Öppna denna publikation i ny flik eller fönster >>Visa övriga...
2023 (Engelska)Ingår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 246, s. 118713-, artikel-id 118713Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Solidification during fusion-based additive manufacturing (AM) is characterized by high solidification velocities and large thermal gradients, two factors that control the solidification mode of metals and alloys. Using two synchrotron-based, in situ setups, we perform high-speed X-ray diffraction measurements to investigate the impact of the solidification velocities and thermal gradients on the solidification mode of a hot-work tool steel over a wide range of thermal conditions of relevance to AM of metals. The solidification mode of primary delta-ferrite is observed at a cooling rate of 2.12 x 104 K/s, and at a higher cooling rate of 1.5 x 106 K/s, delta-ferrite is sup-pressed, and primary austenite is observed. The experimental thermal conditions are evaluated and linked to a Kurz-Giovanola-Trivedi (KGT) based solidification model. The modelling results show that the predictions from the multicomponent KGT model agree with the experimental observations. This work highlights the role of in situ XRD measurements for a fundamental understanding of the microstructure evolution during AM and for vali-dation of computational thermodynamics and kinetics models, facilitating parameter and alloy development for AM processes.
Ort, förlag, år, upplaga, sidor
Elsevier BV, 2023
Nyckelord
Solidification, Synchrotron X-ray diffraction, Additive manufacturing, Powder bed fusion, Steel
Nationell ämneskategori
Metallurgi och metalliska material
Identifikatorer
urn:nbn:se:kth:diva-324744 (URN)10.1016/j.actamat.2023.118713 (DOI)000925923000001 ()2-s2.0-85146612048 (Scopus ID)
Anmärkning
QC 20230316
2023-03-162023-03-162025-05-13Bibliografiskt granskad