kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 47) Visa alla publikationer
Smoler, M., Pennacchietti, F., De Rossi, M. C., Bruno, L., Testa, I. & Levi, V. (2025). Dynamical organization of vimentin intermediate filaments in living cells revealed by MoNaLISA nanoscopy. Bioscience Reports, 45(2), Article ID BSR20241133.
Öppna denna publikation i ny flik eller fönster >>Dynamical organization of vimentin intermediate filaments in living cells revealed by MoNaLISA nanoscopy
Visa övriga...
2025 (Engelska)Ingår i: Bioscience Reports, ISSN 0144-8463, E-ISSN 1573-4935, Vol. 45, nr 2, artikel-id BSR20241133Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Intermediate filaments are intimately involved in the mechanical behavior of cells. Unfortunately, the resolution of optical microscopy limits our understanding of their organization. Here, we combined nanoscopy, single-filament tracking, and numerical simulations to inspect the dynamical organization of vimentin intermediate filaments in live cells. We show that a higher proportion of peripheral versus perinuclear vimentin pools are constrained in their lateral motion in the seconds time window, probably due to their cross-linking to other cytoskeletal networks. In a longer time scale, active forces become evident and affect similarly both pools of filaments. Our results provide a detailed description of the dynamical organization of the vimentin network in live cells and give some cues on its response to mechanical stimuli.

Ort, förlag, år, upplaga, sidor
Portland Press Ltd., 2025
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:kth:diva-360771 (URN)10.1042/BSR20241133 (DOI)001425088900001 ()39936518 (PubMedID)2-s2.0-85218479281 (Scopus ID)
Anmärkning

QC 20250303

Tillgänglig från: 2025-03-03 Skapad: 2025-03-03 Senast uppdaterad: 2025-03-05Bibliografiskt granskad
Lukinavicius, G., Alvelid, J., Gerasimaite, R., Rodilla-Ramirez, C., Nguyen, V. T., Vicidomini, G., . . . Testa, I. (2024). Stimulated emission depletion microscopy. Nature Reviews Methods Primers, 4(1), Article ID 56.
Öppna denna publikation i ny flik eller fönster >>Stimulated emission depletion microscopy
Visa övriga...
2024 (Engelska)Ingår i: Nature Reviews Methods Primers, ISSN 2662-8449, Vol. 4, nr 1, artikel-id 56Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

In this Primer, we focus on the most recent advancements in stimulated emission depletion (STED) microscopy, encompassing optics, computational microscopy and probes design, which enable STED imaging to open new observation windows in challenging samples such as living cells and tissues. We showcase applications in which STED data have been essential to gain new biological insights in various cell types and model systems. Finally, we discuss what standardization will be important in our view to further advance STED imaging, including open and shareable software, analysis pipelines, data repositories and sample preparation protocols. Stimulated emission depletion microscopy opens new observation windows in challenging samples such as living cells and tissues. In this Primer, Lukinavi & ccaron;ius et al. discuss 2D and 3D stimulated emission depletion setup, including adaptive optical elements and their combination with fluorescence lifetime techniques.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Biofysik
Identifikatorer
urn:nbn:se:kth:diva-353006 (URN)10.1038/s43586-024-00335-1 (DOI)001301201700002 ()2-s2.0-85200927287 (Scopus ID)
Anmärkning

QC 20240911

Tillgänglig från: 2024-09-11 Skapad: 2024-09-11 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Moreno, X. C., Mendes Silva, M., Roos, J., Pennacchietti, F., Norlin, N. & Testa, I. (2023). An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis. HardwareX, 13, e00400-e00400, Article ID e00400.
Öppna denna publikation i ny flik eller fönster >>An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis
Visa övriga...
2023 (Engelska)Ingår i: HardwareX, ISSN 2468-0672, Vol. 13, s. e00400-e00400, artikel-id e00400Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a computational framework to simultaneously perform image acquisition, reconstruction, and analysis in the context of open-source microscopy automation. The setup features multiple computer units intersecting software with hardware devices and achieves automation using python scripts. In practice, script files are executed in the acquisition computer and can perform any experiment by modifying the state of the hardware devices and accessing experimental data. The presented framework achieves concurrency by using multiple instances of ImSwitch and napari working simultaneously. ImSwitch is a flexible and modular open-source software package for microscope control, and napari is a multidimensional image viewer for scientific image analysis. The presented framework implements a system based on file watching, where multiple units monitor a filesystem that acts as the synchronization primitive. The proposed solution is valid for any microscope setup, supporting various biological applications. The only necessary element is a shared filesystem, common in any standard laboratory, even in resource-constrained settings. The file watcher functionality in Python can be easily integrated into other python-based software. We demonstrate the proposed solution by performing tiling experiments using the molecular nanoscale live imaging with sectioning ability (MoNaLISA) microscope, a high-throughput super-resolution microscope based on reversible saturable optical fluorescence transitions (RESOLFT).

Ort, förlag, år, upplaga, sidor
Elsevier BV, 2023
Nyckelord
Automation, RESOLFT, Software
Nationell ämneskategori
Annan fysik
Identifikatorer
urn:nbn:se:kth:diva-326025 (URN)10.1016/j.ohx.2023.e00400 (DOI)000994831800001 ()36824447 (PubMedID)2-s2.0-85147606174 (Scopus ID)
Forskningsfinansiär
Europeiska kommissionenVinnova, 2020-04702 Imaging-omicsEU, Horisont 2020, IMAGEOMICS 964016
Anmärkning

QC 20230620

Tillgänglig från: 2023-04-21 Skapad: 2023-04-21 Senast uppdaterad: 2023-06-20Bibliografiskt granskad
Pennacchietti, F., Alvelid, J., Morales, R. A., Damenti, M., Ollech, D., Oliinyk, O. S., . . . Testa, I. (2023). Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms. Nature Communications, 14(1), Article ID 8402.
Öppna denna publikation i ny flik eller fönster >>Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms
Visa övriga...
2023 (Engelska)Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikel-id 8402Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400–650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023
Nationell ämneskategori
Annan fysik
Identifikatorer
urn:nbn:se:kth:diva-341747 (URN)10.1038/s41467-023-44054-9 (DOI)001131904500001 ()38114484 (PubMedID)2-s2.0-85179950908 (Scopus ID)
Anmärkning

QC 20240103

Tillgänglig från: 2024-01-03 Skapad: 2024-01-03 Senast uppdaterad: 2024-02-06Bibliografiskt granskad
Volpato, A., Ollech, D., Alvelid, J., Damenti, M., Müller, B., York, A. G., . . . Testa, I. (2023). Extending fluorescence anisotropy to large complexes using reversibly switchable proteins. Nature Biotechnology, 41(4), 552-559
Öppna denna publikation i ny flik eller fönster >>Extending fluorescence anisotropy to large complexes using reversibly switchable proteins
Visa övriga...
2023 (Engelska)Ingår i: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 41, nr 4, s. 552-559Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The formation of macromolecular complexes can be measured by detection of changes in rotational mobility using time-resolved fluorescence anisotropy. However, this method is limited to relatively small molecules (~0.1–30 kDa), excluding the majority of the human proteome and its complexes. We describe selective time-resolved anisotropy with reversibly switchable states (STARSS), which overcomes this limitation and extends the observable mass range by more than three orders of magnitude. STARSS is based on long-lived reversible molecular transitions of switchable fluorescent proteins to resolve the relatively slow rotational diffusivity of large complexes. We used STARSS to probe the rotational mobility of several molecular complexes in cells, including chromatin, the retroviral Gag lattice and activity-regulated cytoskeleton-associated protein oligomers. Because STARSS can probe arbitrarily large structures, it is generally applicable to the entire human proteome.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023
Nationell ämneskategori
Biofysik
Identifikatorer
urn:nbn:se:kth:diva-327930 (URN)10.1038/s41587-022-01489-7 (DOI)000865706400002 ()36217028 (PubMedID)2-s2.0-85139660974 (Scopus ID)
Anmärkning

QC 20230602

Tillgänglig från: 2023-06-01 Skapad: 2023-06-01 Senast uppdaterad: 2025-02-25
Marin-Aguilera, G., Volpato, A., Ollech, D., Alvelid, J. & Testa, I. (2023). Novel methodology to measure rotational diffusivity in cells with fluorescence photo-switching. European Biophysics Journal, 52(SUPPL 1), S58-S58
Öppna denna publikation i ny flik eller fönster >>Novel methodology to measure rotational diffusivity in cells with fluorescence photo-switching
Visa övriga...
2023 (Engelska)Ingår i: European Biophysics Journal, ISSN 0175-7571, E-ISSN 1432-1017, Vol. 52, nr SUPPL 1, s. S58-S58Artikel i tidskrift, Meeting abstract (Övrigt vetenskapligt) Published
Ort, förlag, år, upplaga, sidor
SPRINGER, 2023
Nationell ämneskategori
Biofysik
Identifikatorer
urn:nbn:se:kth:diva-335860 (URN)001029235400144 ()
Anmärkning

QC 20230911

Tillgänglig från: 2023-09-11 Skapad: 2023-09-11 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. (2022). Event-triggered STED imaging. Nature Methods, 19(10), 1268-1275
Öppna denna publikation i ny flik eller fönster >>Event-triggered STED imaging
2022 (Engelska)Ingår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 19, nr 10, s. 1268-1275Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monitoring the proteins and lipids that mediate all cellular processes requires imaging methods with increased spatial and temporal resolution. STED (stimulated emission depletion) nanoscopy enables fast imaging of nanoscale structures in living cells but is limited by photobleaching. Here, we present event-triggered STED, an automated multiscale method capable of rapidly initiating two-dimensional (2D) and 3D STED imaging after detecting cellular events such as protein recruitment, vesicle trafficking and second messengers activity using biosensors. STED is applied in the vicinity of detected events to maximize the temporal resolution. We imaged synaptic vesicle dynamics at up to 24 Hz, 40 ms after local calcium activity; endocytosis and exocytosis events at up to 11 Hz, 40 ms after local protein recruitment or pH changes; and the interaction between endosomal vesicles at up to 3 Hz, 70 ms after approaching one another. Event-triggered STED extends the capabilities of live nanoscale imaging, enabling novel biological observations in real time.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022
Nyckelord
STED, microscopy, nanoscopy, super-resolution microscopy, automation, image analysis
Nationell ämneskategori
Biofysik
Forskningsämne
Biologisk fysik
Identifikatorer
urn:nbn:se:kth:diva-323543 (URN)10.1038/s41592-022-01588-y (DOI)000852266300001 ()36076037 (PubMedID)2-s2.0-85137548644 (Scopus ID)
Forskningsfinansiär
EU, Horisont 2020, 964016EU, Horisont 2020, 964016
Anmärkning

QC 20230207

Tillgänglig från: 2023-02-02 Skapad: 2023-02-02 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Jalalvand, E., Alvelid, J., Coceano, G., Edwards, S., Robertson, B., Grillner, S. & Testa, I. (2022). ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal. eLIFE, 11, Article ID e73114.
Öppna denna publikation i ny flik eller fönster >>ExSTED microscopy reveals contrasting functions of dopamine and somatostatin CSF-c neurons along the lamprey central canal
Visa övriga...
2022 (Engelska)Ingår i: eLIFE, E-ISSN 2050-084X, Vol. 11, artikel-id e73114Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cerebrospinal fluid-contacting (CSF-c) neurons line the central canal of the spinal cord and a subtype of CSF-c neurons expressing somatostatin, forms a homeostatic pH regulating system. Despite their importance, their intricate spatial organization is poorly understood. The function of another subtype of CSF-c neurons expressing dopamine is also investigated. Imaging methods with a high spatial resolution (5-10 nm) are used to resolve the synaptic and ciliary compartments of each individual cell in the spinal cord of the lamprey to elucidate their signalling pathways and to dissect the cellular organization. Here, light-sheet and expansion microscopy resolved the persistent ventral and lateral organization of dopamine- and somatostatin-expressing CSF-c neuronal subtypes. The density of somatostatin-containing dense-core vesicles, resolved by stimulated emission depletion microscopy, was shown to be markedly reduced upon each exposure to either alkaline or acidic pH and being part of a homeostatic response inhibiting movements. Their cilia symmetry was unravelled by stimulated emission depletion microscopy in expanded tissues as sensory with 9 + 0 microtubule duplets. The dopaminergic CSF-c neurons on the other hand have a motile cilium with the characteristic 9 + 2 duplets and are insensitive to pH changes. This novel experimental workflow elucidates the functional role of CSF-c neuron subtypes in situ paving the way for further spatial and functional cell-type classification.

Ort, förlag, år, upplaga, sidor
eLIFE SCIENCES PUBL LTD, 2022
Nyckelord
STED, light-sheet, cilia structure, Spinal cord, Mouse, Lamprey
Nationell ämneskategori
Neurovetenskaper
Identifikatorer
urn:nbn:se:kth:diva-309046 (URN)10.7554/eLife.73114 (DOI)000751630600001 ()35103591 (PubMedID)2-s2.0-85125612750 (Scopus ID)
Anmärkning

QC 20220308

Tillgänglig från: 2022-03-08 Skapad: 2022-03-08 Senast uppdaterad: 2023-02-08Bibliografiskt granskad
Alvelid, J., Bucci, A. & Testa, I. (2022). Far Red‐Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy. ChemPhysChem, 24(3)
Öppna denna publikation i ny flik eller fönster >>Far Red‐Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy
2022 (Engelska)Ingår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 24, nr 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Stimulated emission depletion (STED) nanoscopy is a widely used nanoscopy technique. Two-colour STED imaging in fixed and living cells is standardised today utilising both fluorescent dyes and fluorescent proteins. Solutions to image additional colours have been demonstrated using spectral unmixing, photobleaching steps, or long-Stokes-shift dyes. However, these approaches often compromise speed, spatial resolution, and image quality, and increase complexity. Here, we present multicolour STED nanoscopy with far red-shifted semiconductor CdTe quantum dots (QDs). STED imaging of the QDs is optimized to minimize blinking effects and maximize the number of detected photons. The far-red and compact emission spectra of the investigated QDs free spectral space for the simultaneous use of fluorescent dyes, enabling straightforward three-colour STED imaging with a single depletion beam. We use our method to study the internalization of QDs in cells, opening up the way for future super-resolution studies of particle uptake and internalization.

Ort, förlag, år, upplaga, sidor
Wiley, 2022
Nationell ämneskategori
Biofysik
Identifikatorer
urn:nbn:se:kth:diva-327932 (URN)10.1002/cphc.202200698 (DOI)000880488600001 ()36239140 (PubMedID)2-s2.0-85141664595 (Scopus ID)
Forskningsfinansiär
EU, Horisont 2020, 638314
Anmärkning

QC 20230607

Tillgänglig från: 2023-06-01 Skapad: 2023-06-01 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Mishra, K., Fuenzalida-Werner, J. P., Pennacchietti, F., Janowski, R., Chmyrov, A., Huang, Y., . . . Stiel, A. C. (2022). Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nature Biotechnology, 40(4), 598-605
Öppna denna publikation i ny flik eller fönster >>Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging
Visa övriga...
2022 (Engelska)Ingår i: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 40, nr 4, s. 598-605Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Reversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors. 

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022
Nyckelord
Amines, Fluorescence, Mammals, Optical resolving power, Photoacoustic effect, Analytes, Ca 2+, Imaging method, Molecular mechanism, Molecular sensors, Nano scale, Optoacoustic imaging, Photo-switchable, Super resolution imaging, Superresolution, Proteins, animal, cell line, fluorescence microscopy, mouse, photoacoustics, procedures, Animals, Mice, Microscopy, Fluorescence, Photoacoustic Techniques
Nationell ämneskategori
Materialkemi Annan fysik Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-313194 (URN)10.1038/s41587-021-01100-5 (DOI)000723531000001 ()34845372 (PubMedID)2-s2.0-85120078557 (Scopus ID)
Anmärkning

QC 20220607

Tillgänglig från: 2022-06-07 Skapad: 2022-06-07 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4005-4997

Sök vidare i DiVA

Visa alla publikationer