kth.sePublications
Change search
Link to record
Permanent link

Direct link
Lakshminarayanan, BraghadeeshORCID iD iconorcid.org/0009-0008-4893-0473
Publications (6 of 6) Show all publications
Lakshminarayanan, B., Dettú, F., Rojas, C. R. & Formentin, S. (2025). Inverse supervised learning of controller tuning rules. Automatica, 178, Article ID 112356.
Open this publication in new window or tab >>Inverse supervised learning of controller tuning rules
2025 (English)In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 178, article id 112356Article in journal (Refereed) Published
Abstract [en]

In this technical communique, we present a sim2real approach for data-driven controller tuning, utilizing a digital twin to generate input–output data and suitable controllers around nominal parameter values. We establish a direct inverse supervised learning framework using advanced neural network architectures, including the WaveNet sequence model, to learn a tuning rule that maps input–output data to controller parameters. This approach automates controller re-calibration by meta-learning the tuning rule through inverse supervised learning, effectively avoiding human intervention via a machine learning model. The advantages of this methodology are demonstrated through numerical simulations across various neural network architectures.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
Data-driven control, Inverse supervised learning, Meta learning, Neural networks, Sequence model
National Category
Control Engineering Computer Sciences
Identifiers
urn:nbn:se:kth:diva-363415 (URN)10.1016/j.automatica.2025.112356 (DOI)2-s2.0-105004265462 (Scopus ID)
Note

QC 20250515

Available from: 2025-05-15 Created: 2025-05-15 Last updated: 2025-05-15Bibliographically approved
Dettù, F., Lakshminarayanan, B., Formentin, S. & Rojas, C. R. (2024). From Data to Control: A Two-Stage Simulation-Based Approach. In: 2024 European Control Conference, ECC 2024: . Paper presented at 2024 European Control Conference, ECC 2024, Stockholm, Sweden, Jun 25 2024 - Jun 28 2024 (pp. 3428-3433). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>From Data to Control: A Two-Stage Simulation-Based Approach
2024 (English)In: 2024 European Control Conference, ECC 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024, p. 3428-3433Conference paper, Published paper (Refereed)
Abstract [en]

For many industrial processes, a digital twin is available, which is essentially a highly complex model whose parameters may not be properly tuned for the specific process. By relying on the availability of such a digital twin, this paper introduces a novel approach to data-driven control, where the digital twin is used to generate samples and suitable controllers for various perturbed versions of its parameters. A supervised learning algorithm is then employed to estimate a direct mapping from the data to the best controller to use. This map consists of a model reduction step, followed by a neural network architecture whose output provides the parameters of the controller. The data-to-controller map is pre-computed based on artificially generated data, but its execution once deployed is computationally very efficient, thus providing a simple and inexpensive way to tune and re-calibrate controllers directly from data. The benefits of this novel approach are illustrated via numerical simulations.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Control Engineering Computer Sciences
Identifiers
urn:nbn:se:kth:diva-351931 (URN)10.23919/ECC64448.2024.10591185 (DOI)001290216503026 ()2-s2.0-85200575330 (Scopus ID)
Conference
2024 European Control Conference, ECC 2024, Stockholm, Sweden, Jun 25 2024 - Jun 28 2024
Note

Part of ISBN 9783907144107

QC 20240906

Available from: 2024-08-19 Created: 2024-08-19 Last updated: 2025-04-28Bibliographically approved
Lakshminarayanan, B. (2024). Parameter Estimation: Towards Data-Driven and Privacy Preserving Approaches. (Licentiate dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>Parameter Estimation: Towards Data-Driven and Privacy Preserving Approaches
2024 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Parameter estimation is a pivotal task across various domains such as system identification, statistics, and machine learning. The literature presents numerous estimation procedures, many of which are backed by well-studied asymptotic properties. In the contemporary landscape, highly advanced digital twins (DTs) offer the capability to faithfully replicate real systems through proper tuning. Leveraging these DTs, data-driven estimators can alleviate challenges inherent in traditional methods, notably their computational cost and sensitivity to initializations. Furthermore, traditional estimators often rely on sensitive data, necessitating protective measures.

In this thesis, we consider data-driven and privacy-preserving approaches to parameter estimation that overcome many of these challenges.

The first part of the thesis delves into an exploration of modern data-driven estimation techniques, focusing on the two-stage (TS) approach. Operating under the paradigm of inverse supervised learning, the TS approach simulates numerous samples across parameter variations and employs supervised learning methods to predict parameter values. Divided into two stages, the approach involves compressing data into a smaller set of samples and the second stage utilizes these samples to predict parameter values. The simplicity of the TS estimator underscores its interpretability, necessitating theoretical justification, which forms the core motivation for this thesis. We establish statistical frameworks for the TS estimator, yielding its Bayes and minimax versions, alongside developing an improved minimax TS variant that excels in computational efficiency and robustness to distributional shifts. Finally, we conduct an asymptotic analysis of the TS estimator.

The second part of the thesis introduces an application of data-driven estimation methods, that includes the TS and neural network based approaches, in the design of tuning rules for PI controllers. Leveraging synthetic datasets generated from DTs, we train machine learning algorithms to meta-learn tuning rules, streamlining the calibration process without manual intervention.

In the final part of the thesis, we tackle scenarios where estimation procedures must handle sensitive data. Here, we introduce differential privacy constraints into the Bayes point estimation problem to protect sensitive information. Proposing a unified approach, we integrate the estimation problem and differential privacy constraints into a single convex optimization objective, thereby optimizing the accuracy-privacy trade-off. In cases where both observations and parameter spaces are finite, this approach reduces to a tractable linear program which is solvable using off-the-shelf solvers.

In essence, this thesis endeavors to address computational and privacy concerns within the realm of parameter estimation.

Abstract [sv]

Skattning av parametrar utgör en fundamental uppgift inom en mängd fält, såsom systemidentifiering, statistik och maskininlärning. I litteraturen finns otaliga skattningsmetoder, utav vilka många understödjs av välstuderade asymptotiska egenskaper. Inom dagens forskning erbjuder noggrant kalibrerade digital twins (DTs) möjligheten att naturtroget återskapa verkliga system. Genom att utnyttja dessa DTs kan data-drivna skattningsmetoder minska problem som vanligtvis drabbar traditionella skattningsmetoder, i synnerhet problem med beräkningsbörda och känslighet för initialiseringvillkor. Traditionella skattningsmetoder kräver dessutom ofta känslig data, vilket leder till ett behov av skyddsåtgärder.

I den här uppsatsen, undersöker vi data-drivna och integritetsbevarande parameterskattningmetoder som övervinner många av de nämnda problemen. 

Första delen av uppsatsen är en undersökning av moderna data-drivna skattningtekniker, med fokus på två-stegs-metoden (TS). Som metod inom omvänd övervakad maskininlärning, simulerar TS en stor mängd data med ett stort urval av parametrar och tillämpar sedan metoder från övervakad inlärning för att förutsäga parametervärden. De två stegen innefattar datakomprimering till en mindre mängd, varefter den mindre mängden data används för parameterskattning. Tack vare sin enkelhet och tydbarhet lämpar sig två-stegs-metoden väl för teoretisk analys, vilket är uppsatsens motivering.

Vi utvecklar ett statistiskt ramverk för två-stegsmetoden, vilket ger Bayes och minimax-varianterna, samtidigt som vi vidareutvecklar minimax-TS genom en variant med hög beräkningseffektivitet och robusthet gentemot skiftade fördelningar. Slutligen analyserar vi två-stegs-metodens asymptotiska egenskaper. 

Andra delen av uppsatsen introducerar en tillämpning av data-drivna skattningsmetoder, vilket innefattar TS och neurala nätverk, i designen och kalibreringen av PI-regulatorer. Med hjälp av syntetisk data från DTs tränar vi maskininlärningsalgoritmer att meta-lära sig regler för kalibrering, vilket effektiverar kalibreringsprocessen utan manuellt ingripande. 

I sista delen av uppsatsen behandlar vi scenarion då skattningsprocessen innefattar känslig data. Vi introducerar differential-privacy-begränsningar i Bayes-punktskattningsproblemet för att skydda känslig information. Vi kombinerar skattningsproblemet och differential-privacy-begränsningarna i en gemensam konvex målfunktion, och optimerar således avvägningen mellan noggrannhet och integritet. Ifall både observations- och parameterrummen är ändliga, så reduceras problemet till ett lätthanterligt linjärt optimeringsproblem, vilket löses utan vidare med välkända metoder. 

Sammanfattningsvis behandlar uppsatsen beräkningsmässiga och integritets-angelägenheter inom ramen för parameterskattning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. xvi, 99
Series
TRITA-EECS-AVL ; 2024:22
Keywords
Parameter estimation, System identification
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-344159 (URN)978-91-8040-863-9 (ISBN)
Presentation
2024-04-03, https://kth-se.zoom.us/j/61854930060, Q2, Malvinas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240306

Available from: 2024-03-06 Created: 2024-03-06 Last updated: 2024-03-25Bibliographically approved
Lakshminarayanan, B. & Rojas, C. R. (2023). A Unified Approach to Differentially Private Bayes Point Estimation. In: : . Paper presented at 22nd IFAC World Congress, Yokohama, Japan, Jul 9 2023 - Jul 14 2023 (pp. 8375-8380). Elsevier BV
Open this publication in new window or tab >>A Unified Approach to Differentially Private Bayes Point Estimation
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Parameter estimation in statistics and system identification relies on data that may contain sensitive information. To protect this sensitive information, the notion of differential privacy (DP) has been proposed, which enforces confidentiality by introducing randomization in the estimates. Standard algorithms for differentially private estimation are based on adding an appropriate amount of noise to the output of a traditional point estimation method. This leads to an accuracy-privacy trade off, as adding more noise reduces the accuracy while increasing privacy. In this paper, we propose a new Unified Bayes Private Point (UBaPP) approach to Bayes point estimation of the unknown parameters of a data generating mechanism under a DP constraint, that achieves a better accuracy-privacy trade off than traditional approaches. We verify the performance of our approach on a simple numerical example.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Bayes point estimation, Differential privacy, Parameter estimation
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-343169 (URN)10.1016/j.ifacol.2023.10.1030 (DOI)2-s2.0-85183636957 (Scopus ID)
Conference
22nd IFAC World Congress, Yokohama, Japan, Jul 9 2023 - Jul 14 2023
Note

Part of proceedings ISBN 9781713872344

QC 20240213

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2024-02-13Bibliographically approved
Lakshminarayanan, B. & Rojas, C. R. (2023). Minimax Two-Stage Gradient Boosting for Parameter Estimation. In: 2023 62nd IEEE Conference on Decision and Control, CDC 2023: . Paper presented at 62nd IEEE Conference on Decision and Control, CDC 2023, Singapore, Singapore, Dec 13 2023 - Dec 15 2023 (pp. 1189-1194). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Minimax Two-Stage Gradient Boosting for Parameter Estimation
2023 (English)In: 2023 62nd IEEE Conference on Decision and Control, CDC 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 1189-1194Conference paper, Published paper (Refereed)
Abstract [en]

Parameter estimation is an important sub-field in statistics and system identification. Various methods for parameter estimation have been proposed in the literature, among which the Two-Stage (TS) approach is particularly promising, due to its ease of implementation and reliable estimates. Among the different statistical frameworks used to derive TS estimators, the min-max framework is attractive due to its mild dependence on prior knowledge about the parameters to be estimated. However, the existing implementation of the minimax TS approach has currently limited applicability, due to its heavy computational load. In this paper, we overcome this difficulty by using a gradient boosting machine (GBM) in the second stage of TS approach. We call the resulting algorithm the Two-Stage Gradient Boosting Machine (TSGBM) estimator. Finally, we test our proposed TSGBM estimator on several numerical examples including models of dynamical systems.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
estimation theory, Gradient Boosting, statistical decision theory, Two-Stage approach
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:kth:diva-343732 (URN)10.1109/CDC49753.2023.10383385 (DOI)001166433800144 ()2-s2.0-85184808110 (Scopus ID)
Conference
62nd IEEE Conference on Decision and Control, CDC 2023, Singapore, Singapore, Dec 13 2023 - Dec 15 2023
Note

QC 20240222

Part of ISBN 979-8-3503-0124-3

Available from: 2024-02-22 Created: 2024-02-22 Last updated: 2024-04-04Bibliographically approved
Lakshminarayanan, B. & Rojas, C. R. (2022). A Statistical Decision-Theoretical Perspective on the Two-Stage Approach to Parameter Estimation. In: 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC): . Paper presented at IEEE 61st Conference on Decision and Control (CDC), DEC 06-09, 2022, Cancun, MEXICO (pp. 5369-5374). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>A Statistical Decision-Theoretical Perspective on the Two-Stage Approach to Parameter Estimation
2022 (English)In: 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 5369-5374Conference paper, Published paper (Refereed)
Abstract [en]

One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply TS on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Conference on Decision and Control, ISSN 0743-1546
Keywords
Two-Stage approach, estimation theory, statistical decision theory
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-326381 (URN)10.1109/CDC51059.2022.9993024 (DOI)000948128104078 ()2-s2.0-85146978684 (Scopus ID)
Conference
IEEE 61st Conference on Decision and Control (CDC), DEC 06-09, 2022, Cancun, MEXICO
Note

QC 20230503

Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2023-05-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0008-4893-0473

Search in DiVA

Show all publications