Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (7 av 7) Visa alla publikasjoner
De Courcy-Ireland, M., Dostert, M. & Viazovska, M. (2024). Six-dimensional sphere packing and linear programming. Mathematics of Computation, 93(348), 1993-2029
Åpne denne publikasjonen i ny fane eller vindu >>Six-dimensional sphere packing and linear programming
2024 (engelsk)Inngår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 93, nr 348, s. 1993-2029Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We prove that the Cohn–Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn–Triantafillou [Math. Comp. 91 (2021), pp. 491–508] to the case of odd weight and non-trivial character.

sted, utgiver, år, opplag, sider
American Mathematical Society (AMS), 2024
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-346169 (URN)10.1090/mcom/3959 (DOI)001187577800001 ()2-s2.0-85190858689 (Scopus ID)
Merknad

QC 20240513

Tilgjengelig fra: 2024-05-03 Laget: 2024-05-03 Sist oppdatert: 2024-05-13bibliografisk kontrollert
Dostert, M. & Jochemko, K. (2023). Learning Polytopes with Fixed Facet Directions. SIAM Journal on Applied Algebra and Geometry, 7(2), 440-469
Åpne denne publikasjonen i ny fane eller vindu >>Learning Polytopes with Fixed Facet Directions
2023 (engelsk)Inngår i: SIAM Journal on Applied Algebra and Geometry, E-ISSN 2470-6566, Vol. 7, nr 2, s. 440-469Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We consider the task of reconstructing polytopes with fixed facet directions from finitely many support function evaluations. We show that for a fixed simplicial normal fan, the least-squares estimate is given by a convex quadratic program. We study the geometry of the solution set and give a combinatorial characterization for the uniqueness of the reconstruction in this case. We provide an algorithm that, under mild assumptions, converges to the unknown input shape as the number of noisy support function evaluations increases. We also discuss limitations of our results if the restriction on the normal fan is removed.

sted, utgiver, år, opplag, sider
Society for Industrial & Applied Mathematics (SIAM), 2023
Emneord
approximation of polytopes, deformations, least-squares estimation, polyhedral regression, support functions
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-335722 (URN)10.1137/22M1481695 (DOI)001073548600001 ()2-s2.0-85165644378 (Scopus ID)
Forskningsfinansiär
Swedish Research CouncilGöran Gustafsson Foundation for promotion of scientific research at Uppala University and Royal Institute of TechnologyWallenberg AI, Autonomous Systems and Software Program (WASP)
Merknad

QC 20231024

Tilgjengelig fra: 2023-09-11 Laget: 2023-09-11 Sist oppdatert: 2023-10-24bibliografisk kontrollert
Dostert, M. & Kolpakov, A. (2022). Packable hyperbolic surfaces with symmetries. Canadian mathematical bulletin, 1-11
Åpne denne publikasjonen i ny fane eller vindu >>Packable hyperbolic surfaces with symmetries
2022 (engelsk)Inngår i: Canadian mathematical bulletin, ISSN 0008-4395, s. 1-11Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We discuss several ways of packing a hyperbolic surface with circles (of either varying radii or all being congruent) or horocycles, and note down some observations related to their symmetries (or the absence thereof). 

sted, utgiver, år, opplag, sider
Canadian Mathematical Society, 2022
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-321194 (URN)10.4153/S0008439522000133 (DOI)000762107000001 ()2-s2.0-85125193244 (Scopus ID)
Merknad

QC 20221114

Tilgjengelig fra: 2022-11-14 Laget: 2022-11-14 Sist oppdatert: 2022-11-14bibliografisk kontrollert
Dostert, M., Kolpakov, A. & de Oliveira Filho, F. M. (2022). Semidefinite programming bounds for the average kissing number. Israel Journal of Mathematics, 247(2), 635-659
Åpne denne publikasjonen i ny fane eller vindu >>Semidefinite programming bounds for the average kissing number
2022 (engelsk)Inngår i: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 247, nr 2, s. 635-659Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The average kissing number in ℝn is the supremum of the average degrees of contact graphs of packings of finitely many balls (of any radii) in ℝn. We provide an upper bound for the average kissing number based on semidefinite programming that improves previous bounds in dimensions 3,.., 9. A very simple upper bound for the average kissing number is twice the kissing number; in dimensions 6,.., 9 our new bound is the first to improve on this simple upper bound.

sted, utgiver, år, opplag, sider
Springer Nature, 2022
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-321555 (URN)10.1007/s11856-022-2288-4 (DOI)000765687500006 ()2-s2.0-85125789949 (Scopus ID)
Merknad

QC 20221123

Tilgjengelig fra: 2022-11-23 Laget: 2022-11-23 Sist oppdatert: 2022-11-23bibliografisk kontrollert
Dostert, M., De Laat, D. & Moustrou, P. (2021). Exact Semidefinite Programming Bounds For Packing Problems. SIAM Journal on Optimization, 31(2), 1433-1458
Åpne denne publikasjonen i ny fane eller vindu >>Exact Semidefinite Programming Bounds For Packing Problems
2021 (engelsk)Inngår i: SIAM Journal on Optimization, ISSN 1052-6234, E-ISSN 1095-7189, Vol. 31, nr 2, s. 1433-1458Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. This algorithm does not require the solution to be strictly feasible and works for large problems. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are unique up to rotations. In particular, we show that the configuration coming from the E-8 root lattice is the unique optimal code with minimal angular distance pi/3 on the hemisphere in R-8, and we prove that the three-point bound for the (3, 8, theta)-spherical code, where theta is such that cos theta = (2 root 2-1/7, is sharp by rounding to Q[root 2]. We also use our machinery to compute sharp upper bounds on the number of spheres that can be packed into a larger sphere.

sted, utgiver, år, opplag, sider
Society for Industrial & Applied Mathematics (SIAM), 2021
Emneord
semidefinite programming, hybrid numeric-symbolic algorithm, spherical codes, packing problems
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-299980 (URN)10.1137/20M1351692 (DOI)000674142800014 ()2-s2.0-85107561136 (Scopus ID)
Merknad

QC 20210820

Tilgjengelig fra: 2021-08-20 Laget: 2021-08-20 Sist oppdatert: 2022-06-25bibliografisk kontrollert
Dostert, M. & Kolpakov, A. (2021). Kissing number in non-euclidean spaces of constant sectional curvature. Mathematics of Computation, 90(331), 2507-2525
Åpne denne publikasjonen i ny fane eller vindu >>Kissing number in non-euclidean spaces of constant sectional curvature
2021 (engelsk)Inngår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 90, nr 331, s. 2507-2525Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper provides upper and lower bounds on the kissing number of congruent radius r > 0 spheres in hyperbolic H-n and spherical S-n spaces, for n >= 2. For that purpose, the kissing number is replaced by the kissing function kappa(H)(n, r), resp. kappa(S)(n, r), which depends on the dimension n and the radius r. After we obtain some theoretical upper and lower bounds for kappa(H)(n, r), we study their asymptotic behaviour and show, in particular, that kappa(H)(n, r) similar to (n - 1) . d(n-1) . B(n-1/2, 1/2) . e((n-1)r), where d(n) is the sphere packing density in Rn, and B is the beta-function. Then we produce numeric upper bounds by solving a suitable semidefinite program, as well as lower bounds coming from concrete spherical codes. A similar approach allows us to locate the values of kappa(S)(n, r), for n = 3, 4, over subintervals in [0, pi] with relatively high accuracy.

sted, utgiver, år, opplag, sider
American Mathematical Society (AMS), 2021
Emneord
Hyperbolic geometry, spherical geometry, kissing number, semidefinite programming
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-303069 (URN)10.1090/mcom/3622 (DOI)000696515300019 ()2-s2.0-85110429354 (Scopus ID)
Merknad

QC 20211005

Tilgjengelig fra: 2021-10-05 Laget: 2021-10-05 Sist oppdatert: 2022-06-25bibliografisk kontrollert
Dostert, M. & Kolpakov, A. (2021). Kissing Number in Non-Euclidean Spaces of Constant Sectional Curvature. In: Trends in Mathematics: (pp. 574-579). Springer Nature
Åpne denne publikasjonen i ny fane eller vindu >>Kissing Number in Non-Euclidean Spaces of Constant Sectional Curvature
2021 (engelsk)Inngår i: Trends in Mathematics, Springer Nature , 2021, s. 574-579Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

This paper provides upper and lower bounds on the kissing number of congruent radius r> 0 spheres in hyperbolic Hn and spherical Sn spaces, for n≥ 2. For that purpose, the kissing number is replaced by the kissing function κH(n, r), resp. κS(n, r), which depends on the dimension n and the radius r. After we obtain some theoretical upper and lower bounds for κH(n, r), we study their asymptotic behaviour and show, in particular, that κH(n,r)∼(n-1)·dn-1·B(n-12,12)·e(n-1)r, where dn is the sphere packing density in Rn, and B is the beta-function. Then we produce numeric upper bounds by solving a suitable semidefinite program, as well as lower bounds coming from concrete spherical codes. A similar approach allows us to locate the values of κS(n, r), for n=3,4, over subintervals in [ 0, π] with relatively high accuracy.

sted, utgiver, år, opplag, sider
Springer Nature, 2021
Emneord
Kissing number, Semidefinite programming, Sphere packing
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-316046 (URN)10.1007/978-3-030-83823-2_92 (DOI)2-s2.0-85114093946 (Scopus ID)
Merknad

QC 20220812

Tilgjengelig fra: 2022-08-12 Laget: 2022-08-12 Sist oppdatert: 2022-08-12bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-0393-8286