kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 460) Show all publications
Söder, L. (2024). Angående Svenska Kraftnäts metod:  ”Effekttillräcklighet enligt statisk metod”: Uppdaterade parametrar, konsekvenser och kommentarer. Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Angående Svenska Kraftnäts metod:  ”Effekttillräcklighet enligt statisk metod”: Uppdaterade parametrar, konsekvenser och kommentarer
2024 (Swedish)Report (Other academic)
Abstract [sv]

Svenska kraftnät använder metoden ”Effekttillräcklighet enligt statisk metod”. Vad denna egentligen beräknar är:

Hur mycket effekt behöver importeras:

·       Under den timmen med den högsta elförbrukning som kan inträffa under ett normalår eller under den mest extrema timmen vart 10:e eller 20:e år (dvs en mycket ovanlig situation). 

·       om: Vindkraften producerar på en nivå som överskrids under 91 procent av tiden

·       om: Kärnkraften producerar på en genomsnittlig nivå (90%), vilken är den nivå som underskrids under ca 35-42 procent av tiden. Dvs under 58-65 procent av tiden är tillgänglig effekt högre.

·       om: Även andra kraftslag producerar på en given procent av installerad effekt.

Detta innebär (med de värden de använder) att det är cirka 4 procent sannolikhet att såväl kärnkraften som vindkraften skulle ge lägre effekt än det som antas, och detta vid den mest extrema timmen under 10 eller 20 år. Och frågan är inte ”effektbrist” utan ”behov av import” vid dessa mycket osannolika enstaka timmar.

 

Det som studerats i denna rapport är inverkan av en mer rimlig ansats av vilka tillgänglighetsdata man ska använda för vindkraft för att den ska ge samma effektbidrag (samma sannolikhet) som kärnkraft. Resultatet är att vindkraftens ”tillgänglighetsfaktor” bör ändras från ca 9-11 procent till ca 27 procent. Detta kommer därmed, med denna metod, minska ”effekt-bristen” (dvs underskottet enligt den statiska metoden). Med ca 18000 MW vindkraft som totalt förväntas finnas installeras inom de närmaste åren så innebär en tillgänglighetsfaktor om 27.6% istället för den använda nivån 9% en ”effektförstärkning” om 3300 MW. Detta sätt att räkna innebär att man fortsätter anta 90% tillgänglighet för kärnkraften och använder samma percentil för vindkraft och kärnkraft.  Med antagande om att 2014-2023 är en representativ period så blir ”effektbidraget” för vindkraft ca 100 MW/TWh och för kärnkraft ca 124 MW/TWh.

Men denna metod är fortfarande lite märklig då den inte alls beräknar ”effektbrist”, den studerar enbart den extremaste timmen och beaktar inte alls explicit kombinerade sannolikheter för möjlig import etc. Detta kommenterade Svenska Kraftnät redan 2019: ”Denna metod har vissa begränsningar: bara topplasttimmen undersöks, och flöden mellan elområden och länder, samt utländska produktionsresurser beaktas inte. Därför inkluderas nu en probabilistisk metod, som belyser effekttillräckligheten i Sverige på ett annat sätt. Denna typ av modellering för att mäta risken för effekt-brist används på flera håll i världen, bl.a. av ENTSO-E, och det är sannolikt att en sådan metod framöver blir viktigare framöver även för Svenska kraftnät.”

Rekommendationen är att inte alls använda den ”statiska metoden”, då 

a)     Den inte alls beaktar sannolikheter, samt kombinationer av olika händelser, på ett rimligt sätt. Detta innebär att resultaten ofta misstolkas. 

b)     Metoden indikerar ökat behov av import samtidigt som den faktiska importen tvärtom minskat. Detta i sin tur beror just på de antaganden man gjort. Om man använder samma percentil för vindkraften som faktiskt används för kärnkraften, får man inte alls denna minskade tillräcklighet, eller ökande importbehov.

c)     Den ”probabilistiska metoden” är numer standard i EU. Den ger en helt rimlig beskrivning av olika möjligheter och utmaningar. Svenska Kraftnät använder denna metod idag. De rekommendationer som kommit från Energimarknadsinspektionen samt de beslut som tagits av regeringen bygger också helt på denna metod. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 25
Keywords
Effektbidrag, vindkraft, kärnkraft, tillgänglighet, kraftbalans
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-352490 (URN)
Note

QC 20240903

Available from: 2024-09-03 Created: 2024-09-03 Last updated: 2024-09-03Bibliographically approved
Nordström, H., Söder, L. & Eriksson, R. (2024). Continuous power imbalance assessment from multi-area economic dispatch models. Renewable energy, 225, Article ID 120277.
Open this publication in new window or tab >>Continuous power imbalance assessment from multi-area economic dispatch models
2024 (English)In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 225, article id 120277Article in journal (Refereed) Published
Abstract [en]

To be able to efficiently maintain a continuous balance between supply and demand in power systems with high shares of variable renewable energy (VRE) sources, a variety of studies related to the topic are needed. A fundamental input parameter for such studies is an assessment of the power system's physical needs for balancing power, in form of power imbalances. This article presents a new model for simulating physical power imbalances with a 1-minute time resolution based on multi-area economic dispatch simulations. Compared to existing models with the same purpose, the new model includes the combination of simulating power imbalances with 1-minute time resolution, simulating forecast uncertainty, simulating the continuous behaviour of all power system components and simulating the transmission for netting of power imbalances between balancing areas. By applying the model to a case study of the Nordic synchronous power system in year 2045, the impact of including these features in the model is highlighted. Case study results also show that the size and pattern of power imbalances much depends on the characteristics of a balancing area, in terms of electricity demand, available generation technologies and interconnections to other balancing areas.

Place, publisher, year, edition, pages
Elsevier Ltd, 2024
Keywords
Balancing services, Economic dispatch, Future scenarios, Multi-area power system, Power imbalances
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344596 (URN)10.1016/j.renene.2024.120277 (DOI)001206853100001 ()2-s2.0-85187224508 (Scopus ID)
Note

QC 20240325

Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2024-05-03Bibliographically approved
Agredano Torres, M., Zhang, M., Söder, L. & Xu, Q. (2024). Decentralized Dynamic Power Sharing Control for Frequency Regulation Using Hybrid Hydrogen Electrolyzer Systems. IEEE Transactions on Sustainable Energy, 15(3), 1847-1858
Open this publication in new window or tab >>Decentralized Dynamic Power Sharing Control for Frequency Regulation Using Hybrid Hydrogen Electrolyzer Systems
2024 (English)In: IEEE Transactions on Sustainable Energy, ISSN 1949-3029, E-ISSN 1949-3037, Vol. 15, no 3, p. 1847-1858Article in journal (Refereed) Published
Abstract [en]

Hydrogen electrolyzers are promising tools for frequency regulation of future power systems with high penetration of renewable energies and low inertia. This is due to both the increasing demand for hydrogen and their flexibility as controllable load. The two main electrolyzer technologies are Alkaline Electrolyzers (AELs) and Proton Exchange Membrane Electrolyzers (PEMELs). However, they have trade-offs: dynamic response speed for AELs, and cost for PEMELs. This paper proposes the combination of both technologies into a Hybrid Hydrogen Electrolyzer System (HHES) to obtain a fast response for frequency regulation with reduced costs. A decentralized dynamic power sharing control strategy is proposed where PEMELs respond to the fast component of the frequency deviation, and AELs respond to the slow component, without the requirement of communication. The proposed decentralized approach facilitates a high reliability and scalability of the system, what is essential for expansion of hydrogen production. The effectiveness of the proposed strategy is validated in simulations and experimental results.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-348840 (URN)10.1109/tste.2024.3381491 (DOI)001252808200047 ()2-s2.0-85189352236 (Scopus ID)
Funder
Swedish Energy Agency, 52650-1
Note

QC 20240628

Available from: 2024-06-27 Created: 2024-06-27 Last updated: 2024-07-05Bibliographically approved
Anggraini, D., Amelin, M. & Söder, L. (2024). Electric Vehicle Charging Considering Grid Limitation in Residential Areas. In: 2024 IEEE Transportation Electrification Conference and Expo, ITEC 2024: . Paper presented at 2024 IEEE Transportation Electrification Conference and Expo, ITEC 2024, Chicago, United States of America, Jun 19 2024 - Jun 21 2024. Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Electric Vehicle Charging Considering Grid Limitation in Residential Areas
2024 (English)In: 2024 IEEE Transportation Electrification Conference and Expo, ITEC 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024Conference paper, Published paper (Refereed)
Abstract [en]

The growing adoption of electric vehicles (EVs) has introduced substantial challenges to the grid. Uncontrolled EV charging may lead to grid overloading, voltage instability, increased power losses, accelerated aging of distribution transformers, and risk of outages. Therefore, a strategic approach is required to tackle the adverse impacts of uncontrolled EV charging to the grid. A promising approach is using EV batteries collectively as a flexible load. Residential areas have the most pronounced EV flexibility potential due to the significant length of uninterrupted parking. In this paper, models of EV charging in residential areas are formulated, followed by Monte Carlo simulations. Three charging models are developed: uncontrolled charging, controlled charging without considering grid limitation and controlled charging considering grid limitation. An optimization problem based on quadratic programming is used in the controlled charging. A residential area based on the IEEE European LV test feeder adopting the deregulated Swedish electricity market is taken as a case study for the simulation. The case study findings indicate that incorporating grid limitation into controlled charging strategies can prevent grid overload and significantly reduce charging and battery degradation costs. In this case study, controlled charging can reduce the charging costs to approximately 42% compared to uncontrolled charging. Considering the battery degradation costs, controlled charging costs are 24% lower than uncontrolled charging. It is possible to postpone the costly grid reinforcement by applying strategic EV charging scheduling. The methods and outcomes pave the way for developing, testing, and implementing business models to manage the grid impacts of growing EV charging.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Battery degradation, controlled charging, electric vehicle charging, flexible load, grid limitation, Monte Carlo simulations, residential areas, uncontrolled charging
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Energy Systems
Identifiers
urn:nbn:se:kth:diva-351921 (URN)10.1109/ITEC60657.2024.10598892 (DOI)2-s2.0-85200708607 (Scopus ID)
Conference
2024 IEEE Transportation Electrification Conference and Expo, ITEC 2024, Chicago, United States of America, Jun 19 2024 - Jun 21 2024
Note

Part of ISBN 9798350317664

QC 20240829

Available from: 2024-08-19 Created: 2024-08-19 Last updated: 2024-08-29Bibliographically approved
Söder, L. (2024). ELPRISETS VOLATILITET: En kort analys. Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>ELPRISETS VOLATILITET: En kort analys
2024 (Swedish)Report (Other (popular science, discussion, etc.))
Abstract [sv]

Volatilitet i elkostnader har alltid funnits och kommer alltid att finnas eftersom ett rationellt elsystembestår av en kombination av olika kraftverk. Vid hög tillgång på produktion och låg efterfrågan blirmarginalkostnaden låg, och på motsvarande sätt blir marginalkostnaden signifikant högre vid högefterfrågan och låg tillgång på kraftverk med låga driftkostnader.

Den liberala elmarknaden som finns i hela Europa innebär att elpriset sätts efter dennaproduktionskostnad. Detta ger ett volatilt elpris, vilket ger incitament till flexibilitet samt ger ocksåsignaler till marknaden att investera i det som ger störst nytta för elsystemet. De kunder somefterfrågar ett stabilt elpris kan ha kontrakt med någon aktör som tar pris-risken. Detta kommer attske till en kostnad, då ingen aktör erbjuder denna tjänst gratis, men många kunder är beredda att tadenna kostnad.

Sammanfattningsvis kan följande sägas om prisvolatiliteten:

1) Det är av stort värde för elmarknaden att det finns finansiella verktyg att hanteraelprisvariationer för de aktörer som så önskar. Det är bra att någon myndighet har till uppgift attstudera detta.

2) Prisvolatiliteten, mätt som standardavvikelse på elpriset i Euro/MWh har dock varit lägre iSverige jämfört med, t ex, Tyskland, Frankrike och Nederländerna under 2022-2023.

3) Prisvolatilitet gynnar flexibilitet. Den konsument som kan vara flexibel, t ex ladda sin elbil vid lågefterfrågan, får därmed ett lägre elpris.

4) En troligen central fråga gällande volatilitet är prisvariationer mellan olika år. För framtidenerbjuder då sol+vind den lägsta volatiliteten (plus/minus 4.4 procent baserat på data frånSvenska Kraftnät för tidsperioden 1982-2006) jämfört med faktisk kärnkraft (plus-minus 9.2 procent baserat på data från Energimyndigheten för tidsperioden 1996-2022).

5) Det finns en tyvärr spridd missuppfattning att kärnkraft automatiskt skulle minska prisvolatiliteten.Kärnkrafts-landet Frankrike hade såväl 2022 som 2023 en högre volatilitet änSverige, mätt som standardavvikelse för elpris per timme i Euro/MWh. I Finland ökadeprisvolatiliteten när deras nya kärnkraftverk kom igång den 16 april 2023.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 7
Keywords
Elpriser, volatilitet, vindkraft, solkraft, vattenkraft, kärnkraft
National Category
Engineering and Technology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-341964 (URN)
Note

QC 20240109

Available from: 2024-01-08 Created: 2024-01-08 Last updated: 2024-01-09Bibliographically approved
Blom, E. & Söder, L. (2024). Single-level reduction of the hydropower area Equivalent bilevel problem for fast computation. Renewable energy, 225, Article ID 120229.
Open this publication in new window or tab >>Single-level reduction of the hydropower area Equivalent bilevel problem for fast computation
2024 (English)In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 225, article id 120229Article in journal (Refereed) Published
Abstract [en]

For inclusion in large-scale power system models, various aggregations and simplifications in the modeling of relevant actors are needed. This paper focuses on reduced models of hydropower, so called area Equivalent models. They use a simplified topology but are not a direct aggregation of the real hydropower system. Instead, the area Equivalent is constructed to mimic the simulated power production of a more detailed hydropower reference model. Here, this goal is fulfilled by formulating a bilevel problem minimizing the difference in simulated power production between the area Equivalent and its reference. Solving this can be computationally heavy. Thus, for a fast solution of this bilevel problem, a single-level reduction is done, which is then solved using two methods. The first method includes McCormick envelopes to form a linear single-level problem. Second is a modified Benders with a relaxed sub-problem to handle the non-convex single-level. These are then also compared to Particle Swarm Optimization. Moreover, six new upper-level objective functions are investigated for a case study of hydropower in northern Sweden. The method using McCormick envelopes is fast (2–5 min), but the area Equivalent shows lower average performance. The modified Benders finds a solution in 5–31 min with good performance.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Bilevel problem, Hydropower area Equivalent model, McCormick envelopes, Modified benders decomposition, Single-level reduction
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344334 (URN)10.1016/j.renene.2024.120229 (DOI)001206927900001 ()2-s2.0-85186614589 (Scopus ID)
Note

QC 20240503

Available from: 2024-03-13 Created: 2024-03-13 Last updated: 2024-05-03Bibliographically approved
Nefabas, K. L., Mamo, M. & Söder, L. (2023). Analysis of System Balancing and Wind Power Curtailment Challenges in the Ethiopian Power System under Different Scenarios. Sustainability, 15(14), Article ID 11400.
Open this publication in new window or tab >>Analysis of System Balancing and Wind Power Curtailment Challenges in the Ethiopian Power System under Different Scenarios
2023 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 15, no 14, article id 11400Article in journal (Refereed) Published
Abstract [en]

In this paper, an hourly dispatch model was developed to analyze the system balancing and wind power curtailment challenges in the future of the Ethiopian electric power grid system. The developed model was validated using historical data and was used for the analysis of the grid system in 2030 with different scenarios. The model was used to examine the impacts of transmission capacity, regulation reserve requirement, and daily minimum generation of hydropower for irrigation with three cases of wind annual energy share of 14.5%, 17.8%, and 25.2%. Thus, the curtailment was found to be below 0.2%, 1.1%, and 9.8% for each case, respectively. The cost of wind energy increases in proportion to the percentage of curtailment and the increase in transmission line capacity. Reducing the minimum hydropower generation results in smaller wind power curtailment and better generation-consumption balancing.

Place, publisher, year, edition, pages
MDPI AG, 2023
Keywords
balance, curtailment, hydropower, model, wind
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-333800 (URN)10.3390/su151411400 (DOI)001036680800001 ()2-s2.0-85166487068 (Scopus ID)
Note

QC 20230810

Available from: 2023-08-10 Created: 2023-08-10 Last updated: 2024-08-28Bibliographically approved
Lilja, D., Blom, E. & Söder, L. (2023). Computing Equivalent hydropower models in Sweden using inflow clustering. In: Thiyagarajan, V Selvan, NBM Raj, MD (Ed.), Proceedings of the 9th International Conference on Electrical Energy Systems, ICEES 2023: . Paper presented at 9th International Conference on Electrical Energy Systems (ICEES), MAR 23-25, 2023, Sri Sivasubramaniya Nadar Coll Engn, Chennai, INDIA (pp. 613-618). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Computing Equivalent hydropower models in Sweden using inflow clustering
2023 (English)In: Proceedings of the 9th International Conference on Electrical Energy Systems, ICEES 2023 / [ed] Thiyagarajan, V Selvan, NBM Raj, MD, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 613-618Conference paper, Published paper (Refereed)
Abstract [en]

To simulate a hydropower system, one can use what s known as a Detailed model. However, due to the complexity of river systems, this is often a computationally heavy task. Equivalent models, which aim to reproduce the result of a Detailed model, are used to significantly reduce the computation time for large-scale hydropower simulations. This paper computes Equivalent models for hydropower systems in Sweden by categorizing the water inflow data using a spectral clustering method. Computing the Equivalent models is done using a variant of the particle swarm optimization algorithm. Then, the Equivalent models are evaluated based on their similarity to the Detailed model in terms of power production and objective value. The Equivalent models range from 8% - 12% error in terms of the relative power production difference and the computation time is reduced by at least 99.9%.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-325145 (URN)10.1109/ICEES57979.2023.10110275 (DOI)000995217600116 ()2-s2.0-85160020689 (Scopus ID)
Conference
9th International Conference on Electrical Energy Systems (ICEES), MAR 23-25, 2023, Sri Sivasubramaniya Nadar Coll Engn, Chennai, INDIA
Note

QC 20231122

Available from: 2023-03-31 Created: 2023-03-31 Last updated: 2023-11-22Bibliographically approved
Skalyga, M., Amelin, M., Wu, Q. & Söder, L. (2023). Distributionally robust day-ahead combined heat and power plants scheduling with Wasserstein Metric. Energy, 269, Article ID 126793.
Open this publication in new window or tab >>Distributionally robust day-ahead combined heat and power plants scheduling with Wasserstein Metric
2023 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 269, article id 126793Article in journal (Refereed) Published
Abstract [en]

Combined heat and power (CHP) plants are main generation units in district heating systems that produce both heat and electric power simultaneously. Moreover, CHP plants can participate in electricity markets, selling and buying the extra power when profitable. However, operational decisions have to be made with unknown electricity prices. The distribution of unknown electricity prices is also not known exactly and uncertain in practice. Therefore, the need of tools to schedule CHP units' production under distributional uncertainty is necessary for CHP producers. On top of that, a heating network could serve as a heat storage and an additional source of flexibility for CHP plants. In this paper, a distributionally robust short-term operational model of CHP plants in the day-ahead electricity market is developed. The model accounts for the heating network and considers temperature dynamics in the pipes. The problem is formulated in a data-driven manner, where the production decisions explicitly depend on the historical data for the uncertain day-ahead electricity prices. A case study is performed, and the resulting profit of the CHP producer is analyzed. The proposed operational strategy shows high reliability in the out-of-sample performance and a profit gain of the CHP producer, who is aware of the temperature dynamics in the heating network.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Stochastic programming, Combined heat and power, District heating, Distributionally robust optimization, Electricity markets
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-326451 (URN)10.1016/j.energy.2023.126793 (DOI)000963159700001 ()2-s2.0-85147214520 (Scopus ID)
Note

QC 20230503

Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2023-05-03Bibliographically approved
Agredano Torres, M., Xu, Q., Zhang, M., Söder, L. & Cornell, A. M. (2023). Dynamic power allocation control for frequency regulation using hybrid electrolyzer systems. In: 2023 IEEE Applied Power Electronics Conference And Exposition, APEC: . Paper presented at IEEE Applied Power Electronics Conference and Exposition (APEC), MAR 19-23, 2023, Orlando, FL, United States of America (pp. 2991-2998). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Dynamic power allocation control for frequency regulation using hybrid electrolyzer systems
Show others...
2023 (English)In: 2023 IEEE Applied Power Electronics Conference And Exposition, APEC, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 2991-2998Conference paper, Published paper (Refereed)
Abstract [en]

The increase in hydrogen production to support the energy transition in different sectors, such as the steel industry, leads to the utilization of large scale electrolyzers. These electrolyzers have the ability to become a fundamental tool for grid stability providing grid services, especially frequency regulation, for power grids with a high share of renewable energy sources. Alkaline electrolyzers (AELs) have low cost and long lifetime, but their slow dynamics make them unsuitable for fast frequency regulation, especially in case of contingencies. Proton Exchange Membrane electrolyzers (PEMELs) have fast dynamic response to provide grid services, but they have higher costs. This paper proposes a dynamic power allocation control strategy for hybrid electrolyzer systems to provide frequency regulation with reduced cost, making use of advantages of AELs and PEMELs. Simulations and experiments are conducted to verify the proposed control strategy.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Series
Annual IEEE Applied Power Electronics Conference and Exposition (APEC), ISSN 1048-2334
Keywords
Hydrogen, alkaline electrolyzer, PEM electrolyzer, frequency response, hybrid systems, low-inertia power systems
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-335124 (URN)10.1109/APEC43580.2023.10131557 (DOI)001012113603019 ()2-s2.0-85162217474 (Scopus ID)
Conference
IEEE Applied Power Electronics Conference and Exposition (APEC), MAR 19-23, 2023, Orlando, FL, United States of America
Note

QC 20230901

Available from: 2023-09-01 Created: 2023-09-01 Last updated: 2023-09-01Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8189-2420

Search in DiVA

Show all publications