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ABSTRACT

The understanding of the strengthening mechanisms is crucial both in the development of new

materials with improved mechanical properties and in the development of better material

models in the simulation of industrial processes. The aim of this work has been to study
different strengthening mechanisms from a fundamental point of view that enables the

development of a general model for the flow stress. Two different mechanisms namely, solid

solution strengthening and grain size strengthening have been examined in detail. Analytical

models proposed in the literature have been critically evaluated with respect to experimental

data from the literature. Two different experimental surface techniques, atomic force

microscopy (AFM) and electron backscattered diffraction (EBSD) were used to characterize
the evolving deformation structure at grain boundaries, in an ultra low-carbon (ULC) steel. A

numerical model was also developed to describe experimental features observed locally at

grain boundaries.

For the case of solid solution strengthening, it is shown that existing models for solid solution

strengthening cannot explain the observed experimental features in a satisfactory way. In the
case of grain size strengthening it is shown that a simple model seems to give a relatively

good description of the experimental data. Further, the strain hardening in materials showing a

homogenous yielding, is controlled by grain boundaries at relatively small strains. The

experimental results from AFM and EBSD, indicate more inhomogenous deformation

behaviour, when the grain size is larger. Both techniques, AFM and EBSD, correlate well

with each other and can be used to describe the deformation behaviour both on a local and
global scale. The results from the numerical model showed a good qualitative agreement with

experimental results.

Another part of this project was directed towards the development of continuum models that

include relevant microstructural features. One of the results was the inclusion of the pearlite

lamellae spacing in a micromechanically based FEM-model for the flow stress of ferritic-
perlitic steels. Moreover a good agreement was achieved between experimental results from

AFM and FEM calculations using a non-local crystal plasticity theory that incorporates strain

gradients in the hardening moduli.

The main philosophy behind this research has been to combine an evaluation of existing

strengthening models, with new experiments focused on studying the fundamental behaviour
of the evolving dislocation structure. This combination can then be used to draw general

conclusions on modelling the strengthening mechanisms in metals.

Keywords: strengthening mechanisms, flow stress, solid solution strengthening, grain size

strengthening, micromechanical modelling, AFM, EBSD
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“It is sometimes said that the turbulent flow of fluids is the most difficult remaining problem in
classical physics. Not so, workhardening is worse.”

Sir. A.H. Cottrell

Preface

After working for 3,5 years in the steel industry I started my research work for two main

reasons. One was that after my years with practical steel development I really wanted to

understand the mechanisms behind the mechanical properties. The other reason was the
interesting opportunity to collaborate with researchers from other fields.

I have for a long time found it fascinating that one of the fundamental tools for an engineer

and one of the simplest mechanical tests, namely the stress strain curve, obtained from a

tensile test, cannot yet be fully predicted, at least not for commercial alloys. Gaining a greater

insight into the abstract and mysterious world of dislocations also offers a challenge.

One of the original aims of this research work was to understand and explore the

superposition and interaction of different strengthening mechanisms. However, as in a

scientific endeavour of this type, the thesis deals with a number of other unexplored problems

among the different strengthening mechanisms. Nevertheless a limited literature survey is

presented on the different strengthening mechanisms and their interaction/superposition. The
research presented here can hopefully contribute towards a deeper understanding of the

strengthening mechanisms and set the ground for attacking the problem of superposition.

This thesis consists of an introductory part and the following appended papers:

I Solid Solution hardening - a comparison of two models
Dilip Chandrasekaran
Materials Science and Engineering, A309-310, (2001) 184-189.

II Grain Size Strengthening in Polycrystals
Dilip Chandrasekaran and Kjell Pettersson
Modified version of paper in MRS Proceedings Volume 683E, BB2.8. 1-6, San
Francisco, USA, 2001.
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III Micromechanical Modelling of Two-Phase Steels
Mikael Nygårds, Dilip Chandrasekaran and Peter Gudmundsson
Modified version of paper in MRS Proceedings Volume 653, Z8.8. 1-6, Boston, USA,
2000.

IV Comparison of Surface Displacement Measurements in a Ferritic
Steel using AFM and Non-Local Crystal Plasticity
Dilip Chandrasekaran and Mikael Nygårds
Accepted for publication in Materials Science and Engineering.

V A Study of the Surface Deformation Behaviour at Grain Boundaries in an Ultra Low-
Carbon Steel
Dilip Chandrasekaran and Mikael Nygårds
Acta Materialia, vol. 51,(2003) pp. 5375-5384.

VI Grain Size Strengthening at Small Strains – Analysis of Experimental data and
Modelling Implications
Dilip Chandrasekaran and Göran Engberg
Submitted to International Journal of Plasticity, 2003.

Stockholm, October 2003
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vii

CONTENTS

1. General Introduction 1
1.1. Flow stress modelling 3
1.2. Length scales 3
1.3. Experimental issues 4

2. Strengthening Mechanisms 5
2.1. General concepts 5
2.2. Solid Solution Strengthening 6
2.3. Grain Size Strengthening 13
2.4. Precipitation Strengthening 24
2.5. Peierls-Nabarro Strengthening 26
2.6. Dislocation Strengthening 28
2.7. Superposition of Strengthening Mechanisms 29

3. Experimental Techniques and Methodology 31
3.1. Experimental Procedure 31
3.2. Electron backscattered diffraction 32
3.3. Atomic force microscopy 37
3.4. Discussion of the Experimental results and Concluding remarks 42

4. Summary of Appended papers 45

5. Conclusions and Future work 49
5.1. Solid Solution strengthening 49
5.2. Grain Size strengthening 49
5.3. Flow Stress modelling 50
5.4. Future work 50

Acknowledgements 53

Bibliography 55

APPENDIX: Papers (I - VI)



viii



1

Chapter 1

General Introduction

The ultimate dream for a materials scientist is to be able to predict the mechanical behaviour
of a material from its composition and microstructure. The fascinating paradox of materials
science is that the problem to be solved can be stated in so simple terms but is so difficult to
solve. Today we are still quite far from a complete understanding of the mechanical behaviour
of metals. The complexity of this problem requires knowledge of mathematics, physics,
mechanics and chemistry for its solution.
What is the motivation for understanding and modelling the mechanical properties?
The answer is quite obvious with the ongoing technological development towards more
efficient and environmental friendly processes and products, more advanced materials need to
be developed at shorter times and at less cost.

Fig 1.1 Light optical micrograph, showing the grain structure of low-carbon steel (top left).
Band contrast image, revealing crystal orientations in deformed ultra-low-carbon steel
(top right). Graph showing the variation of the yield stress with temperature in Ag-In
alloys (Boser 1972).
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Thus, the reasons for developing better models are several;

ß Costly experiments can be avoided in the development of new materials
ß Improved models are an important tool in the search towards a more fundamental

understanding.
ß Materials can be tailor-made for different applications.

The basic philosophy behind this thesis, may be represented by Fig. 1.1. In this research work,
a study of the microstructure (represented by the micrograph of a carbon steel) is combined
with information on the change in crystal orientations (represented by the band contrast
image) together with a theoretical analysis of stress strain data (represented by a graph
showing the variation of the yield stress with temperature). This covers the scope of this thesis
work.

The more specific aim of the research work is to analyze the mechanical behaviour from a
fundamental point of view, which would enable us to draw general conclusions concerning
the mechanisms behind the strengthening in metals. In short the two main aims of this thesis
are:

ß To contribute towards a greater understanding of the mechanisms behind grain size
and solid solution strengthening.

ß To explore and combine different experimental techniques and use them to understand
fundamental deformation mechanisms.

The first issue is addressed both by analyzing experimental data in the literature and by
developing different types of modelling approaches. The focus of the modelling work has
been on analytical models in the literature and their validity and limitations. The experimental
work in this thesis was directed towards two different surface characterization techniques for
the study of the evolving deformation structure. Ideally in future we should be able to
understand and predict the mechanical behaviour of commercial alloys with complex
microstructures, from information about the manufacturing process. In this thesis fundamental
issues concerning the strengthening of metals are discussed. An attempt is made to answer the
following general question:

What is the stress strain behaviour of a deforming metal sample, given its composition and
microstructure?

The thesis surveys the different mechanisms contributing to the strengthening in metals. The
survey is by no means complete and only two mechanisms, namely grain size strengthening
and solid solution strengthening are treated in detail. Other very interesting issues like the
superposition and interaction of mechanisms are only discussed briefly.
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1.1 Flow stress modelling

This thesis work is based on dislocations, their behaviour and interaction with obstacles. The
understanding of the dislocation behaviour in metals is fundamental in understanding and
predicting the mechanical behaviour. Ideally the aim when modelling the mechanical
properties is to end up with constitutive equations of the following kind:

† 

˙ e = f s, ˙ s ,T,microstructure{ } (1.1)

This kind of formulation is necessary to model and predict the macroscopic properties from a
given microstructure and in the development of generalized models for the flow stress that
can be applied to solve more complicated “real” problems like, for example, forming or
rolling and even machining. The overall view is illustrated in Fig. 1.2. This thesis covers the
work on the strengthening mechanisms from a dislocation viewpoint, while the
micromechanical modelling is covered elsewhere (Nygårds 2003). In order to develop a flow
stress model that can be used to predict mechanical properties and simulate real processes
micromechanical modelling and dislocation modelling should be combined together with a
microstructurally relevant length scale.

Fig 1.2 A layout of the general idea in modelling the flow stress.

1.2 Length Scales

An important aspect in the development of finite element models for flow stress is the concept
of length scales. Classical continuum models do not contain a microstructural length scale, i.e.
in such a model the influence of grain size and dislocation structure cannot be taken into
account. A number of approaches, where local effects can be taken into account, are now
being developed. One difficulty in the development of these approaches is the lack of good
experimental information on a microstructral scale. This thesis aims to discuss the issue of the

Length scale

Strengthening
model

(Dislocations)

Micromechanics
model

(Continuum)

Flow stress model
Prediction of mechanical properties
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required length scale in continuum models, both in the light of new experimental information
and some modelling results. Some ideas on relevant microstructural features in continuum
models are discussed in more detail in papers 3 and 4. A lot of research work is also being
directed towards the modelling of mechanical behaviour on different scales using different
techniques such as, simulation of discrete dislocations (DD) or molecular dynamics (MD)
simulations, just to mention a few examples. The appropriate length scale to be included in
such models depends on the type of problem and the desired resolution required.

1.3 Experimental issues

As mentioned earlier, two different surface characterization (2D) techniques namely, atomic
force microscopy (AFM) and electron backscattered diffraction (EBSD), are used to study
plastic deformation, in this thesis. However, even though plastic deformation is essentially a
3D process a number of difficulties are involved in performing 3D studies of plastic
deformation. Perhaps bulk techniques such as 3-dimensional X-ray diffraction (3DXRD) and
high-resolution transmission electron microscopy (HRTEM) may be applied but unfortunately
these are expensive and demanding methods, when it comes to sample preparation. The
experimental methods used in this thesis on the other hand, are relatively inexpensive and
require a minimum of sample preparation. Therefore the information from these methods
combined with information from the macroscopic bulk behaviour, should prove useful in
contributing to a deeper understanding of the inherent mechanisms. A few of the
discrepancies between surface and bulk measurements are discussed further in chapter 3.
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Chapter 2

Strengthening Mechanisms

In the following section a general overview of the different strengthening mechanisms in
metals will be given. A few other aspects such as the superposition and interaction of different
mechanisms will also be discussed. Only a brief overview is given here, as there are a great
number of reviews and books on these subjects (Kelly and Nicholson 1971; Kocks, Argon et
al. 1975; Nabarro and Duesbery, 2002). The reader is recommended to these for a more
detailed study. In this general introduction, two strengthening mechanisms, namely solid
solution strengthening and grain size strengthening will be discussed in more detail, as this is
the focus of the appended papers. Other mechanisms are only dealt with qualitatively, the idea
being to provide an introduction towards a general modelling of the strengthening in metals.
A few words will also be said on the superposition of different mechanisms.

2.1 General concepts

A fundamental concept in the discussion of the strengthening behaviour in metals, are
dislocations, or line defects. In order to understand the mechanisms behind the different
strengthening mechanisms, it is vital to understand the behaviour of dislocations and their
interaction with different types of defects. Most of the discussion in this section will be
concentrated around the interaction of dislocations with different obstacles and also the effect
of external variables, such as temperature and strain rate. One way of describing the
strengthening in metals is to evaluate the response of a material due to a prescribed load. The
simplest and most used experimental test method is uniaxial tensile testing which results in a
stress strain curve. In this chapter and in this thesis, we will restrict ourselves to the
strengthening occurring during a tensile test. The fundamental mechanisms discussed are
naturally valid for many other problems and applications.

Traditionally the flow stress has been modelled as the sum of the different strengthening
contributions, although it is by no means self-evident that the contributions are additative and
in some cases not true at all. One can also write the flow stress t f, as a sum of two
components, one temperature T and/or strain rate 

† 

˙ g  dependant part t*, and one athermal part
ta.

t f = t a + t* ( ˙ g , T ) (2.1)

As will be seen later, dislocations may bypass some of the strengthening obstacles by thermal
activation while others are too large to be bypassed unless the stress is higher. Another way of
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describing the flow stress is by the following relation, which has been experimentally verified
for a number of different metals and alloys. The flow stress tf at certain plastic strain is then
expressed as,

t f = t0 + amb r (2.2)

where t0 is a friction stress, m the shear modulus, b the Burgers vector and a a proportionality
constant. As r increases during deformation Eq. (2.2) actually predicts work hardening. This
relation was first proposed by Taylor and a great number of theories have been proposed in
the literature since then, to explain the work hardening behaviour. The friction stress is often
given as the linear sum of the other strengthening contributions, such as solutes, precipitates,
grain boundaries and Peierls-Nabarro barriers. A more detailed discussion on the
superposition of different mechanisms shall be presented later.

2.2 Solid Solution Strengthening

The strengthening effect of solutes is well known and has been investigated by a number of
researchers over the years. A number of different interactions1 exist between solutes and the
solvent lattice, but here we will only consider interactions of elastic type which are essentially
of two kinds namely, size effects and modulus effects. The former is caused by a size misfit of
a solute atom causing strains in the lattice and the latter by differences in shear modulus
between solutes and the lattice.

Different theories have been proposed in the literature to explain and model the experimental
features of solid solution strengthening and there are a number of excellent reviews (Fleischer
1963; Kocks 1985; Butt and Feltham 1993; Cahn and Haasen 1996) on the subject to which
the reader is referred to for a more detailed study. A few important concepts, concerning the
modelling of solid solution strengthening will be discussed now. In order to model the
experimental information on solid solution strengthening, one requires a model which
incorporates the actual strengthening effect of solutes (concentration), with the temperature
dependence observed experimentally in the solution-strengthened alloy (Kocks 1985).

One of the classical efforts to model and classify the effect of solute/dislocation interactions
was by Fleischer (Fleischer 1963) and a short summary of his approach will be presented
here. Fleischer classified the nature of hardening in terms of the distortion a solute atom
causes in the lattice. Symmetrical distortions, e.g. substitutional atoms in a fcc-lattice, or
asymmetric distortions, e.g. interstitials in bcc (Fleischer and Jr. 1963). The hardening effect
of an asymmetric distortion is often an order of magnitude larger. The elastic interaction

                                                  
1 Other interactions include chemical-, electrostatic- and stress-induced order locking
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between a solute and a dislocation can then be described depending on the type of dislocation
(edge or screw). A typical example of a force-obstacle profile is shown in Fig. 2.1 below.

Fig. 2.1 Schematic of a typical force-distance diagram for the case of solid solution
strengthening, taken from Fleischer (Fleischer 1967).

If the interaction force is integrated over a certain interaction distance, an energy for the
specific obstacle-profile considered, can be defined. This can be identified as the activation
energy for the process. By comparing the predicted hardening with experimental information,
the controlling mechanism can be evaluated. For instance, the hardening in substitutional
copper alloys has been shown by Flesicher, to be controlled by the stress needed to move
screw dislocations and this from a combined effect of atomic size and modulus difference
(Fleischer 1962).

2.2.1 Dislocation Line Flexibility

Another important concept in solution hardening is the flexibility of the dislocation line.
There are two main approaches here, namely Fleischers’s (Fleischer and Jr. 1963) and Mott
and Nabarro’s (Mott and Nabarro 1948). In Fleischer's approach a moving dislocation is
assumed to encounter a series of individual discrete obstacles on the slip plane. The spacing
L, between these then depends on the flexibility of the dislocation line (see Fig. 2.2). The
concept of discrete obstacles is the same as the one originally introduced by Friedel (Friedel
1956) where L is defined from the requirement that the dislocation loop, while passing an
obstacle, encounters one and only one new obstacle.

This differs for example, from the earlier treatment by Mott and Nabarro where the resistance
to dislocation motion is assumed to stem from an internal stress. In their treatment, a
dislocation line in equilibrium under an internal stress will acquire a curved or zigzag shape.
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Fig. 2.2 Average solute spacing L depending on the flexibility of a dislocation line, from
Fleischer (Fleischer and Jr. 1963).

2.2.2 Concentration Dependency

The concentration dependency in solution hardening, predicted by the different approaches,
does not vary much, ranging from parabolic to linear hardening and values in between.
Essentially the different solution hardening models proposed in the literature are similar. They
all consider solutes as discrete obstacles (except Mott (Mott and Nabarro 1948; Mott 1950)
and the hardening is then assumed to stem from differences in size and/or modulus of the
solutes. The concentration dependency of the flow stress will then vary depending on how the
flexibility of the dislocation line is expressed.

Kocks et al. (Kocks, Argon et al. 1975) have discussed the differences between Mott-statistics
and Friedel-statistics. The former is valid in the case of weak obstacles and concentrated
solutions, while the latter for dilute solutions and stronger obstacles. The stress to bypass
obstacles may be written in the following general form, as originally introduced by Orowan,

t =
Fo

bL
(2.3)

where Fo, is the obstacle strength, due to solutes, particles etc, and L is the average spacing
between obstacles. Using the above expression and suitable statistics the following expression
can be derived for the strengthening effect due to solutes at 0 K:

ts = m ⋅ f n ⋅ cm (2.4)

This expression contains the shear modulus m, the solute concentration c and a measure of the
obstacle strength ƒ. In this form it covers several different theories2. The exponent n will vary
depending on the assumptions concerning the nature of the obstacles and m depending on how
                                                  
2 In this context the statistical theory for solid solution hardening developed by Labusch (Labusch 1970) should
be mentioned, this predicts a m-value of 2/3, taking into account local variations of the dislocation line and its
interaction with randomly distributed solutes.
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the average spacing L is defined. For a completely straight dislocation line, L= b/c and for a
more flexible dislocation line, L= b/c1/2. The scatter in the experimental information makes it
possible to fit different concentration dependencies. For tetragonal distortions, e.g. carbon in
bcc-iron, the flow stress is found experimentally to vary proportionally with the square root of
the carbon content (Wert 1950) as predicted by Fleischer (Fleischer 1962).

2.2.3 Thermal Activation

In the treatment so far we have not accounted for temperature effects and the treatment
presented so far only gives the yield stress at 0 K. At temperatures above absolute zero
thermally activated dislocation motion is an important mechanism. This can be seen
experimentally by the strong temperature dependency of the yield stress, observed for
different alloy systems (Hutchison and Honeycombe 1967; Nakada and Keh 1971). It seems
reasonable then, that due to the short-range nature of solute obstacles thermal activation
should be an important mechanism. This does not rule out the existence of an athermal
solution hardening effect due to solutes indicated in several alloy systems (Kocks 1985).

Experimental observations of the variation of yield stress with temperature sometimes shows
a plateau in the yield stress, as can be seen in Fig. 1.1. This is the case, e.g. for Ni-C alloys
(Nakada and Keh 1971) and Ag-alloys (Hutchison and Honeycombe 1967). This type of
behaviour cannot be explained using a discrete obstacle approach. These shortcomings led to
the development of the models of collective type, which have been hence applied to more
concentrated solid solutions. The two different approaches in modelling the temperature
dependency of the flow stress can be summarised as below:

1. Solutes are treated as discrete obstacles and are overcome by an individual activation
event (see Fig. 2.3a) fi Single obstacle models.

2. The dislocation line is locked along its length by solutes and the activation event involves
several atoms (see Fig. 2.3b) fi Collective models.

(a) (b)

Fig. 2.3 Difference between (a) a discrete-obstacle approach where the dislocation line
encounters only one obstacle at a time i.e. Friedel statistics (Kocks, Argon et al. 1975)
and (b) a collective approach where the dislocation line has to breakaway from a row of
solutes (from (Feltham 1968)).
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Using reaction rate theory an Ahrrenius-type expression can be written for the activation
energy DG, as a function of strain rate  ̇g , and temperature T. In Eq. (2.5) k is Boltzman’s
constant and ˙ g 0  is a pre-exponential factor (related to the Debye frequency) in the order of
1012-1014 s-1. The activation energy DG, will then be a function of the applied stress s, and the
nature and size of the interaction between the obstacle and dislocation.

˙ g = ˙ g 0 exp -
DG
kT

Ê 
Ë 

ˆ 
¯ (2.5)

The temperature variation of the flow stress then depends on the assumed obstacle profile and
its stress dependency. Kocks et al. (Kocks, Argon et al. 1975) have proposed a
phenomenological expression to generalise all discrete-obstacle models. The activation
energy DG, to overcome a discrete obstacle is then given from the following expression,

DG = F0 1 -
s
ˆ t 

Ê 
Ë 

ˆ 
¯ 

pÏ 
Ì 
Ó 

¸ 
˝ 
˛ 

q

(2.6)

where p and q are two coefficients, with values depending on the nature of the obstacle. The
critically resolved shear stress needed to overcome the obstacle at some temperature T, or at 0
K are represented by s and ˆ t  respectively (assuming strengthening due to only one type of
obstacle). Obviously, F0 can be identified as the activation energy needed at zero applied
stress (s=0).

A number of different collective models have been proposed in the literature (Kocks 1985;
Hattendorf and Büchner 1992; Butt and Feltham 1993). These theories usually lead to a more
complicated expression for the activation energy as a function of the applied stress. By
combining this type of expression with Eq. (2.5) above, the temperature dependency of solid
solution strengthening can be modelled.

There are several fundamental differences between a discrete-obstacle approach and a
collective approach, and a more detailed discussion can be found in paper 1. One fundamental
difference between the different models is presented in Fig. 2.4. Here the stress, normalised
by the critically resolved shear stress at 0 K, is shown as a function of the temperature for
three different models. It can be noted that for the discrete-obstacle models there exists an
upper temperature, T0, above which thermal activation occurs so easily that no stress is
required to bypass the obstacles, while for collective models no such temperature exists.
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Fig. 2.4 Normalised stress 

† 

s
ˆ t 

 as a function of temperature as predicted by a Discrete-Obstacle

(--) and two collective models, Butt-Feltham (·-) (Butt and Feltham 1993) and Kocks
(-) (Kocks 1985).

2.2.4 Modelling of Solid Solution Strengthening

In order to evaluate the predictive capability of the different approaches discussed above,
model predictions were compared with experimental data for three different alloy systems.
The discrete-obstacle approach was compared with a collective model proposed by Kocks
(Kocks 1985). Rather than adjusting model parameters to the experimental information,
reasonable values were calculated and tested. A detailed discussion of the results can be found
in paper 1, and we shall discuss some of the main results now.

A comparison between model calculations and experimental data for a Cu-Mn single crystal
system and a Ni-C polycrystal system is shown in Figs. 2.5a and 2.5b. As can be seen, the
collective model (Kocks) seems to reproduce the experimental data for the two systems
remarkably better than the discrete-obstacle model. The third system studied was a Nb-Mo
single crystal system and neither approach was found capable to describe the experimental
data satisfactorily here. The reason for the poor description of this system is probably due to
the influence of other strengthening mechanisms, as discussed in more detail in paper 1.
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Fig. 2.5a Comparison of a Discrete-Obstacle model and a Collective model (Kocks) with
experimental data for Cu-Mn single crystal alloys taken from (Wille and Schwink
1986).

Fig. 2.5b Comparison of a Discrete-Obstacle model and a Collective model (Kocks) with
experimental data for Ni-C polycrystal alloys taken from (Nakada and Keh 1971).
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Although the discrete-obstacle model has a straightforward physical meaning, where the
strengthening effect is caused by misfit strains due to differences in size and/or in shear
modulus between solutes and matrix atoms, there are a number of drawbacks. For example,
the total interaction energy between a single solute and a dislocation at 0 K, F0, can hardly
depend on the solute concentration. Therefore T0 (as defined earlier and a direct function of
F0, given from Eqs. (2.5 – 2.6 )) must also be concentration independent. As a result, the yield
stress predicted by the model, will level out at the same temperature T0, independent of the
concentration. This is in conflict with the experimental data in Fig. 2.5, which indicates that a
plateau in yield stress is reached at higher temperatures. In the model proposed by Kocks, the
actual strengthening mechanism is more difficult to visualise, although the plateau behaviour
can be described fairly well. On the other hand, despite the existence of strong experimental
evidence of large strength contributions due to differences in size and modulus (Fleischer and
Jr. 1963), no such effects are included in the collective model by Kocks.

To conclude, the experimental data for the systems studied, is better described by a model
accounting for a collective overcoming of solutes, rather than overcoming of discrete
obstacles. A discrete-obstacle approach includes the experimentally observed strengthening
due to differences in size/modulus, but is not capable of describing the experimental
information on solid solution strengthening, especially at higher temperatures. A complete
description of solid solution strengthening requires a model that can incorporate size/modulus
effects with a collective overcoming of solutes, especially at higher temperatures and
concentrations.

2.3 Grain Size Strengthening

The strengthening in polycrystals due to grain boundaries has been experimentally established
ever since Hall (Hall 1951; Petch 1953) proposed his relation between the grain size and the
yield stress. The Hall-Petch relation (given below) has been found to be valid for a number of
different systems, both for pure metals and alloys, over quite a large range of grain sizes.

s = s 0 + k ⋅ d- 1
2 (2.7)

In the above equation s  is the (upper or lower) yield stress or flow stress, s 0, is the
contribution from other strengthening mechanisms, d is the grain size and k a constant, often
known as the Hall-Petch constant. In order to explain the experimental observations of the
Hall-Petch effect, several different types of mechanisms have been proposed in the literature.
This is discussed in detail in paper 2 and a short summary will be given here. Of the different
models to explain the Hall-Petch behaviour, three fundamentally different approaches can be
identified, namely pile-up models, dislocation density models and composite models.
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2.3.1 Pile-up Models

One of the earliest attempts to explain the Hall-Petch behaviour was the pile-up model by Hall
(Hall 1951), with subsequent modifications by Petch (Petch 1953) and Cottrell (Cottrell
1964). The basic idea is that dislocations are assumed to pile-up against a grain boundary,
thereby causing a stress concentration. When the stress concentration equals a critical stress,
assumed to activate new dislocation sources, yielding starts in the next grain. The simplest
pile-up we can imagine is a single-layer pile-up, as illustrated in the figure below.

Fig. 2.6 An illustration of a classical pile-up, visualised as a number of edge dislocations piled
up at a grain boundary.

The number of dislocations in a single-layer pile-up, as a function of the applied stress and
pile-up length, has been derived by Eshelby et al. (Eshelby, Frank et al. 1951). The pile-up
length is then proportional to the grain size and going through the algebra we can write the
tensile shear stress as:

ts = t 0 + k1
tcmb

p
⋅ d- 1

2 (2.8)

This relation is identical to Eq. (2.7) earlier, if the square root can be identified with k in Eq.
(2.7), with d as the grain-size and k1 as a constant. The value of k1 depends on the nature of
the pile-up and the assumption coupling the length of the pile-up with the grain size. There are
several attractive features with this theory. It gives an explanation for the sharp yield point
behaviour in low-carbon steels and it is consistent with the inhomogeneous nature of plastic
yielding in these steels. The major drawbacks are that it is not really applicable to all systems
(e.g. fcc-metals) and there are no direct observations of pile-ups reported in the literature. It
should be mentioned that a number of more complicated dislocation configurations have been
proposed in the literature (Li and Chou 1970) although the main features are essentially the
same.

2.3.2 Dislocation Density Models

Another approach to explain the Hall-Petch effect and also to explain the observed grain-size
dependency at higher strains are the different dislocation density models. They are all based
on Ashby's original model (Ashby 1970) of which a very brief outline will be given here.
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Ashby based his model on the assumption that the strengthening due to dislocations can be
separated into two different contributions, namely that from statistically stored dislocations
rS, and that from geometrically necessary dislocations rG. The former quantity is grain-size
independent while the latter depends on the grain size. This leads to the following expressions
for rS and rG,

rS = m C1e
bLs (2.9a)

rG = m C2e
bd

(2.9b)

where 

† 

m  is the average Taylor factor and d is the grain size. The dislocation density rS is
governed by the geometrical slip distance LS, in the interior of the grains where the
deformation is assumed to be uniform. The non-uniform deformation in the grain boundary
region is accommodated by the introduction of geometrically necessary dislocations. These
can be seen as the strain bearers needed to account for the plastic incompatibilities in-between
grains (Ashby 1970), as illustrated in Fig. 2.7 below.

Fig. 2.7 Deformation of polycrystal grains in an uniform manner, causing voids and overlaps
(top right), this are corrected by the introduction of geometrically necessary dislocations
(bottom right), taken from Ashby (Ashby 1970).

The flow stress can then, in the usual fashion, be expressed as proportional to the square root
of the total dislocation density, which leads to:

s = s 0 + ¢ C m 
3
2 m e

C1b
LS +

C2b
d

È 
Î 

˘ 
˚ 

1
2

(2.10)

In the case where grain boundary strengthening dominates, LS>>C1b, i.e. the deformation is
inhomogeneous, (i.e. rG > rS) the above equation reduces to,
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s = s 0 + ¢ C m e C2b ⋅ d- 1
2 (2.11)

where the dislocation-dislocation interaction and the Taylor factor are included in C'. The
factor in front of d-1/2 can then be identified as k in Eq. (2.7). In Ashby's original paper (Ashby
1970) the constant C2 in Eq. (2.9b) is given as 0.25, depending on the assumptions concerning
the number of dislocations needed at the grain boundaries. The parameter C2 can be viewed as
a measure of the creation rate of geometrically necessary dislocations at grain boundaries.

2.3.3 Composite Flow Stress Models

A third type of approach is the idea of describing the flow stress as the sum of the
contribution from grain boundaries and the contribution from grain interiors. A number of
different variants have been proposed (Hirth 1972; Thompson, Baskes et al. 1973; Meyers and
Ashworth 1982). One such model will very briefly be outlined here.

Thompson et al. (Thompson and Baskes 1973; Thompson, Baskes et al. 1973; Thompson
1975; Thompson 1975) developed a model to describe the Hall-Petch behaviour of fcc-metals
by combining concepts from Ashby's model with a composite-type model (Hirth 1972). They
assumed the dislocation density in the grain boundary region rG, to be inversely proportional
to the grain size but independent of strain. In their expression, the statistical density of
dislocations was estimated to be inversely proportional to the geometrical slip distance, LS.
The contributions to the flow stress from the different area fractions were then added, using a
rule of mixtures. Assuming the area of the grain boundary region as LS/d, this leads to the
following expression for the flow stress:

s = s 0 + 1-
LS

d
Ê 

Ë 
Á ˆ 

¯ 
K1

LS +
LS

d
K2d

- 1
2 (2.12)

When LS approaches d, the grain size, i.e. at very small strains, the above expression reduces
to the form of Eq. (2.7), with K2 equal to k. The physical significance of K2 is not very clear,
but it should basically have the same meaning as C2 in Ashby's model although the
interpretation is not as straightforward.

2.3.4 Modelling of Grain Size Strengthening

The different models presented earlier were developed to explain specific features of the
experimental systems studied. Certain factors should be kept in mind when modelling grain
size strengthening. For example different stress strain behaviour (sharp or smooth yielding) is
caused by different mechanisms and have therefore to be modelled separately. The
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inhomogeneous yielding in low-carbon steels is due to the propagation of Lüders bands, a
process that depends, among other quantities, on the grain size. This has to be taken into
account in the modelling of the upper and lower yield stress in these steels. On the other hand,
fcc-materials that yield more homogeneously, can be modelled using one of the approaches
presented above, at least at the yield point. An alternative treatment is presented in paper 2.
There are a number of parameters in the different models and the physical significance of
these, are not always so clear. Concerning pile-up models, more complicated dislocation
configurations than a simple single-layer pile-up, are possible (Li and Chou 1970). It is also
generally very difficult to observe pile-ups and other dislocation configurations
experimentally in these materials at room temperature. This due to the easy occurrence of
cross-slip (Engberg 1979).

Another important issue is the role of grain boundaries during the initial stages of plastic
deformation. There are certain indications of higher dislocation activity around grain
boundaries than in grain interiors (Hansen and Ralph 1981; Hansen 1985; Jago and Hansen
1986). Grain boundary source mechanisms have also been proposed as an alternative to pile-
up models (Li 1963). Although this mechanism cannot be assumed to act as a dislocation
generator, one can visualise the creation of a single dislocation that can then interact with
other existing dislocations, leading to the propagation of plastic deformation from grain to
grain.

This brings us to the next issue, the grain size strengthening observed at higher strains. This
effect at higher strains has been observed in both low-carbon steels (Bergström and Hallén
1983) and in copper (Hansen 1985). The results also indicate, a grain size strengthening effect
present at higher strains, which is independent of strain. This is not consistent with any of the
models presented here. This point will be treated more extensively in section 2.3.5. Generally
speaking, the grain size is not a particularly good variable at higher strains where the flow
stress is rather a function of the dislocation substructure and its evolution. Moreover at higher
strains the change in grain shape and texture evolution must be accounted for.

Another important factor is the influence of temperature and solute content on the Hall-Petch
constant. Several suggestions have been made in the literature on the possible effect of solute
carbon (or nitrogen) on the Hall-Petch constant and a number of researchers (Russel, Wood et
al. 1961; Wilson 1967) have suggested that the presence of carbon atoms at grain boundaries
should influence the unpinning stress, although the exact mechanism is not specified. If the
upper yield stress can be seen as the stress needed to unpin locked dislocations, it seems likely
that an increased carbon content, should lead to stronger locking. In this context it is
interesting to discuss the effect of temperature on the Hall-Petch constant. A process
involving unlocking from interstitial solutes should be thermally activated and several
investigations have been concerned with the temperature dependence of the Hall-Petch
constant (Embury 1971). Experiments on low carbon steels show that for quenched and aged
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specimens k has a strong temperature dependence while in slowly cooled specimens k is
relatively insensitive to temperature (Dingley and McLean 1967; Embury 1971). These results
suggest a stronger temperature effect in specimens with a larger solute content, i.e. with a
stronger locking effect.

Solutes can also influence the Hall-Petch behaviour in materials showing smooth yielding. A
number of investigators have reported an increase in the Hall-Petch constant with increasing
alloying contents, especially in copper (Hall 1970) and in nitrogen alloyed austenitic stainless
steels (Norström 1977; Gavriljuk, Berns et al. 1999). In the light of the models discussed here
it is hard to incorporate a direct effect of solutes into any of them. An indirect effect on the
hardening behaviour is possible, there being some evidence that nitrogen changes the slip
character (Gavriljuk, Berns et al. 1999) and enhances planar slip during the deformation of
austenitic steels. There is also an effect of nitrogen increasing the stacking fault energy
(Gavriljuk, Berns et al. 1999). These factors could possibly influence the grain size
strengthening in an indirect fashion.

2.3.5  A phenomenological and analytical treatment of grain size strengthening

As mentioned earlier, one interesting observation from the experimental data is the grain size
strengthening observed at higher strains, which is not captured satisfactorily in the models
described earlier. This point is the focus of Paper 6, where experimental information from
different alloys is analysed in more detail, using a classical single parameter work hardening
model. A brief summary and discussion of the results will be given here.

The starting point of our discussion is the assumption that strain hardening is controlled by the
grain size at small strains and by the inherent dislocation structure at larger strains. In the
following, we will focus on materials exhibiting a homogenous yielding on a macroscopic
scale, i.e. having a smooth stress strain curve. If the evolution of dislocation density with
strain, is expressed in the following general fashion suggested by many authors e.g.
Bergström (Bergström 1970) or by Kocks and Mecking (Mecking and Kocks 1981),

† 

dr
de

=
m 
b

k1

d
+ k2 ⋅ r

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

- k3 ⋅ r (2.13)

where b in the above equation is the Burgers vector, 

† 

m  is the Taylor factor and k1, k2 and k3

are three dimensionless constants characteristic of the material under consideration. The first
term, in the equation, is strain independent and varies only with the grain size, d. The second
term represents the multiplication of dislocations with increasing strain and the last term the
annihilation and remobilisation of dislocations at larger strains. This type of
phenomenological description has proven to be very useful in the past. One implication of Eq.
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(2.13) is that the mean free path of dislocations at very small strains, is a function of the grain
size, d. With increasing strain, the mean free path will decrease, due to dislocation-dislocation
interactions. At still larger strains, the increase in dislocation density will level out due to the
annihilation of dislocations. This can be compared with the discussion on Ashby’s model
earlier in section 2.3.2. If the above equation is combined with the general expression for the
flow stress given in Eq. (2.2), we can, after certain reformulation, express the strain
hardening, ds/de as:

† 

ds
de

= C1 ⋅
1
d

⋅
1

s -s 0( )
+ C2 (2.14)

C1 and C2 are here given by:

† 

C1 =
m k1

b
⋅

m aGb( )2

2
(2.15a)

† 

C2 =
k2

2
m 2aG (2.15b)

In this derivation, we have omitted the third term in Eq. (2.13), assuming relatively small
strains (up to 10 %) and thereby neglecting recovery effects. Equation (2.14) predicts a
gradual decrease in the strain hardening with increasing flow stress (i.e. increasing strain) and
the initial slope will depend on the grain size. We may also solve analytically the differential
equation (2.13), which is fairly straightforward, assuming once again that we can neglect
recovery of dislocations at small strains. Unfortunately it is not possible to express the
dislocation density as an explicit function of the strain, as we would like. The integration of
Eq. (2.13) combined with Eq. (2.2) leads finally to the following expression for the strain as a
function of the flow stress.
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(2.16)

A more detailed derivation of the expressions above and a lengthier discussion can be found
in Paper 6. In the following section the described treatment is compared with experimental
data for two different systems, an iron-titanium alloy (bcc) and pure copper  (fcc). In the first
type of evaluation, the experimental data was replotted with the strain hardening, ds/de, as a
function of one over the difference in stress, 1/s-s0. This is shown for the different systems in
Figs. 2.8a-b. The figures can be interpreted in the following way. At low strains i.e. to the
right hand side of the Figs. 2.8a-b, the experimental information for the two different grain
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sizes are well differentiated indicating that the strain hardening at the initial stages of plastic
deformation is controlled by the grain boundaries. Although, according to Eq. (2.14), there

should be a linear dependency between, ds/de and 1/s-s0, that is not reflected in the Figs.

2.8a – b. Furthermore the grain size dependency predicted by Eq. (2.14) is much stronger than

what is seen in Figs. 2.8a – 2b. This large discrepancy is partly due to the difficulties in
evaluating the experimental data from the literature. Another important factor could be the

difference in the work hardening behaviour with grain size. Firstly, there is the influence of

texture, the experimental data does not indicate the initial texture for the different grain sizes

and the initial texture can vary for the different grain sizes. Secondly, it has also been reported

in the literature (Gracio and Fernandes 1989) of the difference in substructure evolution with

grain size. It was shown there for copper, that large grained samples (d > 60 µm) behaved
more like single crystals compared to fine-grained. The findings in the literature along with

the discrepancy noted here, indicate that a more sophisticated approach, than Eq. (2.14), is

needed. The focus of this study is not to give a complete description of the influence of grain

size on the work hardening, but to emphasise that the rather simple-minded approach

presented here is sufficient to draw useful conclusions. The results still indicate that the strain

hardening, at the initial stages of plastic deformation, is controlled by the grain boundaries.

(a) (b)

Fig. 2.8. Stress strain data (from Fig. 1 in Paper 6) replotted as the strain hardening ds/de, vs. 1/(s-
s0) for (a) copper and (b) Fe-0.2 w%Ti

At higher strains, i.e. the left hand side of the figures, the experimental information for the
different grain sizes, fall on the same line. This latter observation is in line with our earlier
reasoning, that at larger strains we have an evolving dislocation structure and dislocation-
dislocation interactions will control the strain hardening behaviour.
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In the second type of evaluation, the analytical solution to Eq. (2.13) i.e. Eq. (2.16), was

compared with the experimental stress strain data. This is presented in the Figs. 2.9a-b. As can

be seen, there is a reasonable fit of the analytical solution to the experimental data at low

strains. This once again indicates the validity of the described approach. Reasonable values

were used for the constants in the different expressions and the values for these can be found
in Paper 6.

(a) (b)

Fig. 2.9 Comparison of stress strain data (from Fig. 1 in Paper 6) with predictions from Eq. (2.16) for (a)
copper and (b) Fe-0.2 w%Ti

2.3.6 A numerical model of grain size strengthening

The treatment described in the previous chapter is useful when modelling the macroscopic
properties, such as the flow stress, but it cannot capture local effects at grain boundaries. One
interesting local feature is the evolution and propagation of gradients in dislocation density.
An attempt to experimentally measure the evolving deformation structure is presented in
chapter 3. In order to capture these effects, a simple, one-dimensional model was developed.
The model aims to describe the evolution of dislocation density with strain and distance,
within an average grain. Strictly speaking the model can be seen as an extension of the
classical single parameter work hardening model that has been discussed earlier. The
mathematical formulation of the developed model with a more extensive discussion of the
results and a comparison with experimental data, can be found in Paper 6. Only a brief outline
of the key assumptions behind the model and some results will be presented here.
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The aim is to derive an expression describing the evolution of dislocation density with strain
within a grain. This leads finally to the following partial differential equation, derived with
the assumptions presented below:

† 

∂r
∂e

+ A1
∂r
∂z

= m k2 r (2.17)

ß A dislocations flux is defined as a product of, 

† 

v , the average velocity of dislocation
motion and r the total length of dislocations per unit volume.

ß An extra contribution to the strain hardening is assumed due to the extra generation of
dislocations at grain boundaries.

ß Generation of dislocations within grains is accounted for by including a source term,
where the strain hardening is assumed to be proportional to the square root of
dislocation density.

ß An explicit finite difference method using superposition was used to numerically solve
the PDE in Eq. (2.17).

The constants in Eq. (2.17) above, together with the parameters used in the simulations are
presented in Paper 6. In the Figs. 2.10a-c, dislocation density profiles within an average grain
are shown, for different levels of plastic strain, up to 4 %.

(a)



23

(b)

(c)

Fig. 2.10 Evolution of dislocation density profiles, within an average grain, for 0, 0.2, 1, 2, 3 and
4% plastic strain when the grain size, d is (a) 20 µm, (b) 100 µm and (c) 300 µm.

As can be seen, by comparing Fig. 2.10a with Fig. 2.10c, the influence of grain boundaries on

the evolution of dislocation density is much larger, when the grain size is small (d = 20 µm)

compared to when the grain size is large (d = 300 µm). Also the dislocation density level is

much higher for small grain sizes, as can be expected. In other words there is a greater
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contribution to the strain hardening from grain boundaries. This is also in agreement with

experimental measurements from the literature, of the variation of dislocation density with

grain size, where fine-grained samples show a steeper increase in dislocation density with

strain (Keh and Weissmann 1963; Hansen 1985). Other results from the simulations and
comparisons with experiments, along with a more comprehensive discussion of the
implications of the model can be found in Paper 6.

In conclusion there are a number of factors that should be included in a satisfactory model for
grain size strengthening. A few points have been discussed here and some modelling ideas
have been presented. The discussions here have been directed towards materials exhibiting
homogenous yielding behaviour, where the presented modelling approaches seemed to
provide a satisfactory explanation. In such case, the grain size strengthening at small strains
seems to be controlled by grain boundaries. In the case of grain size strengthening in materials
showing a sharp yield point more work is needed. One interesting area to explore is the
nucleation and propagation of Lüders bands, by performing careful experiments and using
new techniques like AFM and EBSD.

2.4 Precipitation Strengthening

The strengthening effect due to finely dispersed particles has been known for a long time. It is
also one of the methods most extensively used in the development of higher strength in
commercial alloys. A great deal of research has been published on the mechanisms and
applications of precipitation hardening. The basic requirements for this kind of strengthening
is that through a heat treatment (dissolution - quenching - ageing) in a suitable alloy system,
end up with a microstructure consisting of finely dispersed particles in a matrix. These
particles then resist the motion of dislocations, thereby increasing the strength level.

There is an enormous amount of literature on different alloy systems for precipitation and the
effects of precipitation strengthening on different properties, like toughness, ductility and
creep. We will concentrate on the mechanisms behind the effect of precipitation strengthening
on the yield strength. Precipitation strengthening can be treated in a similar way as was earlier
presented for solid solution strengthening. In fact many of the theories presented earlier were
developed for strong obstacles (i.e. precipitates). Among these are the concept of the
flexibility of the dislocation line and the concept of discrete obstacles. There are several ways,
by which a dislocation can bypass obstacles namely,

ß by shearing through them
ß by bowing out between them (the Orowan-mechanism)
ß by cross-slip or climb
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The last mechanism is only interesting at higher temperatures and will not be discussed
further here. The first two mechanisms are competing ones and are valid at different particle
dispersions.

Extensive theories have been developed for a number of different mechanisms, including;

ß chemical hardening
ß stacking fault strengthening
ß strengthening due to differences in shear modulus
ß coherency strengthening (due to coherency strains around particles)
ß order strengthening (due to ordered precipitates)

It must emphasised that in many cases two or more mechanisms may contribute to the
strengthening (the superposition of different mechanisms will be discussed later). It is not
within the scope of this short introduction to go into the details of these different mechanisms
and for a more comprehensive treatment on the subject, the reader is referred to Brown et al.
(Brown and Ham 1971) and Ardell (Ardell 1985).

Fig. 2.11 The transition between shearing and the Orowan mechanism at a certain aging time (or
particle radius) at a constant volume fraction, from (Meyers and Chawla 1984).

From the basic Orowan-equation (Eq. (2.3)), the different models for the strengthening due to
precipitates, can be derived. The crucial point while modelling experimental data is to know
how the particle strength Fp, varies for different mechanisms and with different particle sizes.
There is also a transition between the shearing and Orowan mechanism, which depends on the
strength of the particles, as is illustrated in Fig. 2.11. The other major problem is how to
describe the flexibility of the dislocation line, L, or to understand quantitatively how the
dislocation line interacts with particles. Independent of the model, L will be a function of the
particle strength. In conclusion, a number of factors must be taken into account to
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successfully describe and model the strengthening due to precipitates, the important questions
to consider are listed below:

ß What is the specific nature of the dislocation-particle interaction? (Orowan, order
strengthening, modulus strengthening etc)

ß What is the effective obstacle spacing? (obstacle distribution, different statistics Friedel,
Mott)

ß How to account for the influence of obstacles with different strengths? (superposition of
strengthening contributions)

ß How to account for the interaction with other strengthening mechanisms? (e.g. Orowan
bypassing should cause an increase in the dislocation density)

Finding the answers to these (difficult) questions should help in including the important
parameters in a model for precipitation hardening.

2.5 Peierls-Nabarro Strengthening

Another type of strengthening mechanism, which is important above all in bcc systems, is the
resistance to dislocation motion due to lattice friction. This can be understood as the lattice
resistance, when a dislocation moves in an otherwise perfect lattice, see Fig. 2.12. This
resisting force, which naturally depends on the binding forces between atoms, is called the
Peierls force or Peierls-Nabarro force. An evaluation of the Peierls stress depends on the
actual force-distance relation between individual atoms, information which perhaps is only
available through atomistic simulations. Different treatments of the derivation of the Peierls
stress can be found elsewhere, but we will follow the treatment from Kocks et al. (Kocks,
Argon et al. 1975) and discuss a few basic concepts. Different approximations for describing
the Peierls potential (i.e. the force-separation relation) have been proposed and two important
approximations are the sinusoidal potential and the anti-parabolic potential (Kocks, Argon et
al. 1975). The interesting question is, what is the critical energy for the dislocation line to
move between different energy configurations? This will naturally be a function of the applied
stress and the process will be thermally activated.
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Fig. 2.12 Schematic picture of the energy of an edge dislocation core as a function of its position
in the lattice showing two possible periodic variations of energy with position from
(Weertman and Weertman 1964)

Different models have been proposed, for the critical configuration of the dislocation line but
the most important ones are:

ß the nucleation of a bulge on the dislocation line or
ß the nucleation of a pair of kinks

A more detailed discussion on this subject can be found in Kocks et al., (Kocks, Argon et al.
1975) and Dorn-Rajnak (Dorn and Rajnak 1964). The activation energy for the two processes
can be derived as a function of the applied stress. Interestingly enough, there turns out to be
little variation in the activation energy, depending on the chosen potential (sinusoidal or anti-
parabolic) or the assumed process (bulge or double-kink). Kocks et al. (Kocks, Argon et al.
1975) have proposed a phenomenological expression to summarise the influence of lattice
friction, where activation energy is given as a function of the stress (shown in Fig. 2.13
below). The treatment is similar to that of solid solution strengthening. Due to the very short-
range nature of the Peierls-Nabarro force, it is essentially a thermally activated mechanism.
Thus from an expression for the activation energy and applying activation theory, the Peierls
stress can be derived as a function of temperature. This is analogous to the case of solid
solution strengthening.



28

Fig. 2.13 The range of reasonable relations for the activation energy, DGNUCL(s) of nucleation
over a Peierls barrier, and a central phenomenological relation. The different models
fall within the shaded band, from Kocks et al. (Kocks, Argon et al. 1975).

2.6 Deformation Strengthening

As mentioned earlier, the flow stress has been found experimentally to vary with the square
root of the dislocation density. We will not here go into the details of the many models for
work hardening, but discuss a few basic concepts. This as an introduction to paper 3 where
one simple approach is implemented into a FEM-model. There have been a number of
different attempts to model the deformation hardening. Most of them starting from Eq. (2.2)
presented earlier, which as mentioned before is experimentally well verified. If the flow stress
is written in the following general way,

s = s 0 + m amb r (2.18)

where r is the average dislocation density and 

† 

m  is the average Taylor factor. The s0 term
then contains the contribution from the other strengthening mechanisms, which are assumed
to be strain independent. The crucial point in different hardening models is to describe the
evolution of the dislocation density with strain and this can be done in a number of ways. The
evolution of the dislocation density r with strain g, can for example be written in the
following general way (Nes 1998):

dr
dg

=
dr+

dg
+

dr -

dg
(2.19)

The first term can be seen as a measure of dislocation multiplication, while the second
negative term accounts for the recovery of dislocations and becomes more important at higher
strains. The dislocation multiplication term, is usually assumed to be inversely proportional to
the mean free path, S, of dislocations. The mean free path S, can be related to specific features
in the microstructure. For example in polycrystal fcc-materials, S can be assumed to be
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proportional to the grain size at the yield strength. This assumption leads to a grain size
strengthening effect, as discussed earlier, and in more detail in paper 2 and paper 6. For a
pearlitic structure, S can be assumed to be proportional to the interlamellar spacing, as
proposed in Ashby's original model (Ashby 1970) and this has been incorporated in a FEM-
model, as presented in paper 3. Various theories (Bergström 1970; Roberts and Bergström
1973; Mecking and Kocks 1981; Bergström 1982; Kuhlmann-Wilsdorf 1985; Nes 1998;
Kuhlmann-Wilsdorf 1999) have been proposed to describe and understand work hardening
and most of these include the terms presented in the above expression. The different
approaches lead to slightly different expressions depending on the assumptions concerning the
interaction and mobility of dislocations.

2.7 Superposition of Strengthening Mechanisms

Probably the most interesting and most complex part of the modelling the strengthening
mechanisms is to account for the interaction and superposition of different strengthening
mechanisms. This is also the area where not much literature exists. Kocks et al. (Kocks,
Argon et al. 1975) discuss the question of superposition and also present different expressions
for adding different strength contributions. Brown (Brown and Ham 1971) and Ardell (Ardell
1985) also discuss these issues in the case of precipitation hardening. The most common
metod is to simply add the contributions, so called linear superposition;

t = t1 +t 2 (2.20)

Generally speaking, when the structural scales of the different contributions are not widely
different, linear superposition cannot be assumed to be valid. On the other hand, when the
mechanisms are of sufficiently different length scales, e.g. Peierls-Nabarro barriers and grain
boundaries, where the former is on the scale of atomic distances and the latter is on the scale
of micrometers, linear addition should be valid. Another way of summing the different
contributions to the flow stress commonly proposed in the literature, (Kocks, Argon et al.
1975) is Pythagorean superposition or the sum of the squares of the contributions from
different obstacles as:

t = t1
2 +t 2

2 (2.21)

This is often used for the case with two sets of discrete obstacles of equivalent strengths, but
with varying densities, (Kocks, Argon et al. 1975) as in the case of precipitation strengthening
with two different types of precipitates (Ardell 1985). Compared to linear addition, where the
obstacle strengths are added linearly, in the latter model the obstacle densities are added
linearly. A third case of interest is two sets of obstacles of the same density, but with different
strengths. A statistical treatment of this case (actually for misfitting solute atoms above and
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below the slip plane) has been given by Labusch (Labusch 1970) leading to the following
equation:

t = t1
3
2 + t2

3
2[ ]

2
3 (2.22)

One difficulty that arises when we have obstacles of similar strengths and both are subject to
thermal activation is that small differences in the shape of their respective force-obstacle
profiles can lead to large differences in the way dislocations can bypass the obstacles. Most
superposition models neglect or assume that there is no interaction between strengthening
mechanisms. This is not valid in many cases (Nembach 1992). For example, as a consequence
of the Orowan mechanism, dislocation loops are left behind at precipitates. This should
increase the dislocation density and influence the strain hardening behaviour. One can also
imagine solutes influencing the mechanisms behind Peierls-Nabarro strengthening. The
process of nucleation and propagation of kinks could very well be influenced by the presence
of solutes.

In conclusion it can be seen that the superposition of strengthening mechanisms is not at all
straightforward and a number of different aspects have to be taken into account.
Unfortunately, there is no general method to approach this problem and a careful analysis has
to be done for each case to find the appropriate model. There are a number of ways to
evaluate experimental data in a clever way, in order to distinguish and seperate between
different active mechanisms, and this seems to be one approach towards modelling the
superposition (Kocks, Argon et al. 1975; Kocks 1979). Another approach is through computer
simulations, on a more fundamental level, which is of course limited to relatively small and
idealised systems.



31

Chapter 3

Experimental Techniques and Methodology

As mentioned earlier, the aim of this work is to understand and model the flow stress of
metals. One important step is to understand what happens on a microstructural scale when a
metal is deformed plastically. In this work, the focus is on the deformation behaviour at
relatively small strains around the yield stress. All the different strengthening mechanisms we
have discussed earlier (with the exception of deformation strengthening) affect only the yield
stress3. As we have seen earlier the grain size influences the dislocation strengthening at small
strains. In the following sections the experimental procedures used in this thesis will be
presented and the most essential results will be discussed. A more detailed description and
discussion of the experimental work and also comparison with results from a non-local crystal
plasticity model, can be found in Papers 4 and 5.

3.1 Experimental procedure

The purpose of the experimental work in this thesis is to characterize the evolving
deformation structure at relatively small strains. In-situ studies, where the microstructure can
be characterised by appropriate experimental techniques such as, transmission electron
microscopy is probably the best method. This enables a study of the dislocation dynamics and
deformation mechanisms. Unfortunately, as mentioned earlier this is a demanding and
expensive technique. Another method, which is employed here, is interrupted tensile testing.
A polished metal surface is characterised prior to deformation and then subjected to different
levels of tensile strain. After each strain level the same region in the sample (i.e. the same
grains) is again examined and characterised. The different regions in the samples are
identified using micro indentations as markers. In this way the evolving deforming
microstructure can be monitored at small strains.

Towards this, two different surface techniques namely, atomic force microscopy (AFM) and
electron back-scattered diffraction (EBSD) were applied. The focus, of the experimental
work, was to study the behaviour at grain boundaries and especially the differences in
behaviour between small and large grains. An important subtask is to compare the results
from AFM and EBSD and evaluate they if can be used to study the deformation
characteristics in a quantitative fashion, was another motivation of this study.

                                                  
3 It can be argued that precipitation strengthening should and in fact does influence the flow stress.
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In the first case (Paper 4), a low carbon hot rolled steel, with an average grain size of 11 µm,
was studied using AFM, after different amounts of plastic strain up to 3.4 %. The change in
the measured surface profiles with strain was characterised and compared with a non-local
crystal plasticity model. The details of the model used and other results from the comparisons
are available in Paper 4. In the second case (Paper 5), recrystallised samples of an ultra-low-
carbon (ULC) steel were characterised with AFM and EBSD. The two samples, a coarse
grained (CG_3) with a grain size of 60 µm and a fine grained (FG_1) with a grain size of 14
µm were studied after different amounts of plastic strain up to 10 %. Full details about the
experimental set up can be found in paper 5. A short introduction to the two techniques used
and the results obtained from the measurements will be presented in the coming sections.

3.2 Electron backscattered diffraction (EBSD)

3.2.1 General description

Electron back-scattered diffraction (EBSD) is a powerful tool that is most useful in studying
deformed and recrystallised microstructures is. The principle is based on the acquisition of
diffraction patterns from bulk samples in a scanning electron microscope (SEM). By
analyzing the Kikuchi diffraction patterns from back-scattered electrons, the crystal
orientation at each measured point can be determined. Normally the measurements are
conducted in a conventional SEM but nowadays a field emission gun (FEG) SEM with a
much higher resolution is the preferred system. This is combined with some software to
calculate the crystal orientations at each measuring point from the measured diffraction
patterns. Depending on the type of problem and the accuracy needed the step size of the scan
can be varied and a large enough area can be covered. The technique is extremely suitable in
measuring grains/sub-grains after recrystallisation and deformation processes. A variety of
different parameters can be evaluated from these kinds of measurements and an excellent
review on the technique and its applications can be found elsewhere (Humphreys 2001). A
number of microstructural parameters are now routinely available and used for
characterisation, since many times it is superior to conventional techniques. A few useful
parameters will be introduced here. One type of basic information that can be obtained from
EBSD measurements are orientation imaging maps, i.e. the crystal orientation at every
measured point over an area in the sample.
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Fig. 3.1 Illustration of the commonly used convention of Euler angles, using a first rotation
about the z-axis, a second rotation about the rotated x-axis and finally a third rotation
about the rotated z-axis (Magnusson 2000).

In polycrystalline metal samples it is convenient to relate the absolute orientation at each
point to the deformation geometry on a macroscopic scale, e.g. the geometry of a rolling
process. A number of different definitions are used in the literature to represent the crystal
orientations and one commonly used are the Euler angles (as shown in Fig. 3.1). To define the
crystal orientation at a single point, two different coordinate systems are required one local,
coinciding with the crystallographic axes and one global, for the sample. The Euler angles (j1,
j2, F) describe the rotations needed to make the two coordinate systems coincide (Magnusson
2000). In this way a distribution of orientations or the texture in a sample can be defined. A
uniform distribution of orientations corresponds to a random texture. The texture of a
polycrystalline metal sample is the result of the manufacturing process and thus the texture
contains information about deformation history. On the other hand the texture also has strong
influence on the mechanical properties. There are a number of different ways to visualise the
texture or the distribution of orientations in a material. One common method is by pole
figures, where the measured distribution and intensity of important crystallographic directions
and planes in a sample, are presented in a stereographic projection. Another way to
summarise the overall texture, is by an orientation distribution function (ODF), which is a
three dimensional mathematical function describing the intensity at each point in Euler space.
Usually one displays 2D sections of the cube of Euler space, with contours showing the
intensity, as shown in Fig. 3.2.
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(a)
(b)

Fig. 3.2. ODF:s describing the global texture for the fine-grained (a) and the coarse grained (b)
sample with the <111> // ND. The g-fibre is seen in the f2=45 cross-section.

In this figure the ODF for an ultra low carbon steel, is shown for two different grain sizes. It
can be observed that the fine-grained sample shows a much stronger texture compared to the
coarse grained.  In this case the former sample has undergone a much larger deformation prior
to recrystallisation, which thus gives this sample a much sharper texture. The important
feature in this figure is the j2 = 45° section, where the so-called g-fibre, typical of the
recrystallisation texture in these steels, is seen. This type of texture, with the <111> direction
parallel to the normal direction, is desirable since it leads to the excellent forming properties
in these steels

3.2.2 Description of evaluated parameters

A region in a polycrystalline material can be characterised and different grains and grain
boundaries identified in the way described earlier. In such an orientation imaging map (OIM),
interesting features such as grain boundaries, sub grain boundaries and other changes in
orientation can be visualised. This makes EBSD an excellent method to evaluate the average
grain size. The grain sizes in the two ULC steel samples examined in this study were
evaluated from EBSD measurements to be 60 µm and 14 µm respectively. The orientations in
OIMs can be colour coded according to the respective Euler angles at each point and grain
boundaries can be introduced as, lines between measurement points having a large enough
difference in orientation. In the OIMs shown in Figs. 3.3a-d, grain boundaries are defined as
black lines, with a difference in orientation (or a misorientation) of more than 10° between
neighbouring measured points. Sub grain boundaries shown as white lines, correspond to a
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difference between neighbouring points of more than 2° (see Fig. 3.3). Examples of such
OIMs and an interpretation will be presented in the next chapter and full details are available
in Paper 5.

Another interesting parameter evaluated here is the intra-grain misorientation. This is defined
in the following way; after assigning orientations to all measured points and identifying grain
boundaries as described previously, an average orientation in each grain can be evaluated. The
intra-grain misorientation is then defined as the deviation from the average orientation, within
a grain. In this way an average intra-grain misorientation value per grain, can be defined and
the grains can be colour coded accordingly. Thus the intra-grain misorientation can be seen as
a statistical measure of the reorientation occurring within grains. The change in the intra-grain
misorientation with strain can be seen as a measure of the dislocation storage and therefore a
good measure of the local deformation behaviour.

3.2.3 Results from EBSD measurements

The EBSD measurements were performed in a LEO Gemini 1530 FEG-EBSD. In the Figs.

3.3a-d, OIMs where the grains in the two ULC steel samples were colour coded according to

the Euler angles, are shown after different amounts of deformation. The step size in the scans

presented here, varied between 2.5 and 0.5 µm.

It can be observed in Figs. 3.3a-b that after 0.2% strain, orientations within grains are almost
uniform. After 10% strain (Figs. 3.3c-d) however, there is an increase in the occurrence of

other orientations (colours) within grains. This is especially visible near certain grain

boundaries indicating rotations within grains. Also the large increase in the number of sub-

grain boundaries can be seen, at the highest strain. This indicates an increased rotation within

grains, leading to more inhomogeneous deformation. These do not however, cover entire

grains but instead are predominantly present in the vicinity of grain boundaries and triple-
junctions. In other words, at regions which are strongly stressed and where the generation of

dislocations can be expected to be larger the rotation is larger. In Figs. 3.3e-f, average intra-

grain misorientation maps, of the same regions as before, are shown after 10 % strain. The

grains have been colour coded according to the average intra-grain misorientation value

within each grain, giving each grain a uniform colour. It can be observed that a number of

grains in the fine-grained sample show intra-grain misorientations larger than five degrees and
are thus coloured grey. The average intra-grain misorientation, for each region in the

respective sample, was also evaluated quantitatively at each strain level. This is shown in Fig.

3.4, where the average intra-grain misorientation shows a linear increase with macroscopic

strain. This further emphasises that the intra grain misorientation can be seen as a good

measure of the local deformation behaviour.
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(a) (b)

(c)

(d)

(e)

(f)

Fig. 3.3. Change in orientation with strain, colour coding defined by Euler angles, for (a), CG_3(after 0.2%),
(b), FG_3(after 0.2%), (c) CG_3(after 10%), (d) FG_1(after 10%). Misorientation maps after 10%
strain of (e) CG_3, (f) FG_1.
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Fig. 3.4 Change in average intra-grain misorientation with strain for the different regions, in the
two samples (attention should be paid to the relative change in average intra-grain
misorientation not absolute values as there is a certain spread in the individual
orientation measurements).

A further statistical analysis (where all grain measurements smaller than 5 pixel points were
removed) of the EBSD-data showed two other interesting features. Firstly, both the average
intra grain misorientation and standard deviation values of the misorientation measurements
were larger for the fine-grained sample. This is consistent with the results presented in Figs.
3.3e and 3.3f, where only grains in the fine grained sample showed intra-grain misorientation
values larger than 5°. Secondly, within each sample, the intra-grain misorientation was larger
for large grains compared to small. This latter observation is partly an artefact of the
misorientation measurements but also indicates a greater tendency for intra grain rotation and
inhomogeneous yielding to occur within large grains in a sample. One possible explanation
for the larger misorientation values in the fine-grained sample could be due to the extra strain
hardening contribution from grain boundaries, in line with the discussion earlier in chapter
2.3.5.

3.3 Atomic force microscopy (AFM)

3.3.1 Experimental principle

Another comparatively new technique is atomic force microscopy (AFM). Since the invention

in 1986, the technique has been extensively developed and is finding more and more useful

applications in the field of materials science (Wittborn 2000). The principle is quite simple.
The surface of the sample is probed by a sharp tip, a couple of microns long and often less

than 100 Å in diameter. The tip is located at the free end of a cantilever, that is 100 to 200 µm
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long. The tip can either be in contact with (Contact mode) or very near the surface (Non-

contact mode). Forces acting between the tip and the surface will cause a bending of the

cantilever proportional to the resultant force. The topography of the sample will influence the

forces acting on the tip and thus also the deflection of the cantilever (see Fig. 3.5).

Fig 3.5 Schematic illustration of the principle of AFM. The deflection of the cantilever is
monitored via a laser beam, as the tip scans over the surface.

By monitoring and measuring the deflection of the cantilever, a map of the surface
topography can be generated. Usually a silicon nitride tip is used for the measurements. The

great potential of AFM is the excellent lateral resolution, which can be as low as 0.2 nm,

depending on the surface quality. The experimental set-up is schematically shown in Fig. 3.5.

Another advantage of AM compared to other characterization methods is that comparatively

large areas, up to 75x75 µm, can be scanned.

Fig. 3.6 An example of the two different images obtained from AFM, on the left hand side, the
image created from the actual height measurement, on the right hand side the image
created from the feedback signal. Measurement done on an ultra low carbon steel.
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The information generated from an AFM-scan consists of two images; one is the direct

measurement of the height from the sample registered by a piezo-electric tube mounted on the

cantilever. The other image is generated from the feedback signal, which strives to keep the

cantilever at a constant deflection. An example of the two types of images is shown in

Fig. 3.6.

3.3.2 Results from AFM measurements

As described above, an ULC steel, with two different grain sizes was characterized with
contact mode AFM (D3000 Nanoscope from Digital Instruments with a silicon nitride tip),
after different amounts of plastic strain. After each strain increment the same regions in each
sample were characterized by AFM. In the Figs. 3.7a - f different types of information are
presented. In Figs. 3a - 3d AFM-scans from the fine grained (FG) and the coarse grained (CG)
sample are shown before and after different amounts of strain.

(a) (b)

(c) (d)



40

(e) (f)

Fig 3.7 Typical AFM-scan of regions in the different samples after different strains, (a)
CG_3(after 0.2%), (b) CG_3(after 4 %), (c) CG_3(after 10%), (d) FG_1(after 4%).
Variation of surface profiles at different strains over the corresponding lines in Figs.
3.7a - d: (e) CG-3 and (f) FG-1.

The corresponding roughness profiles over the lines displayed in Fig. 3.7, are shown in Figs.

3.7e-f. As can be observed, most changes occur in the last deformation step, as illustrated by

the slip lines at grain boundaries after 10 % strain (Fig. 3.7c). The roughness profiles show,

both an increase in surface height and also a steepening of gradients, with increasing strain. A

more quantitative measure of the surface roughness is the standard deviation of all height

measurements within a region. This is shown in Fig. 3.8, where the variation of out-of-plane
displacements for different regions in the two samples, have been plotted. The standard

deviation can be seen to increase fairly linearly with strain. This is also in agreement with the

results from the EBSD measurements presented earlier.

Fig 3.8 Change in overall roughness with strain, represented by the standard deviation, sz, for
the different regions in the two samples.
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Another interesting feature that can be visualised with AFM is the individual slip lines, which

can be measured quite accurately. In Fig. 3.9a, an overview of a deformed region in the fine-

grained sample is shown after 10 % plastic strain and the slip lines can clearly be seen. At

higher magnifications, individual slip lines can be resolved and measured and this is shown in

Figs. 3.9b-c. The height of individual slip lines can be assumed to correspond to the number
of dislocations slipping on the slip plane. In this case a step height of 50 nm, should

correspond to roughly 200 individual dislocations, which can then be seen as a measure of the

accumulated strain.

(a) (b)

(c)

Fig 3.9 AFM-scan of region in the fine-grained (FG) sample showing the existence and
evolution of slip lines after 10% strain. (a) Overview of deformed region, (b)
magnification of slip lines seen in previous scan, (c) measurement of surface profile
over slip lines as shown in b.
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A more thorough discussion of the AFM results and also further comparisons with the EBSD
experiments and with a numerical model for grain size strengthening (presented in chapter 2),
can be found in papers 5 and 6, in the appendix.

Surface profiles, from AFM measurements on a low carbon hot rolled steel, also compared
well with results from a non-local crystal plasticity model. This is discussed in more detail in
Paper 4.

3.4 Discussion of the experimental results and concluding remarks

The main aim in using the experimental techniques described above is to get a more complete
picture of the evolution of the deformation structure at grain boundaries with strain. A few
important points will be mentioned here. One obvious issue, as pointed out earlier, is that
surface characterization (2D) techniques have been used to understand plastic deformation, an
essentially 3D-process. The problem is to interpret the role of a free surface on the evolution
of plastic deformation. It can be argued, that a free surface gives the grains on the surface, an
extra degree of freedom compared to bulk grains. On the other hand it is very difficult to
study the behaviour of bulk grains. Bulk methods such as TEM also have the disadvantage of
only covering a small number of grains and essentially only 3DXRD gives the possibility of
studying the same bulk region in a sample, during deformation. The strength of the research
work presented here is that the same grains are studied after each deformation step, thereby
giving the opportunity to follow the deformation behaviour on a local scale. In order to get
some idea of the differences between bulk and surface behaviour, the fine grained ULC steel
sample deformed to 10% strain, was polished down to a third of the original thickness and
studied with EBSD. The results showed that both the average and standard deviation values,
of the intra-grain misorientation, are slightly smaller compared to the earlier presented surface
measurements. The order of magnitude is still the same. This seems reasonable since bulk
grains should have less freedom of rotation compared to surface grains. It should be
emphasised that this comparison is by no means conclusive, as the texture is not necessarily
the same at the surface and in the bulk, for example. Further studies are needed to explore the
differences between bulk and surface measurements.

A few words on the uncertainties and causes of error with the experimental techniques
presented here. In the case of AFM the absolute limit in resolution is given by sharpness of
the tip, as mentioned earlier. Other sources of error in the measurements are sample
preparation and background noise in the AFM equipment used. These factors will cause a
certain error when measuring absolute values of surface height and finer details in the
microstructure. In all the measurements presented here only changes in surface height were of
interest and the features studied are on a much larger scale (hundreds of nanometres) than the
limitation of the technique (a few nanometres). In the case of EBSD, there is an uncertainty of
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± 0.5°, at each measured point for the absolute orientation value and misorientation values
below 1.5° are not reliable without proper filtering of the data points. As in the case of AFM,
the results presented here consist mainly of relative change in orientation and not absolute
values and therefore the possible errors in the measurements should be negligible.

In conclusion the experimental work in this thesis has been concentrated on the behaviour of
grain boundaries during plastic deformation. The two methods employed here, AFM and
EBSD, correspond well with each other, both on a local scale and on a global scale. The
results indicate the occurrence of significant out-of-plane rotation. Both the surface roughness
and the average intra grain misorientation showed a linear increase with strain. The surface
behaviour should thus reflect the overall deformation behaviour. The results also generally
indicate more inhomogeneous deformation behaviour in large grains, although there are more
grains in the fine-grained sample with large intra-grain misorientations. This latter effect is
perhaps due to the greater strain hardening observed experimentally, when the grain size is
smaller.
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Chapter 4

Summary of appended papers

Paper I
Solid Solution hardening - a comparison of two models

In this paper, two different approaches to model solid solution strengthening, namely a
discrete-obstacle model and a collective model, are compared. In the former model,
interaction between a dislocation and a single solute is considered, while in the latter, the
dislocation line interacts collectively with a row of solutes. Model predictions are compared
with experimental data for Cu-Mn and Nb-Mo single crystal systems and a Ni-C polycrystal
system. The collective model gives better results for the two fcc systems while the bcc system
cannot be explained well by either model. The limitations and modelling capability of the two
approaches are discussed with respect to the experimental information.

Paper II
Grain Size Strengthening in Polycrystals

This paper deals with grain size strengthening and focuses on the different models proposed
in the literature to describe the experimental information for different alloys. The
strengthening effect of grain boundaries is well established and observed experimentally as
the Hall-Petch relationship. In this paper different mechanisms proposed in the literature to
explain the observed Hall-Petch effect are reviewed critically. The fundamental implications
of the different approaches are discussed with reference to experimental data for two different
classes of materials;
ß Materials with locked dislocations, i.e. with a sharp yield point behaviour.
ß Materials without locked dislocations, i.e. with a smooth yielding behaviour.

It is shown that a simple model (Bergström) can be used to understand the grain size

strengthening in the latter class of materials while more work is needed to quantitatively
understand the behaviour of materials showing a sharp yield point.

The present author performed the work and wrote the paper, supervised by Kjell Pettersson.
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Paper III
Micromechanical Modelling of Two-Phase Steels

An important issue, when modelling the flow stress of commercial materials, is how to
include an appropriate microstructural length scale within a continuum framework. An
attempt is made in this paper to address this question for the case of a ferritic/pearlitic steel. A
two-dimensional micromechanical model based on the finite element method is presented to
model two-phase ferritic/pearlitic steels, with the aid of generalised plane strain elements. A
periodic representative cell containing 100 ferrite grains, and the desired pearlite fraction is
used. Simulation of the loading, by an average stress or strain state, is possible by applying
periodic boundary conditions. Uniaxial tensile tests were performed on specimens containing
the ferrite and pearlite microstructures and on two-phase materials containing 25% and 58%
pearlite respectively. The stress-strain data of the pearlite material is used to fit a lamellae
dependent Taylor relation to represent the work hardening. Thereafter, lamellar spacings in
the two-phase materials were measured and the total stress-strain response of the materials
was modelled. Comparisons between generated data and experiments show good agreement
up to a strain of 2%.

The present author performed the experimental work and contributed to the discussion.

Paper IV
Comparison of Surface Displacement Measurements in a Ferritic Steel using AFM
and Non Local Crystal Plasticity

This paper deals with another important aspect in the development of continuum models with
a length scale namely, the lack of reliable experimental information on a microstructural level.
An attempt to experimentally study the deformation characteristics around grain boundaries
and to analyse the presence of strain gradients is presented. The evolution of surface profiles
is studied by atomic force microscopy (AFM) at relatively small strains. The results indicate
that this method can be used to draw conclusions about the deformation characteristics. For
example, in large grains the surface profile seems to vary within a grain. This latter effect can
be seen as an indication of the inhomogeneous deformation occurring within large grains. The
results are also compared with FEM calculations using a non-local crystal plasticity theory
that incorporates strain gradients in the hardening moduli.

The present author performed the experimental work and wrote the paper together with Mikael
Nygårds.
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Paper V
A Study of the Surface Deformation Behaviour at Grain Boundaries in an Ultra Low-
Carbon Steel

In light of the results from papers 3 and 4 there was a need to further investigate the evolving
deformation behaviour at grain boundaries, especially at relatively small strains An important

question was if out-of-plane rotation is associated with changes in surface roughness.

In this paper, tensile specimens of ultra low-carbon ferritic steel with two different grain sizes

are studied by AFM and EBSD after different plastic strains up to 10%. Different parameters

such as the change in surface roughness and the change in misorientation, with strain are
evaluated. There is good agreement between the AFM and EBSD results. Both the surface

roughness and the misorientation measurements on the surface, show a linear increase with

the overall strain. An obvious conclusion is that both AFM and EBSD are suitable for the

characterising the surface deformation behaviour. Inhomogeneous features are more

predominant in large grains although there are more grains in the fine-grained sample with

large intra-grain misorientations. It can also be concluded that significant out-of-plane
rotation is consistent with plastic deformation at small strains. The results are discussed with

respect to the difference in grain size in the samples and the implications on the strain

hardening behaviour.

The present author performed the experimental work and wrote the paper together with Mikael
Nygårds.

Paper VI
Grain Size Strengthening at Small Strains – Analysis of Experimental data and
Modelling Implications

This paper again deals with grain size strengthening, specifically focusing on materials
showing a homogenous yielding behaviour. As was shown in paper 2, a relatively simple
model can be used to describe the grain size strengthening at the yield stress, for this class of
materials. An interesting observation from the experimental information is the grain size
strengthening at higher strains. This feature has not been captured satisfactorily in previous
models, as discussed in paper 2.

In this paper an attempt is made to understand the grain size strengthening observed
experimentally, in two different materials exhibiting a homogenous yielding behaviour. A
critical analysis of the experimental information, using a classical single parameter work
hardening model, is presented.
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The results from this analysis show, that the strain hardening at small strains, is controlled by
the grain size. At larger strains the hardening behaviour is controlled by the inherent
dislocation structure.In order to capture local features at grain boundaries, a simple, numerical
model was developed. The numerical model gives satisfactory results in a qualitative
comparison with results from atomic force microscopy (AFM) and electron backscattered
diffraction (EBSD) measurements.

The present author performed the work and wrote the paper, supervised by Göran Engberg.
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Chapter 5

Conclusions and Future work

Understanding the mechanisms behind the strengthening in metals is crucial in the
development of new materials with better mechanical properties. A systematic analysis of
different mechanisms and how they depend on external variables like temperature and strain
rate combined with experimental work on the evolution of plastic deformation at small strains
has been the focus of this work. Two strengthening mechanisms namely, solid solution
strengthening and grain size strengthening have been dealt with in detail. In both these cases
existing models have been reviewed with aspect to their predicting capability and physical
meaning. In the case of grain size strengthening the experimental work has been focused on
the behaviour of grain boundaries during plastic deformation, at relatively small strains. A
first attempt has also been made to include microstructural features in continuum plasticity
models.

5.1 Solid solution strengthening

ß Collective models give a better description of the experimental data compared with the
discrete-obstacle approach, especially for the fcc-alloys studied.

ß A complete description of solid solution strengthening requires a model that can
incorporate size/modulus effects with the collective overcoming of solutes.

5.2 Grain size strengthening

ß The models reviewed in this thesis do not give a good explanation of the grain size
dependency in materials showing a sharp yield point behaviour.

ß A simple model with an easy physical interpretation can be used to model the grain size
strengthening in yield stress of pure fcc-metals.

ß A classical single parameter work hardening model gives a reasonable description of the
grain size strengthening observed at small strains, in materials showing a homogenous
yielding behaviour. The results further indicate that the strain hardening is controlled by
grain boundaries at relatively small strains.
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ß Experimental results from AFM and EBSD measurements show a good correlation with
each other. In both cases the surface roughness and the average intra-grain misorientation
respectively, increase linearly with overall strain.

ß The experimental results also show that inhomogeneous features are more predominant in
large grains although there are more grains in the fine-grained sample with large intra-
grain misorientations. This last fact emphasises the stronger strain hardening observed in
fine-grained samples.

5.3 Flow Stress modelling

The combination of theoretical analysis with experimental observations presented in this
thesis is valuable for the understanding of the mechanisms behind the strengthening in metals.
The experimental techniques used here correlate well with each other and with theoretical and
numerical results. The theoretical modelling was focused on analytical models and their
limitations in comparison with experiments.

Another important part of this project has been focused on the development of continuum
models that include relevant microstructural features. The main results from this work are:

ß The inclusion of pearlite lamellae spacing in a micromechanically based FEM-model for
the flow stress of ferritic-perlitic steels.

ß A good qualitative agreement was obtained between experimental results from AFM and
FEM calculations using a non-local crystal plasticity theory that incorporates strain
gradients in the hardening moduli.

5.4 Future work

As in all scientific research this thesis has raised more questions than answers. However, one
aim of good research should be to pose relevant questions in such a way, that answers can be
found. For the future the following tasks are suggested.

Solid solution strengthening has been reviewed in this thesis and existing models were found
unable to explain the experimentally observed plateau in yield stress-temperature curves.
Moreover, further work is needed to understand the strengthening in bcc-metals.

1. Development of a model for solid solution strengthening that can explain the
concentration dependant plateau in the yield stress at higher temperatures.
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2. Use of ab-initio methods to model the interaction of a dislocation with solutes.
This is the only way to get realistic expressions for the activation energy in solid
solution strengthening

3. Understand the interaction of solid solution strengthening with other strengthening
mechanisms like Peierls-Nabarro and grain size strengthening in bcc-metals by
modelling the interaction of a dislocation line interacting with different kinds of
short-range and long- range obstacles.

As concluded in this thesis more work is needed to fully understand the grain size
strengthening in materials having a sharp yield point i.e. inhomogeneous yielding due to the
propagation of Lüders bands. In the future it would be most interesting to experimentally
study the propagation of Lüders bands in low-carbon steels, with techniques such as AFM,
EBSD and TEM, in order to answer the following questions:

1. Is there a crystal orientation effect in the propagation of the bands?

2. What is the experimental evidence of dislocation pile-ups and other more
complicated dislocation configurations?

3. What are the exact mechanisms by which the grain size and carbon content
influence the nucleation and propagation of Lüders bands?

A big part of this thesis has been concerned in understanding and quantifying the deformation
behaviour at small strains. In this respect AFM and EBSD have been used with good results.
For the future there are possibilities to develop this still further and use other novel
experimental techniques. A few interesting ideas are:

1. Use of EBSD, with a very small step size, to characterise the evolution of the
deformation structure at even smaller strains. The higher resolution should
enable a more detailed study of the evolving substructure in very fine-grained
materials.

2. Further explore the possibilities of AFM perhaps combined with magnetic force
measurements (MFM) to map the local strain on a microstructural scale.

3. Use new techniques like in-situ 3DXRD to follow the deformation
characteristics in 3D.
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