Change search
Link to record
Permanent link

Direct link
BETA
Odnevall Wallinder, IngerORCID iD iconorcid.org/0000-0003-2206-0082
Alternative names
Publications (10 of 193) Show all publications
Gliga, A. R., De Loma, J., Di Bucchianico, S., Skoglund, S., Keshavan, S., Odnevall Wallinder, I., . . . Fadeel, B. (2020). Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. NANOSCALE ADVANCES, 2(2), 648-658
Open this publication in new window or tab >>Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines
Show others...
2020 (English)In: NANOSCALE ADVANCES, ISSN 2516-0230, Vol. 2, no 2, p. 648-658Article in journal (Refereed) Published
Abstract [en]

Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2020
National Category
Immunology in the medical area
Identifiers
urn:nbn:se:kth:diva-271303 (URN)10.1039/c9na00721k (DOI)000517128400008 ()2-s2.0-85080051728 (Scopus ID)
Note

QC 20200331

Available from: 2020-03-31 Created: 2020-03-31 Last updated: 2020-03-31Bibliographically approved
Atapour, M., Odnevall Wallinder, I. & Hedberg, Y. (2020). Stainless steel in simulated milk and whey protein solutions - Influence of grade on corrosion and metal release. Electrochimica Acta, 331, Article ID 135428.
Open this publication in new window or tab >>Stainless steel in simulated milk and whey protein solutions - Influence of grade on corrosion and metal release
2020 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 331, article id 135428Article in journal (Refereed) Published
Abstract [en]

Reactions at the biointerfaces between stainless steel and protein-rich dairy products, which contain whey proteins, are important to consider in terms of food safety and material grade selection. Changes in corrosion behavior, metal release, and surface composition of austenitic (AISI 316 L), ferritic (AISI 430), and lean duplex (LDX 2101) stainless steels in simulated milk (SMS) and whey protein solution were investigated. The amount of released metals and the corrosion susceptibility increased according to 2101 < 316 L < 430. All grades revealed low corrosion rates in the whey protein solution without any sign of active/metastable corrosion. Pitting corrosion was evident for 430 in SMS. The total amount of released metals (iron, chromium, and nickel) was significantly higher in whey protein solution compared with SMS. This suggests the metal release process to be mainly governed by complexation reactions. Nickel was preferentially released compared to its bulk composition fraction for both 316 L and 2101 in the highly complexing SMS. Reduced metal release rates with time correlated with the enrichment of chromium in the surface oxide. The extent of metal release was for all metals substantially lower than release limits of metals stipulated in health regulations related to the use of alloys and metals in food-related environments.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2020
Keywords
Surface oxide, Complexation, Pitting corrosion, Food safety, Biocorrosion
National Category
Corrosion Engineering
Identifiers
urn:nbn:se:kth:diva-266917 (URN)10.1016/j.electacta.2019.135428 (DOI)000506011100088 ()2-s2.0-85075909344 (Scopus ID)
Note

QC 20200214

Available from: 2020-02-14 Created: 2020-02-14 Last updated: 2020-02-14Bibliographically approved
Wang, X., Herting, G., Wei, Z., Odnevall Wallinder, I. & Hedberg, Y. (2019). Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel- or cobalt-based alloys, and nickel and cobalt metals in artificial sweat. Regulatory toxicology and pharmacology, 106, 15-26
Open this publication in new window or tab >>Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel- or cobalt-based alloys, and nickel and cobalt metals in artificial sweat
Show others...
2019 (English)In: Regulatory toxicology and pharmacology, ISSN 0273-2300, E-ISSN 1096-0295, Vol. 106, p. 15-26Article in journal (Refereed) Published
Abstract [en]

Nickel (Ni)and cobalt (Co)are the most common metal allergens upon skin contact at occupational settings and during consumer handling of metals and alloys. A standardized test (EN, 1811)exists to assess Ni release from articles of metals and alloys in massive forms intended for direct and prolonged skin contact, but no corresponding test exists for other materials such as powders or massive forms of alloys placed on the market or to determine the release of Co, for which only limited data is available. Differences in Ni and Co release from massive forms of a range of common stainless steels and some high-alloyed grades compared to Ni and Co metals were therefore assessed in artificial sweat for 1 week at 30 °C according to EN 1811. A comparable modified test procedure was elaborated and used for powders and some selected massive alloys. All alloys investigated released significantly less amount of Ni (100–5000-fold)and Co (200–400,000-fold)compared with Ni and Co metal, respectively. Almost all alloys showed a lower bioaccessible concentration (0.007–6.8 wt% Ni and 0.00003–0.6 wt% Co)when compared to corresponding bulk alloy contents (0.1–53 wt% Ni, 0.02–65 wt% Co). Observed differences are, among other factors, related to differences in bulk composition and to surface oxide characteristics. For the powders, less Ni and Co were released per surface area, but more per mass, compared to the corresponding massive forms. © 2019 The Authors

Place, publisher, year, edition, pages
Academic Press Inc., 2019
Keywords
Artificial sweat, Classification, Corrosion, EN 1811, Metal release, Particles, Regulation, Skin sensitizer, alloy, cobalt, dermatological agent, nickel, oxide, stainless steel, unclassified drug, Article, calibration, chemical composition, concentration (parameter), particle size, pH, powder, priority journal, surface area, surface property
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-252512 (URN)10.1016/j.yrtph.2019.04.017 (DOI)000513219700003 ()31028796 (PubMedID)2-s2.0-85064756776 (Scopus ID)
Note

QC 20190710

Available from: 2019-07-10 Created: 2019-07-10 Last updated: 2020-03-17Bibliographically approved
Gupta, G. S., Gliga, A., Hedberg, J., Serra, A., Greco, D., Odnevall Wallinder, I. & Fadeel, B. (2019). Cobalt-impregnated tungsten nanoparticles and cobalt ions trigger toxicity in differentiating neuronal cells: potential link to parkinsonian neurodegeneration. Paper presented at 55th Congress of the European-Societies-of-Toxicology (EUROTOX) - Toxicology - Science Providing Solutions, SEP 08-11, 2019, Helsinki, FINLAND. Toxicology Letters, 314, S201-S202
Open this publication in new window or tab >>Cobalt-impregnated tungsten nanoparticles and cobalt ions trigger toxicity in differentiating neuronal cells: potential link to parkinsonian neurodegeneration
Show others...
2019 (English)In: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 314, p. S201-S202Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
ELSEVIER IRELAND LTD, 2019
National Category
Pharmacology and Toxicology
Identifiers
urn:nbn:se:kth:diva-260992 (URN)000484771800542 ()
Conference
55th Congress of the European-Societies-of-Toxicology (EUROTOX) - Toxicology - Science Providing Solutions, SEP 08-11, 2019, Helsinki, FINLAND
Note

QC 20191010

Available from: 2019-10-10 Created: 2019-10-10 Last updated: 2019-10-10Bibliographically approved
McCarrick, S., Wei, Z., Moelijker, N., Derr, R., Persson, K.-A., Hendriks, G., . . . Karlsson, H. L. (2019). High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility. Nanotoxicology
Open this publication in new window or tab >>High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility
Show others...
2019 (English)In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404Article in journal (Refereed) Published
Abstract [en]

Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.

Place, publisher, year, edition, pages
TAYLOR & FRANCIS LTD, 2019
Keywords
Welding, genotoxicity, ToxTracker, chromium(VI), manganese, metal release
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-257811 (URN)10.1080/17435390.2019.1650972 (DOI)000481646900001 ()31418618 (PubMedID)2-s2.0-85070998815 (Scopus ID)
Note

QC 20190906

Available from: 2019-09-06 Created: 2019-09-06 Last updated: 2019-10-02Bibliographically approved
Hedberg, J., Fransson, K., Prideaux, S., Roos, S., Jönsson, C. & Odnevall Wallinder, I. (2019). Improving the life cycle impact assessment of metal ecotoxicity: Importance of chromium speciation, water chemistry, and metal release. Sustainability, 11(6), Article ID 1655.
Open this publication in new window or tab >>Improving the life cycle impact assessment of metal ecotoxicity: Importance of chromium speciation, water chemistry, and metal release
Show others...
2019 (English)In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 6, article id 1655Article in journal (Refereed) Published
Abstract [en]

Investigations of metal ecotoxicity in life cycle assessment (LCA) and life cycle impact assessment (LCIA) are becoming important tools for evaluating the environmental impact of a product or process. There is, however, improvement needed for LCIA of metal ecotoxicity in order to make this assessment more relevant and robust. In this work, three issues within the LCIA of metal ecotoxicity are investigated, mainly focusing on topics related to stainless steel manufacturing. The first issue is the importance of considering regional water chemistry when constructing the characterization factor (CF). A model freshwater of relevance for stainless steel manufacturing in a region of Sweden was created with chemistry different from available options. The second issue is related to the lack of consideration on changes in speciation of Cr(VI) in freshwater for a given emission, as Cr(VI) to some extent will be reduced to Cr(III). Two new options are suggested based on relationships between the Cr(VI)-total Cr ratio as a way to improve the relevancy of LCIA for Cr(VI) in freshwater. The last issue is how to treat metal release from slags in LCIA. Metal release from slags was shown to vary significantly between different ways of modelling slag emissions (differences in total metal content, slag leaching tests, estimated emissions to groundwater). 

Place, publisher, year, edition, pages
MDPI AG, 2019
Keywords
Chromium, Chromium(VI), Ecotoxicity, Life cycle assessment, Life cycle impact assessment, Metal release, Nickel, Slag, Stainless steel, USEtox
National Category
Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-252241 (URN)10.3390/su11061655 (DOI)000465613000110 ()2-s2.0-85063495702 (Scopus ID)
Note

QC20190612

Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2019-06-12Bibliographically approved
Hedberg, J., Blomberg, E. & Odnevall Wallinder, I. (2019). In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review. Environmental Science and Technology, 53(8), 4030-4044
Open this publication in new window or tab >>In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review
2019 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 53, no 8, p. 4030-4044Article in journal (Refereed) Published
Abstract [en]

Knowledge on relations between particle properties and dissolution/transformation characteristics of metal and metal oxide nanoparticles (NPs) in freshwater is important for risk assessment and product development. This critical review aims to elucidate nanospecific effects on dissolution of metallic NPs in freshwater and similar media. Dissolution rate constants are compiled and analyzed for NPs of silver (Ag), copper (Cu), copper oxide/hydroxide (CuO, Cu(OH) 2 ), zinc oxide (ZnO), manganese (Mn), and aluminum (Al), showing largely varying (orders of magnitude) constants when modeled using first order kinetics. An effect of small primary sizes (&lt;15 nm) was observed, leading to increased dissolution rate constants and solubility in some cases. However, the often extensive particle agglomeration can result in reduced nanospecific effects on dissolution and also an increased uncertainty related to the surface area, a parameter that largely influence the extent of dissolution. Promising ways to model surface areas of NPs in solution using fractal dimensions and size distributions are discussed in addition to nanospecific aspects related to other processes such as corrosion, adsorption of natural organic matter (NOM), presence of capping agents, and existence of surface defects. The importance of the experimental design on the results of dissolution experiments of metal and metal oxide NPs is moreover highlighted, including the influence of ionic metal solubility and choice of particle dispersion methodology.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
Keywords
Biological materials, Copper oxides, Corrosion, Design of experiments, Dissolution, Fractal dimension, II-VI semiconductors, Metal nanoparticles, Rate constants, Risk assessment, Solubility, Surface defects, Water, Zinc oxide, First order kinetics, Metal and metal oxide nanoparticles, Metallic nanoparticles, Natural organic matters, Orders of magnitude, Particle agglomerations, Particle dispersion, Particle properties, Metals
National Category
Corrosion Engineering
Identifiers
urn:nbn:se:kth:diva-255914 (URN)10.1021/acs.est.8b05012 (DOI)000465190300005 ()30908015 (PubMedID)2-s2.0-85064571562 (Scopus ID)
Note

QC 20190821

Available from: 2019-08-22 Created: 2019-08-22 Last updated: 2020-03-09Bibliographically approved
Mei, N., Hedberg, J., Odnevall Wallinder, I. & Blomberg, E. (2019). Influence of Biocorona Formation on the Transformation and Dissolution of Cobalt Nanoparticles under Physiological Conditions. ACS Omega, 4(26), 21778-21791
Open this publication in new window or tab >>Influence of Biocorona Formation on the Transformation and Dissolution of Cobalt Nanoparticles under Physiological Conditions
2019 (English)In: ACS Omega, ISSN 2470-1343, Vol. 4, no 26, p. 21778-21791Article in journal (Refereed) Published
Abstract [en]

Cobalt (Co) nanoparticles (NPs) are produced in different applications and unintentionally generated at several occupational and traffic settings. Their diffuse dispersion may lead to interactions with humans and aquatic organisms via different exposure routes that include their transformation/dissolution in biological media. This paper has investigated the particle stability and reactivity of Co NPs (dispersed by sonication prior to exposure) interacting with selected individual biomolecules (amino acids, polypeptides, and proteins) in phosphate-buffered saline (PBS). No or minor adsorption of amino acids (glutamine, glutamic acid, lysine, and cysteine) was observed on the Co NPs, independent of the functional group and charge. Instead, phosphate adsorption resulted in the formation of a surface layer (a corona) of Co phosphate. The adsorption of larger biomolecules (polyglutamic acid, polylysine, lysozyme, and mucin) was evident in parallel with the formation of Co phosphate. The dissolution of the Co NPs was rapid as 35-55% of the particle mass was dissolved within the first hour of exposure. The larger biomolecules suppressed the dissolution initially compared to exposure in PBS only, whereas the dissolution was essentially unaffected by the presence of amino acids, with cysteine as an exception. The formation of Co phosphate on the NP surface reduced the protective properties of the surface oxide of the Co NPs, as seen from the increased levels of the released Co when compared with the nonphosphate-containing saline. The results underline the diversity of possible outcomes with respect to surface characteristics and dissolution of Co NPs in biological media and emphasize the importance of surface interactions with phosphate on the NP characteristics and reactivity.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-266719 (URN)10.1021/acsomega.9b02641 (DOI)000504635000015 ()31891055 (PubMedID)2-s2.0-85076772366 (Scopus ID)
Note

QC 20200117

Available from: 2020-01-17 Created: 2020-01-17 Last updated: 2020-02-04Bibliographically approved
Hedberg, Y., Znidarsic, M., Herting, G., Milosev, I. & Odnevall Wallinder, I. (2019). Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 107(3), 858-867
Open this publication in new window or tab >>Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V
Show others...
2019 (English)In: Journal of Biomedical Materials Research - Part B Applied Biomaterials, ISSN 1552-4973, Vol. 107, no 3, p. 858-867Article in journal (Refereed) Published
Abstract [en]

The titanium–aluminium (6 wt%)–vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H 2 O 2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H 2 O 2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H 2 O 2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H 2 O 2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H 2 O 2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way.

Place, publisher, year, edition, pages
WILEY, 2019
Keywords
implant, XPS, inflammation, complexation, dissolution
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-248329 (URN)10.1002/jbm.b.34182 (DOI)000461683400040 ()30102828 (PubMedID)2-s2.0-85052655822 (Scopus ID)
Note

QC 20190409

Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2019-04-09Bibliographically approved
Atapour, M., Wei, Z., Chaudhary, H., Lendel, C., Odnevall Wallinder, I. & Hedberg, Y. (2019). Metal release from stainless steel 316L in whey protein - And simulated milk solutions under static and stirring conditions. Food Control, 101, 163-172
Open this publication in new window or tab >>Metal release from stainless steel 316L in whey protein - And simulated milk solutions under static and stirring conditions
Show others...
2019 (English)In: Food Control, ISSN 0956-7135, E-ISSN 1873-7129, Vol. 101, p. 163-172Article in journal (Refereed) Published
Abstract [en]

Stainless steel is an important transport and processing contact material for bovine milk and dairy products. Release (migration) of metals, ions, complexes or wear debris/particles, and metal-induced protein aggregation in such environments are hence important to consider both from a corrosion and food safety perspective. This study aims on investigating the release of iron (Fe), chromium (Cr), and nickel (Ni) from AISI 316L stainless steel in contact with whey protein solutions relevant for protein drinks, and on how the whey proteins are influenced by stirring with a magnetic stir bar and metal release. Mechanistic insight is gained by parallel investigations of metal release from two reference non-protein containing solutions, a metal-complexing (citrate-containing) simulated milk solution (SMS) and a low complexing phosphate buffered saline solution (PBS). All immersion exposures were conducted at pH 6.8 for 0.5, 4, 24 and 48 hat room temperature at static and stirring conditions. All solutions and samples were investigated using different chemical, spectroscopic, microscopic, and electrochemical methods. Significantly higher amounts of Fe, Cr, and Ni were released into the whey protein solution (80 g/L) as compared to SMS and PBS. Strong enrichment of Cr in the surface oxide and reduction of the surface oxide thickness were associated with a higher amount of Ni release in the metal-complexing solutions (SMS and whey protein) compared with PBS. Stirring conditions resulted in higher amounts of metal release, enrichment of Cr in the surface oxide, and clear signs of wear of the 316L surface in all solutions compared to static conditions. The wear mechanism in the whey protein solution was different as compared to corresponding processes in SMS and PBS, involving an etching-like process and larger-sized wear debris. Electrochemical measurements at static conditions confirmed observed differences between the solutions, with the lowest corrosion resistance observed for coupons exposed in the whey protein solution, followed by SMS and PBS. Released metals in solution from the 316L coupons in contact with the whey protein solution resulted in enhanced rates of protein aggregation and precipitation of protein aggregates from solution. Further studies should be made to investigate other relevant test conditions and assess toxicological risks.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD, 2019
Keywords
Protein, Whey, Stainless steel, Metal release, Food, Milk, Atomic absorption spectroscopy, X-ray photoelectron spectroscopy, Photon cross correlation spectroscopy, UV- visible spectroscopy, Scanning electron microscopy, Polarization resistance, Corrosion
National Category
Corrosion Engineering
Identifiers
urn:nbn:se:kth:diva-251269 (URN)10.1016/j.foodcont.2019.02.031 (DOI)000465049000023 ()2-s2.0-85063112841 (Scopus ID)
Note

QC 20190513

Available from: 2019-05-13 Created: 2019-05-13 Last updated: 2019-05-29Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-2206-0082

Search in DiVA

Show all publications