A Comparison of Power Factor in N and P-Type SiGe Nanowires for Thermoelectric Applications

Mohammad Noroozi1,*, Bejan Hamawandi1, Ganesh Jayakumar2, Katayoun Zahmatkesh1, Henry H. Radamson2, and Muhammet S. Toprak1,*

1 Department of Materials and Nano Physics, SE16640 Kista-Stockholm, Sweden
2 Department of Devices and Circuits KTH Royal Institute of Technology, SE16640 Kista-Stockholm, Sweden

This work presents the thermoelectric properties of n- and p-type doped SiGe nanowires and shows the potential to generate electricity from heat difference over nanowires. The $Si_{0.74}Ge_{0.26}$ layers were grown by reduced pressure chemical vapor deposition technique on silicon on insulator and were condensed to the final $Si_{0.53}Ge_{0.47}$ layer with thickness of 52 nm. The nanowires were formed by using sidewall transfer lithography (STL) technique at a targeted width of 60 nm. A high volume of NWs is produced per wafer in a time efficient manner and with high quality using this technique. The results demonstrate high Seebeck coefficient in both n- and p-types SiGe nanowires. N-type SiGe nanowires show significantly higher Seebeck coefficient and power factor compared to p-type SiGe nanowires near room temperature. These results are promising and the devised STL technique may pave the way to apply a Si compatible process for manufacturing SiGe-based TE modules for industrial applications.

Keywords: Thermoelectric, SiGe Nanowires, Power Factor, Sidewall Transfer Lithography, condensation.