kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 10) Visa alla publikationer
Hang, K., Vina, F., Colledanchise, M., Pauwels, K., Pieropan, A. & Kragic, D. (2020). Team CVAP’s Mobile Picking System at the Amazon Picking Challenge 2015. In: Advances on Robotic Item Picking: Applications in Warehousing and E-Commerce Fulfillment (pp. 1-12). Springer Nature
Öppna denna publikation i ny flik eller fönster >>Team CVAP’s Mobile Picking System at the Amazon Picking Challenge 2015
Visa övriga...
2020 (Engelska)Ingår i: Advances on Robotic Item Picking: Applications in Warehousing and E-Commerce Fulfillment, Springer Nature , 2020, s. 1-12Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Abstract [en]

In this paper we present the system we developed for the Amazon Picking Challenge 2015, and discuss some of the lessons learned that may prove useful to researchers and future teams developing autonomous robot picking systems. For the competition we used a PR2 robot, which is a dual arm robot research platform equipped with a mobile base and a variety of 2D and 3D sensors. We adopted a behavior tree to model the overall task execution, where we coordinate the different perception, localization, navigation, and manipulation activities of the system in a modular fashion. Our perception system detects and localizes the target objects in the shelf and it consisted of two components: one for detecting textured rigid objects using the SimTrack vision system, and one for detecting non-textured or nonrigid objects using RGBD features. In addition, we designed a set of grasping strategies to enable the robot to reach and grasp objects inside the confined volume of shelf bins. The competition was a unique opportunity to integrate the work of various researchers at the Robotics, Perception and Learning laboratory (formerly the Computer Vision and Active Perception Laboratory, CVAP) of KTH, and it tested the performance of our robotic system and defined the future direction of our research.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2020
Nyckelord
Autonomous picking system, Behavior trees, Dual arm robot, Mobile picking, MoveIt, Parallel gripper, PR2 robot, SIFT, Texture-based tracking, Volumetric reasoning
Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-331965 (URN)10.1007/978-3-030-35679-8_1 (DOI)2-s2.0-85149591750 (Scopus ID)
Anmärkning

Part of ISBN 9783030356798 9783030356781

QC 20230714

Tillgänglig från: 2023-07-17 Skapad: 2023-07-17 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Pokorny, F. T., Bekiroglu, Y., Pauwels, K., Butepage, J., Scherer, C. & Kragic, D. (2017). A database for reproducible manipulation research: CapriDB – Capture, Print, Innovate. Data in Brief, 11, 491-498
Öppna denna publikation i ny flik eller fönster >>A database for reproducible manipulation research: CapriDB – Capture, Print, Innovate
Visa övriga...
2017 (Engelska)Ingår i: Data in Brief, ISSN 2352-3409, Vol. 11, s. 491-498Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scanning setups and aims to enable anyone with a camera to scan, print and track complex objects for manipulation research. The proposed approach results in detailed textured mesh models whose 3D printed replicas provide close approximations of the originals. A key motivation for utilizing 3D printed objects is the ability to precisely control and vary object properties such as the size, material properties and mass distribution in the 3D printing process to obtain reproducible conditions for robotic manipulation research. We present CapriDB – an extensible database resulting from this approach containing initially 40 textured and 3D printable mesh models together with tracking features to facilitate the adoption of the proposed approach.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:kth:diva-210103 (URN)10.1016/j.dib.2017.02.015 (DOI)000453174100071 ()28289699 (PubMedID)2-s2.0-85014438696 (Scopus ID)
Anmärkning

QC 20170630

Tillgänglig från: 2017-06-30 Skapad: 2017-06-30 Senast uppdaterad: 2024-08-23Bibliografiskt granskad
Pauwels, K. & Kragic Jensfelt, D. (2016). Integrated On-line Robot-camera Calibration and Object Pose Estimation. In: : . Paper presented at IEEE International Conference on Robotics and Automation (pp. 2332-2339). IEEE conference proceedings, Article ID 7487383.
Öppna denna publikation i ny flik eller fönster >>Integrated On-line Robot-camera Calibration and Object Pose Estimation
2016 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We present a novel on-line approach for extrinsic robot-camera calibration, a process often referred to as hand-eye calibration, that uses object pose estimates from a real-time model-based tracking approach. While off-line calibration has seen much progress recently due to the incorporation of bundle adjustment techniques, on-line calibration still remains a largely open problem. Since we update the calibration in each frame, the improvements can be incorporated immediately in the pose estimation itself to facilitate object tracking. Our method does not require the camera to observe the robot or to have markers at certain fixed locations on the robot. To comply with a limited computational budget, it maintains a fixed size configuration set of samples. This set is updated each frame in order to maximize an observability criterion. We show that a set of size 20 is sufficient in real-world scenarios with static and actuated cameras. With this set size, only 100 microseconds are required to update the calibration in each frame, and we typically achieve accurate robot-camera calibration in 10 to 20 seconds. Together, these characteristics enable the incorporation of calibration in normal task execution.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2016
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-188011 (URN)10.1109/ICRA.2016.7487383 (DOI)000389516202004 ()2-s2.0-84977544617 (Scopus ID)978-1-4673-8026-3 (ISBN)
Konferens
IEEE International Conference on Robotics and Automation
Anmärkning

QC 20160923

Tillgänglig från: 2016-06-03 Skapad: 2016-06-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Ferri, S., Pauwels, K., Rizzolatti, G. & Orban, G. (2016). Stereoscopically Observing Manipulative Actions. Cerebral Cortex
Öppna denna publikation i ny flik eller fönster >>Stereoscopically Observing Manipulative Actions
2016 (Engelska)Ingår i: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.

Nyckelord
action observation, cerebral cortex, gravity, human fMRI space, stereopsis
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-188012 (URN)10.1093/cercor/bhw133 (DOI)000383198900022 ()27252350 (PubMedID)2-s2.0-84981288405 (Scopus ID)
Anmärkning

QC 20160608

Tillgänglig från: 2016-06-03 Skapad: 2016-06-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Güler, R., Pauwels, K., Pieropan, A., Kjellström, H. & Kragic, D. (2015). Estimating the Deformability of Elastic Materials using Optical Flow and Position-based Dynamics. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on: . Paper presented at IEEE-RAS International Conference on Humanoid Robots, November 3-5, KIST, Seoul, Korea (pp. 965-971). IEEE conference proceedings
Öppna denna publikation i ny flik eller fönster >>Estimating the Deformability of Elastic Materials using Optical Flow and Position-based Dynamics
Visa övriga...
2015 (Engelska)Ingår i: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on, IEEE conference proceedings, 2015, s. 965-971Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Knowledge of the physical properties of objects is essential in a wide range of robotic manipulation scenarios. A robot may not always be aware of such properties prior to interaction. If an object is incorrectly assumed to be rigid, it may exhibit unpredictable behavior when grasped. In this paper, we use vision based observation of the behavior of an object a robot is interacting with and use it as the basis for estimation of its elastic deformability. This is estimated in a local region around the interaction point using a physics simulator. We use optical flow to estimate the parameters of a position-based dynamics simulation using meshless shape matching (MSM). MSM has been widely used in computer graphics due to its computational efficiency, which is also important for closed-loop control in robotics. In a controlled experiment we demonstrate that our method can qualitatively estimate the physical properties of objects with different degrees of deformability.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2015
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-175162 (URN)10.1109/HUMANOIDS.2015.7363486 (DOI)000377954900145 ()2-s2.0-84962249847 (Scopus ID)
Konferens
IEEE-RAS International Conference on Humanoid Robots, November 3-5, KIST, Seoul, Korea
Anmärkning

QC 20160217

Tillgänglig från: 2015-10-09 Skapad: 2015-10-09 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Vina, F., Karayiannidis, Y., Pauwels, K., Smith, C. & Kragic, D. (2015). In-hand manipulation using gravity and controlled slip. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on: . Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5636-5641). IEEE conference proceedings
Öppna denna publikation i ny flik eller fönster >>In-hand manipulation using gravity and controlled slip
Visa övriga...
2015 (Engelska)Ingår i: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE conference proceedings, 2015, s. 5636-5641Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this work we propose a sliding mode controllerfor in-hand manipulation that repositions a tool in the robot’shand by using gravity and controlling the slippage of the tool. In our approach, the robot holds the tool with a pinch graspand we model the system as a link attached to the grippervia a passive revolute joint with friction, i.e., the grasp onlyaffords rotational motions of the tool around a given axis ofrotation. The robot controls the slippage by varying the openingbetween the fingers in order to allow the tool to move tothe desired angular position following a reference trajectory.We show experimentally how the proposed controller achievesconvergence to the desired tool orientation under variations ofthe tool’s inertial parameters.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2015
Nyckelord
robotics, manipulation, in-hand manipulation, extrinsic dexterity, friction, slip
Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-178958 (URN)10.1109/IROS.2015.7354177 (DOI)000371885405113 ()2-s2.0-84958153950 (Scopus ID)
Konferens
IEEE/RSJ International Conference on Intelligent Robots and Systems
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, ICT-288533
Anmärkning

QC 20160112

Tillgänglig från: 2015-12-09 Skapad: 2015-12-09 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Pauwels, K., Rubio, L. & Ros, E. (2015). Real-time Pose Detection and Tracking of Hundreds of Objects. IEEE transactions on circuits and systems for video technology (Print)
Öppna denna publikation i ny flik eller fönster >>Real-time Pose Detection and Tracking of Hundreds of Objects
2015 (Engelska)Ingår i: IEEE transactions on circuits and systems for video technology (Print), ISSN 1051-8215, E-ISSN 1558-2205Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We propose a novel model-based method for tracking the six-degrees-of-freedom (6DOF) pose of a very large number of rigid objects in real-time. By combining dense motion and depth cues with sparse keypoint correspondences, and by feeding back information from the modeled scene to the cue extraction process, the method is both highly accurate and robust to noise and occlusions. A tight integration of the graphical and computational capability of graphics processing units (GPUs) allows the method to simultaneously track hundreds of objects in real-time. We achieve pose updates at framerates around 40 Hz when using 500,000 data samples to track 150 objects using images of resolution 640x480. We introduce a synthetic benchmark dataset with varying objects, background motion, noise and occlusions that enables the evaluation of stereo-vision-based pose estimators in complex scenarios. Using this dataset and a novel evaluation methodology, we show that the proposed method greatly outperforms state-of-the-art methods. Finally, we demonstrate excellent performance on challenging real-world sequences involving multiple objects being manipulated.

Ort, förlag, år, upplaga, sidor
IEEE Press, 2015
Nyckelord
Benchmarking; graphics processing unit (GPU); model-based object pose estimation; optical flow; real time; stereo
Nationell ämneskategori
Robotik och automation Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-165635 (URN)10.1109/TCSVT.2015.2430652 (DOI)000390423900004 ()2-s2.0-85027027590 (Scopus ID)
Anmärkning

QC 20161111

Tillgänglig från: 2015-04-29 Skapad: 2015-04-29 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Pauwels, K. & Kragic, D. (2015). Scaling Up Real-time Object Pose Tracking to Multiple Objects and Active Cameras. In: IEEE International Conference on Robotics and Automation: Workshop on Scaling Up Active Perception. Paper presented at IEEE International Conference on Robotics and Automation.
Öppna denna publikation i ny flik eller fönster >>Scaling Up Real-time Object Pose Tracking to Multiple Objects and Active Cameras
2015 (Engelska)Ingår i: IEEE International Conference on Robotics and Automation: Workshop on Scaling Up Active Perception, 2015Konferensbidrag, Enbart muntlig presentation (Refereegranskat)
Abstract [en]

We present an overview of our recent work on real-time model-based object pose estimation. We have developed an approach that can simultaneously track the pose of a large number of objects using multiple active cameras. It combines dense motion and depth cues with proprioceptive information to maintain a 3D simulated model of the objects in the scene and the robot operating on them. A constrained optimization method allows for an efficient fusion of the multiple dense cues obtained from each camera into this scene representation. This work is publicly available as a ROS software module for real-time object pose estimation called SimTrack.

Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-165634 (URN)
Konferens
IEEE International Conference on Robotics and Automation
Anmärkning

NQC 2015

Tillgänglig från: 2015-04-29 Skapad: 2015-04-29 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Pauwels, K. & Kragic, D. (2015). SimTrack: A Simulation-based Framework for Scalable Real-time Object Pose Detection and Tracking. In: 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS): . Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), SEP 28-OCT 02, 2015, Hamburg, GERMANY (pp. 1300-1307). IEEE
Öppna denna publikation i ny flik eller fönster >>SimTrack: A Simulation-based Framework for Scalable Real-time Object Pose Detection and Tracking
2015 (Engelska)Ingår i: 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), IEEE , 2015, s. 1300-1307Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose a novel approach for real-time object pose detection and tracking that is highly scalable in terms of the number of objects tracked and the number of cameras observing the scene. Key to this scalability is a high degree of parallelism in the algorithms employed. The method maintains a single 3D simulated model of the scene consisting of multiple objects together with a robot operating on them. This allows for rapid synthesis of appearance, depth, and occlusion information from each camera viewpoint. This information is used both for updating the pose estimates and for extracting the low-level visual cues. The visual cues obtained from each camera are efficiently fused back into the single consistent scene representation using a constrained optimization method. The centralized scene representation, together with the reliability measures it enables, simplify the interaction between pose tracking and pose detection across multiple cameras. We demonstrate the robustness of our approach in a realistic manipulation scenario. We publicly release this work as a part of a general ROS software framework for real-time pose estimation, SimTrack, that can be integrated easily for different robotic applications.

Ort, förlag, år, upplaga, sidor
IEEE, 2015
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-185105 (URN)10.1109/IROS.2015.7353536 (DOI)000371885401067 ()2-s2.0-84958156400 (Scopus ID)978-1-4799-9994-1 (ISBN)
Konferens
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), SEP 28-OCT 02, 2015, Hamburg, GERMANY
Anmärkning

QC 20160412

Tillgänglig från: 2016-04-12 Skapad: 2016-04-11 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Pieropan, A., Salvi, G., Pauwels, K. & Kjellström, H. (2014). Audio-Visual Classification and Detection of Human Manipulation Actions. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014): . Paper presented at 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014, Palmer House Hilton Hotel Chicago, United States, 14 September 2014 through 18 September 2014 (pp. 3045-3052). IEEE conference proceedings
Öppna denna publikation i ny flik eller fönster >>Audio-Visual Classification and Detection of Human Manipulation Actions
2014 (Engelska)Ingår i: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE conference proceedings, 2014, s. 3045-3052Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Humans are able to merge information from multiple perceptional modalities and formulate a coherent representation of the world. Our thesis is that robots need to do the same in order to operate robustly and autonomously in an unstructured environment. It has also been shown in several fields that multiple sources of information can complement each other, overcoming the limitations of a single perceptual modality. Hence, in this paper we introduce a data set of actions that includes both visual data (RGB-D video and 6DOF object pose estimation) and acoustic data. We also propose a method for recognizing and segmenting actions from continuous audio-visual data. The proposed method is employed for extensive evaluation of the descriptive power of the two modalities, and we discuss how they can be used jointly to infer a coherent interpretation of the recorded action.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2014
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
Nyckelord
Acoustic data, Audio-visual, Audio-visual data, Coherent representations, Human manipulation, Multiple source, Unstructured environments, Visual data
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-158004 (URN)10.1109/IROS.2014.6942983 (DOI)000349834603023 ()2-s2.0-84911478073 (Scopus ID)978-1-4799-6934-0 (ISBN)
Konferens
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014, Palmer House Hilton Hotel Chicago, United States, 14 September 2014 through 18 September 2014
Anmärkning

QC 20150122

Tillgänglig från: 2014-12-18 Skapad: 2014-12-18 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-3731-0582

Sök vidare i DiVA

Visa alla publikationer