decomposition 
procedure two is implemented for urban and natural areas respectively. 
Hence, it is beneficial for precise scattering analysis of different land 
covers because the decomposed scattering powers are more accurate 
than decomposition procedure one. A detailed discussion can be found 
in Paper 2. 

 5.1.2 Comparison and Analysis of the Urban Scattering 
Components Using RADARSAT-2 Data 

The theoretical difference between helix, wire and cross scattering is 
discussed in section 4.1.1. Here we quantitatively compare these 
scattering components over vegetation and urban areas. A transect over 
forest and urban area is displayed using a red line in Figure 5.1 (f) and 
the corresponding decomposed scattering power profiles are shown in 
Figure 5.6 (a). The corresponding optical image and the area map are 
depicted in Figure 5.6 (b) and Figure 5.6 (c), respectively. 
 
It can be seen from Figure 5.6 that the cross scattering power is quite 
low in both vegetation and ortho urban areas whereas it is quite large in 
oriented building areas. In contrast, the helix and wire scattering power 
differences between oriented buildings and vegetation are much smaller 
than that of cross scattering. Moreover, it also can be seen that the wire 
scattering is similar to helix scattering, especially for oriented buildings. 
This is because similar to helix scattering, wire scattering also focuses on 
the scattering reflection asymmetry of buildings. In contrast, cross 
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scattering mainly tries to discriminate the HV scattering component 
caused by oriented buildings from that caused by vegetated areas. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5.6 (a) Scattering power profiles of three components. (b) Photograph by 
Google Earth. (c) Map of the test area. 

5.2 Man-Made Target Detection 
This section gives the man-made target detection results of Paper 3 using 
two PolSAR datasets, i.e., ESAR and PALSAR, which cover the study 
areas in Oberpfaffenhofen, Germany and San Francisco Bay, USA. 

 5.2.1 Experimental Results with ESAR Data 
Figure 5.7 (a) is an optical image, which is obtained from Google Earth. 
Figure 5.7 (b) is the Pauli coded PolSAR image with size 1104 by 724, 
where the red channel describes double-bounce scattering, blue channel 
describes surface scattering, and the green channel describes volume 
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scattering. These two images are co-registered for the convenience of 
display and comparison. The image columns correspond to range 
direction, and the rows correspond to azimuth direction. Figure 5.7 (c) 
gives the Yamaguchi four-component decomposition with rotation of 
coherency matrix. From the three images, it can be seen that buildings 
not aligned along the azimuth direction (e.g. buildings in the middle and 
lower part of the image) show volume scattering, which is the same as 
forests. This is because these oriented buildings have strong cross-
polarized scattering powers. Moreover, the roads also show volume 
scattering, the man-made grounds and some small targets show surface 
scattering, indicating that these kinds of man-made targets are difficult to 
be discriminated from natural areas. 
 

Buildings

Forests

Man-made 
grounds

Small targets

 
(a)                                             (b)                                             (c) 

Figure 5.7 Study area and ESAR data. (a) Optical image from Google Earth. (b) Pauli 
coded ESAR image with L band (Red: HH-VV, green: HV, blue: HH+VV). (c) 
Yamaguchi four-component decomposition with rotation of coherency matrix (Red: 
Double-bounce and helix scattering, green: volume scattering, blue: surface scattering). 

 
Three methods are chosen for analysis, i.e., azimuth nonstationarity 
detection with and without target reflection asymmetry, and the 
improved azimuth nonstationarity detection method with nonzero-mean 
statistical model (Wu, Guo, and Li 2014). In this experiment, we set the 
number of sub-apertures to four for three methods. Figure 5.8 gives the 
detection results. It is interesting to see that even though the area with 
label 1 shows surface scattering in the Pauli image, it can be extracted by 
these three methods. The main reason is that this area is not flat and 
sub-aperture images can describe the anisotropy at different observation 
angles. Nevertheless, compared with Figure 5.8 (a), the results in Figure 
5.8 (b) and Figure 5.8 (c) are better due to the nonzero-mean statistical 
model and reflectance asymmetry, respectively. The roads in Figure 5.8 
(c) are clearly detected but are missing in Figure 5.8 (a). It is because long 
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metallic fences have low anisotropy at limited observation angles. 
However, after introducing the asymmetry, the detection results are 
significantly improved. Even though nonzero-mean statistical model can 
improve the detection accuracy, the detected roads are still not obvious. 
The area with label 3 contains some small parking aprons. They are 
covered by trees and have approximately round shapes. Although they 
have isotropic property, they can be extracted using the proposed 
approach. Further detailed results and comparisons can be found in 
Paper 3. 
 

1

23

4

(a) (b)

(c) (d)  
Figure 5.8 Man-made target detection results of (a) original nonstationarity detection 
method, (b) nonstationarity detection method with nonzero-mean statistical model, and 
(c) the proposed method. (d). Detection results (red) of the proposed method overlaid 
Pauli image. 

From Table 5.5 we can see that the overall accuracy is about 84%, which 
is fairly good, and the kappa coefficient is 0.6892, indicating substantial 
agreement with the visual evaluation of the detection result. Although 
the original nonstationarity detection method and the method in (Wu, 
Guo, and Li 2014) can extract most of the buildings, the confusion with 
vegetation is quite large, and the overall accuracy is 20% lower than the 
proposed approach, as shown in Table 5.3 and Table 5.4. These methods 
cannot effectively identify the forest vegetation with Bragg resonance, 
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which is regarded as man-made targets. Moreover, some of the roads 
and small man-made targets are also not clearly detected. 
Table 5.3 Accuracy Assessment of the Result by Original Nonstationarity Detection 
Method 

 Man-made Natural Prod. Acc. 
Man-made 73.23% 45.84% 73.23% 

Natural 26.77% 54.16% 54.16% 
User. Acc. 61.50% 66.92%  

Overall accuracy = 63.69%     Kappa coefficient = 0.2739 

 
Table 5.4 Accuracy Assessment of the Result by Nonstationarity Detection Method 
with Nonzero-Mean Statistical Model 

 Man-made Natural Prod. Acc. 
Man-made 79.51% 48.68% 79.51% 

Natural 20.49% 51.32% 51.32% 

User. Acc. 62.02% 71.47%  

Overall accuracy = 65.42%     Kappa coefficient = 0.3083 

 
Table 5.5 Accuracy Assessment of the Result by Proposed Method 

 Man-made Natural Prod. Acc. 
Man-made 83.24% 14.32% 83.24% 

Natural 16.76% 85.68% 85.68% 

User. Acc. 85.32% 83.64%  

Overall accuracy = 84.46%     Kappa coefficient = 0.6892 

 5.2.2 In-Depth Analysis of the Detection Results 
To further evaluate the performance of asymmetry on man-made target 
detection, the PolSAR image is decomposed into 2, 3, 4, 5, 6, 7 and 8 
sub-aperture images. We select six test areas, i.e., ortho buildings, 
oriented buildings, forest, roads, bare soil, and small man-made targets, 
to compare their average log ratio values with different sub-apertures. 
Figure 5.9 depicts log ratio values of three methods with different sub-
apertures, respectively. From Figure 5.9 (a), it can be seen that with 
original nonstationarity detection method, the forest areas are mixed 
with two types of buildings all the time, in addition, roads, small man-
made targets, and bare soils are also difficult to be distinguished. This 
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indicates that some natural areas with Bragg resonance also have 
anisotropy and can easily be detected as man-made targets. Roads and 
small man-made targets are usually omitted because they have low 
anisotropy with limited sub-apertures; however, if we increase the 
number of sub-apertures, the resolution of sub-images gets coarser, 
making it even more difficult to extract small targets. Figure 5.9 (b) has a 
similar result with Figure 5.9 (a) except for the roads and small man-
made targets. Even though the nonzero-mean statistical model can 
enhance the anisotropy of man-made targets in high resolution SAR data, 
the roads and small targets are still not as obvious as the proposed 
method. This is because their log ratio values are closer to bare soil in 
Figure 5.9 (b) than in Figure 5.9 (c), which is marked with a red ellipse. 
Figure 5.9 (c) shows the log ratio values of the proposed approach, 
where the curve gap between man-made targets and natural areas is 
bigger, indicating that the result is much better than the other two 
methods. 
 

 
(a)                                                                  (b) 

 
       (c) 

Figure 5.9 Log ratio values of three methods with different sub-apertures. (a) Original 
nonstationarity detection method. (b) Nonstationarity detection method with nonzero-
mean statistical model. (c) The proposed method. 
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Another issue to be discussed is the number of sub-apertures. It can be 
observed from Figure 5.9 (c) that when the number gets larger, the 
difference between man-made targets and natural areas becomes bigger. 
This is because some man-made targets may have symmetry reflectance 
at one azimuthal look angle but have strong asymmetry reflectance at 
another look angle. Therefore, sub-aperture decomposition can help 
improve the man-made target detection performance of asymmetry. In 
(Wu, Guo, and Li 2014), the sub-aperture size was set to four. The 
reason is that too many sub-apertures will lead to a serious reduction of 
the spatial resolution, which is not good for target detection. In addition, 
the computation load is also apparent with too many sub-apertures. 
However, this conclusion was not demonstrated with quantitatively 
analysis. From Figure 5.9, it can be seen that the difference of log ratio 
values between man-made targets and natural areas does not change 
dramatically when the number of sub-apertures exceeds four. 
Considering time consuming and to compare the detection result with 
(Wu, Guo, and Li 2014), four sub-apertures are suitable for man-made 
target detection in our experiment. 

 5.2.3 Experimental Results with PALSAR Data 
The second study area is located in San Francisco Bay, USA. This 
spaceborne PALSAR Polarimetric SAR data, with centre frequency 1270 
MHz, i.e., L-band., was acquired over the study area in 2009. The image 
columns correspond to range direction and the rows correspond to 
azimuth direction. Figure 5.10 (a) gives the optical image of the study 
area and Figure 5.10 (b) is the Pauli coded PolSAR image. 
 

  
(a)                                            (b) 

Figure 5.10 Study area and PALSAR data. (a) Optical image from Google Earth. (b) 
Pauli coded PALSAR image (Red: HH-VV, green: HV, blue: HH+VV). 
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Figure 5.11 (a)-(c) show the man-made target detection results of three 
methods and Figure 5.11 (d) overlays the proposed detection result on 
Pauli image. We can see that even though the original nonstationarity 
detection method can extract man-made targets effectively, the forests 
(marked with red circle) are also incorrectly detected. In contrast, the 
proposed method can remove most of the natural areas and also can 
detect the man-made targets. Detailed comparisons and discussions can 
be found in Paper 2. 
 

(a) (b)

(c) (d)  
Figure 5.11 Man-made target detection results of (a) original nonstationarity detection 
method, (b) nonstationarity detection method with nonzero-mean statistical model, and 
(c) the proposed method. (d). Detection results (red) of the proposed method overlaid 
Pauli image. 

5.3 Edge Detection 
The edge detection results of Paper 4 are displayed in this section. Two 
PolSAR datasets are chosen to demonstrate the effectiveness of the 
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proposed method. The first one was acquired by ESAR L band system 
with study area located in Oberpfaffenhofen, Germany. The second one 
is a PiSAR L band image from Tsukuba, Japan. These two datasets cover 
on both urban and natural areas. 
 
Figure 5.12 (a) and Figure 5.12 (b) give the two Pauli coded images, 
respectively. The red channel describes double-bounce scattering, the 
green channel describes volume scattering, and the blue channel 
describes surface scattering. There are a lot of man-made buildings in 
Figure 5.12 (a), which is a heterogeneous urban area. In Figure 5.12 (b), 
apart from the buildings, there are also a lot of farms. 
 

(a) (b)  
Figure 5.12 Two Pauli coded datasets. (a) ESAR image. (b). PiSAR image. 

 5.3.1 Comparisons and Analysis in Urban Areas 
Before displaying the edge detection results, some parameters should be 
discussed. In normalized covariance matrix estimation, we set the 
parameters according to (Vasile et al. 2008), which shows good 
performance in heterogeneous urban areas. The coefficient of variation 
δ  equals 3. The upper limit of neighbour pixels nThre  is set to 30. 

low high,T T  are set to 1.66 and 5, respectively. In this experiment, two 
existing edge detection methods, i.e., the traditional CFAR edge detector 
(Schou et al. 2003) proposed by Schou et al. (T-CFAR hereafter) and the 
edge detector based on degenerate filter (Liu, Zhang, Liu, et al. 2014) 
proposed by Liu et al. (D-CFAR) are chosen for comparison. In addition, 
we also implement the traditional CFAR edge detector with Gauss-
shaped filter (G-CFAR). The parameters f f,d θ  in four methods are set 
to 1 and / 8π , respectively. fl  and fw , which are the window length and 
width in T-CFAR and D-CFAR, are set to 11 and 5, respectively. This 
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setting works fine for various scenes according to (Liu, Zhang, Liu, et al. 
2014). To ensure that the window areas of different methods 
approximate the same, the parameters xσ  and yσ  in G-CFAR and our 
proposed method are set to 6.4 and 3.1, respectively. The probability of 
false alarm is set to 1% for all of the methods. 
 

(a) (b)

(c) (d)  
Figure 5.13 Overlay display of the final detected edges on span image (ESAR). (a) T-
CFAR. (b) D-CFAR. (c) G-CFAR. (d) The proposed method. 

 
After thresholding and morphological operations, we get the final 
detected edges overlaid on span image, which are shown in Figure 5.13. 
We can see that the results of Figure 5.13 (d) are fairly good, where most 
of the edges can be effectively detected. To further compare the results 
in detail, we select one urban area (marked with green rectangle) and 
display the results, as shown in Figure 5.14. It can be observed that our 
proposed method can extract the urban edges very well, although some 
of the buildings are distributed with small sizes. In contrast, lots of the 
edges of buildings are missed by the other methods. We can also see that 
the locations of the detected edges in Figure 5.14 (d) are more accurate, 
which demonstrates the effectiveness of our proposed method. 
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(a) (b)

(c) (d)  

Figure 5.14 Enlarged edge detection results of urban area by (a) T-CFAR, (b) D-CFAR, 
(c) G-CFAR and (d) the proposed method, respectively. 

 
To further evaluate the edge detection performance quantitatively, 
similar to (Liu, Zhang, Liu, et al. 2014), we also use the measures of 
precision and recall. Precision is the fraction of edge detections that are 
true positives rather than false positives, whereas recall is the fraction of 
true positives that are detected rather than missed. Figure 5.15 gives the 
results of different detection methods. It should be pointed out that the 
detector is better if its precision and recall curve lies in the upper right 
side of those of other detectors. From Figure 5.15, we can observe that 
the recalls of D-CFAR and G-CFAR are similar and much higher than 
that of T-CFAR when the precision is high. This is because D-CFAR 
and G-CFAR can extract edges more effective than T-CFAR. Since our 
proposed method can detect edges quite well, particularly in 
heterogeneous urban areas, as shown in Figure 5.15, the recall achieves 
the highest among different methods. It also can be seen that when the 
recall is high, the precision of the proposed method is still the highest, 
indicating that the locations of the detected edges are correct. 
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Figure 5.15 Precision and recall curves of different edge detection methods. 

 5.3.2 Comparisons and Analysis in Natural Areas 
To further evaluate the effectiveness on natural areas, in this section, we 
choose PiSAR data which cover buildings and farms for edge detection 
evaluation. Figure 5.16 shows the final detected edges overlaid on the 
span image by different methods. 
 

(a) (b)

(c) (d)  
Figure 5.16 Overlay display of the final detected edges on span image (PiSAR). (a) T-
CFAR. (b) D-CFAR. (c) G-CFAR. (d) The proposed method. 
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From Figure 5.16, it is clear that D-CFAR and G-CFAR still perform 
better than T-CFAR. The edge locations are accurate. However, there 
are still some edges of buildings missed, which decreases the detection 
accuracy. In contrast, our proposed method achieves much better result, 
where both urban and natural edges are well detected. This indicates that 
Gauss-shaped filter and SIRV model can effectively improve the edge 
detection accuracy. To view the results of natural areas in detail, we 
select one area in Figure 5.16 (d) and enlarge the results in Figure 5.17, 
where we can see that most of the edges in natural areas can be well 
extracted. 
 

(a) (b)
 

Figure 5.17 Pauli image (a) and the edge detection results (b) of natural areas marked in 
Figure 5.16 (d). 

 
Since Paper 3 and Paper 4 are both related to urban extraction using 
ESAR data, here we have a discussion on the relationship between target 
detection and edge detection. The target detection mainly discriminates 
the man-made targets from the natural areas, therefore, the number of 
detected man-made pixels plays a key role in the accuracy evaluation. In 
contrast, edge detection focuses on the locations of the targets. If we 
consider the edge information in the target detection approach, there is 
an advantage, i.e., the man-made target detection results can be refined. 
The isolated pixels can be removed and the target edges can be 
accurately located, which will improve the detection accuracy. Therefore, 
a logical AND operator using the edge information can be used as a 
post-processing step for the final man-made target detection result. 

5.4 Urban Area Classification and Segmentation 
This section gives the urban area classification results using scattering 
powers obtained by decomposition procedure one. The objective is to 
resolve ortho and oriented urban area misclassifications, as discussed in 
Paper 5. Discrimination abilities of various scattering components are 
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analysed firstly, followed by the classification results. Then we show the 
superpixel generation and segmentation results. The pixel-based 
classification result is further improved with object-based processing, 
which regards the superpixels as objects. 

 5.4.1 Discrimination Abilities of Various Scattering 
Components 

Figure 5.18 presents the scatter diagrams of different targets using 
RADARSAT-2 data, where x-axis and y-axis indicate double-bounce and 
volume scattering power, respectively. Z-axis represents one of helix, 
wire, and cross scattering power. The ortho buildings, oriented buildings 
and vegetated areas are represented by red points, black points, and 
green points, respectively. 
 

Ortho buildings

Vegetation

Oriented buildings

Ortho buildings

Vegetation

Oriented buildings

Ortho buildings

Vegetation

Oriented buildings

(a) (b)

(c)  

Figure 5.18 The scatter diagrams of ortho buildings (red points), vegetation (green 
points), and oriented buildings (black points) in three different decomposed powers. (a) 
Double-bounce, volume, and helix scattering diagrams; (b) Double-bounce, volume, 
and wire scattering diagrams; (c) Double-bounce, volume, and cross scattering diagrams. 

 
What we can see from Figure 5.18 (c) is that the oriented buildings and 
vegetation can be clearly discriminated using cross scattering power 
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although oriented buildings have quite strong volume scattering, which is 
similar to vegetation. Moreover, it can be found that oriented and ortho 
buildings are also clearly distinguished. The results in Figure 5.18 (a) and 
Figure 5.18 (b) are not good, where vegetation and oriented buildings are 
seriously mixed. It can be found that the distribution of helix scattering 
is similar to that of wire scattering, which is in accordance with previous 
analysis. Even though helix scattering and wire scattering are both 
dominant in oriented urban areas, they also have strong values in 
vegetated and ortho urban areas. Overall, compared to helix and wire 
scattering, the proposed cross scattering can exploit more urban 
information from the PolSAR data, which makes it more suitable for 
urban area analysis. 

 5.4.2 Comparison of Classification Results with Different 
Decomposition Methods 

In this research, we use unsupervised K-means classifier to classify urban 
areas based on the scattering powers. The four land cover classes are 
ortho buildings, oriented buildings, vegetation and water, respectively. It 
should be noted that this approach is pixel-based processing. Superpixel-
based classification results will be shown in the following subsections. 
 
The classification results of different methods, as well as the SPAN 
image are shown in Figure 5.19. It can be seen from Figure 5.19 (a) that 
using MCSM scattering powers, the oriented buildings and vegetated 
areas cannot be clearly separated. The reason is that wire scattering 
power difference between oriented buildings and vegetation is small, 
leading to low separation ability. Furthermore, it can be observed that 
the ortho and oriented buildings are slightly mixed, such as the urban 
area marked with white circle. Compared to the classification result using 
MCSM scattering powers, the classification result in Figure 5.19 (b) 
seems even worse. There are lots of misclassifications between oriented 
buildings and vegetation, as well as ortho buildings. In contrast, our 
method (Figure 5.19 (c)) can obtain quite promising classification result 
due to the cross scattering power, where the ortho buildings, oriented 
buildings and vegetated areas are all well classified. 
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(a)                                      (b) 

  
(c)                                     (d) 

Ortho buildings         Oriented buildings         Water         Vegetation 

Figure 5.19 Classification results of RADARSAT-2 image. (a)-(c) K-means 
classification results with MCSM, Y4R, and the proposed decomposed scattering 
powers, respectively (d) SPAN image. 

 
To compare the classification results in detail, the area marked with red 
rectangle in Figure 5.19 (d) is selected and the different classification 
results are enlarged in Figure 5.20. It is obvious that three methods can 
effectively discriminate the ortho buildings. Nevertheless, the results of 
oriented buildings are quite different, such as the two areas marked with 
red rectangles in Figure 5.20 (b). From Figure 5.20 (c), we can see that 
although some oriented buildings can be correctly classified using 
MCSM decomposed scattering powers, there still exist a lot of 
misclassifications, which decrease the overall accuracy. For instance, 
some oriented buildings are classified as vegetation. Moreover, some 
ortho buildings are misclassified as oriented buildings, such as the area 
marked with red ellipse. It can be seen from Pauli coded image that this 
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area has double-bounce scattering and should be classified as ortho 
buildings. What we can see from Figure 5.20 (d) is that the scattering 
powers of Y4R have lower ability to discriminate oriented buildings from 
ortho buildings and vegetation than MCSM. In contrast, our proposed 
method achieves a better classification result, as shown in Figure 5.20 (e). 
Even though there are still some confusions between ortho and oriented 
buildings, most of the oriented buildings can be well classified. 

   

(a)                                      (b)                                    (c) 

  
 (d)                                     (e) 

Figure 5.20 Detailed classification results of the selected patch. (a) Pauli coded PolSAR 
image. (b) Optical image. (c)-(e) K-means classification results with MCSM, Y4R, and 
the proposed decomposed scattering powers, respectively. 

 
Finally, the classification accuracies of different methods are listed in 
Table 5.6. From Table 5.6 and Figure 5.20, we can conclude that the 
proposed classification method performs very well. The total accuracy 
achieves 88.3%, which is about 6.3% and 15.5% higher than other two 
methods, respectively. It is worth pointing out that in our method, the 
individual classification accuracy of oriented buildings plays a key role in 
the overall classification accuracy, which is 86.4%. In contrast, the results 
of MCSM and Y4R are much lower, which are only 65.4% and 38.8%, 
respectively. Hence, it can be demonstrated that the cross scattering is 
effective for urban area classification. Further detailed classification 
results and comparisons can be found in Paper 5. 
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Table 5.6 Classification accuracies of different methods (RADARSAT-2 image) 

         Class MCSM Proposed Y4R 
Ortho buildings  0.882  0.911  0.853 

Oriented buildings  0.654  0.864  0.385 
Water  0.924  0.913  0.893 

Vegetation  0.821  0.848  0.782 
Overall accuracy  0.82  0.883  0.728 

 5.4.3 Superpixel Generation 
Figure 5.21 gives the superpixel generation results of ESAR dataset using 
Liu’s (Liu et al. 2013), Qin’s (Qin, Guo, and Lang 2015), and our 
proposed methods, respectively. The numbers of superpixel are all set to 
2200. 
 
To further compare the results in detail, two subareas marked with 
yellow rectangles A and B are selected from Figure 5.21 (c)-(f) and are 
shown in Figure 5.22. Area A mainly includes the buildings while Area B 
covers natural targets, as well as some man-made targets. Figure 5.21 (a), 
(c), and (e) present the final superpixel maps of three methods, where 
the red lines superimposed onto the Pauli images depict the superpixel 
boundaries. Figure 5.21 (b), (d), and (f) give the corresponding 
representation maps, in which the coherency matrix of each pixel is 
replaced by the average coherency matrix of the superpixel this pixel 
belongs to. From Figure 5.21 (a) and (b), we can see that the edges of the 
superpixels are very smooth, and the shape of the superpixels is quite 
regular. In natural areas, the results are acceptable. However, in urban 
areas, these superpixels cannot adhere well to image edges, the points 
and lines in the image are not preserved and most urban information is 
lost. Compared with Figure 5.21 (a), the result in Figure 5.21 (c) seems 
much better, where most of the edges and points are preserved. The 
superpixels can well adhere to image boundaries and capture the local 
information. However, the shape of the superpixel is very irregular and 
the edges are not smooth, even in the homogeneous natural areas, as 
shown in Figure 5.22 (a) and (e). In this method, to well preserve the 
edges and points, the trade-off factor which balances the polarimetric 
similarity and spatial proximity was set to 1.0. Therefore, the polarimetric 
similarity overweighs spatial proximity, leading to irregular superpixels. 
Moreover, it can be seen that there are still some problems in urban 
areas, such as discontinuities, artifacts, and missed detections, which are 
shown in Figure 5.22 (c) and (g). 
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(a) (b)

(c) (d)

(e) (f)

A

A

B

B

 
Figure 5.21 Superpixel generation results of Liu’s, Qin’s, and our proposed 
approaches with K = 2200 for ESAR image. The first column denotes the final 
superpixel maps of different methods. The red lines superimposed onto the Pauli 
images depict the superpixel boundaries. The second column gives the representation 
maps, where the coherency matrix of each pixel is replaced by the average value of the 
superpixel this pixel belongs to. 

 
The results in Figure 5.21 (e) and (f) indicate that our proposed 
algorithm can generate promising superpixels for PolSAR images. The 
target points and edges can be preserved very well. Moreover, the 
compactness of the superpixels is adaptive. In homogeneous areas, the 
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edges of superpixels are very smooth and the superpixel shape is quite 
regular, which can be seen in Figure 5.22 (b) and (f). This is because in 
such areas, the homogeneity measurement is high, making the spatial 
proximity overweigh other two similarities. Therefore, the superpixels 
are compact and regular. In contrast, within heterogeneous areas, the 
homogeneity measurement is low. To preserve the detailed information, 
spatial proximity is not as important as polarimetric and texture 
similarities any more. Therefore, the superpixels have irregular shape and 
can well preserve the image edges and points. From Figure 5.22, we can 
also see that in heterogeneous areas, our method can achieve better 
results than Qin’s method, where the building edges are clearer and the 
man-made targets are better extracted. This is because our new edge 
detector based on SIRV product model can detect more accurate edges. 
In addition, the proposed distance measure considers more local 
information for superpixel generation, such as the span information. 
 

(a) (b) (c) (d)

(e) (f) (g) (h)  
Figure 5.22 Comparison of detailed superpixel generation results in area A and B. The 
first row denotes the final superpixel maps. The green lines superimposed onto the 
Pauli images depict the superpixel boundaries. The second row gives the corresponding 
representation maps. (a) and (b) are the results of area B in Figure 5.17 (c) and (e), 
respectively. (c) and (d) are the results of area A in Figure 5.17 (c) and (e), respectively. 

 
It should be noted that there are still some unsatisfactory results in 
homogeneous areas using our method, such as the area marked with 
yellow ellipse in Figure 5.22 (h). The edges between two natural areas are 
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not well preserved. The reason is that SIRV product model is more 
suitable for non-Gaussian areas. Although some of the natural edges 
cannot be well detected, the superpixels are still acceptable. From the 
above analysis, it can be concluded that the superpixels generated by our 
method provide very smooth approximations in homogeneous areas, 
and also keep details in heterogeneous areas. 
 
There are several benchmarks proposed for superpixel evaluation, in this 
study, to perform a quantitative comparison of different methods, we 
adopt two commonly used evaluation metrics: i.e., boundary recall (BR) 
(Arbelaez et al. 2011) and achievable segmentation accuracy (ASA) (Liu 
et al. 2011). BR is defined as the fraction of ground truth boundaries 
correctly recovered by the superpixel edges. If a true boundary pixel falls 
within 2 pixels from at least one superpixel edge, it can be regarded to be 
recovered correctly. Therefore, a high BR indicates that the superpixels 
can well adhere to image edges and very few true boundaries are missed. 
ASA is defined as the highest achievable accuracy of object segmentation 
when regarding the superpixels as units. By labeling each superpixel with 
the ground truth segments of the largest overlapping area, ASA can be 
obtained as the fraction of labeled pixels that are not leaked from the 
ground truth boundaries. Thus a high ASA means that the superpixels 
comply well with objects in the PolSAR image. These two indicators can 
evaluate the final superpixel maps. Figure 5.23 and Figure 5.24 depict the 
BR and ASA of three methods with different numbers of superpixels, 
respectively. This number is set from 250 to 2500 with different step 
sizes. 
 

 
Figure 5.23 Boundary recall (BR) of three methods with different superpixel numbers. 
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According to these two figures, Liu’s method performs the worst in 
terms of boundary adherence and achievable segmentation accuracy. In 
addition, another drawback is its extremely low time efficiency. Qin’s 
method and our proposed method have similar BR when the superpixel 
number does not exceed 500. However, if we increase this value, our 
method has better boundary adherence than Qin’s method. In Figure 
5.24, these two methods have similar results but our method still 
performs slightly better than Qin’s approach. Further quantitative 
evaluation and comparison can be found in Paper 6. 
 

 
Figure 5.24 Achievable segmentation accuracy (ASA) of three methods with different 
superpixel numbers. 

 5.4.4 Comparison of Pixel-based and Object-based 
Classifications 

To further demonstrate the capability of superpixels to improve the 
classification accuracy, we incorporate them into our unsupervised 
classification approach and then compare the superpixel-based results 
with the original pixel-based results. Two datasets, i.e., RADARSAT-2 
and ESAR images are utilized in this subsection. 
 
Figure 5.25 gives the classification results of RADARSAT-2 data with 
and without superpixels. Figure 5.25 (a) is the representation map after 
superpixel generation, Figure 5.25 (b) and (c) are the pixel-based and 
superpixel-based classification results, respectively. It can be seen that 
there are some isolated pixels and disconnected regions in Figure 5.25 
(b). In contrast, the result in Figure 5.25 (c) is smoother thanks to the 
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superpixel segmentation. There are less false classifications and 
disconnected regions. Therefore, the superpixels generated by our 
method can be used as a pre-processing step for object-based 
classification. 
 

   
(a)                                       (b)                                       (c) 

Ortho buildings         Oriented buildings         Water         Vegetation 

Figure 5.25 Classification results comparison of RADARSAT-2 data with and without 
superpixels. (a) Representation map after superpixel generation. (b) Pixel-based result. 
(c) Superpixel-based result. 

   
(a)                                         (b)                                          (c) 

Ortho buildings         Oriented buildings         Bare soil         Vegetation 

Figure 5.26 Classification results comparison of ESAR data with and without 
superpixels. (a) Representation map after superpixel generation. (b) Pixel-based result. 
(c) Superpixel-based result. 

Figure 5.26 presents the classification results of ESAR data with and 
without superpixels. Figure 5.26 (b) is the pixel-based unsupervised 
classification result, which is not satisfactory. It should be noted that 
although some buildings have quite large polarization orientation angles, 
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leading to very strong cross scattering power; the forests also have cross 
scattering in this L-band ESAR data due to the microwave penetration. 
Therefore, there exist serious confusions between oriented buildings and 
vegetation. Here we only focus the effectiveness of superpixels on 
classification. From Figure 5.26 (b) and Figure 5.26 (c), it is apparent that 
superpixel-based classification outperforms pixel-based approach. The 
building objects are preserved well and the boundaries between different 
land covers are clearer. Therefore, we can conclude that the classification 
result can be refined using superpixels. 
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6 Conclusions and Future Research 

6.1 Conclusions 
This research investigated urban information extraction from PolSAR 
data, including urban scattering analysis, urban extraction, and urban 
classification and segmentation. The scattering components of buildings 
with different orientation angles are analysed and compared. The urban 
locations and areas can be accurately obtained in extraction stage while 
the ortho and oriented buildings can be discriminated in classification 
stage. In addition, the superpixels can be further used to refine the 
classification results, improving the overall accuracy. Considering the 
objectives of this research, specific conclusions can be drawn. 
 
To distinguish ortho and oriented buildings, a new cross scattering 
model was proposed, which adaptively considers the building orientation 
angle. Unlike helix and wire scattering components, this cross scattering 
model mainly describes the HV scattering caused by oriented buildings. 
Two decomposition procedures are adopted to validate this cross 
scattering model. The decomposition results using RADARSAT-2 C-
band data, AIRSAR and UAVSAR L-band data demonstrated that the 
proposed decomposition methods can generate cross scattering 
component for oriented buildings and can effectively enhance the urban 
characteristics (Paper 1, 2). 
 
To solve the drawbacks of conventional nonstationarity detection 
method, the reflectance asymmetry of man-made targets was considered 
and an improved man-made target extraction method based on 
nonstationarity and asymmetry was proposed. By incorporating the 
asymmetry, natural areas with Bragg resonance are removed from the 
detection results, even though they also have nonstationarity like man-
made targets. Furthermore, small man-made targets and metallic fences 
along the road are also clearly extracted, which demonstrates that the 
proposed approach performs better than original nonstationarity 
detection algorithm. Airborne ESAR data and spaceborne PALSAR data 
are utilized to demonstrate the performance of this detection method. It 
can be concluded that sub-aperture decomposition is beneficial for man-
made target detection, especially for oriented buildings. The 
nonstationarity detection method with nonzero-mean statistical model 
performs better than the original nonstationarity detection method with 
Wishart distribution for high resolution PolSAR data; however, these 
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two methods cannot remove natural areas with Bragg resonance. In 
contrast, the proposed method has a better discriminative ability than the 
other two methods for airborne and spaceborne PolSAR data (Paper 3). 
 
After analysing the shortcomings of conventional edge detectors for 
PolSAR data, a new edge detection approach using Gauss-shaped filter 
and SIRV model was proposed. This method was shown to be suitable 
for heterogeneous urban areas where the Wishart distribution is violated. 
The edges of urban and natural areas can be both effectively extracted, in 
addition, the locations are also more accurate. Edge detection of urban 
areas is beneficial for superpixel generation (Paper 4). 
 
Based on the decomposed scattering powers, a K-means classifier is 
utilized to classify the urban areas. Using the cross scattering power, 
oriented buildings can be effective distinguished from ortho buildings 
and vegetation. Furthermore, the superpixel maps can be utilized as 
ancillary information to refine the classification results. Some small man-
made targets and roads can be correctly classified with more accurate 
locations, which can improve the final accuracy. It is worth pointing out 
that the classification accuracy of natural areas is not high, such as water 
and bare soils. The reason is that the proposed decomposition method 
mainly works on urban areas, thus this classification approach cannot 
classify natural areas very well based on the scattering powers. But since 
this thesis focuses on urban information extraction, spatial or other 
features were not considered in the classification (Paper 5, Paper 6). 

6.2 Future Research 
Due to the limitation of data acquisition, this thesis only focuses on 
urban information extraction from one single PolSAR image acquired at 
single time. To further improve urban information extraction accuracy, 
the following topics will be investigated in the future. 
 
[1] To overcome the limited information contained in PolSAR images 

acquired at single time, future research will investigate the use of 
multi-temporal PolSAR data. The urban scattering mechanisms can 
be well observed via change detection methods, which can supply 
useful information for target detection and classification. 
 

[2] Instead of using PolSAR data with only polarimetric information, 
future research will investigate urban area information extraction 
using polarimetric interferometric SAR (PolInSAR) data. 
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Interferometric information will be used for urban analysis and new 
target detection and classification methods are necessary to be 
developed. 
 

[3] Specific pattern recognition approaches such as Markov Random 
Field (MRF), Conditional Random Field (CRF), etc., for extraction 
of typical urban features will be studied. These features can be 
further used for urban analysis together with scattering mechanisms. 
Feature selection techniques also should be studied to reduce 
information redundancy. 

 
[4] Finally, since object-based classification can achieve better results 

than pixel-based methods, the generated superpixels can be further 
used as a pre-processing step for classification. Feature extraction 
from superpixels should be studied in the future. Moreover, the 
man-made target detection should also be refined using the edge 
maps. 
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