Change search
Link to record
Permanent link

Direct link
BETA
Frassinetti, LorenzoORCID iD iconorcid.org/0000-0002-9546-4494
Alternative names
Publications (10 of 173) Show all publications
Marco, A., Garrido, A. J., Coda, S., Garrido, I., Ahn, J., Albanese, R., . . . Zuin, M. (2019). A Variable Structure Control Scheme Proposal for the Tokamak a Configuration Variable. Complexity, Article ID 2319560.
Open this publication in new window or tab >>A Variable Structure Control Scheme Proposal for the Tokamak a Configuration Variable
Show others...
2019 (English)In: Complexity, ISSN 1076-2787, E-ISSN 1099-0526, article id 2319560Article in journal (Refereed) Published
Abstract [en]

Fusion power is the most significant prospects in the long-term future of energy in the sense that it composes a potentially clean, cheap, and unlimited power source that would substitute the widespread traditional nonrenewable energies, reducing the geographical dependence on their sources as well as avoiding collateral environmental impacts. Although the nuclear fusion research started in the earlier part of 20th century and the fusion reactors have been developed since the 1950s, the fusion reaction processes achieved have not yet obtained net power, since the generated plasma requires more energy to achieve and remain in necessary particular pressure and temperature conditions than the produced profitable energy. For this purpose, the plasma has to be confined inside a vacuum vessel, as it is the case of the Tokamak reactor, which consists of a device that generates magnetic fields within a toroidal chamber, being one of the most promising solutions nowadays. However, the Tokamak reactors still have several issues such as the presence of plasma instabilities that provokes a decay of the fusion reaction and, consequently, a reduction in the pulse duration. In this sense, since long pulse reactions are the key to produce net power, the use of robust and fast controllers arises as a useful tool to deal with the unpredictability and the small time constant of the plasma behavior. In this context, this article focuses on the application of robust control laws to improve the controllability of the plasma current, a crucial parameter during the plasma heating and confinement processes. In particular, a variable structure control scheme based on sliding surfaces, namely, a sliding mode controller (SMC) is presented and applied to the plasma current control problem. In order to test the validity and goodness of the proposed controller, its behavior is compared to that of the traditional PID schemes applied in these systems, using the RZIp model for the Tokamak a Configuration Variable (TCV) reactor. The obtained results are very promising, leading to consider this controller as a strong candidate to enhance the performance of the PID-based controllers usually employed in this kind of systems.

Place, publisher, year, edition, pages
Hindawi Publishing Corporation, 2019
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-251725 (URN)10.1155/2019/2319560 (DOI)000466312400001 ()2-s2.0-85065252230 (Scopus ID)
Note

QC 20190520

Available from: 2019-05-20 Created: 2019-05-20 Last updated: 2019-05-20Bibliographically approved
Ström, P., Petersson, P., Rubel, M., Bergsåker, H., Bykov, I., Frassinetti, L., . . . et al., . (2019). Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 516, 202-213
Open this publication in new window or tab >>Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall
Show others...
2019 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 516, p. 202-213Article in journal (Refereed) Published
Abstract [en]

Inconel-600 blocks and stainless steel covers for quartz microbalance crystals from remote corners in the JET-ILW divertor were studied with time-of-flight elastic recoil detection analysis and nuclear reaction analysis to obtain information about the areal densities and depth profiles of elements present in deposited material layers. Surface morphology and the composition of dust particles were examined with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The analyzed components were present in JET during three ITER-like wall campaigns between 2010 and 2017. Deposited layers had a stratified structure, primarily made up of beryllium, carbon and oxygen with varying atomic fractions of deuterium, up to more than 20%. The range of carbon transport from the ribs of the divertor carrier was limited to a few centimeters, and carbon/deuterium co-deposition was indicated on the Inconel blocks. High atomic fractions of deuterium were also found in almost carbon-free layers on the quartz microbalance covers. Layer thicknesses up to more than 1 micrometer were indicated, but typical values were on the order of a few hundred nanometers. Chromium, iron and nickel fractions were less than or around 1% at layer surfaces while increasing close to the layer-substrate interface. The tungsten fraction depended on the proximity of the plasma strike point to the divertor corners. Particles of tungsten, molybdenum and copper with sizes less than or around 1 micrometer were found. Nitrogen, argon and neon were present after plasma edge cooling and disruption mitigation. Oxygen-18 was found on component surfaces after injection, indicating in-vessel oxidation. Compensation of elastic recoil detection data for detection efficiency and ion-induced release of deuterium during the measurement gave quantitative agreement with nuclear reaction analysis, which strengthens the validity of the results.

Keywords
Fusion, Tokamak, Plasma-wall interactions, ToF-ERDA, NRA, SEM
National Category
Fusion, Plasma and Space Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-240616 (URN)10.1016/j.jnucmat.2018.11.027 (DOI)000458897100020 ()2-s2.0-85060313456 (Scopus ID)
Note

QC 20190125

Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2019-08-08Bibliographically approved
Labit, B., Frassinetti, L., Jonsson, T., Ratynskaia, S. V., Thorén, E., Tolias, P., . . . Zuin, M. (2019). Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade. Nuclear Fusion, 59(8), Article ID 086020.
Open this publication in new window or tab >>Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 8, article id 086020Article in journal (Refereed) Published
Abstract [en]

Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (n(e,sep)/n(G) similar to 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
H-mode, type-II ELMs, grassy ELMs, plasma triangularity, separatrix density, ballooning modes
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-255302 (URN)10.1088/1741-4326/ab2211 (DOI)000473079500003 ()
Note

QC 20190807

Available from: 2019-08-07 Created: 2019-08-07 Last updated: 2019-08-07Bibliographically approved
Trier, E., Frassinetti, L., Fridström, R., Garcia Carrasco, A., Hellsten, T., Johnson, T., . . . Zuin, M. (2019). ELM-induced cold pulse propagation in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 61(4), Article ID 045003.
Open this publication in new window or tab >>ELM-induced cold pulse propagation in ASDEX Upgrade
Show others...
2019 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 4, article id 045003Article in journal (Refereed) Published
Abstract [en]

In ASDEX Upgrade, the propagation of cold pulses induced by type-I edge localized modes (ELMs) is studied using electron cyclotron emission measurements, in a dataset of plasmas with moderate triangularity. It is found that the edge safety factor or the plasma current are the main determining parameters for the inward penetration of the T-e perturbations. With increasing plasma current the ELM penetration is more shallow in spite of the stronger ELMs. Estimates of the heat pulse diffusivity show that the corresponding transport is too large to be representative of the inter-ELM phase. Ergodization of the plasma edge during ELMs is a possible explanation for the observed properties of the cold pulse propagation, which is qualitatively consistent with non-linear magneto-hydro-dynamic simulations.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
ELMs, MHD instabilities, stochastic field, magnetic islands, cold pulse
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-245121 (URN)10.1088/1361-6587/aaf9c3 (DOI)000458986000002 ()
Note

QC 20190315

Available from: 2019-03-15 Created: 2019-03-15 Last updated: 2019-05-20Bibliographically approved
von Thun, C. P., Frassinetti, L., Horvath, L., Saarelma, S., Meneses, L., de la Luna, E., . . . Solano, E. R. (2019). Long-lived coupled peeling ballooning modes preceding ELMs on JET. Nuclear Fusion, 59(5), Article ID 056004.
Open this publication in new window or tab >>Long-lived coupled peeling ballooning modes preceding ELMs on JET
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 5, article id 056004Article in journal (Refereed) Published
Abstract [en]

In some JET discharges, type-I edge localised modes (ELMs) are preceded by a class of low-frequency oscillations (Perez et al 2004 Nucl. Fusion 44 609). While in many cases the ELM is triggered during the growth phase of this oscillation, it is also observed that this type of oscillation can saturate and last for several tens of ms until an ELM occurs. In order to identify the nature of these modes, a wide pre-ELM oscillation database, including detailed pedestal profile information, has been assembled and analysed in terms of MHD stability parameters. The existence domain of these pre-ELM oscillations and the statistical distribution of toroidal mode numbers (n) up to n = 16 have been mapped in ballooning alpha (alpha(ball)) and either edge current density (J(edge)) or pedestal collisionality (nu(ee,ped)*) coordinates and compared to linear MHD stability predictions. The pre-ELM oscillations are reliably observed when the J/alpha ratio is high enough for the pedestal to access the coupled peeling-ballooning (PB) domain (aka stability nose). Conversely, when the pedestal is found to be in or near the high-n ballooning domain (which is at low J/alpha ratio), ELMs are usually triggered promptly, i.e. with no detectable pre-ELM oscillations, or with pre-ELM oscillations only observable on ECE whose n appears to be too high to be resolved by the magnetics. Individual discharges can sometimes exhibit a fairly wide range of pre-ELM mode numbers, but for a wider database, the statistical n-number domains are found to be well ordered along the J - alpha stability boundary and behave as expected from PB theory: the higher the J/alpha ratio, the lower the mode's measured n tends to be. Within the measurement uncertainties, the measured n is usually found to be compatible with the most unstable n predicted by the linear stability code MISHKA1. These results confirm the earlier hypothesis that these modes are coupled peeling-ballooning modes, and extend and generalise to higher-mode numbers the work by Huysmans et al (1998 Nucl. Fusion 38 179), who identified the lowest n modes as pure external kink modes. Since the destabilisation of PB modes is widely accepted to give rise to ELMs, the mode saturation and delayed ELM triggering that is sometimes observed is rather unexpected. Possibilities to reconcile the extended lifetime of these modes with current ELM models are briefly discussed, but will require further investigation.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
ELM, peeling-ballooning mode, pedestal, JET
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-249854 (URN)10.1088/1741-4326/ab0031 (DOI)000462112700001 ()
Note

QC 20190503

Available from: 2019-05-03 Created: 2019-05-03 Last updated: 2019-05-03Bibliographically approved
Sheikh, U. A., Dunne, M., Frassinetti, L., Blanchard, P., Duval, B. P., Labit, B., . . . Tsui, C. (2019). Pedestal structure and energy confinement studies on TCV. Plasma Physics and Controlled Fusion, 61(1), Article ID 014002.
Open this publication in new window or tab >>Pedestal structure and energy confinement studies on TCV
Show others...
2019 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 1, article id 014002Article in journal (Refereed) Published
Abstract [en]

High external gas injection rates are foreseen for future devices to reduce divertor heat loads and this can influence pedestal stability. Fusion yield has been estimated to vary as strongly as T-e,ped(2) so an understanding of the underlying pedestal physics in the presence of additional fuelling and seeding is required. To address this, a database scanning plasma triangularity, fuelling and nitrogen seeding rates in neutral beam (NBH) heated ELM-y H-mode plasmas was constructed on TCV. Low nitrogen seeding was observed to increase pedestal top pressure but all other gas injection rates led to a decrease. Lower triangularity discharges were found to be less sensitive to variations in gas injection rates. No clear trend was measured between plasma top P-e and stored energy which is attributed to the non-stiffness of core plasma pressure profiles. Peeling ballooning stability analysis put these discharges close to the ideal MHD stability boundary. A constant for D in the relation pedestal width w = D root beta(Ped)(theta), was not found. Experimentally inferred values of D were used in EPED1 simulations and gave good agreement for pedestal width. Pedestal height agreed well for high triangularity but was overestimated for low triangularity. IPED simulations showed that relative shifts in pedestal position were contributing significantly to the pedestal height and were able to reproduce the measured profiles more accurately.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019
Keywords
TCV, pedestal, EPED
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-239458 (URN)10.1088/1361-6587/aae7bd (DOI)000449541700002 ()2-s2.0-85057611317 (Scopus ID)
Note

QC 20181128

Available from: 2018-11-28 Created: 2018-11-28 Last updated: 2019-03-18Bibliographically approved
Blanken, T. C., Frassinetti, L., Fridström, R., Garcia-Carrasco, A., Hellsten, T., Jonsson, T., . . . Dori, V. (2019). Real-time plasma state monitoring and supervisory control on TCV. Nuclear Fusion, 59(2), Article ID 026017.
Open this publication in new window or tab >>Real-time plasma state monitoring and supervisory control on TCV
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed) Published
Abstract [en]

In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2019
Keywords
real-time control, supervisory control, control of tokamak plasmas
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-242971 (URN)10.1088/1741-4326/aaf451 (DOI)000455823900003 ()
Note

QC 20190212

Available from: 2019-02-12 Created: 2019-02-12 Last updated: 2019-02-12Bibliographically approved
Tierens, W., Frassinetti, L., Hellsten, T., Petersson, P., Fridström, R., Garcia Carrasco, A., . . . et al., . (2019). Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments. Nuclear Fusion, 59(4), Article ID 046001.
Open this publication in new window or tab >>Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments
Show others...
2019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046001Article in journal (Refereed) Published
Abstract [en]

In this paper we validate the finite element code RAPLICASOL, which models radiofrequency wave propagation in edge plasmas near ICRF antennas, against calculations with the TOPICA code. We compare the output of both codes for the ASDEX Upgrade 2-strap antenna, and for a 4-strap WEST-like antenna. Although RAPLICASOL requires considerably fewer computational resources than TOPICA, we find that the predicted quantities of experimental interest (including reflection coefficients, coupling resistances, S- and Z-matrix entries, optimal matching settings, and even radiofrequency electric fields) are in good agreement provided we are careful to use the same geometry in both codes.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2019
Keywords
ICRF, finite elements, simulation
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-243928 (URN)10.1088/1741-4326/aaf455 (DOI)000456197200001 ()
Note

QC 20190212

Available from: 2019-02-12 Created: 2019-02-12 Last updated: 2019-02-12Bibliographically approved
Frassinetti, L. & Scheffel, J. (2019). Vektoranalys (1ed.). Stockholm: Liber
Open this publication in new window or tab >>Vektoranalys
2019 (Swedish)Book (Refereed)
Abstract [sv]

Läroböcker i vektoranalys är ofta kortfattade. Denna bok, som kan användas för såväl grundläggande som mer avancerade kurser, behandlar ämnet mer utförligt.

Bokens pedagogiska idé skiljer sig markant från liknande böcker. Återkommande inslag är tydligt formulerade problem som fångar det centrala i vektoranalysen. Syftet med problemen är dels att väcka intresse för den teori och de metoder som behandlas, dels att stimulera till aktivt lärande. 

Boken innehåller genomarbetade och lättillgängliga teoriavsnitt - som börjar med grundläggande vektoralgebra och slutar med kartesiska tensorer och en härledning av vektoranalysens huvudsats. Dessutom ingår ett stort antal konkreta exempel och många tillämpningar. Sist i varje kapitel finns en sammanfattning av den viktigaste teorin och övningsuppgifter med svar. Ledningar och fullständiga lösningar finns på Libers webbplats. Där finns även ett Appendix med tillämpningar.

Place, publisher, year, edition, pages
Stockholm: Liber, 2019. p. 344 Edition: 1
Keywords
Vektoranalys
National Category
Natural Sciences
Research subject
Mathematics; Physics; Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-256024 (URN)978-91-47-12617-0 (ISBN)
Note

QC 20190820

Available from: 2019-08-15 Created: 2019-08-15 Last updated: 2019-08-20Bibliographically approved
Aiba, N., Pamela, S., Honda, M., Urano, H., Giroud, C., Delabie, E., . . . Huijsmans, G. (2018). Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas. Plasma Physics and Controlled Fusion, 60(1), Article ID 014032.
Open this publication in new window or tab >>Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas
Show others...
2018 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 1, article id 014032Article in journal (Refereed) Published
Abstract [en]

The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (omega(*i)), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and omega(*i) effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in omega(*i). The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w*i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:kth:diva-218194 (URN)10.1088/1361-6587/aa8bec (DOI)000414726900003 ()2-s2.0-85038417765 (Scopus ID)
Note

QC 20171204

Available from: 2017-12-04 Created: 2017-12-04 Last updated: 2017-12-04Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9546-4494

Search in DiVA

Show all publications