kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (3 of 3) Show all publications
Hollmann, E. M., Marini, C., Rudakov, D. L., Martinez-Loran, E., Beidler, M., Herfindal, J. L., . . . Pitts, R. A. (2025). Measurement of post-disruption runaway electron kinetic energy and pitch angle during final loss instability in DIII-D. Plasma Physics and Controlled Fusion, 67(3), Article ID 035020.
Open this publication in new window or tab >>Measurement of post-disruption runaway electron kinetic energy and pitch angle during final loss instability in DIII-D
Show others...
2025 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 67, no 3, article id 035020Article in journal (Refereed) Published
Abstract [en]

Post-disruption runaway electron (RE) kinetic energy K and pitch angle sin ϑ are critical parameters for determining resulting first wall material damage during wall strikes, but are very challenging to measure experimentally. During the final loss instability, confined RE K and sin ϑ are reconstructed during center-post wall strikes for both high impurity (high-Z) and low impurity (low-Z) plasmas by combining soft x-ray, hard x-ray, synchrotron emission, and total radiated power measurements. Deconfined (wall impacting) RE sin ϑ is then reconstructed for these shots by using time-decay analysis of infra-red imaging. Additionally, deconfined RE K and sin ϑ are reconstructed for a low-Z downward loss shot by analyzing resulting damage to a sacrificial graphite dome limiter. The damage analysis uses multi-step modeling simulating plasma instability, RE loss orbits, energy deposition, and finally material expansion (MARS-F, KORC, GEANT-4, and finally COMSOL). Overall, mean kinetic energies are found to be in the range ⟨ K ⟩ ≈ 3 − 4 MeV for confined REs. KORC simulations indicate that the final loss instability process does not change individual RE kinetic energy K. Confined RE pitch angles are found to be fairly low initially pre-instability, ⟨ sin ϑ ⟩ ≈ 0.1 − 0.2 , but appear to increase roughly 2 × , to ⟨ sin ϑ ⟩ ≈ 0.3 − 0.4 for both confined and deconfined REs during instability onset in the low-Z case; this increase is not observed in the high-Z case.

Place, publisher, year, edition, pages
IOP Publishing, 2025
Keywords
disruptions, material damage, tokamak
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-361173 (URN)10.1088/1361-6587/adb5b6 (DOI)001427568700001 ()2-s2.0-85218941008 (Scopus ID)
Note

QC 20250312

Available from: 2025-03-12 Created: 2025-03-12 Last updated: 2025-03-12Bibliographically approved
Ratynskaia, S. V., Tolias, P., Rizzi, T., Paschalidis, K., Kulachenko, A., Hollmann, E., . . . Pitts, R. A. (2025). Modelling the brittle failure of graphite induced by the controlled impact of runaway electrons in DIII-D. Nuclear Fusion, 65(2), Article ID 024002.
Open this publication in new window or tab >>Modelling the brittle failure of graphite induced by the controlled impact of runaway electrons in DIII-D
Show others...
2025 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 65, no 2, article id 024002Article in journal (Refereed) Published
Abstract [en]

The thermo-mechanical response of an ATJ graphite sample to controlled runaway electron (RE) dissipation, realized in DIII-D, is modelled with a novel work-flow that features the RE orbit code KORC, the Monte Carlo particle transport code Geant4 and the finite element multiphysics software COMSOL. KORC provides the RE striking positions and momenta, Geant4 calculates the volumetric energy deposition and COMSOL simulates the thermoelastic response. Brittle failure is predicted according to the maximum normal stress criterion, which is suitable for ATJ graphite owing to its linear elastic behavior up to fracture and its isotropic mechanical properties. Measurements of the conducted energy, damage topology, explosion timing and blown-off material volume, impose a number of empirical constraints that suffice to distinguish between different RE impact scenarios and to identify RE parameters which provide the best match to the observations.

Place, publisher, year, edition, pages
IOP Publishing, 2025
Keywords
PFC damage, PFC thermoelastic response, runaway electrons
National Category
Fusion, Plasma and Space Physics Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-359669 (URN)10.1088/1741-4326/adab05 (DOI)001401270700001 ()2-s2.0-85216116538 (Scopus ID)
Note

QC 20250210

Available from: 2025-02-06 Created: 2025-02-06 Last updated: 2025-02-10Bibliographically approved
Pitts, R. A., Paschalidis, K., Ratynskaia, S. V., Rizzi, T., Tolias, P., Zhang, W. & et al., . (2025). Plasma-wall interaction impact of the ITER re-baseline. Nuclear Materials and Energy, 42, Article ID 101854.
Open this publication in new window or tab >>Plasma-wall interaction impact of the ITER re-baseline
Show others...
2025 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 42, article id 101854Article in journal (Refereed) Published
Abstract [en]

To mitigate the impact of technical delays, provide a more rationalized approach to the safety demonstration and move forward as rapidly as possible to a reactor relevant materials choice, the ITER Organization embarked in 2023 on a significant re-baselining exercise. Central to this strategy is the elimination of beryllium (Be) first wall (FW) armour in favour of tungsten (W), placing plasma-wall interaction (PWI) centre stage of this new proposal. The switch to W comes with a modified Research Plan in which a first “Start of Research Operation” (SRO) campaign will use an inertially cooled, temporary FW, allowing experience to be gained with disruption mitigation without risking damage to the complex water-cooled panels to be installed for later DT operation. Conservative assessments of the W wall source, coupled with integrated modelling of W pedestal and core transport, demonstrate that the elimination of Be presents only a low risk to the achievement of the principal ITER Q = 10 DT burning plasma target. Primarily to reduce oxygen contamination in the limiter start-up phase, known to be a potential issue for current ramp-up on W surfaces, a conventional diborane-based glow discharge boronization system is included in the re-baseline. First-of-a-kind modelling of the boronization glow is used to provide the physics specification for this system. Erosion simulations accounting for the 3D wall geometry provide estimates both of the lifetime of boron (B) wall coatings and the subsequent B migration to remote areas, providing support to a simple evaluation which concludes that boronization, if it were to be used frequently, would dominate fuel retention in an all-W ITER. Boundary plasma (SOLPS-ITER) and integrated core–edge (JINTRAC) simulations, including W erosion and transport, clearly indicate the tendency for a self-regulating W sputter source in limiter configurations and highlight the importance of on-axis electron cyclotron power deposition to prevent W core accumulation in the early current ramp phase. These predicted trends are found experimentally in dedicated W limiter start-up experiments on the EAST tokamak. The SOLPS-ITER runs are used to formulate W source boundary conditions for 1.5D DINA code scenario design simulations which demonstrate that flattop durations of ∼100 s should be possible in hydrogen L-modes at nominal field and current (Ip = 15 MA, BT = 5.3 T) which are one of the principal SRO targets. Runaway electrons (RE) are considered to be a key threat to the integrity of the final, actively cooled FW panels. New simulations of RE deposition and subsequent thermal transport in W under conservative assumptions for the impact energy and spatial distribution, conclude that there is a strong argument to increase the W armour thickness in key FW areas to improve margins against cooling channel interface damage in the early DT operation phases when new RE seeds will be experienced for the first time.

Place, publisher, year, edition, pages
Elsevier Ltd, 2025
Keywords
Boronization, First Wall, Limiter start-up, Runaway electrons, SOLPS-ITER, Tungsten
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-358414 (URN)10.1016/j.nme.2024.101854 (DOI)2-s2.0-85213956837 (Scopus ID)
Note

QC 20250117

Available from: 2025-01-15 Created: 2025-01-15 Last updated: 2025-01-17Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0005-2195-7260

Search in DiVA

Show all publications