kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Liu, John
Publikationer (3 of 3) Visa alla publikationer
Barreau, M., Liu, J. & Johansson, K. H. (2021). Learning-based State Reconstruction for a Scalar Hyperbolic PDE under noisy Lagrangian Sensing. In: Proceedings of the 3rd Conference on Learning for Dynamics and Control, L4DC 2021: . Paper presented at 3rd Annual Conference on Learning for Dynamics and Control, L4DC 2021, Virtual, Online, Switzerland, Jun 7 2021 - Jun 8 2021 (pp. 34-46). ML Research Press
Öppna denna publikation i ny flik eller fönster >>Learning-based State Reconstruction for a Scalar Hyperbolic PDE under noisy Lagrangian Sensing
2021 (Engelska)Ingår i: Proceedings of the 3rd Conference on Learning for Dynamics and Control, L4DC 2021, ML Research Press , 2021, s. 34-46Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The state reconstruction problem of a heterogeneous dynamic system under sporadic measurements is considered. This system consists of a conversation flow together with a multi-agent network modeling particles within the flow. We propose a partial-state reconstruction algorithm using physics-informed learning based on local measurements obtained from these agents. Traffic density reconstruction is used as an example to illustrate the results and it is shown that the approach provides an efficient noise rejection.

Ort, förlag, år, upplaga, sidor
ML Research Press, 2021
Nyckelord
hyperbolic PDE, Lagrangian sensing, noise rejection, physics-informed deep learning, state reconstruction
Nationell ämneskategori
Reglerteknik
Identifikatorer
urn:nbn:se:kth:diva-350339 (URN)2-s2.0-85119827429 (Scopus ID)
Konferens
3rd Annual Conference on Learning for Dynamics and Control, L4DC 2021, Virtual, Online, Switzerland, Jun 7 2021 - Jun 8 2021
Anmärkning

QC 20240711

Tillgänglig från: 2024-07-11 Skapad: 2024-07-11 Senast uppdaterad: 2024-07-11Bibliografiskt granskad
Liu, J., Barreau, M., Čičić, M. & Johansson, K. H. (2021). Learning-based Traffic State Reconstruction using Probe Vehicles. In: IFAC PAPERSONLINE: . Paper presented at 16th IFAC Symposium on Control in Transportation Systems (CTS), JUN 08-10, 2021, Lille, FRANCE (pp. 87-92). Elsevier BV, 54(2)
Öppna denna publikation i ny flik eller fönster >>Learning-based Traffic State Reconstruction using Probe Vehicles
2021 (Engelska)Ingår i: IFAC PAPERSONLINE, Elsevier BV , 2021, Vol. 54, nr 2, s. 87-92Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This article investigates the use of a model-based neural network for the traffic reconstruction problem using noisy measurements coming from Probe Vehicles (PV). The traffic state is assumed to be the density only, modeled by a partial differential equation. There exist various methods for reconstructing the density in that case. However, none of them perform well with noise and very few deal with lagrangian measurements. This paper introduces a method that can reduce the processes of identification, reconstruction, prediction, and noise rejection into a single optimization problem. Numerical simulations, based either on a macroscopic or a microscopic model, show good performance for a moderate computational burden. Copyright

Ort, förlag, år, upplaga, sidor
Elsevier BV, 2021
Nyckelord
Modeling, Control and Optimization of Transportation Systems, Freeway Traffic Control, Connected and Automated Vehicles
Nationell ämneskategori
Reglerteknik Transportteknik och logistik
Identifikatorer
urn:nbn:se:kth:diva-300220 (URN)10.1016/j.ifacol.2021.06.013 (DOI)000680570200016 ()2-s2.0-85104198317 (Scopus ID)
Konferens
16th IFAC Symposium on Control in Transportation Systems (CTS), JUN 08-10, 2021, Lille, FRANCE
Anmärkning

QC 20210830

Tillgänglig från: 2021-08-30 Skapad: 2021-08-30 Senast uppdaterad: 2024-03-18Bibliografiskt granskad
Barreau, M., Aguiar, M., Liu, J. & Johansson, K. H. (2021). Physics-informed Learning for Identification and State Reconstruction of Traffic Density. In: 2021 60thIEEE conference on decision and control (CDC): . Paper presented at 60th IEEE Conference on Decision and Control (CDC), DEC 13-17, 2021, ELECTR NETWORK (pp. 2653-2658). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Physics-informed Learning for Identification and State Reconstruction of Traffic Density
2021 (Engelska)Ingår i: 2021 60thIEEE conference on decision and control (CDC), Institute of Electrical and Electronics Engineers (IEEE) , 2021, s. 2653-2658Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We consider the problem of traffic density reconstruction using measurements from probe vehicles (PVs) with a low penetration rate. In other words, the number of sensors is small compared to the number of vehicles on the road. The model used assumes noisy measurements and a partially unknown first-order model. All these considerations make the use of machine learning to reconstruct the state the only applicable solution. We first investigate how the identification and reconstruction processes can be merged and how a sparse dataset can still enable a good identification. Secondly, we propose a pre-training procedure that aids the hyperparameter tuning, preventing the gradient descent algorithm from getting stuck at saddle points. Examples using numerical simulations and the SUMO traffic simulator show that the reconstructions are close to the real density in all cases.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2021
Serie
IEEE Conference on Decision and Control, ISSN 0743-1546
Nationell ämneskategori
Tillförlitlighets- och kvalitetsteknik
Identifikatorer
urn:nbn:se:kth:diva-312982 (URN)10.1109/CDC45484.2021.9683295 (DOI)000781990302064 ()2-s2.0-85126011066 (Scopus ID)
Konferens
60th IEEE Conference on Decision and Control (CDC), DEC 13-17, 2021, ELECTR NETWORK
Anmärkning

QC 20220530

Part of proceedings ISBN 978-1-6654-3659-5

Tillgänglig från: 2022-05-30 Skapad: 2022-05-30 Senast uppdaterad: 2024-03-18Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer