Endre søk
Link to record
Permanent link

Direct link
BETA
Jöns, Klaus D.
Publikasjoner (10 av 15) Visa alla publikasjoner
Fognini, A., Ahmadi, A., Zeeshan, M., Fokkens, J. T., Gibson, S. J., Sherlekar, N., . . . Reimer, M. E. (2019). Dephasing Free Photon Entanglement with a Quantum Dot. ACS Photonics, 6(7), 1656-1663
Åpne denne publikasjonen i ny fane eller vindu >>Dephasing Free Photon Entanglement with a Quantum Dot
Vise andre…
2019 (engelsk)Inngår i: ACS Photonics, E-ISSN 2330-4022, Vol. 6, nr 7, s. 1656-1663Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Generation of photon pairs from quantum dots with near-unity entanglement fidelity has been a long-standing scientific challenge. It is generally thought that the nuclear spins limit the entanglement fidelity through spin flip dephasing processes. However, this assumption lacks experimental support. Here, we show two-photon entanglement with negligible dephasing from an indium rich single quantum dot comprising a nuclear spin of 9/2 when excited quasi-resonantly. This finding is based on a significantly close match between our entanglement measurements and our model that assumes no dephasing and takes into account the detection system's timing jitter and dark counts. We suggest that neglecting the detection system is responsible for the degradation of the measured entanglement fidelity in the past and not the nuclear spins. Therefore, the key to unity entanglement from quantum dots comprises a resonant excitation scheme and a detection system with ultralow timing jitter and dark counts.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2019
Emneord
entanglement, fine-structure splitting, quantum dot, single photons
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-255771 (URN)10.1021/acsphotonics.8b01496 (DOI)000476684300012 ()2-s2.0-85067950170 (Scopus ID)
Merknad

QC 20190812

Tilgjengelig fra: 2019-08-12 Laget: 2019-08-12 Sist oppdatert: 2019-08-12bibliografisk kontrollert
Basset, F. B., Rota, M. B., Schimpf, C., Tedeschi, D., Zeuner, K., da Silva, S. F., . . . Trotta, R. (2019). Entanglement Swapping with Photons Generated on Demand by a Quantum Dot. Physical Review Letters, 123(16), Article ID 160501.
Åpne denne publikasjonen i ny fane eller vindu >>Entanglement Swapping with Photons Generated on Demand by a Quantum Dot
Vise andre…
2019 (engelsk)Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, nr 16, artikkel-id 160501Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of nonclassical light were used for seminal demonstration of entanglement swapping, but applications in quantum technologies demand push-button operation requiring single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent prerequisites on the efficiency and purity of the generation of entangled states. Here we show a proof-of-concept demonstration of all-photonic entanglement swapping with pairs of polarization-entangled photons generated on demand by a GaAs quantum dot without spectral and temporal filtering. Moreover, we develop a theoretical model that quantitatively reproduces the experimental data and provides insights on the critical figures of merit for the performance of the swapping operation. Our theoretical analysis also indicates how to improve stateof-the-art entangled-photon sources to meet the requirements needed for implementation of quantum dots in long-distance quantum communication protocols.

sted, utgiver, år, opplag, sider
AMER PHYSICAL SOC, 2019
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-262938 (URN)10.1103/PhysRevLett.123.160501 (DOI)000489831500001 ()2-s2.0-85073813116 (Scopus ID)
Merknad

QC 20191129

Tilgjengelig fra: 2019-11-29 Laget: 2019-11-29 Sist oppdatert: 2019-11-29bibliografisk kontrollert
Schöll, E., Hanschke, L., Schweickert, L., Zeuner, K. D., Reindl, M., da Silva, S. F., . . . Jöns, K. D. (2019). Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability. Nano letters (Print), 19(4), 2404-2410
Åpne denne publikasjonen i ny fane eller vindu >>Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability
Vise andre…
2019 (engelsk)Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, nr 4, s. 2404-2410Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on demand. One promising candidate is strain free GaAs/A1GaAs quantum dots obtained by aluminum droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V-raw = (95.0(-6.1)(+5.0))%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g., as quantum light sources for quantum repeater architectures.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC, 2019
Emneord
Semiconductor quantum dot, resonance fluorescence, indistinguishable photons, Al droplet etching
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-251341 (URN)10.1021/acs.nanolett.8b05132 (DOI)000464769100028 ()30862165 (PubMedID)2-s2.0-85063372001 (Scopus ID)
Merknad

QC 20190521

Tilgjengelig fra: 2019-05-21 Laget: 2019-05-21 Sist oppdatert: 2019-05-21bibliografisk kontrollert
Reindl, M., Huber, D., Schimpf, C., da Silva, S. F. C., Rota, M. B., Huang, H., . . . Trotta, R. (2018). All-photonic quantum teleportation using on-demand solid-state quantum emitters. Science Advances, 4(12), Article ID eaau1255.
Åpne denne publikasjonen i ny fane eller vindu >>All-photonic quantum teleportation using on-demand solid-state quantum emitters
Vise andre…
2018 (engelsk)Inngår i: Science Advances, E-ISSN 2375-2548, Vol. 4, nr 12, artikkel-id eaau1255Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

All-optical quantum teleportation lies at the heart of quantum communication science and technology. This quantum phenomenon is built up around the nonlocal properties of entangled states of light that, in the perspective of real-life applications, should be encoded on photon pairs generated on demand. Despite recent advances, however, the exploitation of deterministic quantum light sources in push-button quantum teleportation schemes remains a major open challenge. Here, we perform an important step toward this goal and show that photon pairs generated on demand by a GaAs quantum dot can be used to implement a teleportation protocol whose fidelity violates the classical limit (by more than 5 SDs) for arbitrary input states. Moreover, we develop a theoretical framework that matches the experimental observations and that defines the degree of entanglement and indistinguishability needed to overcome the classical limit independently of the input state. Our results emphasize that on-demand solid-state quantum emitters are one of the most promising candidates to realize deterministic quantum teleportation in practical quantum networks.

sted, utgiver, år, opplag, sider
AMER ASSOC ADVANCEMENT SCIENCE, 2018
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-241227 (URN)10.1126/sciadv.aau1255 (DOI)000454369600018 ()30555916 (PubMedID)2-s2.0-85058757029 (Scopus ID)
Merknad

QC 20190117

Tilgjengelig fra: 2019-01-17 Laget: 2019-01-17 Sist oppdatert: 2019-01-17bibliografisk kontrollert
Haffouz, S., Zeuner, K. D., Dalacu, D., Poole, P. J., Lapointe, J., Poitras, D., . . . Williams, R. L. (2018). Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide. Nano letters (Print), 18(5), 3047-3052
Åpne denne publikasjonen i ny fane eller vindu >>Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide
Vise andre…
2018 (engelsk)Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 5, s. 3047-3052Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC, 2018
Emneord
Quantum dot, nanowire, selective growth, vapor-liquid-solid, epitaxial growth, chemical beam epitaxy, photoluminescence, single-photon source
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-229029 (URN)10.1021/acs.nanolett.8b00550 (DOI)000432093200043 ()29616557 (PubMedID)
Forskningsfinansiär
EU, European Research Council, 307687Swedish Research Council, 638-2013-7152
Merknad

QC 20180531

Tilgjengelig fra: 2018-05-31 Laget: 2018-05-31 Sist oppdatert: 2018-05-31bibliografisk kontrollert
Schweickert, L., Jöns, K. D., Lettner, T., Zeuner, K., Zichi, J., Elshaari, A. W., . . . Zwiller, V. (2018). Generating, manipulating and detecting quantum states of light at the nanoscale. In: Optics InfoBase Conference Papers: . Paper presented at Latin America Optics and Photonics Conference, LAOP 2018, 12 November 2018 through 15 November 2018. OSA - The Optical Society
Åpne denne publikasjonen i ny fane eller vindu >>Generating, manipulating and detecting quantum states of light at the nanoscale
Vise andre…
2018 (engelsk)Inngår i: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We generate, manipulate and detect light at the single photon level with semiconducting and superconducting nanowires.

sted, utgiver, år, opplag, sider
OSA - The Optical Society, 2018
Emneord
Light, Particle beams, Photonics, Nano scale, Quantum state, Single-photon level, Superconducting nanowire, Quantum theory
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-247434 (URN)10.1364/LAOP.2018.Tu5D.3 (DOI)2-s2.0-85059482342 (Scopus ID)9781943580491 (ISBN)
Konferanse
Latin America Optics and Photonics Conference, LAOP 2018, 12 November 2018 through 15 November 2018
Merknad

QC20190418

Tilgjengelig fra: 2019-04-18 Laget: 2019-04-18 Sist oppdatert: 2019-04-18bibliografisk kontrollert
Elshaari, A. W., Esmaeil Zadeh, I., Fognini, A., Dalacu, D., Poole, P. J., Reimer, M. E., . . . Jöns, K. D. (2018). Hybrid quantum photonic integrated circuits. In: Proceedings - International Conference Laser Optics 2018, ICLO 2018: . Paper presented at 2018 International Conference Laser Optics, ICLO 2018, St. Petersburg, Russian Federation, 4 June 2018 through 8 June 2018. Institute of Electrical and Electronics Engineers (IEEE), Article ID 8435508.
Åpne denne publikasjonen i ny fane eller vindu >>Hybrid quantum photonic integrated circuits
Vise andre…
2018 (engelsk)Inngår i: Proceedings - International Conference Laser Optics 2018, ICLO 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, artikkel-id 8435508Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Quantum photonic integrated circuits require a scalable approach to integrate bright on-demand sources of entangled photon-pairs in complex on-chip quantum photonic circuits. Currently, the most promising sources are based on III/V semiconductor quantum dots. However, complex photonic circuitry is mainly achieved in silicon photonics due to the tremendous technological challenges in circuit fabrication. We take the best of both worlds by developing a new hybrid on-chip nanofabrication approach, allowing to integrate III/V semiconductor nanowire quantum emitters into silicon-based photonics.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2018
Emneord
Quantum dots, Quantum photonic circuits, Semiconductor nanowires, SIN waveguides, Singlephoton source
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-234485 (URN)10.1109/LO.2018.8435508 (DOI)2-s2.0-85052512010 (Scopus ID)9781538636121 (ISBN)
Konferanse
2018 International Conference Laser Optics, ICLO 2018, St. Petersburg, Russian Federation, 4 June 2018 through 8 June 2018
Merknad

QC 20180907

Tilgjengelig fra: 2018-09-07 Laget: 2018-09-07 Sist oppdatert: 2018-09-07bibliografisk kontrollert
Leandro, L., Gunnarsson, C. P., Reznik, R., Jöns, K. D., Shtrom, I., Khrebtov, A., . . . Akopian, N. (2018). Nanowire Quantum Dots Tuned to Atomic Resonances. Nano letters (Print), 18(11), 7217-7221
Åpne denne publikasjonen i ny fane eller vindu >>Nanowire Quantum Dots Tuned to Atomic Resonances
Vise andre…
2018 (engelsk)Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 11, s. 7217-7221Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm around 765 nm. By applying an external magnetic field, we are able to fine-tune the emission frequency of our nanowire quantum dots to the D-2 transition of Rb-87. We use the Rb transitions to precisely measure the actual spectral line width of the photons emitted from a nanowire quantum dot to be 9.4 +/- 0.7 mu eV, under nonresonant excitation. Our work brings highly desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC, 2018
Emneord
Nanowires, quantum dots, hybrid systems, VLS growth, GaAs/AlGaAs
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-240011 (URN)10.1021/acs.nanolett.8b03363 (DOI)000451102100076 ()30336054 (PubMedID)2-s2.0-85055343147 (Scopus ID)
Merknad

QC 20181210

Tilgjengelig fra: 2018-12-10 Laget: 2018-12-10 Sist oppdatert: 2018-12-10bibliografisk kontrollert
Elshaari, A. W., Buyukozer, E., Zadeh, I. E., Lettner, T., Zhao, P., Schöll, E., . . . Zwiller, V. (2018). Strain-Tunable Quantum Integrated Photonics. Nano letters (Print), 18(12), 7969-7976
Åpne denne publikasjonen i ny fane eller vindu >>Strain-Tunable Quantum Integrated Photonics
Vise andre…
2018 (engelsk)Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 12, s. 7969-7976Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner. Here we demonstrate a new class of hybrid quantum photonic circuits combining III V semiconductors, silicon nitride, and piezoelectric crystals. Using a combination of bottom-up, top-down, and nanomanipulation techniques, we realize strain tuning of a selected, waveguide-integrated, quantum emitter and a planar integrated optical resonator. Our findings are an important step toward realizing reconfigurable quantum-integrated photonics, with full control over the quantum sources and the photonic circuit.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2018
Emneord
Nanowires, strain tuning, quantum dot, quantum integrated photonics, ring resonator, single photon
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-240745 (URN)10.1021/acs.nanolett.8b03937 (DOI)000453488800074 ()30474987 (PubMedID)2-s2.0-85058112477 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 2016-03905
Merknad

QC 20190108

Tilgjengelig fra: 2019-01-08 Laget: 2019-01-08 Sist oppdatert: 2019-01-08bibliografisk kontrollert
Jöns, K. D., Schweickert, L., Versteegh, M. A. M., Dalacu, D., Poole, P. J., Gulinatti, A., . . . Reimer, M. E. (2017). Erratum to: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality (Scientific Reports, (2017), 7, 1, (1700), 10.1038/s41598-017-01509-6). Scientific Reports, 7(1), Article ID 7751.
Åpne denne publikasjonen i ny fane eller vindu >>Erratum to: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality (Scientific Reports, (2017), 7, 1, (1700), 10.1038/s41598-017-01509-6)
Vise andre…
2017 (engelsk)Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, nr 1, artikkel-id 7751Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
Nature Publishing Group, 2017
Emneord
erratum
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-236457 (URN)10.1038/s41598-017-07625-7 (DOI)000407400100038 ()2-s2.0-85051292610 (Scopus ID)
Merknad

QC 20181022

Tilgjengelig fra: 2018-10-22 Laget: 2018-10-22 Sist oppdatert: 2019-10-17bibliografisk kontrollert
Organisasjoner