Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 49) Visa alla publikasjoner
Smoler, M., Pennacchietti, F., De Rossi, M. C., Bruno, L., Testa, I. & Levi, V. (2025). Dynamical organization of vimentin intermediate filaments in living cells revealed by MoNaLISA nanoscopy. Bioscience Reports, 45(2), Article ID BSR20241133.
Åpne denne publikasjonen i ny fane eller vindu >>Dynamical organization of vimentin intermediate filaments in living cells revealed by MoNaLISA nanoscopy
Vise andre…
2025 (engelsk)Inngår i: Bioscience Reports, ISSN 0144-8463, E-ISSN 1573-4935, Vol. 45, nr 2, artikkel-id BSR20241133Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Intermediate filaments are intimately involved in the mechanical behavior of cells. Unfortunately, the resolution of optical microscopy limits our understanding of their organization. Here, we combined nanoscopy, single-filament tracking, and numerical simulations to inspect the dynamical organization of vimentin intermediate filaments in live cells. We show that a higher proportion of peripheral versus perinuclear vimentin pools are constrained in their lateral motion in the seconds time window, probably due to their cross-linking to other cytoskeletal networks. In a longer time scale, active forces become evident and affect similarly both pools of filaments. Our results provide a detailed description of the dynamical organization of the vimentin network in live cells and give some cues on its response to mechanical stimuli.

sted, utgiver, år, opplag, sider
Portland Press Ltd., 2025
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-360771 (URN)10.1042/BSR20241133 (DOI)001425088900001 ()39936518 (PubMedID)2-s2.0-85218479281 (Scopus ID)
Merknad

QC 20250303

Tilgjengelig fra: 2025-03-03 Laget: 2025-03-03 Sist oppdatert: 2025-03-05bibliografisk kontrollert
Lin, R. & Testa, I. (2024). Adaptive RESOLFT microscopy. In: Adaptive Optics: Methods, Analysis and Applications, AOMS 2024 in Proceedings Optica Imaging Congress 2024, 3D, AOMS, COSI, ISA, pcAOP - Part of Optica Imaging Congress: . Paper presented at 2024 Adaptive Optics: Methods, Analysis and Applications, AOMS 2024 - Part of Optica Imaging Congress, Toulouse, France, Jul 15 2024 - Jul 19 2024. Optical Society of America
Åpne denne publikasjonen i ny fane eller vindu >>Adaptive RESOLFT microscopy
2024 (engelsk)Inngår i: Adaptive Optics: Methods, Analysis and Applications, AOMS 2024 in Proceedings Optica Imaging Congress 2024, 3D, AOMS, COSI, ISA, pcAOP - Part of Optica Imaging Congress, Optical Society of America , 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

By integrating confocal scanning, structured illumination, and adaptive optics, the adaptive RESOLFT microscopy overcomes performance limits caused by sample-induced optical aberrations, enabling super-resolution imaging at depth in complex live tissues.

sted, utgiver, år, opplag, sider
Optical Society of America, 2024
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-367289 (URN)10.1364/AOPT.2024.OW1F.1r (DOI)2-s2.0-85204905479 (Scopus ID)
Konferanse
2024 Adaptive Optics: Methods, Analysis and Applications, AOMS 2024 - Part of Optica Imaging Congress, Toulouse, France, Jul 15 2024 - Jul 19 2024
Merknad

QC 20250717

Tilgjengelig fra: 2025-07-17 Laget: 2025-07-17 Sist oppdatert: 2025-07-17bibliografisk kontrollert
Lukinavicius, G., Alvelid, J., Gerasimaite, R., Rodilla-Ramirez, C., Nguyen, V. T., Vicidomini, G., . . . Testa, I. (2024). Stimulated emission depletion microscopy. Nature Reviews Methods Primers, 4(1), Article ID 56.
Åpne denne publikasjonen i ny fane eller vindu >>Stimulated emission depletion microscopy
Vise andre…
2024 (engelsk)Inngår i: Nature Reviews Methods Primers, ISSN 2662-8449, Vol. 4, nr 1, artikkel-id 56Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

In this Primer, we focus on the most recent advancements in stimulated emission depletion (STED) microscopy, encompassing optics, computational microscopy and probes design, which enable STED imaging to open new observation windows in challenging samples such as living cells and tissues. We showcase applications in which STED data have been essential to gain new biological insights in various cell types and model systems. Finally, we discuss what standardization will be important in our view to further advance STED imaging, including open and shareable software, analysis pipelines, data repositories and sample preparation protocols. Stimulated emission depletion microscopy opens new observation windows in challenging samples such as living cells and tissues. In this Primer, Lukinavi & ccaron;ius et al. discuss 2D and 3D stimulated emission depletion setup, including adaptive optical elements and their combination with fluorescence lifetime techniques.

sted, utgiver, år, opplag, sider
Springer Nature, 2024
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-353006 (URN)10.1038/s43586-024-00335-1 (DOI)001301201700002 ()2-s2.0-85200927287 (Scopus ID)
Merknad

QC 20240911

Tilgjengelig fra: 2024-09-11 Laget: 2024-09-11 Sist oppdatert: 2025-02-20bibliografisk kontrollert
Bodén, A., Ollech, D., York, A. G., Millett-Sikking, A. & Testa, I. (2024). Super-sectioning with multi-sheet reversible saturable optical fluorescence transitions (RESOLFT) microscopy. Nature Methods, 21(5), 882-888
Åpne denne publikasjonen i ny fane eller vindu >>Super-sectioning with multi-sheet reversible saturable optical fluorescence transitions (RESOLFT) microscopy
Vise andre…
2024 (engelsk)Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 21, nr 5, s. 882-888Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Light-sheet fluorescence microscopy is an invaluable tool for four-dimensional biological imaging of multicellular systems due to the rapid volumetric imaging and minimal illumination dosage. However, it is challenging to retrieve fine subcellular information, especially in living cells, due to the width of the sheet of light (>1 μm). Here, using reversibly switchable fluorescent proteins (RSFPs) and a periodic light pattern for photoswitching, we demonstrate a super-resolution imaging method for rapid volumetric imaging of subcellular structures called multi-sheet RESOLFT. Multiple emission-sheets with a width that is far below the diffraction limit are created in parallel increasing recording speed (1–2 Hz) to provide super-sectioning ability (<100 nm). Our technology is compatible with various RSFPs due to its minimal requirement in the number of switching cycles and can be used to study a plethora of cellular structures. We track cellular processes such as cell division, actin motion and the dynamics of virus-like particles in three dimensions.

sted, utgiver, år, opplag, sider
Springer Nature, 2024
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-366929 (URN)10.1038/s41592-024-02196-8 (DOI)001174946300001 ()38395993 (PubMedID)2-s2.0-85187254567 (Scopus ID)
Merknad

QC 20250711

Tilgjengelig fra: 2025-07-11 Laget: 2025-07-11 Sist oppdatert: 2025-07-11bibliografisk kontrollert
Moreno, X. C., Mendes Silva, M., Roos, J., Pennacchietti, F., Norlin, N. & Testa, I. (2023). An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis. HardwareX, 13, e00400-e00400, Article ID e00400.
Åpne denne publikasjonen i ny fane eller vindu >>An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis
Vise andre…
2023 (engelsk)Inngår i: HardwareX, ISSN 2468-0672, Vol. 13, s. e00400-e00400, artikkel-id e00400Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present a computational framework to simultaneously perform image acquisition, reconstruction, and analysis in the context of open-source microscopy automation. The setup features multiple computer units intersecting software with hardware devices and achieves automation using python scripts. In practice, script files are executed in the acquisition computer and can perform any experiment by modifying the state of the hardware devices and accessing experimental data. The presented framework achieves concurrency by using multiple instances of ImSwitch and napari working simultaneously. ImSwitch is a flexible and modular open-source software package for microscope control, and napari is a multidimensional image viewer for scientific image analysis. The presented framework implements a system based on file watching, where multiple units monitor a filesystem that acts as the synchronization primitive. The proposed solution is valid for any microscope setup, supporting various biological applications. The only necessary element is a shared filesystem, common in any standard laboratory, even in resource-constrained settings. The file watcher functionality in Python can be easily integrated into other python-based software. We demonstrate the proposed solution by performing tiling experiments using the molecular nanoscale live imaging with sectioning ability (MoNaLISA) microscope, a high-throughput super-resolution microscope based on reversible saturable optical fluorescence transitions (RESOLFT).

sted, utgiver, år, opplag, sider
Elsevier BV, 2023
Emneord
Automation, RESOLFT, Software
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-326025 (URN)10.1016/j.ohx.2023.e00400 (DOI)000994831800001 ()36824447 (PubMedID)2-s2.0-85147606174 (Scopus ID)
Forskningsfinansiär
European CommissionVinnova, 2020-04702 Imaging-omicsEU, Horizon 2020, IMAGEOMICS 964016
Merknad

QC 20230620

Tilgjengelig fra: 2023-04-21 Laget: 2023-04-21 Sist oppdatert: 2023-06-20bibliografisk kontrollert
Pennacchietti, F., Alvelid, J., Morales, R. A., Damenti, M., Ollech, D., Oliinyk, O. S., . . . Testa, I. (2023). Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms. Nature Communications, 14(1), Article ID 8402.
Åpne denne publikasjonen i ny fane eller vindu >>Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms
Vise andre…
2023 (engelsk)Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikkel-id 8402Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400–650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.

sted, utgiver, år, opplag, sider
Springer Nature, 2023
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-341747 (URN)10.1038/s41467-023-44054-9 (DOI)001131904500001 ()38114484 (PubMedID)2-s2.0-85179950908 (Scopus ID)
Merknad

QC 20240103

Tilgjengelig fra: 2024-01-03 Laget: 2024-01-03 Sist oppdatert: 2024-02-06bibliografisk kontrollert
Volpato, A., Ollech, D., Alvelid, J., Damenti, M., Müller, B., York, A. G., . . . Testa, I. (2023). Extending fluorescence anisotropy to large complexes using reversibly switchable proteins. Nature Biotechnology, 41(4), 552-559
Åpne denne publikasjonen i ny fane eller vindu >>Extending fluorescence anisotropy to large complexes using reversibly switchable proteins
Vise andre…
2023 (engelsk)Inngår i: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 41, nr 4, s. 552-559Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The formation of macromolecular complexes can be measured by detection of changes in rotational mobility using time-resolved fluorescence anisotropy. However, this method is limited to relatively small molecules (~0.1–30 kDa), excluding the majority of the human proteome and its complexes. We describe selective time-resolved anisotropy with reversibly switchable states (STARSS), which overcomes this limitation and extends the observable mass range by more than three orders of magnitude. STARSS is based on long-lived reversible molecular transitions of switchable fluorescent proteins to resolve the relatively slow rotational diffusivity of large complexes. We used STARSS to probe the rotational mobility of several molecular complexes in cells, including chromatin, the retroviral Gag lattice and activity-regulated cytoskeleton-associated protein oligomers. Because STARSS can probe arbitrarily large structures, it is generally applicable to the entire human proteome.

sted, utgiver, år, opplag, sider
Springer Nature, 2023
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-327930 (URN)10.1038/s41587-022-01489-7 (DOI)000865706400002 ()36217028 (PubMedID)2-s2.0-85139660974 (Scopus ID)
Merknad

QC 20230602

Tilgjengelig fra: 2023-06-01 Laget: 2023-06-01 Sist oppdatert: 2025-02-25
Marin-Aguilera, G., Volpato, A., Ollech, D., Alvelid, J. & Testa, I. (2023). Novel methodology to measure rotational diffusivity in cells with fluorescence photo-switching. European Biophysics Journal, 52(SUPPL 1), S58-S58
Åpne denne publikasjonen i ny fane eller vindu >>Novel methodology to measure rotational diffusivity in cells with fluorescence photo-switching
Vise andre…
2023 (engelsk)Inngår i: European Biophysics Journal, ISSN 0175-7571, E-ISSN 1432-1017, Vol. 52, nr SUPPL 1, s. S58-S58Artikkel i tidsskrift, Meeting abstract (Annet vitenskapelig) Published
sted, utgiver, år, opplag, sider
SPRINGER, 2023
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-335860 (URN)001029235400144 ()
Merknad

QC 20230911

Tilgjengelig fra: 2023-09-11 Laget: 2023-09-11 Sist oppdatert: 2025-02-20bibliografisk kontrollert
Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. (2022). Event-triggered STED imaging. Nature Methods, 19(10), 1268-1275
Åpne denne publikasjonen i ny fane eller vindu >>Event-triggered STED imaging
2022 (engelsk)Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 19, nr 10, s. 1268-1275Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Monitoring the proteins and lipids that mediate all cellular processes requires imaging methods with increased spatial and temporal resolution. STED (stimulated emission depletion) nanoscopy enables fast imaging of nanoscale structures in living cells but is limited by photobleaching. Here, we present event-triggered STED, an automated multiscale method capable of rapidly initiating two-dimensional (2D) and 3D STED imaging after detecting cellular events such as protein recruitment, vesicle trafficking and second messengers activity using biosensors. STED is applied in the vicinity of detected events to maximize the temporal resolution. We imaged synaptic vesicle dynamics at up to 24 Hz, 40 ms after local calcium activity; endocytosis and exocytosis events at up to 11 Hz, 40 ms after local protein recruitment or pH changes; and the interaction between endosomal vesicles at up to 3 Hz, 70 ms after approaching one another. Event-triggered STED extends the capabilities of live nanoscale imaging, enabling novel biological observations in real time.

sted, utgiver, år, opplag, sider
Springer Nature, 2022
Emneord
STED, microscopy, nanoscopy, super-resolution microscopy, automation, image analysis
HSV kategori
Forskningsprogram
Biologisk fysik
Identifikatorer
urn:nbn:se:kth:diva-323543 (URN)10.1038/s41592-022-01588-y (DOI)000852266300001 ()36076037 (PubMedID)2-s2.0-85137548644 (Scopus ID)
Forskningsfinansiär
EU, Horizon 2020, 964016EU, Horizon 2020, 964016
Merknad

QC 20230207

Tilgjengelig fra: 2023-02-02 Laget: 2023-02-02 Sist oppdatert: 2025-02-20bibliografisk kontrollert
Jalalvand, E., Alvelid, J., Coceano, G., Edwards, S., Robertson, B., Grillner, S. & Testa, I. (2022). ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. eLIFE, 11, Article ID e73114.
Åpne denne publikasjonen i ny fane eller vindu >>ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal
Vise andre…
2022 (engelsk)Inngår i: eLIFE, E-ISSN 2050-084X, Vol. 11, artikkel-id e73114Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cerebrospinal fluid-contacting (CSF-c) neurons line the central canal of the spinal cord and a subtype of CSF-c neurons expressing somatostatin, forms a homeostatic pH regulating system. Despite their importance, their intricate spatial organization is poorly understood. The function of another subtype of CSF-c neurons expressing dopamine is also investigated. Imaging methods with a high spatial resolution (5-10 nm) are used to resolve the synaptic and ciliary compartments of each individual cell in the spinal cord of the lamprey to elucidate their signalling pathways and to dissect the cellular organization. Here, light-sheet and expansion microscopy resolved the persistent ventral and lateral organization of dopamine- and somatostatin-expressing CSF-c neuronal subtypes. The density of somatostatin-containing dense-core vesicles, resolved by stimulated emission depletion microscopy, was shown to be markedly reduced upon each exposure to either alkaline or acidic pH and being part of a homeostatic response inhibiting movements. Their cilia symmetry was unravelled by stimulated emission depletion microscopy in expanded tissues as sensory with 9 + 0 microtubule duplets. The dopaminergic CSF-c neurons on the other hand have a motile cilium with the characteristic 9 + 2 duplets and are insensitive to pH changes. This novel experimental workflow elucidates the functional role of CSF-c neuron subtypes in situ paving the way for further spatial and functional cell-type classification.

sted, utgiver, år, opplag, sider
eLIFE SCIENCES PUBL LTD, 2022
Emneord
STED, light-sheet, cilia structure, Spinal cord, Mouse, Lamprey
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-309046 (URN)10.7554/eLife.73114 (DOI)000751630600001 ()35103591 (PubMedID)2-s2.0-85125612750 (Scopus ID)
Merknad

QC 20220308

Tilgjengelig fra: 2022-03-08 Laget: 2022-03-08 Sist oppdatert: 2023-02-08bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4005-4997