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Foreword

Compilers are ideal software projects: You have relatively stable and well-defined,
partly even formal specifications for the input and the output, and lots of interesting
subproblems in between.

In particular, the scanning part of compilers has been formalized using regular
languages and is expressed in regular expressions, which have become not only
popular for scanning programming languages, but for many other tasks as well. The
parsing part has been formalized with context-free grammars in (extended) BNF
and that has led to the development of parser generators that are quite popular in
language implementations.

Formal specifications have been used for specifying the input language of compil-
ers beyond context-free grammars, such as Van Wijngaarden grammars in ALGOL 68,
or various formal semantics of programming languages. Among theses formalisms,
attribute grammars seem to be the most popular, judging by the tool support available,
but even that does not seem to be very popular: most language designers prefer the
flexibility of natural language; most compiler writers prefer to specify work beyond
the parser in a general-purpose programming language.

This book is about the other end of the compiler, the output part, in particular the
part that has to do with the instruction set of the target processor. One might think
that a similar development to frontends takes place here; but while the instruction
sets of many processors are also specified in a relatively formal way, no common
standard analogous to regular expressions or (extended) BNF has established itself.

One reason is that there are many different purposes for an instruction set de-
scription: assembly programming, code generation, performing assembly, simulation,
automatic hardware generation, etc.

Still, for specifying instruction selection, retargetable compilers usually use ma-
chine description languages, rather than falling back to a general-purpose language,
and these languages correspond to some formalism used in the instruction selector,
e.g., a tree grammar in tree-parsing instruction selection. However, the qmachine de-
scription languages used differ significantly, because of differences in the instruction
selection methods, and in the intermediate representations of the compilers.
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viii Foreword

One significant difference between compiler frontend and backend is that the
frontend must interpret the input in only one way, while the backend can generate
a variety of machine code programs for the input program, all of them correct.
Therefore, the machine description is usually arranged as mapping the intermediate
representation to machine instructions rather than the other way round, leading to
compiler-specific machine descriptions.

Among the possible correct code sequences, the compiler will ideally select
the one that is best in terms of speed, size or some other metric, so we have an
optimization problem at hand, and like many compiler problems, this one is NP-
complete in the general case.

Moreover, there are additional goals in instruction selection, such as short compi-
lation time and ease of compiler development, resulting in a large variety of different
instruction selection methods; some methods have been superseded, and are mainly
of historical interest, but others are used because they offer a useful trade-off for
various design goals. For example, Chris Fraser (who contributed to Davidson-Fraser
code generation, and several tree-parser generators) once told me that he worked on
tree parsing for fast compilation, but would use Davidson-Fraser if better generated
code was more important.

Probably because there is no canonical instruction selection specification for-
malism comparable to BNF, instruction selection has been mostly neglected for a
long time in many compiler textbooks. Even those textbooks that cover instruction
selection have to limit themselves to just one or two techniques for space reasons.

If you want to know more, read this book! It gives a broad survey over the large
body of literature on instruction selection. Also, if, after reading this book, you desire
an even deeper knowledge of a particular method, this book points you to the original
papers that you can then read, and it also provides background knowledge that is
useful for understanding these papers.

This book is not just useful for students who are looking for knowledge beyond
the compiler textbook level, but also for experts: I have published in this area, yet a
lot of this material, especially the early work, was new to me when I got this book
for review.

Vienna, Austria M. Anton Ertl
March 2016 TU Wien



Preface

Like most doctoral students, I started my studies by reviewing the existing, most
prominent approaches in the field. A couple of months later I thought I had acquired
a sufficient understanding of instruction selection and felt confident enough to begin
developing new methods.

That confidence was short-lived.
When exploring my new ideas, I would soon face a number of problems about

instruction selection that I didn’t fully understand, prompting me to read more papers
until I did. Empowered with new knowledge, I would resume my research, only
to shortly after be confronted with yet another set of problems. After doing this
for another few months, the pile of related work had grown so large that I started
to wonder how many more papers the collection would need before it contained
everything ever published on instruction selection. So I set out to find those missing
papers. Several months later, my findings had been compiled into a 109-page tech-
nical report—which grew to 139 pages in a second revision—and although it was
written primarily to be shared with others, I wrote it equally as much for myself to be
used later as a manual of reference. At this point my supervisors and I believed the
material to be of sufficient quality for publication, but it was simply too long to be
accepted by any journal in its current form. Fortunately, Springer agreed to publish
my work as a book, which is the one you are currently reading.

The ambition of this book is to (i) introduce instruction selection as an interesting
problem—what it is, and why it matters—and (ii) present an exhaustive, coherent,
and accessible survey on the existing methods for solving this problem. In most cases,
the goal is to convey the main intuition behind a particular technique or approach.
But for methods that have had a significant impact on instruction selection, the
discussions are more in-depth and detailed. The prerequisites are kept to a minimum
to target as wide an audience as possible: it is assumed that the reader has a basic
background in computer science, is familiar with complexity theory, and has some
basic skills in logic and maths. However, no expectations are made regarding prior
knowledge on instruction selection, and very little on compilers in general. Hence
the material presented herein should be useful to anyone interested in instruction
selection, including:
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x Preface

novice programmers, who have used a compiler but know nothing about its
internals;
intermediate and advanced students, who may already have taken a course on
compilers; and
expert practitioners, who have decades of experience in compiler development.

Stockholm, Sweden Gabriel Hjort Blindell
January 2016 KTH Royal Institute of Technology
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Chapter 1
Introduction

A compiler is primarily and foremost a tool that enables programs to be executed
by a computer. This means that virtually every undertaking of implementing a piece
of software—be it a GUI-based Windows application, a high-performance Fortran
program for mathematical computations, a smartphone app written in Java, or that
tiny C program which controls your refrigerator—necessitates a compiler in one form
or another. Since a computer is only as useful as the programs it executes, compilation
has consequently been under active research ever since the first computers started
to appear in the 1940s, which makes it one of the oldest and most studied areas of
computer science.

In order to perform its task, a compiler must tackle a broad range of interme-
diate problems. The most important problems include syntactic analysis, program
optimization, and code generation, which is the task of generating code for a given
program and a particular hardware. Code generation in turn consists of three sub-
problems: instruction selection—the task of deciding which instructions to use;
instruction scheduling—the task of scheduling the selected instructions; and register
allocation—the task of assigning registers to the variables of the program. This book
focuses on the first of these tasks.

Compared to many other aspects of compilation and code generation, instruction
selection has received far less attention. Most compiler textbooks discuss instruction
selection only briefly and thus provide little insight. For example, in the compiler text-
books [8, 18, 85, 130, 231, 257, 339]—a collection comprising over 4,600 pages—
fewer than 160 pages are devoted to instruction selection, and in these there is tremen-
dous overlap and they typically only describe methods based on a single approach.
In addition, the existing surveys conducted by Cattell [68], Ganapathi et al. [150],
Leupers [227], and Boulytchev and Lomov [53] are either too old or incomplete.
This book addresses both these shortcomings by presenting an exhaustive and co-
herent survey of the existing techniques, spanning over 45 years of research, and
includes both conventional designs as well as the state of the art. To facilitate access
to this vast amount of work on instruction selection, the survey is structured along
two dimensions: the techniques are organized and discussed according to (i) their
intrinsic approach, and (ii) the extent of their machine instruction support.

1
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The book is organized as follows. The rest of this chapter describes the task of
instruction selection (and why it is needed), establishes a common taxonomy, dis-
cusses common issues when comparing existing methods, and briefly covers the first
publications on code generation. Chapters 2 through 5 then examine a fundamental
principle to instruction selection: macro expansion, tree covering, DAG covering, and
graph covering. Chapter 6 ends the book with conclusions through which I attempt
to identify directions for future research.

The book also contains several appendices. Appendix A provides a table which
summarizes all techniques covered in the book. Appendix B contains a diagram
illustrating the distribution of publications over time for each principle of instruction
selection. Appendix C gives a set of formal definitions regarding graphs. Appendix D
contains a summary of the taxonomy which is used throughout this book.

1.1 What Is Instruction Selection?

In order to describe the task of instruction selection, we will begin by briefly outlining
the common structure of a program, the characteristics of the designated hardware,
and the anatomy of a typical compiler.

1.1.1 The Program Under Compilation

We assume that a program consists of a set of directives, written according to the
syntactic and semantic rules specified by some programming language. This body
of directives is commonly called the source code of the program. Without loss of
generality we can also assume that all programs are composed of a set of program
functions, which we will simply call functions unless there is risk of confusion. A
function is defined as a series of computations and function calls, interspersed with

1: int factorial(int n) {
2: int f = 1;
3: for (; n > 1; n--) {
4: f = f * n;
5: }
6: return f;
7: }

(a) Factorial function, written in C

1: int factorial(int n) {
2: init:
3: int f = 1;
4: loop:
5: if (n <= 1) goto end;
6: f = f * n;
7: n--;
8: goto loop;
9: end:

10: return f;
11: }

(b) Same function, but with gotos

Fig. 1.1: Source code example
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control-flow operations such as if-then-else statements and for loops (see Fig. 1.1a
for an example using the factorial function). We also assume each program has
exactly one function which represents the program’s entry point of execution.

Each function in turn is said to consist of a set of basic blocks (or simply blocks).
A block is a group of statements where a change in control flow only occurs at the
end of the block. By rewriting the aforementioned factorial function to only use goto
statements for control flow (see Fig. 1.1b), we achieve the following set of blocks:

lines 2 through 3 form a block, since execution can jump to line 4;
lines 4 through 5 form a block, since there is a jump at line 5;
lines 6 through 8 form a block, for the same reason as above; and
lines 9 through 10 form the last block.

The notion of blocks will be needed when we discuss the scope of instruction
selection.

1.1.2 The Target Machine

The hardware for which a given program is compiled is commonly referred to as the
target machine. A target machine comprises a processor that continuously interprets
and executes machine code. The machine code consists of a series of 1s and 0s that are
bundled by the processor into machine instructions (or simply instructions), which
are subsequently executed. The set of available instructions, called the instruction
set, and their behavior is specified by the target machine’s instruction set architecture
(ISA), which means that machine code using instructions from a specific ISA can
be executed on any target machine supporting the same ISA. The complexity of
the instruction set may range from simple, single-operation instructions (such as
arithmetic addition) to highly elaborate instructions (for example, “copy the content
of one memory location to another, increment the address pointers, and then repeat
until a certain stop value is encountered”).

Although it is technically feasible to write programs directly as machine code, it
is obviously extremely cumbersome to do so in practice. Such programs are instead
written in an assembly language, which enables the instructions to be referred to using
mnemonic names instead of specific bit patterns. Code written in assembly language
is called assembly code, and an example will be shown shortly. The assembly code is
then converted into machine code by an assembler.

Compared to the relatively high-level programming languages, the assembly
language is typically much more austere. For example, control flow can usually
only be expressed using compare-and-jump instructions, and much of what is done
implicitly in programming languages, such as memory accesses, must be done
explicitly in the assembly language. Moreover, certain operations appearing in the
source code may not necessarily have a directly corresponding operation in the
assembly language, and must instead be emulated using multiple instructions.
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Hence there is a gap between the programming language in which the program
is expressed, and the assembly language understood by the target machine that will
execute the program. This gap is bridged by the compiler.1

1.1.3 Inside the Compiler

Figure 1.2 illustrates the infrastructure of a typical compiler. First a frontend parses
and validates the source code of the program, ensuring that it is free from syntactic
and semantic errors which would violate the rules of the programming language.
Next the frontend translates the source code into an equivalent form known as the
intermediate representation (IR). The IR code is a format used internally by the
compiler, which also isolates the rest of its components from the characteristics of a
particular programming language. Hence multiple programming languages can be
supported by the same compiler infrastructure simply by replacing the frontend.

The IR code is then passed on to the optimizer, which attempts to improve the
efficiency of the program. Examples of common program optimizations include
dead-code elimination (removing code that will never be executed), constant folding
(evaluating computations with constant values during compilation), and loop un-
rolling (performing several iterations at once within the same loop in order to reduce
the loop maintenance overhead). Although the optimizer is not strictly necessary
for bridging the gap between program and target machine, a vast majority of the
implementation effort goes into this component (for production-quality compilers
such as GCC and LLVM, it is in the order of hundreds of man-years).

Lastly the optimized program is passed on to the backend, also called the code
generator, where the IR code will be converted into assembly code, typically one
function at a time. The first task that the backend must perform is to decide which

source
code frontend optimizer backend

assembly
code

IR
IR

instruction
scheduler

instruction
selector

register
allocator

Fig. 1.2: Overview of a typical compiler infrastructure

1 It should be mentioned that the compiler itself is also a program that must be compiled in order to
be executable. This gives rise to a curious Catch 22 dilemma: How was the first compiler compiled?
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1: factorial:
2: mov t0,$a0
3: addi t1,$r0,1
4: subi t2,t0,1
5: head:
6: blez t2,end
7: loop:
8: mul t1,t1,t2
9: subi t2,t2,1

10: j head
11: end:
12: mov $v0,t1
13: jr $ra

(a) After instruction selection

1: factorial:
2: mov t0,$a0
3: {addi t1,$r0,1;

subi t2,t0,1}
4: head:
5: blez t2,end
6: loop:
7: mul t1,t1,t2
8: subi t2,t2,1
9: j head

10: end:
11: mov $v0,t1
12: jr $ra

(b) After instruction scheduling

1: factorial:
2: {addi $v0,$r0,1;

subi $t0,$a0,1}
3: head:
4: blez $t0,end
5: loop:
6: mul $v0,$v0,$t0
7: subi $t0,$t0,1
8: j head
9: end:

10: jr $ra

(c) After register allocation

Fig. 1.3: The factorial function, expressed in assembly for a multi-issue MIPS
architecture

instructions of the target machine to use for implementing the IR code (see Fig. 1.3a).
This is the responsibility of the instruction selector. For the selected instructions,
the backend must also decide in what order they appear in the assembly code (see
Fig. 1.3b). This is taken care of by the instruction scheduler. Finally, the backend
must decide how to use the limited set of registers available on the target machine
(see Fig. 1.3c), which is managed by the register allocator.

1.1.4 The Instruction Selector

For a given piece of IR code P—depending on the scope, this may constitute an entire
program, a function, a block, or only part of a block—the instruction selector must
first and foremost select instructions such that they implement the same behavior
on the target machine as that specified by P. However, depending on the target
machine, some sequences of instructions are more efficient than others in performing
a specific task. This is especially true for digital signal processors (DSPs), which
provide many customized instructions in order to improve the performance of certain
algorithms. According to a 1994 study [357], the clock-cycle overhead of compiler-
generated assembly code from C programs targeting DSPs could be as much as
1,000% compared to hand-written assembly code when failing to take full advantage
of the target machine’s capabilities. Consequently, as a secondary objective the
instruction selector should pick instructions that result in high-quality assembly code.

As we will see later, the semantics of the instructions can be captured as patterns,
which allows us to reformulate the task of instruction selection as the following
subproblems:

The pattern matching problem. Finding the instructions that can be used to imple-
ment a given piece of IR code.



6 1 Introduction

The pattern selection problem. Deciding upon a combination of instructions to
implement the IR code.

The first subproblem is concerned with finding instruction candidates—most instruc-
tion sets are seldom orthogonal, meaning there is typically more than one way of
implementing the same behavior—whereas the second subproblem is concerned with
selecting a subset from these candidates. Some techniques combine both subproblems
into a single step, but most keep them separate and predominantly differ in how they
solve the pattern selection problem. In general, the latter problem is formulated as an
optimization problem: each instruction is assigned a cost, and the goal is to minimize
the total cost of the selected instructions. The cost is an abstraction of a property
that one would like to minimize in the generated assembly code, for example its
execution time, code size, or energy consumption. It is most common to minimize
the execution time in order to maximize performance.

1.2 Comparing Different Instruction Selection Methods

As discussed in the previous section, the instruction set can consist of many different
kinds of instructions. However, it is common to all contemporary designs that none is
capable of handling every instruction available in the instruction set. As a result, when
discussing a new instruction selection technique, most papers differ on the instruction
set under consideration. For example, in the early literature a “complex instruction”
refers to a memory load or store instruction that computes the memory address using
schemes of varying complexity. These schemes are called addressing modes, and
using these appropriately can reduce code size as well as increase performance. As
an example, let us assume that we need to load the value at a particular position
in an array A of 1-byte values that reside in memory. The memory address of our
wanted value is thus @A+offset, where @A represents the memory address of
the first element in A (usually called the base address), and offset represents the
memory distance from the base address to the wanted value. A reasonable approach
to fetching this value is to first execute an add instruction to compute @A+offset
into some register rx, and then execute a load instruction that reads from the
memory address specified by rx. Such load instructions are said to have absolute
or direct addressing modes. But if the instruction set provides a load with indexed
addressing mode, where base address and offset are provided directly as arguments
to the instruction, then we only need to use a single instruction. As efficient handling
of such addressing modes nowadays is trivial for the most part, a complex instruction
in modern literature typically refers an instruction which produces more than one
value, or an instruction which can only be used (or not used) in particular situations.



1.2 Comparing Different Instruction Selection Methods 7

1.2.1 Introducing the Notion of Machine Instruction
Characteristics

To mitigate these problems—and to enable us to more conveniently compare the
different methods of instruction selection—I will introduce and define machine
instruction characteristics, each of which refers to a certain class of instructions.
The first three characteristics form sets of instructions which are disjoint from one
another, but the last two characteristics can be combined as appropriate with any of
the other characteristics.

Single-output Instructions

The simplest kind of instruction forms the set of single-output instructions. These
produce only a single observable output, in the sense that “observable” means a
value that can be read and accessed by the assembly code. This includes all machine
instructions that implement a single operation (such as addition, multiplication, and
bit operations), but it also includes more complicated instructions that implement
several operations like the aforementioned memory operations with complicated
addressing modes. As long as the observable output constitutes a single value, a
single-output instruction can be arbitrarily complex.

This class comprises the majority of instructions in most instruction sets, and in
simple reduced instruction set computer (RISC) architectures, such as MIPS, nearly
all instructions are single-output instructions. Needless to say, all instruction selectors
are expected to support this kind of instruction.

Multi-output Instructions

As expected, multi-output instructions produce more than one observable output
from the same input. Examples include divmod instructions, which compute both
the quotient and the remainder of two input values, as well as arithmetic instructions
that, in addition to computing the result, also set one or more status flags. A status
flag (sometimes also known as a condition flag or a condition code) is a single bit that
signifies additional information about the result of a computation, for example if there
was a carry overflow or the result was equal to 0. For this reason such instructions are
often said to have side effects, but in reality these bits are nothing else but additional
output values produced by the instruction, and will thus be referred to as multi-output
instructions. Load and store instructions, which access a value in memory and
then increment the address pointer, are also considered multi-output instructions.

Many architectures such as X86, ARM, and Hexagon provide instructions of this
class, although they are typically not as common as single-output instructions.
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Disjoint-output Instructions

Instructions which produce many observable output values from many different input
values are referred to as disjoint-output instructions. These are similar to multi-output
instructions with the exception that all output values in the latter originate from the
same input values. Another way to put it is that if one formed the patterns that
correspond to each output, all these patterns would be disjoint from one another
(how such patterns are formed will be explained in Chapter 2). This typically in-
cludes single-instruction, multiple-data (SIMD) instructions, which execute the same
operations simultaneously on many distinct input values.

Disjoint-output instructions are very common in high-throughput graphics ar-
chitectures and DSPs, but also appear in X86 as extensions with names like SSE
and AVX [186]. Recently, certain ARM processors are also equipped with such
extensions [23].

Inter-block Instructions

Instructions whose behavior essentially spans across multiple blocks are referred to as
inter-block instructions. Examples of such instructions are saturated arithmetic2 and
hardware loop instructions, which repeat a fixed sequence of machine instructions a
certain number of times.

Instructions with this characteristic typically appear in customized architectures
and DSPs such as ARM’s Cortex-M7 processor [24] and TI’s TMS320C55x proces-
sor [322]. But because of their complexity, these instructions require sophisticated
techniques for capturing their behavior which are not provided by most compilers.
Instead, individual instructions are supported either via customized program opti-
mization routines or through so-called compiler intrinsics, which are special types of
nodes in the IR code. If no such routine or compiler intrinsic is available, making use
of these machine instructions requires the program to be written directly in assembly
language.

Interdependent Instructions

The last class is the set of interdependent instructions. This includes instructions
which exhibit additional constraints that appear when they are combined with other
instructions in certain ways. An example includes an add instruction, again from the

2 In saturated arithmetic, the computed value is “clamped” within a specific range. For example, if
the permitted range is −128≤ x≤ 127, then the saturated sum of 100+80 is 127. This is common
in signal processing applications, and it is typically implemented by first performing a regular
arithmetic operation and then checking whether the result exceeds the bounds. In fact, a request
was recently made to extend the LLVM compiler with saturated arithmetic compiler intrinsics to
facilitate selection of such instructions [51].
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TMS320C55x instruction set, which cannot be combined with an rpt instruction if
a particular addressing mode is used for the add instruction.

Interdependent instructions are rare and may be found in complex, heterogeneous
architectures such as DSPs. As we will see, this is another class of instructions that
most instruction selectors struggle with, mainly because such instructions typically
violate the set of assumptions made by the underlying techniques.

1.2.2 What Does It Mean for Instruction Selection to Be
“Optimal”?

When using the term optimal instruction selection, most literature assumes—often
implicitly—the following definition:

Definition 1.1. For a particular set I of instructions, where each instruction i ∈ I has
a cost ci, an instruction selector is optimal if and only if for any given input P it finds
a multiset3 S from I such that S implements P and there exists no other multiset S′

that also implements P and ∑s′∈S′ cs′ < ∑s∈S cs.

In other words, if no assembly code with lower cost can be achieved using the same
set of instructions, then the instruction selector is said to be optimal.

This definition has two shortcomings. First, the “set I of instructions” does not
necessarily need to contain every instruction available on the target machine. It
is therefore most common to only include the instructions that can be supported
by the instruction selector and simply ignore all other instructions available on
the target machine, even though they may in certain cases lead to more efficient
assembly code. While the clause enables comparison between instruction selectors
with similar instruction support, it also allows two instruction selectors with very
different instruction support to both be considered optimal even though one clearly
produces more efficient assembly code than the other. One solution is to require
the set I to include all available instructions, but this also renders essentially all
existing instruction selection techniques as suboptimal as there always seems to
exist—excluding the simplest of instruction sets—some non-supported instruction
that would improve the code quality for a particular program. Note also that an
instruction selector which is optimal for programs represented in one form is not
necessarily optimal when they are represented in another. Hence even two optimal
instruction selectors that both handle the same instruction set, but accept programs in
different forms, are not necessarily comparable [17].

Second, two comparable instruction selectors may select different sets of instruc-
tions that ultimately yield assembly code of disproportionate quality after instruction
scheduling and register allocation has been performed. For example, let us assume
that we need to select instructions for implementing a set of operations that can be
executed independently from one another. The instruction set provides two options:

3 A multiset is a set where duplicates are allowed.
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either use two machine instructions, each taking two cycles (thus yielding a total cost
of 4); or use a single instruction which takes three cycles (total cost 3). According
to the aforementioned definition, the second solution is preferred as its total cost is
lower. However, if the target machine can execute multiple instructions in parallel,
then the first solution is preferred since it would only take two cycles to execute both
machine instructions. Hence the costs are not always additive, but depend on the
optimization criteria and the properties of the target machine.

However, the second solution is only better if the instruction scheduler is capa-
ble of scheduling the two instructions in parallel. Hence, decisions made by the
instruction selector have an impact on the decisions to be made by the instruction
scheduler. A similar dependence exists between the instruction selector and register
allocator for heterogeneous architectures with multiple register classes; if not all
instructions can access all registers, then selecting particular instructions may force
the register allocator to keep data in certain registers, which could potentially have
a negative impact on code quality. This highlights a well-known property of code
generation: instruction selection, instruction scheduling, and register allocation are
all interconnected, forming a complex system that affects the quality of the final
assembly code in complicated and often counterintuitive ways. Therefore, to produce
truly optimal assembly code, all three tasks must be performed in unison. Several
attempts to do this have been made, some of which are covered in this book.

But if the idea of optimal instruction selection as an isolated concept is of limited
significance, why then has it become so firmly established in the compiler community
and literature? The first part of the answer is that it makes sense when code generation
is performed in stages, which is the case for most compilers. The second part is that
it makes it easier to write the so-called machine description [17], which we will
introduce in Chapter 2. Adding a new machine instruction or rule to an instruction
will never degrade the quality of code generated by an optimal instruction selector,
whereas this new extension may cause a greedy instruction selector to make poor
decisions in certain situations.

Due to these aforementioned problems, I will make as little use as possible of the
term optimal instruction selection and instead use optimal pattern selection, which
will be introduced Chapter 3 and has a less problematic definition (although it, too,
is not perfect).

1.3 The Prehistory of Instruction Selection

The first papers on code generation [15, 133, 262, 291] appeared in the early 1960s
and were predominantly concerned with how to compute arithmetic expressions on
target machines based on accumulator registers. An accumulator register is a register
which acts both as an input value and destination for an instruction (for example
a← a+b). These were prevalent in the early target machines as the processor
could be built using only a few registers. Although this simplified the hardware
manufacturing process, it was not straightforward to generate assembly code which



1.3 The Prehistory of Instruction Selection 11

evaluates an expression and at the same time minimizes the number of transfers
between the accumulator registers and main memory.

Sethi and Ullman [305] later expanded these first methods to target machines with
n general-purpose registers. In a paper from 1970, Sethi and Ullman introduce an
algorithm that evaluates arithmetic statements with common subexpressions and
generates assembly code with as few instructions as possible. This work was later
extended in 1976 by Aho and Johnson [3], who applied dynamic programming to
develop a code generation algorithm that could handle target machines with more
complex addressing modes such as indirection. We will revisit this method later in
the book as it has influenced many subsequent instruction selection techniques.

Common among these early techniques is that the instruction selection problem
was effectively ignored or circumvented. For instance, both Sethi and Ullman’s
and Aho and Johnson’s designs assume that the target machines exhibit precise
mathematical properties and are devoid of any exotic instructions and multiple
register classes. Since no, or very few, machines have such characteristics, these
algorithms were not directly applicable in practice.

Lacking formal methods, the first instruction selectors were typically written by
hand and based on ad hoc algorithms. This meant a trade-off between efficiency and
retargetability: if the instruction selector was too general, the generated assembly
code might not be efficient; if it was tailored too tightly to a particular target machine,
it could constrain the compiler’s support for other target machines. Retargeting such
instruction selectors therefore involved manual modifications and rewrites of the
underlying algorithms. For irregular architectures, with multiple register classes and
different instructions to access each class, the original instruction selector might not
even be usable at all.

But even if the instruction selector was built to facilitate compiler retargeting,
it was still not immediately clear how to achieve this goal. Thus we will begin by
examining the first methods that attacked this problem.





Chapter 2
Macro Expansion

The selection of techniques in this chapter includes all those discussed in earlier sur-
veys by Cattell [68] and Ganapathi et al. [150]. In the latter, the principle discussed
in this chapter is called interpretative code generation. Several of these techniques
are also discussed in depth by Lunell [244].

2.1 The Principle

int a = 1;

int b = a + 4;

p[4] = b;

mv r1, 1

add r2, r1, 4

mv r3, @p
add r4, r3, 16
st r4, 0(r2)

PROGRAM ASSEMBLY CODEThe first papers to introduce methods
that specifically dealt with instruction
selection as a separate problem ap-
peared in the late 1960s and applied
a principle known as macro expansion.
In these designs the instruction selector
operates by matching templates over the program. Upon a match a corresponding
macro is executed by a macro expander, using the matched program string as argu-
ment. Each programming language construct has its own macro definition which
is responsible for emitting the assembly code that implements the corresponding
semantics on the target machine. To make better use of the instruction set, multiple
language constructs can also be combined into a single template. For a given program
the instruction selector will operate in a procedural manner of traversing the program,
matching the code against the templates, and executing the macros that match. If
some portion of the code cannot be matched against any template, then the instruction
selector will fail and report an error, indicating that it is unable to produce valid
assembly code for that particular program against the specific target machine (which
preferably should never happen).

Using the terms introduced in Chapter 1, the process of matching templates
corresponds to the pattern matching problem, and the process of choosing between
multiple matching macros corresponds to the pattern selection problem. To the best

13
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of my knowledge, all macro-expanding instruction selectors immediately select the
macro that matches first, thereby sidestepping the latter problem entirely.

Keeping the implementation of these macros separate from the implementation of
the core of the instruction selector—that is, the part that takes care of matching the
template and executing the macros—means that the effort of retargeting the compiler
against a different target machine is lessened as only the macros need to be redefined.
Compare this with the earlier, monolithic designs, which often necessitated complete
rewrites of the entire code generator.

2.2 Naı̈ve Macro Expansion

2.2.1 Early Applications

We will refer to instruction selectors that directly apply the principle just described
as naı̈ve macro expanders, for reasons that will soon become apparent. In the first
such implementations the macros were either written by hand (like in the Pascal
compiler developed by Ammann et al. [12, 13]) or generated automatically from
a specification of the target machine, called the machine description, which was
typically written in some dedicated language. Consequently, many such languages
and related tools have appeared—and then disappeared—over the years (see for
example [59] for an early survey).

One such example is SIMCMP, a macro expander developed in 1969 by Orgass and
Waite [273]. Designed to facilitate bootstrapping,1 SIMCMP read its input line by line,
compared the line against the templates of the available macros, and then executed
the first macro that matched. An example of such a macro is given in Fig. 2.1.

Another example is the Generate Coding Language (GCL), developed by Elson
and Rake [108], which was used in a PL/1 compiler for generating assembly code
from abstract syntax trees (ASTs). An AST is a graph-based representation of the
program’s source code and is always shaped like a tree (Appendix C provides an
exact definition of graphs, trees, nodes, edges, and other related terms which we will

* = CAR.*.
I = CDR(’21)
CDR(’11) = CAR(I).

.X

(a) A macro definition

A = CAR B.

(b) A string that matches
the template

I = CDR(38)
CDR(36) = CAR(I)

(c) Produced output

Fig. 2.1: Language transfer example using SIMCMP [273]

1 Bootstrapping is the process of writing a compiler in the programming language it is intended to
compile.
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encounter throughout this book). The most important feature of these trees is that
only a syntactically valid program can be transformed into an AST, which simplifies
the task of the instruction selector. However, the basic principle of macro expansion
remains the same.

Using an Intermediate Representation Instead of Abstract Syntax Trees

Performing instruction selection directly on the program’s source code, either in
its textual form or on the AST, carries the disadvantage of tightly coupling the
code generator to a particular programming language. Most compiler infrastructures
therefore rely on some lower-level, machine-independent IR which isolates the
subsequent program optimization routines and the backend from the details of the
programming language.2 The IR code is often represented as a program tree, which
is a data-flow graph where each node represents an operation in the program and each
edge represents a data dependency between two operations. An example is shown
in Fig. 2.2. In this book we will consistently draw trees with their root on top, but
note that the convention differs from one paper to another. It is also common to omit
any intermediate variables from the program tree and only keep those signifying
the input and output values of the expression, as shown in the example. This also
means that a program tree can only represent a set of computations performed within
the same block, which thus may contain more than one program tree. Since these
representations only capture data flow, the program’s control flow is represented
separately as a control-flow graph.

One of the first IR-based schemes was developed by Wilcox [338]. Implemented
in a PL/C compiler, the AST is first transformed into machine-independent code
consisting of source language machine (SLM) instructions. The instruction selector
then maps each SLM instruction into one or more target-specific instructions using
macros defined in a language called Interpretive Coding Language (ICL) (see Fig. 2.3
for an example).

t1 = a + b
c = t1 * 2

(a) IR code

c

∗

+ 2

a b

(b) Corresponding program tree

Fig. 2.2: Example of a piece of IR code represented as a program tree

2 This need was in fact recognized in the late 1950s [83, 315].
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ADDB BR A,ADDB1 If A is in a register, jump to ADDB1
BR B,ADDB2 If B is in a register, jump to ADDB2
LGPR A Generate code to load A into register

ADDB1 BR B,ADDB3 If B is in a register, jump to ADDB3
GRX A,A,B Generate A+B
B ADDB4 Merge

ADDB3 GRR AR,A,B Generate A+B
ADDB4 FREE B Release resources assigned to B
ADDB5 POP 1 Remove B descriptor from stack

EXIT

ADDB2 GRI A,B,A Generate A+B
FREE A Release resources assigned to A
SET A,B A now designates result location
B ADDB5 Merge

Fig. 2.3: A binary addition macro in ICL [338]

In practice, these macros turned out to be tedious and difficult to write. Many
details, such as addressing modes and data locations, had to be dealt with manually
from within the macros. In the case of ICL, the macro writer also had to keep
track of which variables were part of the final assembly code, and which variables
were auxiliary and only used to aid the code generation process. In an attempt to
simplify this task, Young [350] proposed (but never implemented) a higher-level
language called Template Language (TEL) that would abstract away some of the
implementation-oriented details. The idea was to first express the macros as TEL code
and then to automatically generate the lower-level ICL macros from the machine
description.

2.2.2 Generating the Macros from a Machine Description

As with Wilcox’s design, many of the early macro-expanding instruction selectors
depended on macros that were intricate and difficult to write. In addition, many
compiler developers often incorporated register allocation into these macros, which
further exacerbated the problem. For example, if the target machine exhibits multiple
register classes and has special instructions to move data from one register class to
another, a record must be kept of which program values reside in which registers.
Then, depending on the register assignment, the instruction selector needs to emit
the appropriate data-transfer instructions in addition to the rest of the assembly code.
Due to the exponential number of possible situations, the complexity that the macro
designer has to manage can be immense.
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Automatically Inferring the Necessary Data Transfers

The first attempt to address this problem was made by Miller [255]. In his master’s
thesis from 1971, Miller introduces a code generation system called DMACS that
automatically infers the necessary data transfers between memory and different
register classes. By encapsulating this information in a separate machine description,
DMACS was also the first system to allow the details of the target machine to be
declared separately instead of being implicitly embedded into the macros.

DMACS relies on two proprietary languages: Machine-Independent Macro Lan-
guage (MIML), which declares a set of procedural two-argument commands that
serves as the IR format (see Fig. 2.4 for an example); and a declarative language
called Object Machine Macro Language (OMML) for implementing the macros that
will transform each MIML command into assembly code. So far this scheme is
similar to the one applied by Wilcox.

When adding support for a new target machine, a macro designer first specifies the
set of available register classes (including memory) as well as the permissible transfer
paths between these classes. The macro designer then defines the OMML macros by
providing, for each macro, a list of instructions that implements the corresponding
MIML command on the target machine. If necessary, a sequence of instructions can
be given to emulate the effect of a single MIML command. Lastly, constraints are
added that force the input and output data to reside in the locations expected of the
instruction. Fig. 2.5 shows excerpts of an OMML specification for an IBM machine.

DMACS uses this information to generate a collection of finite state automata
(or state machines, as they are also called) to determine how a given set of input
values can be transferred into locations that are permissible for a given OMML
macro. Each state machine consists of a directed graph where a node represents a
specific configuration of register classes and memory, some of which are marked as
permissible. The edges indicate how to transition from one state to another, and are
labeled with the machine instruction that will enable the transition when executed
on a particular input value. During compilation the instruction selector consults the
appropriate state machine as it traverses from one MIML command to the next, using
the input values of the former to initialize the state machine. As the state machine
transitions from one state to another, the machine instructions appearing on the edges
are emitted until the state machine reaches a permissible state.

1: SS C,J
2: IMUL 1,D
3: IADD 2,B
4: SS A,I
5: ASSG 4,3

Fig. 2.4: An example on how an arithmetic expres-
sion A[I] = B + C[J] * D can be represented
as MIML commands. The SS command is used for
data referencing and the ASSG command assigns a
value to a variable. The arguments to the MIML com-
mands are referred to either by a variable symbol or
by line number [255]
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rclass REG:r2,r3,r4,r5,r6
rclass FREG:fr0,fr2,fr4,fr6
...
rpath WORD->REG: L REG,WORD
rpath REG->WORD: ST REG,WORD
rpath FREG-WORD: LE FREG,WORD
rpath WORD->FREG: STE FREG,WORD
...
ISUB s1,s2
from REG(s1),REG(s2) emit SR s1,s2 result REG(s1)
from REG(s1),WORD(s2) emit S s1,s2 result REG(s2)

FMUL m1,m2 (commutative)
from FREG(m1),FREG(m2) emit MER m1,m2 result FREG(m1)
from FREG(m1),WORD(m2) emit ME m1,m2 result FREG(m1)

Fig. 2.5: Partial machine description for IBM-360 in OMML. The rclass command
declares a register class, and the rpath command declares a permissible transfer
between a register class and memory (or vice versa) along with the instruction that
implements the transfer [255]

The work by Miller was pioneering but limited: DMACS only handled arithmetic
expressions consisting of integer and floating-point values, its addressing mode
support was limited, and it could not model other target machine classes such as
stack-based architectures. In his 1973 doctoral dissertation, Donegan [101] extended
Miller’s ideas by proposing a new language called Code Generator Preprocessor
Language (CGPL). Donegan’s proposal was put to the test in the 1978 master’s thesis
by Maltz [247], and was later extended by Donegan et al. [100]. Similar techniques
have also been developed by Tirrell [319] and Simoneaux [309], and in their survey
Ganapathi et al. [150] describe another state machine-based compiler called UGEN,
which was derived from a virtual machine called U-CODE [280].

Further Improvements

In 1975, Snyder [310] implemented one of the first fully operational and portable
C compilers, where the target machine-dependent parts could be automatically
generated from a machine description. The design is similar to Miller’s in that
the frontend first transforms the program into an equivalent representation for an
abstract machine. In Snyder’s design this representation consists of abstract machine
operations (AMOPs), which are then expanded into target-specific instructions via
macros. The abstract machine and macros are specified in a machine description
language which is also similar to Miller’s, but handles more complex data types,
addressing modes, alignment, as well as branching and function calls. If needed, more
complicated macros can be defined as customized C functions. We mention Snyder’s
work primarily because it was later adapted by Johnson [191] in his implementation
of PCC, which we will discuss in Chapter 3.
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Fraser [140, 141] also recognized the need for human knowledge to guide the code
generation process, and implemented a system with the aim of facilitating the addition
of handwritten rules when these are required. First the program is transformed into a
representation based on a programming language called Extensible Language (XL),
which is akin to high-level assembly language. For example, XL provides primitives
for array accesses and for loops. As in the cases of Miller and Snyder, the instructions
are provided via a separate description that maps directly to a distinct XL primitive.
If some portion of the program cannot be implemented by any of the available
instructions, the instruction selector will invoke a set of rules to rewrite the XL code
until a solution is found. For example, array accesses are broken down into simpler
primitives, and the same rule base can also be used to improve the code quality of
the generated assembly code. Since these rules are provided as a separate machine
description, they can be customized and augmented as needed to fit a particular target
machine.

As we will see, this idea of “massaging” the program until a solution can be found
has been applied, in one form or another, by many instruction selectors that both
predate and succeed Fraser’s design. Although they represent a popular approach, a
significant drawback of such schemes is that the instruction selector may get stuck in
an infinite loop if the set of rules is incomplete for a particular target machine, and
determining if this is the case is often far from trivial. Moreover, such rules tend to
be hard to reuse for other target machines.

2.2.3 Reducing Compilation Time with Tables

Despite their already simplistic nature, macro-expanding instruction selectors can be
made even more so by representing the 1-to-1 or 1-to-n mappings as sets of tables.
This further emphasizes the separation between the machine-independent core of
the instruction selector from the machine-dependent mappings, as well as allows
for denser implementations that require less memory and potentially reduce the
compilation time, which is the time it takes to compile a given program.

Representing Instructions as Coding Skeletons

L B2,D(0,BD) XXXXXXXX00000000
LH B2,D(0,B2) 0000111100000000
LR R1,R2 0000110100001101

In 1969 Lowry and Medlock [243] introduced one of the first table-driven methods
for code generation. In their implementation of Fortran H Compiler (FHC), Lowry
and Medlock used a bit string, called
a coding skeleton, for each instruction.
The bits represent the restrictions of
the instructions, such as the modes
permitted for the operands and the
result (for example, “load from memory,” “load from register,” “do not store,” “use
this or that base register”). These coding skeletons are then matched against the bit
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strings corresponding to the program under compilation. An ‘X’ appearing in the
coding skeleton means that it will always match any bit.

The main disadvantage of Lowry and Medlock’s design was that the tables could
only be used for the most basic of instructions, and had to be written by hand in
the case of FHC. More extensive designs were later developed by Tirrell [319] and
Donegan [101], but these also suffered from similar disadvantages of making too
many assumptions about the target machine, which hindered compiler retargetability.

Expanding Macros Top-Down

Later Krumme and Ackley [218] introduced a table-driven design which, unlike
the earlier techniques, exhaustively enumerates all valid combinations of selectable
instructions, schedules, and register allocations for a given program tree. Implemented
in a C compiler targeting DEC-10 machines, the technique also allows code size
to be factored in as an optimization goal, which was an uncommon feature at the
time. Krumme and Ackley’s backend applies a recursive algorithm that begins by
selecting instructions for the root in the program tree, and then working its way down.
In comparison, the bottom-up techniques we have examined so far all start at the
leaves and then traverse upwards. We settle with this distinction for now as we will
resume and deepen the discussion of bottom-up vs. top-down instruction selection in
Chapter 3.

Enumerating all valid combinations in code generation leads to a combinatorial
explosion, thus making it impossible to actually produce and check each and every
one of them. To curb this immense complexity, Krumme and Ackley applied a
strategy known as branch-and-bound search. The idea behind branch-and-bound
search is straightforward: during search, always remember the best solution found so
far and then prune away all parts of the search space which can be proven to yield a
worse solution.3 The problem is how to prove that a given branch in the search space
will definitely lead to solutions that are worse than what we already have (and can
thus be skipped). Krumme and Ackley only partially tackled this problem by pruning
away branches that for sure will eventually lead to failure and thus yield no solution
whatsoever. Without going into too much detail, this is done by using not just a single
instruction table but several—one for each so-called mode—which are constructed
in a hierarchical manner. In this context, a mode is oriented around the result of an
expression, for example whether it is to be stored in a register or in memory. Using
these tables, the instruction selector can look ahead and detect whether the current set
of already-selected instructions will lead to a dead end. With this as the only method
of branch pruning, however, the instruction selector will make many needless revisits
in the search space, and consequently does not scale to larger program trees.

3 In their paper, Krumme and Ackley actually call this α-β pruning, which is an entirely different
search strategy, but their description of it fits more the branch-and-bound approach. Both are well
explained in [297].
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2.2.4 Falling Out of Fashion

Despite the improvements we have just discussed, they still do not resolve the main
disadvantage of macro-expanding instruction selectors, namely that they can only
handle macros that expand a single AST or IR node at a time. The limitation can
be somewhat circumvented by allowing information about the visited nodes to be
forwarded from one macro to the next, thereby postponing assembly code emission
in the hopes that more efficient instructions can be used. However, if done manually—
which was often the case—this quickly becomes an unmanageable task for the macro
writer, in particular if backtracking becomes necessary due to faulty decisions made
in prior macro invocations.

Thus naı̈ve macro expanders are effectively limited to supporting only single-
output instructions.4 As this has a detrimental effect on code quality for target
machines exhibiting more complicated features, such as multi-output instructions,
instruction selectors based solely on naı̈ve macro expansion were quickly replaced
by newer, more powerful techniques when these started to appear in the late 1970s.
One of these we will discuss later in this chapter.

Rekindled Application in the First Dynamic Code Generation Systems

Having fallen out of fashion, naı̈vely macro-expanding instruction selectors later
made a brief reappearance in the first dynamic code generation systems that were
developed in the 1980s and 1990s. In such systems the program is first compiled into
byte code, which is a kind of target-independent machine code that can be interpreted
by an underlying runtime environment. By providing an identical environment on
every target machine, the same byte code can be executed on multiple systems
without having to be recompiled.

The cost of this portability is that running a program in interpretive mode is
typically much slower than executing native machine code. This performance loss
can be mitigated by incorporating a compiler into the runtime environment. First,
the byte code is profiled as it is executed. Frequently executed segments, such as
inner loops, are then compiled into native machine code. Since the code segments are
compiled at runtime, this scheme is called JIT compilation, which allows performance
to be increased while retaining the benefits of the byte code. If the performance
gap between running byte code instead of native machine code is large, then the
compiler can afford to produce assembly code of low quality in order to decrease the
overhead in the runtime environment. This was of great importance for the earliest
dynamic runtime systems where hardware resources were typically scarce, which
made macro-expanding instruction selection a reasonable option. A few examples
include interpreters for SMALLTALK-80 [96] and OMNIWARE [1] (a predecessor to
Java), and code generation systems, such as VCODE [113], GBURG [139] (which

4 This is a truth with modification: a macro expander can emit multi-output instructions, but only
one of its output values will be retained in the assembly code.
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was used within a small virtual machine), and GNU LIGHTNING [16] (which was
directly inspired by VCODE).

As technology progressed, however, dynamic code generation systems also began
to transition to more powerful techniques for instruction selection such as tree
covering, which will be described in Chapter 3.

2.3 Improving Code Quality with Peephole Optimization

An early but still applied method of improving the quality of generated assembly code
is to perform a subsequent program optimization step that attempts to combine and
replace several instructions with shorter, more efficient alternatives. These routines
are known as peephole optimizers for reasons which will soon become apparent.

2.3.1 What Is Peephole Optimization?

In 1965, McKeeman [254] advocated the use of a simple but often neglected program
optimization procedure which, as a post-step to code generation, inspects a small
sequence of instructions in the assembly code and attempts to combine two or more
adjacent instructions with a single instruction. Similar ideas were also suggested by
Lowry and Medlock [243] around the same time. Doing this reduces code size and
also improves performance as using complex instructions is often more efficient than
using several simpler instructions to implement the same functionality.5 Because
of its narrow window of observation, this technique became known as peephole
optimization.

Modeling Instructions with Register Transfer Lists

Since this kind of optimization is tailored for a particular target machine, the earliest
implementations were (and still often are) done ad hoc and by hand. For example,
in 2002, Krishnaswamy and Gupta [216] wrote a peephole optimizer by hand which
reduces code size by replacing known patterns of ARM code with smaller equivalents.
Recognizing the need for automation, Fraser [136] introduced in 1979 the first
technique that allowed peephole optimizers to be generated from a formal description.
The technique is also described in a longer article by Davidson and Fraser [93].

Like Miller, Fraser described the semantics of the instructions separately in a
symbolic machine description. The machine description describes the observable
effects that each instruction has on the target machine’s registers. Fraser called these
effects register transfers (RTs), and each instruction thus has a corresponding register

5 On a related note, this idea was applied by Cho et al. [75] for reselecting instructions in order to
improve iterative modulo schedules for DSPs.
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transfer list (RTL). For example, assume that we have a three-address add instruction
which adds an immediate value imm to the value in register rs, stores the result in
register rd, and sets a zero flag Z. For this instruction, the corresponding RTL would
be expressed as

RTL(add) =
{
rd ← rs+imm
Z ← (rs+imm)⇔ 0

}
.

The RTLs are then fed to a program called Peephole Optimizer (PO), which
produces a program optimization routine that makes two passes over the generated
assembly code. The first pass runs backwards across the assembly code to determine
the observable effects (that is, the RTL) of each instruction in the assembly code.
This allows effects that have no impact on the program’s observable behavior to be
removed. For example, if the value of a status flag is not read by any subsequent
instruction, it is considered to be unobservable and can thus be ignored. The second
pass then checks whether the combined RTLs of two adjacent instructions are equal
to that of some other instruction (in PO this check is done via a series of string
comparisons). If such an instruction is found, the pair is replaced and the routine
backs up one instruction in order to check the combination of the new instruction
with the following instruction in the assembly code. This way replacements can
be cascaded and many instructions reduced into a single equivalent, provided there
exists an appropriate instruction for each intermediate step.

Pioneering as it was, PO also had several limitations. The main drawbacks were
that it only supported combinations of two instructions at a time, and that these had
to be lexicographically adjacent in the assembly code. The instructions were also not
allowed to cross block boundaries, meaning that they had to belong to the same block.
Davidson and Fraser [91] later removed the limitation of lexicographical adjacency
by making use of data-flow graphs instead of operating directly on the assembly
code, and they also extended the size of the instruction window from pairs to triples.

Further Developments

Much research has been dedicated to improving automated approaches to peephole
optimization. In 1983, Giegerich [156] proposed a formal design that eliminates
the need for a fixed-size instruction window. Shortly after, Kessler [202] introduced
a method where RTL combinations and comparisons can be precomputed as the
compiler is built, thus decreasing compilation time. Kessler [201] later expanded
his work to incorporate an n-size instruction window, similar to that of Giegerich,
although at an exponential cost.

Another scheme was developed by Massalin [253] who implemented a system
called the SUPEROPTIMIZER, and similar systems have subsequently been referred
to as superoptimizers. The SUPEROPTIMIZER accepts small programs written in
assembly language, and then exhaustively combines sequences of instructions to find
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shorter implementations that exhibit the same behavior as the original program.6

Granlund and Kenner [165] later adapted Massalin’s ideas into a method that mini-
mizes the number of branches. Both implementations, however, were implemented
by hand and customized for a particular target machine. Moreover, neither makes
any guarantees on correctness. A technique for automatically generating peephole
optimization-based superoptimizers was developed by Bansal and Aiken [38], where
the superoptimizer learns to optimize short sequences of instructions from a set of
training programs. A couple of designs that guarantee correctness have been devel-
oped by Joshi et al. [193, 194] and Crick et al. [90], who applied automatic theorem
proving and a method called answer set programming, respectively. Recently, a
similar technique based on quantifier-free bit-vector logic formulas was introduced
by Srinivasan and Reps [312].

2.3.2 Combining Naı̈ve Macro Expansion with Peephole
Optimization

Up to this point peephole optimizers had mainly been used to improve already-
generated assembly code—in other words, after instruction selection had been
performed. In 1984, however, Davidson and Fraser [91] developed an instruction
selection technique that incorporates the power of peephole optimization with the
simplicity of macro expansion. Similar yet unsuccessful strategies had already been
proposed earlier by Auslander and Hopkins [33] and Harrison [170], but Davidson
and Fraser struck the right balance between compiler retargetability and code qual-
ity, which made their design a viable option for production-quality compilers. This
scheme has hence become known as the Davidson-Fraser approach, and variants
of it have been used in several compilers, such as the Y Compiler (YC) [92], the
ZEPHYR/VPO system [19], the Amsterdam Compiler Kit (ACK) [318], and, most
famously the GNU Compiler Collection (GCC) [205, 313].

The Davidson-Fraser Approach

In the Davidson-Fraser approach the instruction selector consists of two parts: an
expander and a combiner (see Fig. 2.6). The task of the expander is to transform the
program into a series of RTLs. The transformation is done by executing simple macros
that expand every node in the program tree (assuming the program is represented as
such) into a corresponding RTL that describes the effects of that node. Unlike the
previous macro expanders we have discussed, these macros do not incorporate register

6 The same idea has also been applied by El-Khalil and Keromytis [204] and Anckaert et al. [14],
where the assembly code of compiled programs is modified in order to support steganography
(the covert insertion of secret messages). For example, Anckaert et al. used this technique on
nine programs from the SPECint 2000 benchmark suite in order to embed and extract William
Shakespeare’s play King Lear.
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Fig. 2.6: Overview of the Davidson-Fraser approach [91]

allocation. Instead the expander assigns each result to a virtual storage location called
a temporary, of which it is assumed there exists an infinite amount. A subsequent
register allocator then assigns each temporary to a register, potentially inserting
additional code that saves some values to memory for later retrieval when the number
of available registers is not enough (this is called register spilling). After expansion,
but before register allocation, the combiner is run. Using the same technique as that
behind PO, the combiner tries to improve code quality by combining several RTLs
in the program into a single, larger RTL that corresponds to some instruction on the
target machine. For this to work, both the expander and the combiner must at every
step adhere to a rule, called the machine invariant, which dictates that every RTL in
the program must be implementable by a single instruction.

By using a subsequent peephole optimizer to combine the effects of multiple
RTLs, the instruction selector can effectively extend over multiple nodes in the AST
or program tree, potentially across block boundaries. The instruction support in
Davidson and Fraser’s design is therefore in theory only restricted by the number
of instructions that the peephole optimizer can compare at a time. For example,
opportunities to replace three instructions by a single instruction will be missed if
the peephole optimizer only checks pair combinations. But increasing the window
size typically incurs an exponential cost in terms of added complexity, thus making
it difficult to handle complicated instructions that require large instruction windows.

Further Improvements

Fraser and Wendt [135] later expanded the work by Davidson and Fraser. In a paper
from 1988, Fraser and Wendt describe a method where the expander and combiner
are effectively fused together into a single component. The idea is to generate the
instruction selector in two steps. The first step produces a naı̈ve macro expander that
is capable of expanding a single IR node at a time. Unlike Davidson and Fraser, who
implemented the expander by hand, Fraser and Wendt applied an elaborate scheme
consisting of a series of switch and goto statements—effectively implementing a
state machine—which allowed their expander to be generated automatically from a
machine description. Once produced, the macro expander is executed on a carefully
designed training set. Using function calls embedded into the instruction selector, a
retargetable peephole optimizer is executed in tandem which discovers and gathers
statistics on target-specific optimizations that can be done on the generated assembly
code. Based on these results, the beneficial optimization decisions are then selected
and incorporated directly into the macro expander. This effectively enables the



26 2 Macro Expansion

macro expander to expand multiple IR nodes at a time, thus removing the need for a
separate peephole optimizer in the final compiler. Fraser and Wendt argued that as
the instruction selector only implements the optimization decisions that are deemed
to be “useful,” the code quality is improved with minimal overhead. Wendt [335]
later improved the technique by providing a more powerful machine description
format, also based on RTLs, which subsequently evolved into a compact standalone
language used for implementing code generators (see Fraser [134]).

Enforcing the Machine Invariant with a Recognizer

The Davidson-Fraser approach was also recently extended by Dias and Ramsey [98].
Instead of requiring each separate RTL-oriented optimization routine to abide by
the machine invariant, Dias and Ramsey’s design employs a recognizer to deter-
mine whether an optimization decision violates the aforementioned restriction (see
Fig. 2.7). The idea is that, by doing so, the optimization routines can be simplified and
generated automatically as they no longer need to internalize the machine invariant.

In a paper from 2006, Dias and Ramsey demonstrate how the recognizer can be
produced from a declarative machine description written in λ -RTL. Originally de-
veloped by Ramsey and Davidson [288], λ -RTL is a high-level functional language
based on ML (which stands for Metalanguage) and raises the level of abstraction
for writing RTLs (see Fig. 2.8 for an example). In their paper, Dias and Ramsey
claim that λ -RTL-based machine descriptions are more concise and simpler to write
compared to those of many other designs, including GCC. In particular, λ -RTL is
precise and unambiguous, which makes it suitable for automated tool generation
and verification. The latter has been explored by Fernández and Ramsey [128] and
Bailey and Davidson [34].

The recognizer checks whether an RTL in the program fulfills the machine invari-
ant by performing a syntactic comparison between that RTL and the RTLs of the
instructions. However, if a given RTL in the program has n operations, and a given
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Fig. 2.7: Overview of Dias and Ramsey’s design [98]

default attribute
add(rd, rs1, rs2) is $r[rd] := $rs[rs1] + $r[rs2]

Fig. 2.8: A PowerPC add instruction specified using λ -RTL [97]
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λ -RTL description contains m instructions whose RTL contains l operations, then a
naı̈ve implementation would take O(nml) time to check a single RTL. Instead, using
techniques to be discussed in Chapter 3, Dias and Ramsey automatically generate
the recognizer as a finite state automaton that can compare a given RTL against all
RTLs in the λ -RTL description with a single check.

“One Program to Expand Them All”

In 2010, Dias and Ramsey introduced a scheme, described in [97] and [289], where
the macro expander only needs to be implemented once per every distinct architecture
family instead of once per every distinct instruction set. For example, register-based
and stack-based machines are two separate architecture families, whereas X86,
PowerPC, and SPARC are three different instruction sets. In other words, if two target
machines belong to the same architecture family, then the same expander can be
used despite the differing details in their instruction sets. This is useful because the
correctness of the expander only needs to be proven once, which is a difficult and
time-consuming process if it is written by hand.

The idea is to have a predefined set of tiles that are specific for a particular archi-
tecture family. A tile represents a simple operation which is required for any target
machine belonging to that architecture family. For example, stack-based machines
require tiles for push and pop operations, which are not necessary on register-based
machines. Then, instead of expanding each IR node in the program into a sequence
of RTLs, the expander expands it into a sequence of tiles. Since the set of tiles is
identical for all target machines within the same architecture family, the expander
only needs to be implemented once. After macro expansion the tiles are replaced by
the instructions used to implement each tile, and the resulting assembly code can
then be improved by the combiner.

A remaining problem is how to find instructions to implement a given tile for a
particular target machine. In the same papers, Dias and Ramsey describe a scheme
for doing this automatically. By expressing both the tiles and the instructions as
λ -RTL, Dias and Ramsey developed a technique where the RTLs of the instructions
are combined such that the effects equal that of a tile. In broad outline, the algorithm
maintains a pool of RTLs which initially contains those of the instructions found
in the machine description. Using algebraic laws and combining existing RTLs to
produce new RTLs, the pool is grown iteratively until either all tiles have been
implemented, or some termination criterion is reached. The latter is necessary, as
Dias and Ramsey proved that the general problem of finding implementations for
arbitrary tiles is undecidable.

Although the primary aim of Dias and Ramsey’s design is to facilitate compiler
retargetability, some experiments suggest that it potentially also yields better code
quality than the original Davidson-Fraser approach. When a prototype was compared
against the default instruction selector in GCC, the results favored the former. How-
ever, this was seen only when all target-independent optimizations were disabled;
when they were reactivated, GCC still produced better results.
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2.3.3 Running Peephole Optimization Before Instruction Selection

In the techniques just discussed, the peephole optimizer runs after code generation.
But in a scheme developed in 1989 by Genin et al. [155], a similar routine is ex-
ecuted before code generation. Targeting digital signal processors, their compiler
first transforms the program into an internal signal-flow graph (ISFG), and then
executes a routine—Genin et al. called it a pattern matcher—which attempts to find
several low-level operations in the ISFG that can be merged into single nodes.7 Code
generation is then done following the conventional macro expansion approach. For
each node the instruction selector invokes a rule along with the information about
the current context. The invoked rule produces the assembly code appropriate for the
given context, and can also insert new nodes to offload decisions that are deemed
better handled by the rules corresponding to the inserted nodes.

According to Genin et al., experiments show that their compiler generated assem-
bly code that was five to 50 times faster than that produced by other, contemporary
DSP compilers, and comparable with manually optimized assembly code. A dis-
advantage of this design is that it is limited to programs where prior knowledge
about the application area, in this case digital signal processing, can be encoded into
specific optimization routines, which most likely has to be done manually.

2.3.4 Interactive Code Generation

The aforementioned techniques yield peephole optimizers which are static once they
have been generated, meaning they will only recognize and optimize assembly code
for a fixed set of patterns. A method to overcome this issue has been designed by
Kulkarni et al. [219], which is also the first and only one to my knowledge.

In a paper from 2006, Kulkarni et al. describe a compiler system called VISTA,
which is an interactive compilation environment where the user is given greater
control over the compiler. Among other things, the user can alter RTLs derived from
the program’s source code and add new customized peephole optimization patterns.
Hence optimization privileges which normally are limited to low-level assembly pro-
grammers are also granted to higher-level programming language users. In addition,
Kulkarni et al. employed genetic algorithms—these will be explained in Chapter 3—
in an attempt to automatically derive a combination of user-provided optimization
guidelines to improve the code quality of a particular program. Experiments show
that this scheme reduced code size on average by 4% and up to 12% for a selected
set of programs.

7 The paper is not clear on how this is done exactly, but presumably Genin et al. implemented the
routine as a handwritten peephole optimizer since the intermediate format is fixed and does not
change from one target machine to another.
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2.4 Summary

In this chapter we have discussed techniques and designs based on a principle known
as macro expansion, which was the first approach to perform instruction selection.
The idea behind the principle is to expand the nodes in the AST or IR code into one
or more target-specific instructions. The expansion is done via template matching
and macro invocation, which yields instruction selectors that are resource-effective
and straightforward to implement.

But because macro-expanding instruction selectors only visit and execute macros
one IR node at a time, they require a 1-to-1 or 1-to-n mapping between the IR nodes
and the instructions provided by the target machine in order to generate efficient
assembly code. The limitation can be mitigated by incorporating additional logic and
bookkeeping into the macros, but this quickly becomes an unmanageable task for
the macro writer if done manually. Consequently, the code quality yielded by these
techniques will typically be low. Moreover, as instructions are often emitted one at a
time, it also becomes difficult to make use of instructions that can have unintended
effects on other instructions.

A more robust remedy for improving code quality is to append a peephole opti-
mizer into the component chain of the backend. A peephole optimizer combines the
effects of multiple instructions in the assembly code with more efficient alternatives,
thereby amending some of the poor decisions made by the instruction selector. Peep-
hole optimization can also be incorporated directly into the instruction selector—a
scheme which has become known as the Davidson-Fraser approach—and thereby ex-
tend its machine instruction support. Because of this versatility, the Davidson-Fraser
approach remains one of the most powerful instruction selection techniques to date
(a variant is still applied in GCC as of version 4.8.2).

In Chapter 3 we will explore another principle of instruction selection, which
solves the problem of implementing several AST or IR nodes using a single instruc-
tion in a more direct fashion.





Chapter 3
Tree Covering

As we saw in Chapter 2, the main limitation of most instruction selectors based
on macro expansion is that the scope of expansion is restricted to a single AST or
IR node. Hence exploitation of many instructions is excluded, resulting in low code
quality. Another problem is that macro-expanding instruction selectors typically
combine pattern matching and pattern selection into a single step, thus making it very
difficult to consider combinations of instructions and then pick the one that yields
the “best” assembly code.

These problems can be solved by employing another principle of instruction
selection called tree covering, which is also the most common principle of techniques
found in the current literature.

3.1 The Principle

Let us assume that the program is represented as a set of pro-
gram trees, which we are already familiar with from Chap-
ter 2 (see p. 15). Let us further assume that each instruction
can be modeled similarly to a pattern tree. When there is no
risk of confusion, we will refer to these as simply patterns.
We also say that the set of all patterns available during tree
covering constitute the pattern set. The task of instruction se-
lection can then be reduced to finding a subset of the pattern
set such that every node in the program tree is covered by at
least one pattern. Here we see clearly how pattern matching
and pattern selection constitute two separate problems in
instruction selection. In the former we need to find which patterns are applicable for
a given program tree and where they are applicable. We call each such instance a
pattern match (or simply match), and there may exist multiple matches for the same
pattern and program tree. In the latter problem we then select from these matches
a subset which results in a valid and efficient cover of the program tree. For most
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target machines there will be a tremendous amount of overlap among the patterns,
meaning that one pattern may match (either partially or fully) the nodes matched
by another pattern in the program tree. Typically we want to use as few patterns as
possible to cover the program tree. This is for two reasons:

Striving for the smallest number of patterns means favoring larger patterns over
smaller ones. This in turn leads to the use of more complex instructions which
typically yield higher code quality.
The amount of overlap between the selected patterns is limited, which means that
the same values will be computed multiple times only when necessary. Keeping
redundant work to a minimum is another crucial factor for performance as well
as for reducing code size.

In general, an optimal solution to the pattern selection problem is not defined as
the one that minimizes the number of selected patterns, but as the one that minimizes
the total cost of the selected patterns. This allows the pattern costs to be chosen
such that they fit the desired optimization criteria, although there is usually a strong
correlation between the number of patterns and the total cost. Note, however, that
an optimal solution to the pattern selection problem need not necessarily be an
optimal solution for the final assembly code. But unlike optimal instruction selection,
whose problematic definition was criticized in Chapter 1, optimal pattern selection is
less controversial since it is clear that we will only consider the patterns currently
available in the pattern set instead of all patterns that could potentially be derived
from the ISA.

Finding the optimal solution to a tree covering problem is not a trivial task, and it
becomes even less so if only certain combinations of patterns are allowed. To be sure,
most of us would be hard-pressed just to come up with an efficient method that finds
all valid matches of the entire pattern set. We therefore begin by exploring the first
methods that address the pattern matching problem, but do not necessarily address
the pattern selection problem, and then gradually transition to those that do.

3.2 First Techniques to Use Tree-Based Pattern Matching

In 1972 and 1973, the first code generation techniques known to use tree-based pat-
tern matching were introduced by Wasilew [331] and Weingart [332], respectively.
Unfortunately only Weingart’s work appears to be recognized by other literature,
even though Wasilew’s ideas have more in common with later tree-based instruc-
tion selection techniques. We will briefly cover both in this book, as described by
Lunell [244], who gives a more detailed account in his doctoral dissertation.

To begin with, Wasilew devised an intermediate representation where the pro-
grams are represented using a postfix notation (see Fig. 3.1). This is also called
reverse Polish notation, which we will discuss further in Section 3.3.1. Wasilew
also developed his own programming language, which is transformed into IR code
as part of compilation. The instructions of the target machine are described in a
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AWAY m YHPASS assign
K AMA m PMFI 7 - assign
Z K AMA m ANS assign assign
X 8 + m HEAD X 6 + m I1 + m X 6 + m I2 + m assign
X Y FR AA transfer assign
X INC if-AZ BB transfer
OR m MAJ 4FCOID 4FCOIN if-equal2 1 J + transfer

Fig. 3.1: An example program expressed using Wasilew’s intermediate lan-
guage [244]

table, where each instruction comprises execution time and code size information,
a string constituting the assembly code, and the pattern to be matched against the
program. For each line in the program, pattern matching is done starting at a leaf
in the tree corresponding to the current line. For this subtree, all matches are found
by comparing it against all patterns in the pattern set. The subtree is then grown to
include its parent, and the new subtree is again compared against the patterns. This
continues until no new matches are found. Once the largest match has been found,
the subtree is replaced with the result of the pattern, and the process is repeated for
the remaining parts in the tree. If multiple largest matches are found for any subtree,
the process is repeated for each such match. This results in an exhaustive search that
finds all combinations of patterns for a given tree. Once all combinations have been
found, the cheapest combination—whose cost is based on the instructions’ execution
time and code size—is selected.

Compared to the early macro-expanding instruction selectors (at least those prior
to Davidson-Fraser), Wasilew’s design had a more extensive instruction support as it
could include patterns that extend over multiple IR nodes. However, its exhaustive
nature makes it considerably more expensive in terms of compilation time. In addition,
the notations used by Wasilew are difficult to read and write.

In comparison to Wasilew, Weingart’s design is centered around a single tree of
patterns—Weingart called this a discrimination net—which is automatically derived
from a declarative machine description. Using a single tree of patterns, Weingart
argued, allows for a compact and efficient means of representing the pattern set.
The process of building the AST is then extended to simultaneously push each new
AST node onto a stack. In tandem, the discrimination net is progressively traversed
by comparing the nodes on the stack against the children of the current node in the
net. A match is found when the process reaches a leaf in the discrimination net,
whereupon the instruction associated with the match is emitted.

Like Wasilew’s design, Weingart’s had a more extensive instruction support
compared to the contemporary techniques as it could include patterns extending over
multiple AST nodes. However, when applied in practice, the design suffered from
several problems. First, structuring the discrimination net to support efficient pattern
matching proved difficult for certain target machines; it is known that Weingart
struggled in particular with the PDP-11. Second, the design assumes that there
exists at least one instruction on the target machine that corresponds to a particular
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node type of the AST, which turned out to not always be the case. Weingart partly
addressed this problem by introducing conversion patterns, which could transform
mismatched parts of the AST into another form that hopefully would be matched by
some pattern at a later stage, but these had to be added manually and could potentially
cause the compiler to get stuck in an infinite loop. Third, like its macro-expanding
predecessors, the process immediately selects a pattern as soon as a match is found.

Another early pattern matching technique was developed by Johnson [191], which
was implemented in the Portable C Compiler (PCC)—a renowned system that was
the first standard C compiler to be shipped with UNIX. Johnson based his design on
the earlier work by Snyder [310] (which we discussed in Section 2.2.2), but replaced
the use of macro expansion with a method that performs tree rewriting. For each
instruction, a program tree is formed together with a rewrite rule, subgoals, resource
requirements, and an assembly string which is emitted verbatim. This information
is given in a machine description format that allows multiple, similar patterns to be
condensed into a single declaration. An example is shown in Fig. 3.2.

The pattern matching process is then relatively straightforward: for a given node
in the program tree, the node is compared against the root of each pattern. If these
match, a similar check is done for each corresponding subtree in the pattern. Once
all leaves in the pattern are reached, a match has been found. As this algorithm—
whose pseudo-code is given in Fig. 3.3—exhibits quadratic time complexity, it is
desirable to minimize the number of redundant checks. This is done by maintaining

1: ASG PLUS, INAREG,
2: SAREG, TINT,
3: SNAME, TINT,
4: 0, RLEFT,
5: " add AL,AR\n",
6: ...
7: ASG OPSIM, INAREG|FORCC,
8: SAREG, TINT|TUNSIGNED|TPOINT,
9: SAREG|SNAME|SOREG|SCON, TINT|TUNSIGNED|TPOINT,

10: 0, RLEFT|RESCC
11: " OI AL,AR\n",

Fig. 3.2: A machine description sample for PCC, consisting of two patterns. The
first line specifies the node type of the root (+=, for the first pattern) together with
its cookie (“result must appear in an A-type register”). The second and third lines
specify the left and right descendants, respectively, of the root. The left subtree of
the first pattern must be an int allocated in an A-type register, and the right subtree
must be a NAME node, also of type int. The fourth line indicates that no registers
or temporaries are required and that the matched part in the program tree is to be
replaced by the left descendant of the pattern’s root. The fifth and last line declares
the assembly string, where lowercase letters are output verbatim and uppercase words
indicate a macro invocation—AL stands for “Address form of Left operand”, and
likewise for AR—whose result is then put into the assembly string. In the second
pattern we see that multiple restrictions can be OR’ed together, thus allowing multiple
patterns to be expressed in a more concise manner [192]
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FINDMATCHSET(program tree rooted at node n, set P of pattern trees):
1: initialize matchset as empty
2: for each patternp ∈ P do
3: if MATCHES(n, p) then
4: add p to matchset
5: end if
6: end for
7: return matchset

MATCHES(program tree rooted at node n, pattern tree rooted at node p):
1: if n matches p and number of children of n and p are equal then
2: for each child n′ of n and child p′ of p do
3: if not MATCHES(n′ , p′) then
4: return false
5: end if
6: end for
7: end if
8: return true

Fig. 3.3: A straightforward, tree-based pattern matching algorithm with O(nm) time
complexity, where n is the number of nodes in the program tree and m is the total
number of nodes in the patterns

a set of code generation goals which are encoded into the instruction selector as an
integer. For historical reasons this integer is called a cookie, and each pattern has a
corresponding cookie indicating the situations in which the pattern may be useful.
If both the cookies and the pattern match, an attempt is made to allocate whatever
resources are demanded by the pattern (for example, a pattern may require a certain
number of registers). If successful, the corresponding assembly string is emitted, and
the matched subtree in the program tree is replaced by a single node as specified by
the rewrite rule. This process of matching and rewriting repeats until the program
tree consists of only a single node, meaning that the entire program tree has been
successfully converted into assembly code. If no pattern matches, the instruction
selector enters a heuristic mode where the program tree is partially rewritten until
a match is found. For example, to match an a = reg + b pattern, an a += b
expression could first be rewritten into a = a + b and then another rule could try
to force operand a into a register.

Although successful for its time, PCC had several disadvantages. Like Weingart,
Johnson used heuristic rewrite rules to handle mismatching situations. Without
formal methods of verification there was always the risk that the current set of
rules would be inadequate and potentially cause the compiler to never terminate for
certain programs. Reiser [293] also noted that the investigated version of PCC only
supported unary and binary patterns with a maximum height of 1, thus excluding
many instructions, such as those with complex addressing modes. Lastly, PCC—and
all other techniques discussed so far—still adhered to the first-matched-first-served
approach when selecting patterns.
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3.3 Using LR Parsing to Cover Trees Bottom-Up

As already noted, a common flaw among the first designs is that they (i) apply the
greediest form of pattern selection, and (ii) typically lack a formal methodology.
In contrast, syntactic analysis—which is the task of parsing the source code—is
arguably the best understood area of compilation, and its methods also produce
completely table-driven parsers that are very fast and resource-efficient.

3.3.1 The Graham-Glanville Approach

In 1978, Glanville and Graham [158] presented a seminal paper that describes how
techniques of syntactic analysis can be adapted to instruction selection.1 Subsequent
experiments and evaluations showed that this design—which we will refer to as the
Graham-Glanville approach—proved simpler and more general than contemporary
designs [9, 150, 163, 164, 220]. Moreover, due to its table-driven nature, assembly
code could be generated very rapidly (although the performance of the first imple-
mentations matched that of other instruction selectors used at the time). Consequently
the Graham-Glanville approach has been acknowledged as one of the most significant
breakthroughs in this field, and these ideas have influenced many later techniques in
one way or another. In particular, Henry [177] received his doctoral degree for his
research on Graham-Glanville code generators, and his 1984 doctoral dissertation
provides an extremely deep and thorough account of the theory and practice of this
approach.

Expressing Instructions as a Grammar

+

c ∗

a b

⇓
+ c ∗ a b

To begin with, a well-known method of removing the need for
parentheses in arithmetic expressions without making them am-
biguous is to use Polish notation. For example, 1 + (2 + 3) can be
written as + 1 + 2 3 and still denote the same expression. Glanville
and Graham recognized that by using this form the instructions
can be expressed as a context-free grammar based on Backus-Naur
form (BNF). This concept is already well described in most com-
piler textbooks (see for example [8]), so we will proceed with only
a brief introduction.

A context-free grammar consists of a set of terminals and nonterminals, and
we will refer to both as symbols. We will distinguish between the two by always
writing terminals with an initial capital letter (for example Term), and nonterminals
entirely in lowercase (for example nt). For each nonterminal there exists one or more
productions of the following form:

1 This had also been vaguely hinted at ten years earlier in an article by Feldman and Gries [126].
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lhs → Right hand Side . . .

A production basically specifies how its left-hand side nonterminal symbol can be
replaced by its right-hand side as a string of terminal and nonterminal symbols. Since
nonterminals can appear on both sides in a production, most grammars allow for
infinite chains of replacements, which is one of the powerful features of context-free
grammars. In terms of recursion, one can also think of nonterminals as inducing the
recursive case whereas the terminals provide the base case that stops the recursion.
Productions are often also called production rules or just rules, and although they can
typically be interchanged without causing confusion, we will be consistent in this
book and only use the first term (productions), as rules will hold a slightly different
meaning.

To model a set of instructions as a context-free grammar, one would add one
or more rules for each instruction. Each rule contains a production, a cost, and an
action. The right-hand side of the production represents the pattern tree to be matched
over a program tree, and the left-hand side contains the nonterminal indicating the
characteristics of the result of executing the instruction (like a specific register class).
The cost should be self-explanatory at this point, and the action would typically be to
emit a string of assembly code. We illustrate the anatomy of a rule more succinctly
with an annotated example:

production︷ ︸︸ ︷
result︷︸︸︷
reg→

pattern tree︷ ︸︸ ︷
+ reg1 reg2

cost︷︸︸︷
4

action︷ ︸︸ ︷
EMIT ‘‘add r1,r2’’︸ ︷︷ ︸

rule

The collection of rules for a particular target machine is called the instruction set
grammar of that machine.

In most literature, rules and patterns usually have the same connotations. In this
book, however, in the context of grammars a rule refers to a tuple of production, cost,
and action, and a pattern refers to the right-hand side of the production appearing in
a rule.

Tree Parsing

The instruction set grammar provides us with a formal methodology for modeling
instructions, but it does not address the problems of pattern matching and pattern
selection. For that, Glanville and Graham applied an already-known technique called
left-to-right, right-most derivation (LR) parsing [208]. Because this technique is
mostly associated with syntactic analysis, the same application on trees is commonly
referred to as tree parsing.
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As an example, let us assume that we have the instruction set grammar

PRODUCTION COST ACTION
1 reg → + reg1 reg2 1 EMIT ‘‘add r1,r2’’
2 reg → ∗ reg1 reg2 1 EMIT ‘‘mul r1,r2’’
3 reg → Int 1 EMIT ‘‘mv r,I’’

and that we want to generate assembly code for the program tree

+ c * a b

such that the result of the expression ends up in a register. If a, b, and c all are
integers, then we can assume that each node in the program tree is of type Int, ∗, or +.
These will be our terminals.

After transforming the program trees into sequences of terminals, we traverse
each from left to right. In doing so we either shift the just-traversed symbol onto
a stack, or replace symbols currently on the stack via a rule reduction. A reduce
operation consists of two steps. First, the symbols are popped according to those that
appear on the pattern of the rule. The number and order of symbols popped must
match exactly for a valid rule reduction. Once popped, the nonterminal appearing on
the left-hand side is pushed onto the stack, and the assembly code associated with
the rule, if any, is also emitted. For a given input the performed rule reductions can
also be represented as a parse tree, illustrating the terminals and nonterminals which
were used to parse the tree. Now, turning back to our example, if we denote a shift
by s and a reduce by rx, where x is the number of the reduced rule, then a valid tree
parsing of the program tree

+ Int(c) * Int(a) Int(b)

could be

s s s r3 s r3 r2 s r3 r1.

For this particular tree parsing, the corresponding parse tree and generated assembly
code is shown below (the rule numbers are shown next to the nonterminals in the
parse tree):

reg

reg+ reg

Int(c) reg∗ reg

Int(a) Int(b)

1:

3: 2:

3: 3:

mv ra,a
mv rb,b
mul ra,rb
mv rc,c
add ra,rc

The problem that remains is how to know when to shift and when to reduce. This
can be addressed by consulting a state table which has been generated for a specific
grammar. How this table is produced is out of scope for this book, but an example,
generated from the instruction set grammar appearing in Fig. 3.4, is given in Fig. 3.5,
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and a walk-through of executing an instruction selector with this state table using an
LR parser is provided in Fig. 3.6.

The subscripts that appear in some of the productions in Fig. 3.4 are semantic
qualifiers, which are used to express restrictions that may appear for some of the
instructions. For example, all two-address arithmetic instructions store the result in
one of the registers provided as input, and using semantic quantifiers this could be
expressed as r1 → + r1 r2, indicating that the destination register must be the same as
that of the first operand. To make this information available during parsing, the parser
pushes it onto the stacking along with its corresponding terminal or nonterminal
symbol. Glanville and Graham also incorporated a register allocator into their parser,
thus constituting an entire code generator.

Resolving Conflicts and Avoiding Blocking

As ISAs are rarely nonorthogonal, most instruction set grammars are ambiguous,
meaning multiple valid parse trees may exist for the same program tree. This causes
the instruction selector to have the option of performing either a shift or a reduce,
which is known as shift-reduce conflict. To solve this kind of conflict, Glanville and
Graham’s state table generator always decides to shift. The intuition is that this will
favor larger patterns over smaller ones as a shift postpones a decision to pattern select
while allowing more information about the program tree to accumulate on the stack.2

Unfortunately, this scheme can cause the instruction selector to fail even though a
valid parse tree exists. This is called syntactic blocking and requires the grammar
designer to augment the instruction set grammar with auxiliary rules that patch the
top of the stack, thus allowing the parser to recover from situations when it greedily
decides to shift instead of applying a necessary rule reduction.

Likewise, there is also the possibility of reduce-reduce conflicts, where the parser
has the option of choosing between two or more rules in a reduction. Glanville
and Graham resolved these by selecting the rule with the longest pattern. If the
grammar contains rules that differ only in their semantic quantifiers, then there may
still exist more than one rule to reduce (in Fig. 3.4, rules 5 and 6 are two such rules).
These are resolved at parse time by checking the semantic restrictions in the order
in which they appear in the grammar (see for example state 20 in Fig. 3.5). If all
rules in this set are semantically constrained, then situations can arise where the
parser is unable to apply any rule due to semantic mismatch. This is called semantic
blocking and can be resolved by always providing a default rule that can be invoked
when all other semantically constrained rules fail. This fallback rule typically uses
multiple, shorter instructions to simulate the effect of the more complex rule, and
Glanville and Graham devised a clever trick to infer them automatically. For every
semantically constrained rule r, tree parsing is performed over the tree representing
the pattern of r, and then the instructions selected to implement this tree constitute
the implementation of the fallback rule for r.

2 The approach of always selecting the largest possible pattern is a scheme commonly known as
maximum munch, which was coined by Cattell in his doctoral dissertation [69].
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PRODUCTION ACTION
1 r2 → + Ld + C r1 r2 add r2,C,r1
2 r1 → + r1 Ld + C r2 add r1,C,r2
3 r → + Ld C r add r,C
4 r → + r Ld C add r,C
5 r1 → + r1 r2 add r1,r2
6 r2 → + r1 r2 add r2,r1
7 → = Ld + C r1 r2 store r2,*C,r1
8 → = + C r1 r2 store r2,C,r1
9 → = Ld C r store r,*C

10 → = C r store r,C
11 → = r1 r2 store r2,r1
12 r2 → Ld + C r1 load r2,C,r1
13 r2 → + C r1 load r2,=c,r1
14 r2 → + r1 C load r2,=C,r1
15 r2 → Ld r1 load r2,*r1
16 r → Ld C load r,=C
17 r → C mv r,C

Fig. 3.4: An example of an instruction
set grammar. All rules have the same unit
cost. C, Ld, +, and = are all terminals (C
stands for “const” and Ld for “load”), r
is a nonterminal indicating that the result
will be stored in a register, and subscripts
denote the semantic qualifiers [158]

$ r c + Ld =

0 accept s1
1 s2 s3 s4 s5
2 s6 s7 s8 s9
3 s10 s7 s8 s9
4 s11 s12 s8 s13
5 s14 s15 s16 s9
6 r11 r11 r11 r11 r11 r11
7 r17 r17 r17 r17 r17 r17
8 s11 s17 s8 s13
9 s14 s18 s19 s9

10 r10 r10 r10 r10 r10 r10
11 s20 s21 s8 s22
12 s23 s7 s8 s9
13 s14 s24 s25 s9
14 r15 r15 r15 r15 r15 r15
15 s26 s7 s8 s9
16 s11 s27 s8 s13
17 s28 s7 s8 s9
18 r16 r16 r16 r16 r16 r16
19 s11 s29 s8 s13
20 r5/6 r5/6 r5/6 r5/6 r5/6 r5/6
21 r14 r14 r14 r14 r14 r14
22 s14 s30 s31 s9
23 s32 s7 s8 s9
24 s33 s7 s8 s9
25 s11 s34 s8 s13
26 r9 r9 r9 r9 r9 r9
27 s35 s7 s8 s9
28 r13 r13 r13 r13 r13 r13
29 s36 s7 s8 s9
30 r4 r4 r4 r4 r4 r4
31 s11 s37 s8 s13
32 r8 r8 r8 r8 r8 r8
33 r3 r3 r3 r3 r3 r3
34 s38 s7 s8 s9
35 s39 s7 s8 s9
36 r12 r12 r12 r12 r12 r12
37 s40 s7 s8 s9
38 s41 s7 s8 s9
39 r7 r7 r7 r7 r7 r7
40 r2 r2 r2 r2 r2 r2
41 r1 r1 r1 r1 r1 r1

Fig. 3.5: State table generated from
the instruction set grammar given in
Fig. 3.4. sx indicates a shift to the next
state x, ri indicates the reduction of
rule i, and a blank entry indicates an
error [158]
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Advantages

By relying on a state table, Graham-Glanville-style instruction selectors are com-
pletely table-driven and implemented by a core that basically consists of a series of
table lookups.3 Consequently, the time it takes for the instruction selector to generate
the assembly code is linearly proportional to the size of the program tree. Although
the idea of table-driven code generation was not novel in itself—we have seen several
examples of it in Chapter 2—earlier attempts had all failed to provide an automated
procedure for producing the tables. In addition, many decisions regarding pattern
selection are precomputed by resolving shift-reduce and reduce-reduce conflicts at
the time that the state table is generated, thus reducing compilation time.

Another advantage of the Graham-Glanville approach is its formal foundation,
which enables means of automatic verification. For instance, Emmelmann [111]
presented one of the first methods of proving the completeness of an instruction set
grammar.4 The intuition behind Emmelmann’s automatic prover is to find all program
trees that can appear in the program but cannot be handled by the instruction selector.
Let us denote an instruction set grammar by G and a grammar describing the program
trees by T . If we further use L(X) to represent the set of all trees accepted by a
grammar X , we can then determine whether the instruction set grammar is incomplete
by checking if L(T )\L(G ) yields a nonempty set. Emmelmann recognized that this
intersection can be computed by creating a product automaton which essentially
implements the language that accepts only the trees in this set of counterexamples.
From this automaton it is also possible to derive the rules that are missing from
the instruction set grammar. Brandner [54] recently extended this method to handle
productions that contain predicates—we will discuss these shortly when explor-
ing attribute grammars—by splitting terminals to expose these otherwise-hidden
characteristics.

Disadvantages

Although it addressed several of the problems with contemporary instruction selection
techniques, the Graham-Glanville approach also had disadvantages of its own. First,
since an LR parser can only reason on syntax, any restrictions regarding specific
values or ranges must be captured by its own nonterminal. In conjunction with the
limitation that each production can match only a single pattern, this typically meant
that rules for versatile instructions with several addressing or operand modes had to
be duplicated for each such mode. For most target machines this turned out to be

3 Pennello [279] developed a technique to express the state table directly as assembly code, thus
eliminating even the need to perform table lookups. This was reported to improve the efficiency of
LR parsing by six to ten times.
4 Note, however, that even though an instruction set grammar has been proven to be complete,
a greedy instruction selector may still fail to use a necessary rule. Consequently, Emmelmann’s
checker assumes that an optimal instruction selector will be used for the proven instruction set
grammar.
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impracticable. For example, in the case of the VAX machine—a complex instruction
set computer (CISC) architecture from the 1980s, where each instruction accepted a
multitude of operand modes [71]—the instruction set grammar would contain over
eight million rules [164]. By introducing auxiliary nonterminals to combine features
shared among the rules—a task called refactoring—the number was brought down
to about a thousand rules, but this had to be done carefully to not have a negative
impact on code quality. Second, since the parser traverses from left to right without
backtracking, assembly code regarding one operand has to be emitted before any
other operand can be observed. This can potentially lead to poor decisions which
later have to be undone by emitting additional code, as in the case of recovering
from syntactic blocking. Hence, to design an instruction set grammar that was both
compact and yielded good code quality, the developer had to possess extensive
knowledge about the implementation of the instruction selector.

3.3.2 Extending Grammars with Semantic Handling

In purely context-free grammars there is just no way to handle semantic information.
For example, the exact register represented by a reg nonterminal is not available.
Glanville and Graham worked around this limitation by pushing the information onto
the stack, but even then their modified LR parser could reason upon it using only
simple equality comparisons. Ganapathi and Fischer [146, 147, 148, 149] addressed
this problem by replacing the use of traditional, context-free grammars with the
use of a more powerful set of grammars known as attribute grammars. There are
also affix grammars, which can be thought of as a subset of attribute grammars.
In this book, however, we will only consider attribute grammars, and, as with the
Graham-Glanville approach, we will discuss how they work only at a high level.

Attribute Grammars

Attribute grammars were introduced in 1968 by Knuth [209], who extended context-
free grammars with attributes. Attributes are used to store, manipulate, and propagate
additional information about individual terminals and nonterminals during parsing,
and an attribute is either synthesized or inherited. Using parse trees as the point of
reference, a node with a synthesized attribute forms its value from the attributes
of its children, and a node with an inherited attribute copies the value from the
parent. Consequently, information derived from synthesized attributes flows upwards
along the tree while information derived from inherited attributes flows downwards.
We therefore distinguish between synthesized and inherited attributes by a ↑ or ↓,
respectively, which will be prefixed to the attribute of the concerned symbol (for
example, the synthesized attribute x of a reg nonterminal is written as reg↑x).

The attributes are then used within predicates and actions. Predicates are used
for checking the applicability of a rule, and, in addition to emitting assembly code,
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PRODUCTION PREDICATES ACTIONS
1 byte↑r → + byte↑a byte↑r IsOne(↓a), NotBusy (↓r) EMIT ‘‘incb ↓r’’
2 byte↑r → + byte↑r byte↑a IsOne(↓a), NotBusy (↓r) EMIT ‘‘incb ↓r’’
3 byte↑r → + byte↑a byte↑r TwoOp(↓a, ↓r) EMIT ‘‘addb2 ↓a,↓r’’
4 byte↑r → + byte↑r byte↑a TwoOp(↓a, ↓r) EMIT ‘‘addb2 ↓a,↓r’’
5 byte↑r → + byte↑a byte↑b GETREG(↑r)

EMIT ‘‘addb3 ↓r,↓a,↓b’’

Fig. 3.7: An instruction set expressed as an attribute grammar [148]

actions are used to produce new synthesized attributes. Hence, when modeling
instructions we can use predicates to express the constraints, and actions to indicate
effects, such as code emission, and which register the result will be stored in. Let us
look at an example.

In Fig. 3.7 we see a set of rules for modeling three byte-adding instructions: an
increment version incb (increments a register by 1, modeled by rules 1 and 2); a
two-address version add2b (adds two registers and stores the result in one of the
operands, modeled by rules 3 and 4); and a three-address version add3b (the result
can be stored elsewhere, modeled by rule 5). Naturally, the incb instruction can
only be used when one of the operands is a constant of value 1, which is checked by
the IsOne predicate. In addition, since this instruction destroys the previous value
of the register, it can only be used when no subsequent operation uses the old value
(meaning the register is not “busy”), which is checked by the NotBusy predicate.
The EMIT action then emits the corresponding assembly code. Since addition is
commutative, we require two rules to make the instruction applicable in both cases.
Similarly, we have two rules for the add2b instruction, but the predicates have
been replaced by a TwoOp, which checks if one of the operands is the target of
assignment or if the value is not needed afterwards. Since the last rule does not have
any predicates, it also acts as the default rule, thus preventing situations of semantic
blocking which we discussed when covering the Graham-Glanville approach.

Advantages and Disadvantages

The use of predicates removes the need of introducing new nonterminals for express-
ing specific values and ranges, resulting in a more concise instruction set grammar
compared to a context-free grammar. For example, for the VAX machine, the use
of attributes leads to a grammar half the size (around 600 rules) compared to that
required for the Graham-Glanville approach, even without applying any extensive
refactoring [147]. Attribute grammars also facilitate incremental development of
the machine descriptions: one can start by implementing the most general rules to
achieve an instruction set grammar that produces correct but inefficient code. Rules
for handling more complex instructions can then can be added incrementally, making
it possible to balance implementation effort against code quality. Another useful
feature is that other program optimization routines, such as constant folding, can be
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expressed as part of the grammar instead of as a separate component. Farrow [122]
even made an attempt at deriving an entire Pascal compiler from an attribute grammar.

But to permit attributes to be used together with LR parsing, the properties of the
instruction set grammar must be restricted. First, only synthesized attributes may
appear in nonterminals. This is because an LR parser constructs the parse tree bottom-
up and left-to-right, starting from the leaves and working its way up towards the root.
Hence an inherited value only becomes available after the subtree of its nonterminal
has been constructed. Second, since predicates may render a rule as semantically
invalid for rule reduction, all actions must appear last in the rules. Otherwise they
may cause effects that must be undone after a predicate fails its check. Third, as
with the Graham-Glanville approach, the parser has to take decisions regarding one
subtree without any consideration of sibling subtrees that may appear to the right.
This can result in assembly code that could have been improved if all subtrees had
been available beforehand, and this is again a limitation due to the use of LR parsing.
Ganapathi [145] later made an attempt to resolve this problem by implementing
an instruction selector in Prolog—a logic-based programming language—but this
incurred exponential worst-case time complexity of the instruction selector.

3.3.3 Maintaining Multiple Parse Trees for Better Code Quality

Since LR parsers make a single pass over the program trees—and thus only produce
one out of many possible parse trees—the quality of the produced assembly code
is heavily dependent on the instruction set grammar to guide the parser in finding a
“good” parse tree.

Christopher et al. [76] attempted to address this concern by using the concepts of
the Graham-Glanville approach but extending the parser to produce all parse trees,
and then select the one that yields the best assembly code. This was achieved by
replacing the original LR parser with an implementation of Earley’s algorithm [104],
and although this scheme certainly improves code quality—at least in theory—it
does so at the cost of enumerating all parse trees, which is often too expensive in
practice.

In 2000, Madhavan et al. [245] extended the Graham-Glanville approach to
achieve optimal selection of patterns while allegedly retaining the linear time com-
plexity of LR parsing. By incorporating a new version of LR parsing [307], reductions
that were previously executed directly as matching rules were found are now allowed
to be postponed by an arbitrary number of steps. Hence the instruction selector
essentially keeps track of multiple parse trees, allowing it to gather enough infor-
mation about the program before committing to a decision that could turn out to
be suboptimal. In other words, as in the case of Christopher et al. the design by
Madhavan et al. also covers all parse trees, but immediately discards those which
are determined to result in less efficient assembly code (this resembles the branch-
and-bound search strategy discussed in Chapter 2 on p. 20). To do this efficiently,
the design also incorporates offline cost analysis, which we will explore later in
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Section 3.6.3. More recently, Yang [347] proposed a similar technique involving the
use of parser cactuses, where deviating parse trees are branched off a common trunk
to reduce space requirements. In both designs, however, the underlying principle still
prohibits the modeling of many typical target machine features such as multi-output
instructions since their grammars only allow rules that produce a single result.

3.4 Using Recursion to Cover Trees Top-Down

The tree covering techniques we have examined so far—in particular those based
on LR parsing—all operate bottom-up: the instruction selector begins to cover the
leaves in the program tree, and based on the decisions taken for the subtrees it
then progressively works it way upwards along the tree until it reaches the root,
continually matching and selecting applicable patterns along the way. This is by
no means the only method of covering, as it can also be done top-down. In such
designs, the instruction selector covers the program tree starting from the root, and
then recursively works its way downwards. Consequently, the flow of semantic
information, such as the particular register in which a result will be stored, is also
different: a bottom-up instruction selector lets this information trickle upwards along
the program tree—either via auxiliary data structures or through tree rewriting—
whereas a top-down implementation decides upon this beforehand and pushes this
information downwards. The latter is therefore said to be goal-driven, as pattern
selection is guided by a set of additional requirements which must be fulfilled by the
selected pattern. Since this in turn will incur new requirements for the subtrees, most
top-down techniques are implemented recursively. This also enables backtracking,
which is a necessary feature, as selection of certain patterns can cause the lower parts
of the program tree to become uncoverable.

3.4.1 First Applications

Using Means-End Analysis to Guide Instruction Selection

To the best of my knowledge, Newcomer [263] was the first to develop a scheme that
uses top-down tree covering to address instruction selection. In his 1975 doctoral
dissertation, Newcomer proposes a design that exhaustively finds all combinations of
patterns that cover a given program tree, and then selects the one with lowest cost.
Cattell [68] also describes this in his survey paper, which is the main source for the
discussion of Newcomer’s design.

The instructions are modeled as T-operators, which are basically pattern trees
with costs and attributes attached. The attributes describe various restrictions, such as
which registers can be used for the operands. There is also a set of T-operators that the
instruction selector uses to perform necessary transformations of the program—its
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need will become clear as the discussion continues. The scheme takes an AST as
expected input and then covers it following the aforementioned top-down approach:
the instruction selector first attempts to find all matching patterns for the root of
the AST, and then proceeds to recursively cover the remaining subtrees for each
match. Pattern matching is done using a straightforward technique that we know from
before (see Fig. 3.3 on p. 35), and for efficiency all patterns are indexed according to
the type of their root. The result of this procedure is thus a set of pattern sequences
each of which covers the entire AST. Afterwards, each sequence is checked for
whether the attributes of its patterns are equal to those of a preferred attribute set
(PAS), which corresponds to a goal. If not, the instruction selector will attempt to
rewrite the subtree using the transformation T-operators until the attributes match. To
guide this process, Newcomer applied a heuristic search strategy known as means-end
analysis, which was introduced by Newell and Simon [264] in 1959. The intuition
behind means-end analysis is to recursively minimize the quantitative difference—
how this is calculated is not mentioned in [68]—between the current state (that is,
what the subtree looks like now) and a goal state (what it should look like). To avoid
infinite looping, the transformation process stops once it reaches a certain depth
in the search space. If successful, the applied transformations are inserted into the
pattern sequence; if not, the sequence is dropped. From the found pattern sequences
the one with the lowest total cost is selected, followed by assembly code emission.

Newcomer’s design was pioneering as its application of means-end analysis made
it possible to guide the process of modifying the program until it could be imple-
mented on the target machine, without have to resort to target-specific mechanisms.
But the design also had several significant flaws. First, it had little practical applica-
tion, as Newcomer’s implementation only handled arithmetic expressions. Second,
the T-operators used for modeling the instructions as well as transformations had to
be constructed by hand—a task that was far from trivial—which hindered compiler
retargetability. Third, the process of transforming the program could end prematurely
due to the search space cut-off, causing the instruction selector to fail to generate any
assembly code whatsoever. Lastly, the search strategy proved much too expensive to
be usable in practice except for very small program trees.

Making Means-End Analysis Work in Practice

Cattell et al. [67, 70, 234] later improved and extended Newcomer’s work into a more
practical framework which was implemented in the Production Quality Compiler-
Compiler (PQCC), a derivation of the BLISS-11 compiler originally written by
Wulf et al. [344]. Instead of performing the means-end analysis as the program is
compiled, their design does it as a preprocessing step when generating the compiler
itself—much as with the Graham-Glanville approach.

The patterns are expressed as a set of templates which are formed using recursive
composition, and are thus similar to the productions found in instruction set grammars.
But unlike Glanville and Graham’s and Ganapathi and Fischer’s designs—where the
grammars were written by hand—the templates in PQCC are derived automatically
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from a target-specific machine description. Each instruction is modeled as a set of
machine operations that describe the effects of the instruction, and are thus akin to
the RTLs introduced by Fraser [136] in Chapter 2. These effects are then used by a
separate tool, called the Code-Generator Generator (CGG), to create the templates
which will be used by the instruction selector.

In addition to producing the trivial templates corresponding directly to an in-
struction, CGG also produces a set of single-node patterns as well as a set of larger
patterns that combine several instructions. The former ensures that the instruction
selector is capable of generating assembly code for all programs (since any program
tree can thereby be trivially covered), while the latter reduces compilation time as
it is quicker to match a large pattern than many smaller ones. To do this, CGG
uses a combination of means-end analysis and heuristic rules which apply a set of
axioms (such as ¬¬E⇔ E, E +0⇔ E, and ¬(E1 ≥ E2)⇔ E1 < E2) to manipulate
and combine existing patterns into new ones. However, there are no guarantees that
these “interesting” patterns will ever be applicable in practice. Once generated, in-
struction selection is performed in a greedy, top-down fashion that always selects the
lowest-cost template matching the current node in the program tree (pattern matching
is done using a scheme identical to Newcomer’s). If there is a tie, the instruction
selector picks the template with the least number of memory loads and stores.

Compared to the LR parsing-based methods discussed previously, the design by
Cattell et al. has both advantages and disadvantages. The main advantage is that the
instruction selectors is less at risk of failing to generate assembly code for some
program. There is the possibility that the set of predefined templates is insufficient
to produce all necessary single-node patterns, but then CGG can at least issue a
warning (in Ganapathi and Fischer’s design this correctness has to be ensured by the
grammar designer). The disadvantage is that it is relatively slow: whereas the tree
parsing-based instruction selectors exhibit linear time complexity, both for pattern
matching and selection, the instruction selector by Cattell et al. has to match each
template individually, which could take quadratic time in the worst case.

Recent Designs

To the best of my knowledge, the only recent technique (less than 20 years old) to use
this kind of recursive top-down methodology for tree covering is that of Nymeyer et
al. [270, 271]. In two papers from 1996 and 1997, Nymeyer et al. introduce a method
where A∗ search—another strategy for exploring the search space (see [297])—is
combined with BURS theory. We will discuss BURS theory in more detail later in
this chapter—the anxious reader can skip directly to Section 3.6.3—so for now let it
be sufficient to say that grammars based on BURS allow transformation rules, such as
rewriting X +Y into Y +X , to be included as part of the instruction set grammar. This
potentially simplifies and reduces the number of rules required for expressing the
instructions, but unfortunately the authors did not publish any experimental results,
thus making it difficult to judge whether the A∗-BURS theory combination would be
an applicable technique in practice.
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3.5 A Note on Tree Rewriting vs. Tree Covering

At this point some readers may feel that tree rewriting—where patterns are iteratively
selected for rewriting the program tree until it consists of a single node of some goal
type—is something entirely different compared to tree covering—where compatible
patterns are selected for covering all nodes in the program tree. The same argument
applies to DAG and graph covering, although rewriting-based techniques are less
common for those principles. Indeed, there appears to be a subtle difference, but a
valid solution to a problem expressed using tree rewriting is also a valid solution
to the equivalent problem expressed using tree covering, and vice versa. It could
therefore be argued that the two are interchangeable, but I regard tree rewriting as
a means to solving the tree covering problem, which I regard as the fundamental
principle.

3.5.1 Handling Chain Rules in Purely Coverage-Driven Designs

Another objection that may arise is how tree covering, as a principle, can support
chain rules. A chain rule is a rule whose pattern consists of a single nonterminal,
and the name comes from the fact that reductions using these rules can be chained
together one after another. Consequently, chain rules are often used to represent data
transfers and other value-preserving transformations (an example of this is given in
Chapter 5).

Let us first assume that we have as input the program tree shown in Fig. 3.8a,
which will be covered using the following instruction set grammar:

PRODUCTION
1 regA → Int
2 regB → regA
3 regB → regB + regB

Let us further assume that we have an instruction selector where pattern matching
is performed strictly through node comparison. This instruction selector is clearly
based on tree covering, but it will fail to find a valid cover for the aforementioned
program tree as it will not be able to match and select the necessary chain rules (see
Fig. 3.8b).

There are three ways of solving this problem. The simplest method is to simply
ignore the incompatibilities during pattern selection, and then—if supported—inject
the assembly code for the necessary chain rules afterwards. But this obviously
compromises code quality as the cost of the chain rules is not taken into account. A
better approach is to consider all chain rule applications during pattern matching,
which essentially means that regular patterns are combined with chain rules—this
is known as computing the transitive closure—to yield new patterns (see Fig. 3.8c).
The third and last approach is to augment the program tree by inserting auxiliary
nodes, each of which each represents the application of a chain rule (see Fig. 3.8d).



50 3 Tree Covering

+
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(a) Program tree to cover. Variables A and B are assumed to represent integer values

+

A B

3

1 1

(b) Invalid cover due to in-
compatabilities between the
selected patterns
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1 + 2 1 + 2

(c) Covering using the transitive
closure method

+
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3

1 1

2 2

(d) Covering using the aug-
mentation method

Fig. 3.8: Examples illustrating how chain rules can be supported by tree covering-
based techniques. The numbers next to the shaded areas indicate which rules have
been selected

The transitive closure and augmentation methods both come with certain ben-
efits and drawbacks. The former method allows chain rules to be applied in any
combination and of any length, but it complicates the tasks of pattern matching and
pattern selection. The latter method requires no change in the pattern matcher and
pattern selector, but it enlarges the program tree and requires an additional dummy
rule to indicate that no chain rule is applied (if more than one chain rule needs to
be applied then several auxiliary nodes must be inserted, one after another). As we
have seen, several designs ignore this problem by assuming a homogeneous target
architecture, and a few techniques apply the inefficient idea of code injection. The
transitive closure approach is typically limited to tree covering-based methods, while
the augmentation method is mostly applied when covering more general forms such
as directed acyclic graphs and graphs (which we will discuss in the coming chapters).

3.6 Separating Pattern Matching from Pattern Selection

In the previously discussed techniques based on tree covering, the tasks of pattern
matching and pattern selection are unified into a single step. Although this enables
single-pass code generation, it typically also prevents the instruction selector from
considering the impact of certain combinations of patterns. By separating these two
concerns and allowing the instruction selector to make multiple passes over the
program tree, it can gather enough information about all applicable patterns before
having to commit to premature decisions.
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But the pattern matchers we have seen so far—excluding those based on
LR parsing—have all been implementations of algorithms with quadratic time com-
plexity. Fortunately, we can do better.

3.6.1 Algorithms for Linear-Time, Tree-Based Pattern Matching

Over the years many algorithms have been discovered for finding all matches given
a subject tree and a set of pattern trees (see for example [74, 81, 103, 179, 197,
286, 287, 306, 334, 345]). For tree covering, most pattern matching algorithms
have been derived from methods of string-based pattern matching. This was first
discovered by Karp et al. [197] in 1972, and their ideas were later extended by
Hoffmann and O’Donnell [179] to form the algorithms most applied by tree-based
instruction selection techniques. Hence, in order to understand pattern matching with
trees, let us first explore how this is done with strings.

Matching Trees Is Equivalent to Matching Strings

The algorithms most commonly used for string matching were introduced by
Aho and Corasick [5] and Knuth et al. [210] (also known as the Knuth-Morris-Pratt
algorithm) in 1975 and 1977, respectively. Independently discovered from one an-
other, both algorithms operate in the same fashion and are thus nearly identical in
their approach.

0 1 2 3 4 5 6 7 8
Input string a b c a b c a b d

Pattern string a b c a b d
↑

a b c a b d
↑

The intuition is that when a partial match of a pattern with a repetitive substring
fails, the pattern matcher does not need to return all the way to the input character
where the matching initially started. This is il-
lustrated in the inlined table where the pattern
string abcabd is matched against the input
string abcabcabd. The arrow indicates the
current character under consideration. At first,
the pattern matches the beginning of the input
string up until the last character (position 5).
When this fails, instead of returning to position 1 and restarting the matching from
scratch, the matcher remembers that the first three characters of the pattern (abc)
have already been matched at this point and therefore continues to position 6, at-
tempting to match the fourth character in the pattern. Consequently all occurrences
of the pattern can be found in linear time. We continue our discussion with Aho
and Corasick’s design as it is capable of matching multiple patterns whereas the
algorithm of Knuth et al. only considers a single pattern (although it can easily be
extended to handle multiple patterns as well).

Aho and Corasick’s algorithm relies on three functions—goto, failure, and output—
where the first function is implemented as a state machine and the two latter ones
are implemented as simple table lookups. How these are constructed is out of scope
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(b) Failure function

i output(i)
2 {he}
5 {she, he}
7 {his}
9 {hers}

(c) Output function

Fig. 3.9: A state machine for string matching [5]

for our purpose—the interested reader can consult the referenced paper—and we
will instead illustrate how the algorithm works on an example. In Fig. 3.9 we see
the corresponding functions for matching the strings he, she, his, and hers. As
a character is read from an input string, say shis, it is first given as argument to
the goto function. Having initialized to state machine to state 0, goto(s) first causes
a transition to state 3, and goto(h) causes a subsequent transition to state 4. For
each successful transition to some state i we invoke output(i) to check whether some
pattern string has been matched, but so far no match has been found. For the next
input character i, however, there exists no corresponding edge from the current state
(that is, goto(i) causes a failure). At this point failure(4) is invoked, which dictates
that the state machine should fall back to state 1. We then retry goto(i), which takes
us to state 6. With the last input character, goto(s) causes a transition to state 7,
where output(7) indicates a match with the pattern string his.

The Hoffmann-O’Donnell Algorithm

Hoffmann and O’Donnell [179] developed two algorithms incorporating the ideas of
Aho and Corasick and Knuth et al. In a paper from 1982, Hoffmann and O’Donnell
first present an O(np) algorithm which matches pattern trees in a top-down fashion,
and then an O(n+m) bottom-up algorithm which trades linear-time pattern matching
for longer preprocessing times (n is the size of the program tree, p is the number of
patterns, and m is the number of matches found).

Pattern matching for the latter—which is the most applied due to its linear runtime
behavior—is simple and outlined in Fig. 3.10. Starting at the leaves, each node is
labeled with an identifier denoting the set of patterns that match the subtree rooted
at that node. We call this set the matchset. The label to assign a particular node is
retrieved by using the labels of the children as indices in a table that is specific to the
type of the current node. For example, label lookups for nodes representing addition
are done using one table, while lookups for nodes representing subtraction are done
using another table. The dimension of the table is equal to the number of children
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LABELTREE(program tree rooted at node n):
1: for each child mi of n do
2: LABELTREE(mi)
3: end for
4: label n with Tn[labels of m1, . . . ,mk ]

Fig. 3.10: The Hoffmann-O’Donnell
algorithm for labeling program
trees [179]

that the node may have. For example, binary operation nodes have two-dimensional
tables while nodes representing constant values have 0-dimensional tables, which
simply consist of a single value. A fully labeled example is shown in Fig. 3.11g, and
the matchsets are then retrieved via a subsequent top-down traversal of the labeled
tree.

Since the bottom-up algorithm introduced by Hoffmann and O’Donnell has had a
historical impact on instruction selection, we will spend some time discussing the
details of how the lookup tables are produced.

Definitions

We begin by introducing a few definitions, and to our aid we will use two pattern
trees A and B, shown in Figs. 3.11a and 3.11b, respectively. The patterns in our pattern
set thus consist of nodes with symbols a, b, c, or v, where an a-node always has
exactly two children, and b, c, and v-nodes always have no children. The v-symbol
is a special nullary symbol, as such nodes represent placeholders that can match
any subtree. We say that these symbols collectively constitute the alphabet Σ of our
pattern set. The alphabet needs to be finite and ranked, meaning that each symbol
in Σ has a ranking function that gives the number of children for a given symbol.
Hence, in our case rank(a) = 2 and rank(b) = rank(c) = rank(v) = 0. Following
the terminology used in Hoffmann and O’Donnell’s paper, we also introduce the
notion of a Σ -term and define it as follows:

1. Each i ∈ Σ with rank(i) = 0 is a Σ -term.
2. If i ∈ Σ and rank(i)> 0, then i

(
t1, . . . , trank(i)

)
is a Σ -term provided every ti is a

Σ -term.
3. Nothing else is a Σ -term.

A pattern tree is therefore a Σ -term, allowing us to write patterns A and B as
a(a(v,v) ,b) and a(b,v), respectively. Σ -terms are also ordered, meaning a(b,v)
for example is different from a(v,b). Consequently, commutative operations, such as
addition, must be handled through pattern duplication (as in the Graham-Glanville
approach).

We continue with some definitions concerning patterns. First, let us denote by
mtrees(p) the set of trees that can be matched by the pattern p at the root of any valid
tree.5 Depending on the alphabet, this set could be infinite. Then, a pattern p is said

5 This definition is not used by Hoffmann and O’Donnell in their paper, but having it will simplify
the discussion to come.
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0 2 2 2 2 2
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(e) Table for symbol b

Tc 0
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(g) A labeled example

Fig. 3.11: Tree pattern matching using Hoffmann-O’Donnell. Nullary nodes v are ac-
centuated with a dashed border. The subpatterns v, b, a(v,v), a(b,v), and a(a(v,v) ,b)
have been labeled 0, 1, 2, 3, and 4, respectively [179]

to subsume another pattern q (written p≥ q) if and only if any matchset including
p always also includes q (hence mtrees(q)⊆mtrees(p)). For example, given two
patterns a(b,b) and a(v,v), we have that a(b,b)≥ a(v,v), since the v-nodes must
obviously also match whenever the b-nodes match. By this definition every pattern
also subsumes itself. Furthermore, p strictly subsumes q (written p > q) iff p≥ q
and p 6= q, and p immediately subsumes q (written p >i q) iff p > q and there exists
no other pattern r such that p > r and r > q.

We also say that two patterns p and q are inconsistent iff both patterns never
appear in the same matchset (hence mtrees(q)∩mtrees(p) = /0). Lastly, p and q are
independent iff there exist three distinct trees t, t ′, and t ′′ (that is, t 6= t ′ 6= t ′′), such
that (i) t is matched by p but not q (hence mtrees(p)* mtrees(q)), (ii) t ′ is matched
by q but not p (hence mtrees(q)* mtrees(p)), and (iii) t ′′ is matched by both p
and q (hence mtrees(q)∩mtrees(p) 6= /0).

Pattern sets that contain no independent patterns are known as simple pattern
sets.6 For example, the pattern set consisting of patterns A and B is simple as there
exists no tree for which both match. As we will see, simple pattern sets have two
important properties that we will use for generating the lookup tables.

6 In Hoffmann and O’Donnell’s paper these are called simple pattern forests.
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Generating Lookup Tables for Simple Pattern Sets

In general, the size of each lookup table is exponential to the size of the pattern set,
as is the time to generate these tables. But Hoffmann and O’Donnell recognized that,
for simple pattern sets, the number of possible matchsets is equal to the number of
patterns, making it tractable to generate the tables for such sets.

Furthermore, Hoffmann and O’Donnell found that each possible matchset for
a simple pattern set can be represented using a single pattern tree. The intuition is
as follows. If a pattern p strictly subsumes another pattern q, then by definition it
means that q will appear in every matchset where p appears. Consequently, q does
not need to be explicitly encoded into the matchset since it can be inferred from the
presence of p. Therefore, for every matchset M we can select a subset of patterns in
M to encode the entire matchset. Let us call this subset the base of M, which we will
denote by M0. It can be proven that different matchsets must have different bases,
and that all patterns in M0 must be pair-wise independent. However, in simple pattern
sets we have no such patterns, and therefore the base of every matchset must consist
of a single pattern. We will call this pattern the base pattern of a matchset, and it is
the labels of the base patterns that will appear as entries in the lookup tables.

The key insight behind labeling is that in order to find the matchset for some
program tree T = a(T1,T2), it is sufficient to only consider the matchsets for T1 and
T2 in the context of a instead of T in its entirety. If the pattern set is simple, then
we know that every matchset has a base pattern. Let p1 and p2 denote the base
patterns of the matchsets of T1 and T2, respectively. With these we can transform
T into T ′ = a(p1, p2), and finding the matchset for T ′ will then be equivalent to
finding the matchset for T . Since every entry in a lookup table refers to a matchset
(which is represented by its base pattern), and each symbol in Σ has its own table,
we can produce the tables simply by finding, for each table entry, the base pattern
of the matchset for the tree represented by that entry. For example, if labels 1 and 2
respectively refer to the patterns b and a(v,v), then the table entry Tc[2,1] will denote
the tree c(a(v,v) ,b), and we are then interested in finding the matchset for that tree.

The next problem is thus to find the base pattern of a given matchset. For simple
pattern sets it can be proven that if we have three distinct patterns p, p′, and p′′,
and p subsumes both p′ and p′′, then it must hold that either p′ > p′′ or p′′ > p′.
Consequently, for every matchset M we can form a subsumption order among the
patterns appearing in M. In other words, if a matchset M contains m patterns, then we
can arrange these patterns such that p1 > p2 > .. . > pm, and the pattern appearing
first in this order (in this case, p1) is the base pattern of M as it strictly subsumes all
other patterns in M. Hence, if we know the subsumption order, then we can easily
find the base pattern.

For this purpose we first enumerate all unique subtrees, called the subpatterns,
that appear in the pattern set. In the case of patterns A and B, this includes v, b,
a(v,v), a(b,v), and a(a(v,v) ,b), and we denote the set of all subpatterns as S. We
then assign each subpattern in S a sequential number, starting from 0, which will
represent the labels (the order in which these are assigned is not important).
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Next we form the subsumption graph for S, denoted by GS, where each node ni
represents a subpattern si ∈ S and each edge ni→ n j indicates that si subsumes s j.
For our pattern set, we get the subsumption graph illustrated in Fig. 3.11c,7 which
we produce using the algorithm given in Fig. 3.12a. The algorithm basically works
as follows. First, we add a node for every subpattern in S, together with a loop
edge, as every pattern always subsumes itself. Next we iterate over all pair-wise
combinations of subpatterns and check whether one subsumes the other, and add a
corresponding edge to GS if this is the case. To test whether a subpattern q subsumes
another pattern q, we check whether the roots of p and q are of the same symbol and
whether every subtree of p subsumes the corresponding subtree of q, which can be
done by checking whether a corresponding edge exists in GS for each combination of
subtrees. Hence, we should iterate this process until GS reaches a fixpoint, but we can
minimize the number of checks by first ordering the subpatterns in S by increasing
height order and then comparing the subpatterns in that order.

Once we have GS we can generate the lookup tables following the algorithm
outlined in Fig. 3.12b. First, we find the subsumption order for all patterns by doing
a topological sort of the nodes in GS (see Appendix C for a definition of topological
sort). Next, we initialize each entry in the table with the label of the subpattern
consisting of a single nullary symbol, and then incrementally update an entry with
the label of the next, larger pattern that matches the tree corresponding to that entry.
By iterating over the patterns in increasing subsumption order, the last assignment

BUILDSUBSUMPTIONGRAPH(set S of subpatterns):
1: initialize GS with one node and loop edge for every subpattern in S
2: for each subpattern s = a(s1, . . . ,sm) ∈ S in increasing height order do
3: for each subpattern s′ ∈ S s.t. height of s′ ≤ height of s do
4: if s′ = v or s′ = a(s′1, . . . ,s

′
m) s.t. edge si→ s′i ∈ GS, ∀1≤ i≤ m then

5: add s→ s′ to GS
6: end if
7: end for
8: end for

(a) Algorithm for producing the subsumption graph

GENERATETABLE(set S of subpatterns, subsumption graph GS, symbol a ∈ Σ ):
1: do topological sort on GS
2: initialize all entries in Ta with v ∈ S
3: for each subpattern s = a(s1, . . . ,sm) ∈ S in increasing subsumption order do
4: for each m-tuple 〈s′1, . . . ,s′m〉 s.t. s′i ≥ si, ∀1≤ i≤ m, do
5: Ta[s′1, . . . ,s

′
m] = s

6: end for
7: end for

(b) Algorithm for producing the lookup tables

Fig. 3.12: The Hoffmann-O’Donnell preprocessing algorithms [179]

7 There is also a corresponding immediate subsumption graph GS. In general, GS is shaped like a
directed acyclic graph, but for simple pattern sets it is always a tree.
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to each entry will be that of the largest matching pattern in the pattern set. For our
example, this results in the tables shown in Figs. 3.11d, 3.11e, and 3.11f.

As already stated, since patterns are required to be ordered, we need to dupli-
cate patterns containing commutative operations by swapping the subtrees of the
operands. But doing this yields patterns that are pair-wise independent, destroying
the property of the pattern set being simple. In such cases, the algorithm is still able
to produce usable lookup tables, but the resulting matchsets will include only one of
the commutative patterns and not the other (which one depends on the subpattern last
used during table generation). Consequently, not all matches will be found during
pattern matching, which may in turn prevent optimal pattern selection.

Compressing the Lookup Tables

Chase [73] further advanced Hoffmann and O’Donnell’s table generation technique
by developing an algorithm that compresses the final lookup tables. The key insight is
that the lookup tables often contain redundant information as many rows and columns
are duplicates. For example, this can be seen clearly in Ta from our previous example,
which is also shown in Fig. 3.13a. By introducing a set of index maps, the duplicates
can be removed by mapping identical columns or rows in the index map to the same
row or column in the lookup table. The lookup table can then be reduced to contain
only the minimal amount of information, as seen in Fig. 3.13b. By denoting the
compressed version of Ta by τa, and the corresponding index maps by µa,0 and µa,1,
we replace a previous lookup Ti[l0, . . . , lm] for symbol i with τi[µi,0[l0], . . . ,µi,m[lm]].

Table compression also provides another benefit in that, for some pattern sets, the
lookup tables can be so large that they cannot even be constructed in the first place.
But Chase discovered that the tables can be compressed as they are generated, thus
pushing the limit on how large lookup tables can be produced. Cai et al. [62] later
improved the asymptotic bounds of Chase’s algorithm.

Ta 1 0 1 2 3 4
0
0 2 2 2 2 2
1 3 3 3 3 3
2 2 4 2 2 2
3 2 4 2 2 2
4 2 4 2 2 2

(a) Uncompressed table

τa 1 0 1
0
0 2 2
1 3 3
2 2 4

µa,0

0 0
1 1
2 2
3 2
4 2

µa,1
0 1 2 3 4
0 1 0 0 0

(b) Compressed table

Fig. 3.13: An example of compressing the lookup table Ta [73]
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3.6.2 Optimal Pattern Selection with Dynamic Programming

Once it became possible to find all matchsets for the entire program tree in linear time,
techniques started to appear that also tackled the problem of optimal pattern selection
in linear time. According to the literature, Ripken [294] was the first to propose a
viable method for optimal linear-time instruction selection, which is described in
a 1977 technical report. Ripken based his method on the dynamic programming
algorithm by Aho and Johnson—which was mentioned in Chapter 1—and later
extended it to handle more realistic instruction sets with multiple register classes and
addressing modes. For brevity we will henceforth abbreviate dynamic programming
as DP.

Although Ripken appears to have been the first to propose a design of an optimal
DP-based instruction selector, it only remained that—a proposal. The first practical
attempt was instead made in 1986 by Aho et al. [6, 7, 321] with the introduction of a
compiler generator called TWIG.

TWIG

As in Ripken’s design, TWIG uses a version of Aho and Johnson’s DP algorithm
for selecting the optimal set of pattern trees to cover a given program tree. The
machine description is expressed as an instruction set grammar (see Section 3.3.1)
using a language called Code Generator Language (CGL), which as introduced
by Aho and Ganapathi [6] in 1985. An excerpt of such a machine description is
shown in Fig. 3.14. TWIG takes this machine description and generates an instruction
selector that makes three passes over the program tree. The first pass is a top-down

node const mem assign plus ind;
label reg no_value;
reg:const /* Rule 1 */
{ cost = 2; }
={ NODEPTR regnode = getreg( );

emit(’’MOV’’, $1$, regnode, 0);
return(regnode);

};
no_value: assign(mem, reg) /* Rule 3 */

{ cost = 2+$%1$->cost; }
={ emit(’’MOV’’, $2$, $1$, 0);

return(NULL);
};

reg: plus(reg, ind(plus(const, reg))) /* Rule 6 */
{ cost = 2+$%1$->cost+$%2$->cost; }
={ emit(’’ADD’’, $2$, $1$, 0);

return($1$);
};

Fig. 3.14: Rule samples for TWIG, written in CGL [7]
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labeling pass that finds all matchsets for every node in the program tree8 using an
implementation of the Aho-Corasick string matching algorithm [5]. The second pass
is a bottom-up cost computation pass that gives the cost of selecting a particular
pattern for a given node. As we will see, the costs are computed using DP and
hence the computation constitutes the core of this design. The last pass is a recursive
top-down pass that finds the least-cost cover of the program tree. This pass also
executes the actions associated with the selected patterns, which in turn emits the
corresponding assembly code. As we are already quite familiar with how to do tree-
based pattern matching, we will focus on the cost computation and pattern selection
algorithms.

The idea behind the cost computation algorithm, outlined in Fig. 3.15a, is as
follows. For each node n in the program tree we maintain an array for remembering
the lowest cost of reducing n to a particular nonterminal, as well as the rule for making
this reduction. These costs are found by iterating over all rules found in the matchset
of n and computing the cost of applying a particular rule. This cost is computed as
the sum of the cost of the rule itself and the costs of the nonterminals appearing on
the rule’s pattern tree. Initially, all costs are set to infinity, thus prohibiting reductions
using nonterminals which are not available. Once all rules originating from the

COMPUTECOSTS(program tree rooted at node n):
1: for each child ni of n do
2: COMPUTECOSTS(ni)
3: end for
4: initialize array costsn with ∞

5: R = {rule r : r ∈ matchset of n or r is a chain rule}
6: for each rule r ∈ R in transitive reduction order do
7: c = cost of applying r at n
8: l = left-hand nonterminal of r
9: if c < costsn[l] then

10: costsn[l] = c
11: rulesn[l] = r
12: end if
13: end for

(a) Cost computation algorithm

SELECTANDEXECUTE(program tree rooted at node n,
goal nonterminal g):

1: rule r = rulesn[g]
2: for each nonterminal l that appears on the pattern of r do
3: SELECTANDEXECUTE(node to reduce to l, l)
4: end for
5: execute actions associated with r

(b) Pattern selection and code emission algorithm

Fig. 3.15: Algorithms for optimal tree-based pattern selection using dynamic pro-
gramming [7]

8 Remember that, when using instruction set grammars, a pattern found in the matchset during
pattern matching corresponds to the right-hand side of a production.
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matchset have been checked, we need to check all applicable chain rules as these
may make the current node reducible to additional nonterminals or to the same
nonterminals but at a lower cost. However, since one chain rule may depend on
another chain rule, it matters in what order the chain rules are checked (at least until
a fixpoint is reached). To minimize the number of checks, we sort these chain rules
in transitive reduction order, meaning for every pair of rules i and j, where i reduces
to a nonterminal used by j, i is checked before j.

After the costs have been computed for the root of the program tree, we can find
the least-cost cover that reduces the entire program tree to the goal nonterminal
simply by consulting the cost arrays (the algorithm is shown in Fig. 3.15b). Starting
from the root, we select the rule that reduces this node of the program tree to a
particular nonterminal. The same is then done recursively for each nonterminal that
appears on the pattern in the selected rule, acting as the goal for the corresponding
subtree. Note that since patterns can have arbitrary height, this subtree can appear
several levels down from the current node in the program tree. The algorithm also
correctly applies the necessary chain rules, as the use of such a rule causes the routine
to be reinvoked on the same node but with a different goal nonterminal.

DP Versus LR Parsing

The DP scheme has several advantages over those based on LR parsing. First, re-
duction conflicts are automatically handled by the cost-computing algorithm, remov-
ing the need of ordering the rules which could affect the code quality yielded by
LR parsers. Second, rule cycles that cause LR parsers to get stuck in an infinite loop
no longer need to be explicitly broken. Third, machine descriptions can be made
more concise as rules differing only in cost can be combined into a single rule. Again
taking the VAX machine as an example, Aho et al. reported that the entire TWIG
specification could be implemented using only 115 rules, which is about half the
size of Ganapathi and Fischer’s attribute-based instruction set grammar for the same
target machine.

However, the DP approach requires that the code generation problem exhibit
properties of optimal substructure, meaning that it is possible to generate optimal
assembly code by solving each of its subproblems to optimality. As explained in
Chapter 1, this is not always the case; some solutions, whose total sum is greater
compared to another set of selected patterns, can actually lead to better assembly
code in the end.

Further Improvements

Several improvements of TWIG were later made by Yates and Schwartz [348] and
Emmelmann et al. [109]. Yates and Schwartz improved the rate of pattern match-
ing by replacing TWIG’s top-down approach with the faster bottom-up algorithm
proposed by Hoffmann and O’Donnell, and also extended the attribute support for
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more powerful predicates. Emmelmann et al. modified the DP algorithm to be run as
the program trees are built by the frontend, which also inlines the code of auxiliary
functions directly into the DP algorithm to reduce the overhead. Emmelmann et al.
implemented their improvements in a system called the Back End Generator (BEG),
and a modified version of this is currently used in the COSY compiler [89].

Fraser et al. [137] made similar improvements in a system called IBURG that is
both simpler and faster than TWIG—IBURG requires only 950 lines of code compared
to TWIG’s 3,000 lines of C code, and generates assembly code of comparable quality
at a rate that is 25 times faster—and has been used in several compilers (such as
RECORD [232, 250] and REDACO [215]). Gough and Ledermann [160, 161] later
extended the predicate support of IBURG in an implementation called MBURG.
Both IBURG and MBURG have later been reimplemented in various programming
languages, such as the Java-based JBURG [171], OCAMLBURG [238], which is
written in C−−, and GPBURG [162], which is written in C#.

According to Leupers and Marwedel [231] and Cao et al. [64], Tjiang [320] later
merged the ideas of TWIG and IBURG into a new implementation called OLIVE—the
name is a spin-off of TWIG—and made several additional improvements such as
rules to use arbitrary cost functions instead of fixed, numeric values. This supports
more versatile instruction selection, as rules can be dynamically deactivated by
setting infinite costs, which can be controlled from the current context. OLIVE
is used in the implementation of SPAM [316]—a fixed-point DSP compiler—and
Araujo and Malik [21] employed it in an attempt to integrate instruction selection
with scheduling and register allocation.

Code Size-Reducing Instruction Selection

In 2010, Edler von Koch et al. [107] modified the backend in COSY to perform code
generation in two stages in order to reduce code size for architectures with mixed
16-bit and 32-bit instructions, where the former is smaller but can only access a
reduced set of registers. In the first stage, instruction selection is performed by
aggressively selecting 16-bit instructions. Then, during register allocation, whenever
a memory spill is required due to the use of a 16-bit instruction, the node “causing”
this spill is annotated with a special flag. Once register allocation is finished, another
round of instruction selection is performed but this time no nodes which have been
annotated are allowed to be covered by patterns originating from 16-bit instructions.
Experiments showed that this scheme reduced code size by about 17% on average
compared to COSY for the selected target architecture and benchmark suite.

Combining DP with Macro Expansion

After arguing that Glanville and Graham’s method attacked the instruction selection
problem from the wrong direction (that is, by defining the instructions in terms of
IR operations), Horspool [184] developed in 1987 a technique that essentially is
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Fig. 3.16: Breaking down a pattern into single-node components in order for it to be
supported by a macro-expanding instruction selector [184]

an enhanced form of macro expansion. As discussed in Chapter 2, because macro-
expanding instruction selectors only visit and execute macros one IR node at a
time, they do not inherently support instructions where there is an n-to-1 mapping
between the IR nodes and the instructions. This limitation can be worked around by
incorporating additional logic and bookkeeping into the macro definitions, but doing
so by hand often proves to be infeasible. By including an edge labeling step prior to
macro expansion, Horspool found a way of supporting such instructions while at the
same time simplifying the macro definitions.

The idea is to first break down every pattern into single-node components (see
Fig. 3.16). As part of the breakdown process the intermediate edges are labeled with
storage classes which serve as a form of glue between the components, allowing them
to be reconnected during macro expansion. The same storage classes can be used
across multiple patterns if this is deemed appropriate, which is akin to refactoring an
instruction set grammar in order to reduce the number of rules.

The goal is then to label the edges of the program tree with storage classes such
that they correspond to a least-cost cover of the tree, which can be done using dynamic
programming (but the paper does not go into detail about how the component costs
should be assigned). Once the program tree has been labeled, the assembly code can
be emitted using a straightforward macro expander that uses the current node’s type
and the storage classes of its edges as indices to a macro table. Since the bookkeeping
is essentially lifted into the storage classes, the macro definitions become much
simpler compared to those of traditional macro-expanding techniques. Moreover,
there is no need to handle backtracking, as such a combination of edge labels would
imply an illegal cover of the program tree.

In principle, Horspool’s design is comparable to that of Aho et al., and should
yield similar code quality. However, Horspool appears to have had to implement his
instruction selection tables by hand whereas Aho et al. built a tool to do it for them.
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3.6.3 Faster Pattern Selection with Offline Cost Analysis

In the DP approach just discussed, the rule costs needed for selecting the patterns are
dynamically computed while the pattern matcher is completely table-driven. It was
later discovered that these calculations can also be done beforehand and represented
as tables, improving the speed of the pattern selector as it did for pattern matching.
We will refer to this aspect as offline cost analysis, which means that the costs of
covering any given program tree are precomputed as part of generating the compiler
instead at compilation time.

Extending Matchset Labels with Costs

To make use of offline cost analysis, we need to extend the labels to not only represent
matchsets, but also incorporate the information about which pattern will lead to the
lowest covering cost given a specific goal. To distinguish between the two, we refer
to this extended form of label as a state. A state is essentially a representation of
a specific combination of goals, patterns, and costs, where each possible goal g is
associated with a pattern p and a relative cost c. A goal in this context typically
dictates where the result of an expression must appear, like a particular register class
or memory, and in grammar terms this means that each nonterminal is associated
with a rule and a cost. This combination is such that

1. for any program tree whose root has been labeled with a particular state,
2. if the goal of the root must be g,
3. then the entire program tree can be covered with minimal cost by selecting

pattern p at the root. The relative cost of this covering, compared to the scenario
in which the goal is something else, is equal to c.

A key point to understand here is that a state does not necessarily need to carry
information about how to optimally cover the entire program tree—indeed, such
attempts would require an infinite number of states. Instead, the states only convey
enough information about how to cover the distinct key shapes that can appear in
any program tree. To explain this further, let us observe how most (if not all) target
machines operate: between the execution of two instructions, the data is synchronized
by storing it in registers or in memory. The manner in which some data came to
appear in a particular location has in general no impact on the execution of the
subsequent instructions. Consequently, depending on the available instructions, one
can often break a program tree at certain key places without compromising code
quality. This yields a set of many, smaller program trees, each with a specific goal at
the root, which then can be optimally covered in isolation. In other words, the set
of states only needs to collectively represent enough information to communicate
where these cuts can be made for all possible program trees. This does not mean that
the program tree is actually partitioned into smaller pieces before pattern selection,
but thinking about it in this way helps us understand why we can restrict ourselves to
a finite number of states and still get optimal pattern selection.
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SELECTANDEXECUTE(program tree rooted at node n,
goal-nonterminal g):

1: rule r = RT[state assigned to n,g]
2: for each nonterminal l that appears on the pattern of r do
3: SELECTANDEXECUTE(node to reduce to l, l)
4: end for
5: execute actions associated with r

Fig. 3.17: Table-driven algorithm for performing optimal tree-based pattern selection
and code emission. RT stands for rule table and specifies the rule to select for optimal
covering given a certain state and goal [281]

Since a state is simply an extended form of a label, the process of labeling a
program tree with states is exactly the same as before (see Fig. 3.10 on p. 53), as
we simply need to replace the lookup tables. Pattern selection and assembly code
emission is then done as described in Fig. 3.17, more or less identically to the
algorithm used in conjunction with dynamic programming (compare with Fig. 3.15b
on p. 59). However, we have yet to describe how to compute the states.

First Technique to Apply Offline Cost Analysis

Due to a 1986 paper, Hatcher and Christopher [172] appear to have been pioneers in
applying offline cost analysis to pattern selection. Hatcher and Christopher’s design
is an extension of the work by Hoffmann and O’Donnell, and their intuition is to
find which rule to apply for some program tree, whose root has been assigned a
label l, such that the entire tree can be reduced to a given nonterminal at lowest cost.
Hatcher and Christopher argued that for optimal pattern selection we can consider
each pair of a label l and nonterminal nt, and then always apply the rule that will
reduce the largest program tree Tl , which is representative of l, to nt at the lowest cost.
In Hoffmann and O’Donnell’s design, where there is only one nullary symbol that
may match any subtree, Tl is equal to the largest pattern appearing in the matchset,
but to accommodate instruction set grammars, Hatcher and Christopher’s version
includes one nullary symbol per nonterminal. This means that Tl has to be found
by overlapping all patterns appearing in the matchset. We then calculate the cost of
transforming a larger pattern p into a subsuming, smaller pattern q (hence p > q)
for every pair of patterns. This cost, which is later annotated to the subsumption
graph, is calculated by recursively rewriting p using other patterns until it is equal
to q, making the cost of this transformation equal to the sum of all applied patterns.
We represent this cost with a function reducecost(p ∗−→ q). With this information we
retrieve the rule that leads to the lowest-cost reduction of Tl to a goal g by finding the
rule r for which

reducecost(Tl
∗−→ g) = reducecost(Tl

∗−→ pattern tree of r)+ cost of r.
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This will select either the largest pattern appearing in the matchset of l, or, if one
exists, a smaller pattern that in combination with others has a lower cost. We have
of course glossed over many details, but this covers the main idea of Hatcher and
Christopher’s design.

By encoding the selected rules into an additional table to be used during pattern
matching, we achieve a completely table-driven instruction selector which also
performs optimal pattern selection. Hatcher and Christopher also augmented the
original algorithm so that the returned matchsets contain all patterns that were
duplicated due commutative operations. However, if the pattern set contains patterns
which are truly independent, then Hatcher and Christopher’s design does not always
guarantee that the program trees can be optimally covered. It is also not clear whether
optimal pattern selection for the largest program trees representative of the labels
is an accurate approximation for optimal pattern selection for all possible program
trees.

Generating the States Using BURS Theory

A different and more well-known method for generating the states was developed by
Pelegrı́-Llopart and Graham [278]. In a seminal paper from 1988, Pelegrı́-Llopart
and Graham prove that the methods of tree rewriting can always arranged such that
all rewrites occur at the leaves of the tree, resulting in a bottom-up rewriting system
(BURS). We say that a collection of such rules constitute a BURS grammar, which is
similar to the grammars already seen, with the exception that BURS grammars allow
multiple symbols—including terminals—to appear on the left-hand side of a produc-
tion. An example of such a grammar is given in Fig. 3.18a, and Dold et al. [99], as

PATTERN
1 r → op a a
2 r → R
3 r → a
4 a → r
5 a → C
6 a → + C r
7 C → 0
8 x → + x 0
9 + y x → + x y

10 op x y → + x y

(a) BURS grammar

+ C r

+ 0 r + r 0 r

+ r r op r r

a
6

9

10

8

1

34

(b) Example of an LR graph based on the program tree + 0 + C C
and the grammar shown in (a). Dashed nodes represent subtrees
of the program tree and fully drawn nodes represent goals. Edges
indicate rule applications, with the number of the applied rule
appearing next to the edge

Fig. 3.18: BURS example [278]
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an extension to the work of Zimmermann and Gaul [355], later developed a method
for proving the correctness of BURS grammars using abstract state machines.

Using BURS theory Pelegrı́-Llopart and Graham developed an algorithm that
computes the tables needed for optimal pattern selection based on a given BURS
grammar. The idea is as follows: for a given program tree T , a local rewrite (LR)
graph is formed where each node represents a specific subtree appearing in T and
each edge indicates the application of a particular rewrite rule on that subtree (an
example is shown in Fig. 3.18b). Setting some nodes as goals (that is, the desired
results of tree rewriting), a subgraph called the uniquely invertable (UI) LR graph
is then selected from the LR graph such that the number of rewrite possibilities is
minimized. Each UI LR graph then corresponds to a state, and by generating all
LR graphs for all possible program trees that can be given as input, we can find
all the necessary states. Since finding a UI LR graph is an NP-complete problem,
Pelegrı́-Llopart and Graham applied a heuristic that iteratively removes nodes which
are deemed “useless” until a UI LR graph is achieved.

Achieving a Bounded Number of States

To achieve optimal pattern selection, the LR graphs are augmented such that each
node no longer represents a pattern tree but a (p,c) pair, where c denotes the minimal
cost of covering the corresponding subtree with pattern p. This is the information
embodied by the states as discussed earlier. A naı̈ve approach would be to include the
full cost of reaching a particular pattern into the state, but depending on the rewrite
system this may require an infinite number of states. An example where this occurs
is given in Fig. 3.19b. A better method is to instead account for the relative cost of
a selected pattern. This is achieved by computing c as the difference between the
cost of p and the smallest cost associated with any other pattern appearing in the
LR graph. This yields the same optimal pattern selection but the number of needed

PATTERN COST
1 r → Int 1
2 r → Ld r 1

(a) A rewrite system that may
lead to an unbounded number
of states. Ld stands for “load”

Int

Ld

Ld
Goal: r
Rule: 2
Cost: N +1

Goal: r
Rule: 2
Cost: 2

Goal: r
Rule: 1
Cost: 1

(b) Input tree labeled with
states that incorporate the full
cost (requires N +1 states)

Int

Ld

Ld
Goal: r
Rule: 2
Cost: 0

Goal: r
Rule: 2
Cost: 0

Goal: r
Rule: 1
Cost: 0

(c) Input tree labeled with states
that incorporate the delta costs
(requires only two states)

Fig. 3.19: An example illustrating how incorporating costs into states can result in an
infinite number of states [278]
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states is bounded, as seen in Fig. 3.19c. This cost is called the delta cost and the
augmented LR graph is thus known as a δ -LR graph. To limit the memory footprint
when generating the δ -LR graphs, Pelegrı́-Llopart and Graham used an extension of
Chase’s table compression algorithm [73] (which we discussed on p. 57).

During testing, Pelegrı́-Llopart and Graham reported that their implementation
yielded state tables only slightly larger than those produced by LR parsing, and
generated assembly code of quality comparable to TWIG’s but at a rate that was
about five times faster.

BURS < Offline Cost Analysis

Since Pelegrı́-Llopart and Graham’s 1988 paper, many later publications mistakenly
associate to the idea of offline cost analysis with BURS theory, typically using
terms like BURS states, when these two aspects are in fact orthogonal to each other.
Although the work by Pelegrı́-Llopart and Graham undoubtedly led to making offline
cost analysis an established aspect of modern instruction selection, the application of
BURS theory is only one means to achieving optimal pattern selection using tables.

For example, in 1990 Balachandran et al. [35] introduced an alternative method
for generating the states that is both simpler and more efficient than that of Pelegrı́-
Llopart and Graham. At its heart their algorithm iteratively creates new states using
those already committed to appear in the state tables. Remember that each state
represents a combination of nonterminals, rules, and costs, where the costs have been
normalized such that the lowest cost of any rule appearing in that state is 0. Hence
two states are identical if the rules selected for all nonterminals and costs are the
same. Before a new state is created it is first checked whether it has already been
seen—if not, then it is added to the set of committed states—and the process repeats
until no new states can be created. We will go into more detail shortly.

Compared to Pelegrı́-Llopart and Graham, this algorithm is less complicated and
also faster as it directly generates a smaller set of states instead of first enumerating
all possible states and then reducing them. In addition, Balachandran et al. expressed
the instructions as a more traditional instruction set grammar—like those used in the
Graham-Glanville approach—instead of as a BURS grammar.

Linear-Form Grammars

In the same paper, Balachandran et al. also introduce the idea of grammars being
in linear form, which means that the pattern of every production in the grammar is
restricted to one of the following forms:

1. lhs→ Op n1 . . . nk, where Op is a terminal representing an operator for which
rank(Op)> 0 and ni are all nonterminals. Rules with such productions are called
base rules.

2. lhs→ T, where T is a terminal. Such rules are also called base rules.
3. lhs→ nt, where nt is a nonterminal. As before, such rules are called chain rules.
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A nonlinear-form grammar can easily be rewritten into linear form by introducing
new nonterminals and rules for making the necessary transitions. An example is
shown below:

PRODUCTION COST PRODUCTION COST
reg → Ld + Const Const 2 reg → Ld n1 2

n1 → + n2 n2 0
n2 → Const 0

Original grammar ⇒ Linear-form grammar

The advantage of this kind of grammar is that the pattern matching problem is
reduced to simply comparing the operator of the root in the pattern with the operator
of a node in the program tree. This also means that the productions appearing in
the rules become more uniform, which greatly simplifies the task of generating the
states.

A Work Queue Approach for State Table Generation

Another state-generating algorithm similar to the one by Balachandran et al. was
proposed by Proebsting [281, 284]. This algorithm was also implemented by
Fraser et al. [138] in a renowned code generation system called BURG,9 which since
its publication in 1992 has sparked a naming convention within the compiler commu-
nity that I have chosen to call the BURGer phenomenon.10 Although Balachandran et
al. were first, we will continue with studying Proebsting’s algorithm as it is better doc-
umented. More details are also available in Proebsting’s doctoral dissertation [282].

Op( , , . . . , )

s1 s2 . . . sn

s′

EXISTING
STATES

OPERATOR

NEW STATE

The algorithm is centered around a work queue that contains a backlog of states
under consideration. Again, it is assumed that the instruction set grammar is in linear
form. The queue is first initialized with the
states that can be generated from all possible
leaves. A state is then popped from the queue
and used in combination with other already-
visited states in an attempt to produce new
states. This is done by effectively simulating
what would happen if a set of nodes, appearing
as children to some node n, were labeled with

9 The keen reader will notice that Fraser et al. also implemented the DP-based system IBURG which
was introduced on p. 61. The connection between the two is that IBURG began as a testbench for
the grammar specification to be used as input to BURG. Fraser et al. later recognized that some of
the ideas for the testbench showed some merit in themselves, and therefore improved and extended
them into a stand-alone generator. Unfortunately the authors neglected to say in their papers what
these acronyms stand for. My tentative guess is that BURG was derived from the BURS acronym
and stands for Bottom-Up Rewrite Generator.
10 During my research for this book, I came across the following systems, all with equally creative
naming schemes: BURG [138], CBURG [303], DBURG [117], GBURG [139], GPBURG [162],
HBURG [48], IBURG [137], JBURG [171], LBURG [169], MBURG [160, 161], WBURG [285], and
OCAMLBURG [238].
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some combination of states, including the state that was just popped. If n can be
labeled using an already existing state, then nothing happens; if not, then a new
appropriate state is created and appended to the queue, making sure that all applicable
chain rules have been applied to the state, as this can affect costs. This is checked
for every possible combination of states and operator symbols, and the algorithm
terminates when the queue becomes empty, indicating that all states necessary for
the instruction set grammar have been generated.

Further Improvements

The time required to generate the state tables can be decreased if the number of
committed states can be minimized. According to Proebsting [284], the first attempts
to do this were made by Henry [176], whose methods were later improved and gener-
alized by Proebsting [281, 284]. Proebsting developed two methods for reducing the
number of generated states: state trimming, which extends and generalizes Henry’s
ideas; and a new technique called chain rule trimming. Without going into details,
state trimming increases the likelihood that two created states will be identical by
removing the information about nonterminals that can be proven to never take part
in a least-cost covering. Chain rule trimming then further minimizes the number of
states by attempting to use the same rules whenever possible. This technique was
later improved by Kang and Choe [195, 196], who exploited properties of common
machine descriptions to decrease the amount of redundant state testing.

More Applications

The approach of extending pattern selection with offline cost analysis has been ap-
plied in numerous compiler-related systems. Some notable applications that we have
not already mentioned include UNH-CODEGEN [174], DCG [114], LBURG [169],
and WBURG [285]. BURG is also available as a Haskell clone called HBURG [48],
and has been adapted by Boulytchev [52] to assist instruction set selection. LBURG
was developed to be used in the Little C Compiler (LCC) [169], and was adopted
by Brandner et al. [55] in designing an architecture description language from
which the instructions can automatically be inferred. LBURG was also extended
by Farfeleder et al. [121] to support certain multi-output instructions by adding an
additional, handwritten pass in the pattern matcher.

3.6.4 Generating States Lazily

The two main approaches achieving optimal pattern selection—those that dynami-
cally compute the costs as the program is compiled, and those that rely on statically
computed costs via state tables—both have their respective advantages and drawbacks.
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The former have the advantage of being able to support dynamic costs (meaning the
pattern cost is not fixed but depends on the context), but they are also considerably
slower than their purely table-driven counterparts. The latter yield faster but larger in-
struction selectors due to the use of state tables, which are also very time-consuming
to generate—for pathological grammars this may even be infeasible—and they only
support grammar rules with fixed costs.

Combining the Best of State Tables and DP

In 2006, Ertl et al. [118] introduced a method that allows the state tables to be
generated lazily and on demand. The intuition is that instead of generating the states
for all possible program trees in advance, one can get away with only generating the
states needed for the program trees that actually appear in the program.

The scheme can be outlined as follows. As the instruction selector traverses a
program tree, the states required for covering its subtrees are created using dynamic
programming. Once the states have been generated, the subtree is labeled and patterns
are selected using the familiar table-driven techniques. Then, if an identical subtree
is encountered elsewhere—either in the same program tree or in another tree of the
program—the same states can be reused. This allows the cost of state generation to
be amortized as the subtree can now be optimally covered faster than if it had been
processed using a purely DP-based pattern selector. Ertl et al. reported the overhead
of state reuse was minimal compared to purely table-driven implementations, and the
time required to first compute the states and then label the program trees was on par
with selecting patterns using ordinary DP-based techniques. Moreover, by generating
the states lazily it is possible to handle larger and more complex instruction set
grammars which otherwise would require an intractable number of states.

Ertl et al. also extended this design to support dynamic costs by recomputing and
storing the states in hash tables whenever the costs at the program tree roots differ.
The authors noted that while this incurs an additional overhead, their instruction
selector was still faster than a purely DP-based instruction selector.

3.7 Other Tree-Based Approaches

So far we have discussed the conventional methods of covering trees: LR parsing,
top-down recursion, dynamic programming, and the use of state tables. In this section
we will look at other designs which also rely on trees, but solve the instruction
selection problem using alternative methods.
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3.7.1 Techniques Based on Formal Frameworks

Homomorphisms and Inversion of Derivors

In order to simplify the machine descriptions and enable formal verification,
Giegerich and Schmal [157] proposed in 1988 an algebraic framework intended to
support all aspects of code generation, including instruction scheduling and register
allocation. In brief terms Giegerich and Schmal reformulated the instruction selec-
tion problem into a “problem of a hierarchic derivor,” which essentially entails the
specification and implementation of a mechanism

γ : T (Q)→ T (Z),

where T (Q) and T (Z) denote the term algebras for expressing programs in an
intermediate language and target machine language, respectively. Hence γ can be
viewed as the resulting instruction selector. Most machine descriptions, however,
are typically expressed in terms of Z rather than Q. We therefore view the machine
specification as a homomorphism

δ : T (Z)→ T (Q),

and the task of an instruction selection-generator is thus to derive γ by inverting δ .
Usually this is achieved by resorting to pattern matching, but for optimal instruction
selection the generator must also interleave the construction of the inverse δ−1 with a
choice function ξ whenever some q ∈ T (Q) has several z ∈ T (Z) such that δ (q) = z.
Conceptually this gives us the following functionality:

T (Q)
δ−1
−−−→ 2T (Z) ξ−−−→ T (Z).

In the same paper, Giegerich and Schmal also demonstrate how some other methods,
such as tree parsing, can be expressed using this framework. A similar scheme
based on rewriting techniques was later proposed by Despland et al. [94, 95] in an
implementation called PAGODE [63].

Equational Logic

Shortly after Giegerich and Schmal, Hatcher [173] developed a design similar to
that of Pelegrı́-Llopart and Graham that relies on equational logic [272] instead of
BURS theory. The two are closely related in that both apply a set of predefined rules
to rewrite the program tree into a single goal term, but an equational specification
has the advantage that all such rules—which are derived from the instructions and
axiomatic transformations—are based on a set of so-called built-in operations. Each
built-in operation has a cost and implicit semantics, expressed as assembly code
emission. The cost of a rule is then equal to the sum of all built-in operations it applies,
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removing the need to set the rule costs manually. In addition, no built-in operations
are predefined, but are instead given as part of the equational specification, providing
a very general mechanism for describing target machines. Experimental results with
an implementation called UCG—the paper does not say what this acronym stands
for—indicated that UCG could, for a selected set of problems, generate assembly
code of comparable quality to that of contemporary techniques but in less time.

3.7.2 More Tree Rewriting-Based Methods

We have already discussed numerous techniques which perform instruction selection
by rewriting the program tree such that it finally reaches a particular goal. For
completeness we will in this section examine the remaining such designs, but without
going into much detail.

Using Finite Tree Automata, Series Transducers, and Pushdown Automata

Emmelmann [110] introduced in 1992 a technique that relies on the theories of finite
tree automata (see for example [154] for an overview), which was later extended by
Ferdinand et al. [127]. In their 1994 paper, Ferdinand et al. demonstrate how finite
tree automata can be used to solve both pattern matching and pattern selection—
greedily as well as optimally—and also present algorithms for how to produce
these automata. An experimental implementation demonstrated the feasibility of this
technique, but the results were not compared to those of other techniques. Similar
designs were later proposed by Borchardt [50] and Janoušek and Málek [187], who
made use of tree series transducers (see for example [112] for an overview) and
pushdown automata, respectively.

Rewriting Strategies

In 2002, Bravenboer and Visser presented a design where rule-based program trans-
formation systems [329] are adapted to instruction selection. Through a system
called STRATEGO [330], a machine description can be augmented by pattern selec-
tion strategies, allowing the pattern selector to be tailored to that particular target
machine. Bravenboer and Visser refer to this as providing a rewriting strategy, and
their system supports modeling of several strategies such as exhaustive search, maxi-
mum munch, and dynamic programming. Purely table-driven techniques, however,
do not seem to be supported at the time of writing, which excludes the application
of offline cost analysis. In their paper, Bravenboer and Visser argue that this setup
allows several pattern selection techniques to be combined, but they do not provide
an example of where this would be beneficial.
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3.7.3 Techniques Based on Genetic Algorithms

To solve the pattern selection problem, Shu et al. [308] employed the theories of
genetic algorithms (GAs), which mimic the process of natural selection (see for
example [292] for an overview).11 The idea is to formulate a solution as a string,
called a chromosome or gene, and then mutate it in order to hopefully end up with a
better solution. For a given program tree whose matchsets have been found using an
O(nm) pattern matcher, Shu et al. formulated each chromosome as a binary bit string
where a 1 indicates the selection of a particular pattern. Likewise, a 0 indicates that
the pattern is not used in the tree covering. The length of a chromosome is therefore
equal to the sum of the number of patterns appearing in all matchsets. The objective
is then to find the chromosome which maximizes a fitness function f, which Shu et al.
defined as

f(c) =
1

k ∗ pc +nc
,

where k is a tweakable constant greater than 1, pc is the number of selected patterns
in the chromosome c, and nc is the number of nodes in c which are covered by more
than one pattern. Hence patterns are allowed to overlap in covering the program tree.
First, a fixed number of chromosomes is randomly generated and evaluated. The best
ones are kept and subjected to standard GA operations—such as fitness-proportionate
reproduction, single-point crossover, and one-bit mutations—in order to produce
new chromosomes, and the process repeats until a termination criterion is reached.
The authors claim to be able to find optimal tree covers in “reasonable” time for
medium-sized program trees, but these include at most 50 nodes. Moreover, due to
the nature of GAs, optimality cannot be guaranteed for all program trees. A similar
technique was devised by Eriksson et al. [115], which also incorporates instruction
scheduling, for generating assembly code for clustered very long instruction word
(VLIW) architectures.

3.7.4 Techniques Based on Trellis Diagrams

The last instruction selection technique that we will examine in this chapter is a rather
unusual design by Wess [336, 337]. Specifically targeting digital signal processors,
Wess’s design integrates instruction selection with register allocation through the use
of trellis diagrams.

A trellis diagram is a graph where each node consists of an optimal value array
(OVA). An element in an OVA represents that the data is stored either in memory (m)
or in a particular register (rx), and its value indicates the lowest accumulated cost
from the leaves to the node. The cost is computed similarly as in the DP-based

11 On a related note, Wu and Li [343] applied ant colony optimization—a meta-heuristic inspired
by the shortest-path searching behavior of various ant species [102]—to improve overall code size
by alternating between instruction sets on a per-function basis.
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techniques. For example, let us assume a target machine with two registers r1 and
r2 yields the following OVA

i 0 1 2 3 4
OVA

TL m r1 r1 r2 r2
RA {r1,r2} {r1} {r1,r2} {r2} {r1,r2}

where TL denotes the target location of the data produced at this node, and RA
denotes the set of registers that may be used when producing the data. To facilitate
the following discussion, let us denote by TL(i,n) and RA(i,n) the target location
and set of available registers, respectively, for the ith element in the OVA of node n.

We create the trellis diagram using the following scheme. For each node in the
program tree, a new node representing an OVA is added to the trellis diagram. For
the leaves an additional node is added in order to handle situations where the values
first need to be transferred to another location before being used (this is needed for
example if the value resides in memory). Next we add the edges. Let us denote by
e(i,n) the ith element in the OVA of a node n. For a unary operation node n, with
a child m, we add an edge between e(i,n) and e( j,m) if there exists a sequence of
instructions that implements the operation of n, stores the result in TL(i,n), takes
as input the value stored in TL( j,m), and exclusively uses the registers in RA(i,n).
Similarly, for a binary operation node o and two children n and m, we add an edge
pair from e(i,n) and e( j,m) to e(k,o) if there exists a sequence of instructions that
implements the operation of o, stores the result in TL(k,o), takes as input the two
values stored in TL(i,n) and TL( j,m), and exclusively uses the registers in RA(k,o).
This can be generalized to n-ary operations, and a complete example is given in
Fig. 3.20.

The edges in the trellis diagram thus correspond to the possible combinations of
instructions and registers that implement a particular operation in the program tree,
and a path from every leaf in the trellis diagram to its root represents a selection of
such combinations. By keeping track of the costs, we can get the optimal instruction
sequence by selecting the path which ends at the OVA element with the lowest cost
in the root of the trellis diagram.

The strength of Wess’s design is that target machines with asymmetric register
classes—where different instructions are needed for accessing different registers—are
easily handled, as instruction selection and register allocation is done simultaneously.
The drawback is that the number of nodes in the trellis diagram is exponential in
the number of registers. This problem was mitigated by Fröhlich et al. [142], who
augmented the algorithm to build the trellis diagram in a lazy fashion, but both
schemes nonetheless require a 1-to-1 mapping between the nodes in a trellis diagram
and the instructions in order to be effective.12

12 This, in combination of how instructions are selected, makes one wonder whether these techniques
actually conform to the principles of tree and DAG covering. I certainly struggled with deciding how
to categorize them, and finally I opted against creating a separate principle, as that would indeed be
a very short chapter.
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(a) Program tree

INSTRUCTION
1 r1 ← r1 ∗ r2
2 r1 ← r1 ∗ m
3 r1 ← r1 − m
4 r1 ← −r1
5 r1 ← m
6 r2 ← m
7 m ← r1
8 m ← r2
9 r2 ← r1

10 r1 ← r2

(b) An instruction set where all
instructions are assumed to have
equal cost. Note that this is not
an instruction set grammar
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(c) Resulting trellis diagram. Gray edges represent available
paths, and black edges indicate the (selected) optimal path

Fig. 3.20: A trellis diagram corresponding to an expression −(a∗b)−c and a two-
register target machine. The variables a, b, and c are assumed to be initially stored in
memory. Note that two instructions are selected for the root as the result is required
to be stored in memory [336]

3.8 Summary

In this chapter we have looked at numerous techniques that are based on the principle
of tree covering. In contrast to macro expansion, tree covering enables use of more
complex patterns, allowing a wider range of instructions to be selected. By applying
dynamic programming, optimal covers can be found in linear time, which further
improve the quality of the generated assembly code, and several techniques also
incorporate offline cost analysis into the instruction selector generator to reduce
compilation time. In other words, this kind of implementation is very fast and
efficient while also supporting a wide array of target machines. Consequently, tree
covering has become the most known—although perhaps no longer the most applied—
principle of instruction selection. However, restricting oneself to trees has several
inherent disadvantages.
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3.8.1 Restrictions That Come with Trees

x = a + b;
y = x + x;

The first disadvantage of trees has to do with expression
modeling. Due to the definitions of trees, common subex-
pressions cannot be properly modeled in a program tree.
For example, the inlined code cannot be modeled directly without applying one of
the following workarounds:

1. Repeating the shared operations, which in Polish notation results in

= y + + a b + a b.

2. Splitting the expression, which results in

= x + a b
= y + x x.

The first approach leads to additional instructions in the assembly code, while
the second hinders the use of more complex instructions. Hence code quality is
compromised in both cases.

The second disadvantage is limited instruction set support. For example, since
trees only allow a single root, multi-output instructions cannot be represented as
pattern trees as such instructions would require multiple roots. Even disjoint-output
instructions, where each individual operation can be modeled as trees, cannot be
selected because tree covering-based instruction selectors can only consider a single
pattern tree at a time.

The third disadvantage is that program trees typically cannot model control flow.
For example, a for loop statement requires a cyclic edge between blocks, which
violates the definition of trees. For this reason, tree-based instruction selectors are
limited to selecting instructions for a single program tree at a time—this is called local
instruction selection—and handle assembly code emission for control flow using
a separate component. This in turn excludes matching and selection of inter-block
instructions, whose behavior incorporates control flow.

To summarize, although the principle of tree covering greatly improves code
quality over the principle of pure macro expansion (ignoring peephole optimization,
that is), the inherent restrictions of trees prevent exploitation of many instructions
provided by modern target machines. In the next chapter we will look at a more
general principle that addresses some of these issues.



Chapter 4
DAG Covering

As we saw in Chapter 3, the principle of tree covering has two significant disad-
vantages. The first is that common subexpressions cannot be properly expressed in
program trees, and the second is that many machine instruction characteristics—such
as multi-output instructions—cannot be modeled as pattern trees. As these shortcom-
ings are primarily due to the restricted use of trees, we can achieve a more powerful
approach to instruction selection by extending tree covering to DAG covering.

4.1 The Principle

By lifting the restriction that every node in the tree have ex-
actly one parent, we get a new shape called a directed acyclic
graph (DAG). Because DAGs permit nodes to have multiple
parents, the intermediate values in an expression can be shared
and reused within the same program DAG. This also enables
pattern DAGs to contain multiple root nodes, which signify
the production of multiple output values and thus extend the
instruction support to include multi-output instructions.

Since DAGs are less restrictive compared to trees, transition-
ing from tree covering to DAG covering requires new methods
for solving the problems of pattern matching and pattern selection. Pattern matching
is typically addressed using one of the following methods:

First split the pattern DAGs into trees, then match these individually, and then
recombine the matched pattern trees into their original DAG form. In general,
matching trees on DAGs is NP-complete [151], but designs applying this tech-
nique typically sacrifice completeness to retain linear time complexity.
Match the pattern DAGs directly using a generic subgraph isomorphism algo-
rithm. Although such algorithms exhibit exponential worst-case time complexity,
in the average case they often finish in polynomial time and are therefore used
by several DAG covering-based designs discussed in this chapter.

77



78 4 DAG Covering

Optimal pattern selection on program DAGs, however, does not offer the same
range of choices in terms of complexity.

4.2 Optimal Pattern Selection on DAGs Is NP-Complete

The cost of the gain in generality and modeling capabilities that DAGs give us is
a substantial increase in complexity. As we saw in Chapter 3, selecting an optimal
set of patterns to cover a program tree can be done in linear time, but doing the
same for program DAGs is an NP-complete problem. Proofs were given in 1976
by Bruno and Sethi [60] and Aho et al. [4], but these were most concerned with the
optimality of instruction scheduling and register allocation. In 1995, Proebsting [283]
gave a very concise proof for optimal instruction selection, and a longer, more
detailed proof was given by Koes and Goldstein [212] in 2008. In this book, we will
paraphrase the longer proof.

4.2.1 The Proof

The idea behind the proof is to transform the Boolean satisfiability (SAT) problem to
an optimal—that is, least-cost—DAG covering problem. The SAT problem is the task
of deciding whether a Boolean formula, written in conjunctive normal form (CNF),
can be satisfied. A CNF formula is an expression consisting of Boolean variables and
the Boolean operations ∨ (or) and ∧ (and) with the following structure:

(x1,1∨ x1,2∨ . . .)∧ (x2,1∨ x2,2∨ . . .)∧ . . .

A variable x can also be negated, written as ¬x.
Since the SAT problem is NP-complete, all polynomial-time transformations from

SAT to any other problem P must also render P NP-complete.

Modeling SAT as a Covering Problem

First, we transform an instance S of the SAT problem into a program DAG. The goal
is then to find an exact cover for the DAG in order to deduce the truth assignment
for the Boolean variables from the set of selected patterns. For this purpose we
will use ∨, ∧, ¬, v, �, and as node types, and define type(n) as the type of a
node n. Nodes of type � and will be referred to as box nodes and stop nodes,
respectively. Now, for each Boolean variable x ∈ S we create two nodes n1 and n2
such that type(n1) = v and type(n2) =�, and add these to the program DAG. At
the same time we also add an edge n1→ n2. The same is done for each binary
Boolean operator op ∈ S by creating two nodes n′1 and n′2 such that type(n′1) = op
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and type(n′2) =�, along with an edge n′1→ n′2. To model the connection between
the op operation and its two input operands x and y, we add two edges nx→ n′1 and
ny→ n′1 such that type(nx) = type(ny) =�. For the unary operation ¬ we obviously
only need one such edge, and since ∨ and ∧ are commutative it does not matter in
what order the edges are arranged with respect to the operator node. Hence, in the
resulting program DAG, only box nodes will have more than one outgoing edge. An
example of such a DAG is shown in Fig. 4.1b, which can be constructed in linear
time simply by traversing the Boolean formula.

Boolean Operations as Patterns

To cover the program DAG, we will use the pattern trees given in Fig. 4.1a, and we
will refer to this pattern set as PSAT. Every pattern in PSAT adheres to the following
invariant:

1. If a variable x is set to T (true), then the selected pattern covering the x node
will also cover the corresponding box node of x.

2. If the result of an operation op evaluates to F (false), then that pattern will not
cover the corresponding box node of op.

Another way of looking at it is that an operator in a pattern consumes a box node
if its corresponding value must be set to T , and produces a box node if the result

x

x : F

x

x : T satisfied

¬

F : ¬T

¬

T : ¬F

∨

T : T ∨T

∨

T : T ∨F

∨

T : F ∨T

∨

F : F ∨F

(a) The SAT patterns. For brevity, the patterns for the ∧ operation
are omitted (but these can be easily inferred from the ∨ patterns) All
patterns are assumed to have the same unit cost

∧

∨ ¬

x1 x2

(x1 ∨ x2)∧ (¬x2)

(b) Example of a SAT
problem represented as a
DAG covering problem

Fig. 4.1: Transforming SAT to DAG covering [212]
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must evaluate to F . Using this scheme, we can easily deduce the truth assignments to
the variables by inspecting whether the patterns selected to cover the DAG consume
the box nodes of the variables. Since the only pattern to contain a stop node also
consumes a box node, the entire expression will be forced to evaluate to T .

In addition to the node types that can appear in the program DAG, the patterns
can also contain nodes of an additional type, •, which we will refer to as anchor
nodes. Let numch(n) denote the number of children of n, and child(i,n) the ith
child of n. We now say that a pattern p, with root node pr, matches the part of a
program DAG (N,E) which is rooted at a node n ∈ N if and only if:

1. type(n) = type(pr),
2. numch(n) = numch(pr), and
3. type(child(i,n)) = •∨ child(i,n) matches child(i, pr), ∀1≤ i≤ numch(n).

In other words, the structure of the pattern tree—which includes the node types and
edges—must correspond to the structure of the matched subgraph, with the exception
of anchor nodes, which match any node in the program DAG.

We also introduce two new definitions, matchset(n) and matched(p,np): for a
node n ∈ N in the program DAG G = (N,E), matchset(n) is the set of patterns in
PSAT that match at n; and for a node np ∈ Np in the selected match of pattern (Np,Ep),
matched(n,np) is the node n ∈ N that is matched by np. Lastly, we say that G is
covered by a function f : N→ 2PSAT , which maps nodes in the program DAG to a set
of patterns, if and only if, for each n ∈ N,

1. p matches n, ∀p ∈ f(n),
2. type(n) = ⇒ f(n) 6= /0, and
3. type(np) = •⇒ f(matched(n,np)) 6= /0, ∀p = (Np,Ep) ∈ f(v) ,np ∈ Np.

The first constraint enforces that only valid matches are selected. The second con-
straint enforces that some match has been selected to cover the stop node, and the
third constraint enforces that matches have been selected to cover the rest of the
DAG. An optimal cover is thus a mapping f which covers the program DAG (N,E)
and also minimize

∑
n∈N

∑
p∈ f(n)

cost(p) ,

where cost(p) is the cost of pattern p.

Optimal Solution to DAG Covering⇒ Solution to SAT

We now postulate that if the optimal cover has a total cost equal to the number
of non-box nodes in the program DAG, then the corresponding SAT problem is
satisfiable. Since all patterns in PSAT cover exactly one non-box node and have equal
unit cost, the condition above means that every node in the DAG is covered by exactly
one pattern. This in turn means that exactly one value will be assumed for every
Boolean variable and operator result, which is easy to deduce through inspection of
the selected matches.
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We have thereby shown that an instance of the SAT problem can be solved by
transforming it, in polynomial time, to an instance of the optimal DAG covering
problem. Hence optimal DAG covering—and therefore also optimal instruction
selection based on DAG covering—is NP-complete. ut

4.3 Straightforward, Greedy Techniques

Since instruction selection on DAGs with optimal pattern selection is computationally
difficult, most instruction selectors based on this principle are suboptimal. One of the
first code generators to operate on DAGs was developed by Aho et al. [4]. In a paper
from 1976, Aho et al. introduce some simple greedy heuristics for producing assembly
code for a commutative one-register target machine, but these methods assume a
one-to-one mapping between the nodes in a program DAG and the instructions and
thus effectively ignore the instruction selection problem.

4.3.1 LLVM

A more flexible, but still greedy, heuristic is applied in the well-known LLVM
compiler infrastructure [224]. According to a blog entry by Bendersky [46]—which
at the time of writing provides the only documentation, except for the source code
itself—the instruction selector is basically a greedy DAG-to-DAG rewriter.1

The patterns—which are limited to trees—are expressed in a machine description
that allows common features to be factored out into abstract instructions. A tool
called TABLEGEN expands the abstract instructions into pattern trees, which are then
processed by a matcher generator. To ensure a partial order among all patterns, the
matcher generator first performs a lexicographical sort on the pattern set: first by
decreasing complexity, which is the sum of the pattern’s size and a constant that can
be tweaked to give higher priority for particular instructions; then by increasing cost;
and lastly by increasing the size of the subgraph that replaces the covered part in
the program DAG if the corresponding pattern is selected. Once sorted, the patterns
are converted into small recursive programs which essentially check whether the
corresponding pattern matches at a given node in the program DAG. These programs
are then compiled into a form of byte code and assembled into a matcher table,
arranged such that the lexicographical sort is preserved. The instruction selector
applies this table by simply executing the byte code, starting with the first element.
When a match is found, the pattern is greedily selected and the matched subgraph is
replaced with the output (usually a single node) of the selected pattern. This process
repeats until there are no nodes remaining in the original program DAG.

1 LLVM is also equipped with a “fast” instruction selector, but it is implemented as a typical macro
expander and is only intended to be used when compiling without extensive program optimization.
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Although in extensive use (as of version 3.4), LLVM’s instruction selector has
several drawbacks. The main disadvantage is that any pattern that is not supported
by TABLEGEN has to be handled manually through custom C functions. Unlike
GCC—which applies macro expansion combined with peephole optimization (see
Section 2.3.2)—this includes all multi-output instructions, since LLVM is restricted
to pattern trees only. In addition, the greedy scheme compromises code quality.

4.4 Techniques Based on Exhaustive Search

Although optimal pattern selection can be achieved through exhaustive search, in
practice this is typically infeasible due to the exponential number of possible combi-
nations. Nonetheless, there do exist a few techniques that do exactly this, but they
apply various techniques to prune the search space.

4.4.1 Extending Means-End Analysis to DAGs

Twenty years after Newcomer and Cattell et al. (see Section 3.4.1), Yu and
Hu [351, 352] rediscovered means-end analysis as a method for instruction selection
and also made two major improvements. First, Yu and Hu’s design supports and
pattern DAGs whereas those by Newcomer and Cattell et al. are both limited to trees.
Second, it combines means-end analysis with hierarchical planning [298], which
is a search strategy that relies on the fact that many problems can be arranged in a
hierarchical manner for handling larger and more complex problem instances. Using
hierarchical planning enables exhaustive exploration of the search space while at the
same time avoiding the situations of dead ends and infinite looping that may occur in
straightforward implementations of means-end analysis (Newcomer and Cattell et al.
both circumvented this problem by enforcing a cut-off when a certain depth in the
search space had been reached).

Although this technique exhibits a worst time execution that is exponential in the
depth of the search, Yu and Hu assert that a depth of 3 is sufficient to yield results
of equal quality to that of handwritten assembly code. This claim notwithstanding,
it is unclear whether it can be extended to support complex instructions such as
inter-block and interdependent instructions.

4.4.2 Relying on Semantic-Preserving Transformations

In 1996, Hoover and Zadeck [182] developed a system called TOAST with the goal
of automating the generation of entire compiler frameworks—including instruc-
tion scheduling and register allocation—from a declarative machine description. In
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TOAST the instruction selection is done by applying semantic-preserving transforma-
tions during pattern selection to make better use of the instruction set. For example,
although x∗2 is semantically equivalent to x� 1—meaning that x is arithmetically
shifted one bit to the right, which is faster than executing a multiplication—most
instruction selectors will fail to select instructions implementing the latter when the
former appears in the program DAG, as the patterns are syntactically different from
one another.

Their design works as follows. First, the frontend emits program DAGs consisting
of semantic primitives, a kind of IR code also used for describing the instructions.
The program DAG is then semantically matched using single-output patterns de-
rived from the instructions. Semantic matches—which Hoover and Zadeck call
toe prints—and are found by a semantic comparator. The semantic comparator
first performs syntactic matching—that is, checking that the nodes are of the same
type, which is done using a straightforward O(nm) algorithm—and then resorts to
semantic-preserving transformations for when syntactic matching fails. To bound
the exhaustive search for all possible toe prints, a transformation is only applied if it
will lead to a syntactic match later on. Once all toe prints have been found, they are
combined into foot prints, which correspond to the full effects of an instruction. A
foot print can consist of just a single toe print (as with single-output instructions) or
several (as with multi-output instructions), but the paper lacks details on how this is
done exactly. Lastly, all combinations of foot prints are considered in pursuit of the
one leading to the most effective implementation of the program DAG. To further
prune the search space, this process only considers combinations where each selected
foot print syntactically matches at least one semantic primitive in the program DAG,
and only “trivial amounts” of the program DAG (for example constants) may be
included in more than one foot print.

Using a prototype implementation, Hoover and Zadeck reported that almost
1070 “implied instruction matches” were found for one of the test cases, but it is
unclear how many of them were actually useful. Moreover, in its current form the
design appears to be unpractical for generating assembly code for all but very small
programs.

4.5 Extending Tree Covering Techniques to DAGs

Another common approach to DAG covering is to reuse already-known, linear-
time methods from tree covering. This can be achieved either by transforming the
program DAGs into trees, or by generalizing the tree-based algorithms for pattern
matching and pattern selection. We begin by discussing designs that apply the first
technique.
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Fig. 4.2: Undagging a program DAG with a common subexpression

4.5.1 Undagging Program DAGs

The simplest approach for reusing tree covering techniques is to transform the
program DAG into several program trees. We will refer to this idea as undagging.

As illustrated in Fig. 4.2, a program DAG can be undagged into program trees in
two ways. The first approach is to split the edges involving shared nodes—these are
nodes where reuse occurs due to the presence of common subexpressions—which
results in a set of disconnected program trees that can then be covered individually.
Not surprisingly, this approach is called edge splitting. An implicit connection
between the program trees is maintained by forcing the values computed at the
shared nodes to be stored and read from a specific location, typically in memory. An
example of such an implementation is DAGON, a technology binder developed by
Keutzer [203], which maps technology-independent descriptions onto circuits. The
second approach is to duplicate the nodes involved in computing the shared value,
which is known as node duplication. This results in a single but larger program tree
compared to those produced with edge splitting.

Common for both schemes is that they compromise code quality: too aggressive
edge splitting produces many small trees that cannot be covered using larger patterns,
inhibiting use of more efficient instructions; and too aggressive node duplication
incurs a larger computational workload where many operations are needlessly re-
executed in the final assembly code. Moreover, the intermediate results of an edge-
split program DAG must be forcibly stored in specific locations, which can be
troublesome for heterogeneous memory-register architectures (this particular problem
was studied by Araujo et al. [22]).

Balancing Splitting and Duplication

In 1994, Fauth et al. [125, 258] developed a technique that tries to mitigate the
deficiencies of undagging by balancing the use of node duplication and edge splitting.
Implemented in the Common Bus Compiler (CBC), the instruction selector applies
a heuristic algorithm that first favors node duplication, and resorts to edge splitting
when the former is deemed too costly. The decision about whether to duplicate
or to split is taken by comparing the cost of the two solutions and selecting the
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cheapest one. The cost is calculated as a weighted sum w1ndup +w2nsplit, where
ndup is the number of nodes in the program DAG (a rough estimate of code size),
and nsplit is the expected number of nodes executed along each execution path (a
rough estimate of execution time). Once this is done, each resulting program tree is
covered by an improved version of IBURG (see Section 3.6.2) with extended match
condition support. However, the experimental data is too limited for us to judge how
efficient this technique is compared to a design where the program DAGs have been
transformed into program trees using just one method.

Register-Sensitive Instruction Selection

In 2001, Sarkar et al. [300] developed an instruction selection technique that attempts
to reduce the register pressure—that is, the number of registers needed by the
program—in order to facilitate register allocation.2

The design works as follows. The program DAG is first augmented with additional
edges to signify scheduling dependencies between memory operations, and then it is
split into a several program trees using a heuristic to decide which edges to break. The
program trees are then covered individually using conventional methods based on
tree covering, but instead of being the usual number of execution cycles, the cost of
each instruction is set so as to reflect the amount of register pressure incurred by that
instruction (unfortunately, the paper lacks details on how these costs are computed
exactly). Once patterns have been selected, the nodes which are covered by the same
pattern are merged into super nodes. The resulting graph is then checked for whether
it contains any cycles, which may appear due to the extra data dependencies that
were added at the earlier stage. If it does, it means that there exist cyclic scheduling
dependencies between two or more memory operations, making it an illegal cover.
The splits are then reverted and the process repeats until a legal cover is found.

Sarkar et al. implemented their register-sensitive design in JALAPEÑO, a register-
based Java virtual machine developed by IBM. For a small set of problems the
performance increased by about 10%, which Sarkar et al. claim to be due to fewer
instructions needed for register spilling compared to the default instruction selector.
Although innovative, it is doubtful that the technique can be extended much further.

4.5.2 Extending the Dynamic Programming Approach to DAGs

To avoid the application of ad hoc heuristics, several DAG-based instruction selectors
perform pattern selection by applying an extension of the tree-based DP algorithm
originally developed by Aho and Johnson [3] (see Section 1.3). According to the
literature, Liem et al. [237, 276, 277] appear to have been the first to have done so.

2 Another register-aware instruction selection technique was developed in 2014 by Xie et al. [346],
with the aim of reducing the number of writes to a nonvolatile register file. However, the instructions
are selected using a proprietary and greedy heuristic hat does not warrant in-depth discussion.
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In a seminal paper from 1994, Liem et al. introduce a design which is part
of CODESYN, a well-known code synthesis system, which in turn is part of a
development environment for embedded systems called FLEXWARE. For pattern
matching, Liem et al. applied the same technique as Weingart [332] (see Section 3.2)
by combining all available pattern trees into a single tree of patterns. This pattern
tree is traversed in tandem with the program DAG, and for each node an O(nm)
pattern matcher is used to find all matchsets. Pattern selection is then performed
using an extended version of the DP algorithm, but the paper does not explain how
this is done exactly. Moreover, the algorithm is only applied on the data flow of the
program DAG—control flow is covered separately using a simple heuristic—and no
guarantees are made that the pattern selection is optimal, as that is an NP-complete
problem.

Potentially Optimal Pattern Selection

In a paper from 1999, Ertl [117] introduces a design which guarantees optimal pattern
selection on program DAGs for certain instruction set grammars. The idea is to first
make a bottom-up pass over the program DAG and compute the costs using the
conventional DP algorithm as discussed in Chapter 3. Each node is thus labeled
with the same costs, as if the program DAG had first been transformed into a tree
through node duplication; but Ertl recognized that if several patterns reduce the same
node to the same nonterminal, then the reduction to that nonterminal can be shared
between several rules whose patterns contain the nonterminal. Hence the instructions
for implementing shared nonterminals only need to be emitted once, decreasing code
size and also improving performance, since the amount of redundant computation
is reduced. With appropriate data structures, a linear-time implementation can be
achieved.

An example illustrating such a situation is given in Fig. 4.3, where we see an
addition that will have to be implemented twice, as its node is covered by two
separate patterns each of which reduces the subtree to a different nonterminal. The

∗
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+

Int Reg

reg, reg
reg

addr
reg

reg Fig. 4.3: A tree covering of a program DAG where the
patterns have been selected optimally. The two shades
indicate the relation between rules, and the text along
the edges indicates the nonterminals to which each
pattern is reduced. Note that the Reg node is covered by
two patterns (as indicated by the double dash pattern)
which both reduce to the same nonterminal and can
thus be shared [117]
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Reg node, on the other hand, is reduced twice to the same nonterminal (reg), and can
thus be shared between the rules that use this nonterminal in the patterns.

As said earlier, however, this technique yields optimal pattern selection only for
certain instruction set grammars. Ertl therefore devised a checker, called DBURG,
that detects when the grammar does not belong into this category and thus cannot
guarantee optimality. The basic idea is to check whether every locally optimal
decision is also globally optimal by performing inductive proofs over the set of all
possible program DAGs. To do this efficiently, Ertl implemented DBURG using the
ideas behind BURG (hence the name).

Combining DP and Edge Splitting

Koes and Goldstein [212] extended Ertl’s ideas by providing a heuristic that splits
the program DAG at points where node duplication is estimated to have a detrimental
effect on code quality. Like Ertl’s algorithm, Koes and Goldstein’s first selects
patterns optimally by performing a tree-like, bottom-up DP pass which ignores the
fact that the input is a DAG. Then, at points where multiple patterns overlap, two
costs are calculated: an overlap-cost and a cse-cost. The overlap-cost is an estimate
of the cost of letting the patterns overlap and thus incur duplication of operations
in the final assembly code. The cse-cost is an estimate of the cost of splitting the
edges at such points. If cse-cost is lower than overlap-cost, then the node where
overlapping occurs is marked as fixed. Once all such nodes have been processed,
a second bottom-up DP pass is performed on the program DAG, but this time no
patterns are allowed to span across fixed nodes, which can only be matched at the
root of a pattern. Lastly, a top-down pass emits the assembly code.

For evaluation purposes Koes and Goldstein compared their own implementation,
called NOLTIS, against an implementation based on integer programming—we will
discuss such techniques later in this chapter—and found that NOLTIS achieved
optimal pattern selection in 99.7% of the test cases. More details are given in Koes’s
doctoral dissertation [211]. But like Ertl’s design, Koes and Goldstein’s is limited to
pattern trees and thus cannot support more complex instructions such as multi-output
instructions.

Supporting Multi-output Instructions

In most instruction selection techniques based on DAG covering, it is assumed
that the outputs of a pattern DAG always occur at the root nodes. But in a design
by Arnold and Corporaal [26, 27] (originally introduced in a technical report by
Arnold [25]), the nodes representing output can be marked explicitly. The advantage
of this is that it allows the pattern DAGs to be fully decomposed into trees such that
each output value receives its own pattern tree, which Arnold and Corporaal call
partial patterns. An example is given in Fig. 4.4.
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Fig. 4.4: Converting a pattern DAG, which represents an add instruction that also
sets a status flag if the result is equal to 0, into partial pattern trees. The darkly shaded
nodes indicate the output nodes

The partial patterns are then matched over the program DAG using an O(nm)
algorithm. After matching, another algorithm attempts to merge appropriate combi-
nations of partial matches into matches of the original pattern DAG. This is done in a
straightforward manner by maintaining, for each match, an array that maps the nodes
in the pattern DAG to the covered nodes in the program DAG, and then checking
whether two partial patterns belong to the same original pattern DAG and have
compatible mappings. This means that no pair of pattern nodes belonging to different
partial patterns but corresponding to the same node in the original pattern DAG
may cover different nodes in the program DAG. For pattern selection Arnold and
Corporaal applied a variant of the DP scheme but combined it with a greedy heuristic
in order to enforce that each node is covered exactly once. Hence code quality is
compromised.

4.6 Transforming Pattern Selection to an M(W)IS Problem

In the techniques discussed so far, the instruction selector operates directly on the
program DAG when performing pattern selection. The same applies for most designs
based on tree covering. But another approach is to indirectly solve the pattern
selection problem by first transforming it into an instance of some other problem
for which there already exist efficient solving methods. When that problem has been
solved, the answer can be translated back into a solution for the original pattern
selection problem.

One such problem is the maximum independent set (MIS) problem, where the
task is to select the largest set of nodes from a graph such that no pairs of selected
nodes have an edge between them. In the general case, finding such a solution is
NP-complete [151], and the pattern selection problem is transformed into an MIS
problem as follows. From the matchsets found by pattern matching, a corresponding
conflict graph—or interference graph, as it is sometimes called—is formed. Each
node in the conflict graph represents a match, and there exists an edge between two



4.6 Transforming Pattern Selection to an M(W)IS Problem 89

p1

p2

p3
p4

(a) Matched DAG

p1 p2

p3 p4

(b) Conflict graph

Fig. 4.5: Example of a pattern-matched program DAG and its corresponding conflict
graph

nodes if and only if the corresponding matches overlap. An example of this is given
in Fig. 4.5. By solving the MIS problem for the conflict graph, we obtain a selection
of matches such that every node in the program DAG is covered by exactly one
match.

But a solution to the MIS problem does not necessarily yield an optimal solution
to the pattern selection problem, as the former does not incorporate costs. We address
this limitation by transforming the MIS problem into a maximum weighted indepen-
dent set (MWIS) problem, where the task is to find a solution to the MIS problem that
maximizes ∑p weight(p), and assign as weights the costs of the patterns. We can
get the solution with minimal total cost simply by negating the weights. Note that
although the MWIS-based techniques discussed in this book have all been limited to
program DAGs, the approach can just as well be applied in graph covering, which
will be introduced in Chapter 5.

4.6.1 Applications

In 2007, Scharwaechter et al. [303] introduced what appears to be the first instruction
selection technique to use the MWIS approach for selecting patterns. But despite this
novelty, the most cited contribution of their design is its extensions to instruction set
grammars to support multi-output instructions.

Instruction Set Grammars with Multiple Left-Hand Side Nonterminals

To begin with, Scharwaechter et al. distinguishes between rules having only one left-
hand side nonterminal in their productions from rules containing multiple left-hand
side nonterminals by referring to them as rules and complex rules, respectively. In
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addition, we will refer to the right-hand side symbols appearing in rules as simple
patterns, and to the right-hand side symbols appearing in complex rules as split
patterns.3 A combination of split patterns is thus known as a complex pattern. The
aforementioned terms are illustrated more clearly below:

nt→

simple pattern︷ ︸︸ ︷
Op I1 . . . cost action︸ ︷︷ ︸

rule

nt1 nt2 . . . →

complex pattern︷ ︸︸ ︷
split pattern︷ ︸︸ ︷

Op1 I1,1 . . . ,

split pattern︷ ︸︸ ︷
Op2 I2,1 . . . , . . . cost action︸ ︷︷ ︸

complex rule

Pattern matching is a two-step process. First, the matchsets are found for the simple
and split patterns, using conventional tree-based pattern matching techniques. Second,
the matchsets for the complex patterns are found by combining the matches of split
patterns into matches of complex patterns where appropriate. The pattern selector
then checks whether it is worth applying a complex pattern for covering a certain
set of nodes, or if they should be covered using the simple patterns instead. Since
the intermediate results of nodes within complex patterns cannot be reused for other
patterns, selecting a complex pattern can incur an additional overhead cost as nodes
in the program DAG may need to be covered using multiple patterns. Consequently, a
complex pattern will only be selected if the cost reduced by replacing a set of simple
patterns with this pattern is greater than the cost incurred by code duplication. After
these decisions have been taken, the next step is to perform pattern selection. For
this, Scharwaechter et al. solve the corresponding MWIS problem in order to limit
solutions to those of exact covering only. The weights are calculated as the negated
sum of the split pattern costs, but the paper is ambiguous on how these costs are
calculated. Since the MWIS problem is known to be NP-complete, Scharwaechter
et al. employed a greedy heuristic called GWMIN2 by Sakai et al. [299]. Lastly,
split patterns which have not been merged into complex patterns are replaced by
corresponding simple patterns before assembly code emission.

Scharwaechter et al. implemented a prototype called CBURG as an extension of
OLIVE (see Section 3.6.2), and then ran some experiments by targeting a MIPS-like
architecture. In these experiments CBURG generated assembly code which improved
performance by almost 25%, and reduced code size by nearly 22%, compared to
assembly code which was only allowed to make use of single-output instructions.
Measurements of CBURG also indicate that this technique exhibits near-linear time
complexity. Ahn et al. [2] later broadened this work by including scheduling depen-
dency conflicts between complex patterns, and incorporating a feedback loop with
the register allocator to facilitate register allocation.

3 In their paper, Scharwaechter et al. call these simple rules and split rules, respectively, but to
conform with the terminology established on p. 37, I chose to refer to them as patterns.
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A shortcoming of both designs by Scharwaechter et al. and Ahn et al. is that
complex rules can only consist of disconnected pattern trees (hence there can be no
sharing of nodes between the split patterns). Youn et al. [349] address this problem
in a 2011 paper—which is a revised and extended version of the original paper by
Scharwaechter et al.—by introducing index subscripts for the operand specification
of the complex rules; but the subscripts are restricted to the input nodes of the pattern,
still hindering support for completely arbitrary pattern DAGs.

Targeting Machines with Echo Instructions

In 2004, Brisk et al. [58] introduced a technique to perform instruction selection for
target machines with special echo instructions, which are small markers that refer
back to an earlier portion in the assembly code for re-execution. This allows the
assembly code to be compressed by basically using the same idea that is applied in the
LZ77 algorithm [356].4 Since echo instructions do not incur a branch or a procedure
call, the assembly code can be reduced in size without sacrificing performance.
Consequently, unlike for traditional target machines, the pattern set is not fixed in
this case but must be determined as a precursor to pattern matching (this is closely
related to the ISE problem, which we will discuss in Chapter 6).

The intuition behind this design is to use echo instructions where code duplication
is most prominent. To find these cases in a given program, Brisk et al. first enumerate
all subgraphs from the program DAGs, and then match each subgraph over the
program DAGs. Pattern matching is done using VF2, which is a generic subgraph
isomorphism algorithm that we will describe in Chapter 5. Summing the sizes of the
resulting matchsets gives a measure of code duplication for each subgraph, but this
value will be an overestimation as the matchsets may contain overlapping matches.
Brisk et al. addressed this by first solving the MIS problem on the conflict graph
for each matchset, and then adding up the sizes of these sets. After selecting the
most beneficial subgraph, the covered nodes in the program DAGs are collapsed
into single nodes to reflect the use of echo instructions. This process of matching
and collapsing is then repeated until no new subgraph better than some user-defined
value criterion can be found. Brisk et al. performed experiments on a prototype using
a selected set of benchmark applications, which showed code size reductions of 25%
to 36% on average.

4 The algorithm performs string compression by replacing recurring substrings that appear earlier in
the string with pointers, allowing the original string to be reconstructed by “copy-pasting.”
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4.7 Transforming Pattern Selection to a Unate/Binate Covering
Problem

Another approach to solving pattern selection is to translate it to a corresponding
unate or binate covering problem. The concepts behind the two are identical with
the exception of one detail, and both unate and binate covering can be used directly
for covering graphs even though the designs discussed in this book have only been
applied on program DAGs.

Although binate covering-based techniques actually appeared first, we will begin
with explaining unate covering, as binate covering is an extension of unate covering.

Unate Covering

The idea of unate covering is to create a Boolean matrix M, where each row represents
a node in the program DAG and each column represents a match covering one or
more nodes in the program DAG. If we denote mi j as row i and column j in M, then
mi j = 1 indicates that node i is covered by pattern j. Hence the pattern selection
problem is equivalent to finding a valid configuration of M such that the sum of every
row is at least 1. An example is given in Fig. 4.6. Unate covering is an NP-complete
problem, but as with the MIS and MWIS problems there exist several efficient
techniques for solving it heuristically (see for example [87, 159] for an overview).

Unate covering alone, however, does not incorporate all necessary constraints of
pattern selection since some patterns require—and prevent—the selection of other
patterns in order to yield correct assembly code. For example, assume that pattern p3

in Fig. 4.6a requires that pattern p6 be selected to cover n4 instead of pattern p5.
Using instruction set grammars this can be enforced with the appropriate use of

n1 n2

n3

n4

n5

p1

p2

p3

p4

p5

p6

p7

(a) Graph to cover

p1 p2 p3 p4 p5 p6 p7

n1 1* 1* 0 0 0 0 0
n2 0 1* 1 0 0 0 0
n3 0 0 1 1* 0 0 0
n4 0 0 0 1* 1 1 0
n5 0 0 0 0 0 0 1*

(b) Boolean matrix

Fig. 4.6: Example of unate covering. Unmarked 1s in the matrix represent potential
but not selected covers, while the 1s marked with a star (1*) indicate a selection that
is optimal (assuming all patterns have the same cost)
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nonterminals, but for unate covering we have no means of expressing this constraint.
We therefore turn to binate covering, where this is possible.

Binate Covering

We first rewrite the Boolean matrix from the unate covering problem into Boolean
formulas consisting of conjunctions of non-negated disjunctions. The Boolean matrix
in Fig. 4.6b can thus be rewritten as

f = (p1∨p2)∧ (p2∨p3)∧ (p3∨p4)∧ (p4∨p5∨p6)∧p7.

Now, the difference between unate covering and binate covering is that all variables
must be non-negated in the former, but may be negated in the latter. Hence, the
aforementioned constraint regarding the compulsory selection of p6 if p4 is selected
can now be expressed as

¬p4∨p6,

which is called an implication clause as it is logically equivalent to p4⇒ p6. This is
then simply appended to the Boolean formula f using the ∧ operator.

Applications

According to Liao et al. [235, 236] and Cong et al. [82], the pioneering use of binate
covering to solve DAG covering was done by Rudell [296] in 1989 as a part of a very
large scale integration (VLSI) synthesis design. Liao et al. [235, 236] later adapted it
to instruction selection in a method that optimizes code size for one-register target
machines. To prune the search space, Liao et al. perform pattern selection in two
iterations. In the first iteration, patterns are selected such that the program DAG is
covered but the costs of necessary data transfers are ignored. After this step the nodes
covered by the same pattern are collapsed into single nodes, and a second binate
covering problem is constructed to minimize the costs of data transfers. Although
these two problems can be solved simultaneously, Liao et al. chose not to do so as
the number of necessary implication clauses would become very large. Recently,
Cong et al. [82] also applied binate covering as part of generating application-specific
instructions for configurable processor architectures.

Unate covering was applied by Clark et al. [77] in generating assembly code
for acyclic computation accelerators, which can be partially customized in order
to increase performance of the currently executed program. Described in a paper
from 2006, the target machines are presumably homogeneous enough that impli-
cation clauses are unnecessary. The work by Clark et al. was later expanded by
Hormati et al. [183] to reduce the number of interconnects as well as data-centered
latencies in accelerator designs. Martin et al. [248, 249] also applied unate cover-
ing to solve a similar problem concerning reconfigurable processor extensions, but
combined the instruction selection problem with instruction scheduling and solved
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both in tandem using a method called constraint programming—we will discuss
this approach later in this chapter—which they also applied for solving the pattern
matching problem. Unlike in the cases of Clark et al. and Hormati et al., who solved
their unate covering problems using heuristics, the assembly code generated by
Martin et al. is potentially optimal.

4.8 Modeling Instruction Selection with IP

As explained in Chapter 1, performing instruction selection, instruction scheduling, or
register allocation in isolation will typically always yield suboptimal assembly code.
But since each subproblem is already NP-complete on its own, attaining integrated
code generation—where all these problems are solved simultaneously—is an even
more difficult problem.

These challenges notwithstanding, Wilson et al. [340] introduced in 1994 what
appears to be the first design that could be said to yield truly optimal assembly
code. Wilson et al. accomplished this by using integer programming (IP), which is
a method for solving combinatorial optimization problems (sometimes IP is also
called integer linear programming (ILP)). In IP a problem is expressed using sets of
integer variables and linear equations (see for example [341] for an overview), and a
solution to an IP model is an assignment to all variables such that all equations are
fulfilled. In general, solving an IP model is NP-complete, but extensive research in
this field has made many problem instances tractable.

In their seminal paper, Wilson et al. describe that the pattern selection problem
can be expressed as the following linear inequality:

∑
p∈Pn

xp ≤ 1, ∀n ∈ N.

This reads: for every node n in the program DAG (N,E), at most one pattern p
from the matchset involving n (represented by Pn) may be selected. The decision is
represented by xp, which is a Boolean 0/1 variable.5 Similar linear equations can
be formulated for modeling instruction scheduling and register allocation—which
Wilson et al. also included in their model—but these are out of scope for this book.
In fact, any constraint that can be formulated in this way can be added to an existing
IP model, making this approach a suitable code generation method for targeting
irregular architectures. Furthermore, this is the first design we have seen that could
potentially support interdependent instructions (although this was not the main focus
of Wilson et al.).

Solving this monolithic IP model, however, typically requires considerably more
time compared to the previously discussed techniques of instruction selection. But the
trade-off for longer compilation times is higher code quality; Wilson et al. reported

5 The more common constraint is that exactly one pattern must be selected, but in the design by
Wilson et al., nodes are allowed to become inactive and thus need not be covered.
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that experiments showed that the generated assembly code was of comparable code
quality to that of manually optimized assembly code. In theory, optimal assembly
code can be generated, although this is in practice only feasible for small enough
programs. Another much-valued feature is the ability to extend the model with
additional constraints in order to support complicated target machines, which cannot
be properly handled by the conventional designs as that typically violates assumptions
made by the underlying heuristics.

4.8.1 Approaching Linear Solving Time with Horn Clauses

Although IP models are NP-complete to solve in general, it was discovered that
for a certain class of problem instances—namely those based on Horn clauses—an
optimal solution can be found in linear time [181]. A Horn clause is a disjunctive
Boolean formula which contains at most one non-negated term. This can also be
phrased as a logical statement that has at most one conclusion. For example, the
statement

if p1 and p2 then p3

can be expressed as ¬p1∨¬p2∨p3, which is a Horn clause, as only p3 is not negated.
This can then easily be rewritten into the linear inequality

(1− x1)+(1− x2)+ x3 ≥ 1,

where xi is a Boolean variable corresponding to literal pi. Moreover, statements that
do not yield Horn clauses in their current form can often be rewritten so that they do.
For example,

if a then b and c

can be expressed as ¬a∨b∨ c and is thus not a Horn clause because it has more than
one non-negated term. But by rewriting it into

if a then b
if a then c

the statement can now be expressed as ¬a∨b and ¬a∨ c, which are two valid Horn
clauses.

Gebotys [152] exploited this property in 1997 by developing an IP model for
TMS320C2x—a typical DSP at the time—where many of the target architecture,
instruction selection, and register allocation constraints, and a part of the instruction
scheduling constraints, are expressed as Horn clauses. Using only Horn clauses may
require a larger number of constraints than are otherwise needed, but Gebotys claims
that the number is still manageable. When compared against a then-contemporary
industrial DSP compiler, Gebotys demonstrated that an implementation based on
IP yielded a performance improvement mean of 44% for a select set of functions,
while attaining reasonable compilation times. However, the solving time increased
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by orders of magnitude when Gebotys augmented the IP model with the complete
set of constraints for instruction scheduling, which cannot be expressed entirely as
Horn clauses.

4.8.2 IP-Based Designs with Multi-output Instruction Support

Leupers and Marwedel [226, 233] expanded the work of Wilson et al.—whose design
is restricted to pattern trees—by developing an IP-based instruction selector which
also supports multi-output instructions. In a paper from 1996, Leupers and Marwedel
describe a scheme where the pattern DAGs of multi-output instructions—Leupers
and Marwedel refer to these as complex patterns—are first decomposed into multiple
pattern trees according to their register transfers (RTs). RTs are akin to Fraser’s
RTLs [136] (see Section 2.3.1), and essentially mean that each observable effect
gets its own pattern tree. Each individual RT may in turn correspond to one or more
instructions, but unlike in Fraser’s design this is not strictly required.

Assuming the program DAG has already been undagged, each program tree is first
optimally covered using IBURG. The RTs are expressed as rules in an instruction set
grammar that has been automatically generated from a machine description written
in MIMOLA (we will come back to this in Section 4.10.3). Once RTs have been
selected, the program tree is reduced to a tree of super nodes, where each super
node represents a set of nodes covered by some RT that have been collapsed into a
single node. Since multi-output and disjoint-output instructions implement more than
one RT, the goal is now to cover the super node graph using the patterns which are
formed when the instructions are modeled as RTs. Leupers and Marwedel addressed
this problem by applying a modified version of the IP model by Wilson et al.

But because the step of selecting RTs to cover the program tree is separate from
the step which implements them with instructions, the generated assembly code is
not necessarily optimal for the whole program tree. To achieve this property, the
covering of RTs and selection of instructions must be done in tandem.

4.8.3 IP-Based Designs with Disjoint-output Instruction Support

Leupers [228] later made a more direct extension of the IP model by Wilson et al.
in order to support SIMD instructions, which belong to the class of disjoint-output
instructions. Described in a paper from 2000, Leupers’s design assumes every SIMD
instruction performs two operations, each of which takes a disjoint set of input
operands. This is collectively called a SIMD pair, and Leupers then extended the
IP model with linear equations for combining SIMD pairs into SIMD instructions
and defined the objective function so as to maximize the use of SIMD instructions.

In the paper, Leupers reports experiments where the use of SIMD instructions
reduced code size by up to 75% for the selected test cases and target machines. But
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since this technique assumes that each individual operation of the SIMD instructions
is expressed as a single node in the program DAG, it is unclear whether the method
can be extended to more complex SIMD instructions, and whether it scales to larger
programs. Tanaka et al. [317] later expanded Leupers’s work for selecting SIMD
instructions while also taking the cost of data transfers into account by introducing
auxiliary transfer nodes and transfer patterns into the program DAG.

4.8.4 Modeling the Pattern Matching Problem with IP

In 2006, Bednarski and Kessler [43] developed an integrated code generation de-
sign where both pattern matching and pattern selection are solved using integer
programming. The scheme—which later was applied by Eriksson et al. [115], and is
also described in an article by Eriksson and Kessler [116]—is an extension of their
earlier work where instruction selection had previously more or less been ignored
(see [199, 200]).

In broad outline, the IP model assumes that a sufficient number of matches has
been generated for a given program DAG G. This is done using a pattern matching
heuristic that computes an upper bound. For each match m, the IP model contains
integer variables that:

map a pattern node in m to a node in G;
map a pattern edge in m to an edge in G; and
decide whether m is used in the solution. Remember that we may have an excess
of matches, so they cannot all be selected.

Hence, in addition to the typical linear equations we have seen previously for en-
forcing coverage, this IP model also includes equations to ensure that the selected
matches are valid matches.

Implemented in a framework called OPTIMIST, Bednarski and Kessler compared
their IP model against another integrated code generation design based on dynamic
programming, which was developed by the same authors (see [199]) and has noth-
ing to do with the conventional DP algorithm by Aho et al. [7]). Bednarski and
Kessler found that OPTIMIST substantially reduced compilation times while retain-
ing code quality, but for several test cases—the largest program DAG containing only
33 nodes—OPTIMIST failed to generate any assembly code whatsoever within the
set time limit. One reasonable cause could be that the IP model also attempts to solve
pattern matching—a problem which we have seen can be solved externally—and
thus further exacerbates an already computationally difficult problem.
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4.9 Modeling Instruction Selection with CP

Although integer programming allows auxiliary constraints to be included into the
IP model, they may be cumbersome to express as linear equations. This issue can
be alleviated by using constraint programming (CP), which is another method for
solving combinatorial optimization problems (see for example [295] for an overview)
but has more flexible modeling capabilities compared to IP. In brief terms, a CP model
consists of a set of domain variables, each of which has an initial set of values that it
can assume, and a set of constraints that essentially specify the valid combinations
of values for a subset of the domain variables. A solution to the CP model is thus
an assignment for all domain variables—meaning that each domain variable takes
exactly one value—such that all constraints are fulfilled.

In 1990, Bashford and Leupers [40] pioneered the use of constraint program-
ming in code generation by developing a CP model for integrated code generation
that targets DSPs with highly irregular architectures (the work is also discussed
in [228, 229]). Like Leupers and Marwedel’s IP-based design, Bashford and Leu-
pers’s first breaks down the instruction set of the target machine into a set of RTs
which are used to cover individual nodes in the program DAG. As each RT concerns
specific registers on the target machine, the covering problem essentially also in-
corporates register allocation. The goal is then to minimize the cost of covering by
combining multiple RTs that can be executed in parallel as part of some instruction.

For each node in the program DAG a factorized register transfer (FRT) is intro-
duced, which basically embodies all RTs that match a particular node and is formally
defined as the following tuple:

〈Op,D, [U1, . . . ,Un],F,C,T,CS〉.

Op is the operation of the node. D and U1, . . . ,Un are domain variables representing
the storage locations of the result and the respective inputs to the operation. These
are typically the registers that can be used for the operation, but also include virtual
storage locations which convey that the value is produced as an intermediate result in
a chain of operations (for example, the multiplication term in a multiply-accumulate
instruction is such a result). Then, for every pair of operations that are adjacent in the
program DAG, a set of constraints is added to ensure that there exists a valid data
transfer between the storage locations of D and Ui if these are assigned to different
registers, or that both are identical if one is a virtual storage location. F, C, and T are
all domain variables which collectively represent the extended resource information
(ERI) that specifies at which functional unit the operation will be executed (F); at
what cost (C), which is the number of execution cycles; and by which instruction
type (T). A combination of a functional unit and an instruction type is later mapped
to a particular instruction. Multiple RTs can be combined into the same instruction
when the destination of the result is a virtual storage location by setting C = 0
and letting the last node in the operation chain account for the required number
of execution cycles. The last entity, CS, is the set of constraints for defining the
range of values for the domain variables and the dependencies between D and Ui, as
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well as other auxiliary constraints that may be required for the target machine. For
example, if the set of RTs matching a node consists of {rc = ra + rb, ra = rc + rb}, then
the corresponding FRT becomes

〈+,D, [U1,U2],F,C,T,{D ∈ {rc, ra} ,U1 ∈ {ra, rc} ,U2 = rb,D = rc⇒ U1 = ra}〉 .

For brevity I have omitted several details such as the constraints concerning the ERI.
This CP model is then solved to optimality using a CP solver. But since optimal

covering using FRTs is NP-complete, Bashford and Leupers applied heuristics to
curb the complexity by splitting the program DAG into smaller pieces along edges
where intermediate results are shared, and then performing instruction selection on
each program tree in isolation.

Although the constraints in Bashford and Leupers’s CP model appear to be limited
to involving only a single FRT at a time—thus hindering support for interdependent
instructions—constraint programming in general seems like a promising tool for
performing instruction selection. As with integer programming, constraint program-
ming facilitates integrated and potentially optimal code generation. In addition, it
allows additional restrictions of the target machine to be included in the CP model,
but without the need of expressing these constraints as linear equations. At the time
of writing, however, the existing techniques for solving IP models are more mature
than those for solving CP models, which potentially makes integer programming a
more powerful method than constraint programming for solving instruction selection.
Having said that, it is still unclear which technique of combinatorial optimization—
which also includes SAT and other methods—is best suited for instruction selection
(and code generation in general).

4.9.1 Taking Advantage of Global Constraints

So far we have discussed several techniques that apply constraint programming
for solving the problems of pattern matching and pattern selection—namely those
by Bashford and Leupers and Martin et al. Recently, Beg [44] introduced another
CP model for instruction selection as well as new methods for improving solving.
For example, in order to reduce the search space, Beg applied conventional DP-based
techniques to compute an upper bound on the cost. However, the CP model mainly
deals with the problem of pattern matching rather than pattern selection. Moreover,
Beg noticed only a negligible improvement (less than 1%) in code quality compared
to LLVM, mainly because the target machines (MIPS and ARM) were simple
enough that greedy heuristics generate near-optimal assembly code. In addition, the
program DAGs of the benchmark programs were fairly tree-shaped [325], for which
optimal code can be generated in linear time. In any case, none of these designs take
advantage of a key feature of constraint programming, which is the use of global
constraints. A global constraint is a restriction that is enforced simultaneously over
multiple domain variables and results in more search space pruning than if it had
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been expressed using multiple constraints over only a subset of the variables at a
time (see for example [45] for an overview).

Hence, when Floch et al. [131] in 2010 adapted the CP model by Martin et al.
to support processors with reconfigurable cell fabric, they replaced the method of
pattern selection with constraints that are radically different from those incurred by
unate covering. In addition, unlike in the case of Bashford and Leupers, the design by
Floch et al. applies the more direct form of pattern matching instead of first breaking
down the patterns into RTs and then selecting instructions that combine as many RTs
as possible.

As described in their 2010 paper, Floch et al. use the global cardinality constraint6

to enforce the requirement that every node in the program DAG must be covered by
exactly one pattern. This constraint, which we will refer to as COUNT (i,var,val), en-
forces that exactly val number of domain variables from the set var assume the value i,
where val can either be a fixed value or represent another domain variable. Let us
assume that every node in the program DAG has an associated matchset containing all
the patterns that may cover that node, and that each match m appearing in that match-
set has been assigned a unique integer value im (if m appears in multiple matchsets, it
is still given the same value). We introduce a domain variable matchn for each node n
in the program DAG to represent the match selected to cover n. For each match m,
we also introduce a domain variable nodecountm ∈ {0,size(m)}, where size(m) is
the number of pattern nodes in m. We also define msetm =

⋃
n∈nodes(m) matchn as the

set of matchn variables in which match m may appear, where nodes(m) is the set of
nodes matched by m. With this we can express the constraint that every node in the
program DAG must be covered exactly once as

COUNT (im,msetm,nodecountm) , ∀m ∈M,

where M is the total set of matches. This may appear convoluted at first glance, but it
is actually rather simple. msetm essentially provides the nodes in the program DAG
that may be covered by match m, nodecountm provides the number of nodes covered
by m, and COUNT ensures that the relation between the two holds. But since the
domain of nodecountm is initially restricted to only two values—zero and the size
of the pattern—it must be so that either no nodes are covered by m, or all nodes
are covered by m. To identify which matches have been selected, we simply check
whether nodecountm 6= 0 for every pattern m. Since a domain variable cannot be
assigned more than one value, each node can only be covered by exactly one match
(remember that the matchn variable for node n can appear in multiple msetm sets).
Hence this constraint is more restrictive than that of unate covering, which results in
more propagation and thus reduces the search space.

This CP model was also further extended by Arslan and Kuchcinski [29, 30]
to accommodate VLIW architectures and disjoint-output instructions. First, every
disjoint-output instructions is split into multiple subinstructions, each modeled by
a disjoint pattern. A generic subgraph isomorphism algorithm is used to find all

6 It is also possible to enforce pattern selection through a global set covering developed by
Mouthuy et al. [256], but I have not seen any implementation do so.



4.10 Other DAG-Based Approaches 101

matchsets, and pattern selection is then modeled as an instance of the CP model
with the additional constraints to schedule the subinstructions such that they can
be replaced by the original disjoint-output instruction. Arslan and Kuchcinski’s
design therefore differs from the previous techniques that we have seen before, where
matches of partial patterns are recombined into matches of complex patterns prior to
pattern selection (see for example Scharwaechter et al. [303], Ahn et al. [2], Arnold
and Corporaal [25, 26, 27]), as it allows these two problems to be solved in tandem.
The design is also capable of accepting multiple, disconnected program DAGs as a
single input.

However, a limitation inherent to the CP models applied by Martin et al., Floch et
al., and Arslan and Kuchcinski is that they do not model the necessary data transfers
between different register classes. This in turn means that the cost model is only
accurate for target machines equipped with a homogeneous register architecture,
which could compromise code quality for more complicated target machines.

4.10 Other DAG-Based Approaches

4.10.1 More Genetic Algorithms

Seemingly independently from the earlier work by Shu et al. [308] (discussed in
Chapter 3), Lorenz et al. [241, 242] introduced in 2001 another technique where
genetic algorithms are applied to code generation. But unlike the design by Shu
et al., the one by Lorenz et al. takes program DAGs instead of trees as input and also
incorporates instruction scheduling and register allocation. Lorenz et al. recognized
that contemporary compilers struggled with generating efficient assembly code for
DSPs equipped with very few registers and typically always spill the results of
common subexpressions to memory and reload them when needed. Compared to
optimal assembly code, this may incur more memory accesses than needed.

The design by Lorenz et al. is basically an iterative process. First, the operations
within a block are scheduled using list scheduling, which is a traditional method
of scheduling (see for example [290]). For every scheduled operation, a gene is
formulated to encode all the possible decisions to take in order to solve the problems
of instruction selection and register allocation. These decisions are then taken over
multiple steps using standard GA operations, where the values are selected proba-
bilistically. In each step the gene is mutated and crossed over in order to produce
new, hopefully better genes, and a fitness function is applied to evaluate each gene in
terms of expected execution time. After a certain number of generations, the process
stops and the best gene is selected. Certain steps are also followed by a routine
based on constraint programming that prunes the search space for the subsequent
decisions by removing values which will never appear in any valid gene. Although
every gene represents a single node in the program DAG, complex patterns can still
be supported through an additional variable for selecting the instruction type for the
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node. If nodes with the same instruction type have been scheduled to be executed
on the same cycle, then they can be implemented using the same instruction during
assembly code emission.

Lorenz et al. originally developed this technique in order to reduce power usage
of assembly code generated for constrained DSPs, and later extended the design to
also incorporate code compaction and address generation. Experiments indicate that
the technique for a selected set of test cases resulted in energy savings of 18 to 36%
compared to a traditional tree covering-based compiler, and reduced execution time
by up to 51%. According to Lorenz et al., the major contribution to this reduction
is due to improved usage of registers for common subexpression values, which in
turn leads to less use of power-hungry and long-executing memory operations. But
due to the probabilistic nature of GA, optimality cannot be guaranteed, making it
unclear how this technique would fare against other DAG covering-based designs
which allow a more exhaustive exploration of the search space.

4.10.2 Extending Trellis Diagrams to DAGs

In 1998, Hanono and Devadas [167, 168] proposed a technique that is similar to
Wess’s use of trellis diagrams, which we discussed in Chapter 3. Implemented in a
system called AVIV, Hanono and Devadas’s instruction selector takes a program DAG
as input and duplicates each operation node according to the number of functional
units in the target machine on which that operation can run. Special split and transfer
nodes are inserted before and after each duplicated operation node to allows the
data flow to diverge and then reconverge before passing to the next operation node
in the program DAG. The use of transfer nodes also allow the cost of transferring
data from one functional unit to another to be taken into account. Similarly to the
trellis diagram, instruction selection is thus transformed to finding a path from the
leaf nodes in the program DAG to its root node. But differently from the optimal,
DP-oriented design of Wess, Hanono and Devadas applied a greedy heuristic that
starts from the root node and makes it way towards the leaves.

Unfortunately, as in Wess’s design, this technique assumes a 1-to-1 mapping
between the nodes in the program DAG and the instructions in order to generate
efficient assembly code. In fact, the main purpose behind AVIV was to generate
efficient assembly code for VLIW architectures, where the focus is on executing as
many instructions as possible in parallel.
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4.10.3 Hardware Modeling Techniques

In 1984, Marwedel [251] developed a retargetable system called MIMOLA Software
System (MSS) for microcode generation,7 where a machine description written in
Machine Independent Microprogramming Language (MIMOLA) [354] is used for
modeling the entire data path of the processor, instead of just the instruction set as we
have commonly seen. This is commonly used for DSPs where the processor is small
but highly irregular. Although MSS consists of several tools, we will concentrate on
the MSSQ compiler, as its purpose is most aligned with instruction selection. MSSQ
was developed by Leupers and Marwedel [230] as a faster version of MSSC [269],
which in turn is an extension of the tree-based MSSV [252].

The MIMOLA specification contains the processor registers as well as all the
operations that can be performed on these registers within a single cycle. From
this specification, a hardware DAG called the connection-operation (CO) graph
is automatically derived. An example is given in Fig. 4.7. A pattern matcher then
attempts to find subgraphs within the CO graph to cover the program trees. Because
the CO graph contains explicit nodes for every register, a match found on this graph—
called a version—is also an assignment of program variables (and temporaries) to
registers. If a match cannot be found (due to a lack of registers), the program tree
will be rewritten by splitting assignments and inserting additional temporaries. The
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Fig. 4.7: The CO graph of a simple processor containing an arithmetic logic unit,
two data registers, a program counter, and a control store [269]

7 Microcode is essentially the hardware language that processors use internally for executing
instructions. For example, microcode controls how the registers and program counter should be
updated for a given instruction.
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process then backtracks and repeats in a recursive fashion until the entire program tree
is covered. A subsequent process then selects a specific version from each matchset
and tries to schedule them so that they can be combined into bundles for parallel
execution.

Although microcode generation is at a lower hardware level than assembly code
generation—which is usually what we refer to with instruction selection—we see
several similarities between the problems that must be solved in each, and that is why
it is included in this book (further examples include [36, 221, 246]). In Chapter 5
we will see another design that also models the entire processor but applies a more
powerful technique.

4.11 Summary

In this chapter we have investigated several methods that rely on the principle of
DAG covering, which is a more general form of tree covering. Operating on DAGs
instead of trees has several advantages. Most importantly, common subexpressions
can be directly modeled, and a larger set of instructions—including multi-output
and disjoint-output instructions—can be supported and exploited during instruction
selection, leading to improved performance and reduced code size. Consequently,
techniques based on DAG covering are today one of the most widely applied methods
for instruction selection in modern compilers.

The ultimate cost of transitioning from trees to DAGs, however, is that optimal
pattern selection can no longer be achieved in linear time as it is NP-complete. At
the same time, DAGs are not expressive enough to allow the proper modeling of all
aspects featured in the programs and instructions. For example, statements such as
for loops incur loops in the graph representing the program, restricting DAG covering
to the scope of blocks and excluding the modeling of inter-block instructions. Another
disadvantage is that optimization opportunities for storing program variables and
temporaries in different forms and at different locations across the function are
forfeited.

In the next chapter we will discuss the last and most general principle of instruction
selection, which addresses some of the aforementioned deficiencies of DAG covering.



Chapter 5
Graph Covering

Although DAG covering is more general than tree covering—and thus offers a more
powerful approach to instruction selection—it is still not enough for handling all
aspects featured in the programs and instructions. For example, control flow incurred
by loop statements cannot be modeled in a program DAG as it requires the use of
cycles, which violates the definition of DAGs. By resorting to program graphs we
attain graph covering, which is the most general form of covering. Unfortunately it
also constitutes the shortest chapter among the principles discussed in this book.

5.1 The Principle

In DAG covering-based instruction selection, programs
can only be modeled one block at a time as cycles are
forbidden to appear in the program DAGs. Lifting this
restriction makes it possible to incorporate both data
and control-flow information into the program graphs,
which in turn enables entire functions to be modeled as
a single graph. Selecting instructions for such graphs is
known as global instruction selection and has several
advantages over local instruction selector. First, with an entire function as input, a
global instruction selector can account for the effects of local pattern selection across
the block boundaries and is thereby better informed when making its decisions. In
addition, it can move operations from one block to another if that enables better
use of the instruction set (this is known as global code motion). Second, to support
inter-block instructions—which require modeling of both data and control-flow
information—it is imperative that the patterns be expressible using graphs that may
contain cycles. This makes graph covering one of the key approaches for making use
of fewer but more efficient instructions, which is becoming more and more crucial
for modern target machines—especially embedded systems—where both power
consumption and heat emission are becoming increasingly important factors.

105
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Pattern matching Optimal pattern selection
Trees Linear Linear
DAGs NP-complete NP-complete

Graphs NP-complete NP-complete

Fig. 5.1: Time complexities for solving the pattern matching and optimal pattern
selection problems using various program representations

However, when transitioning from pattern DAGs to pattern graphs, we can no
longer apply pattern matching techniques designed for trees and DAGs but must
resort to methods from the field of subgraph isomorphism in solving this problem
(see Fig. 5.1 for a time complexity comparison). The pattern selection problem, on
the other hand, can still be solved using many of the techniques which were discussed
in Chapter 4. Therefore, in this chapter we will only examine techniques that were
originally designated for graph covering.

5.2 Pattern Matching Is a Subgraph Isomorphism Problem

The subgraph isomorphism problem is to detect whether an arbitrary graph Ga can be
turned, twisted, or mirrored such that it forms a subgraph of another graph Gb. In such
cases one says that Ga is an isomorphic subgraph of Gb, and deciding this is known
to be NP-complete [84]. It should be clear that this is a generalization of the pattern
matching problem, and with appropriate constraints a solution to the corresponding
subgraph isomorphism problem can be directly translated into a solution for the
original pattern matching problem.1

As subgraph isomorphism is found in many other fields, a vast amount of research
has been devoted to this problem (see for example [86, 119, 120, 143, 166, 178, 217,
311, 324]). In this section we will mainly look at Ullmann’s algorithm and another
commonly used algorithm by Cordella et al. As a side note, we will also discuss
an algorithm that solves the graph isomorphism problem in polynomial time for a
certain class of graphs.

It should be noted that although we are now using the most generic graph form
for representing the programs and patterns, these methods of pattern matching
are still only capable of finding the matchsets where the patterns have matching
structure, and not matching semantics. For example, the expressions a∗ (b+ c) and
a∗b+a∗ c are semantically equivalent but will yield differently structured graphs.
Hence the patterns selected to cover one program graph may differ from those
covering the other—and consequently may yield different code quality—even though
both versions of the assembly code will produce the same value in the end. In

1 Most patterns derived from instructions are restrictive in how they can be twisted and turned
without changing the semantics. For example, the ingoing edges to a + node can be swapped due to
the commutative nature of addition, but the same does not apply to subtraction or division.
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an attempt to mitigate this issue Arora et al. [28] introduced a method where the
program graphs are first normalized before pattern matching, but the design is limited
to arithmetic program DAGs and still does not guarantee that all matches will be
found.

5.2.1 Ullmann’s Algorithm

One of the first and most well-known methods for deciding subgraph isomorphism is
an algorithm developed by Ullmann [324]. In a seminal paper from 1976, Ullmann
expresses the problem of determining whether a graph Ga = (Na,Ea) is subgraph iso-
morphic to another graph Gb = (Nb,Eb) as a problem of finding a Boolean |Na|× |Nb|
matrix M such that the following conditions holds:

C = M · (M ·B)T ,

ai j = 1⇒ ci j = 1, ∀1≤ i≤ |Na| ,1≤ j ≤ |Nb| .

A and B are the respective adjacency matrices of Ga and Gb, where ai j is an element
of A. Similarly, ci j is an element of C. When these conditions hold, every row in M
will contain exactly one 1, and every column in M will contain at most one 1.

A simple method for finding M is to first set every element mi j to 1, and then
iteratively reset them to 0 until a solution is found. As expected, this brute-force
approach suffers from ensuing combinatorial explosion and will thus not be effective.
Ullmann therefore tried to reduce the search space by developing a procedure that
eliminates some of the 1s that will never appear in any solution. But according to
Cordella et al. [86], even with this improvement the worst-case time complexity of
the algorithm is still O

(
n!n2

)
.

5.2.2 The VF2 Algorithm

In 2001, Cordella et al. [86] introduced another subgraph isomorphism algorithm
called VF2—the authors did not say what it stands for—which has been used in
several DAG and graph covering-based instruction selectors.

In broad outline, the VF2 algorithm constructs a mapping set consisting of
(n,m) pairs, where n ∈ Ga and m ∈ Gb. This set is grown by recursively adding
new pairs, one at a time, until either a solution is found or a dead end is reached.
To detect the latter as soon as possible, each new pair is checked against a set of
rules before it is added to the mapping set. The rules are composed by a set of
syntactic feasibility checks given by Fsyn, followed by a semantic feasibility check
given by Fsem. Without going into too much detail, we define Fsyn as

Fsyn(s,n,m) = Rpred∨Rsucc∨Rin∨Rout∨Rnew,
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where n and m constitute the candidate pair under consideration and s represents the
current (partial) mapping set. The first two rules, Rpred and Rsucc, ensure that the new
mapping set is consistent with the structures of Ga and Gb, and the remaining three
rules are used to prune the search space. Rin and Rout perform one-step look-aheads
in the search process and ensure that there will still exist enough unmapped nodes
in Gb to allow the remaining nodes in Ga to be mapped. Similarly, Rnew performs
a two-step look-ahead (but I am not certain about the intuition behind this rule). If
necessary, the rules can be modified with minimal effort to check graph isomorphism
instead of subgraph isomorphism. In the former the structures of Ga and Gb must
be rigid—and thus cannot be twisted and turned in order to match—which is more
fitting for our purposes. Additional checks, such as ensuring that the node types are
compatible, can be added by customizing the definition of Fsem.

Although this algorithm exhibits a worst-case time complexity of O(n!n), its
best-case time complexity—which is polynomial—still makes it an efficient method
for performing pattern matching over very large graphs. For example, Cordella et al.
report in [86] that the VF2 algorithm has been successfully used on graphs containing
several thousand nodes.

5.2.3 Graph Isomorphism in Quadratic Time

Jiang and Bunke [188, 189, 190] discovered that if the graphs are ordered, meaning
all edges belonging to the same node have a predetermined order among each other,
then the graph isomorphism problem can be solved in polynomial time for undirected
graphs. This is because ordered graphs contain additional structural information
that can be exploited during pattern matching. Although it is unclear whether this
discovery can be applied to instruction selection—the reasons will become apparent
shortly—I decided to include its discussion out of personal interest.

Jiang and Bunke’s algorithm essentially works as follows. Starting from some
node, traverse the first graph Ga using breadth-first search in the order dictated by
the edge ordering for the current node. When a node n is visited for the first time,
assign n a number such that the number of every node is unique for all nodes in Ga.
In addition, every time a node n is encountered, no matter if it has already been
visited or not, record the number of n onto a sequence. This sequence will always
be of length 2m, where m is the number of edges in Ga, as it can be proven that
every edge will be traversed exactly twice (once in each direction). Let us denote
the sequence produced for Ga when starting from node n as S(Ga,n). We then do
the same for the second graph Gb, and if there exists some node m in Gb such that
S(Gb,m) = S(Ga,n), then Gb must be isomorphic to Ga. In the worst case this can
be checked in O

(
e2
)
, where e is the total number of edges in the two graphs.

This algorithm is clearly a vast improvement over those by Ullmann and Cordella
et al., but it also has several significant limitations that make it difficult to use in
practice. First, it requires that all program and pattern graphs be ordered, which
is not always the case for instruction selection (for example, graphs containing
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commutative nodes violate this restriction). Second, in its current form it detects
graph isomorphism instead of subgraph isomorphism, meaning the algorithm can
only be applied on patterns that match the entire program graph. Although the first
problem can be mitigated by duplicating patterns with commutative nodes, the second
problem is much harder to overcome.

5.3 Graph-Based Intermediate Representations

With tree and DAG covering, it is sufficient to represent the program on block level.
Consequently, programs are typically modeled as a forest of program trees or a set
of program DAGs. But, as previously stated, this becomes an impediment when
applied in graph covering-based techniques, forcing us to instead use a graph-based
intermediate representation. We will therefore continue by looking briefly at how
programs can be expressed using such representations (an excellent survey of this
field was recently made by Stanier and Watson [314]).

5.3.1 Static-Single-Assignment Graphs

Most modern compilers—including GCC and LLVM—use IRs based on static
single assignment (SSA), which is a form where each variable or temporary within
a function is restricted to being defined only once. This is typically achieved by
rewriting the program such that each variable assignment receives its own uniquely
named definition, and an example of this is given in Fig. 5.2. One of the main benefits
of this is that the live range of each variable is contiguous. The live range of a variable
can be loosely described as the length within the program where the value of that
variable must not be destroyed. This in turn means that each variable corresponds to
a single value, which simplifies many program optimization routines.

This define-only-once restriction, however, causes problems for variables whose
value can come from more than one source. For example, in Fig. 5.2a we see the
factorial function (introduced in Chapter 1), which is not in SSA form as n and f are
defined multiple times (first at lines 1 and 3, and then at lines 7 and 6, respectively).
We could try to rename the variables to avoid redefinition conflicts—n is renamed
to n1 at line 1 and to n2 at line 7, and f is renamed to f1 at line 3 and to f2 at
line 6—but which variable do we use for the return at line 10? These situations
are addressed through the use of ϕ-functions, which allow variables to be defined
using one of several values that originate from a separate block. Hence, by declaring
additional variables and inserting ϕ-functions at the beginning of the loop block,
the aforementioned problem of f is resolved as shown in Fig. 5.2b.2

2 Although this in turn introduces two new problems—where do we insert these ϕ-functions, and
how do we know which value within the ϕ-function to choose during execution?—we will ignore
these issues as they are out of scope for our purposes. There is also gated single assignment [37],
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1: int factorial(int n) {
2: init:
3: int f = 1;
4: loop:
5: if (n <= 1) goto end;
6: f = f * n;
7: n = n - 1;
8: goto loop;
9: end:

10: return f;
11: }

(a) C function

1: int factorial(int n1) {
2: init:
3: int f1 = 1;
4: loop:
5: int f2 = φ(f1, f3);
6: int n2 = φ(n1, n3);
7: if (n2 <= 1) goto end;
8: int f3 = f2 * n2;
9: int n3 = n2 - 1;

10: goto loop;
11: end:
12: return f2;
13: }

(b) Same C function in SSA form

Fig. 5.2: Example of converting a regular program into SSA form
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Fig. 5.3: Corresponding SSA graph of the
function from Fig. 5.2b. Note that, unlike
in program trees and DAGs, the data flows
downwards along the SSA graph

From the SSA representation we can extract an SSA graph, which is basically
a program graph where loops are permitted (see for example Fig. 5.2b). Unlike
program DAGs, the SSA graph captures the data flow across blocks as well as within
them, modeling an entire function which gives a more complete view of the program.
But since the SSA graph is devoid of any control-flow information, it is often used as
a supplement alongside one or more other IRs. Obviously this also prevents selection
of instructions for implementing branches and procedure calls.

5.3.2 Program Dependence Graphs

Another popular intermediate representation is the program-dependence graph
(PDG). Introduced by Ferrante et al. [129] in 1987, the PDG only models the es-
sential control dependencies of the program—we will soon elaborate on what this
means—and several subsequent IR designs, such as the program dependence web by
Ballance et al. [37] and the value dependence graph by Weise et al. [333], are either
extensions of the PDG or have been heavily influenced by it.

where the ϕ-functions take a predicate as additional input, which enables executable interpretation
of the SSA-based IR code.
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Fig. 5.4: Converting the function from Fig. 5.2a into a program-dependence graph.
Node numbers correspond to line numbers in the function. Control flow is shown
using solid lines, and data flow as dashed lines. Shaded nodes represent region nodes

Instead of directly modeling the control flow within a function, the PDG conveys
information about which computational operations are dependent on which predicates.
This information is given as a control-dependence graph (CDG), which is a subgraph
of the PDG. Although it is called a graph, the CDG is actually shaped like a tree,
with the operations appearing as leaves and the predicates as intermediate nodes, and
a special node as the root denoting the function entry point. There are also so-called
region nodes, which are used for eliminating common subexpressions that appear as
part of the control flow. Using the CDG, the predicates that an operation depends
on can be found by following the path from the leaf node of that operation to the
root. The PDG is then constructed from the CDG simply by adding the data-flow
dependencies.

An advantage of using a PDG is that program analysis tends to become simpler.
In the factorial function from Fig. 5.2, for example, the end block will always be
executed when the init block is executed. Hence, if there are no data dependencies
between the operations within these blocks, then they could be executed in parallel.
In a control-flow graph (see Fig. 5.4a) this information is not immediately visible, but
in the CDG (see Fig. 5.4b) this fact becomes clear, as these operations only depend
on the function entry. On the other hand, generating correct assembly code directly
from the PDG becomes more complex, as the boundaries of blocks are obscured.

Applications

Despite its widespread use in many program optimization routines, I have not seen any
techniques that use PDGs for selecting instructions, although Paleczny et al. [274]
come close with their implementation of the Java Hotspot Server Compiler (JHSC).
Internally, JHSC uses a graph-based IR format that was originally designed by
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Click and Paleczny [80] and is similar to the PDG. The program graphs are covered
by a BURS-based instruction selector (see Section 3.6.3) which selects the least-
cost patterns for each subtree that is rooted either at a value with multiple uses, or
at an operation which may not be duplicated due to side effects. In other words,
the program graph is essentially converted into multiple program DAGs that are
then covered individually. This, however, may incur overlapping and thus lead to
redundant code duplication. After pattern selection the instructions are placed into
blocks using a heuristic global code motion method (see [79]).

5.4 Modeling Pattern Selection as a PBQ Problem

In 2003, Eckstein et al. [106] recognized that limiting instruction selection to local
scope can decrease code quality of assembly code generated for fixed-point arithmetic
digital signal processors. A common idiosyncrasy of such DSPs is that their fixed-
point multiplication units will often leave the result shifted one bit to the left. Hence,
if a value is computed by accumulating values from fixed-point multiplications—as
in the factorial function given in Fig. 5.2—it should remain in shifted mode until all
fixed-point multiplications have been performed. Otherwise the accumulated value
will needlessly be shifted back and forth. But this is difficult to achieve using local
instruction selection.

To overcome this problem, Eckstein et al. developed a design that takes SSA graphs
as input—making this technique the first to do so—and transforms the pattern selec-
tion problem to a partitioned Boolean quadratic (PBQ) problem. The PBQ problem
is an extension of the quadratic assignment (QA) problem—a fundamental combina-
torial optimization problem (see [240] for a recent survey)—and was first introduced
Scholz and Eckstein [304] as a means of tackling register allocation. The QA prob-
lem and PBQ problem are both NP-complete, and Eckstein et al. therefore developed
their own heuristic solver as described in [106]. We will explain the PBQ approach
by building the model bottom-up, starting with the definitions.

To begin with, the design assumes that the instructions are given as a linear-form
grammar (see Chapter 3, p. 67), where each rule is either a base rule or a chain rule.
For each node n in the SSA graph we introduce a Boolean vector rn, whose length
is equal to the number of base rules that match n, and rn[i] = 1 indicates that the
rule i has been selected to cover n. The costs for rule selection are given as another
vector cn of the same length, where each element is the rule cost times the estimated
relative execution frequency of the operation represented by n. This is needed to give
higher priority to low-cost instructions for operations that reside in tight loops since
those instructions will have a greater impact on performance. With these vectors we
can define, for a given SSA graph (N,E), a cost function f as

f = ∑
1≤n≤|N|

rT
n · cn.
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We call this the accumulated base cost as it gives the total cost of applying base rules
to cover the SSA graph. The goal is then to cover each node in the SSA graph exactly
once (meaning rT

n ·1 = 1, ∀n ∈ N) such that f is minimized.
Unfortunately this does not necessarily produce a valid covering as there is no

connection between the base rules. Consequently, the nonterminal to which one
selected base rule is reduced may differ from what is expected by another selected
base rule. This problem is addressed by introducing a cost matrix Cnm for every pair
of nodes n and m in the SSA graph where there exists a directed edge from m to n.
An element ci j in Cnm then reflects the aggregated cost of selecting rule i for node n
and rule j for node m, which is computed as follows:

1. If rule j reduces m to the nonterminal expected at a certain position on the
right-hand side in the production of rule i, then ci j = 0.

2. If the previous condition does not hold, but the nonterminal produced by rule j
can be reduced to the expected nonterminal using a series of chain rules, then
ci j = ∑ck, where ck denotes the cost of an applied chain rule k.

3. Otherwise ci j = ∞, preventing this rule combination from being selected.

The chain costs for the second condition are calculated by first computing the
transitive closure for all chain rules (see Chapter 3, p. 49). For this, Eckstein et al.
seem to have used the Floyd-Warshall algorithm [132], and Schäfer and Scholz [302]
later discovered a method that computes the lowest cost for each ci j by finding the
optimal sequence of chain rules. Lastly, the costs are weighted according to the
estimated execution frequency for the nodes.

We now extend f by adding the accumulated chain costs, resulting in the following
cost function:

f = ∑
1≤n<m≤|N|

rT
n ·Cnm · rm + ∑

1≤n≤|N|
rT

n · cn.

The model is then solved using a heuristic PBQ solver, which was also developed by
Eckstein et al. (we will omit details on how it works).

Using a prototype implementation, Eckstein et al. ran experiments on a selected
set of fixed-point programs exhibiting the behavior discussed earlier. The results
indicate that their scheme improved performance by 40–60% on average—and at
most 82% for one program—compared to a traditional tree-based instruction selector.
According to Eckstein et al., this considerable gain in performance comes from more
efficient use of value modes to which tree covering-based techniques must make
premature assignments, and thus could have a detrimental effect on code quality.
For example, if chosen poorly, the instruction selector may need to emit additional
instructions in order to undo decisions regarding value modes, which obviously
reduces performance and needlessly increases the code size. Although the technique
by Eckstein et al. clearly mitigates these concerns, their design also has limitations
of its own. Most importantly, their PBQ model can only support pattern trees and
consequently hinders exploitation of many common target machine features, such as
multi-output instructions.
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5.4.1 Extending the PBQ Approach to Pattern DAGs

In 2008, Ebner et al. [105] addressed the aforementioned concern by extending the
original PBQ model by Eckstein et al. to also support pattern DAGs. When replacing
the default instruction selector in LLVM 2.1—which is a greedy DAG rewriter (see
Section 4.3.1)—the performance of the assembly code targeting an ARM processor
improved by an average of 13% for a selected set of programs. In addition, the impact
on compilation time was shown to be negligible.

Ebner et al. first extended the grammar to allow rules to contain multiple produc-
tions in a similar fashion to that of Scharwaechter et al. [303] (see Chapter 4, p. 89).
We will refer to such rules as complex rules, and the productions within a complex
rule will be called proxy rules. The PBQ model is then augmented to accommodate
the selection of complex rules, which essentially entails introducing new vectors and
matrices that decide whether a complex rule is selected, together with constraints to
enforce that all corresponding proxy rules are also selected.

With more than one cost matrix, it becomes necessary to be able to distinguish
one from another. We say that all base and proxy rules belong to category B, and
all complex rules belong to category C . A cost matrix written as CX→Y therefore
indicates that it concerns the costs of transitioning from category X to category Y .
As an example, the cost matrix used to compute the accumulated chain cost is
henceforth written as CB→B

nm since it only concerns the base rules. We can now
proceed with extending the PBQ model.

First, each rn vector is extended with the proxy rules that also match at node n in
the SSA graph. If a set of identical proxy rules is derived from multiple complex rules,
the length of the vector only increases by one element for each such set. Second, we
create an instance of a complex rule for every permutation of distinct nodes where
the matched proxy rules can be combined into a complex rule. Each such instance i
in turn gives rise to a two-element decision vector di which indicates whether i is
selected or not (hence a 1 in the first element indicates not selected, and a 1 in the
second element indicates selected).3 Then, as with the base rules, we accumulate the
costs of the selected complex rules by extending f with

∑
1≤i≤|I|

dT
i · cC

i ,

where I is the set of complex rule instances, and cC
i is a two-element cost vector

whose elements consist of the value 0 and the cost of the complex rule.
Selecting a complex rule means that all of its proxy rules must also be selected.

We enforce this through a cost matrix CB→C
ni , where n is a particular node in the

SSA graph and i is a particular instance of a complex rule. An element cm j in CB→C
ni

is then set as follows:

3 A two-element vector is chosen instead of a single Boolean variable as the PBQ model must
consist of only matrices and vectors, and for all vectors the sum of its elements must always be
exactly 1.



5.4 Modeling Pattern Selection as a PBQ Problem 115

If j represents that i is not selected, then cm j = 0.
If m is a base rule or proxy rule not associated with the complex rule of i, then
cm j = 0.
Otherwise cm j = ∞.

We then force the selection of necessary proxy rules by appending the following to f :

∑
1≤n≤|N|
1≤i≤|I|

rT
n ·CB→C

ni ·di.

An issue with this model is that if the cost of all proxy rules is 0, then solutions
are allowed where all proxy rules of a complex rule are selected but the complex rule
itself is not selected. Ebner et al. solved this problem by first setting a high cost M to
all proxy rules and then setting the cost of all complex rules to cost(i)−|li|M, where
li is the set of proxy rules of a complex rule i. Hence, the overhead of selecting the
proxy rules is only offset if the complex rule is also selected.

In some cases, selecting certain complex rules can incur cyclic data dependencies.
To prevent this, we introduce a cost matrix CC→C

i j that prevents two instances i
and j from being selected simultaneously if such a combination incurs a cyclic
data dependency. In their model, Ebner et al. also forbade selection of complex
rule instances that overlap. As before, these restrictions are enforced by setting the
elements in CC→C

i j corresponding to such situations to ∞, and to 0 for all other
elements.

Hence the complete definition of f in the PBQ model by Ebner et al. becomes

f = ∑
1≤i< j≤|I|

dT
i ·CC→C

i j ·d j + ∑
1≤n≤|N|
1≤i≤|I|

rT
n ·CB→C

ni ·di + ∑
1≤i≤|I|

dT
i · cC

i

+ ∑
1≤n<m≤|N|

rT
n ·CB→B

nm · rm + ∑
1≤n≤|N|

rT
n · cB

n .

5.4.2 Using Rewrite Rules Instead of Production Rules

In 2010, Buchwald and Zwinkau [61] introduced another technique based on PBQ
problems. But unlike Eckstein et al. and Ebner et al., Buchwald and Zwinkau ap-
proached the task of instruction selection as a formal graph transformation problem,
for which much previous work already exist. Hence, in Buchwald and Zwinkau’s
design the instructions are expressed as rewrite rules instead of production rules. As
these rewrite rules are based on a formal foundation, the resulting instruction selector
can be automatically verified to handle all possible programs. If this check fails,
the verification tool can also provide the necessary rewrite rules that are currently
missing from the instruction set.

The technique works as follows. First the SSA graph is converted into a DAG-like
form by duplicating each φ -node into two nodes, which effectively breaks any cycles
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appearing in the SSA graph. After finding all applicable rewrite rules for this DAG
(this is done using traditional pattern matching), a corresponding instance of the PBQ
problem is formulated and solved as before.

Buchwald and Zwinkau also discovered and addressed flaws in the PBQ solver by
Eckstein et al., which may fail to find a solution in certain situations due to inadequate
propagation of information. However, Buchwald and Zwinkau also cautioned that
their own implementation does not scale well when the number of overlapping
patterns grows. In addition, since the SSA graph is devoid of control-flow information,
none of the PBQ-based techniques can support inter-block instructions.

5.5 Other Graph-Based Approaches

5.5.1 More Hardware Modeling Techniques

In Chapter 4 we saw a technique for performing microcode generation where the
entire processor of the target machine is modeled as a graph instead of by just deriving
the patterns for the available instructions. Here we will look at a few techniques
that rely on the same modeling scheme, but address the more traditional problem of
instruction selection.

CHESS

Lanneer et al. [222] developed in 1990 a design that was later adopted by Van Praet
et al. [326, 327] in their implementation of CHESS, a well-known compiler targeting
DSPs and application-specific instruction set processors (ASIPs).

Comparing CHESS to MSSQ (see Section 4.10.3), we find two striking differences.
First, in MSSQ the data paths of the processor are given by a manually written
machine description, whereas CHESS derives these automatically from an nML-based
specification [123, 124].

Second, the method of bundling—which is the task of scheduling operations for
parallel execution—is different. The instruction selector in MSSQ uses techniques
from DAG covering to find patterns in the hardware graph, which can subsequently
be used to cover the program trees. After pattern selection, another routine attempts
to schedule the selected instructions for parallel execution. In contrast, CHESS
takes a more incremental approach. From the program CHESS first constructs a
chaining graph, where each node represents an operation in the program that has
been annotated with a set of functional units capable of executing that operation.
Since the functional units on a DSP are commonly grouped into functional building
blocks (FBBs), the chaining graph also contains an edge between every pair of nodes
that could potentially be executed on the same FBB. A heuristic algorithm then
attempts to collapse the nodes in the chaining graph by selecting an edge, replacing
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the two nodes with a new node, and then removing the edges between nodes of
operations that can no longer be executed on the same FBB as the operations of the
new node. This process iterates until no more nodes can be collapsed, and every
remaining node in the chaining graph thus constitutes a bundle. The same authors
later extended this design in [326] to consider selection between all possible bundles
using branch-and-bound search, and to enable some measure of code duplication by
allowing the same operations in the program graph to appear in multiple bundles.

Using this incremental scheme to form the bundles, the design by Van Praet et al.
is capable of bundling operations that potentially reside in different blocks. Their
somewhat-integrated code generation approach also allows efficient assembly code
to be generated for complex architectures, making it suitable for DSPs and ASIPs
where the data paths are very irregular. It may be possible to also extend the technique
to support inter-block instructions as well, but interdependent instructions are most
likely out of reach due to its heuristic nature.

Generating Assembly Code Using Simulated Annealing

Another, albeit unusual, code generation technique was proposed by Visser [328]
in 1999. Like MSSQ and CHESS, Visser’s approach is an integrated code generation
design but solves the problem using simulated annealing, which is a meta-heuristic to
avoid getting stuck in a local maximum when searching for solutions (see for example
[207] for an overview). In brief terms, an initial solution is found by randomly
mapping each node in the program graph to a node in the hardware graph—which
models the entire processor—and then a schedule is found using traditional list
scheduling. A fitness function is then applied to judge the effectiveness of the solution,
but the exact details are omitted from the paper. A proof-of-concept prototype was
developed and tested on a simple program, but it appears no further research has
been conducted on this idea.

5.5.2 Improving Code Quality with Mutation Scheduling

The last item we will discuss is a technique called mutation scheduling,4 which was
introduced in 1994 by Novack et al. [267, 268]. Mutation scheduling is technically a
form of instruction scheduling that primarily targets VLIW architectures, but it also
integrates a sufficient amount of instruction selection to warrant being included in
this book. On the other hand, the amount of instruction selection that is incorporated
is in turn not really based on graph covering, but, as with trellis diagrams (see
Section 3.7.4 and Section 4.10.2), I decided against discussing it in its own chapter.

Broadly speaking, mutation scheduling essentially tries to reduce the makespan of
programs for which assembly code have already been generated (hence instruction se-

4 Despite its name, the idea of mutation scheduling is completely orthogonal to the theory of genetic
algorithms.
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lection, instruction scheduling, and register allocation has already been performed).5

This is done by progressively moving the computations, one at a time, such that they
can be executed in parallel with other instructions and thus finish sooner. If such
a move cannot be made, for example due to violation of some resource constraint
or data dependency, then mutation scheduling tries to alter the value—this is called
value mutation—which means that the current operation is replaced by other, equiva-
lent operations that conform to the restrictions. These operations are selected from a
mutation set, which is conceptually a recursive data structure, as an expression in
the mutation set may use intermediate values that in turn necessitate mutation sets
of their own. Novack et al. compute these mutation sets by first taking the original
operation and then applying a series of semantic-preserving functions that have been
derived from various logical axioms, algebraic theorems, and the characteristics of
the target machine. For example, if the value X is computed as Y +5, then Y can
later be obtained by computing X−5. Another example is multiplication by powers
of 2, which can be replaced with shift instructions, provided such instructions are
available. If this is beneficial, a value can also be recomputed instead of copied from
its current location. This idea is known as rematerialization, which is a method for
reducing register pressure, as it allows registers to be released at an earlier point in
the assembly code.

In mutation scheduling, “shorter” mutations are preferred over longer ones. This
is because a value mutation of v can lead to a cascade of new computations, which all
will need to be scheduled before v can be is computed. Note that these computations
can be scheduled such that they appear in blocks preceding the block in which the
computations of v appear. Hence the length of a mutation is loosely defined as the
number of instruction bundles that may need to be modified in order to realize the
mutation. Moreover, since the new computations of a successful mutation consume
resources and incur dependencies of their own, the existing candidates appearing
in mutation sets may need to be removed or modified. The “best” combination of
mutations is then decided heuristically, but the paper is vague on how this is done
exactly.

Novack et al. implemented a prototype by extending an existing scheduler based
on global resource-constrained percolation (GRiP), which is another global instruc-
tion scheduling technique developed by the same authors (see [265]). Subsequent
experiments using a selected set of benchmark programs demonstrated that the muta-
tion scheduling-based design yielded a two- to threefold performance improvement
over the GRiP-only-based counterpart, partly due to its ability to apply rematerializa-
tion in regions where register pressure is high. Unfortunately the authors neglected
to say anything about the time complexity of mutation scheduling, and whether it
scales to larger programs.

5 Although it is depicted here primarily as a post-step to code generation, one could just as well
design a Davidson-Fraser-style compiler (see Chapter 2) where simple methods are applied to
generate correct but naı̈ve assembly code, and then rely on mutation scheduling to improve the code
quality.
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5.6 Summary

In this chapter we have considered a number of techniques that are founded, in one
form or another, on the principle of graph covering. Such techniques are among the
most powerful methods of instruction selection since they perform global instruction
selection as well as have more extensive instruction support compared to most tree
and DAG covering-based designs.

Unfortunately this has not been fully exploited in existing techniques, partly
due to limitations in the program representations or to restrictions enforced by the
underlying solving techniques. Moreover, performing global instruction selection is
computationally much harder compared to local instruction selection, and therefore
most likely we will only see these techniques applied in compilers whose users can
afford very long compilation times (for example when targeting embedded systems
with extremely high demands on performance, code size, power consumption, or a
combination thereof).





Chapter 6
Conclusions

In this book we have discussed, examined, and assessed numerous methods of instruc-
tion selection. Starting with monolithic instruction selectors, which were typically
created ad hoc and by hand, the field advanced into retargetable macro-expanding
designs that could be generated from a declarative machine description of the target
machine. These were in turn later succeeded by the more powerful principle of
tree covering, which led to the introduction of several formal methodologies that
made it possible to verify the correctness of the instruction selector. Simultaneous
developments were also made to combine macro expansion with peephole optimiza-
tion, which has proven a very effective methodology. The principle of tree covering
later evolved into the more general forms of DAG covering and graph covering,
yielding more powerful methods of instruction selection at the expense of increased
computational complexity. Since optimal DAG covering and graph covering are both
NP-complete, most such designs often applied heuristics to reduce the search space.
Lastly, more recent developments have given rise to new approaches where the task
of instruction selection is modeled using methods from combinatorial optimization.

An accessible overview of all studied techniques is available in Appendix A, and
a publication timeline diagram is shown in Appendix B.

6.1 Open Aspects

Despite the tremendous progress that has been made over the past 40 years, the
instruction selection techniques constituting the current state of the art still suffer
from several significant shortcomings. Most notably, no technique—at least to my
knowledge—is capable of modeling inter-block instructions. Today this impact is
mitigated by augmenting the compiler with customized program optimization passes
in order to detect and exploit particular instructions, but this is an error-prone and
tedious task. A more flexible solution is to use compiler intrinsics, which can be
seen as additional node types in the program graph that represent more complicated
operations, such as

√
x. Another approach is to implement target-specific library
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functions, written directly as assembly code, and make inlined calls from within
the program. But neither is ideal: extending the compiler with additional compiler
intrinsics typically requires a significant amount of manual labor, and the library
functions must be rewritten every time a new target machine needs to be supported.

Not supporting inter-block instructions often also means that the selection of regu-
lar branch instructions must be done separately, typically ad hoc through handwritten
routines. In fact, branch instructions in general have been little discussed in the litera-
ture, despite the fact that roughly every three to six instructions in most programs is
a branch instruction [175]. As discussed by Boender and Sacerdoti Coen [49], code
size can be reduced by selecting the appropriate branch instruction, which is im-
perative when generating assembly code for target machines with extremely small
memories.

In addition, the task of supporting disjoint-output instructions such as SIMD
instructions is often viewed as a problem that is separate from instruction selec-
tion. For example, there exist a number of methods—many of which are based on
polyhedral transformations—for making efficient use of such instructions (see for ex-
ample [10, 39, 180, 206, 213, 214, 323, 342]). Common to most is that they rely on
aggressive loop unrolling and are thus restricted to handling only these instructions.
On the other hand, most instruction selection techniques do not support instructions
with this kind of characteristic (the exceptions being of those by Leupers [228] and
Arslan and Kuchcinski [30]). Although they are primarily used inside tight loops,
disjoint-output instructions could potentially also be used in other situations where
an abundance of similar operations exist (see for example [223, 239]).

There has also been little overlap between the techniques for performing instruc-
tion selection and the methods for generating assembly code for target machines
equipped with reconfigurable hardware, such as ASIP. A compromise between
flexibility and performance, ASIPs are processors whose instruction sets can be
extended with additional instructions, allowing the processor to be—at least partly—
customized for the running program in order to improve code quality. The task of
discovering and deciding which instructions to add is commonly referred to as the
instruction set extension (ISE) problem, and there exists plenty of research on how
to solve this problem (see for example [11, 20, 31, 32, 41, 47, 52, 57, 78, 185, 198,
259, 260, 266, 353], and see [144] for a recent survey). However, although the ISE
problem can be regarded as a generalization of the instruction selection problem—the
main difference is that the pattern set is no longer fixed—the prevalent approach is
to treat them separately. As with the selection of SIMD instructions, the instruction
set extensions are typically found and selected first—often greedily—and then tra-
ditional instruction selection is performed on the remaining parts of the program
not covered by the extensions. But this approach often compromises code quality;
Murray [259] states in his 2012 doctoral dissertation that it is difficult to accurately
estimate the gain of using an instruction set extension when the ISE problem is solved
in isolation. In the worst case, it can even lead to a decrease in performance. Hence
there is potential in integrating these two problems in order to solve them in unison.

Another relatively unexplored aspect of instruction selection is energy consump-
tion. Some research has been conducted concerning instruction scheduling (see for ex-
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ample [225, 261, 275]) and register allocation (see for example [72, 153]), but there
exists very little on power and temperature-aware instruction selection. The only tech-
niques I could find are those by Lorenz et al. [241, 242], Bednarski and Kessler [42],
and Schafer et al. [301], and of these only the first is of any real interest (the inte-
grated code generation approach by Bednarski and Kessler is mostly concerned with
instruction scheduling and register allocation, and the technique by Schafer et al.
only performs functional-unit rebinding of already-selected instructions).

Lastly, as already stated, all three aspects of code generation must be performed
simultaneously if truly optimal assembly code is to be attained. Optimal instruction
selection in isolation is of limited significance for several reasons. For example,
making efficient use of status flags is impossible without taking instruction scheduling
into consideration since one must make sure that the flags are not prematurely
overwritten by another instruction. The same holds for VLIW architectures, where
certain combinations of patterns can increase the number of instructions that can be
scheduled together for parallel execution. Another problem is rematerialization, in
which a value is recomputed instead of spilled. This can be useful in situations in
which there is a shortage of free registers or if the cost of spilling is prohibitively
high, but accurate information about whether this will be beneficial can often only
be determined by actually performing register allocation. The bond between the
instruction selection and register allocation becomes even tighter for target machines
equipped with multiple register classes and requires a special set of instructions
for transferring data from one register class to another. Having said this, most
contemporary techniques only consider instruction selection in isolation, and it is
often unclear whether they can be fully and efficiently integrated with instruction
scheduling and register allocation.

6.2 Future Challenges

These problems notwithstanding, there do exist several techniques that I believe
have shown considerable promise—namely those based on methods for combina-
torial optimization (see for example Wilson et al. [340], Bashford and Leupers [40],
Bednarski and Kessler [43], Floch et al. [131], and Arslan and Kuchcinski [30]).

First, the underlying modeling mechanisms facilitate the approach of integrated
code generation. Second, auxiliary constraints can easily be added to the already
existing model, enabling code generation for complicated target machines as well
as extending the instruction support to include interdependent instructions. Third,
recent advancements in solver technology have made these kinds of techniques
viable options for practical use (this is for example showcased by Castañeda Lozano
et al. [65, 66]). However, current implementations are still orders-of-magnitude
slower than their heuristic counterparts and are thus in need of further research.
Moreover, the current program representations inhibit proper modeling of inter-block
instructions.
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To conclude: although the field has indeed come far since the initial ideas first
introduced in the 1960s, instruction selection is still—contrary to common belief—an
evasive problem. As the target machines are becoming evermore complex, placing
higher demands for more flexible and integrated code generation, the instruction
selection problem may be in greater need of study than ever before.



Appendix A
List of Techniques

The list starts on the next page, and its legend appears at the end of the list. The
techniques are ordered chronologically.

Note that the capabilities of all techniques have been set to reflect those exhibited
by current implementation prototypes and known applications, not the capabilities
that could potentially be achieved through extensions of the technique.
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REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Lowry and Medlock [243] ME L FHC
Orgass and Waite [273] ME L SIMCMP
Elson and Rake [108] ME L
Miller [255] ME L DMACS
Wilcox [338] ME L
Wasilew [331] TC L
Donegan [101] ME L
Tirrell [319] ME L
Weingart [332] TC L
Ammann et al. [12, 13] ME L
Young [350] ME L
Newcomer [263] TC L
Simoneaux [309] ME L
Snyder [310] ME L
Fraser [140, 141] ME L
Ripken [294] TC L
Glanville and Graham [158] TC L
Johnson [191, 192] TC L PCC
Harrison [170] ME+ L
Cattell [67, 70, 234] TC L PQCC
Auslander and Hopkins [33] ME+ L
Ganapathi and Fischer [146, 147, 148, 149] TC L
Krumme and Ackley [218] ME L
Deutsch and Schiffman [96] ME L SMALLTALK-80
Christopher et al. [76] TC L
Davidson and Fraser [91] ME+ L GCC, ACK, ZEPHYR/VPO
Henry [177] TC L
Aho et al. [6, 7, 321] TC L TWIG
Hatcher and Christopher [172] TC L
Horspool [184] TC L
Fraser and Wendt [135] ME+ L
Giegerich and Schmal [157] TC L
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REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Hatcher and Tuller [174] TC L UNH-CODEGEN
Pelegrı́-Llopart and Graham [278] TC L
Yates and Schwartz [348] TC L
Emmelmann et al. [109] ME L BEG, COSY
Ganapathi [145] TC L
Genin et al. [155] ME+ L
Nowak and Marwedel [269] DC L MSSC
Balachandran et al. [35] TC L
Despland et al. [63, 94, 95] TC L PAGODE
Wendt [335] ME+ L
Hatcher [173] TC L UCG
Fraser et al. [137] TC L IBURG, RECORD, REDACO
Fraser et al. [138, 281, 282, 284, 285] TC L BURG, HBURG, JBURG, WBURG, OCAMLBURG
Emmelmann [110] TC L
Wess [336, 337] TD L
Marwedel [252] DC L MSSV
Tjiang [320] TC L OLIVE, SPAM
Engler and Proebsting [114] TC L DCG
Fauth et al. [125, 258] DC L CBC
Ferdinand et al. [127] TC L
Liem et al. [237, 276, 277] DC L CODESYN
Lanneer et al. [222, 326, 327] GC G CHESS
Wilson et al. [340] DC L
Yu and Hu [351, 352] DC L
Novack et al. [267, 268] MS G
Hanson and Fraser [169] TC L LBURG, LCC
Liao et al. [235, 236] DC L
Adl-Tabatabai et al. [1] ME L OMNIWARE
Engler [113] ME L VCODE
Hoover and Zadeck [182] DC L
Leupers and Marwedel [226, 233] DC L
Nymeyer et al. [270, 271] TC L
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Shu et al. [308] TC L
Gough [160, 161, 162] TC L MBURG, GPBURG
Gebotys [152] DC L
Hanono and Devadas [167, 168] TD L AVIV
Leupers and Marwedel [230] DC L MSSQ
Bashford and Leupers [40] DC L
Ertl [117] DC L DBURG
Fraser and Proebsting [139] ME L GBURG
Fröhlich et al. [142] TD L
Visser [328] GC G
Leupers [228] DC L
Madhavan et al. [245] TC L
Arnold and Corporaal [25, 26, 27] DC L
Sarkar et al. [300] DC L JALAPEÑO
Paleczny et al. [274] GC G JHSC
Lorenz et al. [241, 242] DC L
Bravenboer and Visser [56] TC L
Krishnaswamy and Gupta [216] ME+ L
Eckstein et al. [106] GC G
Tanaka et al. [317] DC L
Borchardt [50] TC L
Brisk et al. [58] DC L
Cong et al. [82] DC L
Lattner and Adve [224] DC L LLVM
Kessler et al. [43, 115, 116] DC L OPTIMIST
Clark et al. [77] DC L
Dias and Ramsey [98] ME+ L
Ertl et al. [118] TC L
Farfeleder et al. [121] TC L
Kulkarni et al. [219] ME+ L VISTA
Hormati et al. [183] DC L
Scharwaechter et al. [303] DC L CBURG
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REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Ebner et al. [105] GC G
Koes and Goldstein [212] DC L NOLTIS
Ahn et al. [2] DC L
Martin et al. [248, 249] DC L
Buchwald and Zwinkau [61] GC G
Dias and Ramsey [97, 289] ME+ L
Edler von Koch et al. [107] TC L
Floch et al. [131] DC L
Yang [347] TC L
Youn et al. [349] DC L CBURG
Arslan and Kuchcinski [29, 30] DC L
Janoušek and Málek [187] TC L
Andrade [16] ME L GNU LIGHTNING

Fundamental principle (PR) on which the technique is based: macro expansion (ME), macro expansion with peephole optimization (ME+),
tree covering (TC), trellis diagrams (TD—is actually sorted under TC in this book), DAG covering (DC), graph covering (GC), or mutation
scheduling (MS—is actually sorted under GC in this book). Scope of instruction selection (SC): local (L, isolated to a single block), or
global (G, considers entire functions). Whether the technique is claimed to be optimal (OP). Supported machine instruction characteristics:
single-output (supported by all techniques), multi-output (MO), disjoint-output (DO), inter-block (IB), and interdependent (IN) instructions.
The symbols , , and indicate no, partial, and full support, respectively.
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Publication Timeline
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Fig. B.1: Illustrates how research on instruction selection (201 publications in total),
with respect to the fundamental principles, has elapsed over time. The widths of the
bars indicate the relative numbers of publications for a given year
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Appendix C
Graph Definitions

A graph is defined as a tuple (N,E) where N is a set of nodes (also known as
vertices) and E is a set of edges, each consisting of a pair of nodes n,m ∈ N. A graph
is undirected if its edges have no direction, and directed if they do. In a directed
graph we write an edge from a node n to another node m as n→ m, and say that
such an edge is outgoing with respect to n, and ingoing with respect to m. We also
introduce the following functions:

src : E→ N

src(n→ m) = n

dst : E→ N

dst(n→ m) = m

Edges for which src(e) = dst(e) are known as loop edges (or simply loops). If
there exists more than one edge between the same pair of nodes then the graph is a
multigraph, otherwise it is a simple graph.

A list of edges that describe how to get from one node to another is called a path.
More formally we define a path between two nodes n and m as an ordered list of
edges p = 〈e1, . . . ,el〉 such that for the directed graph (N,E):

ei ∈ E ∀ei ∈ p
dst(ei) = src(ei+1) ∀1≤ i < l−1

Paths for undirected graphs are similarly defined and will thus be skipped. A path for
which src(e1) = dst(el) is known as a cycle. Two nodes n and m, where n 6= m, are
said to be connected if there exists a path from n to m, and if the path is of length 1
then n and m are also adjacent. A directed graph containing no cycles is known as a
directed acyclic graph (DAG). An undirected graph is connected if and only if there
exists a path for every distinct pair of nodes. For completeness, a directed graph is
strongly connected iff, for every pair of distinct nodes n and m, there exists a path
from n to m and a path from m to n. Also, a directed graph is weakly connected if
replacing all edges with undirected edges yields a connected undirected graph. An
example is shown in Fig. C.1.
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m1

m2

m3

Gm

n1

n2

n3 n4

Gn

f

f

f

Fig. C.1: An example of two simple directed graphs Gm and Gn. Through the graph
homomorphism f we see that Gm is an isomorphic subgraph of Gn. Both graphs are
weakly connected, and Gn also has a strongly connected subgraph, consisting of n2,
n3, and n4 which form a cycle

A simple, undirected graph that is connected, contains no cycles, and has exactly
one path between any two nodes is called a tree. A set of trees constitutes a forest.
Nodes in a tree with exactly one neighbor are known as leaves. A directed tree is a
directed graph that would become a tree when ignoring the direction of its edges. A
rooted directed tree is a directed tree where one node has been assigned the root and
all edges either point away or towards the root. In a rooted directed tree a parent of a
node n is the node adjacent to n that is closest to the root. Likewise, if a node n is the
parent of another node m, then m is a child of n. In this book we assume all trees to
be rooted directed trees, and a tree will always be drawn with its root appearing at
the top.

A graph G = (N,E) is a subgraph of another graph G′ = (N′,E ′), also written as
G⊆ G′, iff N ⊆ N′ and E ⊆ E ′. Likewise, a tree T is a subtree of another tree T ′ iff
T ⊆ T ′.

A graph homomorphism is a mapping between two graphs such that their structure
is preserved. More formally, a graph homomorphism f from a graph G = (N,E) to
another graph G′ = (N′,E ′) is a mapping f : N→ N′ such that (u,v) ∈ E implies
( f (u), f (v)) ∈ E ′. If the graph homomorphism f is an injective function, then f is
also called a subgraph isomorphism. If there exists such a mapping then we say that
G is an isomorphic subgraph of G′, and an example of this is given in Fig. C.1. If f
is a bijection, whose inverse function is also a graph homomorphism, then f is also
called a graph isomorphism.

Lastly we introduce the notion of topological sort, where the nodes of a
graph (N,E) are arranged in an ordered list 〈n1, . . . ,nn〉 such that ni ∈ N ∀1≤ i≤ n
and for no pair of nodes ni and n j, where i < j, does there exist an edge n j→ ni ∈ E.
In other words, if the edges are added to the list then all edges will go point for-
ward from left to right (hence topological sorts are only defined for DAGs). Several
methods exists for achieving a topological sort, see for example Section 22.4 in
Cormen et al. [88].



Appendix D
Taxonomy

Technical terms and and their exact definitions often differ from one publication to
another, thus making it difficult to discuss and compare techniques without a common
foundation. In this book, therefore, a taxonomy with a well-defined vocabulary has
been established and is used consistently throughout the book. Although this may
seem a bit daunting and superfluous at first, most items in the taxonomy are easy to
understand. Most importantly, having explicitly defined these terms will minimize
confusions that may otherwise occur.

D.1 Common Terms

Several terms are continuously used when discussing the instruction selection tech-
niques. Most of these are obvious and appear in other literature, while others may
require a little explanation.

Program. The code under compilation, and therefore the input to the compiler as
well as the instruction selector. In the former this refers to the source code, while
in the latter it usually refers to the intermediate representation (IR) code, either
in its entirety or parts of it (that is, a function, a basic block, or part of a block),
depending on the scope of the instruction selector.

Target machine. The hardware on which the program is compiled to run. Most
often this refers to the ISA implemented and understood by its processing unit.

Instruction selector. A component or program responsible for implementing and
executing the task of instruction selection. If this program is automatically
generated from a machine description, the term refers to the generated result and
not the generator itself.

Frontend. A component or program responsible for parsing, validating, and trans-
lating the program into equivalent IR code.

Code generation. The task of generating assembly code for a given program by
performing instruction selection, instruction scheduling, and register allocation.
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Backend. A component or program responsible for implementing and executing the
task of code generation.

Compilation time. The time required to compile a given program.
Pattern matching. The problem of detecting when and where it is possible to use a

certain instruction for a given program.
Pattern selection. The problem of deciding which instructions to select from the

set of candidates found during pattern matching.
Offline cost analysis. The task of shifting the computation of optimization decisions

from the phase of program compilation to the phase of compiler generation,
thereby reducing compilation time at the cost of increasing the time it takes to
generate the compiler.

D.2 Machine Instruction Characteristics

A machine instruction exhibits one or more machine instruction characteristics. For
this study, the following characteristics were identified:

Single-output instructions. An instruction that only produces a single observable
output value. In this context observable means a value that can be accessed by the
program. This includes instructions that perform typical arithmetic operations
such as addition and multiplication as well as bit operations, but it also includes
instructions that chain multiple computations (for example, “load into register rd
the value at memory location specified in register rx plus offset specified in
register ry plus an immediate value”). Note that the instruction must produce
only this value and nothing else (compare this with the next characteristic).

Multi-output instructions. An instruction that produces multiple observable output
values from the same input values. Examples include divmod instructions that
produce both the quotient as well as the remainder of two terms, but it also
includes instructions that set status flags in addition to computing the arithmetic
result. A status flag is a bit that signifies additional information about the result
(for example, if there was a carry overflow or the result was equal to 0) and is
therefore often a side effect of the instruction. In reality, however, these bits are
nothing else but additional output values produced by the instruction.

Disjoint-output instructions. An instruction that produces multiple observable out-
put values from disjoint input value sets. This means that if the expression for
computing each observable output value formed a graph, then these graphs would
be disjoint. In comparison, single-output and multi-output instructions all form a
single graph. Disjoint-output instructions typically include SIMD instructions
which execute the same operations simultaneously on many input values.

Inter-block instructions. An instruction whose execution essentially spans multiple
blocks. Examples of such instructions are saturated arithmetic instructions and
hardware-loop instructions, which repeat a fixed sequence of instructions a
certain number of times. As seen in this book, no instruction selection design is
yet capable of supporting this kind of instruction.
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Interdependent instructions. An instruction that enforces additional constraints
when appearing in combination with other instructions in the assembly code.
An example is the add instruction from the TMS320C55x instruction set which
cannot be combined with an rpt k instruction if the addressing mode is set
to a specific mode. This kind of instruction is very difficult to handle by most
instruction selection techniques.

The first three characteristics form sets of instructions that are disjoint from one
another, but the last two characteristics can be combined as appropriate with any of
the other characteristics. For example, the same instruction can exhibit single-output,
inter-block, as well as the characteristics of interdependent instructions.

D.3 Scope

Local instruction selection. Selects instructions for a single block at a time.
Global instruction selection. Selects instructions for several blocks or an entire

function at a time.

D.4 Principles

All techniques reviewed in this book have been categorized into one of four principles.

Macro expansion. Each IR node in the program is expanded into one or more
instructions using macros. This is a simple strategy but generally produces very
inefficient assembly code as an instruction often can implement more than one
IR node. Consequently modern instruction selectors that apply this approach
also incorporate peephole optimization that combines many instructions into
single equivalents.

Tree covering. The program and instructions are represented as trees. Each instruc-
tion gives rise to a pattern tree which is then matched over the program tree (this
is the pattern matching problem). From the matching set of patterns, a subset is
selected such that the entire program tree is covered at the lowest cost.

DAG covering. The same idea as tree covering but operates on DAGs instead of
trees. Since DAGs are a more general form of trees, DAG covering supersedes
tree covering.

Graph covering. The same idea as DAG covering but operates on general graphs
instead of DAGs. Since graphs are a more general form of DAGs, graph covering
supersedes DAG covering.
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Implementation Notes. Tech. rep. Eidgenössische Technishe Hochschule,
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[20] P. Arató, S. Juhász, Z. A. Mann, A. Orbán, and D. Papp. “Hardware-Software
Partitioning in Embedded System Design”. In: International Symposium on
Intelligent Signal Processing. Washington, District of Colombia, USA: IEEE
Computer Society, Sept. 2003, pp. 197–202

[21] G. Araujo and S. Malik. “Optimal Code Generation for Embedded Memory
Non-Homogeneous Register Architectures”. In: Proceedings of the 8th Inter-
national Symposium on System Synthesis. ISSS’95. Cannes, France: ACM,
1995, pp. 36–41. ISBN: 0-89791-771-5

[22] G. Araujo, S. Malik, and M. T.-C. Lee. “Using Register-Transfer Paths in
Code Generation for Heterogeneous Memory-Register Architectures”. In:
Proceedings of the 33rd Annual Design Automation Conference. DAC’96.
Las Vegas, Nevada, USA: ACM, 1996, pp. 591–596. ISBN: 0-89791-779-0

http://www.gnu.org/software/lightning/
http://www.gnu.org/software/lightning/


References 141

[23] ARM11 MPCore Processor. ARM DDI 0360F. Version r2p0. ARM. Oct. 15,
2018

[24] ARM Cortex-M7 Devices: Generic User Guide. ARM DUI 0646A. ARM.
Mar. 19, 2015

[25] M. Arnold. Matching and Covering with Multiple-Output Patterns. Tech. rep.
1-68340-44. Delft, The Netherlands: Delft University of Technology, 1999

[26] M. Arnold and H. Corporaal. “Automatic Detection of Recurring Opera-
tion Patterns”. In: Proceedings of the 7th International Workshop on Hard-
ware/Software Codesign. CODES’99. Rome, Italy: ACM, 1999, pp. 22–26.
ISBN: 1-58113-132-1

[27] M. Arnold and H. Corporaal. “Designing Domain-Specific Processors”. In:
Proceedings of the 9th International Symposium on Hardware/Software Code-
sign. CODES’01. Copenhagen, Denmark: ACM, 2001, pp. 61–66. ISBN: 1-
58113-364-2

[28] N. Arora, K. Chandramohan, N. Pothineni, and A. Kumar. “Instruction
Selection in ASIP Synthesis Using Functional Matching”. In: Proceedings of
the 23rd International Conference on VLSI Design. VLSID’10. Washington,
District of Colombia, USA: IEEE Computer Society, 2010, pp. 146–151

[29] M. A. Arslan and K. Kuchcinski. “Instruction Selection and Scheduling for
DSP Kernels”. In: Microprocessors and Microsystems 38.8, Part A (2014),
pp. 803–813. ISSN: 0141-9331

[30] M. A. Arslan and K. Kuchcinski. “Instruction Selection and Scheduling
for DSP Kernels on Custom Architectures”. In: Proceedings of the 16th
EUROMICRO Conference on Digital System Design. DSD’13. Santander,
Cantabria, Spain: IEEE Computer Society, Sept. 4–6, 2013
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