kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 553) Show all publications
Lander, S., Pang, J., Erlandsson, J., Vagin, M., Jafari, M. J., Korhonen, L., . . . Berggren, M. (2024). Controlling the rate of posolyte degradation in all-quinone aqueous organic redox flow batteries by sulfonated nanocellulose based membranes: The role of crossover and Michael addition. Journal of Energy Storage, 83, Article ID 110338.
Open this publication in new window or tab >>Controlling the rate of posolyte degradation in all-quinone aqueous organic redox flow batteries by sulfonated nanocellulose based membranes: The role of crossover and Michael addition
Show others...
2024 (English)In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 83, article id 110338Article in journal (Refereed) Published
Abstract [en]

Aqueous organic redox flow battery (AORFB) is a technological route towards the large-scale sustainable energy storage. However, several factors need to be controlled to maintain the AORFB performance. Prevention of posolyte and negolyte cross-contamination in asymmetric AORFBs, one of the main causes of capacity decay, relies on their membranes' ability to prevent migration of the redox-active species between the two electrolytes. The barrier properties are often traded for a reduction in ionic conductivity which is crucial to enable the device operation. Another factor greatly affecting quinone-based AORFBs is the Michael addition reaction (MAR) on the charged posolyte, quinone, which has been identified as a major reason for all-quinone AORFBs performance deterioration. Herein, we investigate deterioration scenarios of an all-quinone AORFB using both experimental and computational methods. The study includes a series of membranes based on sulfonated cellulose nanofibrils and different membrane modifications. The layer-by-layer (LbL) surface modifications, i.e. the incorporation of inorganic materials and the reduction of the pore size of the sulfonated cellulose membranes, were all viable routes to reduce the passive diffusion permeability of membranes which correlated to an increased cycling stability of the battery. The kinetics of MAR on quinone was detected using NMR and its impact on the performance fading was modeled computationally. The localization of MAR close to the membrane, which can be assigned to the surface reactivity, affects the diffusion of MAR reagent and the deterioration dynamics of the present all-quinone AORFB.

Place, publisher, year, edition, pages
Elsevier BV, 2024
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-343674 (URN)10.1016/j.est.2023.110338 (DOI)2-s2.0-85184521391 (Scopus ID)
Note

QC 20240222

Available from: 2024-02-22 Created: 2024-02-22 Last updated: 2024-02-22Bibliographically approved
Li, H., Asta, N., Wang, Z., Pettersson, T. & Wågberg, L. (2024). Reevaluation of the adhesion between cellulose materials using macro spherical beads and flat model surfaces. Carbohydrate Polymers, 332, 121894-121894, Article ID 121894.
Open this publication in new window or tab >>Reevaluation of the adhesion between cellulose materials using macro spherical beads and flat model surfaces
Show others...
2024 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 332, p. 121894-121894, article id 121894Article in journal (Refereed) Published
Abstract [en]

Interactions between dry cellulose were studied using model systems, cellulose beads, and cellulose films, usingcustom-built contact adhesion testing equipment. Depending on the configuration of the substrates in contact,Polydimethylsiloxane (PDMS) film, cellulose films spin-coated either on PDMS or glass, the interaction showsthree distinct processes. Firstly, molecular interlocking is formed between cellulose and cellulose when there is asoft PDMS thin film backing the cellulose film. Secondly, without backing, no initial attraction force between thesurfaces is observed. Thirdly, a significant force increase, ΔF, is observed during the retraction process for cel­lulose on glass, and there is a maximum in ΔF when the retraction rate is increased. This is due to the kinetics of acontacting process occurring in the interaction zone between the surfaces caused by an interdigitation of a finefibrillar structure at the nano-scale, whereas, for the spin-coated cellulose surfaces on the PDMS backing, there isa more direct adhesive failure. The results have generated understanding of the interaction between cellulose-rich materials, which helps design new, advanced cellulose-based materials. The results also show thecomplexity of the interaction between these surfaces and that earlier mechanisms, based on macroscopic materialtesting, are simply not adequate for molecular tailoring.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Interaction, Cellulose thin film, Cellulose bead, Contact adhesion testing
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-344920 (URN)10.1016/j.carbpol.2024.121894 (DOI)001183175200001 ()38431407 (PubMedID)2-s2.0-85184997085 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20240408

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-04-08
Östmans, R., Benselfelt, T., Erlandsson, J., Rostami, J., Hall, S., Lindström, S. B. & Wågberg, L. (2024). Solidified water at room temperature hosting tailored fluidic channels by using highly anisotropic cellulose nanofibrils. Materials Today Nano, 26, Article ID 100476.
Open this publication in new window or tab >>Solidified water at room temperature hosting tailored fluidic channels by using highly anisotropic cellulose nanofibrils
Show others...
2024 (English)In: Materials Today Nano, E-ISSN 2588-8420, Vol. 26, article id 100476Article in journal (Refereed) Published
Abstract [en]

Highly anisotropic cellulose nanofibrils can solidify liquid water, creating self-supporting structures by incorporating a tiny number of fibrils. These fibrillar hydrogels can contain as much as 99.99 wt% water. The structure and mechanical properties of fibrillar networks have so far not been completely understood, nor how they solidify the bulk water at such low particle concentrations. In this work, the mechanical properties of cellulose fibrillar hydrogels in the dilute regime from a wt% perspective have been studied, and an elastoplastic model describing the network structure and its mechanics is presented. A significant insight from this work is that the ability of the fibrils to solidify water is very dependent on particle stiffness and the number of contact points it can form in the network structure. The comparison between the experimental results and the theoretical model shows that the fibrillar networks in the dilute regime form via a non-stochastic process since the fibrils have the time and freedom to find contact points during network formation by translational and rotational diffusion. The formed, dilute fibrillar network deforms by sliding fibril contacts upon straining the network beyond its elastic limit. Our results also show that before macroscopic failure, the fibril contacts are restored once the load is released. The exceptional properties of this solidified water are exploited to host fluidic channels, allowing directed fluid transportation in water. Finally, the microfluidic channels formed in the hydrogels are tailored by the layer-by-layer technique to be interactive against external stimuli, a characteristic envisioned to be useful in biomedical applications.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Cellulose nanofibrils, Channels, Colloidal gel, Fibrillar hydrogels, Layer-by-layer, Network model
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-345750 (URN)10.1016/j.mtnano.2024.100476 (DOI)2-s2.0-85189942008 (Scopus ID)
Note

QC 20240424

Available from: 2024-04-18 Created: 2024-04-18 Last updated: 2024-04-29Bibliographically approved
Yang, H., Edberg, J., Say, M. G., Erlandsson, J., Gueskine, V., Wågberg, L., . . . Engquist, I. (2024). Study on the Rectification of Ionic Diode Based on Cross-Linked Nanocellulose Bipolar Membranes. Biomacromolecules, 25(3), 1933-1941
Open this publication in new window or tab >>Study on the Rectification of Ionic Diode Based on Cross-Linked Nanocellulose Bipolar Membranes
Show others...
2024 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 25, no 3, p. 1933-1941Article in journal (Refereed) Published
Abstract [en]

Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344593 (URN)10.1021/acs.biomac.3c01353 (DOI)001182503300001 ()38324476 (PubMedID)2-s2.0-85187301389 (Scopus ID)
Note

QC 20240326

Available from: 2024-03-20 Created: 2024-03-20 Last updated: 2024-03-26Bibliographically approved
Sethi, J., Glowacki, E., Reid, M. S., Larsson, P. A. & Wågberg, L. (2024). Ultra-thin parylene-aluminium hybrid coatings on nanocellulose films to resist water sensitivity. Carbohydrate Polymers, 323, 121365, Article ID 121365.
Open this publication in new window or tab >>Ultra-thin parylene-aluminium hybrid coatings on nanocellulose films to resist water sensitivity
Show others...
2024 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 323, p. 121365-, article id 121365Article in journal (Refereed) Published
Abstract [en]

Non-sustainable single-use plastics used for food packaging needs to be phased out. Films made from cellulose nanofibrils (CNFs) are suitable candidates for biodegradable and recyclable packaging materials as they exhibit good mechanical properties, excellent oxygen barrier properties and high transparency. Yet, their poor water vapour barrier properties have been a major hindrance in their commercialisation. Here, we describe the preparation of 25 μm thick CNF films with significantly improved water vapour barrier properties after deposition of ultrathin polymeric and metallic coatings, parylene C and aluminium, respectively. When first adding a 40 nm aluminium layer followed by an 80 nm parylene layer, i.e. with a combined thickness of less than one percent of the CNF film, a water vapour transmission rate of 2.8 g m−2 d−1 was achieved at 38 °C and 90 % RH, surpassing a 25 μm polypropylene film (4–12 g m−2 d−1). This is an improvement of more than 700 times compared to uncoated CNF films, under some of the harshest possible conditions a packaging material will need to endure in commercial use. The layers showed a good and even coverage, as assessed by atomic force microscopy, and the parylene-coated surfaces were hydrophobic with a contact angle of 110°, providing good water repellency.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Aluminium, Cellulose nanofibrils, Coatings, Parylene, Vapour deposition, Water vapour barrier
National Category
Condensed Matter Physics Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-337409 (URN)10.1016/j.carbpol.2023.121365 (DOI)001086726500001 ()2-s2.0-85172102025 (Scopus ID)
Note

QC 20231003

Available from: 2023-10-03 Created: 2023-10-03 Last updated: 2023-11-07Bibliographically approved
Jain, K., Wang, Z., Garma, L. D., Engel, E., Ciftci, G. C., Fager, C., . . . Wågberg, L. (2023). 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics. APPLIED MATERIALS TODAY, 30, Article ID 101703.
Open this publication in new window or tab >>3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics
Show others...
2023 (English)In: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 30, article id 101703Article in journal (Refereed) Published
Abstract [en]

There are many bioelectronic applications where the additive manufacturing of conductive polymers may be of use. This method is cheap, versatile and allows fine control over the design of wearable electronic devices. Nanocellulose has been widely used as a rheology modifier in bio-based inks that are used to print electrical components and devices. However, the preparation of nanocellulose is energy and time consuming. In this work an easy-to-prepare, 3D-printable, conductive bio-ink; based on modified cellulose fibers and poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS), is presented. The ink shows excellent printability, the printed samples are wet stable and show excellent electrical and electrochemical performance. The printed structures have a conductivity of 30 S/cm, high tensile strains (>40%), and specific capacitances of 211 F/g; even though the PEDOT:PSS only accounts for 40 wt% of the total ink composition. Scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), and Raman spectroscopy data show that the modified cellulose fibers induce conformational changes and phase separation in PEDOT:PSS. It is also demonstrated that wearable supercapacitors and biopotential-monitoring devices can be prepared using this ink.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Dialcohol-modified cellulose fibers, 3D printing, Conducting polymer, PEDOT:PSS, Bioelectronics
National Category
Textile, Rubber and Polymeric Materials Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323583 (URN)10.1016/j.apmt.2022.101703 (DOI)000912019800001 ()2-s2.0-85143488124 (Scopus ID)
Note

QC 20230208

Available from: 2023-02-08 Created: 2023-02-08 Last updated: 2023-02-08Bibliographically approved
Reid, M. S., Suganda, W., Ostmark, E., Brolin, A. & Wågberg, L. (2023). Dewatering of Micro- and Nanofibrillated Cellulose for Membrane Production. ACS Sustainable Chemistry and Engineering, 11(46), 16428-16441
Open this publication in new window or tab >>Dewatering of Micro- and Nanofibrillated Cellulose for Membrane Production
Show others...
2023 (English)In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 46, p. 16428-16441Article in journal (Refereed) Published
Abstract [en]

Cellulose-based membranes have tremendous potential to improve the sustainability and performance of high value applications, such as filters and energy devices, particularly as fluorinated compounds are becoming more regulated. Yet, a deeper understanding of how cellulose films are formed and their structure, in both the wet and dry state, is needed to meet application specific demands and scale-up. We investigated cellulose dewatering using dead-end filtration and the effect of particle size, pressure, temperature, ionic strength, and pH were explored. Dewatering times, filtration cake resistance and compressibility of microfibrillated celluloses (MFCs) and cellulose nanofibrils (CNFs), (and a combination thereof) were measured to understand the role of fibrillation and intermolecular forces during dewatering and forming of membranes. In this fundamental work, dewatering behavior was well described by conventional filtration theory and increasing the pressure from 1 to 4 bar reduced dewatering times by one-half with no significant impact on the mechanical properties. Cake compressibility was found to be directly related to particle size and degree of fibrillation, indicating that finer grades of MFCs and CNFs could be more effectively dewatered at higher pressures. Adjusting pH and ionic strength of cellulose dispersions could similarly reduce dewatering times, yet impacted the wet and dry mechanical properties. This work serves as a basis to better understand the structure-property relationships that develop during dewatering of MFCs and CNFs.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
Keywords
dewatering, microfibrillated cellulose, cellulosenanofibrils, membranes, cake resistance
National Category
Textile, Rubber and Polymeric Materials
Identifiers
urn:nbn:se:kth:diva-340877 (URN)10.1021/acssuschemeng.3c02871 (DOI)001108317800001 ()2-s2.0-85178112676 (Scopus ID)
Note

QC 20231215

Available from: 2023-12-15 Created: 2023-12-15 Last updated: 2023-12-15Bibliographically approved
Wang, Z., Heasman, P., Rostami, J., Benselfelt, T., Linares, M., Li, H., . . . Wågberg, L. (2023). Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries. Advanced Functional Materials, 33(30), Article ID 2212806.
Open this publication in new window or tab >>Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries
Show others...
2023 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, no 30, article id 2212806Article in journal (Refereed) Published
Abstract [en]

Tunable dynamic networks of cellulose nanofibrils (CNFs) are utilized to prepare high-performance polymer gel electrolytes. By swelling an anisotropically dewatered, but never dried, CNF gel in acidic salt solutions, a highly sparse network is constructed with a fraction of CNFs as low as 0.9%, taking advantage of the very high aspect ratio and the ultra-thin thickness of the CNFs (micrometers long and 2–4 nm thick). These CNF networks expose high interfacial areas and can accommodate massive amounts of the ionic conductive liquid polyethylene glycol-based electrolyte into strong homogeneous gel electrolytes. In addition to the reinforced mechanical properties, the presence of the CNFs simultaneously enhances the ionic conductivity due to their excellent strong water-binding capacity according to computational simulations. This strategy renders the electrolyte a room-temperature ionic conductivity of 0.61 ± 0.12 mS cm−1 which is one of the highest among polymer gel electrolytes. The electrolyte shows superior performances as a separator for lithium iron phosphate half-cells in high specific capacity (161 mAh g−1 at 0.1C), excellent rate capability (5C), and cycling stability (94% capacity retention after 300 cycles at 1C) at 60 °C, as well as stable room temperature cycling performance and considerably improved safety compared with commercial liquid electrolyte systems.

Place, publisher, year, edition, pages
Wiley, 2023
Keywords
cellulose nanofibrils, composites, energy storages, lithium-ion batteries, polymer electrolytes
National Category
Materials Chemistry Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-338472 (URN)10.1002/adfm.202212806 (DOI)000973324900001 ()2-s2.0-85152801974 (Scopus ID)
Note

QC 20231115

Available from: 2023-11-15 Created: 2023-11-15 Last updated: 2023-11-15Bibliographically approved
Östmans, R., Cortes Ruiz, M. F., Rostami, J., Sellman, F. A., Wågberg, L., Lindström, S. B. & Benselfelt, T. (2023). Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte. Soft Matter, 19(15), 2792-2800
Open this publication in new window or tab >>Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte
Show others...
2023 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 19, no 15, p. 2792-2800Article in journal (Refereed) Published
Abstract [en]

Fibrillar hydrogels are remarkably stiff, low-density networks that can hold vast amounts of water. These hydrogels can easily be made anisotropic by orienting the fibrils using different methods. Unlike the detailed and established descriptions of polymer gels, there is no coherent theoretical framework describing the elastoplastic behavior of fibrillar gels, especially concerning anisotropy. In this work, the swelling pressures of anisotropic fibrillar hydrogels made from cellulose nanofibrils were measured in the direction perpendicular to the fibril alignment. This experimental data was used to develop a model comprising three mechanical elements representing the network and the osmotic pressure due to non-ionic and ionic surface groups on the fibrils. At low solidity, the stiffness of the hydrogels was dominated by the ionic swelling pressure governed by the osmotic ingress of water. Fibrils with different functionality show the influence of aspect ratio, chemical functionality, and the remaining amount of hemicelluloses. This general model describes physically crosslinked hydrogels comprising fibrils with high flexural rigidity - that is, with a persistence length larger than the mesh size. The experimental technique is a framework to study and understand the importance of fibrillar networks for the evolution of multicellular organisms, like plants, and the influence of different components in plant cell walls.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2023
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-330921 (URN)10.1039/d2sm01571d (DOI)000960684700001 ()36992628 (PubMedID)2-s2.0-85152114916 (Scopus ID)
Note

QC 20230704

Available from: 2023-07-04 Created: 2023-07-04 Last updated: 2024-04-29Bibliographically approved
Kotov, N., Larsson, P. A., Jain, K., Abitbol, T., Cernescu, A., Wågberg, L. & Johnson, C. M. (2023). Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohydrate Polymers, 302, Article ID 120320.
Open this publication in new window or tab >>Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy
Show others...
2023 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 302, article id 120320Article in journal (Refereed) Published
Abstract [en]

Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nano-cellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Nanocellulose, Cellulose nanocrystals, Cellulose nanofibrils, Crystalline and amorphous domains, Nano-FTIR spectroscopy, S-SNOM
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-322846 (URN)10.1016/j.carbpol.2022.120320 (DOI)000891746700002 ()36604038 (PubMedID)2-s2.0-85142692194 (Scopus ID)
Note

QC 20230109

Available from: 2023-01-09 Created: 2023-01-09 Last updated: 2023-07-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-8622-0386

Search in DiVA

Show all publications