kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 40) Visa alla publikationer
Austrin, P. & Risse, K. (2023). Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem. In: 38th Computational Complexity Conference, CCC 2023: . Paper presented at 38th Computational Complexity Conference, CCC 2023, Warwick, United Kingdom of Great Britain and Northern Ireland, Jul 17 2023 - Jul 20 2023. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 264, Article ID 31.
Öppna denna publikation i ny flik eller fönster >>Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem
2023 (Engelska)Ingår i: 38th Computational Complexity Conference, CCC 2023, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2023, Vol. 264, artikel-id 31Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function f : (0, 1)n → (0, 1), SoS requires degree Ω(s1−ϵ) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs of the statement NP ⊈ P/poly. We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger than 2nα but SoS requires size 22Ω(nα) to prove this. In addition we prove analogous results on the minimum monotone circuit size for monotone Boolean slice functions. Our approach is quite general. Namely, we show that if a proof system Q has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for Q.

Ort, förlag, år, upplaga, sidor
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2023
Nyckelord
Minimum Circuit Size Problem, Proof Complexity, Sum of Squares
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-335032 (URN)10.4230/LIPIcs.CCC.2023.31 (DOI)2-s2.0-85168421467 (Scopus ID)
Konferens
38th Computational Complexity Conference, CCC 2023, Warwick, United Kingdom of Great Britain and Northern Ireland, Jul 17 2023 - Jul 20 2023
Anmärkning

Part of ISBN 9783959772822

Not duplicate with DiVA 1697947

QC 20230831

Tillgänglig från: 2023-08-31 Skapad: 2023-08-31 Senast uppdaterad: 2023-08-31Bibliografiskt granskad
Austrin, P., Chung, H., Chung, K.-M., Fu, S., Lin, Y.-T. & Mahmoody, M. (2022). On the Impossibility of Key Agreements from Quantum Random Oracles. In: Dodis, Y Shrimpton, T (Ed.), Advances In Cryptology - CRYPTO 2022, PT II: . Paper presented at 42nd Annual International Cryptology Conference (CRYPTO), AUG 15-18, 2022, Univ Calif, Santa Barbara, CA (pp. 165-194). Springer Nature, 13508
Öppna denna publikation i ny flik eller fönster >>On the Impossibility of Key Agreements from Quantum Random Oracles
Visa övriga...
2022 (Engelska)Ingår i: Advances In Cryptology - CRYPTO 2022, PT II / [ed] Dodis, Y Shrimpton, T, Springer Nature , 2022, Vol. 13508, s. 165-194Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We study the following question, first publicly posed by Hosoyamada and Yamakawa in 2018. Can parties A, B with quantum computing power and classical communication rely only on a random oracle (that can be queried in quantum superposition) to agree on a key that is private from eavesdroppers? We make the first progress on the question above and prove the following. - When only one of the parties A is classical and the other party B is quantum powered, as long as they ask a total of d oracle queries and agree on a key with probability 1, then there is always a way to break the key agreement by asking O(d(2)) number of classical oracle queries. - When both parties can make quantum queries to the random oracle, we introduce a natural conjecture, which if true would imply attacks with poly(d) classical queries to the random oracle. Our conjecture, roughly speaking, states that the multiplication of any two degree-d real-valued polynomials over the Boolean hypercube of influence at most delta = 1/poly (d) is nonzero. We then prove our conjecture for exponentially small influences, which leads to an (unconditional) classical 2(O(md))-query attack on any such key agreement protocol, where m is the oracle's output length. - Since our attacks are classical, we then ask whether it is always possible to find classical attacks on key agreements with imperfect completeness in the quantum random oracle model. We prove a barrier for this approach, by showing that if the folklore "Simulation Conjecture" (first formally stated by Aaronson and Ambainis in 2009) about the possibility of simulating efficient-query quantum algorithms using efficient-query classical algorithms is false, then there is in fact such a secure key agreement in the quantum random oracle model that cannot be broken classically.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 13508
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-322323 (URN)10.1007/978-3-031-15979-4_6 (DOI)000886792700006 ()2-s2.0-85141677504 (Scopus ID)
Konferens
42nd Annual International Cryptology Conference (CRYPTO), AUG 15-18, 2022, Univ Calif, Santa Barbara, CA
Anmärkning

QC 20221212

Part of proceedings: ISBN 978-3-031-15978-7; 978-3-031-15979-4

Tillgänglig från: 2022-12-12 Skapad: 2022-12-12 Senast uppdaterad: 2022-12-12Bibliografiskt granskad
Austrin, P. & Risse, K. (2022). Perfect Matching in Random Graphs is as Hard as Tseitin. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA): . Paper presented at 33rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Alexander, 9 January 2022, through 12 January 2022 (pp. 979-1012). Association for Computing Machinery (ACM)
Öppna denna publikation i ny flik eller fönster >>Perfect Matching in Random Graphs is as Hard as Tseitin
2022 (Engelska)Ingår i: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Association for Computing Machinery (ACM), 2022, s. 979-1012Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree (n= log n) in the Polynomial Calculus (over fields of characteristic 6= 2) and Sum-of-Squares proof systems, and exponential size in the bounded-depth Frege proof system. This resolves a question by Razborov asking whether the Lovasz-Schrijver proof system requires nrounds to refute these formulas for some > 0. The results are obtained by a worst-case to averagecase reduction of these formulas relying on a topological embedding theorem which may be of independent interest.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM), 2022
Nationell ämneskategori
Diskret matematik
Identifikatorer
urn:nbn:se:kth:diva-318772 (URN)2-s2.0-85129087365 (Scopus ID)
Konferens
33rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Alexander, 9 January 2022, through 12 January 2022
Anmärkning

QC 20220928

Part of proceedings: ISBN 978-161197707-3

Tillgänglig från: 2022-09-22 Skapad: 2022-09-22 Senast uppdaterad: 2023-01-31Bibliografiskt granskad
Austrin, P., Kaski, P. & Kubjas, K. (2022). Tensor network complexity of multilinear maps. Theory of Computing, 18, Article ID 16.
Öppna denna publikation i ny flik eller fönster >>Tensor network complexity of multilinear maps
2022 (Engelska)Ingår i: Theory of Computing, E-ISSN 1557-2862, Vol. 18, artikel-id 16Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We study tensor networks as a model of arithmetic computation for evaluating multilinear maps. hese capture any algorithm based on low-rank tensor decompositions, such as O(nω+ϵ) time matrix multiplication, and in addition many other algorithms such as O(nlogn) time discrete Fourier transform and O∗(2n) time for computing the permanent of a matrix. However, tensor networks sometimes yield faster algorithms than those that follow from low-rank decompositions. For instance the fastest known O(n(ω+ϵ)t) time algorithms for counting 3t-cliques can be implemented with tensor networks, even though the underlying tensor has rank n3t for all t≥2. For counting homomorphisms of a general pattern graph P into a host graph on n vertices we obtain an upper bound of O(n(ω+ϵ)bw(P)/2) where bw(P) is the branchwidth of P. This essentially matches the bound for counting cliques, and yields small improvements over previous algorithms for many choices of P. While powerful, the model still has limitations, and we are able to show a number of unconditional lower bounds for various multilinear maps, including the following. [(a)] An Ω(nbw(P)) time lower bound for counting homomorphisms from P to an n-vertex graph, matching the upper bound if ω=2. In particular for P a v-clique this yields an Ω(n⌈2v/3⌉) time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an Ω(nv) time lower bound for k ≥ 3, ruling out tensor networks as an approach to obtaining non-trivial algorithms for hyperclique counting and the Max-3-CSP problem. [(b)] An Ω(20.918n) time lower bound for the determinant and the permanent of an n×n matrix.

Ort, förlag, år, upplaga, sidor
University of Chicago, Department of Computer Science, 2022
Nyckelord
Arithmetic complexity, Lower bound, Multilinear map, Tensor network
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-331170 (URN)10.4086/TOC.2022.V018A016 (DOI)000815263600001 ()2-s2.0-85149167906 (Scopus ID)
Anmärkning

QC 20230706

Tillgänglig från: 2023-07-06 Skapad: 2023-07-06 Senast uppdaterad: 2024-02-27Bibliografiskt granskad
Austrin, P., Brown-Cohen, J. & Håstad, J. (2021). Optimal inapproximability with universal factor graphs. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms: . Paper presented at 32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, 10 January 2021 through 13 January 2021, Alexandria, Virtual (pp. 434-453). Association for Computing Machinery
Öppna denna publikation i ny flik eller fönster >>Optimal inapproximability with universal factor graphs
2021 (Engelska)Ingår i: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Association for Computing Machinery , 2021, s. 434-453Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The factor graph of an instance of a constraint satisfaction problem (CSP) is the bipartite graph indicating which variables appear in each constraint. An instance of the CSP is given by the factor graph together with a list of which predicate is applied for each constraint. We establish that many Max-CSPs remain as hard to approximate as in the general case even when the factor graph is fixed (depending only on the size of the instance) and known in advance. Examples of results obtained for this restricted setting are: 1. Optimal inapproximability for Max-3-Lin and Max-3-Sat (Håstad, J. ACM 2001). 2. Approximation resistance for predicates supporting pairwise independent subgroups (Chan, J. ACM 2016). 3. Hardness of the “(2 + ε)-Sat” problem and other Promise CSPs (Austrin et al., SIAM J. Comput. 2017). The main technical tool used to establish these results is a new way of folding the long code which we call “functional folding”.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery, 2021
Nyckelord
Optimization, Bipartite graphs, Factor graphs, Long codes, Optimal inapproximability, Technical tools, Constraint satisfaction problems
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-309245 (URN)2-s2.0-85105336082 (Scopus ID)
Konferens
32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, 10 January 2021 through 13 January 2021, Alexandria, Virtual
Anmärkning

QC 20220225

Part of proceedings ISBN: 9781611976465

Tillgänglig från: 2022-02-25 Skapad: 2022-02-25 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
Austrin, P., Bhangale, A. & Potukuchi, A. (2020). Improved Inapproximability of Rainbow Coloring. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020: . Paper presented at 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020. (pp. 1479-1495). Society for Industrial & Applied Mathematics (SIAM)
Öppna denna publikation i ny flik eller fönster >>Improved Inapproximability of Rainbow Coloring
2020 (Engelska)Ingår i: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Society for Industrial & Applied Mathematics (SIAM) , 2020, s. 1479-1495Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

A rainbow q-coloring of a k-uniform hypergraph is a q-coloring of the vertex set such that every hyperedge contains all q colors. We prove that given a rainbow (k - 2left perpendicular root kright perpendicular)-colorable k-uniform hypergraph, it is NP-hard to find a normal 2-coloring. Previously, this was only known for rainbow left perpendiculark/2right perpendicular-colorable hypergraphs (Guruswami and Lee, SODA 2015). We also study a generalization which we call rainbow (q; p)-coloring, defined as a coloring using q colors such that every hyperedge contains at least p colors. We prove that given a rainbow (k - left perpendicular root kcright perpendicular; k - left perpendicular3 root kcright perpendicular)-colorable k uniform hypergraph, it is NP-hard to find a normal c-coloring for any c = o(k). The proof of our second result relies on two combinatorial theorems. One of the theorems was proved by Sarkaria (J. Comb. Theory, Ser. B 1990) using topological methods and the other theorem we prove using a generalized BorsukUlam theorem.

Ort, förlag, år, upplaga, sidor
Society for Industrial & Applied Mathematics (SIAM), 2020
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-279358 (URN)10.1137/1.9781611975994.90 (DOI)000554408101034 ()2-s2.0-85084092695 (Scopus ID)
Konferens
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020.
Anmärkning

QC 20200903

Tillgänglig från: 2020-09-03 Skapad: 2020-09-03 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
Austrin, P. & Stanković, A. (2019). Global cardinality constraints make approximating some MAx-2-CSPS harder. In: Leibniz International Proceedings in Informatics, LIPIcs: . Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Öppna denna publikation i ny flik eller fönster >>Global cardinality constraints make approximating some MAx-2-CSPS harder
2019 (Engelska)Ingår i: Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ≈ 0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ≈ 0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (≈ 0.878 for Max-Cut, and ≈ 0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem.

Ort, förlag, år, upplaga, sidor
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2019
Nyckelord
Constraint satisfaction problems, Global cardinality constraints, Inapproximability, Max-2-sat, Max-cut, Semidefinite programming, Unique games conjecture, Approximation algorithms, Combinatorial optimization, Hardness, Optimization, Random processes, Global cardinality constraint, MAX CUT, Semi-definite programming
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-272367 (URN)10.4230/LIPIcs.APPROX-RANDOM.2019.24 (DOI)2-s2.0-85072872952 (Scopus ID)
Anmärkning

QC 20200513

Part of ISBN 9783959771252

Tillgänglig från: 2020-05-13 Skapad: 2020-05-13 Senast uppdaterad: 2024-10-18Bibliografiskt granskad
Austrin, P., Kaski, P. & Kubjas, K. (2019). Tensor network complexity of multilinear maps. In: Leibniz International Proceedings in Informatics, LIPIcs: . Paper presented at 10th Innovations in Theoretical Computer Science, ITCS 2019, 10-12 January 2019, San Diego, United States. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Öppna denna publikation i ny flik eller fönster >>Tensor network complexity of multilinear maps
2019 (Engelska)Ingår i: Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We study tensor networks as a model of arithmetic computation for evaluating multilinear maps. These capture any algorithm based on low border rank tensor decompositions, such as O(nω+ϵ) time matrix multiplication, and in addition many other algorithms such as O(nlog n) time discrete Fourier transform and O∗(2n) time for computing the permanent of a matrix. However tensor networks sometimes yield faster algorithms than those that follow from low-rank decompositions. For instance the fastest known O(n(ω+ϵ)t) time algorithms for counting 3t-cliques can be implemented with tensor networks, even though the underlying tensor has border rank n3t for all t ≥ 2. For counting homomorphisms of a general pattern graph P into a host graph on n vertices we obtain an upper bound of O(n(ω+ϵ) bw(P)/2) where bw(P) is the branchwidth of P. This essentially matches the bound for counting cliques, and yields small improvements over previous algorithms for many choices of P. While powerful, the model still has limitations, and we are able to show a number of unconditional lower bounds for various multilinear maps, including: (a) an Ω(nbw(P)) time lower bound for counting homomorphisms from P to an n-vertex graph, matching the upper bound if ω = 2. In particular for P a v-clique this yields an Ω(nd2v/3e) time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an Ω(nv) time lower bound for k ≥ 3, ruling out tensor networks as an approach to obtaining non-trivial algorithms for hyperclique counting and the Max-3-CSP problem. (b) an Ω(20.918n) time lower bound for the permanent of an n × n matrix.

Ort, förlag, år, upplaga, sidor
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2019
Nyckelord
Arithmetic complexity, Lower bound, Multilinear map, Tensor network, Discrete Fourier transforms, Graph theory, Matrix algebra, Tensors, Arithmetic computations, Low-rank decomposition, Lower bounds, Multilinear maps, Network complexity, Non-trivial algorithms, Tensor decomposition, Complex networks
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:kth:diva-262393 (URN)10.4230/LIPIcs.ITCS.2019.7 (DOI)2-s2.0-85069528130 (Scopus ID)
Konferens
10th Innovations in Theoretical Computer Science, ITCS 2019, 10-12 January 2019, San Diego, United States
Anmärkning

QC 20191018

Part of ISBN 978-3-95977-095-8

Tillgänglig från: 2019-10-18 Skapad: 2019-10-18 Senast uppdaterad: 2024-10-23Bibliografiskt granskad
Austrin, P., Kaski, P., Koivisto, M. & Nederlof, J. (2018). Sharper Upper Bounds for Unbalanced Uniquely Decodable Code Pairs. IEEE Transactions on Information Theory, 64(2), 1368-1373
Öppna denna publikation i ny flik eller fönster >>Sharper Upper Bounds for Unbalanced Uniquely Decodable Code Pairs
2018 (Engelska)Ingår i: IEEE Transactions on Information Theory, ISSN 0018-9448, E-ISSN 1557-9654, Vol. 64, nr 2, s. 1368-1373Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Two sets of 0-1 vectors of fixed length form a uniquely decodeable code pair if their Cartesian product is of the same size as their sumset, where the addition is pointwise over integers. For the size of the sumset of such a pair, van Tilborg has given an upper bound in the general case. Urbanke and Li, and later Ordentlich and Shayevitz, have given better bounds in the unbalanced case, that is, when either of the two sets is sufficiently large. Improvements to the latter bounds are presented.

Ort, förlag, år, upplaga, sidor
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018
Nyckelord
Additive combinatorics, binary adder channel, isoperimetric inequality, uniquely decodeable code pair, zero-error capacity
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-222174 (URN)10.1109/TIT.2017.2688378 (DOI)000422916500042 ()2-s2.0-85040946882 (Scopus ID)
Anmärkning

QC 20180207

Tillgänglig från: 2018-02-07 Skapad: 2018-02-07 Senast uppdaterad: 2022-06-26Bibliografiskt granskad
Austrin, P., Guruswami, V. & Håstad, J. (2017). (2 + ϵ)-SAT is NP-hard. SIAM journal on computing (Print), 46(5), 1554-1573
Öppna denna publikation i ny flik eller fönster >>(2 + ϵ)-SAT is NP-hard
2017 (Engelska)Ingår i: SIAM journal on computing (Print), ISSN 0097-5397, E-ISSN 1095-7111, Vol. 46, nr 5, s. 1554-1573Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We prove the following hardness result for a natural promise variant of the classical CNF-satisfiability problem: Given a CNF-formula where each clause has width w and the guarantee that there exists an assignment satisfying at least g = [w/2]-1 literals in each clause, it is NP-hard to find a satisfying assignment to the formula (that sets at least one literal to true in each clause). On the other hand, when g = [w/2], it is easy to find a satisfying assignment via simple generalizations of the algorithms for 2-Sat. Viewing 2-Sat 2 P as tractability of Sat when 1 in 2 literals are true in every clause, and NP-hardness of 3-Sat as intractability of Sat when 1 in 3 literals are true, our result shows, for any fixed ϵ > 0, the difficulty of finding a satisfying assignment to instances of "(2 + ϵ)-Sat" where the density of satisfied literals in each clause is guaranteed to exceed 1/2+ϵ. We also strengthen the results to prove that, given a (2k +1)-uniform hypergraph that can be 2-colored such that each edge has perfect balance (at most k +1 vertices of either color), it is NP-hard to find a 2-coloring that avoids a monochromatic edge. In other words, a set system with discrepancy 1 is hard to distinguish from a set system with worst possible discrepancy. Finally, we prove a general result showing the intractability of promise constraint satisfaction problems based on the paucity of certain "weak polymorphisms." The core of the above hardness results is the claim that the only weak polymorphisms in these particular cases are juntas depending on few variables.

Ort, förlag, år, upplaga, sidor
Society for Industrial and Applied Mathematics Publications, 2017
Nyckelord
Complexity dichotomy, Constraint satisfaction, Discrepancy, Hypergraph coloring, Polymorphisms, Probabilistically checkable proofs
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:kth:diva-217605 (URN)10.1137/15M1006507 (DOI)000416763900003 ()2-s2.0-85032973667 (Scopus ID)
Anmärkning

QC 20171116

Tillgänglig från: 2017-11-16 Skapad: 2017-11-16 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-8217-0158

Sök vidare i DiVA

Visa alla publikationer