kth.sePublications
Change search
Link to record
Permanent link

Direct link
Mastantuoni, Gabriella G.ORCID iD iconorcid.org/0009-0007-4701-4054
Publications (10 of 10) Show all publications
Wang, S., Mastantuoni, G. G., Dong, Y. & Zhou, Q. (2025). Strong and transparent film of naturally aligned softwood holocellulose fibers. Carbohydrate Polymers, 347, Article ID 122722.
Open this publication in new window or tab >>Strong and transparent film of naturally aligned softwood holocellulose fibers
2025 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 347, article id 122722Article in journal (Refereed) Published
Abstract [en]

Mildly delignified softwood holocellulose fibers featuring native tracheid fiber cell wall structure and high hemicellulose content are prominent building blocks for wood derived fiber-based materials. However, preserving the natural alignment of long softwood fiber is challenging since top-down structure-retaining delignified softwood is unstable as extensive removal of lignin from intercellular space induces cracking and disintegration of wood structure. Here we report the use of chemical crosslinking pretreatment to improve the intercellular bonding between softwood fibers, therefore preserving the integrity of the naturally aligned softwood fibers after delignification. The crosslinked softwood veneer was delignified with peracetic acid and further densified into transparent and high-density film by thermal compression. The obtained transparent film of naturally aligned softwood holocellulose fibers showed high optical transmittance of 71 %, high haze of 85 %, strong optical anisotropy, as well as high tensile strength of 449 ± 58 MPa and high Young's modulus of 49.9 ± 5.6 GPa. This study provides a facile approach to preserve the natural alignment of softwood fibers for the fabrication of high performance holocellulose fibers-based materials.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
Crosslinking, Delignification, Holocellulose fiber, Mechanical property, Optical property, Softwood
National Category
Paper, Pulp and Fiber Technology Wood Science Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-353429 (URN)10.1016/j.carbpol.2024.122722 (DOI)001314817600001 ()39486952 (PubMedID)2-s2.0-85203428467 (Scopus ID)
Note

QC 20241004

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2025-05-27Bibliographically approved
Mastantuoni, G. G., Tran, V. C., Garemark, J., Dreimol, C. H., Engquist, I., Berglund, L. & Zhou, Q. (2024). Rationally designed conductive wood with mechanoresponsive electrical resistance. Composites. Part A, Applied science and manufacturing, 178, Article ID 107970.
Open this publication in new window or tab >>Rationally designed conductive wood with mechanoresponsive electrical resistance
Show others...
2024 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 178, article id 107970Article in journal (Refereed) Published
Abstract [en]

Porous cellular foams, combining lightweight, high strength, and compressibility, hold great promise in a wide range of advanced applications. Here, the native structure of pine wood was modified by in-situ lignin sulfonation and unidirectional freezing, resulting in an alveolate structure inside the wood cell wall with arrays of sub-100 nm channels. The obtained wood foam exhibited highly enhanced permeability while retaining the native cellular arrangement and high lignin and hemicellulose content. Such engineered cellular foam contributed to superior mechanical performance with compressive strength of 9 MPa and Young's modulus of 344 MPa in the longitudinal direction. The high porosity allowed homogeneous infiltration of conductive polymer PEDOT:PSS inside the wood cell wall. The resulting composite exhibited high conductivity, sponge-like compressibility and the ability to modulate electrical resistance in a reversible manner in the radial direction. This rationally designed conductive wood demonstrated potential in durable and ultrasensitive pressure-responsive devices and strain sensors.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
A Foams, A Multifunctional composites, B Electrical properties, B Mechanical properties
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-342379 (URN)10.1016/j.compositesa.2023.107970 (DOI)2-s2.0-85181932666 (Scopus ID)
Note

Not duplicate with DiVA 1789673

QC 20240122

Available from: 2024-01-17 Created: 2024-01-17 Last updated: 2024-01-22Bibliographically approved
Enrichi, F., Mastantuoni, G. G., Cassetta, M., Sambugaro, A., Daldosso, N., Martucci, A., . . . Righini, G. C. (2024). Structural and optical properties of Eu3+-doped sol-gel silica-soda glasses. The European Physical Journal Plus, 139(4), Article ID 346.
Open this publication in new window or tab >>Structural and optical properties of Eu3+-doped sol-gel silica-soda glasses
Show others...
2024 (English)In: The European Physical Journal Plus, E-ISSN 2190-5444, Vol. 139, no 4, article id 346Article in journal (Refereed) Published
Abstract [en]

Rare earths (REs) incorporated in glasses, mostly in the form of RE3+ ions, have several applications such as lasers and optical amplifiers, spectral conversion layers for solar cells, light emitters and sensors. In this context, both the composition and the structural properties of the glass, as well as the dopant concentration play an important role in determining the optical properties and the efficiency of the system. Usually, the concentration of REs is small, below 1 at%, to avoid clustering and optical quenching. In this paper, we report the case of sol-gel Eu-doped silica-soda glass films. The addition of soda to silica can reduce RE clustering and precipitation, according to molecular dynamic simulations, but brings structural instabilities to the network. Here, sodium was varied from 10 to 30 at% and Eu from 0 to 8 at%. It was shown that Eu plays a significant role in the stabilization of the matrix, improving the transparency, the refractive index and the thickness of the films. The increase of Eu concentration provides a decrease of site symmetry and an increase of quantum efficiency (QY), reaching 71% for the highest 8 at% Eu doping, with remarkable absence of concentration quenching.

Place, publisher, year, edition, pages
Springer Nature, 2024
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-346092 (URN)10.1140/epjp/s13360-024-05151-w (DOI)001207799800001 ()2-s2.0-85191303182 (Scopus ID)
Note

QC 20240503

Available from: 2024-05-03 Created: 2024-05-03 Last updated: 2024-05-03Bibliographically approved
Tran, V. C., Mastantuoni, G. G., Zabihipour, M., Li, L., Berglund, L., Berggren, M., . . . Engquist, I. (2023). Electrical current modulation in wood electrochemical transistor. Proceedings of the National Academy of Sciences of the United States of America, 120(118), Article ID e2218380120.
Open this publication in new window or tab >>Electrical current modulation in wood electrochemical transistor
Show others...
2023 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 120, no 118, article id e2218380120Article in journal (Refereed) Published
Abstract [en]

The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm−1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.

Place, publisher, year, edition, pages
Proceedings of the National Academy of Sciences, 2023
Keywords
conductivity, electrochemistry, PEDOT:PSS, transistor, wood
National Category
Polymer Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-331691 (URN)10.1073/pnas.2218380120 (DOI)001025817800003 ()37094114 (PubMedID)2-s2.0-85153687393 (Scopus ID)
Note

QC 20230713

Available from: 2023-07-13 Created: 2023-07-13 Last updated: 2023-08-15Bibliographically approved
Mastantuoni, G. G. (2023). Engineering of lignin in wood towards functional materials. (Doctoral dissertation). KTH Royal Institute of Technology
Open this publication in new window or tab >>Engineering of lignin in wood towards functional materials
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Through 270 million years of evolution, the finely tuned hierarchical structure of wood has been optimized for efficient nutrient transport and exceptional mechanical stability. Its distinctive orthotropic constitution can provide inspiration and design opportunities for the development of novel functional materials. In recent years, top-down modification approaches have adapted the wood structure for innovative applications, utilizing the hierarchical arrangement at different length scales. In doing so, preserving the structural integrity is of the essence.

This thesis explores new top-down modification techniques for the functionalization and structural control of wood-based materials. With the intent of better preserving and utilizing the natural wood organization and native components, two different modification routes were explored on softwood Scots pine: complete lignin removal and in-situ lignin modification. Complete delignification was achieved through preventive crosslinking of the polysaccharide matrix, enhancing intercellular adhesion between tracheids and preventing the disintegration of the cellular arrangement after lignin removal. The second approach focused on chemical modification of lignin by sulfonation as an alternative to complete lignin removal, resulting in wood templates of high negative charge up to 375 µmol g-1 and with well-preserved residual lignin. 

Hot compression of the delignified wood veneers produced thin wood films with high optical transmittance of 71 % alongside exceptional tensile strength of 449 MPa and Young’s modulus of 50 GPa. Densification of lignin-retaining wood veneers yielded strong and transparent thin films with UV blocking ability. Additionally, these densified films could be easily recycled into discrete wood fibers. 

The integration of conductive polymers including poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and polypyrrole in in-situ sulfonated wood resulted in bio-composites with high conductivity up to 203 S m-1 and high pseudo-capacitance up to 38 mF cm-2, indicating that tailoring the wood chemistry and activating the redox activity of lignin by sulfonation are important strategies for the fabrication of composites with potential for sustainable energy applications. 

By tailoring both wood chemistry and morphology, a wood foam with unique microstructure, enhanced permeability, along with high ultimate strength of 9 MPa and Young’s modulus of 364 MPa was obtained. When combined with the conductive polymer PEDOT:PSS, the composite demonstrated uniform conductivity of 215 S m-1 and mechanoresponsive electrical resistance, showing promise in sensing and mechanoresponsive devices.

Therefore, in-situ engineering of lignin proved to be a versatile toolkit to obtain wood templates of improved permeability and porosity, greater compliance to densification, and enhanced compatibility with conductive polymers.

Abstract [sv]

Träets noggranna hierarkiska struktur har genom 270 miljoner års evolution optimerats för effektiv transport av näringsämnen och enastående mekanisk stabilitet. Dess distinkta ortotropa struktur kan inspirera samt ge utvecklingsmöjligheter för nya funktionella material. Via top-down metoder har man under de senaste åren lyckats nyttja träets hierarkiska struktur i olika storleksordningar för innovativa applikationer. I detta sammanhang är bevarandet av den strukturella integriteten av största vikt.

Denna avhandling undersöker nya top-down metoder för att funktionalisera och kontrollera trämaterialens struktur. Med avsikt att bättre bevara och nyttja träets naturliga struktur och komponenter har två olika modifieringsmetoder undersökts för tall (pinus sylverstris): fullständig avlägsning av lignin samt in-situ modifiering av lignin. För att motverka cellstrukturens sönderfall efter fullständig delignifiering krävs det att polysackarider tvärbinds för att stärka vidhäftningen mellan trakeiderna. Modifiering av lignin (sulfonering) undersöktes som ett alternativ till fullständig delignifiering och resulterade i trämaterial med hög negativ laddning, upp till 375 µmol g-1, och med välbevarat lignin. 

Varmpressning av delignifierade träfanér resulterade i tunna träfilmer med hög optisk transmittans på 71 %, enastående draghållfasthet på 449 MPa och Youngs modul på 50 GPa. Förtätning av fanér med bevarat lignin gav starka och transparenta filmer med UV-blockerande förmåga vars massafibrer även kunde återvinnas.

Integrering med elektriskt ledande polymerer, som poly(3,4-etylendioxytiopen) polystyrensulfonat (PEDOT:PSS) och polypyrrol, i in-situ-sulfonerat trä resulterade i biokompositer med hög konduktivitet, upp till 203 S m-1, och hög pseudo-kapacitans upp till 38 mF cm-2. Detta visar att kontroll av träkemin och redox-aktivitet hos lignin genom sulfonering är viktiga strategier för att tillverka kompositer med potential för hållbara energitillämpningar.

Ett poröst trämaterial med unik mirkostruktur framställdes genom att justera träets kemi och morfologi. Materialet har förbättrad permeabilitet, en hög tryckhållfasthet på 9 MPa och en Young's modul på 364 MPa. Genom att tillsätta PEDOT:PSS till materialet så uppnåddes en enastående ledningsförmåga på 215 S m-1 och ett mekanoresponsivt elektriskt motstånd. Materialet därmed kan potentiellt användas för sensorer och mekanoresponsiva enheter.

In-situ modifiering av lignin är en mångsidig metod för att framställa trämaterial med förhöjd permeabilitet och porositet vilket förbättrar kompatibiliteten med elektriskt ledande polymerer och möjligheten för förtätning.

 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 76
Series
TRITA-CBH-FOU ; 2023:40
Keywords
Cellulose, wood, nanotechnology, sulfonation, biocomposite, cross-linking, densification, transparent film, wood foam, conductivity, Cellulosa, trä, nanoteknologi, sulfonering, biokomposit, tvärbindning, förtätning, transparent film, poröst trämaterial, konduktivitet
National Category
Wood Science Materials Chemistry Composite Science and Engineering Bio Materials Paper, Pulp and Fiber Technology Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-333353 (URN)978-91-8040-678-9 (ISBN)
Public defence
2023-09-19, F3, Lindstedtsvägen 26, via Zoom: https://kth-se.zoom.us/j/68517648405, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-08-21

Embargo godkänt av skolchef Amelie Eriksson Karlström i e-post 2023-08-22.

Available from: 2023-08-23 Created: 2023-08-21 Last updated: 2024-08-01Bibliographically approved
Mastantuoni, G. G., Li, L., Chen, H., Berglund, L. & Zhou, Q. (2023). High-Strength and UV-Shielding Transparent Thin Films from Hot-Pressed Sulfonated Wood. ACS Sustainable Chemistry and Engineering, 11(34), 12646-12655
Open this publication in new window or tab >>High-Strength and UV-Shielding Transparent Thin Films from Hot-Pressed Sulfonated Wood
Show others...
2023 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 34, p. 12646-12655Article in journal (Refereed) Published
Abstract [en]

Wood is a high-strength lightweight material owing to its orthotropic cellular structure and composite-like constitution. In conventional fabrication of wood-derived functional materials, the removal of the potentially beneficial components, such as lignin and hemicellulose, often leads to the disruption of the native hierarchical wood structure. Herein, we developed a facile method of in situ wood sulfonation followed by hot pressing for pine veneers to prepare high-density transparent thin films with preserved wood components and the natural fiber alignment. An optimum lignin content of the hot-pressed films was found to be 20.6% where both mechanical and optical properties were significantly enhanced with a more dense and compact structure. The hot-pressed transparent wood films also showed UV-blocking capability and could be recycled into discrete wood fibers owing to the sulfonate groups endowed by the in situ sulfonation step. The unique combination of properties achieved for thin wood films marks an important step in engineering functional wood-based materials that utilize both the structure of aligned fibers and the complex components of natural wood.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Wood Science
Identifiers
urn:nbn:se:kth:diva-334224 (URN)10.1021/acssuschemeng.3c02559 (DOI)001048169200001 ()2-s2.0-85169074231 (Scopus ID)
Note

QC 20230825

Available from: 2023-08-17 Created: 2023-08-17 Last updated: 2025-03-27Bibliographically approved
Mastantuoni, G. G., Tran, V. C., Engquist, I., Berglund, L. & Zhou, Q. (2023). In Situ Lignin Sulfonation for Highly Conductive Wood/Polypyrrole Porous Composites. Advanced Materials Interfaces, 10(1), Article ID 2201597.
Open this publication in new window or tab >>In Situ Lignin Sulfonation for Highly Conductive Wood/Polypyrrole Porous Composites
Show others...
2023 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 10, no 1, article id 2201597Article in journal (Refereed) Published
Abstract [en]

To address the rising need of sustainable solutions in electronic devices, the development of electronically conductive composites based on lightweight but mechanically strong wood structures is highly desirable. Here, a facile approach for the fabrication of highly conductive wood/polypyrrole composites through top-down modification of native lignin followed by polymerization of pyrrole in wood cell wall. By sodium sulfite treatment under neutral condition, sulfonated wood veneers with increased porosity but well-preserved cell wall structure containing native lignin and lignosulfonates are obtained. The wood structure has a content of sulfonic groups up to 343 µmol g−1 owing to in situ sulfonated lignin which facilitates subsequent oxidative polymerization of pyrrole, achieving a weight gain of polypyrrole as high as 35 wt%. The lignosulfonates in the wood structure act as dopant and stabilizer for the synthesized polypyrrole. The composite reaches a high conductivity of 186 S m−1 and a specific pseudocapacitance of 1.71 F cm−2 at the current density of 8.0 mA cm−2. These results indicate that tailoring the wood/polymer interface in the cell wall and activating the redox activity of native lignin by sulfonation are important strategies for the fabrication of porous and lightweight wood/conductive polymer composites with potential for sustainable energy applications. 

Place, publisher, year, edition, pages
Wiley, 2023
Keywords
composites, conductivity, energy, polypyrrole, sulfonated wood, Aromatic compounds, Lignin, Polymerization, Polypyrroles, Redox reactions, Sodium compounds, Sulfur compounds, Wooden buildings, Electronics devices, Lignosulfonates, Native lignins, Porous composites, Sulphonated wood, Sulphonation, Sustainable solution, Wood structure, Wood
National Category
Composite Science and Engineering Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-328108 (URN)10.1002/admi.202201597 (DOI)000865839600001 ()2-s2.0-85139530190 (Scopus ID)
Note

QC 20230602

Available from: 2023-06-02 Created: 2023-06-02 Last updated: 2023-08-25Bibliographically approved
Tran, V. C., Mastantuoni, G. G., Belaineh, D., Aminzadeh, S., Berglund, L., Berggren, M., . . . Engquist, I. (2022). Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications. Journal of Materials Chemistry A, 10(29), 15677-15688
Open this publication in new window or tab >>Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications
Show others...
2022 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 29, p. 15677-15688Article in journal (Refereed) Published
Abstract [en]

Nanostructured wood veneer with added electroactive functionality combines structural and functional properties into eco-friendly, low-cost nanocomposites for electronics and energy technologies. Here, we report novel conducting polymer-impregnated wood veneer electrodes where the native lignin is preserved, but functionalized for redox activity and used as an active component. The resulting electrodes display a well-preserved structure, redox activity, and high conductivity. Wood samples were sodium sulfite-treated under neutral conditions at 165 °C, followed by the tailored distribution of PEDOT:PSS, not previously used for this purpose. The mild sulfite process introduces sulfonic acid groups inside the nanostructured cell wall, facilitating electrostatic interaction on a molecular level between the residual lignin and PEDOT. The electrodes exhibit a conductivity of up to 203 S m−1 and a specific pseudo-capacitance of up to 38 mF cm−2, with a capacitive contribution from PEDOT:PSS and a faradaic component originating from lignin. We also demonstrate an asymmetric wood pseudo-capacitor reaching a specific capacitance of 22.9 mF cm−2 at 1.2 mA cm−2 current density. This new wood composite design and preparation scheme will support the development of wood-based materials for use in electronics and energy storage.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
National Category
Materials Chemistry Wood Science
Identifiers
urn:nbn:se:kth:diva-329053 (URN)10.1039/d1ta10366k (DOI)000823818600001 ()2-s2.0-85136601448 (Scopus ID)
Note

QC 20230614

Available from: 2023-06-14 Created: 2023-06-14 Last updated: 2023-08-21Bibliographically approved
Mastantuoni, G. G., Tran, V. C., Garemark, J., Dreimol, C. H., Engquist, I., Berglund, L. A. & Zhou, Q. Rationally Designed Conductive Wood with Mechanoresponsive Electrical Resistance.
Open this publication in new window or tab >>Rationally Designed Conductive Wood with Mechanoresponsive Electrical Resistance
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
Unidirectional freezing, wood foam, PEDOT:PSS, lignin sulfonation, conductivity, pressure sensing.
National Category
Wood Science Composite Science and Engineering Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-334428 (URN)
Note

QC 20230927

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-09-27Bibliographically approved
Wang, S., Mastantuoni, G. G. & Zhou, Q. Strong and Transparent Film of Naturally Aligned Softwood Holocellulose Fibers.
Open this publication in new window or tab >>Strong and Transparent Film of Naturally Aligned Softwood Holocellulose Fibers
(English)Manuscript (preprint) (Other academic)
Keywords
Softwood, crosslinking, delignification, holocellulose fiber, optical property, mechanical property
National Category
Paper, Pulp and Fiber Technology Wood Science
Identifiers
urn:nbn:se:kth:diva-333945 (URN)
Note

QC 20230927

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-09-27Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0007-4701-4054

Search in DiVA

Show all publications