Open this publication in new window or tab >>Show others...
2025 (English)In: Theoretical and Computational Fluid Dynamics, ISSN 0935-4964, E-ISSN 1432-2250, Vol. 39, no 1, article id 13Article in journal (Refereed) Published
Abstract [en]
Fully-convolutional neural networks (FCN) were proven to be effective for predicting the instantaneous state of a fully-developed turbulent flow at different wall-normal locations using quantities measured at the wall. In Guastoni et al. (J Fluid Mech 928:A27, 2021. https://doi.org/10.1017/jfm.2021.812), we focused on wall-shear-stress distributions as input, which are difficult to measure in experiments. In order to overcome this limitation, we introduce a model that can take as input the heat-flux field at the wall from a passive scalar. Four different Prandtl numbers Pr=ν/α=(1,2,4,6) are considered (where ν is the kinematic viscosity and α is the thermal diffusivity of the scalar quantity). A turbulent boundary layer is simulated since accurate heat-flux measurements can be performed in experimental settings: first we train the network on aptly-modified DNS data and then we fine-tune it on the experimental data. Finally, we test our network on experimental data sampled in a water tunnel. These predictions represent the first application of transfer learning on experimental data of neural networks trained on simulations. This paves the way for the implementation of a non-intrusive sensing approach for the flow in practical applications.
Place, publisher, year, edition, pages
Springer Nature, 2025
Keywords
Machine learning, Turbulence simulation, Turbulent boundary layers
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-358176 (URN)10.1007/s00162-024-00732-y (DOI)001378464000001 ()2-s2.0-85212435435 (Scopus ID)
Note
Not duplicate with DiVA 1756843
QC 20250114
2025-01-072025-01-072025-02-09Bibliographically approved