Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 389) Show all publications
Ribet, F., De Pietro, L., Roxhed, N. & Stemme, G. (2018). Gas diffusion and evaporation control using EWOD actuation of ionic liquid microdroplets for gas sensing applications. Sensors and actuators. B, Chemical, 267, 647-654
Open this publication in new window or tab >>Gas diffusion and evaporation control using EWOD actuation of ionic liquid microdroplets for gas sensing applications
2018 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 267, p. 647-654Article in journal (Refereed) Published
Abstract [en]

The lifetime of electrochemical gas sensors suffers from electrolyte evaporation and from the impracticality to perform recalibration. To tackle these issues, a prototype of a microfabricated gas diffusion controlling system, based on coplanar electrowetting-on-dielectric (EWOD) actuation of ionic liquid microdroplets, is presented. The system is designed to be integrated with electrochemical gas sensors to allow on-demand sealing of the sensing chamber from the environment. The MEMS device can be electrically toggled between an open and a closed state, in which the microdroplets are used to cover or uncover the openings of a perforated membrane connecting to the sensing compartment, respectively. This ON/OFF diffusion-blocking valve mechanism potentially allows for recalibration and for liquid electrolyte evaporation reduction when the sensor is not in use, thus extending the gas sensor lifetime. A one order of magnitude reduction of evaporation rate and a more than three orders of magnitude reduction of gas diffusion time were experimentally demonstrated. Ionic liquid movement can be performed with an applied AC voltage as low as 18 V, using super-hydrophobic cover plates to facilitate droplet motion. Furthermore, the shown ionic liquid micro-droplet manipulation provides a robust and low voltage platform for digital microfluidics, readily adaptable to serve different applications.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Contact angle modulation, Electrochemical gas sensing, Electrowetting on dielectric, Gas diffusion valve, Ionic liquids, MEMS actuator
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-229250 (URN)10.1016/j.snb.2018.04.076 (DOI)000432775600076 ()2-s2.0-85046339371 (Scopus ID)
Funder
EU, European Research Council, 267528Swedish Research Council
Note

QC 20180601

Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-06-13Bibliographically approved
Ribet, F., De Pietro, L., Roxhed, N. & Stemme, G. (2018). Ionic liquid microdroplet manipulation by electrowetting-on-dielectric for on/off diffusion control. In: 2018 IEEE Micro Electro Mechanical Systems (MEMS): . Paper presented at 31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, United Kingdom, 21 January 2018 through 25 January 2018 (pp. 1181-1184). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Ionic liquid microdroplet manipulation by electrowetting-on-dielectric for on/off diffusion control
2018 (English)In: 2018 IEEE Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1181-1184Conference paper, Published paper (Refereed)
Abstract [en]

This article presents a proof-of-concept of a device able to control (ON/OFF) gas diffusion through a perforated membrane. The microfabricated system is based on electrowetting-on-dielectric (EWOD) actuation of ionic liquid (IL) microdroplets and can be electrically toggled from an open to a closed state, in which microdroplets cover or uncover the membrane openings, respectively. The system is designed to be integrated with liquid-electrolyte-based electrochemical gas sensors, to extend their lifetime by reducing electrolyte evaporation and allowing recalibration. The realized device was proven to limit gas diffusion and water evaporation through perforated portions of thin membranes on command.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018
Series
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-228548 (URN)10.1109/MEMSYS.2018.8346773 (DOI)2-s2.0-85047004600 (Scopus ID)9781538647820 (ISBN)
Conference
31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, United Kingdom, 21 January 2018 through 25 January 2018
Funder
EU, European Research CouncilSwedish Research Council
Note

QC 20180528

Available from: 2018-05-28 Created: 2018-05-28 Last updated: 2018-05-28Bibliographically approved
Ribet, F., Stemme, G. & Roxhed, N. (2018). Microneedle-based system for minimally invasive continuous monitoring of glucose in the dermal interstitial fluid. In: 2018 IEEE Micro Electro Mechanical Systems (MEMS): . Paper presented at 31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, United Kingdom, 21 January 2018 through 25 January 2018 (pp. 408-411). Institute of Electrical and Electronics Engineers (IEEE), 2018
Open this publication in new window or tab >>Microneedle-based system for minimally invasive continuous monitoring of glucose in the dermal interstitial fluid
2018 (English)In: 2018 IEEE Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2018, p. 408-411Conference paper, Published paper (Refereed)
Abstract [en]

We present a minimally invasive continuous glucose monitoring (CGM) device. The system consists in an ultra-miniaturized electrochemical sensor probe (70 × 700 × 50 μm3) inserted into the lumen of a hollow silicon microneedle. The implantable portion of the system is 50-fold smaller than state-of-the-art commercial products, thus enabling glucose monitoring in the dermis and a less invasive insertion procedure. Passive interstitial fluid extraction is achieved, making the daily use of this system practically viable. Moreover, the sensor positioning provides minimal delay in tracking glycaemia (5-10 minutes lag), due to the minimal distance between sensing electrodes and microneedle opening. The demonstrated system has therefore the potential to enable minimally invasive, fast and reliable CGM in patients affected by diabetes.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018
Series
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
National Category
Embedded Systems
Identifiers
urn:nbn:se:kth:diva-228550 (URN)10.1109/MEMSYS.2018.8346574 (DOI)2-s2.0-85046998695 (Scopus ID)9781538647820 (ISBN)
Conference
31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, United Kingdom, 21 January 2018 through 25 January 2018
Funder
VINNOVA, E!8573EU, European Research Council, 267528
Note

QC 20180528

Available from: 2018-05-28 Created: 2018-05-28 Last updated: 2018-05-28Bibliographically approved
Errando-Herranz, C., Edinger, P., Colangelo, M., Björk, J., Ahmed, S., Stemme, G., . . . Gylfason, K. B. (2018). New dynamic silicon photonic components enabled by MEMS technology. In: Proceedings Volume 10537, Silicon Photonics XIII: . Paper presented at SPIE OPTO,2018 ,San Francisco, California, United States. SPIE - International Society for Optical Engineering, 10537
Open this publication in new window or tab >>New dynamic silicon photonic components enabled by MEMS technology
Show others...
2018 (English)In: Proceedings Volume 10537, Silicon Photonics XIII, SPIE - International Society for Optical Engineering, 2018, Vol. 10537Conference paper, Published paper (Refereed)
Abstract [en]

Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2018
Keywords
MEMS, silicon photonics, tuning, ring resonator, waveguide dispersion, surface grating coupler
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-225106 (URN)10.1117/12.2297588 (DOI)
Conference
SPIE OPTO,2018 ,San Francisco, California, United States
Projects
VR-HETXMEMSM&M
Funder
Swedish Research Council, 621-2012-5364Swedish Research Council, B0460801EU, European Research Council, 277879EU, European Research Council, 267528
Note

QC 20180404

Available from: 2018-03-28 Created: 2018-03-28 Last updated: 2018-04-05Bibliographically approved
Schröder, S., Gatty, H. K., Stemme, G., Roxhed, N. & Niklaus, F. (2017). A low-cost nitric oxide gas sensor based on bonded gold wires. In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems: . Paper presented at 19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, Kaohsiung, Taiwan, 18 June 2017 through 22 June 2017 (pp. 1457-1460). Institute of Electrical and Electronics Engineers (IEEE), Article ID 7994334.
Open this publication in new window or tab >>A low-cost nitric oxide gas sensor based on bonded gold wires
Show others...
2017 (English)In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 1457-1460, article id 7994334Conference paper, Published paper (Refereed)
Abstract [en]

In this paper we report of a novel and very simple fabrication method for realizing amperometric gas sensors using conventional wire bonding technology. Working and counter electrodes are made of 360 vertically standing bond wires, entirely manufactured by a fully automated, standard wire bonding tool. Our process enables standing bond wires with a length of 1.24 mm, resulting in an extremely high aspect-ratio of 50, thus effectively increasing the surface area of the working electrode. All gas sensor electrodes are embedded in a polymer-based, solid electrolyte. Therefore, laborious handling of liquid electrolytes can be avoided. Here, we report of a nitric oxide (NO) gas sensor that is capable of detecting NO gas concentrations down to the single-digit ppm range. The proposed approach demonstrates the feasibility towards a scalable and entire back-end fabrication concept for low-cost NO gas sensors.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-214452 (URN)10.1109/TRANSDUCERS.2017.7994334 (DOI)000426701400362 ()2-s2.0-85029388567 (Scopus ID)9781538627310 (ISBN)
Conference
19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, Kaohsiung, Taiwan, 18 June 2017 through 22 June 2017
Note

QC 20171211

Available from: 2017-09-14 Created: 2017-09-14 Last updated: 2018-03-22Bibliographically approved
Schröder, S., Rödjegård, H., Stemme, G. & Niklaus, F. (2017). A single wire large-area filament emitter for spectroscopic ethanol gas sensing fabricated using a wire bonding tool. In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems: . Paper presented at 19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, Kaohsiung, Taiwan, 18 June 2017 through 22 June 2017 (pp. 315-318). IEEE, Article ID 7994052.
Open this publication in new window or tab >>A single wire large-area filament emitter for spectroscopic ethanol gas sensing fabricated using a wire bonding tool
2017 (English)In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, 2017, p. 315-318, article id 7994052Conference paper, Published paper (Refereed)
Abstract [en]

Non-dispersive infrared (NDIR) gas spectroscopy is a highly accurate optical gas sensing technology, which has been implemented in various industrial applications. However NDIR systems remain too expensive for many consumer and automotive apphcations. The cost of the infrared (IR) emitter component is a substantial part of the total system cost. In this paper we report of a single filament IR emitter that is fabricated using wire bonding technology. Our fabrication approach offers the prospect of a fully automated assembly by means of utihzing a wire bonding tool to integrate the single filament to the MEMS structured silicon substrate. An apphcation-specific wire bond trajectory enables the mechanical attachment of the filament to form the meander-shaped emitter with a total area of 1 mm2. The fabricated IR emitter utilizes a Kanthal (FeCrAl) filament with very high thermal stability and excellent emitting properties under atmospheric conditions. The packaged IR emitter has been characterized using Fourier transform infrared (FTIR) spectroscopy to study the emitted IR spectrum with respect to the requirements of NDIR systems.

Place, publisher, year, edition, pages
IEEE, 2017
Keywords
NDIR, non-dispersive infrared gas sensing, ethanol gas sensing, breath alcohol sensing, infrared emitter, wire bonding, non-bondable wire materials, integration platform, Kanthal filament
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-214450 (URN)10.1109/TRANSDUCERS.2017.7994052 (DOI)000426701400080 ()2-s2.0-85029362985 (Scopus ID)978-1-5386-2732-7 (ISBN)
Conference
19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, Kaohsiung, Taiwan, 18 June 2017 through 22 June 2017
Funder
EU, European Research Council, 277879Swedish Research Council, 621-2011-4437VINNOVA, 2015-00402
Note

QC 20171211

Available from: 2017-09-14 Created: 2017-09-14 Last updated: 2018-03-23Bibliographically approved
Dubois, V. J., Niklaus, F. & Stemme, G. (2017). Design and fabrication of crack-junctions. MICROSYSTEMS & NANOENGINEERING, 3, Article ID UNSP 17042.
Open this publication in new window or tab >>Design and fabrication of crack-junctions
2017 (English)In: MICROSYSTEMS & NANOENGINEERING, ISSN 2055-7434, Vol. 3, article id UNSP 17042Article in journal (Refereed) Published
Abstract [en]

Nanogap electrodes consist of pairs of electrically conducting tips that exhibit nanoscale gaps. They are building blocks for a variety of applications in quantum electronics, nanophotonics, plasmonics, nanopore sequencing, molecular electronics, and molecular sensing. Crack-junctions (CJs) constitute a new class of nanogap electrodes that are formed by controlled fracture of suspended bridge structures fabricated in an electrically conducting thin film under residual tensile stress. Key advantages of the CJ methodology over alternative technologies are that CJs can be fabricated with wafer-scale processes, and that the width of each individual nanogap can be precisely controlled in a range from <2 to >100 nm. While the realization of CJs has been demonstrated in initial experiments, the impact of the different design parameters on the resulting CJs has not yet been studied. Here we investigate the influence of design parameters such as the dimensions and shape of the notches, the length of the electrode-bridge and the design of the anchors, on the formation and propagation of cracks and on the resulting features of the CJs. We verify that the design criteria yields accurate prediction of crack formation in electrode-bridges featuring a beam width of 280 nm and beam lengths ranging from 1 to 1.8 mu m. We further present design as well as experimental guidelines for the fabrication of CJs and propose an approach to initiate crack formation after release etching of the suspended electrode-bridge, thereby enabling the realization of CJs with pristine electrode surfaces.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2017
Keywords
arrays, crack-junctions, lithography, nanofabrication, nanogap electrodes, notches, optimization, tunneling junctions
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-217431 (URN)10.1038/micronano.2017.42 (DOI)000414166400001 ()
Note

QC 20171117

Available from: 2017-11-17 Created: 2017-11-17 Last updated: 2018-05-22Bibliographically approved
Wang, X., Stemme, G. & Roxhed, N. (2017). High aspect ratio silicon field emitter arrays (FEAs) as miniaturized stable electron source for catheter-based radiotherapy. In: Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems: . Paper presented at IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE conference proceedings
Open this publication in new window or tab >>High aspect ratio silicon field emitter arrays (FEAs) as miniaturized stable electron source for catheter-based radiotherapy
2017 (English)In: Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems, IEEE conference proceedings, 2017Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents a miniaturized electron source based on high aspect ratio silicon (Si) field emitter arrays (FEAs) intended for generating x-rays in a catheter-based radiotherapy application. The fabricated Si FEAs demonstrate stable emission currents of approximately 10 μA at an acceleration voltage of 21.7 kV for more than 15 minutes under moderate vacuum requirements. The current stability was enhanced by the introduction of a field compensation frame design for the electric field distribution and a tip conditioning procedure of the Si FEAs. The experimental results are in line with the requirement of delivering relevant doses for cancer radiotherapy. 

Place, publisher, year, edition, pages
IEEE conference proceedings, 2017
Keywords
silicon, field emission, field emitter arrays (FEAs), miniaturized, electron source, x-ray, radiotherapy, brachytherapy, catheter-based, minimally invasive
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-199869 (URN)000402552000135 ()2-s2.0-85015783123 (Scopus ID)
Conference
IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)
Projects
X-Ray
Note

When citing this work, please cite the original published paper.

QCR 20170206

QC 20170607

Available from: 2017-01-17 Created: 2017-01-16 Last updated: 2017-07-03Bibliographically approved
Wang, X., Bleiker, S. J., Antelius, M., Stemme, G. & Niklaus, F. (2017). Narrow footprint copper sealing rings for low-temperature hermetic wafer-level packaging. In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems: . Paper presented at 19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, 18 June 2017 through 22 June 2017 (pp. 423-426). Institute of Electrical and Electronics Engineers (IEEE), Article ID 7994077.
Open this publication in new window or tab >>Narrow footprint copper sealing rings for low-temperature hermetic wafer-level packaging
Show others...
2017 (English)In: TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 423-426, article id 7994077Conference paper, Published paper (Refereed)
Abstract [en]

This paper reports a narrow footprint sealing ring design for low-temperature, hermetic, and mechanically stable wafer-level packaging. Copper (Cu) sealing rings that are as narrow as 8 μm successfully seal the enclosed cavities on the wafers after bonding at a temperature of 250 °C. Different sealing structure designs are evaluated and demonstrate excellent hermeticity after 3 months of storage in ambient atmosphere. A leak rate of better than 3.6×10'16 mbarL/s is deduced based on results from residual gas analysis measurements. The sealing yield after wafer bonding is found to be not limited by the Cu sealing ring width but by a maximum acceptable wafer-to-wafer misalignment.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017
Keywords
Actuators, Copper, Electronics packaging, Microsystems, Sealing (closing), Solid-state sensors, Temperature, Transducers, Ambient atmosphere, Hermeticity, Low temperatures, Mechanically stable, Residual gas analysis, Sealing ring, Sealing structures, Wafer level packaging, Wafer bonding
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-216276 (URN)10.1109/TRANSDUCERS.2017.7994077 (DOI)000426701400105 ()2-s2.0-85029393420 (Scopus ID)9781538627310 (ISBN)
Conference
19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017, 18 June 2017 through 22 June 2017
Note

QC 20171215

Available from: 2017-12-15 Created: 2017-12-15 Last updated: 2018-04-17Bibliographically approved
Wang, X., Bleiker, S. J., Antelius, M., Stemme, G. & Niklaus, F. (2017). Wafer-level vacuum packaging enabled by plastic deformation and low-temperature welding of copper sealing rings with a small footprint. Journal of microelectromechanical systems, 26(2), 357-365, Article ID 7845563.
Open this publication in new window or tab >>Wafer-level vacuum packaging enabled by plastic deformation and low-temperature welding of copper sealing rings with a small footprint
Show others...
2017 (English)In: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 26, no 2, p. 357-365, article id 7845563Article in journal (Refereed) Published
Abstract [en]

Wafer-level vacuum packaging is vital in the fabrication of many microelectromechanical systems (MEMS) devices and enables significant cost reduction in high-volume MEMS production. In this paper, we propose a low-temperature wafer-level vacuum packaging method based on plastic deformation and low-temperature welding of copper sealing rings with a small footprint. A device wafer with copper ring structures and a cap wafer with corresponding metalized grooves are placed inside a vacuum chamber and pressed together at a temperature of 250 ̊C, resulting in low-temperature welding of the copper, and thus, hermetic sealing of the cavities enclosed by the sealing rings. The vacuum pressure inside the fabricated cavities 146 days after bonding was measured using residual gas analysis to be as low as 2.6×10-2 mbar. Based on this value, the leak rate is calculated to be smaller than 3.6×10-16 mbarL/s using the most conservative assumptions, demonstrating the excellent hermeticity of the seals. Shear testing was used to demonstrate that the seals are mechanically stable with over 90 MPa in shear strength for 5.2 μm-high Cu sealing rings with widths down to 8 μm. The reported method is potentially compatible with complementary metaloxide-semiconductor (CMOS) substrates and may be applied to vacuum packaging of 3-D heterogeneously integrated MEMS on state-of-the-art CMOS substrates.

Place, publisher, year, edition, pages
IEEE, 2017
Keywords
vacuum, wafer level packaging, MEMS, sealing, copper, hermetic, 3D integration, small footprint, cold welding
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-205604 (URN)10.1109/JMEMS.2017.2654510 (DOI)000399333800008 ()2-s2.0-85012186729 (Scopus ID)
Funder
EU, FP7, Seventh Framework Programme, 288670EU, European Research Council, 277879
Note

QC 20170516

When citing this work, please cite the original published paper.

Available from: 2017-04-19 Created: 2017-04-19 Last updated: 2017-06-02Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9552-4234

Search in DiVA

Show all publications