Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Publikationer (10 of 34) Visa alla publikationer
Delekta, S. S., Adolfsson, K. H., Benyahia Erdal, N., Hakkarainen, M., Östling, M. & Li, J. (2019). Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale, 11(21), 10172-10177
Öppna denna publikation i ny flik eller fönster >>Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte
Visa övriga...
2019 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 21, s. 10172-10177Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The advance of miniaturized and low-power electronics has a striking impact on the development of energy storage devices with constantly tougher constraints in terms of form factor and performance. Microsupercapacitors (MSCs) are considered a potential solution to this problem, thanks to their compact device structure. Great efforts have been made to maximize their performance with new materials like graphene and to minimize their production cost with scalable fabrication processes. In this regard, we developed a full inkjet printing process for the production of all-graphene microsupercapacitors with electrodes based on electrochemically exfoliated graphene and an ultrathin solid-state electrolyte based on nano-graphene oxide. The devices exploit the high ionic conductivity of nano-graphene oxide coupled with the high electrical conductivity of graphene films, yielding areal capacitances of up to 313 mu F cm-2 at 5 mV s-1 and high power densities of up to 4 mW cm-3 with an overall device thickness of only 1 mu m.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2019
Nationell ämneskategori
Kemi
Identifikatorer
urn:nbn:se:kth:diva-254076 (URN)10.1039/c9nr01427f (DOI)000470697800002 ()31107494 (PubMedID)2-s2.0-85066626832 (Scopus ID)
Anmärkning

QC 20190624

Tillgänglig från: 2019-06-24 Skapad: 2019-06-24 Senast uppdaterad: 2019-08-16Bibliografiskt granskad
Delekta, S. S., Östling, M. & Li, J. (2019). Wet Transfer of Inkjet Printed Graphene for Microsupercapacitors on Arbitrary Substrates. ACS Applied Energy Materials, 2(1), 158-163
Öppna denna publikation i ny flik eller fönster >>Wet Transfer of Inkjet Printed Graphene for Microsupercapacitors on Arbitrary Substrates
2019 (Engelska)Ingår i: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 2, nr 1, s. 158-163Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Significant research interest is being devoted to exploiting the properties of graphene but the difficult integration on various substrates limits its use. In this regard, we developed a transfer technique that allows the direct deposition of inkjet printed graphene devices on arbitrary substrates, even 3D objects and living plants. With this technique, we fabricated micro-supercapacitors, which exhibited good adhesion on almost all substrates and no performance degradation induced by the process. Specifically, the microsupercapacitor on an orchid leaf showed an areal capacitance as high as 441 mu F cm(-2) and a volumetric capacitance of 1.16 F cm(-3). This technique can boost the use of graphene in key technological applications, such as self powered epidermal electronics and environmental monitoring systems.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2019
Nyckelord
graphene, wet transfer, inkjet printing, microsupercapacitors, arbitrary substrates
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-245956 (URN)10.1021/acsaem.8b01225 (DOI)000458706900019 ()
Anmärkning

QC 20190313

Tillgänglig från: 2019-03-13 Skapad: 2019-03-13 Senast uppdaterad: 2019-08-16Bibliografiskt granskad
Loiko, P., Maria Serres, J., Delekta, S. S., Kifle, E., Boguslawski, J., Kowalczyk, M., . . . Östling, M. (2018). Inkjet-printing of graphene saturable absorbers for similar to 2 mu m bulk and waveguide lasers. Optical Materials Express, 8(9), 2803-2814
Öppna denna publikation i ny flik eller fönster >>Inkjet-printing of graphene saturable absorbers for similar to 2 mu m bulk and waveguide lasers
Visa övriga...
2018 (Engelska)Ingår i: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 8, nr 9, s. 2803-2814Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A technique for inkjet-printing of graphene saturable absorbers (SAs) for similar to 2-mu m bulk and waveguide lasers is presented. Based on distillation-assisted solvent exchange to fabricate high-concentration graphene inks, this technique is capable of producing few-layer graphene films of arbitrary shape. Absorption saturation of graphene printed on glass is demonstrated at similar to 1.56 mu m for picosecond and femtosecond pulses indicating a large fraction of the saturable losses. Inkjet-printed transmission-type graphene SAs are applied in passively Q-switched nanosecond thulium (Tm) microchip and planar waveguide lasers. The Tm microchip laser generates 136 ns / 1.2 mu J pulses at 1917 nm with a repetition rate of 0.37 MHz with a Q-switching conversion efficiency reaching 65%. The planar waveguide laser generates 98 ns / 21 nJ pulses at 1834 nm at a repetition rate in the MHz-range. The inkjet-printing technique is promising for production of patterned SAs for waveguide lasers.

Ort, förlag, år, upplaga, sidor
Optical Society of America, 2018
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:kth:diva-235113 (URN)10.1364/OME.8.002803 (DOI)000443314600037 ()2-s2.0-85052662930 (Scopus ID)
Anmärkning

QC 20180919

Tillgänglig från: 2018-09-19 Skapad: 2018-09-19 Senast uppdaterad: 2018-09-19Bibliografiskt granskad
Loiko, P., Maria Serres, J., Delekta, S. S., Kifle, E., Mateos, X., Baranov, A., . . . Östling, M. (2017). Inkjet-Printing of Graphene Saturable Absorbers for similar to 2 mu m Bulk and Waveguide Lasers. In: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO): . Paper presented at Conference on Lasers and Electro-Optics (CLEO), MAY 14-19, 2017, San Jose, CA. IEEE
Öppna denna publikation i ny flik eller fönster >>Inkjet-Printing of Graphene Saturable Absorbers for similar to 2 mu m Bulk and Waveguide Lasers
Visa övriga...
2017 (Engelska)Ingår i: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE , 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We report on inkjet-printing of graphene saturable absorbers (SAs) suitable for passive Q-switching of similar to 2-mu m bulk and waveguide lasers. Using graphene-SA in a microchip Tm:KLu(WO4)(2) laser, 1.2 mu J/136 ns pulses are generated at 1917 nm.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Serie
Conference on Lasers and Electro-Optics, ISSN 2160-9020
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:kth:diva-226251 (URN)000427296202314 ()978-1-9435-8027-9 (ISBN)
Konferens
Conference on Lasers and Electro-Optics (CLEO), MAY 14-19, 2017, San Jose, CA
Anmärkning

QC 20180529

Tillgänglig från: 2018-05-29 Skapad: 2018-05-29 Senast uppdaterad: 2018-05-29Bibliografiskt granskad
Li, J., Delekta, S. S., Zhang, P., Yang, S., Lohe, M. R., Zhuang, X., . . . Östling, M. (2017). Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano, 11(8), 8249-8256
Öppna denna publikation i ny flik eller fönster >>Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing
Visa övriga...
2017 (Engelska)Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 11, nr 8, s. 8249-8256Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A simple full-inkjet-printing technique is developed for the scalable fabrication of graphene-based microsupercapacitors (MSCs) on various substrates. High-performance graphene inks are formulated by integrating the electrochemically exfoliated graphene with a solvent exchange technique to reliably print graphene interdigitated electrodes with tunable geometry and "thickness. Along with the printed polyelectrolyte, poly(4-styrenesulfonic acid), the fully printed graphene-based MSCs attain the highest areal capacitance of similar to 0.7 mF/cm(2), substantially advancing the state-of-art of all-solid-state MSCs with printed graphene electrodes. The full printing solution enables scalable fabrication of MSCs and effective connection of them in parallel and/or in series at various scales. Remarkably, more than 100 devices have been connected to form large-scale MSC arrays as power banks on both silicon wafers and Kapton. Without any extra protection or encapsulation, the MSC arrays can be reliably charged up to 12 V and retain the performance even 8 months after fabrication.

Nationell ämneskategori
Kemi
Identifikatorer
urn:nbn:se:kth:diva-214515 (URN)10.1021/acsnano.7b03354 (DOI)000408520900076 ()28682595 (PubMedID)2-s2.0-85028458614 (Scopus ID)
Anmärkning

QC 20170929

Tillgänglig från: 2017-09-29 Skapad: 2017-09-29 Senast uppdaterad: 2019-08-16Bibliografiskt granskad
Lobov, G., Zhao, Y., Marinins, A., Yan, M., Li, J., Sugunan, A., . . . Popov, S. (2016). Dynamic Manipulation of Optical Anisotropy of Suspended Poly-3-hexylthiophene Nanofibers. Advanced Optical Materials, 4(10), 1651-1656
Öppna denna publikation i ny flik eller fönster >>Dynamic Manipulation of Optical Anisotropy of Suspended Poly-3-hexylthiophene Nanofibers
Visa övriga...
2016 (Engelska)Ingår i: Advanced Optical Materials, ISSN 2195-1071, Vol. 4, nr 10, s. 1651-1656Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2016
Nyckelord
anisotropic optical materials, electrooptical materials, nanofibers, optical properties, polymers, Anisotropy, Birefringence, Electric fields, Optical anisotropy, Optical fibers, Refractive index, Alternating electric field, Electric birefringence, Electro-optical applications, External electric field, Quadrupole configuration, Semiconducting nanostructures, Transmission ellipsometry
Nationell ämneskategori
Materialteknik
Identifikatorer
urn:nbn:se:kth:diva-195418 (URN)10.1002/adom.201600226 (DOI)000386356900026 ()2-s2.0-84979574389 (Scopus ID)
Anmärkning

QC 20161128

Tillgänglig från: 2016-11-28 Skapad: 2016-11-03 Senast uppdaterad: 2019-10-09Bibliografiskt granskad
Östling, M., Smith, A., Vaziri, S., Delekta, S. S., Li, J. & Lemme, M. C. (2016). Emerging graphene device technologies. In: Emerging Nanomaterials and Devices: . Paper presented at Symposium on Emerging Nanomaterials and Devices - PRiME 2016/230th ECS Meeting, Honolulu, United States, 2 October 2016 through 7 October 2016 (pp. 17-35). Electrochemical Society, 75(13), Article ID 13.
Öppna denna publikation i ny flik eller fönster >>Emerging graphene device technologies
Visa övriga...
2016 (Engelska)Ingår i: Emerging Nanomaterials and Devices, Electrochemical Society, 2016, Vol. 75, nr 13, s. 17-35, artikel-id 13Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Graphene has a wide range of attractive electrical and mechanical properties. This unique blend of properties make it a good candidate for emerging and future device technologies, such as sensors, high frequency electronics, and energy storage devices. In this review paper, each of the aforementioned applications will be explored along with demonstrations of their operating principles. Specifically, we explore pressure and humidity sensors, graphene base transistor for high frequency applications, and supercapacitors. In addition, this paper provides a general overview of these graphene technologies and, in the case of pressure and humidity sensors, benchmarking against other competing technologies. This paper further shows possible and prospective paths that are suitable for future graphene research to take.

Ort, förlag, år, upplaga, sidor
Electrochemical Society, 2016
Serie
ECS Transactions, ISSN 1938-5862 ; 75
Nyckelord
Graphene, Graphene transistors, Humidity sensors, Nanostructured materials, Competing technologies, Device technologies, Electrical and mechanical properties, High-frequency applications, High-frequency electronics, Operating principles, Review papers, Super capacitor, Graphene devices
Nationell ämneskategori
Materialteknik
Identifikatorer
urn:nbn:se:kth:diva-195484 (URN)10.1149/07513.0017ecst (DOI)000406653800003 ()2-s2.0-84991503834 (Scopus ID)9781607685395 (ISBN)
Konferens
Symposium on Emerging Nanomaterials and Devices - PRiME 2016/230th ECS Meeting, Honolulu, United States, 2 October 2016 through 7 October 2016
Forskningsfinansiär
Vetenskapsrådet, 2014-6160EU, Europeiska forskningsrådet, 641416Stiftelsen Olle Engkvist Byggmästare, 2014/799VINNOVA, 2015-01337
Anmärkning

QC 20161125

Tillgänglig från: 2016-11-25 Skapad: 2016-11-03 Senast uppdaterad: 2017-08-25Bibliografiskt granskad
Li, J. & Östling, M. (2015). Conductivity scaling in supercritical percolation of nanoparticles: not a power law. Nanoscale, 7(8), 3424-3428
Öppna denna publikation i ny flik eller fönster >>Conductivity scaling in supercritical percolation of nanoparticles: not a power law
2015 (Engelska)Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 7, nr 8, s. 3424-3428Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The power-law behavior widely observed in supercritical percolation systems of conductive nanoparticles may merely be a phenomenological approximation to the true scaling law not yet discovered. In this work, we derive a comprehensive yet simple scaling law and verify its extensive applicability to various experimental and numerical systems. In contrast to the power law which lacks theoretical backing, the new scaling law is explanatory and predictive, and thereby helpful to gain more new insights into percolation systems of conductive nanoparticles.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2015
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:kth:diva-161635 (URN)10.1039/c4nr06809b (DOI)000349474200010 ()25631331 (PubMedID)2-s2.0-84923164137 (Scopus ID)
Forskningsfinansiär
EU, Europeiska forskningsrådet, 641416Vetenskapsrådet, 2013-5759Vetenskapsrådet, 2014-6160Göran Gustafssons Stiftelse för främjande av vetenskaplig forskning vid Uppsala universitet och Kungl tekniska högskolan (UU/KTH), 1415B
Anmärkning

QC 20150324

Tillgänglig från: 2015-03-24 Skapad: 2015-03-13 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Lobov, G. S., Zhao, Y., Marinins, A., Yan, M., Li, J., Toprak, M. S., . . . Popov, S. (2015). Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution. Optical Materials Express, 5(11), 2642-2647
Öppna denna publikation i ny flik eller fönster >>Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution
Visa övriga...
2015 (Engelska)Ingår i: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 5, nr 11, s. 2642-2647Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The nanofiber morphology of regioregular Poly-3- hexylthiophene (P3HT) is a 1D crystalline structure organized by π - π stacking of the backbone chains. In this study, we report the impact of electric field on the orientation and optical properties of P3HT nanofibers dispersed in liquid solution. We demonstrate that alternating electric field aligns nanofibers, whereas static electric field forces them to migrate towards the cathode. The alignment of nanofibers introduces anisotropic optical properties, which can be dynamically manipulated until the solvent has evaporated. Time resolved spectroscopic measurements revealed that the electro-optical response time decreases significantly with the magnitude of applied electric field. Thus, for electric field 1.3 V ·μm-1 the response time was measured as low as 20 ms, while for 0.65 V ·μm-1 it was 110-150 ms. Observed phenomenon is the first mention of P3HT supramolecules associated with electrooptical effect. Proposed method provides real time control over the orientation of nanofibers, which is a starting point for a novel practical implementation. With further development P3HT nanofibers can be used individually as an anisotropic solution or as an active component in a guest-host system.

Ort, förlag, år, upplaga, sidor
Optical Society of America, 2015
Nyckelord
Anisotropy, Electric fields, Nanofibers, Real time control, Alternating electric field, Anisotropic optical properties, Crystalline structure, Electric field induced, Electrooptical response, Poly-3-hexylthiophene, Spectroscopic measurements, Static electric fields, Optical properties
Nationell ämneskategori
Materialteknik
Identifikatorer
urn:nbn:se:kth:diva-181212 (URN)10.1364/OME.5.002642 (DOI)000364467700027 ()2-s2.0-84947753945 (Scopus ID)
Anmärkning

QC 20160210

Tillgänglig från: 2016-02-10 Skapad: 2016-01-29 Senast uppdaterad: 2017-12-29Bibliografiskt granskad
Lobov, G. S., Zhao, Y., Marinins, A., Yan, M., Li, J., Toprak, M., . . . Popov, S. Y. (2015). Electro-optical response of P3HT nanofibers in liquid solution. In: Asia Communications and Photonics Conference, ACPC 2015: . Paper presented at Asia Communications and Photonics Conference, ACPC 2015, 19 November 2015 through 23 November 2015.
Öppna denna publikation i ny flik eller fönster >>Electro-optical response of P3HT nanofibers in liquid solution
Visa övriga...
2015 (Engelska)Ingår i: Asia Communications and Photonics Conference, ACPC 2015, 2015Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

AC electric poling introduces in P3HT nanofibers anisotropic electro-optical response and birefringence. Along with birefringence, such material exhibits strong amplitude modulation which makes it more efficient alternative to liquid crystals. © 2015 OSA.

Nationell ämneskategori
Kemi
Identifikatorer
urn:nbn:se:kth:diva-195160 (URN)2-s2.0-84971612086 (Scopus ID)9781943580064 (ISBN)
Konferens
Asia Communications and Photonics Conference, ACPC 2015, 19 November 2015 through 23 November 2015
Anmärkning

Correspondence Address: Lobov, G.S.; School of Information and Communication Technology, KTH-Royal Institute of TechnologySweden; email: lobov@kth.se. QC 20161108

Tillgänglig från: 2016-11-08 Skapad: 2016-11-02 Senast uppdaterad: 2016-11-08Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-6430-6135

Sök vidare i DiVA

Visa alla publikationer