kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 246) Show all publications
Jin, Y., Liu, S., Shi, Z., Wang, S., Wen, Y., Zaini, I. N., . . . Yang, W. (2024). A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass. Energy, 295, Article ID 131029.
Open this publication in new window or tab >>A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass
Show others...
2024 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 295, article id 131029Article in journal (Refereed) Published
Abstract [en]

This study aims to improve the quality and yield of bio-oil produced from ex-situ catalytic pyrolysis of lignocellulosic biomass (sawdust) using a combination of stage catalysts with Al-MCM-41, HZSM-5, and ZrO2. The research employed various methods, including thermogravimetric analysis (TGA), differential scanning calorimetry, bench-scale experiments, and process simulations to analyze the kinetics, thermodynamics, products, and energy flows of the catalytic upgrading process. The introduction of ZrO2 enhances the yield of monoaromatic hydrocarbons (MAHs) in heavy organics. Compared with the dual-catalyst case, the MAHs yield escalates by approximately 344% at a catalyst ratio of 1:3:0.25. Additionally, GC-MS data indicate that the incorporation of ZrO2 promotes the deoxygenation reaction of the guaiacol compound and the oligomerization reactions of PAHs. The integration of ZrO2 as the third catalyst enhances the yield of heavy organics significantly, achieving 16.85% at a catalyst ratio of 1:3:1, which increases by nearly 35.6% compared to the dual-catalyst case. Also, the addition of ZrO2 as the third catalyst enhanced the energy distribution in heavy organics. These findings suggest that the combination of these catalysts improves the fuel properties and yields of the bio-oil.

Place, publisher, year, edition, pages
Elsevier Ltd, 2024
Keywords
Bio-oil, Process simulation, Pyrolysis, Staged catalyst, TGA
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-344932 (URN)10.1016/j.energy.2024.131029 (DOI)001224241400001 ()2-s2.0-85188595056 (Scopus ID)
Note

QC 20240524

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-05-24Bibliographically approved
Shi, Z., Jin, Y., Han, T., Yang, H., Gond, R., Subasi, Y., . . . Yang, W. (2024). Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts. Scientific Reports, 14(1), Article ID 3966.
Open this publication in new window or tab >>Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts
Show others...
2024 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 14, no 1, article id 3966Article in journal (Refereed) Published
Abstract [en]

Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution–precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g−1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.

Place, publisher, year, edition, pages
Springer Nature, 2024
Keywords
Bio-graphite, Biochar, Catalytic graphitization, Lithium-ion battery, Pyrolysis
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-344002 (URN)10.1038/s41598-024-54509-8 (DOI)38368434 (PubMedID)2-s2.0-85185354006 (Scopus ID)
Note

QC 20240229

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2024-02-29Bibliographically approved
Yang, H., Zaini, I. N., Pan, R., Jin, Y., Wang, Y., Li, L., . . . Han, T. (2024). Distributed electrified heating for efficient hydrogen production. Nature Communications, 15(1), Article ID 3868.
Open this publication in new window or tab >>Distributed electrified heating for efficient hydrogen production
Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, no 1, article id 3868Article in journal (Refereed) Published
Abstract [en]

This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.

Place, publisher, year, edition, pages
Nature Research, 2024
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-346497 (URN)10.1038/s41467-024-47534-8 (DOI)38719793 (PubMedID)2-s2.0-85192354703 (Scopus ID)
Note

QC 20240517

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2024-05-17Bibliographically approved
Gulshan, S., Shafaghat, H., Yang, H., Evangelopoulos, P. & Yang, W. (2024). Performance analysis and production of aromatics for ex situ catalytic pyrolysis of engineered WEEE. Journal of Analytical and Applied Pyrolysis, 179, Article ID 106510.
Open this publication in new window or tab >>Performance analysis and production of aromatics for ex situ catalytic pyrolysis of engineered WEEE
Show others...
2024 (English)In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 179, article id 106510Article in journal (Refereed) Published
Abstract [en]

Ex situ catalytic pyrolysis of engineered waste electrical and electronic equipment (WEEE) was conducted in a two-stage reactor using HZSM-5 catalyst. The effect of the catalysis temperature and the catalyst-to-feedstock (C/F) ratio on products yield, gas and oil composition, and products characterization were investigated in this study. Results indicated that lower reforming temperature and C/F ratio favored organic fractions production. The highest yield of organic fraction was obtained at a catalysis temperature of 450 °C and at a C/F ratio of 0.15, corresponding to 28.5 and 27.4 wt %, respectively. The highest selectivity toward aromatic hydrocarbons and the lowest TAN value of the organic fraction were obtained at a catalysis temperature of 450 °C and a C/F ratio of 0.2, respectively. Most of the alkali and transition metals and 23 % of Br remained in the solid residue after the catalytic pyrolysis of low-grade electronic waste (LGEW).

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Aromatics, C/F ratio, Catalytic pyrolysis, HZSM-5, Reforming temperature, WEEE
National Category
Chemical Process Engineering
Identifiers
urn:nbn:se:kth:diva-346164 (URN)10.1016/j.jaap.2024.106510 (DOI)2-s2.0-85190944883 (Scopus ID)
Note

QC 20240506

Available from: 2024-05-03 Created: 2024-05-03 Last updated: 2024-05-06Bibliographically approved
Zaini, I. N., Svanberg, R., Sundberg, D., Bolke, K., Granqvist, J., Lille, C., . . . Yang, W. (2023). A pilot-scale test of plasma torch application for decarbonising the steel reheating furnaces. THERMAL SCIENCE AND ENGINEERING PROGRESS, 40, Article ID 101766.
Open this publication in new window or tab >>A pilot-scale test of plasma torch application for decarbonising the steel reheating furnaces
Show others...
2023 (English)In: THERMAL SCIENCE AND ENGINEERING PROGRESS, ISSN 2451-9049, Vol. 40, article id 101766Article in journal (Refereed) Published
Abstract [en]

The decarbonisation of the Swedish iron and steel industry is crucial in achieving Sweden's target to achieve zero net emissions of greenhouse gases (GHG) by 2045. Direct electrification of industrial furnaces could be an important milestone in decarbonising the iron and steel plants. In this study, pilot-scale trials were performed to investigate the possibility of plasma torch application for steel reheating furnaces. A 250 kW DC plasma torch was used to heat the furnace from room to the operating temperature of 1200 degrees C. Different plasma carrier gases were then used to study their impact on the plasma torch efficiency, furnace temperature profile, NOX emission, and steel oxidation. The results show that the furnace could be heated at a relatively uniform temperature and reasonable time. The combination of air and LPG in the plasma generator provides the most uniform temperature distribution and highest plasma torch efficiency, but it generates the highest NOX emission. N2 as plasma gas resulted in notably poorer temperature distribution and lower plasma torch efficiency; however, it can suppress the oxide formations. Meanwhile, CO2 as plasma gas could be a promising option among the studied gas mixtures as it can provide a good heating performance with a low NOX formation. In summary, the current study has proved that it is practical and functionally possible to heat steel using plasma technology.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Fossil-free steel, Zero carbon, Steel heat treatment, Steel oxidation, Net zero emission, Carbon neutral, Iron and steel making, Steel decarbonization, Industrial decarbonization
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-326052 (URN)10.1016/j.tsep.2023.101766 (DOI)000956114200001 ()2-s2.0-85149842688 (Scopus ID)
Note

QC 20230424

Available from: 2023-04-24 Created: 2023-04-24 Last updated: 2023-04-24Bibliographically approved
Bolívar Caballero, J. J., Han, T., Svanberg, R., Zaini, I. N., Yang, H., Gond, R., . . . Yang, W. (2023). Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production. Energy Conversion and Management, 287, Article ID 117071.
Open this publication in new window or tab >>Advanced application of a geometry-enhanced 3D-printed catalytic reformer for syngas production
Show others...
2023 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 287, article id 117071Article in journal (Refereed) Published
Abstract [en]

Catalyst research on reforming processes for syngas production has mainly focused on the active metals and support materials, while the effect of the catalyst's geometry on the reforming reactions has been poorly studied. The application of 3D-printed materials with enhanced geometries has recently started to be studied in heterogeneous catalysis and is of interest to be implemented for reforming biomass and plastic waste to produce H2-rich syngas. In this study, a geometry-enhanced 3D-printed Ni/Al2O3/FeCrAl-based monolithic catalyst with a periodic open cellular structure (POCS) was designed and fabricated. The catalyst was used for batch steam reforming biomass pyrolysis volatiles for syngas production at different parameters (temperature and steam-to-carbon ratio). The results showed complete reforming of pyrolysis volatiles in all experimental cases, a high H2 yield of ≈ 7.6 wt% of biomass was obtained at the optimized steam-to-carbon ratio of 8 and a reforming temperature of 800 °C, which is a higher yield compared to other batch reforming tests reported in the literature. Moreover, CFD simulation results in COMSOL Multiphysics demonstrated that the POCS configuration improves the reforming of pyrolysis volatiles for tar/bio-oil reforming and H2 production thanks to enhanced mass and heat transfer properties compared to the regular monolithic single-channel configuration.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Additive manufacturing, Bioenergy, Hydrogen production, Process intensification, Steam reforming, Tar cracking
National Category
Energy Engineering Chemical Process Engineering
Identifiers
urn:nbn:se:kth:diva-331686 (URN)10.1016/j.enconman.2023.117071 (DOI)2-s2.0-85153854885 (Scopus ID)
Note

QC 20230713

Available from: 2023-07-13 Created: 2023-07-13 Last updated: 2023-07-13Bibliographically approved
Jin, Y., Yang, H., Guo, S., Shi, Z., Han, T., Gond, R., . . . Yang, W. (2023). Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst. Journal of Cleaner Production, 404, Article ID 136926.
Open this publication in new window or tab >>Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst
Show others...
2023 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 404, article id 136926Article in journal (Refereed) Published
Abstract [en]

Carbon and H2 recoveries from plastic waste enable high value-added utilizations of plastic waste while mini-mizing its GHG emissions. The objective of this study is to explore the use of a metal-free biocarbon catalyst for waste plastic pyrolysis and in-line catalytic cracking to produce H2-rich gases and carbon. The results show that the biocarbon catalyst exhibits a good catalytic effect and stability for various plastic wastes. Increasing the C/P ratio from 0 to 2, induce an increase in the conversion rate of C and H in plastics to carbon and H2 from 57.1% to 68.7%, and from 22.7% to 53.5%, respectively. Furthermore, a carbon yield as high as 580.6 mg/gplastic and an H2 yield as high as 68.6 mg/gplastic can be obtained. The hierarchical porous structure with tortuous channels of biocarbon extends the residence time of pyrolysis volatiles in the high-temperature catalytic region and thereby significantly promotes cracking reactions.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Biocarbon catalyst, Plastic pyrolysis, Hydrogen, Catalytic cracking
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-327174 (URN)10.1016/j.jclepro.2023.136926 (DOI)000971689600001 ()2-s2.0-85151275989 (Scopus ID)
Note

QC 20230524

Available from: 2023-05-24 Created: 2023-05-24 Last updated: 2023-11-03Bibliographically approved
Shi, Z., Jin, Y., Svanberg, R., Han, T., Minidis, A. B. E., Ann-Sofi, K. D., . . . Yang, W. (2023). Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up. Energy, 273, Article ID 127288.
Open this publication in new window or tab >>Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up
Show others...
2023 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 273, article id 127288Article in journal (Refereed) Published
Abstract [en]

The use of catalytic fast pyrolysis (CFP) of biomass to produce high-quality bio-oils as potential substitutes for conventional fuels plays an essential role in the decarbonization of the world. In this study, continuous CFP tests of sawdust using three commercial-ready catalysts were performed. The overall objective is to screen appropriate catalysts and catalyst loading amounts for further commercialization and upgrading by evaluating the quality of the organic fraction bio-oils and clarifying the relationship between the hydrogen-to-carbon atomic effective (H/ Ceff) ratio and bio-oil yield. The results displayed that, owing to a cracking effect of the catalyst, all catalytic cases had higher H/Ceff ratios and larger relative area percentages of hydrocarbons determined by NMR. Thermogravimetric analysis reveals that, compared to non-catalytic bio-oils, catalytic bio-oils showed more distillates in the diesel range. Increasing the catalyst-loading amount also showed the same effect. Overall, all bio-oil products from catalytic cases had H/Ceff ratios higher than 0.6, indicating the production of promising oil for hydrodeoxygenation. By analyzing and fitting the data from this work and comparing with the literature, it could be concluded that its yield would decrease as the bio-oil product quality increases (the H/Ceff ratios increase).

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Biomass, Bio-oil, Catalytic fast pyrolysis, The hydrogen-to-carbon atomic effective ratio
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-326644 (URN)10.1016/j.energy.2023.127288 (DOI)000965087900001 ()2-s2.0-85150893147 (Scopus ID)
Note

QC 20230509

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2023-05-09Bibliographically approved
Zaini, I. N., Nurdiawati, A., Gustavsson, J., Wei, W., Thunman, H., Gyllenram, R., . . . Yang, W. (2023). Decarbonising the iron and steel industries: Production of carbon-negative direct reduced iron by using biosyngas. Energy Conversion and Management, 281, Article ID 116806.
Open this publication in new window or tab >>Decarbonising the iron and steel industries: Production of carbon-negative direct reduced iron by using biosyngas
Show others...
2023 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 281, article id 116806Article in journal (Refereed) Published
Abstract [en]

Bioenergy with carbon capture and storage (CCS) in iron and steel production offers significant potential for CO2 emission reduction and may even result in carbon-negative steel. With a strong ambition to reach net-zero emissions, some countries, such as Sweden, have recently proposed measures to incentivise bioenergy with CCS (BECCS), which opens a window of opportunities to enable the production of carbon-negative steel. One of the main potential applications of this route is to decarbonise the iron reduction processes that account for 85 % of the total CO2 emission in the iron and steel plants. In this study, gasification is proposed to convert biomass into biosyngas to reduce iron ore directly. Different cases of integrating the biomass gasifier, Direct Reduced Iron (DRI) shaft furnace, and CCS are evaluated through process simulation work. Based on the result of the work, the proposed biosyngas DRI route has comparable energy demand compared to other DRI routes, such as the well-established coal gasification and natural gas DRI route. The proposed process can also capture 0.65-1.13 t of CO2 per t DRI depending on the integration scenarios, which indicates a promising route to achieving carbon-negative steel production.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Gasification, Direct reduced iron, Sponge iron, Fossil-free, CCS, BECCS, Aspen Plus, Fluidised bed gasifiers
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-328309 (URN)10.1016/j.enconman.2023.116806 (DOI)000990830900001 ()2-s2.0-85148896813 (Scopus ID)
Note

QC 20230607

Available from: 2023-06-07 Created: 2023-06-07 Last updated: 2024-03-15Bibliographically approved
Yang, H., Cui, Y., Jin, Y., Lu, X., Han, T., Sandström, L., . . . Yang, W. (2023). Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process. Energy & Fuels, 37(8), 5942-5952
Open this publication in new window or tab >>Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process
Show others...
2023 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 37, no 8, p. 5942-5952Article in journal (Refereed) Published
Abstract [en]

Biochar, originating from biomass pyrolysis, has been proven a promising catalyst for tar cracking/reforming with great coke resistance. This work aims to evaluate various engineered biochar-based catalysts on syngas production in a biomass pyrolysis and catalytic reforming process without feeding extra steam. The tested engineered biochar catalysts include physical- and chemical-activated, nitrogen-doped, and nickel-doped biochars. The results illustrated that the syngas yields were comparable when using biochar and activated biochar as catalysts. A relatively high specific surface area (SSA) and a hierarchical porous structure are beneficial for syngas and hydrogen production. A 2 h physical-activated biochar catalyst induced the syngas with the highest H2/CO ratio (1.5). The use of N-doped biochar decreased the syngas yield sharply due to the collapse of the pore structure but obtained syngas with the highest LHVgas (18.5MJ/Nm3). The use of Ni-doped biochar facilitated high syngas and hydrogen yields (78.2 wt % and 26 mmol H2/g-biomass) and improved gas energy conversion efficiency (73%). Its stability and durability test showed a slight decrease in performance after a three-time repetitive use. A future experiment with a longer time is suggested to determine when the catalyst will finally deactivate and how to reduce the catalyst deterioration.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-330966 (URN)10.1021/acs.energyfuels.3c00410 (DOI)000962149600001 ()2-s2.0-85151322199 (Scopus ID)
Note

QC 20230705

Available from: 2023-07-05 Created: 2023-07-05 Last updated: 2023-11-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-1837-5439

Search in DiVA

Show all publications