Open this publication in new window or tab >>Show others...
2024 (English)In: 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), Institute of Electrical and Electronics Engineers (IEEE) , 2024, p. 8220-8224Conference paper, Published paper (Refereed)
Abstract [en]
As text-to-speech technologies achieve remarkable naturalness in read-aloud tasks, there is growing interest in multimodal synthesis of verbal and non-verbal communicative behaviour, such as spontaneous speech and associated body gestures. This paper presents a novel, unified architecture for jointly synthesising speech acoustics and skeleton-based 3D gesture motion from text, trained using optimal-transport conditional flow matching (OT-CFM). The proposed architecture is simpler than the previous state of the art, has a smaller memory footprint, and can capture the joint distribution of speech and gestures, generating both modalities together in one single process. The new training regime, meanwhile, enables better synthesis quality in much fewer steps (network evaluations) than before. Uni- and multimodal subjective tests demonstrate improved speech naturalness, gesture human-likeness, and cross-modal appropriateness compared to existing benchmarks.
Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Series
International Conference on Acoustics Speech and Signal Processing ICASSP, ISSN 1520-6149
Keywords
Text-to-speech, co-speech gestures, speech-to-gesture, integrated speech and gesture synthesis, ODE models
National Category
Comparative Language Studies and Linguistics
Identifiers
urn:nbn:se:kth:diva-361616 (URN)10.1109/ICASSP48485.2024.10445998 (DOI)001396233801103 ()2-s2.0-105001488767 (Scopus ID)
Conference
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), APR 14-19, 2024, Seoul, SOUTH KOREA
Note
Part of ISBN 979-8-3503-4486-8, 979-8-3503-4485-1
QC 20250402
2025-04-022025-04-022025-04-09Bibliographically approved